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Abstract

The ever-increasing growth of data centres and fog resources makes difficult for current sim-
ulation frameworks to model large computing infrastructures. Therefore, a major trade-off for
simulators is the balance between abstraction level of the models, the scalability, and the per-
formance of the executions. In order to balance better these, early forays can be found in the
literature in which AI techniques are applied, but either lack of generality or are tailored to spe-
cific simulation frameworks.

This paper describes the methodology to integrate memoization as a technique of supervised
learning into any computing simulators framework. In this process, a bespoke kernel was con-
structed for the analysis of the energy models used in most well known computing simulators
-cloud and fog-, but also to avoid simulation overhead. Finally, a detailed evaluation of energy
models and its performance is presented showing the impact of applying supervised learning to
computing simulator, showing performance improvements when models are more accurate and
computations are dense.

Keywords: Simulation, Computer Simulation, Machine learning, Memoization

1. Introduction

Cloud market has generated billions of revenues to companies, becoming a pillar for con-
sumers and providers in recent years [1, 2]. This trend is expected to continue with the advent of
edge devices and IoT, pushing companies to enlarge their infrastructures to multiple data centers
and to co-operate with Internet Service Providers - ISPs -, therefore expanding in size and com-
plexity. This infrastructural growth exposes a negative impact on the energy consumed by data
centres [3]. U.S have 1,520 data centres consuming 91 billion kilowatt-hours of electricity per
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year. This means $10 billion expenses in electricity corresponding to 2.5% of the annual electric-
ity revenues, equivalent to the energy consumed by all the households of New York city during
two years. As more users migrate applications to the Cloud, and as we experience a growth in
services, smart homes, and IoT in general, as more power is required by the ever-growing com-
puting infrastructures. It is foreseen that the energy needed to support these infrastructures will
reach 140 billion kilowatt-hour by 2020 [4].

The need to investigate new techniques to alleviate above-mentioned made academia and
industry to work on this topics for more than a decade. However, the procedures for investigating
optimisations on energy consumption are either supported by expensive-invasive procedures or
require complex environments of edge and cloud devices. Then, most of the research in this
area is conducted by the use of computing simulators. This technique has been extensively
used for the last decades also to prevent costly customisations - sandboxing - in which it is
possible to efficiently control experiments by making virtual representations of systems - models.
These models, mimic the functionalities elements of computers allowing the end-user: to focus
on the relevant aspects under study, to ease the observation of the system, and to save costs.
However, simulating current computing trends is becoming challenging and the mechanisms
used by traditional simulators are becoming impractical.

The performance of simulation frameworks is mainly bounded to the level of abstraction of
the models [5], e.g. Hardware devices simulators require high computing power and memory
availability to run experiments as they are not designed to scale up to thousands of millions of
simulated resources. Foremost among these are: Disksim [6], Graphite [7] and GPGPUsim [8].

Another issue with current simulators is the balance between performance and accuracy. The
simulations outputs are generated in run-time as result of multiple models performing concur-
rent operations, and subsequently stored in memory or persistent storage. Although to increase
the frequency of these operations - sampling interval - produces an overhead in the processing
and I/O, the results obtained provide a higher accuracy, allowing end users to have a better un-
derstanding of the results when changes are made in the simulation models. Thus, finding the
adequate balance between the sampling interval and the performance is hard and time consum-
ing as in this process it is common to either overburden simulation processes with unnecessary
repeated operations, or to abstract models to a point where events are (frequently) hidden, thus,
impeding users to dictate a verdict from the results produced by simulation experiments.

The need for higher performance and accuracy in simulation systems lead to reconsider the
context of data. For instance, Monte Carlo experiments must be fed with input data, store inter-
mediate results, and filter and merge output data in adjusted and reliably robust manner. Thus,
and according to authors in [9], simulation approaches are particularly affected by the Big Data
phenomenon since they need to use large data sets to enhance resolution and scale and distribute
and analyse data in the different phases of the simulation-analysis pipeline. Furthermore, simu-
lation models, in contrast to other methods such as data-driven, are widely used for production
of forecast data. This data, that falls apart of historical bounds, is used for reinforced learning
approaches [10, 11]. In these cases, some major challenges are to improve the performance and
scalability of the solutions.

Machine learning [12] can alleviate the above described challenges in simulation environ-
ments. Although procedures to create models are different between simulation and machine
learning - the first requires a deep understanding of the processes to gather relevant data and to
produce realistic results while machine learning models are data-driven - it has been proven the
strength of blending both methods in different areas [13, 14, 15]. This means that stochastic sys-
tems can get benefit from machine learning decisions under conditions of constrained response
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time, big amounts of data, or changing environments. Then, instead of using predetermined con-
ditional constraints, simulation systems can learn the most appropriate conditions according to a
set of desired objectives. This learning can be combined in different approaches depending on
the placement of the machine learning component: (i) before the simulation execution to process
input data and make it usable, developing heuristics that simulation agents can apply [13]; (ii)
within the simulation to either train the machine learning algorithm as part of the warm-up, or to
train the models as the simulation is executed as in reinforced learning approaches, or to reuse
previously trained models [14]; (iii) after the simulation executions, using simulation outputs as
data source for machine learning training data [15].

This work focuses on combining memoization as supervised learning mechanism within
computing simulators, aligned to (ii), learning from the inputs and outputs of selected - perfor-
mance wise - pieces of code, and making the results persistent and reusable between executions.
It aims to reduce progressively the calculations overhead.

Memoization technique has been proven useful in the past to applications decreasing the
cost of executing expensive compute functions in environments where a set of dense and exact
operations were repeated during the life-time of an execution [16]. Although parallels between
data caching and memoization exists - both aim to improve the performance by strategically
storing operations -, the two differ in aspects such as subsystem target, data size, or re-usability
of data, among others. On one hand, data caching focuses on improving the time to access
data on storage subsystems, keeping blocks of data retrieved for future operations. And as it
is unfeasible to store a full set of data required for an application in cache due to the trade-off

between size of the storage and speed, as described by authors at [17] - section 4; and strategies of
replacement of these blocks are applied when required [18] [19]. On the other hand, memoization
focuses on the computing subsystem, storing the results of most frequent/dense computations on
memory in order to avoid the operations. Furthermore, the main challenge of data caching [20]
is to forecast the blocks that might be required in a future, while memoization challenge is on
identifying - Intercept - those functions that trigger frequent/dense computations. This means,
from a procedural point of view that the main focus is to intercept, tag, and store the results of
costly operations after the first computation for later accesses.

These accesses - calls - are handled by a table lookup mechanism rather than by (re)computing
them in cases where the search time is lower than the time required to obtain the result of the
expensive computation. To effectively apply memoization, initial application profiling experi-
ments are required to identify the potential functions that might be candidates to be memoized by
analysing their accumulated execution time. To select these, a high-execution-time-to-compute
criteria is applied, and the ones that are identified to have a higher frequency are chosen.

The major contributions of this work are listed as follows:

• To provide the methodology and analysis used to apply and incorporate memoization tech-
nique into multiple computing simulation frameworks.

• To provide an analysis of the state of the art energy models used in current computing
simulation frameworks.

• To implement and provide a kernel for study and compare the performance of energy
consumption models in computing simulators.

• To improve the performance of computing simulators applying memoization techniques
and, therefore, a further reduction on the power required to run experiments.
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The rest of the paper is organized as follows. In Section 2 the related work of computing
simulators and memoization applied to simulation are described. In Section 3, the memoization
model is introduced to unify the nomenclature used into this paper. Section 4 describes the study
of the alternatives to apply memoization as machine learning technique in the case of computing
simulation frameworks and the energy models used currently in these. Next, a methodology is
presented in Section 5 with a detailed model on applying memoization to computing simulators.
Section 6 presents a detailed analysis of the state of the art energy models used in computer
simulators implemented in the proposed kernel. Finally, conclusions and future works are drawn
in Section 7.

2. Related Work

Simulation techniques are being deployed and used in an ever-increasing rate, becoming a
widely used tool set by the research community [21]. These tools vary from specific component
simulation to the simulation of very large systems, like Computer Clusters, Cloud Computing
or Fog Computing systems. For instance, different network simulator libraries and frameworks
include NS-3 [22], DaSSF [23], and OMNET++ [24], and OPNET [25]. These tools focus on
different network aspects, such as network protocols, path optimization, latencies, or IP fragmen-
tation, but lack the details to simulate heterogeneous resources and detailed applications. Some
examples of frameworks for computer-system architecture research are Simics [26], Gem5 [27],
M5 [28] and SimFlex [29]. Simics is a full-system simulator developed by the Swedish Institute
of Computer Science (SICS) capable of simulating multiple architectures for CPU processors and
used as a virtual platform for prototyping embedded hardware and new processors. M5 provides
a highly configurable simulation framework, multiple ISAs, and wide variety of CPU models.
Gem5 provides a flexible, modular simulation system that offers a diverse set of system execution
modes, memory system models, and CPU architectures. Finally, SimFlex is a component-based
simulation framework for creating timing models of uniprocessor and multiprocessor server sys-
tems.

Different High Performance Computing and Grid simulation frameworks also exist, such
as SIMCAN [30], GridSim [31], OptorSim [32], and GangSim [33]. These tools can simulate
brokerage of resources and the execution of different types of applications on different types of
computing resources. But they lack the details to simulate cloud environments and energy con-
sumption of the resources as they have not been maintained for a long period of time. Most of
these tools evolved into Cloud or Edge / Fog Computing simulators, abstracting (or removing)
HPC models in favor of the performance of the new models. Specifically, reviews can be seen in
the area of cloud computing [34, 35, 36] where a list of features, architecture diagrams and the
current status of the simulation platforms is presented to cover most of the current cloud com-
puting open source simulation tools. These simulators can be grouped into two classes: layered
architectures representing visualized data center components (CloudSim [37], iCanCloud [38],
FogNetSim++ [39], MDCsim [40], EMUSIM [41], DCSim [42], SPECI [43], Simulizar [44])
and network-based components layout (GreenCloud [45], SimGrid [46]).

In more detail, MDCSim offers an infrastructure simulation for multi-tier data centers, while
iCanCloud provides a cloud infrastructure simulator that encompasses detailed hardware models,
provider-specific VM instances, application repository models (including HPC/HTC), a Hyper-
visor model that allows studying scheduling policies and costs at Virtual Machine Manager level.
However, the high degree of detail in the models hamper the scalability of this simulator to per-
form simulations of large scale infrastructures.
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GreenCloud, a packet-level simulator of energy-aware cloud computing data centers and an
extension of the NS3 network simulator, focusing on energy consumption in data centers and
providing detailed models for servers, and network components. However, cloud-related entities
like resource abstractions or virtual machine management/containers are not modeled in detail.

CloudSim is a framework for modeling and simulation of cloud computing infrastructures
and services. It supports system and behavior modeling of Cloud system components, such as
data centers, virtual machines (VMs) and resource provisioning policies. Moreover, a huge set of
add-ons or different simulation platforms are built on top of CloudSim for supporting the model
of detail disks, fog (iFogSim [47], and EdgeCloudSim including mobility [48] ), or container
(ContainerCloudSim [49]). Additionally, the scalability of the DES core of CloudSim is chal-
lenging, as it was shown in CloudSimEx[50], an initiative to add extra features to CloudSim,
such as the feature of parallelization of the core of CloudSim to enable running experiments in a
distributed fashion. However, this feature neither alleviate the number operations per model, nor
the overhead in the processes when accurate traces are required.

New techniques to improve calculations performance, and hence simulation processes exe-
cution are required to follow the trend of current and future computing systems. This can be
seen in Discrete Time Simulation engines used for improving the scalability of large scale cloud
models. In the case of [51], authors provide a new simulation platform able to run lightweight
parallel processes for models of thousands of millions of servers. However, in spite of being a
promising alternative to be explored, it provides high abstraction models, such as networks or
infrastructure, but raising same issues when detailed results are needed.

Alternative mechanisms have been explored in order to improve the performance of simula-
tions in different domains. AI techniques are used to reduce the overhead of dense operations
and improve performance. In [52], authors apply machine learning techniques - Support Vector
Regression, Artificial Neural Networks and Random Forest - to the simulation of rainfall-runoff

relationships, using the based flow calculation method coupled with different machine learning
algorithms to improve the performance of the simulations efficiently.

In the scope of molecular dynamics [53], authors apply machine learning techniques to solve
both the accuracy and time-to-prediction.

In the case of memoization [54] applied as a machine learning technique, authors in [55]
describe the theoretical foundations for these principles, however the work focuses the approach
from the general analysis of Submodular Optimization Algorithms. We focus on the utilisation
of memoization technique from the analysis and applicability to energy consumption models and
its integration in the a concrete domain.

Since the first occurrence of the memoization technique (memo functions) in 1967 [56], the
original model has been adapted to satisfy the requirements of newer software techniques, pro-
gramming models and, in most of the cases was customised to incorporate this technique into
concrete applications, or even applied to hardware. In the latter field it has been used as tech-
nique top boost the executions by reusing partial results on instruction blocks [57], or at CPU
instruction level for arithmetic operations [58].

In the software arena, memoization was widely used in logic programming as a mechanism
to keep intermediate results as predicates in Prolog language, avoiding computations [59]. It
can also be seen in some other and more specific software-related areas. Foremost among these
are: concurrency and communication [60], optimization of functions with stochastic inputs [61],
thread scheduling [62], out-of-order processor simulation [63], as file caching of results for geo-
scientists in satellite data [64], and finally financial applications [65].

The stochasticity and randomness of simulations make this area complex to memoization to
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be applied into. Thence, there are very few previous works related to the application of this tech-
nique into simulation. Most remarkable works is: memoization on a railway power consumption
simulator [66] in which authors introduce a memoization framework and a systematic process
intended for general usage. Then, the proposed general memoization process is locked-in to the
technology of the Railway Power consumption simulator only, and for the most demanding pure
functions in the simulation (as a post-design optimization process).

Other works related to simulation and memoization can be seen into [67, 68, 69] where au-
thors describe a mechanism to automatically identify memoization units in simulation. Initial
work identifies promising code blocks manually to subsequent works that present the transfor-
mation of the identified code blocks into a memoized variant, and the automation of the holistic
process. This work is more related to refactoring techniques (in order to work with code blocks
and transform into pure functions to be memoizated).

In contrast to previous works in simulation, the research presented in this paper focuses
the model of memoization as a technique and its applicability into any computing simulator,
more specifically the energy models, and independently to the underlying platform. Another
interesting contribution is to introduce memoization as a type of learning technique (related with
AI) that can be used within simulations. Works such as [70] uses memoization in Reasoning
Systems, but not in simulations as learning technique alternative.

3. Memoization Overview

This section describes the general model of memoization used in this work. Figure 1 shows
the memoization mechanism applied to an application (A). As internal software components
that encompass A, a set of Caller Functions F: { f1, f2, .., fn} invokes a set of Pure Functions
P:{p1, p2, .., pi} to perform operations and calculations that satisfy:

∀ f ∈ F,∀p ∈ P | f , p ⊂ A (1)

The P functions perform dense computations and return the same results (ρ) over the time,
i.e. j, k instants of time and j , k; when input parameters ( x/x = 1..y) to p ∈ {p1, p2, .., pi} are
the same:

p j(x) = pk(x) = ρ (2)

Another essential feature of P is the scope where they execute. A pi function do not cause
any side effect by using resources allocated out of the application scope.

The memoization layer is composed by a set of Intercept functions, I : {g1, g2, .., gm} that
depict calls captured from f where a p is involved and memoization can be applied into. The
requirements to effectively capture a caller function f and apply any gi must satisfy one of fol-
lowing conditions:

• An injective relation between F and P as gi ∈ I:F � P, if f1 = f2 ∈ F, then p1 = p2 ∈ P;

• A surjective relation between F and P as gi ∈ I:F �→→ P / ∀ f ∈ F, ∃p ∈ P . gi( f ) = p

I functions require to be identified and partially modified so they can avoid the dense com-
putations by recovering previously stored data for the operation. This process can be performed
manually by the developers or in an automated/semi-automated fashion. The most efficient con-
sists in the manual identification of the f functions that invokes p by profiling several execution
traces, followed by an ordering and selection process of I. However, the major drawback lays
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Caller 

Pure 

f1 f2 fn...f3{ }

p1 p2 pq...{ }

set

get

Memoization

...

F:

P:

Intercept R

Figure 1: Memoization architecture overview for an application A.

in the labor-intense and error-prone effort carried out by the model developer. This approach
can be widely found in the literature[66, 71, 72], and it is the one applied in this work. Further-
more, in order to alleviate the time-consuming manual procedure, automating it within compilers
- Haskell, Lisp, and C++ [73, 74, 75] - has been a target since the past decades, but also, in a
more generic manner, a minor subset of generic functions under temporal patterns [76]. Another
alternative can be found as a semi-automated memoization process in which programmers must
annotate under their criteria the code blocks that correspond to I functions [77, 78]. However,
for the semi-automated and the automated approaches, although the degree of transparency to
the end user is higher, the efficiency of the approaches is lower as most of the studies show not
all pure functions are correctly identified as it can be done through the manual profiling.

R is a store where previous dense or very frequent operations (P) are stored. To store without
loosing performance, an in-memory key-value store is typically used for (R) as current disk
drives do not provide same I/O performance as memory. Additionally, to avoid the recalculation
between multiple executions, data stored in R can be saved to persistent storage. Hence, when
an execution is newly triggered, data previously computed can be used and therefore save energy
and compute time.

When a gi ∈ I is invoked, it performs a seek into R of a prior execution of a pi ∈ P function
with same input parameters. In case no entry satisfies the requirements for a set of parameters
given, pi is invoked with those parameters and the result of the operation is subsequently stored
as a new entry into R to avoid the re-compute in future calls. Figure 1 shows these operations as
get and set arrows going from the Intercept square to the storage R both within the memoization
scope.

4. Targets for memoization in computing simulation frameworks

Computing simulators are composed of independent models that, appropriately linked and
cooperating together, build virtual representations able to describe behavioral patterns of real
computing ecosystems. Physical resources, resource abstractions, resource managers and users’
applications are represented in most current computing simulation frameworks with different
granularity levels. Hence, models of physical resources can be seen in a fine grain perspective
as complex compositions of another intra-connected models (processing units, memories, disks,
network interfaces) each one of these composed by another internal model/s, or simplified and
abstracted as one unique model with a mathematical model parametrized by a set of attributes,
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describing these behaviors. Analogously, resource abstractions models into which virtual ma-
chines and containers are encompassed can be seen as sets of interconnected operative system,
file systems, and virtual processor models, or gross grain abstracted as single application models.

This paper focuses on cloud computing simulators as these models have been widely vali-
dated and used over the last decade. They are a superset of previous grid and cluster technology
models with an added virtualization and user models, and a subset of the holistic view of Fog
and Edge computing environments in which is a matter of scale rather than the lack of additional
models to simulate these scenarios. In this section, the models of cloud computing simulators are
classified as potential targets for applying memoization techniques, showing that energy models
are the most suitable models for this aim. Additionally, it is shown an analysis of the energy
models implemented in current (most) well-known cloud computing simulators.

4.1. Model alternatives for memoization
Simulators dynamically generate model replicas as objects in memory during runtime, parametrized

by their attributes and operations. Although multiple objects can be replicas of the same model,
the computation overhead of an object in a precise instant of simulated time depends on the
operation that is executed and the input parameters associated with it.

To identify where to apply memoization based in profiling, it is required a trace with data for
every model for several executions. This is composed by objects created in runtime, their asso-
ciated operations, and values of the parameters where to seek dense and frequent computations.
This approach can be unrealistic when hundreds of models, and hence hundreds of thousands of
operations are sought. Therefore, a simplification can be made by grouping the models by com-
monalities. This strategy encompasses into each group the set of models with a shared model
goal. Thence, operations and attributes between these are close in a multidimensional search
space.

The following alternatives are considered as potential memoization targets:

• Alternative 1, applications and resource abstraction models. These models cover a large
number of objects created in simulation runtime. Most cloud simulators are provided
with detailed models to calculate the performance degradation of several virtual machines,
applications, and containers running in the same host.

• Alternative 2, resource provisioning techniques, orchestration, and allocation models.
There is a huge variety of scheduling policies applied to cloud computing orchestration
of resources. These models perform dense computations as they need to evaluate a large
number of inputs to find a host for placing each application.

• Alternative 3, infrastructure and hardware subsystem models. processing, memory, stor-
age, and networking The infrastructure models are static, being created during the initial
phase of the simulation process, and staying until the process finishes. This alternative
encompasses a huge set of components and, depending on the level of abstraction used
to model each server, it might be a set of objects performing operations. However, these
operations do not perform dense computations and also are application-dependent.

• Alternative 4, energy consumption models associated with the physical infrastructural
models. When an object belonging to the infrastructure models change its state or load,
the power state and consumption is updated in the simulation process and, subsequently
the energy consumption. The energy consumption needs to be calculated periodically to
log the behavior of one or more targeted resources during a simulation runtime.
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In case of Alternative 1, performance degradation, noisy neighbours, and other techniques to
model the overhead between applications and resource abstractions have a negative impact on
the applicability of memoization into this Alternative. In these models, a valid operation can be
represented by a ga ∈ I as: ga : F → P/ f1 = f2 ∈ F ∧ p1 , p2 ∈ P

These operations can produce different outputs for identical sets of input parameters, con-
tradicting the surjective condition described in section 3. Thus, there is no certainty on the
correctness of memoized results stored into R to previous dense or frequent computations if
memoization is applied to these models.

For Alternative 2, stochastic models and Random Number Generators (RNG) used to mimic
the uncertainty in reality, influence negatively to the results of applying memoization to orches-
tration model operations. Orchestration techniques might create new objects as load balancers,
databases instances, web server replicas in response to certain workload or energy consumption
conditions. By applying memoization to these models can produce the inhibition of stochastic
events intentionally added by programmers. Additionally, the large set of inputs that needs to be
controlled due to the randomness between several executions would increases the size of R until
potentially turning into inefficient the management of stored data to apply memoization.

Similarly to Alternatives 1 and 2, the applicability of memoization to the models encom-
passed into Alternative 3 has a direct dependency on the application models and their requested
operations performed by the infrastructure models and their subsystems. However, these opera-
tions are lack of dense computations since they are directly dependent on the application, virtual
machines, containers models. In addition, these models can inherit some gi operations, being not
feasible to apply imprecise memoization to these models.

Our approach targets the energy models, Alternative 4, as computing simulators perform
periodic dense operations to calculate the energy consumed by the infrastructure models.

Next, the energy models are explained in detail for a better understanding of the model of
memoization applied to this Alternative and described in Section5

4.2. Energy Simulation models in Cloud Computing Simulators
Although a simulation framework can be customized to enable the study of energy consump-

tion by using any energy models, as it is described by authors in [79] each simulator is restricted
to use one or several models currently available in the literature to perform these calculations.

Most simulators provide linear interpolation as a method to calculate energy consumption.
The programmatic software complexity is low, reduced to a few lines of code, and requiring only
idle and maximum power consumption values of a server as input parameters to the model. A
Sqrt, Square, and Cubic distributions can be applied to the linear interpolation model as variants
providing better accuracy on the energy calculated but requiring higher performance. The algo-
rithm complexity to calculate the linear interpolation, and any of the before described variants is
given by O(Ns(n)).

A particular case of linear interpolation (piecewise-defined linear interpolation) is the case
of the SPEC [80] energy models. In this models, the energy consumption of some commercial
workstations was measured in under certain conditions allowing to divide the consumption space
in equally distributed intervals, splitting by intervals of 10% from idle, the initial interval or
0%, to full performance or 100%. Intermediate values are estimated using piecewise linear
interpolation, having a complexity of O(Ns(log(n) + m)) where Ns is the number of servers and
m the number of break data points (10 for SPEC values).

The per component model is a discretized model in which the energy consumption of a server
calculated as result of the aggregation of the energy consumed by each main subsystems. This
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model, that do not use an analytical distribution to describe the behavior of the system or sub-
systems, uses a matrix of power data to identify each component consumption as the time spent
in each state and the power consumption in that state. Operations such as multiplications and
aggregations on the data of this matrix are periodically performed to calculate the energy con-
sumption of each server. Although high accuracy can be obtained from the per component model,
it requires detailed models for each subsystem and increases the complexity to O(Ns(mn)).

Energy models and their associated complexities are captured in Table 1.

Complexity DCSim CloudSim GreenCloud iCanCloud

Models

Linear O(Ns(n)) yes yes no yes

Piecewise O(Ns(log(n) + m)) no yes no no

Sqrt O(Ns(n)) no yes no no

Square O(Ns(n)) no yes no no

Cubic O(Ns(n)) no yes yes no

Component O(Ns(mn)) no no yes yes

Table 1: Summary of simulators models for cloud computing systems.

The linear interpolation approach is provided by iCanCloud, DCSim, and CloudSim in which
is also provided the Sqrt, Square variants.

GreenCloud provides models in which a cubic relationship between operating frequency and
power consumption described in [81], thus forming a model using these metrics O(Ns(n)), and
also included into CloudSim.

The piecewise-defined linear interpolation alternative is implemented in CloudSim.
The per component model is implemented in GreenCloud and iCanCloud [82]. GreenCloud

uses the network interface card and an abstracted model of CPU to calculate the energy consump-
tion while iCanCloud uses network, memory, storage and a fine-grained CPU model in which
energy is calculated at p-states and frequency levels.

5. Memoization model applied to energy models in computing simulators

Figure 2 depicts an example of possible representation of a topology segment associated with
a data center model. This segment has two server clusters connected by a router in the center of
the Figure, labelled as e1

1. The bottom-right part of the Figure is a group of five homogeneous
servers: e1

3, e2
3, e3

3, e4
3, and e5

3; and a group of three homogeneous servers in the bottom-left part:
e1

2, e2
2, and e3

2.
Each group of elements, more specifically e1

2, e1
1, and e1

3 from left to right respectively, has
a dotted-line rectangle showing an exploited view of the internal components that potentially
have energy operations associated with it. Models described in Section 4.2 can be independently
applied to each hardware device model: CPU, memory, network card, and disk drive in a per-
component model, or can be generalised into an operation for the entire server in which each
hardware device model is parametrised as an attribute, thus, the element-component relation is
identified as 1-to-1.
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Figure 2: Example of a data center model consisting of two groups of servers heterogeneous between them and a router

In the Figure, the router, labeled as e1
1, is composed by seven network cards (ca

b where a ∈
{1..3}, b = 1). All these are identical replicas of the same network card model. In the right hand,
a GPU cluster is shown in which each server has two CPU cards, two CPU processors, high
memory capacity, and no disk drive. Moreover, the left-hand cluster models a group of storage
servers consisting of three disk drives and low processor and memory features.

Next sections describe the most representative variables, notation and constraints used for
modelling energy consumption in computing simulators, and the memoization model applied to
them.

5.1. Computing simulators, energy model
Simulation model notations

Let e j
i be an element where i is a unique identifier associated with a specific model in a

simulated scenario and j depicts the number of replica of that specific model.
Let cq

s be a component where s define a concrete component model and q identifies the
number of replica into the model super-set e j

i .
Let C be the set of components encompassed into an e j

i where |C| is the number of compo-
nents.

Let H be a set of element replicas (homogeneous group of elements) and let |H| be the
number ofH groups. Two elements e j

i and e j′

i′ are considered homogeneous, or belonging to the
sameHi group, if i = i′ and it is satisfied:

∀cq
s ∈ e j

i : ∃c′q
′

s′ ∈ e j′

i′ /c
q
s = c′q

′

s′ ∧ |Ci| = |Ci′ | (3)

LetM be the set, union of the elements contained into allH groups asM = {H1 ∪ .. ∪Hn}.
Let |M| the sum of all |Hi|,∀i ∈ M.

Let ea be the notation used to refer a unique element within theM space. This is a ∈ {1..|M|}.
11



Pure Functions associated with Energy operations
Let consider E as the pure functions p associated with dense or frequent energy consumption

operations in the complete set of pure functions that a simulator have P as p ∈ E ⊆ P.
Let pci be the operations required to calculate the energy consumption of a component c that

is identical for all its replicas. Let consider the set of operations encompassed by this calculation
as an atomic – non-divisible – operation.

Let pei be the set of operations required to calculate the energy consumption of the element
e and, thus, all elements of a homogeneous groupHi.

Let define the following properties for p ∈ E associated with the scope of computer simula-
tors:

1. Element-component model property: ∀ei ∈ Hi : |pei| = 1→ pei = pci;
2. Per-component model property: in an element consisting of |C| components, |C| > 1, a

group of operations are required to calculate the energy consumption where i ∈ 2, |C|;
3. Pure function-component bijection property: ∀ca

b / ∀a : (b = k1)→ (pc = k2), where k1, k2
are constants. This means that the every component has associated a unique pure function
to calculate the energy, independently on the replica.

4. Homogeneity property: given e j
i , e
′ j′

i′ /(pe1 = pe2)→ { j ∧ j′} ∈ Ha, where a ∈ 1, |H|

Energy and power consumption operations
Computer simulators have a diverse number of energy models implementations to calculate

energy consumption in the same component model, as described in Section 4.2. However, simi-
larities exist in all methods. Therefore, these have been identified, generalised, and described in
this subsection.

Let u be a possible status or utilisation score of a component c, and U be the set of all
possible statuses c can have. And let |U| be the number of possible statuses or utilizations in
which a component can switch, and identical between ci ∈ αi,∀i ∈ 1, |M|.

Let Pw be a function that calculates the power consumption of a cq
s , and let ϕ be the result of

the Pw operation as:
ϕ = Pwi(u, t j), i ∈ [1, |C|] (4)

according to the energy models, that are described in Section 6, function of utilisation in an
instant of time t j.

Let E be a function that calculates the energy consumed of C in an interval of time ta,b, that
is ∀ti ∈ [a, b], and let φ be the result to this operation as:

φ = E(ϕi, t(a,b)) = t(a,b) × (
|C|∑
i=1

Pwi(u, t j)) , i ∈ [1, |C|] (5)

where in case number of components ci > 1 then, the energy consumption of an element
ei is calculated as the aggregation of ϕ partial results associated with C. Next, main properties
associated with Pw and E are listed:

1. as ϕ is the result of a function depending of u, then |ϕ| = |U| , where |ϕ| is all possible
values that Pw can have associated to each of the components of an element, and |U| the
composition of components and the combination of their statuses.

2. φ depends on the sum of ϕ associated to each component, therefore a composition of ϕ
will produce an identical |φ| over executions.
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3. the number of different φ is bounded to |ϕ|
4. a composition of ϕ produce a unique φi associated to an element of the simulation model
∀i ∈ |Hi|.

5. the space of possibilities, upper bound, for |ϕ| is defined by
(
|C|×|ϕ|
|C|

)
.

Energy and power consumption operations time during a simulation
Let tsim be the instant of simulated time when a simulation process end, and let t ∈ [0, tsim]

be a variable that denotes an instant of simulated time during the simulation run-time process.
Let tcomp ∈ [0, tsim] be a continuous variable that denotes the time required to calculate a φi.

Then, and according to Section 4.2, the time tel to provide the energy of an ea
b with C components

is depicted in Equation 6 as the aggregation of the partial consumption of each ci, with i =

[1,C] ∈ ea
b.

tel(t) =

|C|∑
i=1

tcomp(t, i) (6)

Moreover, other frequent operation in which energy consumption operations are used and,
therefore, p functions, is associated with the calculating the total consumption of M (or a subset)
in an instant of time t. This operation, described by Equation 7, requires tM time to sum the
energy consumed by E = {eH1 ∪ ..∪ eH i} = |M| elements, and for each eH the sum of the energy
consumed by |C| components as described by Equation 6.

tM(t) =

E∑
z=1

|C|∑
i=1

tcomp(t, i) =

β∑
z=1

tel(t) (7)

Then, Ttotal time is needed to calculate the energy consumed by the modelM using a number
of η samples (periodic energy checkpoints), during tsim (usually user predefined) time. This is
given by:

Ttotal =

tsim
η∑

t= 0
η

tM(t) (8)

Where the sample space during a simulation experiment (Nsample) is defined as the normal-
ization of the simulated time over the sample space, Nsample =

tsim
η

. This is a constant set of
operations that are required by any simulator that perform energy calculations in run-time.

5.2. Memoization model

Figure3 depicts a generalisation of a simulation model (S ) grouping e and H in a two di-
mensional table. The Y axis shows for each e, replicas and components encompassed from 1 to
|C| not necessarily equal between them. The X axis groups into i heterogeneous groups H the
elements and components that build the simulation model.

The Storage row at bottom shows an in-memory table R grouped per heterogeneous Hi ele-
ment column. This model facilitates a size reduction of the storage as a lower number of mem-
oized entries is stored and, thus, the complexity for insertions in Ri decrease accordingly. Ad-
ditionally, keeping a partitioned storage model enables the partial serialisation of Ri elements to
a secondary storage in run-time in case the system where simulations run has limited resources.
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Figure 3: Generalisation of elements and components for heterogeneous computer simulation models

Moreover, more strategies to improve the performance based on the partitioning of the memo-
ization storage can be investigated to increase the performance but are beyond the scope of this
paper.

To effectively apply memoization, the first time a pure function (pi) requiring an energy
calculation associated with a component is executed, ϕ is calculated and subsequently stored
into the in-memory storage, look-up table, R, requiring a time to execute of tel + tins, where the
latter term represents the time to insert into the storage. Afterwards, subsequent caller functions
( f calls) invoke pi, an intercept function will capture the call, extracting previous stored result
from the look-up table and returning the stored value to f , hence reducing the time from tel to the
time to search in a look up table, tsearch, and the complexity from what it is shown in next section
4.6 to O(1).

The overhead during a non-deterministic simulation can not be modeled with exactitude as
the probability is a fundamental part during the executions. However, it is possible to define upper
and lower performance bounds for simulations executions. The lower bound for performance,
Tlbmemo will occur in case all the executions are insertions in the in-memory table:

Tlbmemo = η × Tins × tel (9)

Analogously to Eq. 9, for the upper bound operations results are previously calculated and
stored into the corresponding Ri and therefore, the time is reduced to Tubmemo to perform all pure
operations associated with energy calculations:

Tubmemo = η × Tsearch (10)

This means that a combination of both Eq. 9 and 10 describes the time bounded by the
number of operations that are invoked during a simulation experiment and where α+β = η. This
can be described as:

Tmemo = Tsearch × α + Tins × tel × β (11)
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Note that, in the process to improve the performance and acknowledging to a limited number
of entries in the in-memory storage per component - combinations of components and energy
statuses per element; by loading previously calculated memoization storages (Ri) the perfor-
mance between simulation experiments will increase, as it can be considered that memoiza-
tion is previously trained for that specific element. Note this aspect in Figure 3 where each Ri

has been represented to keep independence between components, but shared between replicas.
Therefore, consecutive experiments using same element already executed with memoization will
avoid dense computations by obtaining results previously calculated from the corresponding in-
memory storage R.

By reusing the trained memoized Ri across multiple executions, the execution time will de-
crease towards converge in Tmemotrained, that consists of time to perform searches, and time to
restore (trestore) all the elements that construct the simulation model of the current experiment.
This is:

Tmemotrained = η( f ) × tsearch + trestore × i (12)

Where i is the number of independent storage Ri associated with the different elements of the
simulation model executed.

6. Memoization analysis on energy calculation techniques

6.1. Energy models

In ”A comparative study of CPU power consumption models for cloud simulation frame-
works” [83] authors reviewed the main four power models used in cloud computing simulation
frameworks such as CloudSim and DCSIM: linear, square, cubic and square root. Authors also
include two novel models [51, 84] in this work based on a third degree polynomial form and
some variant that are named as Proposed-1 and Proposed-2. Proposed-1 requires less computing
power but it provides less accuracy than Proposed-2, that is a performs a dense computation and
provides quite accurate results when compared with real data as described by authors. These are:

• Linear: P(u) = Pmin + (Pmax − Pmin) ∗ u

• Square: P(u) = Pmin + (Pmax − Pmin) ∗ u2

• Cubic: P(u) = Pmin + (Pmax − Pmin) ∗ u3

• Square root: P(u) = Pmin + (Pmax − Pmin) ∗
√

u

• Proposed-1: P(u) = Pmin + Pmax−Pmin
100 ∗ u + Pmin

2 ∗ sin( 2∗π
100 ) ∗ u

• Proposed-2: P(u) = ( 11
27 ∗ Pmax −

7
6 ∗ Pmin) ∗ (2 ∗ u − 1)3 + (2 ∗ Pmin −

2
9 ∗ Pmax) ∗ u2 + ( 11

27 ∗

Pmax −
2
3 ∗ Pmin) ∗ u + ( 11

27 ∗ Pmax −
1
6 ∗ Pmin)

These models are also valid for all the computing simulators built using CloudSim as core
and with target edge and container models. These are: iFogSim, EdgeCloudSim, MyiFogSim,
ContainerCloudSim.
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6.2. Kernel and evaluation setup

Furthermore, and as a main contribution of the work proposed in this paper, the evaluation
has been conducted by designing and developing a kernel aimed to help simulation developers
to test current and future energy model, and its impact on performance. This kernel is publicly
available at: https://github.com/acaldero/energy-kernel

The kernel implements the Subsection 6.1 power models and provides to the researchers a
mechanism to obtain the time - in microseconds - and energy consumption of a compute node
- cloud or edge - for a period of time. With this tool, users and developers can analyse existing
and new energy models, the impact of memoization or other techniques on these computations,
and the accumulated error in case they have real measurements collected from a real node. Fur-
thermore, for those simulators that calculate the energy consumption by components granularity,
as it is the case of GreenSim, iCanCloud and FogNetSim++, the evaluation can be seen as a
composition of components and the aggregation of their consumption over time.

The kernel was executed on a system with a Intel(R) Core(TM) i7 920 @ 2.67GHz CPU (8
MiB of cache size), 32 GiB of RAM, Ubuntu 17.10 64 bits distribution, and GCC version 7.2.0.

For the evaluation, the experiments are designed for a group of elements - computer nodes/edge
devices or internal components - from 1 to 15. Moreover, due to the models are simple common
arithmetic operations, the evaluation is extended to encompass multiple optimisation levels in
order to analyse the dependency between the assembly code generated by the compiler and the
performance. Foremost among these, the options analysed are: -O0, -O1, -O2, -O3, and -Ofast.

An additional experiment to the comparison of the six energy models - LINEAR, SQUARE,
SQUARE-ROOT, CUBIC, PM1, AND PM2 - is added to represent the use of memoization -
FIND. For the later, the model used is CUBIC to be the one that both: requires more computing
power and is implemented in a higher number of simulators. In spite that PM1 and PM2 provide
a higher accuracy in the results, they are quite novel and not resident in the source code of any
of the simulators described in Section 2. From the executions of this model, we used the kernel
to memoize all those results. Then, the results were added to the comparison.

6.3. Results analysis

Tables A.2 and A.3 shows both: (a) the time to compute the energy estimation for the kernel
with six optimization levels (-O0, -O1, -O2, -O3, -Ofast, -g) with six energy models plus mem-
oization (CUBIC, LINEAR, SQUARE, SQUARE-ROOT, PM1, PM2, and FIND) and up to 15
components. (b) the estimation of energy value itself for the six optimization levels, six energy
models and up to 15 components. The kernel is executed ten times, the average results are shown
in the table for both. The standard deviation is less than 2% so are near the same each time the
kernel is executed.

On table A.2 the time in microseconds for the combination of: (a) different optimization
levels (-O0, -O1, etc.), (b) different energy models (CUBIC, (LINEAR, etc.), and (c) different
number of elements (0, 1, ..., 15). Figure 4 represents the table results in a compact view. Figure
5 shows the accumulated time for 1 up to 15 elements.

With the highest level of optimization (-Ofast) the time is reduced a lot because ”Enable all
optimizations of -O3 plus optimizations that are not valid for standard-compliant programs, such
as re-ordering operations without regard to parentheses” [85]. The (-g) is not an optimization
level but the flag/option to add debugging information into the executable in order to developer
be able to debug is code (and be able to see the original code while debugging). In this case, it is
added to the default optimization level (-O0) it adds some minor overload.

16



The order from slower one up to faster one estimation model in general is: PM2, CUBIC,
PM1, FIND, SQUARE-ROOT, SQUARE, LINEAR. There some optimizations that has minor in-
fluence in some consecutive pairs of previous models.
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Figure 4: Time needed on Intel i7 920 @ 2.67GHz (for several elements, algorithms and compiler optimisation options).

For some energy models the number of elements has a linear influence because the O(n) order
of complexity in the computation performed. Examples of these models are the LINEAR or the
SQUARE-ROOT. On the other hand, there are more complex models and with more components
per node to be estimated (up to 15) the time became near ten times larger compared with one
element. Examples of these are PM2 or CUBIC. Figure 4 shows the influence of the number
of elements too. The execution time for FIND grows near linear with the number of elements
following a growth defined by f (x) = 0, 7397x+2, 775 with R2 = 0,9642; whereas CUBIC grows
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much more quickly following a second degree polynomial: f (x) = 0, 223x2 + 9, 8936x − 9, 575
with R2 = 0, 9966.

Table A.3 shows the computed values, and an important aspect here to notice is the differ-
ences among them. The energy model ordered from lower value up to higher value are: PM1,
PM2, CUBIC, SQUARE, LINEAR, SQUARE-ROOT. The difference in some cases is larger than
50% of the value. Memoization option (FIND) has the same value as SQUARE-ROOT because
it was the chosen one as reference, but could be used any other. We want highlight that PM2,
PM1 and CUBIC are the energy models with high computational time but lower value. On the
opposite side, SQUARE and LINEAR have a higher value but produce a minor computational
time.

Given the general order from slower to faster (PM2, CUBIC, PM1, FIND, etc.), the memoiza-
tion option is the faster of the four that require heavier computations and produce more accurate
energy models. Due to it is using the value of other precise model during the first execution - the
CUBIC in this case - it is as accurate as the selected one. Figure 5 depicts the accumulated time
for 1 up to 15 elements. Using Memoization - FIND - the CUBIC model speeds-up up to four
times.
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Figure 5: Accumulated Time needed on Intel i7 for 1 up to 15 elements (for several algorithms and compiler optimisation
options).

7. Conclusion and Future work

Modelling and simulation have been used to study Cloud Computing, for example working
on energy modelling [86], to improve performance [87], to support internal organisation and
management [88], etc.

Big Data systems have been based on Cloud Computing [89]. Nowadays IoT is an important
source of big data [90]. The growth rate of IoT system is strong [91], so more data is generated
by them. In order to better scale, Edge Computing move part of the computation near of the IoT
system [92]. Again, modelling, analysis, and simulation should be used to study how to design,
test, and operate Systems based on Cloud/Edge/Fog [93] too.
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Unsurprisingly, energy efficiency is a major focus of cloud, fog and edge computing re-
search including the optimisation of resource allocations under energy, performance, and QoS
constraints [94]. The main goal of this work is to improve how energy consumption models are
simulated. Related to the main goal, main contributions of this work includes: (i) to study super-
vised learning opportunities in simulation using memoization as a mechanism for this aim; (ii)
to introduce an advanced model for memoization applied to energy models in computing simu-
lators; (iii) and a complete analysis on techniques to simulate energy in computer environments.

As summary of the memoization analysis on the energy calculation, Figure 5 shows that
FIND provides four times faster the same aggregated results of CUBIC. And Figure 4 shows
that execution time for FIND grows near linear with the number of elements whereas CUBIC
grows much more quickly. Both Figures demonstrate that memoization can be used for learning
from past energy consumption simulations, and improve how consumption models are simu-
lated. This work opens new possibilities required on hybrid environment with multiple Clouds
and Edge resource simulations. To have a better understanding on these latter environments, the
re-usability of this work within these environments might be analogous or requiring a low adap-
tation. Finally, as was shown in our work, supervised learning through memoization applied to
computing simulators reduces the execution time required to perform simulations and therefore,
reduce energy consumed by these as well.

As Future Works we plan to study the portability to IoT platforms based on ARM, so learned
results in a high-performance node CPU will be used in mid-range SoC element, such as edge
devices. Furthermore, next steps on supervised learning for computing simulation are on study-
ing the impact of imprecise computation in the precision of the results under different tolerated
ranges of error.
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Opt Algorithm
Number elements / Time elapsed (us)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-O0
CUBIC 1 20 22 35 51 65 83 99 112 130 144 161 176 190 324 195
LINEAR 1 1 2 2 4 4 4 6 6 6 8 8 9 9 10 12
SQUARE 0 4 5 8 11 13 14 17 19 21 25 26 29 31 33 37
SQUARE-ROOT 1 2 4 5 7 8 10 10 12 13 15 17 17 19 20 23
PM1 1 3 9 9 12 16 18 20 23 27 31 36 40 42 46 51
PM2 1 14 33 52 72 89 106 123 142 161 180 199 220 235 251 295
FIND 11 12 13 18 20 20 26 27 28 30 31 32 37 37 39 44

-O1
CUBIC 0 16 21 31 44 57 72 137 102 114 120 131 143 156 171 199
LINEAR 1 1 0 0 1 1 2 1 3 2 2 3 2 2 3 3
SQUARE 1 1 1 1 1 2 2 2 3 2 3 3 4 4 4 5
SQUARE-ROOT 1 1 1 3 3 5 5 6 8 8 9 10 12 12 13 15
PM1 1 2 5 7 9 11 14 16 18 21 24 27 31 35 36 41
PM2 0 11 30 44 64 80 96 111 128 147 160 175 188 199 211 251
FIND 3 4 4 6 6 6 8 8 8 11 11 10 12 13 13 15

-O2
CUBIC 1 17 23 34 60 63 86 95 107 124 140 153 168 181 199 233
LINEAR 0 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4
SQUARE 1 1 1 1 2 2 2 3 3 3 3 4 4 5 4 5
SQUARE-ROOT 1 1 2 3 4 6 7 8 10 10 12 14 14 16 17 19
PM1 1 3 6 8 11 14 16 18 21 26 28 32 38 41 42 48
PM2 1 13 35 54 75 95 112 132 150 171 189 202 221 300 186 198
FIND 3 3 3 5 4 5 7 7 6 9 9 8 10 10 10 12

-O3
CUBIC 1 15 18 31 44 57 72 87 98 114 130 141 154 167 183 214
LINEAR 0 1 1 1 2 1 2 2 3 2 3 3 3 4 4 4
SQUARE 0 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5
SQUARE-ROOT 0 1 3 5 7 8 11 12 14 16 17 20 22 23 25 29
PM1 1 2 9 7 10 12 15 17 20 25 27 28 31 38 36 42
PM2 0 12 32 48 69 86 102 121 137 158 378 192 201 215 229 261
FIND 4 4 4 6 7 6 9 9 9 11 11 11 13 13 13 15

-Ofast
CUBIC 1 1 2 2 2 2 3 3 2 3 3 4 3 3 4 4
LINEAR 1 1 1 2 1 2 2 2 1 2 3 2 3 3 3 3
SQUARE 0 1 1 1 1 2 2 3 2 3 3 3 3 3 3 3
SQUARE-ROOT 0 2 3 5 7 8 5 5 3 4 5 6 4 5 6 5
PM1 0 6 10 7 11 12 14 17 17 19 23 26 23 24 28 30
PM2 0 2 2 3 4 3 4 5 4 5 5 6 5 6 6 7
FIND 3 3 4 6 7 6 9 9 8 12 11 11 13 13 14 16

-g
CUBIC 1 16 20 33 46 61 77 91 105 119 136 149 163 185 198 226
LINEAR 1 2 2 3 3 5 5 6 7 7 9 9 10 10 12 13
SQUARE 1 4 6 9 12 14 17 20 22 25 28 30 33 35 38 44
SQUARE-ROOT 1 2 4 6 7 10 10 11 13 15 16 17 19 20 22 25
PM1 1 3 10 10 13 16 20 23 27 31 35 42 42 44 48 55
PM2 1 16 39 59 83 103 124 144 165 188 208 231 252 271 295 326
FIND 12 12 13 19 20 20 26 29 28 34 36 37 42 44 45 51

Table A.2: Energy simulation models analysis for cloud computing systems: time spent for computing values.
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Opt Algorithm
Number elements / Values computed

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-O0
CUBIC 0 100 200 300 401 502 605 709 816 926 1041 1162 1289 1424 1569 1893
LINEAR 0 100 206 318 435 559 688 824 965 1112 1265 1424 1588 1759 1935 2306
SQUARE 0 100 200 302 405 510 619 731 848 971 1099 1233 1375 1525 1683 2029
SQUARE-ROOT 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582
PM1 0 100 200 301 401 502 604 705 807 909 1011 1113 1216 1319 1422 1629
PM2 0 100 190 275 357 439 524 614 712 818 934 1061 1200 1350 1512 1868
FIND 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582

-O1
CUBIC 0 100 200 300 401 502 605 709 816 926 1041 1162 1289 1424 1569 1893
LINEAR 0 100 206 318 435 559 688 824 965 1112 1265 1424 1588 1759 1935 2306
SQUARE 0 100 200 302 405 510 619 731 848 971 1099 1233 1375 1525 1683 2029
SQUARE-ROOT 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582
PM1 0 100 200 301 401 502 604 705 807 909 1011 1113 1216 1319 1422 1629
PM2 0 100 190 275 357 439 524 614 712 818 934 1061 1200 1350 1512 1868
FIND 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582

-O2
CUBIC 0 100 200 300 401 502 605 709 816 926 1041 1162 1289 1424 1569 1893
LINEAR 0 100 206 318 435 559 688 824 965 1112 1265 1424 1588 1759 1935 2306
SQUARE 0 100 200 302 405 510 619 731 848 971 1099 1233 1375 1525 1683 2029
SQUARE-ROOT 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582
PM1 0 100 200 301 401 502 604 705 807 909 1011 1113 1216 1319 1422 1629
PM2 0 100 190 275 357 439 524 614 712 818 934 1061 1200 1350 1512 1868
FIND 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582

-O3
CUBIC 0 100 200 300 401 502 605 709 816 926 1041 1162 1289 1424 1569 1893
LINEAR 0 100 206 318 435 559 688 824 965 1112 1265 1424 1588 1759 1935 2306
SQUARE 0 100 200 302 405 510 619 731 848 971 1099 1233 1375 1525 1683 2029
SQUARE-ROOT 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582
PM1 0 100 200 301 401 502 604 705 807 909 1011 1113 1216 1319 1422 1629
PM2 0 100 190 275 357 439 524 614 712 818 934 1061 1200 1350 1512 1868
FIND 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582

-Ofast
CUBIC 0 100 200 300 401 502 605 709 816 926 1041 1162 1289 1424 1569 1893
LINEAR 0 100 206 318 435 559 688 824 965 1112 1265 1424 1588 1759 1935 2306
SQUARE 0 100 200 302 405 510 619 731 848 971 1099 1233 1375 1525 1683 2029
SQUARE-ROOT 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582
PM1 0 100 200 301 401 502 604 705 807 909 1011 1113 1216 1319 1422 1629
PM2 0 100 190 275 357 439 524 614 712 818 934 1061 1200 1350 1512 1868
FIND 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582

-g
CUBIC 0 100 200 300 401 502 605 709 816 926 1041 1162 1289 1424 1569 1893
LINEAR 0 100 206 318 435 559 688 824 965 1112 1265 1424 1588 1759 1935 2306
SQUARE 0 100 200 302 405 510 619 731 848 971 1099 1233 1375 1525 1683 2029
SQUARE-ROOT 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582
PM1 0 100 200 301 401 502 604 705 807 909 1011 1113 1216 1319 1422 1629
PM2 0 100 190 275 357 439 524 614 712 818 934 1061 1200 1350 1512 1868
FIND 0 100 224 359 501 649 803 963 1127 1295 1468 1645 1825 2009 2197 2582

Table A.3: Energy simulation models analysis for cloud computing systems: computed values
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