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ABSTRACT

We stabilize a prescribed cycle or an equilibrium of a difference equation using pulsed stochastic control. Our technique, inspired by Kol-
mogorov’s law of large numbers, activates a stabilizing effect of stochastic perturbation and allows for stabilization using a much wider range
for the control parameter than would be possible in the absence of noise. Our main general result applies to both prediction-based and target-
oriented controls. This analysis is the first to make use of the stabilizing effects of noise for prediction-based control; the stochastic version has
previously been examined in the literature, but only the destabilizing effect of noise was demonstrated. A stochastic variant of target-oriented
control has never been considered, to the best of our knowledge, and we propose a specific form that uses a point equilibrium or one point
on a cycle as a target. We illustrate our results numerically on the logistic, Ricker, and Maynard Smith models from population biology.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5145304

Various linear-type methods were developed to control otherwise
unstable or chaotic behavior of discrete maps. Prediction-based
control (PBC) introduced by Ushio and Yamamoto in 1999 and
two-parameter target-oriented control (TOC) proposed by Dat-
tani et al. in 2011 are among them. Stochastic perturbations were
usually considered in two different contexts: as an intrinsic part
of control, which could diminish stabilization effects and thus
should be kept in prescribed bounds, and as natural environmen-
tal noise, which may somehow control chaos. For instance, such
noise can reduce oscillation amplitudes. First, we consider control
types incorporating both deterministic and stochastic compo-
nents, both of which can have a stabilizing effect. Examples illus-
trate that stabilization can be achieved by noise but introduction
of deterministic control, which cannot stabilize in itself, can influ-
ence the bounds for stabilizing stochastic perturbations. We ana-
lyze how the effective range of stabilizing control parameters may
be extended by the introduction of noise. Second, stabilization
of either an unstable equilibrium or an unstable orbit of a dis-
crete equation is investigated. In addition, both regular (applied
at each step) and pulsed (applied every kth step) types of con-
trol are applied, and pulsed control can stabilize an equilibrium.

Third, stochastic control is considered in very general settings.
These results are later applied to target-oriented and prediction-
based types of control involving stochastic component in the
control parameter. The application of stochastic prediction-based
and target-oriented controls for k-cycle stabilization is novel,
and stochastic versions of target-oriented control have not been
studied before.

I. INTRODUCTION

We investigate the use of pulsed stochastic control to stabilize
a prescribed cycle of the difference equation

xn+1 = f(xn), n ∈ N0, x0 > 0, (1)

where N0 := N ∪ {0}. For a general class of control methods applied
to (1), we reduce this problem to the stabilization of a point equilib-
rium at zero and present a general theorem on pulsed stabilization
of the zero equilibrium to Eq. (1).

We show how this theorem may be applied for two specific con-
trol methods: prediction-based control (PBC) and a particular case
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of target-oriented control (TOC). We introduce stochastic versions
of both methods and study the interplay of the underlying control
with stochastic perturbation of the control parameter, establishing
results that show when the introduction of noise is beneficial for sta-
bilization. In particular, we describe the stabilization of either a point
equilibrium or a cycle by noise in the context of stochastic control.
We also investigate the implications of pulsed control in this setting.

Our analysis allows us to demonstrate the stabilization of cycles
for three commonly used models from population biology—Ricker,
logistic, and Maynard Smith—and we note that while stabilization
of a point equilibrium by noise is quite a well-developed topic,
stochastic stabilization of cycles is much less so.

Our technique is inspired by Kolmogorov’s law of large num-
bers which allows us to characterize the stabilizing effect of noise in
our analysis and may be stated as follows:

Lemma I.1 (Ref. 34, p. 391). Let (vn)n∈ N be a sequence of inde-
pendent identically distributed random variables where E|vn| < ∞,
n ∈ N. Denote the common mean µ := Evn, and the partial sum
Sn :=

∑n
k=1 vk. Then, limn→∞ Sn/n = µ, a.s.

To the best of our knowledge, the idea of stabilization by noise
goes back to 1950s for physical applications. Consider the well-
known pendulum of Kapica,22 where stochastic perturbations can
stabilize its top (otherwise unstable) position. This stabilizing effect
is stipulated by the type of noise and its intensity: noise that is
too intense does not lead to stabilization, but noise that is insuffi-
ciently intense leads only to the preservation of the stability of the
bottom equilibrium. For differential equations, a theoretical justifi-
cation of stabilization by noise originated in the 1960s, see Ref. 19.
For both differential and difference equations, more detailed histor-
ical notes, as well as recent results on the topic are given in Refs. 7,
9, and 20. Recently, stability and stabilization of stochastic differ-
ence equations and systems, as well as cyclic and chaotic behavior,
has become a focus of many publications.2,3,12,18,21,27,30,33 Moreover,
a developed theory of random difference equations was utilized
to investigate differential equations,11 or discrete and continuous
stochastic equations were considered in the framework of a single
model.14

PBC was first introduced by Ushio and Yamamoto37 and was
studied in detail in Ref. 25. The case when the control is applied to
(1) at every step, and the control parameter α ∈ (0, 1) is subject to a
stochastic perturbation, can be written as

xn+1 = f(xn)−
(

α + lξn+1

)

(f(xn)− xn), n ∈ N0, x0 > 0, (2)

and was considered in Ref. 7. If the control is applied at every kth
step, for k ∈ N, k > 1, then this is called pulsed control, and in the
case of deterministic PBC, it was investigated in Refs. 8 and 26.

Previous results on PBC view stabilization as arising from the
deterministic control and in spite of the presence of stochastic per-
turbations of low intensity. However, we can show that it is possible
to stabilize the equilibrium of (1) by stochastic PBC (2), even for
values of α, which do not deliver stability in the absence of noise.

TOC, applied to (1) at every step with target T, is character-
ized by

xn+1 = f (αT + (1 − α)xn) , T ≥ 0, α ∈ [0, 1). (3)

It was introduced in Ref. 13 and further investigated in Refs. 4
and 15. In Ref. 15, it was shown that TOC is topologically equivalent

to the modified TOC equation,

xn+1 = αT + (1 − α)f(xn), T ≥ 0, α ∈ [0, 1). (4)

Note that in (2) and other stochastic control models with
f : [0, ∞) → [0, ∞), once the control α + lξn+1 ∈ [0, 1], or, for
TOC, the target is in addition non-negative, the expression in the
right-hand side is non-negative. Assuming α ∈ [0, 1), |ξn+1| ≤ 1, we
get l ≤ min{α, 1 − α}. However, most of our results are local, and
we can consider parameters outside of this domain, considering
the truncated version when the right-hand side is a maximum of
the computed value and zero, which is quite a typical approach in
population ecology.31

The application of modified TOC to stabilize cycles in the con-
text of higher order or vector difference equations was considered in
Refs. 5 and 6. In the present article, we find a relationship between
the control parameter α and the noise intensity l, which guaran-
tees local stability of a cycle after application of stochastic pulsed
stabilization. In the case when the control parameter is such that
the unperturbed model is stable, our method provides conditions
on the noise intensity which preserve stability, similarly to Ref. 7.
In the case when a deterministic system is unstable after applica-
tion of the control, introduction of a noise with appropriate intensity
guarantees stability.

Pulsed control is essential in cases where application of con-
trol at each step is either impossible or inefficient from a practical
or economical point of view. Here, we consider linear types of con-
trol for nonlinear models with either one for PBC or two parameters
for TOC involved. Our control results are robust as a result of the
simplicity of the control structures and the continuity of the maps.
While stabilization of an unstable equilibrium with a control applied
at every step is always possible, once the control intensity is suf-
ficient, pulsed stabilization with PBC in the deterministic case is
problematic;8 sometimes, it cannot be achieved for any values of
the parameters. In our earlier paper,7 a stochastic perturbation of
deterministic PBC was explored but global stability was justified
only in the case when all the values of the noisy control are within
a range of parameters leading to stabilization in the determinis-
tic case. In contrast with these global results, highly local results
are obtained in Ref. 9, where control and stabilization are achieved
solely by noise but the neighborhood of the equilibrium should be
very small (sometimes less than 10−8) and thus anyway another con-
trol method is required in practical applications. Here, our purpose
is to combine a stabilizing effect of noise with PBC, expanding the
range of allowable control parameters compared to Ref. 7 and relax-
ing requirements on proximity of the initial value to the equilibrium
in Ref. 9.

For TOC, delayed versions and stage-structured dynamics were
considered in Refs. 4–6 but its stochastic version has never been
explored. Here, we obtain sufficient stabilization conditions for
noisy TOC, including its pulsed version. Again, noise can expand the
range of parameters for which stabilization is achieved. From this
point of view, results of the present paper significantly generalize,
for example, as in Ref. 4.

All stochastic sequences considered in the paper are defined on
a complete filtered probability space (�,F , {Fn}n∈N, P), where the
filtration (Fn)n∈N is naturally generated by the sequence (ξn)n∈N, so
that Fn = σ {ξ1, . . . , ξn}. We use the standard abbreviations “a.s.”
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for either “almost sure” or “almost surely” with respect to a fixed
probability measure P, and “i.i.d.” for “independent and identi-
cally distributed,” as it applies to sequences of random variables. A
detailed discussion of relevant stochastic concepts and notation can
be found, for example, in Ref. 34.

Since equations in the present paper are motivated by popula-
tion models, we will assume bounded stochastic perturbations in the
following sense:

Assumption I.2. (ξn)n∈N is a sequence of independent identi-
cally distributed random variables, each satisfying |ξn| ≤ 1.

The paper is organized as follows. The main stabilization
theorem is presented in Sec. II in its most general form. A stochas-
tic TOC method is introduced and discussed in Sec. II A. Results
obtained in Sec. II B for stochastic PBC are generalizations of Ref. 7.
In Sec. III, we illustrate some of our results with computer sim-
ulations. Section IV contains a brief summary and discussion of
potential directions for future research. All proofs are deferred to
the Appendix.

II. LOCAL STABILIZATION OF A POINT EQUILIBRIUM

AT ZERO BY PULSED STOCHASTIC CONTROL

In this section, we present a generalized control theorem that
will be applied to specific classes of model and control-type in the
remainder of the article. Consider the difference equation

zn+1 = g(zn), n ∈ N0, z0 > 0, (5)

where the function g satisfies a Lipschitz-type condition locally
around zero:

Assumption II.1. For some u0 > 0, there exists L ≥ 1 such
that

|g(z)| ≤ L|z|, |z| ≤ u0. (6)

Condition (6) in Assumption II.1 is sufficient to ensure that
Eq. (5) has a point equilibrium at zero, which we aim to stabilize by
the application of pulsed stochastic control at each kth step, starting
with the step k − 1. In this article, we are not concerned with the case
where L < 1, since it would immediately follow that limn→∞ zn = 0,
for |z0| ≤ u0, and a control is unnecessary.

First, we characterize the control, which may depend on the
function g, on a deterministic control parameter α ∈ [0, 1), and on
a coefficient l > 0 describing the amplitude of a one-dimensional
stochastic perturbation, satisfying Assumption I.2. Note that if
α = 0, any achievable control is due only to this perturbation.

Suppose we apply a general stochastic control to the right-
hand side of (5) at the n = sk − 1 step, for each s ∈ N, and rep-
resent the resulting stochastically controlled map by the function
G : R × [0, 1] × [0, l0] × [−1, 1] → R for some l0 > 0. Then, the
stochastically controlled difference equation becomes (again with
z0 > 0)

zn+1 =

{

G(zn,α, l, ξn+1), n = sk − 1, s ∈ N,

g(zn), otherwise.
(7)

Next, we place constraints on the form of the stochastically con-
trolled map G under which we will prove our main result in this
section.

Assumption II.2. Define the region B := {α ∈ [0, 1),
l ∈ [0, l0], |v| ≤ 1}, and suppose that (6) in the statement of
Assumption II.1 holds. There exists a continuous function L : [0, 1]
× [0, l0] × [−1, 1] × [0, ∞) → (0, ∞) such that

(i) for (α, l, v) ∈ B,

|G(z,α, l, v)| ≤ L(α, l, v, u)|z|,

|z| ≤ u ≤ u0, (α, l, v) ∈ B;
(8)

(ii) for some M > 0

sup{L(α, l, v, u) : (α, l, v) ∈ B, |u| ≤ u0} = M; (9)

(iii) for ξ satisfying Assumption I.2, for L as given in (6), for k as given
in (7), and for some α ∈ [0, 1), l ∈ [0, l0],

λ := −E lnL(α, l, ξ , 0) > (k − 1) ln L. (10)

In our applications, G is the form in which the right-hand side
of the equation takes after the shift of the equilibrium to zero, or
after some other transformations, and after application of control.
The function L is a local Lipschitz constant of G at zero. Since the
control is random, we have both G and L random.

Remark II.3. Due to the continuity of L in u, condition (10)
implies that for some u1 ∈ (0, u0], 0 ≤ u ≤ u1,

λ(u) := −E lnL(α, l, ξ , u) > (k − 1) ln L. (11)

Inequality (10) is the main assumption of the paper, and it imme-
diately implies (11). The fact that (10) and (11) guarantee stabil-
ity of the zero equilibrium is a consequence of Kolmogorov’s law
of large numbers. This applies to models that without stochastic-
ity will be unstable and can be connected to the illustration with
Kapica’s pendulum.22 Mathematically, this can be roughly described
as possible decrease of Lyapunov exponents by introducing a random
component with a zero mean. This approach goes back to Kesten in
1960–1970s;17,23 see Ref. 9 for more details. Note that conditions (10)
and (11) are quite close to necessary.1 All the results of the present
paper are proved under this condition, and control parameters for all
the examples are chosen to satisfy this assumption.

Now, we present the main result of this section.
Theorem II.4. Let Assumptions I.2, II.1, and II.2 hold, and let

γ ∈ (0, 1). Then, there exist δ0 > 0 and �γ ⊆ �, P(�γ ) > 1 − γ ,
such that for each solution z to Eq. (7) with initial value |z0| ≤ δ0, we
have

lim
n→∞

zn(ω) = 0, ω ∈ �γ ,

where zn(ω) is a sample path of the solution zn. If we additionally
suppose that MLk−1 < 1 and |z0| ≤ u0

Lk−1 , then

lim
n→∞

zn(ω) = 0, ω ∈ �.

Remark II.5. The case MLk−1 < 1 can hold when G is nonran-
dom, or when L is nonrandom. In particular, it is the case for PBC
with a control that is either deterministic or subject to low-intensity
stochastic perturbation (see Ref. 7). We discuss this in more detail in
Secs. II A and II B; see also Remarks II.12 and II.19.
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In this section, we apply Theorem II.4 to stabilize cycles of

xn+1 = f(xn), n ∈ N0, x0 > 0.

First, we specify the structure of the map f. Then, we impose upon
f stochastic versions of TOC and PBC. The resulting stochastically
controlled maps can be converted to form (7). For each model,
we then derive assumptions on the control parameter α and the
noise intensity l, which ensure condition (10) in the statement of
Assumption II.2, allowing us to apply Theorem II.4.

Suppose that f is a real-valued and non-negative function pos-
sessing a cycle of period d ∈ N, and it satisfies a Lipschitz-type
condition locally around each point in the cycle:

Assumption II.6. For some u0 > 0 and d ∈ N, the continuous
function f : R → [0, ∞) is such that

(a) f(Ki) = Ki+1 for i = 1, . . . , d, where Kd+1 := K1;
(b) there exist Li > 0, i = 1, . . . , d, such that

| f(x)− Ki+1| ≤ Li|x − Ki|, x ∈ [Ki − u0, Ki + u0]. (12)

Remark II.7. If f satisfies Assumption II.6, it is not necessar-
ily differentiable at Ki; consider, for example, f(x) = |x|. However, if
f ′(Ki) exists, then for each u ∈ (0, u0) and x ∈ [Ki − u, Ki + u], (12)
is satisfied with Li = | f ′(Ki)| + ε(u), where limu→0 ε(u) = 0.

Notationally, set f 2(x) = f(f(x)), f j(x) = f(f j−1(x)), j ∈ N and
note that under Assumption II.6, each point of the set {K1, K2, . . . , Kd}
is an equilibrium for f d. It follows that f d satisfies a generalized
Lipschitz-type condition locally around each Ki:

Lemma II.8. Let Assumption II.6 hold and

L(d) :=
d
∏

i=1

max{1, Li}. (13)

Then, for i = 1, . . . d,

| f d(x)− Ki| ≤ L(d)|x − Ki| for |x − Ki| ≤
u0

L(d)
. (14)

Next, we assume a Lipschitz-type relationship between the
position of x in the vicinity of a point in the d-cycle Ki, and the
relative position of f(x) to the next point in the d-cycle Ki+1.

Assumption II.9. For some u0 > 0 and d ∈ N, the func-
tion f : R → [0, ∞) satisfies Part (a) of Assumption II.6. There
exist constants Ai ∈ R and functions φi : R → R, ψi : R → [0, ∞),
i = 1, . . . , d, such that

(i) ψi(u) → 0 as u → 0;
(ii) for each u ∈ (0, u0) and x ∈ [Ki − u, Ki + u], i = 1, 2, . . . , d,

f i(x) = Ki+1 + Ai(x − Ki)+ φi(x);

|φi(x)| ≤ ψi(|x − Ki|)|x − Ki|.
(15)

Since Kd+1 = K1, it follows that x and f d(x) have a similar
relationship in the vicinity of K1:

Lemma II.10. Suppose that Assumption II.9 holds, and define
for u ∈ (0, 1),

A(d) :=
d
∏

i=1

Ai, u(d) :=
u

∏d
i=1 max {|Ai| + ψi(u), 1}

. (16)

Then, there exist functions φ̄ : R → R and ψ̄ : R → [0, ∞) such that
for x ∈ [K1 − u(d), K1 + u(d)],

f d(x) = K1 + A(d)(x − K1)+ φ̄(x),

|φ̄(x)| ≤ ψ̄(|x − K1|)|x − K1|,
(17)

where ψ̄(u) → 0 as u → 0.

A. Target-oriented control

Deterministic modified TOC control is characterized in general
by Eq. (4). Consider a particular case when the target T coincides
with the equilibrium K of f, and where the control parameter α is
stochastically perturbed by an additive noise of intensity l. Then, (4)
becomes

xn+1 = (1 − α − lξn+1)f(xn)+ (α + lξn+1)K (18)

for n ∈ N0. In fact, we apply (4) not for all n ∈ N0 but at each kth
step, and we aim at either a point or a cycle stabilization. To the best
of our knowledge, a combination of TOC with either pulsed control,
stochastic control, or the use of part of a cycle as a target is novel and
we tackle here all three tasks.

In Secs. II A 1 and II A 2, we present equations and conditions
for the local stabilization of a point equilibrium and d-cycle, respec-
tively, using stochastic TOC. In Sec. II A 3, we investigate global
stabilization.

1. Pulsed stochastic TOC: Stabilization of a point

equilibrium

Suppose f(K) = K, for K > 0. Consider the stochastic TOC
model, pulsed at each kth step, with target K,

xn+1 =







(1 − α − lξn+1)f(xn)+ (α + lξn+1)K,
n = sk − 1, s ∈ N,

f(xn), otherwise,

|x0 − K| < δ.

(19)

If we denote

zn := xn − K, g(z) := f(z + K)− K, (20)

then (19) takes the form of (7) with

G(zn,α, l, ξn+1) = (1 − α − lξn+1)g(zn). (21)

Assuming that

| f(z + K)− K| ≤ L|z|, |z| ≤ u0, (22)

we get L(α, l, v, u) = |1 − α − lv|L, with M = L max|v|≤1

|1 − α − lv|, and condition (10) takes the form

λ = −E ln |1 − α − lξ | > k ln L. (23)
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Here, we also assume that ξ 6= 1−α
l

in the case when ξ has a dis-
crete distribution; see more details in Ref. 9. The following result
now follows directly by an application of Theorem II.4:

Theorem II.11. Let Assumption I.2 and conditions (22) and
(23) hold. Then, for each γ ∈ (0, 1), there exist δ0 > 0 and �γ ⊂ �,
where P(�γ ) > 1 − γ , such that for each solution (xn)n∈N to Eq. (19)
with initial value satisfying |x0 − K| ≤ δ0, we have

lim
n→∞

xn(ω) = 0, ω ∈ �γ .

Remark II.12. Note that for α < 1 − l, we have M = L
(1 − α + l), and condition (23) holds if 1 − α + l ≤ L−k, which gives
the following ranges for the parameter α and for the noise intensity l
to ensure stabilization:

α ∈
(

1 − L−k, 1
)

, l ≤ min
{

1 − α, α − 1 + L−k
}

. (24)

For a large value of L, the parameter α needs to be close to one, and l
needs to be small. In this case, stabilization is due to the deterministic
control α, and only a small stochastic disturbance is allowed.

It is also possible to demonstrate active stabilization by noise,
when l is bigger than in (24). For Bernoulli-distributed ξ (tak-
ing each of the values ±1 with the probability of 0.5), we have
−λ = 1

2
ln
∣

∣(1 − α)2 − l2
∣

∣, and (23) holds if

√

(1 − α)2 − L−2k < l <

√

(1 − α)2 + L−2k. (25)

Note that (25) can remain valid even for large L and α = 0, but then
l < 1 should be close to 1.

2. Pulsed stochastic TOC: Stabilization of a d-cycle

Let k = md for some m ∈ N, and let f satisfy Assumption II.6.
Recall that each Ki, i = 1, . . . , d, is a fixed point of f d, and therefore
of f md. For simplicity, we focus only on K1, but our analysis applies
equally to any other point in the cycle.

Consider the equation

xn+1 =











(1 − α − lξn+1)f(xn)+ (α + lξn+1)K1,

n = smd − 1, s ∈ N,

f(xn), otherwise, |x0 − K1| ≤ δ.

(26)

Set ys := x(s−1)md, ξ̄s := ξ(s−1)md, for s ∈ N, and note that the
sequence (ξ̄s)s∈N satisfies Assumption I.2. For n = smd − 1, s ∈ N,
we have

xn = xsmd−1, xn+1 = xsmd = ys+1, y1 = x0,

f(xn) = f md(xn−md+1)

= f md(x(s−1)md) = f md(ys). (27)

Thus, (26) can be transformed to

ys+1 = (1 − α − lξ̄s+1)f
md(ys)+ (α + lξ̄s+1)K1,

s ∈ N, |y1 − K1| ≤ δ, (28)

which is in the form of (19) with k = 1, K = K1, f md instead of f, y1

instead of x0 and s starting from 1.

Equation (28), in turn, can be transformed to (7) if we set

zs := ys − K1, g(z) := f md(z + K1)− K1.

Note that, by Lemma II.8, g satisfies (6) with constant L(md)
:= Lm(d), where L(d) is defined by (13). Recall that L(d) ≥ 1. For
G defined as in (21), L(α, l, v, u) = |1 − α − lv|Lm(d), M := (1 − α

+ l)Lm(d), condition (10) takes the form

λ := −E ln |1 − α − lξ | > m ln L(d). (29)

Therefore, Theorem II.4 implies lims→∞ ys = lims→∞ x(s−1)md = K1,
with any given probability 1 − γ and small enough δ0.

To extend this result to show that limn→∞ xnd+j̄ = Kj̄, for each

j̄ = 0, 1, . . . , d − 1, we require the next lemma:
Lemma II.13. Let (xn)n∈N be a solution of Eq. (26). Let

Assumptions I.2 and II.6, and condition (29) hold. Then, for each
γ ∈ (0, 1), there exist δ0 > 0 and �γ ⊂ �, with P(�γ ) > 1 − γ ,
such that if |x0 − K1| ≤ δ0, and s0 is such that

|xsmd − K1| < u0L
−m(d)|1 − α + l|−m+1, s ≥ s0,

then for j = qd + j̄, j̄ = 0, 1, . . . , d − 1, q = 0, 1, . . . , m − 1, we have

|xsmd+j − Kj̄+1| ≤ |1 − α + l|m−1Lm(d)|xsmd − K1|, s ≥ s0.

All the above brings us to the following theorem:
Theorem II.14. Let (xn)n∈N be a solution of Eq. (26). Let

Assumptions I.2 and II.6, and condition (29) hold. Then, for each
γ ∈ (0, 1) there exist δ0 > 0 and�γ ⊂ �, with P(�γ ) > 1 − γ , such
that if |x0 − K1| ≤ δ0,

lim
n→∞

xnd+j̄(ω) = Kj̄, ω ∈ �γ , j̄ = 0, 1, . . . , d − 1.

3. Global stabilization of a d-cycle by stochastic TOC

Observe that if (22) [when d = 1, (12) otherwise] holds globally
on R, condition (23) [when d = 1, (29) otherwise] also holds. It is
then possible to show that stochastic TOC (19) [respectively, (26)]
globally stabilizes the equilibrium K (or a d-cycle).

Theorem II.15. Theorem II.11 (respectively, Theorem II.14)
holds for any x0 > 0 if, in conditions (22) and (23) [respectively, con-
ditions (12) and (29)], local Lipschitz constants are replaced with
global Lipschitz constants.

The proof modifies that of Theorem II.4 so that solutions are
not required to stay in some neighborhood of the initial value. Note,
however, that the global Lipschitz constant L̄ at the point K (or in
the case of a d-cycle, L̄i at each Ki, i = 1, 2 . . . , d) can be quite large,
reaching up to sups∈R

| f ′(s)|. Nonetheless, we will see in Example
III.1 that, in the case of Bernoulli ξ , condition (23) [respectively,
(29)] holds for large L̄ [or L̄m(d)] even with α = 0 if l satisfies (25),
where we replace L by L̄ [or in the case of a d-cycle, L is replaced by
L̄m(d) and k by md].

B. Predictive-based control

The application of stochastic PBC is characterized in general
by Eq. (2). Following the order of investigation in Sec. II A, we will
apply pulsed stochastic PBC at each kth step to stabilize a point
equilibrium in Sec. II B 1 and to stabilize a d-cycle in Sec. II B 2.
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The results of this section are illustrated for a point equilib-
rium in Example III.3, where even local stabilization is not possible
for any α ∈ (0, 1) in the absence of a stochastic perturbation, and in
Example III.5, where global stabilization is considered. The applica-
tion of pulsed stochastic PBC to stabilize a two-cycle is illustrated in
Example III.4.

1. Pulsed stochastic PBC: Stabilization of a point

equilibrium

Suppose f(K) = K for K > 0, and consider the stochastic PBC
model, pulsed at each kth step,

xn+1 =











(1 − α − lξn+1)f(xn)+ (α + lξn+1)xn,

n = sk − 1, s ∈ N,

f(xn), otherwise, |x0 − K| ≤ δ,

(30)

which, if we again use notation defined by (20), takes the form of (7),
with

G(z,α, l, v) := (1 − α − lv)g(z)+ (α + lv)z. (31)

We may identify constraints on f that ensure condition (10)
holds. Suppose first that for |x − K| ≤ u ≤ u0, f admits expansion
(15) with d = 1, Ki ≡ K, Ai ≡ A, φi(u) ≡ φ(u), and ψi(u) ≡ ψ(u).
In particular, this means that f is differentiable at K with derivative
A. Then,

G(zn,α, l, ξn+1) :=
[

(1 − α − lξn+1)A + α + lξn+1

]

zn

+ [1 − α − lξn]φ(zn),

L(α, l, v, u) :=
∣

∣(1 − α)A + α + (1 − A) lv
∣

∣

+ |1 − α + l|ψ(u),

L := A + ψ(u),

and conditions (10) and (by Remark II.3) (11) hold if

− E ln
∣

∣(1 − α)A + α + (1 − A) lξ
∣

∣ > (k − 1) ln |A|. (32)

The following theorem then follows immediately:
Theorem II.16. Let Assumptions I.2 and II.9 with d = 1, and

condition (32) hold, and let (xn)n∈N be a solution of (30). Then,
for each γ ∈ (0, 1), there exist δ0 > 0 and �γ ⊂ � where P(�γ )

> 1 − γ , such that, if |x0 − K| ≤ δ0, we have

lim
n→∞

xn(ω) = 0, ω ∈ �γ .

Remark II.17. Relation (32) fails if A > 1 and l = 0 for any
α ∈ (0, 1) and k ∈ N. However, the presence of noise with l > 0 can
ensure local stability even for α = 0 and large A. To see this, assume
that ξ is Bernoulli distributed. Then,

λ = −
1

2
ln
∣

∣[(1 − α)A + α]2 − (1 − A)2 l2
∣

∣ ,

and (32) holds if

llow :=
[(1 − α)A + α]2 − A−2(k−1)

(1 − A)2
< l2

<
[(1 − α)A + α]2 + A−2(k−1)

(1 − A)2
.

If α = 0 and k = 1, the lower bound on l is given by llow = A2−1
(1−A)

2

= 1 + 2
A−1

> 1, for each A > 1. For example, if A = 2, α = 0, and

k = 1, we required 1.73 ≈
√

3 < l <
√

5 for (32) to hold. So, it is rea-
sonable to combine a nonzero control parameter α with nonzero noise
intensity l.

Note that for k = 1 and any A 6= 1 the lower bound on l satisfies

llow =
(1 − α) [(1 − α) (A − 1)+ 2]

A − 1
→ 0, as α → 1,

while for k > 1

llow =
[(1 − α) (A − 1)+ 1]2 − 1

(1 − A)2
+

1 − A−2(k−1)

(1 − A)2

→
1 − A−2(k−1)

(1 − A)2
as α → 1.

Therefore, when k = 1 and A 6= 1, for any ε > 0, we can choose
α ∈ (0, 1) such that the llow satisfies llow < ε. In other words, small
noise stabilizes the equilibrium if α is close to 1. When k > 1 and
A > 2,

1 − A−2(k−1)

(1 − A)2
<

1

(1 − A)2
< 1,

so there exists α ∈ (0, 1) such that llow < 1.
We can relax the assumption that f is differentiable at K, instead

requiring only that f(x)− K changes sign from positive to negative
as x increases through some neighborhood of K. This corresponds
to the case A < −1 if f is differentiable at K.

Theorem II.18. Let (xn)n∈N be a solution to (30), where (22)
holds and suppose that f(x) > K for x ∈ [K − u0, K], f(x) < K for
x ∈ [K, K + u0], and l ∈ (0, min{α, 1 − α}).

(i) If either

k = 1, α > 1 − L−1, l < L−1 − 1 + α, (33)

or

k > 1, 1 < Lk < L + 1, α ∈
(

1 − L−k, L−k+1
)

,

l ∈
(

0, min
{

L−k − 1 + α, L−k+1 − α
})

; (34)

then, for |x0 − K| ≤ δ ≤ u0/L
k,

lim
n→∞

xn(ω) = K, for all ω ∈ �.
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(ii) If

λ := −E max
{

ln(|α + lξ |), ln
(

|1 − α − lξ |L
)}

> (k − 1) ln L, (35)

then, for any γ ∈ (0, 1), there exist δ > 0 and �γ ⊂ � with
P(�γ ) > 1 − γ , such that, for |x0 − K| ≤ δ, we have

lim
n→∞

xn(ω) = K, ω ∈ �γ .

Remark II.19. In Theorem II.18, part (i) describes a situation,
where stabilization is due to the action of the underlying determin-
istic control, and the noise intensity l is kept small to preserve this
effect. The case of k = 1 in part (i) of Theorem II.18, where (33) holds
was covered in Ref. 7 and this analysis included establishing the global
stability. However, for local stability, Theorem II.18 generalizes the
results of Ref. 7 to the case where the noise plays an active role in
achieving stability: it applies to the situations where, for a chosen
α ∈ (0, 1) and l = 0, the point equilibrium is unstable. The use of
pulsed control here to achieve stabilization is also novel.

In part (ii), the noise also plays an active role, and (35) gives a
set of stabilizing parameters different from those in part (i). Here, we
present an example where (35) is fulfilled, deferring a more detailed
description and illustrative numerical simulation until Example III.5.

The inequality E ln[1 − α − lξ ] < k ln L implies (35) if
(1 − α − lv)L ≥ α + lv holds for each |v| ≤ 1. The latter is true when
α + l < 1 − (1 + L)−1. In the case of Bernoulli-distributed ξ , this
gives a lower bound for l2 as llow = (1 − α)2 − L−2k. It can be shown
that the Ricker model with r = 2.41, L = 1.5, and the control with
α = 0.3, l = 0.24, and k = 1, satisfies (35) in part (ii) but not (33) in
part (i) of Theorem II.18.

Suppose more specifically that (1 − α − lv)L = α + lv for some
v ∈ (−1, 1), and α + l > 1 − (L + 1)−1. Then, in order to satisfy
(35), we need α(1 − α)+ l(1 + l) < L−k. It can be shown that for
the Ricker model with r = 2.2, the values L = 1.2, α = 0.28, l = 0.27,
k = 2 satisfy (35) in part (ii), but not (34) in part (i) of Theorem II.18.
More details may be found in Example III.5.

Remark II.20. There are cases (applicable to both Ricker and
logistic models) for which local stability implies global stability. Sup-
pose k = 1, so that control is applied at every step. Then, in the
deterministic case, we have

fα(x) := (1 − α)xer(1−x) + αx,

f ′
α(x) = (1 − α)(1 − rx)er(1−x) + α.

The controlled map fα is unimodal with a negative Schwarzian deriva-
tive, and so equilibria of the controlled deterministic equation are
globally stable once they are locally stable. The general form of this
result is due to Singer35 (see also Ref. 24). For deterministic PBC, the
result is in Ref. 25 and some extensions of the idea can be found in
Ref. 16. The point equilibrium K = 1 for the Ricker model is locally
stable if

f ′
α(1) = (1 − α)(1 − r)+ α > −1,

or α ∈ (α∗, 1), where α∗ = (r − 2)/r. According to Ref. 7, stabiliza-
tion is achieved once (α − l,α + l) ⊆ (α∗, 1).

2. Pulsed stochastic PBC: Stabilization of a d-cycle

Suppose that k = md, m ∈ N, and Assumption II.9 holds.
Consider the equation

xn+1 =







(1 − α − lξn+1)f(xn)+ (α + lξn+1)xn−md+1,
n = smd − 1, s ∈ N,

f(xn), otherwise, |x0 − K1| ≤ δ.
(36)

To this model, we apply transformation (27) using notation as in
Sec. II A 2, to get

ys+1 =
(

1 − α − lξ̄s+1

)

f md(ys)+
(

α + lξ̄s+1

)

ys,

s ∈ N, |y1 − K1| ≤ δ,

which is covered by the case discussed in Sec. II B 1. To see this,
substitute f dm for f, and ξ̄s := ξsdm for ξn and k = 1. Note that, by
Lemma II.10, f md admits the expansion (17), substituting md for d
and A(md) = Am(d), where A(d) is defined as in (16). Therefore,
condition (10) has the form

− E ln
∣

∣(1 − α)Am(d)+ α +
(

1 − A
m(d)

)

lξ
∣

∣ > 0. (37)

Following the arguments of Sec. II A 2, we obtain the following
theorem.

Theorem II.21. Let (xn)n∈N be a solution of Eq. (36). Let
Assumptions I.2, II.9, and condition (37) hold. Then, for each γ ∈
(0, 1), there exist δ0 > 0 and �γ ⊂ �, with P(�γ ) > 1 − γ , such
that if |x0 − K1| ≤ δ0,

lim
n→∞

xnd+j̄(ω) = Kj̄, ω ∈ �γ , j̄ = 0, 1, . . . , d − 1.

III. EXAMPLES AND COMPUTER SIMULATIONS

In all simulations presented in this section, we truncate the
controlled map

xn+1 = max
{

(1 − α − lξn+1)f(xn)+ (α + lξn+1)K, 0
}

in order to avoid negative values xn.
We illustrate the results of Secs. II A and II B using difference

equations associated with the Ricker function

f1(x) = xer(1−x), x ≥ 0, (38)

the logistic map

f2(x) = rx(1 − x), x ≥ 0, (39)

and the Maynard Smith model36 with

f3(x) =
3x

2 + (x − 3)2
, x ≥ 0. (40)

Here, we simulate continuous uniformly distributed on [0, 1] and
Bernoulli random variables ξn to illustrate some cases from Secs. II A
and II B. Each plot incorporating stochastic perturbations (l > 0)
was generated with three runs, with a single run used to generate
deterministic plots.
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FIG. 1. Model (19) with f = f1 from (38)
with r ≈ 3.2716, α = 0.7, m = 2, d = 1,
x0 = 0.5, and (top, left) no noise, (top,
right) l = 0.32, (bottom, left) l = 0.4, and
(bottom, right) l = 0.42.

FIG. 2. Model (26) with f = f1 from (38)
with r ≈ 3.2716,α = 0.3,m = 1, d = 2,
x0 = 0.5, and l = 0.65, 0.7.

FIG. 3. Model (19) with f = f2 from (39),
r = 3.5,α = 0,m = 1, d = 2, x0 = 0.5,
and (from left to right) l = 1.2, 1.3.
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FIG. 4. Model (19) with f = f2 from (39),
α = 0.2, m = 1, d = 2, x0 = 0.5, and
(from left to right) l = 0.75, 0.8.

We start with the TOC method. Examples III.1 and III.2 illus-
trate Theorem II.21, d = 2, applied to Ricker and logistic functions.

Example III.1. First, we consider stochastic TOC (19) applied
at alternate steps (k = 2) to a chaotic Ricker map f1 satisfying (38)
with r ≈ 3.2716 and a continuous uniformly distributed on [−1, 1]
noise. Without noise, α = 0.7 guarantees pulsed cycle stabilization,
while uniformly distributed noise with l = 0.4 leads to stabilization of
K = 1 (see Fig. 1).

Next, apply a Bernoulli noise with a smaller α = 0.3 to stabi-
lize 2-cycle K1 = 0.1, K2 = 1.9 using K1 as the target. Figure 2(right)
presents stabilization for noise intensity l = 0.7. For l = 0.7,
Fig. 2(left) illustrates that there is no convergence to this two-cycle,
and similar results are obtained for l > 0.75; the range of values of l
that allow stabilization is quite narrow.

Example III.2. Consider stochastic TOC (19) applied at alter-
nate steps (k = 2) to a logistic map f2 satisfying (39) with r = 3.5.
We can globally stabilize an unstable two-cycle. Figure 3 shows con-
vergence with α = 0, r = 3.5, and l = 1.2. For significantly smaller
l, there is no convergence, and the effective stabilizing range for l is
narrow. Increasing to α = 0.2 in Fig. 4 leads to a higher convergence
speed; see Fig. 4 for fast stabilization of a two-cycle for l = 0.75 and
l = 0.8.

Now, we proceed to the PBC method. Examples III.3 and
III.4 illustrate Theorem II.21, m = 1, with d = 1 and d = 2,
respectively.

Example III.3. Consider stochastic PBC (30) applied at every
step to a Maynard–Smith model f3 satisfying (40) and note that this
model is chaotic for α = 0, l = 0. There are two positive equilibria

FIG. 5. Model (30) with f = f3 from (40),
k = 1, α = 0.2, x0 = 2.001, and (top)
l = 04, l = 0.4 and (bottom) l = 0.5,
l = 0.7.
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FIG. 6. Model (36) with f = f1 from (38)
with r = 3.2, k = 2, α = 0.4, x0 = 0.5,
and (from left to right, top to bottom)
l = 0, 0.2, 0.3, 0.35, 0.4, 0.45.

at x ≡ 2 and x ≡ 4, and f′3(2) = 7
3
> 1. Note also that even local

stabilization is not possible for any α ∈ (0, 1) in the absence of noise
(l = 0). Figure 5 illustrates local stabilization of the equilibrium x ≡ 2
with α = 0.8 and l = 0.4, 0.5, 0.7. The solution x ≡ 4 is stable for
l = 0, and there is no stabilization of x ≡ 2 for l = 0.4, we observe
wandering between the two equilibria for l = 0.5 and stabilization of
x ≡ 2 for l = 0.7.

Example III.4. Let us illustrate Theorem II.21 for d = 2,
m = 1. Applying pulsed stochastic PBC to stabilize a two-cycle, we
consider (36), “delayed” stabilization, applied to a Ricker map f1
satisfying (38) with r = 3.2, α = 0.4. Figure 6 shows how an appro-
priately chosen noise intensity l leads to global stabilization of the
2-cycle {K1 ≈ 0.11, K2 ≈ 1.89}, and l changing from zero (no noise)
to l = 0.45.

The next example illustrates Theorem II.18.
Example III.5. Consider stochastic PBC (30) applied at each

step to a Ricker map f1 satisfying (38) with r = 2.41. The global
Lipschitz constant is L = 1.5. Note that according to Remark II.20,

for r = 2.41, we get

f ′
α(1) = −1.41(1 − α)+ α = 2.41α − 1.41 > −1

⇔ α >
0.41

2.41
≈ 0.170 124 48.

Thus, the stabilization bound is α∗ = 0.170 1245, and by Ref. 7, sta-
bilization is achieved once α − l > α∗ and α + l < 1. For α = 0.3,
l = 0.24, the first inequality is not satisfied α − l = 0.06 < α∗, so our
previous result in Ref. 7 does not allow us to establish stability of the
controlled model. It is possible to illustrate global stabilization of the
equilibrium K = 1 with k = 1, α = 0.3, and l = 0.24.

We can also make K = 1 stable with a stochastic pulsed control.
Global stabilization by pulsed stochastic PBC (30) applied at alternate
steps (k = 2) to a Ricker map f1 satisfying (38) with r = 2.2 is demon-
strated in Fig. 7. Only local stability conditions from Theorem II.16
hold, but global stability is observed. This indicates a possible direction
for future research.

Chaos 30, 093116 (2020); doi: 10.1063/1.5145304 30, 093116-10

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 7. Model (30) with f = f1 from
(38), k = 2, r = 2.2, and (top left)
α = 0.28, l = 0.27, x0 = 0.5, (right)
l = 0.45, x0 = 0.5, (bottom) α = 0.1,
l = 0.27, (left) x0 = 0.5, and (right)
x0 = 10.

IV. CONCLUSIONS

A. Summary of results

We have presented a general framework for stabilization of
iterative systems by the application of control. The method demon-
strates how the effective range of control parameters can be extended
by stochastic perturbation.

Our results may be summarized as follows:

• We present a broad general characterization of control that allows
us to consider mechanisms incorporating both deterministic and
stochastic components. This characterization includes stochastic
forms of prediction-based control and target-oriented control; the
latter is considered here for the first time.

• Both regular (applied at each step) and pulsed (applied every kth
step) types of control were investigated. Pulsed TOC applied to
one-dimensional models has not been studied before. Further,
while pulsed stabilization of an equilibrium or a cycle by deter-
ministic control has attracted some attention (see, for example,
Refs. 8 and 26), the use of stochastic PBC and TOC for k-cycle
stabilization is novel.

• The analysis extends that of Ref. 7, which also showed how the
effective range of stabilizing control parameters may be extended
by the introduction of noise. However, in this article, we addi-
tionally explore pulsed stochastic control and the stabilization of
unstable k-cycles.

B. Future directions for research

Future research will follow one (or more) of the four
directions:

1. Study of sharp and/or global stabilization conditions. Note
that some of our results are essentially local, and we observe this
in simulation. Nevertheless, we believe it is still possible to get
global stabilization results for the PBC method if we introduce
some additional restrictions on f and choose the noise inten-
sity appropriately. Example III.5 in fact illustrates the global
stabilization for a wide range of parameters; however, theoret-
ical justification is yet to be obtained. Also, the conditions for
stabilization presented in this article are sufficient but not neces-
sary. It is desirable to obtain necessary and sufficient conditions,
as are available in the deterministic setting (see Refs. 15, 24,
and 25).

2. Explore the dependency of parameter bounds on the noise
distribution type. Most of our examples assume Bernoulli-
distributed noise perturbation. Creating a library of sufficient
estimates for control parameters and noise amplitudes under
various types of noise distribution would be interesting and use-
ful. For stabilization with noise only, such results can be found
in Ref. 10.

3. Generalization of scalar results to systems or higher-order
difference equations. In Refs. 5 and 6, stabilization of high-
order and vector difference equations was considered. This
allowed us to analyze stage-structured and delayed population
dynamics models. Even without formal control, the introduc-
tion of noise can improve population dynamics, for example,
reduce oscillation amplitudes. The next stage of research is to
incorporate the ideas and methods of the present paper in the
controlled systems of difference equations. For example, if a
system describes a network, together with stabilization of peri-
odic orbits,26 the problem of synchronization is of importance,
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especially if there are delays and/or stochastic component in
communications.28,29

4. Qualitative analysis of positive effect of noise: ecological per-
spective. Finally, it would be interesting, similarly to the present
paper, to qualitatively evaluate possible positive effect of noise
on stability and population survival; see Ref. 32 for analysis of
population interactions and the influence of stochasticity on
survival, extinction, and coexistence.
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APPENDIX: PROOFS OF THE RESULTS

1. Proof of Theorem II.4

Consider two cases in turn: (a) MLk−1 < 1 and (b) MLk−1 ≥ 1.
Case (a): If MLk−1 < 1, then (11) holds for u1 = u0. Since

Eq. (6) in Assumption II.1 holds with L ≥ 1, we must have M < 1.
Fix u ∈ (0, u0] and set δ0 ≤ u/Lk−1. Then, for |z0| ≤ δ0,

|z1| ≤ L|z0| ≤
u

Lk−2
≤ u,

|z2| ≤ L|z1| ≤ L2|z0| <
u

Lk−3
≤ u,

...

|zk−1| ≤ L|zk−2| ≤ Lk−1|z0| ≤ u,

|zk| ≤ M|zk−1| ≤ MLk−1|z0| ≤ Mu < u,

|z2k| ≤
(

MLk−1
)2

u ≤ u.

Reasoning recursively, we conclude that, for i ∈ N,

|zik| ≤
(

MLk−1
)i

u ≤ u,

|zik+j| ≤ (MLk−1)
i
u ≤ u, j = 1, . . . , k − 1,

where MLk−1 < 1, so, limi→∞ |zik+j(ω)| = 0 for all ω ∈ �, which
concludes the proof of Part (a).

Case (b): Let α and l be chosen as in (10), and u1 be defined as
in (11). Fix u ≤ u1 and γ ∈ (0, 1).

Applying Lemma I.1 and condition (11), we conclude
that, for ε := 1/2[λ− (k − 1) ln L] > 0, there exists a random
N = N (γ , λ, u) such that

∣

∣

∣

∣

∣

1

n

n
∑

i=0

lnL(α, ξik, u)+ λ

∣

∣

∣

∣

∣

< ε, n ≥ N .

Then, there exist a nonrandom N = N(γ , λ, u) and �γ ⊂ � with
P(�γ ) > 1 − γ , such that

n
∏

i=0

L(α, l, ξik(ω), u)

< exp
{

−
n

2
(λ+ (k − 1) ln L)

}

, n ≥ N, ω ∈ �γ . (A1)

Suppose that, when N is chosen so that (A1) holds, δ0 satisfies

δ0 ≤
u

(M̄Lk−1)
N

, where M̄ := max{1, M}. (A2)

Since M̄ ≥ 1, we have, for all i = 1, . . . , k − 1,

M̄NLN(k−1)−i = M̄N(Lk−1)
N− i

k−1

≥ M̄N−i/k−1(Lk−1)
N− i

k−1 ≥ 1.

By (6), (7), and (A2), we have, for |z0| ≤ δ0 ≤ u,

|z1| = |g(z0)| ≤
Lu

(M̄Lk−1)
N

≤
u

(M̄Lk−1)
N− 1

k−1

≤ u,

and inductively, for all i = 0, . . . , k − 1,

|zi| ≤
Liu

(M̄Lk−1)
N

≤
u

(M̄Lk−1)
N− i

k−1

≤ u.

So,

|zk| ≤ L(α, l, ξk, u)|zk−1|

≤
M̄Lk−1u

(M̄Lk−1)
N

=
u

(M̄Lk−1)
N−1

≤ u.

Similarly, for any j < N,

|zjk| ≤ L(α, l, ξjk, u)|zjk−1|

≤ L(α, l, ξjk, u)L
k−1|zj(k−1)|

≤ (Lk−1)
j

j
∏

i=1

L(α, l, ξik, u)|z0|

< (M̄Lk−1)
j|z0| <

u

(M̄Lk−1)
N−j

≤ u.

Denoting λ̄ := [λ− (k − 1) ln L]/2, and applying (A1), we get,
on�γ ,

|zkN| ≤ L(k−1)N|z0|
N
∏

i=1

L(α, l, ξik, u)

≤ |z0|e((k−1)N) ln Le− [λ+(k−1) ln L]N
2 = e−λ̄N|z0| < u,

and then, for each j = 1, 2, . . . , k − 1,

|zkN+j| < Lj|zkN| < e−λ̄NLj|z0|

< e−λ̄N u

M̄NL(k−1)N−j
< u.
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Similarly, for any n = km + j, where j = 1, 2, . . . , k − 1, m > N, we
get, for ω ∈ �γ ,

|zn(ω)| < Lj|zkm(ω)| < e−λ̄kmLj|z0| ≤ e−λ̄(n−j)Lk|z0|

< e−λ̄(n−j) u

M̄NL(k−1)N−k
< ue−λ̄(n−j) < u,

which implies that limn→∞ zn(ω) = 0, when ω ∈ �γ and concludes
the proof of Case (b).

Remark. If MLk−1 > 1 but M < 1, we may use much bigger
initial interval than it was suggested in the proof of Theorem II.4
assuming δ0 ≤ u

MLk−1 for part (a) and δ0 ≤ u

(MLk−1)
N for part (b) of the

proof. However, in this case, we need to change model (7) slightly,
considering instead

zn+1 =

{

G(zn,α, l, ξn+1), n = k(s − 1), s ∈ N,

g(zn), otherwise, z0 ∈ R.
(A3)

In (A3), the application of stochastic control starts from n = 0 rather
than n = s − 1. Note that in both cases, the solution zn remains in
[−u, u] for all n ∈ N. The proof differs only in the estimation of the
first k (respectively Nk) iterations.

2. Proof of Lemma II.8

Let i = 1, other cases are similar. Note that
∏d

s=j max{Ls, 1} ≥ 1

for j = 0, . . . , d, and

K1 = Kd+1 = f(Kd) = f d−j(Kd−j+1) = f d(K1).

For |x − K1| ≤ u0

(

∏d
s=1 max{Ls, 1}

)−1

, we have

| f(x)− K2| ≤ max{L1, 1}|x − K1|

≤ u0

(

d
∏

s=2

max{Ls, 1}

)−1

≤ u0,

and, inductively, for each j = 0, . . . , d − 1,

| f d−j(x)− Kd−j+1| ≤
d−j
∏

s=1

max{Ls, 1}|x − K1|

≤ u0





d
∏

s=d−j+1

max{Ls, 1}





−1

≤ u0,

which, for j = 0, implies (14).

3. Proof of Lemma II.10

Let u(d) be defined as in (16). Under Assumption II.9, we have,
for x ∈ [Ki − u(d), Ki + u(d)],

| f(x)− Ki+1| ≤ |Ai(x − Ki)| + |φi(x)|

≤ [|Ai| + ψi(u)]|x − Ki|,

so (12) holds for Li := |Ai| + ψi(u). Acting as in the proof of
Lemma II.8, we obtain that, for j = 1, . . . , d,

| f j(x)− Kj+1| ≤
j
∏

i=1

[|Ai| + ψi(u)] |x − K1|

≤
u

∏d
i=j+1 max{|Ai| + ψi(u), 1}

≤ u,

where notationally,
∏j

i · = 1 for any i > j. Now apply (15) recur-
sively, for |x − K1| < u(d),

f d(x)− K1

= Ad

(

Ad−1(f
d−2(x)− Kd−1)+ φd−1(f

d−2(x))

)

+ φd(f
d−1(x))

...

=

(

d
∏

i=1

Ai

)

(x − K1)+
d−1
∑

j=1





d
∏

i=j+1

Ai



φj(f
j−1(x))

+ φd(f
d−1(x)),

where f 0(x) := x. Define

φ̄(x) :=
d
∑

j=1





d
∏

s=j+1

As



φj(f
j−1(x)).

Acting as above we get, for j = 1, . . . , d,

|φj(f
j−1(x))|

≤ ψj(| f j−1(x)− Kj|)| f j−1(x)− Kj|

≤ ψj(| f j−1(x)− Kj|)
[

|Aj−1| + ψj−1(u)
]

×
∣

∣f j−2(x)− Kj−1

∣

∣

≤ ψj(| f j−1(x)− Kj|)
j−1
∏

i=1

[|Ai| + ψi(u)] |x − K1|.

So, we can set

ψ̄(x) := b

d
∑

j=1

( d
∏

s=j+1

As

)

ψj(| f j−1(x)− Kj|)

×
j−1
∏

i=1

(|Ai| + ψi(u)) ,

which completes the proof of (17).

4. Proof of Lemma II.13

An application of Theorem II.4 implies the existence of s0 and
�γ ⊂ � with P(�γ ) ≥ 1 − γ such that, for sufficiently small δ > 0,
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s ≥ s0, ω ∈ �γ

|xsmd(ω)− K1| < u0L
−m(d)|1 − α + l|−m+1.

We need to show that, for each s ≥ s0, j = qd + j̄, j̄ = 1, . . . ,
d − 2, and q ≤ m − 1, we have |xsmd+j(ω)− Kj̄+1| ≤ u0 when
ω ∈ �γ , which allows us to apply (12) on each step.

Indeed, |xsmd+1 − K2| = | f(xsmd)− f(K1)| ≤ L1|xsmd − K1| ≤ u0.
Reasoning inductively, we have for each j = 1, . . . , d − 1 and
ω ∈ �γ ,

|xsmd+j(ω)− Kj+1| = | f(xsmd+j−1(ω))− f(Kj)|

≤
j
∏

i=1

Li|xsmd(ω)− K1| ≤ u0,

|xsmd+d(ω)− Kd+1|

≤ |1 − α + l|L(d)|xsmd(ω)− K1| ≤ u0,

and for q = d + 1, . . . , 2d − 1 and again ω ∈ �γ ,

|xsmd+q(ω)− Kq−d+1|

≤ Lq−d|xsmd+q−1(ω)− Kq−d|

≤ · · · ≤
q−d
∏

θ=1

Lθ |xsmd+q−d(ω)− K1|

≤ L(d)|1 − α + l|
q−d
∏

θ=1

Lθ |xsmd(ω)− K1| ≤ u0.

Similarly, for j = qd + j̄, j̄ = 1, . . . , d − 2, q ≤ m − 1, and for
ω ∈ �γ ,

|xsmd+j(ω)− Kj̄+1|

≤ Lj̄|xsmd+j−1(ω)− Kj̄|

≤ · · · ≤ |1 − α + l|q
j̄
∏

θ=1

LθL
q(d)|xsmd(ω)− K1|

≤ |1 − α + l|qLq+1(d)|xsmd(ω)− K1|

≤ |1 − α + l|m−1Lm(d)|xsmd − K1| ≤ u0.

5. Proof of Theorem II.15

Consider (19) with arbitrary x0 and assume that (23) holds.
Then, for any γ ∈ (0, 1), there exists �γ ⊂ � with P(�γ ) > 1 − γ

and N ∈ N such that for λ̄ = 1
2
(λ− k ln L̄), we have on �γ , for

n = tk + j, j = 1, 2, . . . , k − 1, and t = bn/kc > N, where bqc is an
integer part of q ∈ [0, ∞),

(

Lk|1 − α − lξn|
)t ≤ e−λ̄t,

|xn − K| ≤ Ltk+j|1 − α − lξn|t|x0 − K|

≤ e−λ̄tLk|x0 − K|,

which tends to zero as n → ∞ (so that k → ∞). Here, note that
condition (23) holds with L substituted by the global constant L̄,
which implies that λ− k ln L̄ > 0, and then λ̄ > 0.

Analogously, consider (26) with arbitrary x0, and assume
that (29) holds. Then, condition (29) is satisfied with L(d) sub-
stituted by the global constant L̄(d), which implies that λ− m ln
L̄(d) > 0. Applying Lemma II.13, we get, for λ̄ = (λ− m ln L(d))/2,
n = tmd + j, t = bu/(md)c > N, j = qd + j̄, j̄ = 0, 1, . . . , d − 1,
q = 0, 1, . . . , m − 1,

(

Lm(d)|1 − α − lξn|
)t ≤ e−λ̄t,

|xn − Kj̄+1| = |xtmd+j − Kj̄+1|

≤ |1 − α + l|m−1Lm(d)|xtmd − K1|

≤ e−λ̄t|1 − α + l|m−1Lm(d)|x0 − K| → 0, as m → ∞,

and, therefore, n → ∞.
If MLk < 1 (respectively, ML(d) < 1), each of limits above

holds for all ω ∈ �.

6. Proof of Theorem II.18

Let G(z,α, l, v) be defined as in (31) and denote, for simplicity,
G := G(z,α, l, v). Let z ∈ [−u0, 0] and G > 0, then

|G| = (1 − α − lv)g(z)+ (α + lv)z < (1 − α − lv)g(z)

= (1 − α − lv)g(z) ≤ (1 − α − lv)L|z|.

If G ≤ 0, we have

|G| = −(1 − α − lv)g(z)− (α + lv)z < (α + lv)|z|.

Now, let z ∈ [0, u0] and G > 0, then

|G| = (1 − α − lv)g(z)+ (α + lv)z < (α + lv)|z|.

If G ≤ 0,

|G| = −(1 − α − lv)g(z)− (α + lv)z

< (1 − α − lv)|g(z)| ≤ (1 − α − lv)L|z|.

So, (8) holds for L(α, l, v, u) = max|v|≤1{(1 − α − lv)L, α + lv}, and
(9) is satisfied for M = max{(1 − α + l)L, α + l}. Condition (10)
then takes the form

min
{

−E ln |1 + α|, −E ln |1 − α − lξ |L
}

≥ (k − 1) ln L.

A direct application of Theorem II.4 proves Part (ii).
The condition MLk−1 < 1 takes the form max{(1 − α

+ l)L, α + l}Lk−1 < 1. In the case where k = 1 and all L > 1, this
implies the conditions listed in (33) in Part (i). In the case where
k > 1 and for all L satisfying 1 < Lk < L + 1, this implies the con-
ditions in (34) in Part (i). Another application of Theorem II.4
concludes the proof.
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