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Abstract: To ensure the continuity of electric power generation for photovoltaic systems, condition 
monitoring frameworks are subject to major enhancements. The continuous uniform delivery of 
electric power depends entirely on a well-designed condition maintenance program. A just-in-time 
task to deal with several naturally occurring faults can be correctly undertaken via the cooperation 
of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first out-
lines different failure modes to which all photovoltaic systems are subjected, in addition to the es-
sential integrated detection methods and technologies. Then, data-driven paradigms, and their 
contribution to solving this prediction problem, are also explored. Accordingly, this review pri-
marily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) 
in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the 
extension of machine learning to knowledge-driven approaches, including generative models such 
as adversarial networks and transfer learning. Finally, this review provides insights into different 
works to highlight various operating conditions and different numbers and types of failures, and 
provides links to some publicly available datasets in the field. The clear organization of the abun-
dant information on this subject may result in rigorous guidelines for the trends adopted in the 
future. 

Keywords: photovoltaic systems; machine learning; deep learning; condition monitoring; faults 
diagnosis; fault detection; open source datasets 
 

1. Introduction 
The consumption of renewable energy has received increased acceptance in a wide 

range of sectors due to the clear advantages it offers. The inherent environmentally 
friendly power generation process has stimulated global interest in the development of 
renewable energies as the only solution for a cleaner environment and the satisfaction of 
increased energy demands [1,2]. In 2020, the statistical studies of the “World Energy 
Data” reports stated that, in regard to the global consumption of energy, renewable en-
ergies account for 23.6% [3]. Among these multiple renewable energy resources (such as 
biomass, hydro, geothermal, wind, and solar), solar energy accounts for 11.44% of total 
spending, with the potential for increase. In addition, it is expected that photovoltaic and 
wind power generation technologies will become the main energy sources in the world 
by 2025, and photovoltaic modules are forecast to support 60% of the additional capacity 
[4]. However, the only appropriate means to interactively meet energy demands is via a 
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network that takes into account the optimal distribution parameters (i.e., cost, quality, 
and time). Photovoltaic (PV) systems of different types (i.e., standalone, grid connected, 
and hybrid) are subject to numerous environmental constraints (e.g., solar radiation, 
ambient temperature, and dust and other droppings). As a result, the optimal distribu-
tion process is entirely dependent on a reliable condition monitoring (CM) system. The 
CM system must be able to assess the state of health against the continuously changing 
working conditions while attempting to find the best plans for maintenance decisions or 
an optimal automatic control process [5]. The reliability of the CM system is tightly af-
fected by a highly sophisticated modeling process. This should produce a stable (i.e., with 
the largest possible confidence interval) and accurate model capable of mimicking the 
operating behavior of real systems. Therefore, the current tendency is to use adaptive 
modeling processes capable of addressing all of the dynamic variations of the operating 
conditions [6]. Consequently, the available literature shows that modeling based on a set 
of well-demonstrated laws of physics will produce a sufficiently fast and stable response, 
leading to increased compatibility between simulation and actual functioning behaviors 
[7]. Conversely, this process will only be available when the following conditions are met 
(see Tu et al. [8], § 5.5.1.4): 
• The derived mathematical formulas are certain;  
• There are no simplifications (elimination/merging of model’s elements); 
• Experimental validation of the designed models is possible and can be fully 

achieved. 
It can be understood that when many dynamically functioning components are in-

volved in such an operation, it will be intractable for a direct physical simulation process 
to derive the appropriate interpretations under the aforementioned conditions [9]. 
Hence, to model such a complex dynamic phenomenon, switching to data-driven ap-
proximation is a prominent path that is relied upon. Due to the availability of advanced 
technologies in automation, networking, and sensors, e.g., Supervisory Control and Data 
Acquisition (SCADA), data-driven analysis with machine learning (ML) is becoming in-
creasingly relevant for a large class of applications [10]. It also allows behavioral aspects 
to be mimicked by appropriately examining only the patterns driven with recorded op-
erational history. As a result, in the field of Prognosis and Health Management (PHM) of 
PV systems, a multitude of ML approaches with different architectures, e.g., ensemble 
and hybrid, have been extensively investigated and a large number of learning para-
digms, e.g., Conventional (CL) and Deep Learning (DL), have therefore been discussed. 

In this paper, we endeavor to provide more details on the CM of photovoltaic sys-
tems using ML modeling. We review contributions and literatures that have been pub-
lished recently, with a focus largely on the works published within the past three years. 
In this context, recent reviews have provided numerous insights into the exploitation of 
ML in the field of PHM (i.e., detection, diagnosis, and prognosis) of PV systems. The re-
view by Sundaram et al. [11] elucidated many details relating to the application of DL 
tools for industrial processes encompassing PV panels. The review generally addressed 
DL architectures including, but not limited to, autoencoders, Convolutional Neural 
Networks (CNNs), Long Short-Term Memory (LSTM), Deep Stacking Networks (DSNs), 
and Deep Belief Networks (DBNs). It also provided information about knowledge-driven 
models such as Generative Adversarial Networks (GANs). The review of Zhao et al. [12] 
studied the use of ML for power electronic systems. The authors therefore explored 
multiple ML tools and paradigms according to their field of application (i.e., optimiza-
tion, classification, regression, and clustering) for health condition assessment. In opti-
mization, they explained how swarm intelligence algorithms such as Particle Swarm 
Optimization (PSO) can assist a physical model to achieve an adaptive control process, 
e.g., Maximum Power Point Tracking (MPPT). In addition, for other applications, they 
briefly discussed anomaly detection, Remaining Useful Life (RUL) prediction, and health 
level estimation for unlabeled samples. Kurukuru et al. [13] presented a general overview 
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of the application of Artificial Intelligence (AI) tools for photovoltaic systems. Their study 
was not limited to CM, and also addressed the relevant aspects of control, forecasting, 
cyber security, design, and maintenance (see Kurukuru et al. [13], Figure 1). Accordingly, 
in terms of CM, they listed recently published articles regarding fault detection, mainly 
addressing topics related to photovoltaic panels, electronic converters, filters, and bat-
teries. In addition, they did not discuss ML architectures and detection methods. The 
mini-review undertaken by Kande al et al. [14] focused on a specific detection technology 
(e.g., infrared thermography) for CM of PV systems. The authors further discussed types 
of PV array failures and briefly studied ML without examining the details of learning 
approaches. Mellit et al. [15] analyzed the emergence of AI and Internet of Things (IoT) 
technologies in the field of diagnostics and remote sensing of photovoltaic systems. In 
terms of CM, they mainly addressed DL architectures and conventional learning meth-
ods, and described the relevant failures of PV systems. Moreover, they provided an ex-
planation for the use of some learning paradigms, such as supervised learning, unsu-
pervised learning, and reinforcement learning. 

In general, the reviews of the literature essentially relate to ML-based techniques for 
CM of PV conditions and to showcasing a global conclusion concerning their application 
attributes. However, most of the previous works did not pay sufficient attention to a 
more detailed classification of ML tools in terms of architectures and learning paradigms. 
Furthermore, they did not provide a consistent classification of detection methods, e.g., 
current-voltage (I-V) sensors, radiation sensors, temperature sensors, and thermographic 
cameras, and technologies (e.g., ordinary sensors, wireless sensors) when attempting to 
identify and locate specific faults [16,17]. Numerous aspects regarding the number and 
type of handled faults, and the number and state of operating conditions, require a more 
detailed analysis. For example, extensions to actual operating conditions other than 
MPPT, e.g., Intermediate Power Point Tracking (IPPT) [18], have not been fully covered. 
For real-world applications, numerous experimental studies have been carried out in the 
presence of unbalanced massive dynamic data (big data). Nevertheless, to the best of our 
knowledge, the topic has not been specifically addressed because it is perceived as a ML 
problem. 

In this context, in the current paper, we aim to incorporate numerous new details in 
the field of CM of PV systems with ML, and review the different modes and types of PV 
system failure. In addition, we illustrate various adopted ML methods and their applica-
tions, and suggest paths for probable future opportunities for monitoring the health of 
PV systems. 

This paper is organized as follows: Section 2 is dedicated to the failure types en-
countered in PV systems and detection technologies. Section 3 explains the classifications 
of the ML models used with regard to their feature extraction techniques, in addition to 
the problems relating to the type and number of failure modes and data dimensionality. 
Section 4 discusses the obtained review results. Finally, Section 5 summarizes important 
conclusions and suggests future directions. 

2. PV Systems Failure Types and Detection Technologies 
Under operating conditions, photovoltaic panels and other PV grid-related compo-

nents are exposed to harsh environments [19,20]. Environmental effects, such as over-
heating of cells caused by higher temperatures, dirt, and droppings, can affect the health 
of PV system conditions. As a result, degradation of certain components (e.g., cells) may 
appear occur a certain period in the operating life cycle [4]. In contrast, other components 
(e.g., inverters) can be prone to sudden and complete failure. Therefore, different detec-
tion technologies for various components have been continuously researched and im-
proved, with the aim of acquiring the information needed in the diagnosis/prognosis of 
faults. This section aims to provide insights into major fault types in PV systems and the 
corresponding sensing technologies used for monitoring the indicators of these faults. 
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2.1. PV Systems Failures 
In this review, we focus on failures common to the varying aforementioned PV 

systems types. According to Sabbaghpur et al. [21], these failures can be classified into six 
different categories (i.e., shading, open-circuit, degradation, line-to-line, bypass diode, 
and bridging) as illustrated by Figure 1. 

 
Figure 1. Common failures types in PV systems. 

2.1.1. Shading 
Photovoltaic systems provide electrical energy when solar cell materials are exposed 

to light photons of the sun. When the solar cell or photovoltaic panel is screened from the 
sunlight due to obstructions, electricity generation is weakened [22]. The shading phe-
nomenon can partially or totally cover the PV modules depending on the source of the 
obstructions, for instance: 
• Objects near PV panels, such as buildings, walls, trees, or other panels; 
• The horizon of surrounding land; 
• Dirt and other droppings; 
• Panel aging, orientation, or soiling. 

Relevant solutions in this case have been introduced to remedy the effect of shading 
via several alternatives, such as: 
• A well-structured analysis of bypass diodes under energy production [22]. The by-

pass diodes are typically used to isolate shaded PV cells/panels that can produce a 
significant reduction in electric power [23]. 

• Intelligent controlling algorithms for PV panel orientation can also be involved in 
this process when searching for the MPPT [23–25]. 

• Analysis of multiple stringing to find optimal arrangements for the PV modules (i.e., 
parallel and series panel installations) [26].  
The example showcased in Figure 2 is a partial shading experiment on a PV module 

in an attempt to clearly illustrate the role of bypass diodes in MPPT. It describes both the 
I-V and P-V variations under three main conditions, namely: normal operating condi-
tions (no shade), shading conditions without installed bypass diodes, and shading con-
ditions when bypass diodes are installed. The results of this figure were obtained from 
separate simulation experiments which were performed in [27]. However, in the cur-
rently presented curves, the results are grouped into a single reference for each curve 
type (i.e., I-V and P-V) to facilitate the comparative study.  

Figure 2a,b elucidates the obtained I-V and P-V results, respectively, under the three 
aforementioned conditions. In this case and without involving the bypass diodes, there is 
no power tracking or current, and it yields a near-total absence of electric energy pro-
duction. In contrast, the bypass diodes show their extreme capability in handling the 
MPPT by identifying useful local minima to produce an acceptable amount of energy. 
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Figure 2. An example of reducing partial shading effects with bypass diodes: (a) I-V curves; (b) P-V 
curves. Reproduced from [27], MDPI: 2020. 

2.1.2. Degradation 
PV modules are specifically designed to serve electric power generation for a long 

lifespan ranging from 25 to 30 years. It is thus clear that they are subject to a uniform rate 
of degradation (i.e., gradual loss in performance) over the course of each year (i.e., less 
than 0.8%) [4]. Generally, degradation rates can be measured through data statistical 
analysis using the deterioration history for such PV modules [28,29]. However, collecting 
the necessary damage propagation patterns is difficult due to the long lifespan. There-
fore, accelerated life tests under similar working conditions are undertaken to provide 
prior assumptions about the health conditions.  

Figure 3 elucidates common degradation modes in PV modules. In [4], a study was 
carried out on the common degradation types of PV modules to determine the most 
common form of degradation during the past 10 years. Accordingly, a listed set of oc-
currence percentages corresponding to various degradation types was therefore pro-
vided as follows: 33% for hot spots; 20% for the discoloration of the ribbon; 12% for glass 
breakage, 10% for encapsulant discoloration; 9% for cell breakage; and 8% for Potential 
Induced Degradation (PID). 

 
Figure 3. Illustration of common degradation types in PV modules. Reproduced from [4], MDPI: 2021. 
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2.1.3. Open-Circuit 
When an electrical circuit in the PV module wiring installation is interrupted by a 

break in one of the wires or by a blown fuse, an open-circuit fault appears immediately. 
Moreover, an open-circuit fault may involve more than one phase and ground wire (i.e., 
electrical flow will pass through the ground), or may only occur between the phases 
themselves. The open-circuit fault can occur due to an open wire, a bad connection, or a 
loose terminal [30,31]. An open-circuit fault can cause more damage than a short-circuit 
fault because of the steady increase in the amperage flow [32]. 

The detection of this type of fault can be performed either via data-driven methods, 
such as illustrated by the works of Wang et al. [33] and Du et al. [34] (i.e., ML modeling), 
or through the use of physical simulation models and analysis of I-V/P-V curves, as in-
dicated in the work of Pei et al. [31]. However, detection with ML modeling can be un-
dertaken by means of both supervised learning (approximation) when labels are known 
or unsupervised learning (clustering) when data is unlabeled. 

The variation example of the I-V and P-V curves for a PV module shown in Figure 4, 
which was obtained from [31], provides an overview of their variation with respect to 
different types of fault modes. It can be seen that each type of failure has its own partic-
ular characteristics, which distinguishes it from other failure types. Specifically, the I-V 
and P-V variations in the open circuit have more definite statistical characteristics than 
the other faults. Thus, the open circuit fault can be easily determined through precise in-
dicators derived by signal processing. 

 
Figure 4. I-V and P-V curves for different fault types: (a) P-V curves; (b) I-V curves. Reproduced from [31], MDPI: 2019. 

2.1.4. Line-to-Line 
A line-to-line fault is a type of short circuit between lines, caused when air saturated 

with ions reaches a defined threshold, or when lines accidentally come into contact with 
each other. Therefore, protective devices such as fuses must be installed to prevent sig-
nificant damage to the system. When a line-to-line fault occurs in an electrical device, it 
generates an extremely low impedance path for current flow [35]. This yields a large 
current flow from the power supply, causing the relays to trip, and damaging the insu-
lation and equipment components. 

According to the review on fault classification in power transmission systems con-
ducted by Prasad et al. [36], line-to-line faults can be detected using three principal 
strategies:  
• Signal processing methods; 
• Intelligent ML methods; 
• Hybrid methods. 

Figure 4 also illustrates this type of fault (short circuit), which can easily be distin-
guished through accurate P-V and I-V curve analysis. The experiment carried out by Pa-
dilla et al. [37] also offers a large set of comprehensible visual examples for the analysis of 
the current loss of short-circuited commercial PV cells. Their work mainly uses current 
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density mapping measurements based on linear external quantum efficiency interpola-
tion to detect the effect of this type of fault. Figure 5 demonstrates current density in both 
operating conditions of the solar cells (i.e., normal and line-to-line conditions). The re-
gions of interest in Figure 5b (i.e., A, B, C, and D) are defect symptoms, which may be 
detected through a well-designed image segmentation and classification process. 

 
Figure 5. External quantum efficiency maps for healthy and faulty industrial solar cells: (a) ordinary map of a healthy cell; 
(b) map of a PV cell under short-circuit conditions. Reproduced from [37], Elsevier: 2014. 

2.1.5. Bypass Diode 
Bypass diodes are widely used in PV modules to optimize electrical power genera-

tion when exposed to partial shade conditions or a non-uniform irradiance [27,38]. 
Shading losses can be avoided by allowing a bypass diode to be connected in parallel 
with PV cells in opposite polarity. In unreliable conditions, the bypass diode conducts, 
and immediately allows only healthy cells to operate [39]. 

Instinctive drops in output current in the PV modules, which is a result in switch-
ing-off of one of the cell strings, are an effect caused by the failure of at least one of the 
installed bypass diodes. Such incident can be caught by analyzing the I-V and P-V curves 
under good solar radiation. However, it is almost invisible when the PV panels are ex-
posed to low sunlight which therefore requires more in-depth intelligent tools [40,41]. 

Figure 6 depicts some of the symptoms of bypass diode faults in a PV module. It is a 
sort of deformation in bypass diodes that takes approximately three years to appear [38]. 
In Figure 6b, one may notice that some traces occur due to the migration of metal into a 
semiconductor (white silicon layer).  
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Figure 6. X-ray photos of bypass diode in normal and unhealthy condition (a) normal operating bypass diode; (b) faulty 
bypass diode. Reproduced from [38], MDPI: 2018. 

2.1.6. Bridging 
The bridging fault is related to the low resistance between two sets of points with 

different potentials in the PV stringing of the module or its wiring network [21]. Com-
mon types of bridging faults can be listed as follows: 
• Short circuit of two output lines; 
• Short circuit between input and output lines of different strings;  
• Hard-wired logic [42–44]. 

The study conducted by Ul-Haq et al. [45] targeted the determination of the amount 
of extracted power from PV solar modules under different fault types using P-V curve 
analysis. Several types of interconnections were investigated, including Series-Parallel 
(SP), Total-Cross-Tied (TCT), Bridge-Link (BL), and Reconfiguration Method (RM). Two 
types of PV panels were thoroughly exploited, namely the polycrystalline and copper 
indium gallium selenide panels. In the context of bridge fault type analysis, the P-V 
curves shown in Figure 7 were obtained.  

It is convenient for Series-Parallel SP connection architectures to exhibit better per-
formance by minimizing power loss. Accordingly, regarding RM paradigms, the com-
plete absence of power peaks in the curves can be seen, which explains why they are not 
able to minimize the power loss of PV modules when a bridge fault occurs. Conversely, 
RM optimizes the performance of PV modules by targeting sudden decreases in the 
current. 
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Figure 7. P-V curves under different architectures and operating conditions: (a) P-V curves under normal operating con-
dition; (b) P-V curves under bridge fault (polycrystalline); (c) P-V curves under bridge fault (copper indium gallium 
selenide). Reproduced from [45], IEEE: 2020. 

2.2. Technologiesof Detection Sensors 
The quality of recorded data is essential for training the prediction models of ML 

tools for CM of PV systems. Therefore, capturing the training patterns needed to build an 
accurate approximation model depends not only on the ML model itself, but also on the 
type and accuracy of the used sensors. In this case, many types of sensors can be used 
that rely on the information required by the ML developers. For example, image sensors, 
such as thermographic [46,47], X-ray [38,48], and electroluminescence cameras [49,50], 
are, in general, used to analyze the types of external defects related to degradation fea-
tures by providing images of the surface of photovoltaic panels or cells. By comparison, 
traditional sensors such as I-V, P-V, temperature, and radiation sensors can be used to 
determine symptoms of both external and internal defects in the system. 

Image sensors can provide a higher dimensional feature space, which cannot be 
easily handled by ML models. It therefore requires more complex data preprocessing, 
such as image segmentation, extraction, and dimensionality reduction to achieve clean, 
reliable, and well-distributed learning samples [51,52]. Conventional I-V/P-V sensors are 
easier to use because they are able to hold all of the needed information relating to both 
external and internal defects. However, due to the harsh environment conditions to 
which dynamic changing is subjected, extracting necessary patterns also requires a large 
signal processing phase before moving to the training process. This reduces the higher 
cardinality present in raw data under the form of similar patterns with distinct labels 
[18]. 

Additionally, the installation technology (wired and wireless) of sensors can also 
affect the training process. For instance, although wired sensors are efficient, they are 
expensive and difficult to manipulate in terms of installation, particularly for wide geo-
graphic distributions. On the contrary, wireless sensors may be easier to use but are 
subject to distortion due to environmental conditions and the presence of a higher level 
of electromagnetic disturbance, and are more vulnerable to cyber-attacks than wired 
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sensors [53,54]. In addition, drone sensors, such as those found on Unmanned Aerial 
Vehicles (UAVs), are unstable. As a result, they are unable to deliver the same infor-
mation even for two consecutive captured images for the same PV panel [55,56]. This in-
stability in data capture creates outliers in the feature space, which also poses significant 
disadvantages for data processing and approximation.  

In general, conventional sensors are used to analyze the system performance. This 
helps in the subsequent detection of both internal and external system failures, such as 
open-circuit failures or shading. Images sensors have been widely adopted to detect 
degradation in PV panels (i.e., external defects only). Figure 8 presents different types of 
feature space that can be encountered when building a photovoltaic CM system based on 
an ML model with respect to the used detection technology. It also specifies the necessary 
ML preprocessing and ML models required to accomplish this model reconstruction 
process. 

 
Figure 8. Classification of sensor types used for PV system monitoring. 

3. Machine Learning for Condition Monitoring of PV Systems 
It is a common practice in health condition monitoring to involve ML in the diag-

nosis and prognosis process, where the main function concerns the localization and 
identification of the causes of failures. The prognosis task refers to the earlier prediction, 
and hence can be classified as a kind of predictive diagnosis. Predictive modeling with 
machine learning is often built upon four main steps [57]: 
• Data preparation; 
• Training;  
• Results post-processing;  
• Validation.  

These steps and their sub-tasks are simplified in the flow diagram of Figure 9. 
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Figure 9. Different steps of constructing a machine learning predictive model. Reproduced from [57], Elsevier: 2021. 

The type selection of the training model is completely dependent on the complexity 
level of the encountered problem (see Schmidhuber [58], § 3). The more complex the 
problem, the more complex the solution must be. Thus, this section discusses the classi-
fication of different employed ML tools in general prediction problems, and specifically 
those used in CM in PV systems.  

It is known that the construction of a good predictive model requires both training 
and testing samples extracted from the same probability distribution. However, it is 
impossible in practical application to achieve such an objective. Because of contemporary 
advanced technologies, data are becoming increasingly complicated in terms of dynamic 
variation. In parallel, ML modeling is also under accelerated development in an attempt 
to support the rapid variation of data. Therefore, ML models are divided into three main 
categories: 
• Conventional ML;  
• Advanced deep learning;  
• Recent knowledge-driven methods, such as GANs and TL.  

It should be noted that all the tools of these categories are subject to different learn-
ing paradigms, such as hybrid, ensemble, and reinforcement learning. Figure 10 illus-
trates the proposed classification introduced in this work. We also focus on the number of 
treated PV fault modes when describing these recent models. Furthermore, links are 
provided to the publicly available datasets used in the papers discussed in this work to 
enrich the present review content and to assist readers who aim to build ML models with 
similar data. 

 
Figure 10. Classification of ML approaches. 
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3.1. Conventional Machine Learning 
Conventional ML paradigms are predictive models designed to produce the best 

possible approximation between inputs and targets. The procedure should take into ac-
count the generalization capacity of such a learning model. Conventional algorithms, 
such as the Support Vector Machine (SVM), Multilayer Perceptron (MLP), and K-Nearest 
Neighbor (KNN), with ordinary representation and without deeper nonlinear abstrac-
tions, belong to this class of learning models [59]. In the context of CM for the PV system 
with ML modeling, many approaches have therefore been established. As a result, to 
provide a more simplified representation for the literature review, we divided each sub-
class of ML models into two categories according to Figure 8, namely, ordinary and im-
age acquisition techniques.  

3.1.1. ML-Based Ordinary Sensors 
Ordinary sensors, such as I-V, P-V, temperature, and radiation sensors, are com-

monly applied in conventional ML for condition monitoring of PV systems. For instance, 
Garoudja et al. [6] proposed the use of a Probabilistic Neural Network (PNN) to detect 
healthy and unhealthy operating conditions of a PV module. In the detection phase, they 
used common I-V signals on the DC converter side to investigate variations with respect 
to previously stored historical data. Elected learning data was retrieved from a 
well-designed simulation model inspired by physical modeling of a real grid-connected 
PV system. Four types of sub-fault modes belonging to the short-circuit fault category, 
with different stringing numbers and disconnection of PV modules, were therefore dis-
cussed. Momeni et al. [60] adopted a new approach to the ML-based PV fault diagnosis 
algorithm, in which the learning process is built in a semi-supervised learning process. 
Graph-Based Learning (GBSSL) was used to extract hypotheses about the labels of un-
seen samples by following a kind of analysis, based on a previously labeled dataset. Two 
types of PV fault related to different cases from line-to-line faults were investigated using 
the same methodology for analyzing measured I-V signals. Maaløe et al. [61] simulated 
learning data by considering several types of shading fault modes (10 modes) based on a 
computer simulation program inspired by a real PV system. Then, the Bayes Theorem 
(BT) was developed for clustering processes with the aim of accurately differentiating 
between different operation behaviors using the characteristics of conventional I-V 
curves. The training samples and their given labels using the BT algorithm were fed into 
an ordinary classifier based on stochastic gradient rise methods for a rough estimate. 
Lazzaretti et al. [62] used the Dynamic Adaptive Recursive Linear (DARL) model for the 
detection of PV fault modes. Three main cases of unhealthy state were considered, 
namely, line-to-line, degradation, and shading. The study was carried out using a con-
structive predictive model capable of circumventing the disadvantages associated with 
the variation in operating conditions with time. The controlled data was retrieved from a 
specially developed simulator of a real photovoltaic power plant. During the modeling 
process, the fault modes were intentionally and continuously injected into the signal 
models to produce enough acquired samples. Dhibi et al. [63] employed a Re-
duced-Kernel Random Forest (RKRF) for the detection and classification of 
grid-connected photovoltaic faults. Data mining was realized by sparse representations 
of Principal Component Analysis (PCA) to reduce the dimensionality of the data. They 
also used KNN clusters to decrease the number of training instances. As a result, a sim-
ulated PV system was operated to evaluate the approximation process, where nine types 
of I-V sensors were installed in different positions for sufficient and accurate data collec-
tion. In addition, these sensors were used to detect five different PV fault modes of dif-
ferent components (sensor, inverter, grid connection, PV panels, etc.). The simulated fault 
modes were generally classified to three categories, namely, open circuit, line-to-line, and 
shading. Huang et al. [64] optimized a single hidden layer feedforward neural network 
that was trained by the Extreme Learning Machine (ELM) algorithm using the Bee Col-
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ony (BC) metaheuristic. They utilized this optimal search algorithm to perform an accu-
rate diagnosis of failure modes of PV systems. As a result, the shading phenomenon 
caused by dirt and dust was specifically studied as the main environmental variable. 
Eskandari et al. [65] followed a methodology similar to that of Huang et al. [64] for 
PV-based fault detection. However, a slightly more complex ensemble learning archi-
tecture was studied within this context. Several types of learning algorithms were used, 
including KNN, SVM, and Naive Bayes (NB), in unique training settings, which were 
concluded by a voting process to approve a final decision. Two cases of healthy and un-
healthy states were treated as a classification problem, where the main studied type of 
fault was the line-to-line fault. In another work of Eskandari et al. [66], the same meth-
odology was followed. However, unlike the use of ensemble learning, the authors chose 
to trigger the learning process on multiple classifiers, namely, SVM, NB, and Logistic 
Regression (LR), and selected only the best after completion of the evaluation process. 
Edun et al. [67] suggested a supervised and unsupervised dictionary learning approach 
to detect disconnect (open-circuit) faults in PV modules. Their main contribution in-
volved the use of sparse coding algorithms, such as Singular Value Decomposition 
(SVD), to help locate and identify symptoms of faults in driven samples. The detection 
phase consisted of measuring the characteristics of the reflection signatures obtained in 
response to that sent in the transmission lines where reflections can appear at each point 
of impedance mismatch. Hajji et al. [68] developed a multivariate time series feature ex-
traction and selection technique based on PCA for appropriate PV grid-connected data 
preprocessing. They fed the resulting clean data into a supervised ML model for fault 
classification. Five fault modes belonging to line-to-line and shading categories were 
simulated on several components of a PV system. The detection technologies involved 
the use of I-V sensors placed in several locations to collect the necessary patterns for 
analysis. Different classifiers were used to evaluate the learning model, and results indi-
cated that RF has the capability to provide the best results. Harrou et al. [69] elaborated 
ML prediction frameworks including SVM, Gaussian Process Regression (GPR), and 
mapping-based kernel machines for condition monitoring of PV systems. Six fault types 
specified by bridging faults and partial shading, and PV module short circuits, module 
degradation, and line-to-line faults, were examined using P-V analysis. A more compli-
cated analysis was performed by Bakdi et al. [18], in which supplementary operating 
conditions were taken into account. MPPT and IPPT were both studied under a big data 
environment. In contrast to the previous works, 16 failure modes were intentionally in-
jected into a simulation model inspired by a real PV system. However, the initial data 
were recorded from real operating conditions rather than being randomly generated. 
Two I-V/P-V scenarios of normal functioning under MPPT and IPPT were therefore rec-
orded. Fourteen other scenarios were recorded from abnormal conditions under the same 
condition, where fault modes were equally distributed. Learning signals are subjected to 
an extremely large dynamic environment that can produce deep problems. Bakdi et al. 
[18] attempted to solve this problem by constructing a hybrid ML model by combining a 
set of traditional prediction tools, namely, PCA, Kullback–Leibler Divergence (KLD), and 
Recursive Smooth Kernel Density (RSKD) estimation. These tools were respectively em-
ployed for dimensionality reduction, feature extraction, and supervised training.  

3.1.2. ML-Based Image Acquisition 
In contrast to the aforementioned works, which depend entirely on the interpreta-

tion of characteristic variations of ordinary sensor measurements such as I-V/P-V signals, 
other complex studies have been conducted on larger and more dynamic datasets. 
However, it should be noted that there is an observable scarcity in the application of 
conventional ML for higher-dimension image processing. For example, Ali et al. [70] ap-
plied a new detection technology based on infrared thermographic images to determine 
shading and degradation faults caused by hot spots in PV modules. Numerous feature 
extraction techniques have therefore been used to provide cleaner data. Descriptive pat-
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terns based on image processing, such as RGB, texture, Oriented Gradient Histogram 
(OGH), and local binary pattern (LBP), have been incorporated as a data preprocessing 
step. After several tests with different datasets, the higher approximation capacity of 
SVM has been demonstrated. Similar experiments on the degradation effects of hot spots 
on photovoltaic panels were conducted by Dhimish [71]. The obtained results indicate 
that Discriminate Classifiers (DCs) lead to better precision than SVM and other conven-
tional machine learning methods, such as KNN and Decision Tree (DT). Table 1 summa-
rizes the basic details in relation to the conventional machine learning models discussed 
in this review, with their characteristics. 

Table 1. Conventional ML methods for CM of PV systems. 

Reference ML Tools Detection Faults Number Faults Categories Learning Type Open Source Data 
Garoudja et al. [6] PNN I-V/P-V 4 Short-circuits Ordinary ----- 

Bakdi et al. [18] 
PCA, RSKD and 

KLD 
I-V/P-V 16 

Shading and 
open-circuit and con-

trollers 
Hybrid Bakdi et al. [72] 

Momeni et al. [60] GBSSL I-V/P-V 2 Line-to-line Ordinary ----- 
Maaløe et al. [61] BT I-V/P-V 10 Shading Ordinary ----- 
Lazzaretti et al. 

[62] 
DARL I-V/P-V 4 

Line-to-line, degrada-
tion, and shading 

Ordinary Lazzaretti et al. [73] 

Dhibi et al. [63] 
RKRF, PCA and 

KNN 
I-V/P-V 5 

Open circuit, 
line-to-line, and shading 

Hybrid ----- 

Huang et al. [64] ELM and BC I-V/P-V 5 Shading Hybrid ----- 
Eskandari et al. 

[65] 
KNN, SVM and 

NB 
I-V/P-V 2 Line-to-line Ensemble ----- 

Eskandari et al. 
[66] 

SVM, NB and LR I-V/P-V 2 Line-to-line Ensemble ----- 

Edun et al. [67] SVD 
Reflection sig-

natures 
----- Line-to-line Ordinary ----- 

Hajji et al. [68] PCA and RF I-V/P-V 5 
Line-to-line and shad-

ing 
Hybrid ----- 

Harrou et al. [69] 
SVM, GPR and 

kernels 
----- 6 

Bridging faults, partial 
shading, and PV mod-

ules short-circuited, 
module degradation, 
and line–line faults 

Hybrid ----- 

Ali et al. [70] SVM 
Thermographic 

images 
2 

Shading and degrada-
tion 

Ordinary ----- 

Dhimish [71] DC 
Thermographic 

images 
2 Degradation Ordinary ----- 

3.2. Deep Learning 
In the 1980s, deep learning (DL) was popularized by John Hopfield and David Ru-

melhart in the training of brain-inspired algorithms [59]. DL is a branch of ML that pri-
marily focuses on feature mappings and representations. As a result, the larger the im-
proved feature space, the more meaningful the representations. 

The current DL technologies have been widely investigated in all areas of da-
ta-driven applications. Many algorithms have therefore been developed, such as Deep 
Belief Networks (DBNs) by Hinton [74], Long Short-Term Memory by Schmidhuber [58], 
Convolutional Neural Networks (CNNs) by Lecun [75], and the family of autoencoders. 
Subsequently, research in PV condition monitoring has flourished and many algorithms 
have been developed. Therefore, this subsection presents applied DL methods for CM of 
PV systems with respect to the previously discussed detection and acquisition technolo-
gies. 
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3.2.1. DL-Based Ordinary Sensors 
In general, DL models are not well suited to condition monitoring based on ordinary 

sensors; they usually involve more complex modeling processes. In the work of Liu et al. 
[76], a stack of autoencoders (SAE) was used to automatically extract features from a 
small number of unlabeled I–V curves to distinguish between several fault types that can 
occur in PV modules. Feature dimensions were thereafter reduced and enhanced by 
t-distributed Stochastic Neighbor Embedding (t-SNE). Furthermore, the health states of 
similar patterns were grouped using Fast Search and Find of Density Peaks (FSFDP) and 
Membership Function (MF). As a result, the study investigated a powerful model that is 
able to handle a complex clustering process of about eleven fault types of shading, short 
circuit, and degradation. Appiah et al. [77] developed an automatic LSTM able to extract 
meaningful features with higher capability of learning through time. In this study, the 
authors used I-V signal analysis to address the condition monitoring problem of PV sys-
tems. In contrast to the aforementioned works (see Section 3.1), a large number of fault 
types (i.e., short circuiting, cable insulation breakdown, DC junction box corrosion, in-
tra-string, and inter-string) were adopted and two main categories were taken into ac-
count, namely, line-to-line and degradation faults. To provide a full conclusion of fault 
detection under a big data environment, sets of 2240 and 1961 different cases for both 
fault types, respectively, were therefore simulated and prepared for ML application. In 
addition, 1866 cases of healthy operation under working conditions were collected. Gao 
et al. [78] used a set of recorded features (i.e., I-V, solar irradiance, temperature) to train a 
hybrid CNN for PV fault classification (10 types). The CNN algorithm was consolidated 
with a Residual Gated Recurrent Unit (Res-GRU) to provide the capability of dynamic 
online training. The reconstructed learning framework allowed automatic feature ex-
traction and required less user intervention when classifying faults/hybrid faults related 
to line-to-line, shading, and degradation types. 

3.2.2. DL-Based Image Acquisition 
In contrast to conventional ML, which is mostly applied to the analysis of ordinary 

sensors measurements (see Section 3.1), DL models are used to investigate more complex 
feature spaces, including several types of higher dimensional images. For instance, Li et 
al. [79] discussed more complicated fault classification tasks via a realistic dataset gath-
ered from large-scale PV farms. UAVs (i.e., drone technologies) were exploited for cap-
turing different thermographic surface images from PV modules. They were used for the 
identification and classification of several types (five types) of visible PV panel faults 
classified to degradation and shading categories, namely, dust, shading, encapsulant 
delamination, glass breakage, gridline corrosion, snail trails, and yellowing. Because of 
the huge amount of data within the collected 2D images (i.e., 8400 images) and time var-
ying conditions (i.e., six conditions with 1400 images for each), a DL algorithm was uti-
lized and a CNN learning architecture was therefore adopted. In another implementation 
of Li et al. [80], UAV technology and a hybrid machine learning architecture were com-
bined for PV plant fault detection, identification, and classification. In this approach, a 
CNN was proposed for the purpose of feature extraction due to its capability of convo-
lutional mapping with local receptive fields. In addition, rather than fine-tuning the CNN 
itself, a SVM classifier was fed with the feature maps to train the prediction model. 
Pierdicca et al. [46] explored thermal images recorded through infrared sensors installed 
in a UAV to train a hybrid mask region-based CNN model for fault classification of a PV 
system under varying conditions. Accordingly, three fault modes (i.e., one anomaly, 
non-contiguous cells with anomalies, and contiguous cells with anomalies) of degrada-
tion were studied. Hwang et al. [81] designed a hybrid model that included three em-
bedded learning systems, namely, Improved Gamma Correction Function (IGCF), CNN, 
and eXtreme Gradient Boosting (XGBoost) algorithm. These algorithms were combined 
in series to perform better preprocessing, extraction, and classification tasks, respectively. 
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Learning samples were obtained from thermographic images provided by thermal cam-
eras installed on the roof of the Industrial Technology Research Institute in Hsinchu, 
Taiwan. A total of 684 images with 240 × 320 pixels and 684 converted temperature CSV 
files were studied in this case. Venkatesh et al. [82] used a retrained CNN algorithm for 
image classification (i.e., VGG16) to extract features from thermal images obtained from 
UAVs. After extracting the appropriate features based on a generative model, the map-
pings were passed through a discriminative CNN algorithm to accomplish the approx-
imation process. Five different degradation fault modes (i.e., burn marks, delamination, 
discoloration, glass breakage, and snail trails) were studied. Moradi et al. [83] imple-
mented an encoder-decoder architecture to train a fully connected CNN to detect shad-
ing caused by bird droppings. A new detection technique using multi-copters was used 
to gather the necessary aerial images for training, testing, and validating the proposed 
network. The same VGG16 network was considered in the construction of the encoding 
part, whereas the reconstruction phase consisted of bird-dropping segmentation. The 
labeling of collected images depended on the analysis of the output current from the PV 
system. Manno et al. [84] targeted different big databases (see Manno et al. [84], Table 2) 
of thermographic images obtained from ground-based and UAV installations. The au-
thors trained a CNN to identify multiple fault classes after well-defined data prepro-
cessing (i.e., normalization and homogenization of pixels, grey scaling, thresholding, 
discrete wavelet transform, and Sobel Feldman and box blur filtering.). The fault locali-
zation and identification process depended on the binary classification problem of hot 
spot degradation and normal operating conditions.  

For more illustrations of DL details in PV system fault classifications, Table 2 pro-
vides a summary of the discussed DL tools. 

Table 2. Advanced DL methods for CM of PV systems. 

Reference ML Tools Detection Faults Number Faults Categories Learning Type Open Source Data 

Deitsch et al. [51] SVM, CNN 
Electrolumines-

cence images 
------- Degradation Ordinary Brabec et al. [85] 

Akram et al. [50] CNN 
Electrolumines-

cence images 
------ Degradation Ordinary Brabec et al. [85] 

Rahman et al. [49] 
Multi-Attention 

U-net 
Electrolumines-

cence images 
2 Degradation Hybrid ----- 

Appiah et al. [77] LSTM I-V/P-V ----- 
Line-to-line and 

degradation 
Ordinary ----- 

Li et al. [79] CNN 
Thermographic 

images from 
UAVs 

5 
Degradation and 

shading 
Ordinary ----- 

Li et al. [80] CNN and SVM 
Thermographic 

images from 
UAVs 

5 
Degradation and 

shading 
Hybrid ----- 

Gao et al. [78] 
CNN and 
Res-GRU 

I-V/P-V, solar ir-
radiance, temper-

ature 
10 

Line-to-line, 
shading and deg-

radation 
Hybrid 

Gao et al. [78] 
The dataset is 
available upon 

request 

Pierdicca et al. 
[46] 

Mask re-
gion-based CNN 

Thermographic 
images from 

UAVs 
3 Degradation Hybrid Pierdicca et al. [86] 

Hwang et al. [81] 
IGCF, CNN and 

XGBoost 

Thermographic 
images from 

ground-installed 
cameras 

----- Degradation Hybrid ----- 

Venkatesh et al. 
[82] 

CNN and VGG16 
Thermographic 

images from 
UAVs 

5 Degradation Hybrid ----- 
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Moradi et al. [83] 
CNN and encod-

er-decoder 

Aerial images 
from mul-
ti-copters  

1 (birds drops) Shading  Hybrid ----- 

Liu et al. [76] 
SAE, t-SNE, 

FSFDP and MF 
I-V/P-V 11 

Shading, 
short-circuit and 

degradation 
Hybrid ----- 

Manno et al. [84] CNN 

Thermographic 
images from 

ground-based and 
UAVs  

1 (hotspot) Degradation Ordinary ----- 

3.3. Knowledge Driven 
Due to the long lifespan of PV panels, and associated computational costs, such as 

that of in-memory storage, it is difficult to collect the necessary patterns similar to deg-
radation. As mentioned in Eder et al. [87], accelerated tests can be an alternative solution 
for reconstruction of data-driven models. However, data-driven samples of artificially 
aged PV panels suffer from the lack of important descriptive patterns related to deterio-
ration or damage processes. In addition, some samples, such as I-V/P-V or thermographic 
images, are generally difficult or impossible to label, even for ML developers. Therefore, 
knowledge-driven models are used in this case to fill the gaps in uncompleted lists of 
unlabeled samples [88]. Two main types of ML models can be found in this type of 
learning, namely, generative models [89] and domain adaptation learning by considering 
the domain to be invariant [90,91]. Generative models are ML tools capable of generating 
new examples or preliminary hypotheses using training data. These new examples or 
preliminary hypotheses are used either to improve the representation of the features or to 
provide the necessary information that is assumed to be hidden in the original feature 
space. Similarly, domain adaptation learning by considering the domain to be invariant is 
an alternative solution for adjusting the data distribution in the target domain, once sim-
ilar complete data are available in the source domain. Mathematical formulations of the 
loss term of generative models are relatively similar to domain invariant learning when 
feeding a discriminative model [92,93].  

In recent ML modeling, specifically for condition monitoring, Generative Adver-
sarial Networks (GANs) and Transfer Learning (TL) have been among the commonly 
used types of generative models and domain invariant adaptation learning approaches 
[94,95]. 

GANs represent a new effective generative adversarial learning theory specific to 
data augmentation. GAN is a ML technique developed by Goodfellow in 2015 [96], in 
which the main idea is to train a generative model, such as a deep network, to generate 
real examples from fake data in a form of “minimum of two players game” approach. 
Unlike traditional generative models that try to extract features, GANs are trained in a 
supervised manner by associating a discriminator to classify these representations to 
only the two preceding categories of fake/not fake. By comparison, TL can be applied to 
any learning algorithm by moving learning parameters from different distributions of the 
source domain to the target domain, and minimizing a common and full loss function of 
the entire contributed domains in the adaptation process [97,98]. Knowledge-driven 
models have also been investigated according to the two discussed data acquisition 
methods. 

3.3.1. Knowledge-Driven Ordinary Sensors 
To address knowledge-driven modeling using data acquired from ordinary sensors, 

a set of recent algorithms for PV condition monitoring are discussed in this review. For 
instance, Lu et al. [99], proposed a hybrid deep TL algorithm adaptable to several domain 
distributions using a CNN for DC arc faults (i.e., can be caused by short-circuit or ground 
faults) diagnosis. First, the algorithm attempts to learn representative examples from the 
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learning samples in the source domain data. Then, a dummy generation process of new 
samples in the target domain is followed by the TL process using GANs. A total of 25,000 
samples were collected for a real PV system (see Lu et al. [99], § III.A.2) during normal 
healthy operating conditions. In addition, 5000 arc fault samples were used to construct 
the source domain dataset. Accordingly, 20% of the randomly selected samples from 
healthy operating states were reserved for the validation process. Three types of arcing 
faults at the start, middle, and end of the PV string were considered. Lu et al. [100], in a 
work similar to their previous study (i.e., Lu et al. [99]), extended their experiments using 
almost the same training tools and frameworks by involving three additional datasets. 

3.3.2. Knowledge-Driven Image Acquisition 
In the context of knowledge-driven image acquisition, a number of studies can be 

noted. Tang et al. [101], in the study of a prediction problem using a limited number of 
electroluminescence images, augmented their data by combining GANs and traditional 
image processing techniques. Then, generated examples for data augmentation reasons 
were fed into a CNN fault detection algorithm of PV modules. Five types of PV cell 
degradation fault (i.e., micro-cracks in polycrystalline silicon, micro-cracks in mono-
crystalline silicon, finger interruptions in monocrystalline silicon, finger interruptions in 
polycrystalline silicon, and breaks) were studied. Akram et al. [102] also examined a 
TL-based approach to train a CNN for PV faults. However, a more complicated study 
was involved in this case, in which fault classification in two different datasets was con-
sidered. An electroluminescence image dataset was used to train the CNN in the source 
domain and infrared image datasets were used for training in the target domain. The in-
frared images enabled manual labeling of the degradation faults with eight types of 
faults, namely, failed cell interconnection, cell cracking, cracks isolating cell parts, 
failed/resistive soldering bonds, localized shunting in cells, high current density at bus 
bars, breakage of module glass, and failed cells in outdoor infrared images. 

It should be noted that the use of knowledge-driven models has been lacking in PV 
fault detection. As a result, the attention of scientists has moved toward traditional and 
deep learning techniques in this field. Specifically, knowledge-guided paradigms should 
be considered according to these conditions:  
• Because testing samples are subject to a higher level of variation, their data distri-

bution is different from the distribution of the data used for training; 
• Training data is incomplete or many labels are missing; 
• Data is incomplete and subject to many outliers. 

Table 3 outlines important contributions achieved to date in PV system condition 
monitoring using knowledge-driven paradigms. 

Table 3. Knowledge-guided methods for CM of PV systems. 

Reference ML Tools Detection Faults Numbers Faults Category Learning Type Open Source Data 

Ahmed et al. [47] CNN, TL 
Thermographic 

Images 
1 Degradation Ordinary 

Data is generated 
from software 

[103] using details 
in [104]. 

Lu et al. [99] 
CNN, GAN, and 

TL 
I-V/P-V 3 Arc fault Hybrid ----- 

Lu et al. [100] 
CNN, GAN, and 

TL 
I-V/P-V ----- Arc fault Hybrid ----- 

Tang et al. [101] CNN, GAN 
Electrolumines-

cence images 
5 Degradation Hybrid Brabec et al. [85] 

Akram et al. [102] CNN, TL 
Electrolumines-

cence and infrared 
images 

8 Degradation Hybrid Brabec et al. [85] 
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4. Discussion 
Based on the tables presented previously (i.e., Tables 1–3), we constructed a dataset 

to show the study focus according to three main criteria, namely, the ML categories, the 
detection technologies, and the treated fault types. Figure 11 emphasizes the obtained 
results. It can be noted from Figure 11a that most of the ML tools used in the articles se-
lected from the literature are traditional machine learning approaches. DL models are 
ranked second, followed by knowledge-driven models. The studied failure modes in PV 
systems are focused on degradation faults and shading more than other types (Figure 
11b). Figure 11c shows that, to date, prediction based on I-V/P-V detection remains the 
dominant technique in PV condition monitoring.  

We believe that this domination of both traditional ML tools and conventional de-
tection sensors, such as I-V and P-V, in PV systems’ CM is due to numerous factors re-
lated to the simplicity of use and installation, and the reliability of the acquired infor-
mation. For example, I-V/P-V signals are used to detect all types of defects in PV systems, 
including external defects, because they have the ability to hold a large amount of in-
formation with less cardinality compared to images. In addition, in terms of ML produc-
tion, deep complex predictors are not required, and coherent and appropriate prepro-
cessing of data leads to an accurate approximation. In contrast, DL models require a large 
quantity of non-linear abstractions and mappings to acquire meaningful representations, 
which are more computationally expensive processes. It can also be noted that research-
ers have targeted degradation and shading faults more than other fault types. This also is 
one of the main conclusions about the most common and critical problems encountered 
in PV systems. 

 
Figure 11. An overview of data distribution analysis for ML tool applications in CM of PV systems: (a) ML categories; (b) 
PV fault types; (c) detection method types. 

5. Conclusions and Possible Ways Forward 
By interpreting the findings provided by this literature review, it can be deduced 

that the three main ML categories, namely, traditional ML tools, deep learning, and 
knowledge-driven learning with several learning paradigms (i.e., ensemble and hybrid), 
have numerous important characteristics, as indicated below:  
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• All of the ML models are subject to the MPPT conditions, excluding the work of 
Bakdi et al. [18], which addressed both MPPT and IPPT;  

• Most of the ML models depend on data generated from simulation models;  
• A limited number of fault classes are considered, with the exception of a number of 

works, such as Momeni et al. [60], Akram et al. [102], Liu et al. [76], and Bakdi et al. 
[18], in which 10 or more faults are considered; 

• Traditional ML models usually have I-V/P-V signals as inputs; 
• DL and knowledge-driven models are generally used to manipulate all kinds of 

images. 
The investigation of these tools for practical purposes, where satisfactory perfor-

mance measures were gained, demonstrated numerous benefits. However, some related 
aspects, which are the key challenges, still require a thorough evaluation. For this pur-
pose, and as proposed solutions, further efforts need to be undertaken to provide more 
conclusions about using ML for CM of real PV systems, as follows: 
• Launching multiple experiments on real datasets (rather than simulations only) in 

which heterogeneous features (i.e., I-V, P-V, temperature, radiation, etc.) and all 
kinds of available images (i.e., thermographic, X-ray, electroluminescence, etc.) are 
available;  

• Providing more insights regarding the joint investigation of the huge quantity of 
samples and different working conditions (i.e., MPPT and IPPT), in addition to 
several encountered fault types; 

• Assessment of DL and knowledge-driven models under this kind of complex criteria 
of big data and varying conditions for PV system condition monitoring; 

• Using different types of data acquisition, including wired and wireless sensors, 
which have different sampling rates, as encountered in real CM systems. 
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Abbreviations 
AI Artificial Intelligence  
BC Bee Colony  
BT Bayes’ theorem  
DARL Dynamic Adaptive Recursive Linear  
DBN Deep Belief Network  
DC Discriminate Classifiers  
DT Decision Tree  
ELM Extreme Learning Machine  
FSFDP Fast Search and Find of Density Peaks  
GANs Generative Adversarial Networks  
GBSSL Graph-Based Learning  
GPR Gaussian Process Regression  
IGCF Improved Gamma Correction Function  
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IPPT Intermediate Power Point Tracking  
IV Current-Voltage  
KLD Kullback–Leibler Divergence  
KNN K-Nearest Neighbor  
LBP Local Binary Pattern  
LR Logistic Regression  
MLP Multilayer Perceptron  
MPPT Maximum Power Point Trucking  
NB Naive Bayes  
OGH Oriented Gradient Histogram  
PCA Principal Component Analysis  
PID Potential Induced Degradation  
PNN Probabilistic Neural Networks  
PSO Particle Swarm Optimization  
P-V Power-Voltage  
Res-GRU Residual Gated Recurrent Unit  
RKRF Reduced-Kernal Random Forest  
RSKD Recursive Smooth Kernel Density 
RUL Remaining Useful Life  
SAE Stack of AutoEncoders 
SP Series-Parallel  
SVD Singular Value Decomposition  
SVM Support Vector Machines  
t-SNE t-distributed Stochastic Neighbor Embedding  
UAVs Unmanned Aerial Vehicles  
XGBoost eXtreme Gradient Boosting  
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