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Investigation of the analysis of wearable data for 

cancer-specific mortality prediction in older adults 

Salvatore Tedesco *, Martina Andrulli, Markus Åkerlund Larsson, Daniel Kelly, Suzanne Timmons, Antti Alamäki, John Barton, Joan 

Condell, Brendan O’Flynn, Anna Nordström 

Abstract—Cancer is an aggressive disease which imparts a 

tremendous socio-economic burden on the international 

community. Early detection is an important aspect in improving 

survival rates for cancer sufferers; however, very few studies 

have investigated the possibility of predicting which people have 

the highest risk to develop this disease, even years before the 

traditional symptoms first occur. In this paper, a dataset from a 

longitudinal study which was collected among 2291 70-year olds 

in Sweden has been analyzed to investigate the possibility for 

predicting 2-7 year cancer-specific mortality. A tailored 

ensemble model has been developed to tackle this highly 

imbalanced dataset. The performance with different feature 

subsets has been investigated to evaluate the impact that 

heterogeneous data sources may have on the overall model. 

While a full-features model shows an Area Under the ROC 

Curve (AUC-ROC) of 0.882, a feature subset which only 

includes demographics, self-report health and lifestyle data, and 

wearable dataset collected in free-living environments presents 

similar performance (AUC-ROC: 0.857). This analysis confirms 

the importance of wearable technology for providing unbiased 

health markers and suggests its possible use in the accurate 

prediction of 2-7 year cancer-related mortality in older adults.  

Keywords—Cancer, Electronic Health Records, Mortality, 

Older Adults, Prediction, Wearables 

I. INTRODUCTION 

According to the WHO, cancer is associated with a large 
group of diseases that can start in almost any organ or tissue 
of the body and which occurs when abnormal cells grow 
uncontrollably [1]. It was estimated that 18.1 million new 
cancer cases and 9.6 million cancer deaths occurred in 2018 
worldwide [2]. This number is expected to rise due to 
population ageing [3] worldwide. On average, currently there 
is a 20% risk of getting a cancer before age 75, and a 10% 
chance of dying from it [2]. The physical, emotional and 
financial strain exerted on individuals, families, communities, 
and health systems by cancer continues to grow globally [1], 
and large numbers of patients globally do not have access to a 
timely quality diagnosis and early treatment as a result. Early 
detection is one of the key factors in improving the survival 
rates of many types of cancers and, thus, cancer mortality 
prediction is an essential tool for both individualized disease 
management and effective health resource allocation [3]. A 
number of clinical indices or scores have been proposed in the 

literature to predict mortality for a wide range of cancers e.g. 
the UCLA Prostate Cancer Index [4], the Skin Cancer Index 
(SCI) [5], and many more. Also, established standard indices, 
such as the Carolina Frailty Score (CFI) were linked to cancer-
related mortality in older adults [6]. Although these scores are 
well-established, and easy to use and understand; these 
models have been mostly built to predict survival and quality-
of-life following a cancer-related treatment or surgery, are 
mostly based on patient-reported outcomes (which show 
several shortcomings [7]) and cannot be tailored to the 
individual patient [8].   

Machine learning (ML) has the potential to transform 
several aspects of patient care, and its adoption has seen a 
rapid growth in health and medicine [9-12]. ML modelling has 
been generally applied to cancer-related datasets in a number 
of studies (such as [13-15]). However, despite the new heights 
in clinical cancer research reached through the use of artificial 
intelligence, those studies have only investigated aspects 
related to cancer prognosis (involving predictions of disease 
recurrence and patient survival following therapies or 
surgeries), or cancer diagnosis of solid and non-solid tumors 
[16]. The possibility to predict cancer-specific mortality in an 
older population, years before the cancer diagnosis even 
occurred, has not yet been deeply investigated.  

Moreover, while standard scores generally rely on 
laboratory measurements to predict mortality, which can 
affect a timely prediction (especially in people living in rural 
areas) [17], very little attention has been paid to date to the 
possibility of only using non-invasive parameters (including 
those obtainable from wearable devices) for cancer-specific 
mortality prediction.  
This work aims to develop a ML model able to predict cancer-
specific mortality in a general population cohort of healthy 
older adults based on features including anthropometric 
variables, physical and lab examinations,  questionnaires and 
lifestyles, as well as wearable data collected in free-living 
settings. Moreover, a targeted analysis on the impact of the  
wearable data on the overall model performance was also 
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performed. This manuscript is organized as follows. Section 
II covers a description of the dataset adopted in this work, as 
well as the data processing steps and the developed model. 
The results of the analysis are shown and discussed in Section 
III, while conclusions are illustrated in Section IV.  

II. METHODS 

A. Dataset 

The dataset used in this investigation was provided by the 
“Healthy Ageing Initiative” (HAI) study [18], conducted in 
Umeå, Sweden. HAI is an ongoing study conducted at a single 
clinic in Umeå with the aim of identifying traditional and 
potentially new risk factors for cardiovascular disorders, falls, 
and fractures among 70-year-olds. The eligibility criteria for 
inclusion in the study are residency in the Umeå municipality 
and an age of exactly 70 at the time of the study. There are no 
exclusion criteria, and population registers are used for 
recruitment. The HAI study was approved by the Regional 
Ethical Review Board in Umeå, Sweden. For this work, the 
data collected in the period from January 2013 to December 
2017 were taken into account. The data collection involved a 
3-hour health examination for each participant who were then 
asked to wear an ActiGraph GT3X+ on the hip for 1 week. 
For logistic reasons, the ActiGraph data collection was limited 
to 1 week per subject. Subjects’ conditions were 
longitudinally monitored via population registers to determine 
which subjects died in the time between the data collection 
and the end of study date (31st December  2019).  

The overall dataset consisted of 156 parameters for 2291 
recruited participants. Only 92 subjects (approx. 4%) died in 
the 2-7 years follow-up period, and of these, 50 died from 
cancer-related conditions (Table I) and have been included in 
this analysis. Only the records of the 42 subjects who died 
because of non-cancer related conditions were excluded from 
the dataset. All the considered predictive variables have been 
divided into five main subsets as below: 

1) Demographics/Anthropometry: gender, height, weight, hip 

and waist circumference, Body Mass Index (BMI). 

2) Self-report health/lifestyle: medications, past or current 

medical conditions (e.g., stroke), mental health, tobacco and 

alcohol consumption, physical activity (via IPAQ). 

3) Wearable data: All metrics related to the accelerometer data 

collected via the ActiGraph over one week (e.g., steps taken, 

time in light, sedentary, moderate, vigorous activities, energy 

expenditure, etc.). For the data to be acceptable the minimum 

wear time per day was 600 min, for at least 4 days. Wearable 

data from subjects that did not have sufficient wear time were 

considered as missing data. 

4) Laboratory tests: such as systolic-diastolic blood pressure, 

plasma glucose, heart rate, gait analysis data (i.e., step length, 

etc.), balance test (sway with full and no vision), hand grip 

strength non-dominant hand, Timed Up and Go (TUG), etc.  

5) Others: All information related to body composition (e.g., 

bone mass, fat, and lean mass for each body segment, obtained 

via DXA), cholesterol, and feature engineered variables, i.e., 

Frailty Index [19] and Mortality Index [20]. 
 

It was decided to separate the laboratory data collected 
into two categories (‘Laboratory tests’ and ‘Others’) to 
separately examine variables that could be potentially 

obtained via wearable technology (i.e., gait analysis [21-22]) 
and variables not obtainable via wearables (i.e., DXA). Once 
these five categories above were identified, different subset 
combinations were evaluated and their results compared. The 
considered combinations were: 

 Case 0: All features; 

 Case 1: Demographics/Anthropometrics and self-report 

health and lifestyle data; 

 Case 2: Demographic/Anthropometrics, Self-report health 

and lifestyle data, and Wearables data; 

 Case 3: Demographics/Anthropometrics, Self-report 

health and lifestyle data, Wearables, and Lab tests data; 

 Case 4: Demographic/Anthropometrics, Self-report health 

and lifestyle data, Wearables data, and Others. 

B. Ensemble Model 

Ensembles have shown promising results when dealing 
with imbalanced problems and have been often applied on 
medical data. In this work, the dataset was split into four 
partitions: training, validation, test and hold-out sets. The 
hold-out was obtained from the 30% of the whole available 
data, while the remaining 70% was split again into 50%-25%-
25% assigned to the training, validation, and test sets, 
respectively. The splitting was stratified in order to guarantee 
that the proportion between positive (subjects who died due to 
cancer-related conditions) and negative (subjects who did not 
die) cases was the same in every set. The different types of 
cancer were not treated differently when building the model. 
Every continuous feature was standardized by estimating the 
mean and the standard deviation of each feature and with the 
normalized variable obtained by subtracting the feature mean 
and dividing it by its standard deviation. The means and 
standard deviations were calculated for the training set and 
then used on the other sets to avoid any possible leakage. In 
case of missing entries in the dataset, imputation was carried 
out using the feature mean (estimated on the training set).  

The training data was fed to the Forward Selection 
Component Analysis (FSCA) [23] for feature selection. FSCA 
can also be successfully adopted to build interpretable and 
robust systems for anomaly detection. This is possible because 
FSCA works differently from other feature selection 
techniques, since it focuses on selecting those features that are 
able to discriminate more easily between the two different 

TABLE I 

MORTALITY CAUSES 

Cause 
Num. of 

people 

Malignant neoplasm of pancreas 11 

Malignant neoplasm of bronchus and lung 7 

Malignant neoplasm of colon 6 

Malignant neoplasm of prostate 3 

Malignant neoplasm of liver, intrahepatic bile ducts, or 
unspecified parts of biliary tract 

3 

Malignant neoplasm of brain 2 

Malignant neoplasm of bladder 2 

Malignant neoplasm of ovary 2 

Malignant neoplasm of rectum 2 

Malignant neoplasm of breast 2 

Malignant neoplasm of skin 2 

Mesothelioma 2 

Malignant neoplasm of stomach 1 

Malignant neoplasm of renal pelvis 1 

Multiple myeloma and malignant plasma cell neoplasms 1 

Malignant neoplasm without specification 3 

 



classes. Moreover, an Isolation Forest (contamination level set 
to 0.1, 50 decision trees) was applied on the training set to 
remove possible outliers. 

 

 
Fig 1. Random Balance graphical representation. Pseudocode in [24] 

 

Following the data pre-processing, the algorithm separates 
the positive (Class 1) and negative (Class 0) samples in the 
training set. The samples in the Class 0 training set were split 
into N different chunks, while N copies of Class 1 samples 
were generated and each copy of the Class 1 samples was 
assigned to a different chunk of Class 0 samples, thus 
generating N different subsets with each subset composed by 
the same Class 1 samples but different Class 0 samples.  

Then, the Random Balance algorithm [24] was applied on 
each subset in order to generate a set randomly balanced 
between Class 1 and Class 0 samples. Indeed, each subset 
differs from the others in terms of a ratio between the number 
of original and synthetically generated samples (Figure 1), 
thus increasing the diversity for the learning model. As in [24], 
SMOTE was adopted for the generation of synthetic samples. 
Once each subset was properly balanced, its data was used to 
train a different AdaBoost classifier via a stratified 5-fold 
cross-validation. As a result, in this ensemble model, N 
different AdaBoost classifiers have been used, each one 
properly trained on a different training subset. Each 
classifier’s hyper-parameters were tuned by means of the 
validation set, to prevent over-fitting. 

The performance of each of the N classifiers was 
evaluated on the test set. The accuracy reported on the test set 
by each classifier was used as a weight for that classifier at 
prediction time. After the training of the N AdaBoost 
classifiers and their individual evaluation on the test set, the 
whole model performance was evaluated on the hold-out set, 

with the predictions of each single classifier weighted based 
on the accuracy computed in the test set.  

III. RESULTS AND DISCUSSION 

The results achieved using the presented ensemble model 
are reported in this section. The scoring metric utilized to 
optimize the overall model performance is the AUC-ROC; 
however, given the highly imbalanced dataset available, other 
useful metrics (AUC-PR, Brier score, F1 score, accuracy, 
precision, and recall) are also provided for evaluation. The 
number of features selected by FSCA was changed properly, 
together with the models’ hyper-parameters, in order to 
prevent over-fitting, while the number of subsets N was set to 
10. Furthermore, the analysis has been repeated six times with 
different data split across data sets to show the repeatability of 
the model performance. The results in this section are reported 
as the mean performance for every metric considered as well 
as its 95% confidence interval (C.I.). P-values were also 
calculated for pairwise comparisons of cases based on the 
estimated difference between group means, as indicated in 
[25]. The achieved results on the hold-out set are reported in 
Table II. As expected, the highest AUC-ROC (0.882) is 
obtained in Case 0, where all features are taken into account, 
while the lowest performance (AUC-ROC: 0.533) is shown in 
Case 1, as it is the combination with the least number of 
features. The difference between the two cases is statistically 
significant (p-value <0.001). However, when also considering 
the features from the wearable data (Case 2), the model 
performance is increased up to 0.857 which is comparable to 
the original case, e.g. Case 0 (p-value: 0.207). Interestingly, 
though, when lab tests data was included in the model, AUC-
ROC significantly decreased to 0.67 (p-value <0.001 when 
compared to both Case 0 and 2), showing the detrimental 
effect of those features on the model. This can be explained 
by the fact that features selected via FSCA were not 
sufficiently representative of the characteristics able to 
differentiate between the two classes despite maximizing the 
amount of information available. If, instead of the lab tests 
data, the variables indicated in the ‘Others’ category were 
included, the performance increased to 0.875, therefore in 
between Case 0 and Case 2 (p-value: 0.362 when compared to 
Case 2, p-value: 0.437 when compared to Case 0). Moreover, 
AUC-PR was also comparable between Case 0, Case 2, and 
Case 4 (0.516-0.54); however, AUC-PR was much lower than 
AUC-ROC for every studied case (highlighting a possible 
high number of false positives) which is a behavior already 
seen in literature on similar datasets (i.e., MIMIC-III [26]).    

TABLE II 
MODEL PERFORMANCE ON HOLD-OUT SET 

Model AUC-ROC AUC-PR Brier Score F1 Score Accuracy Recall Precision 

Case 0 
0.882 (0.870 - 

0.896) 

0.540 (0.523 - 

0.550) 

0.218 (0.199 - 

0.234) 

0.169 (0.159 - 

0.186) 

0.783 (0.767 - 

0.803) 

0.987 (0.960 - 

1.000) 

0.093 (0.085 - 

0.102) 

Case1 
0.533 (0.505 - 

0.567) 

0.259 (0.192 - 

0.312) 

0.415 (0.296 - 

0.510) 

0.048 (0.043 - 

0.058) 

0.585 (0.495 - 

0.677) 

0.480 (0.326 - 

0.600) 

0.026 (0.023 - 

0.030) 

Case 2 
0.857 (0.814 - 

0.887) 

0.516 (0.476 - 

0.544) 

0.229 (0.206 - 

0.252) 

0.156 (0.147 - 

0.172) 

0.771 (0.748 - 

0.794) 

0.947 (0.893 - 

1.000) 

0.085 (0.081 - 

0.092) 

Case 3 
0.670 (0.632 - 

0.713) 

0.204 (0.129 - 

0.273) 

0.229 (0.194 - 

0.265) 

0.062 (0.038 - 

0.076) 

0.771 (0.737 - 

0.802) 

0.360 (0.206 - 

0.474) 

0.034 (0.021 - 

0.041) 

Case 4 
0.875 (0.864 - 

0.887) 

0.532 (0.519 - 

0.545) 

0.220 (0.202 - 

0.236) 

0.165 (0.156 - 

0.178) 

0.780 (0.762 - 

0.800) 

0.973 (0.946 - 

1.000) 

0.091 (0.085 - 

0.097) 

 



This model behaviour highlights a series of 
considerations. It is well-known that body composition (e.g., 
lean body muscle mass and levels of adipose tissue) are linked 
to all-cause mortality and cancer-specific mortality [27-29]. 
The results obtained in Case 0 and Case 4 confirm mortality 
predictors reported in the clinical literature, thus highlighting 
even more the possible effects of adiposity and body 
composition on cancer mortality. It is also well-known that 
obesity and low levels of physical activity are associated with 
an increased risk of mortality and that, especially in older 
adults, exercise and increased fitness promote positive 
changes in body composition, reducing the risk for adverse 
events in the aging population [30]. Again, results in Case 2 
confirmed this view and suggested that objective physical 
activity-related metrics obtainable from a wearable 
accelerometer worn by the study participants over 1 week in 
free-living environments, in conjunction with demographics 
data, may predict subsequent cancer-specific mortality in 
older adults. While wearables have been recently used in 
oncology trials to predict clinical outcomes in patients 
undergoing specific treatments [31], not many studies have 
investigated the possibility to predict cancer-related mortality 
in older people even several years before symptoms occur. In 
a recent paper (2020), Smirnova et al. [32] observed that 
objective accelerometry-derived physical activity measures 
outperformed traditional predictors of 5-year all-cause 
mortality. This paper, therefore, has confirmed the importance 
of wearable technology for providing unbiased health markers 
and has further acknowledged wearables’ use in the possible 
accurate prediction of 2-7 year cancer-related mortality in 
older adults. Further analysis are required to investigate which 
features in the considered subsets are most predictive of 
cancer-related mortality. Moreover, further analysis are 
required to benchmark the performance of the developed 
ensemble model against standard approaches in literature.  

IV. CONCLUSION 

Cancer is an aggressive disease with a tremendous socio-
economic burden on the community. In this paper, a dataset 
from a longitudinal study collected among 2291 70-year olds 
in Sweden has been analyzed to investigate the possibility for 
predicting 2-7 year cancer-specific mortality. The analysis 
suggests that a feature subset including demographics, self-
report health and lifestyle data, and wearable-related data 
minimized the AUC-ROC loss against a full-feature model 
(0.882 vs 0.857), suggesting that clinicians could  potentially 
rely exclusively on easy-to-use, easy-to-collect, and non-
invasive data sources. This analysis confirmed the importance 
and usefulness of wearable technology for providing unbiased 
health markers and proved its ability to contribute to  accurate 
prediction of future cancer-related mortality in older adults. 
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