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Spatial Auto-regressive Analysis of Correlation in
3-D PET with Application to Model-Based

Simulation of Data.
Jian Huang1,†, Tian Mou1,†, Kevin O’Regan2 and Finbarr O’Sullivan1,∗

Abstract—When a scanner is installed and begins to be used
operationally, its actual performance may deviate somewhat from
the predictions made at the design stage. Thus it is recommended
that routine quality assurance (QA) measurements be used to
provide an operational understanding of scanning properties.
While QA data are primarily used to evaluate sensitivity and
bias patterns, there is a possibility to also make use of such
data sets for a more refined understanding of the 3-D scanning
properties. Building on some recent work on analysis of the
distributional characteristics of iteratively reconstructed PET
data, we construct an auto-regression model for analysis of the
3-D spatial auto-covariance structure of iteratively reconstructed
data, after normalization. Appropriate likelihood-based statistical
techniques for estimation of the auto-regression model coefficients
are described. The fitted model leads to a simple process for ap-
proximate simulation of scanner performance—one that is readily
implemented in an R script. The analysis provides a practical
mechanism for evaluating the operational error characteristics
of iteratively reconstructed PET images. Simulation studies are
used for validation. The approach is illustrated on QA data from
an operational clinical scanner and numerical phantom data.
We also demonstrate the potential for use of these techniques,
as a form of model-based bootstrapping, to provide assessments
of measurement uncertainties in variables derived from clinical
FDG-PET scans. This is illustrated using data from a clinical
scan in a lung cancer patient, after a 3-minute acquisition has
been re-binned into three consecutive 1-minute time-frames. An
uncertainty measure for the tumor SUVmax value is obtained.
The methodology is seen to be practical and could be a useful
support for quantitative decision making based on PET data.

Index Terms—Quality Assurance, Simulation, Spatial autocor-
relation, PET, Iterative EM reconstruction, Gamma distribution,
conditional likelihood, model-based bootstrap, standard errors.

I. INTRODUCTION

IN many institutions, positron emission tomography (PET)
imaging plays a key role in the routine clinical management

of cancer patients, as well as with some important cardiac
and neurologic conditions. With the growing reliance on PET
imaging information for clinical decision making, there is an
ongoing need to have more detailed quantitative understanding
of the operational characteristics of reconstructed PET images.
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This can facilitate consistent clinical decision-making based on
the PET at a given institution and may also enable the con-
duct of multi-institution clinical trials involving PET imaging
biomarkers [22]. Going back to the 1980s [13] routine quality
assurance (QA) is a well established part of nuclear medicine
practice and in particular of PET. The standard approach to
QA with PET is to image a known source—physical phantom
scans—and use the results to assess bias and sensitivity
patterns. Sensitivity plays a key role in understanding local
variance characteristics. There is a significant literature on
methods for assessment of the statistical variation of PET data.
Most of this has focused on approximating standard errors for
regional averages of reconstructed data using a combination of
analytic and empirical formulae [1, 2, 5, 11, 12, 15, 19, 24, 27].
The potential use of bootstrap methodologies in this context
is appealing but for iterative reconstructions the computation
requirements of the approach have limited its use in an
operational settings, especially for dynamic studies.

Recently we presented a novel approach to the analysis
of bias and sensitivity in a PET scanner based on QA data
derived from a uniform source phantom [18]. Results showed
that iteratively reconstructed PET image data were well de-
scribed by Gamma statistics. Within the Gamma framework
characterization of bias and sensitivity can be efficiently
carried out in terms of a multiplicative model analysis [18].
As part of our study it was found that, through a standard
probability transform which adjusts for bias and sensitivity,
raw reconstructed PET image data can be converted into a
normalized Gaussian scale. This analysis methodology was
implemented in an R [25] script.

The goal of the present work is to extend the previous
analysis in order to obtain a practical representation of the
full covariance characteristics of iteratively reconstructed PET
data. We propose spatial autoregressive (SAR) models for rep-
resentation of the 3-D spatial correlation structure of appropri-
ately normalized data. The SAR approach involves relating the
behavior of each voxel to the behavior on its neighbors. The
first and second order neighbors are considered. Estimation
of the SAR model cannot be accomplished by straightforward
adaptation of the Yule-Walker process used for estimation of
1-D AR models [3]. Indeed such an approach can sometimes
be inconsistent. The phenomenon is illustrated in section
II-B. To resolve this estimation problem, we adapt a general
likelihood based methodology for SAR model estimation.
The implementation makes use of the fast Fourier transform
(FFT). The proposed approach leads to a consistent estimation
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process which provides a simple and practical approach for
data analysis. Combining our previous work with this new
development leads to a simplified approach to simulating
PET images with noise characteristics that are matched to
the operational scanner. Thus routine QA data can provide
a mechanism for empirically representing the uncertainties in
PET scan measurements.

The basic theory and methodology is developed in section
II. Studies with real and simulated data are described in section
III. Included in our analysis are data from a clinical PET-
FDG scan. This is used to demonstrate the potential of the
methodology to create practical assessments of uncertainty, via
model-based bootstrapping [7]. Section IV presents the results
for both EM reconstructed data and simulated data. The paper
concludes with discussion.

II. METHODOLOGICAL DEVELOPMENT

The data structure arising from a physical phantom study
is a set of reconstructed PET measurements {z(n) =
z(n1, n2, n3), n = (n1, n2, n3) ∈ N0} corresponding to
a collection of N voxels consisting of I1 × I2 phantom-
voxels recorded on each of I3 transverse slices in the field
of view of the scanner. These data correspond to a particular
acquisition time-frame during which the phantom is measured
in the scanner field of view. In a dynamic PET study there
will be multiple time-frames, but, as data from distinct time-
frames can be considered to arise as a processed version of
a thinned 4-D Poisson process, these can be considered as
independent of each other. Our focus is on PET data that has
been iteratively reconstructed using some variation on the EM
algorithm [26].

A. Spatial Autoregressive Model

In previous work, we demonstrated that iteratively recon-
structed PET data could be represented using the Gamma
distribution [18]. So

z(n) = z(n1, n2, n3) ∼ Γ
(
τµ(n)/φ(n), φ(n)/τ

)
where (n1, n2) are transverse plane co-ordinates and n3
indexes the slice. µ(n) is the activity of the target source
activity per unit mass (scaled by dose), φ(n) models scanner
and object-specific factors (most notably attenuation) that
contribute to extra-Poisson variation, τ is proportional to the
injected dose per unit mass of the object. The Gamma model
allows us to normalize PET data to a Gaussian scale via the
probability transform [18]:

u(n) = Φ−1
(
F (z(n)|τ, µ̂(n), φ̂(n))

)
(1)

where F
(
· |τ, µ̂(n), φ̂(n)

)
is the Gamma cumulative distri-

bution function with mean µ̂(n) and variance µ̂(n)φ̂(n)/τ .
Both µ̂(n) and φ̂(n) can be estimated from phantom data
measurements [18]. Φ is the standard normal cumulative
distribution function.

Here we propose to analyze the 3-D covariance of the
normalized data using spatial autoregressive (SAR) models.

A SAR model specifies a linear relation between a collection
of appropriately defined neighbors

u(n) =
∑
k

θku(n− k) + ε(n) (2)

where u(n) = u(n1, n2, n3) and the summation is made over
a set of negative and positive indices, k = (k1, k2, k3), such
that voxels (n− k) belong to an appropriate neighborhood of
the voxel n—this will be detailed below. ε(n) is a Gaussian
white noise process with variance σ2. θk is the coefficient of
the corresponding neighbor (n − k). By introducing a linear
difference operator Pθ = I −

∑
k θkB

k the model can be
expressed as

Pθu(n) = ε(n) (3)

where u(n) and ε(n) represent the data and the innovation
white noise process evaluated at the n’th voxel and Bku(n) =
u(n − k) = u(n1 − k1, n2 − k2, n3 − k3). In practice only a
small number of θk coefficients are non-zero. A first order
model will only involve terms where all components of k
are zero, except one being 1 in absolute value; an s’th order
model only has non-zero terms for k = (k1, k2, k3)’s in which
|k1| + |k2| + |k3| ≤ s. Models of order 2 seem adequate
according to the empirical analysis of phantom data and sim-
ulated data in IV. SAR models are generalizations of simple
auto-regressive (AR) models used in classical time series
analysis [3, 4]. See Yao and Brockwell [29] for discussion of
spatial generalizations of classical ARMA time series models.
SARs have been proposed for analysis of spatial processes
[9, 16, 21, 28], but to our knowledge, they have not been
applied to nuclear medicine imaging data. The SAR models
used in spatial statistics are sometimes specified so that the
θ-coefficients are known up to some scale factor determined
from available data [8]. In our case we are interested in SAR
models in which the full set of non-zero θ-coefficients must
be estimated from the available data.

B. Estimation of SAR Model Coefficients

While the method of least squares is a standard (and
asymptotically optimal) approach for estimation of familiar
AR model coefficients [3, 4], it runs into problems for more
general auto-regressions. This was highlighted by Whittle [28].
To illustrate this, consider a SAR model in time

yt = θ1(yt−1 + yt+1) + θ2(yt−2 + yt+2) + εt

for t = 0,±1,±2, ..., T and εt white noise, where yt±1, yt±2
are the 1- and 2-order neighbors of yt. The least squares
estimates of θ = (θ1, θ2) minimize

RSS(θ|y(t), t ∈ N/N0) =
∑
t∈N0

[Pθy(t)]2

where Pθ = I − θ1(B + B−1) − θ2(B2 + B−2) with B is
the backshift and N0 = {0,±1,±2, ..., T} is the set of data
indices and N/N0 = {−T − 2,−T − 1, T + 1, T + 2} are
the indices of unobserved y-values which are needed in order
to reconstruct the innovations ε(t) at the sampled points. For
large T , the impact of unobserved data is negligible. Least
squares coefficients satisfy the normal equations. Derived
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from the Yule-Walker equations for an AR(2) process γl =∑2
k=1 θkγl−k, where γl is the auto-covariance function of yt,

the AR parameters are determined by the first p+ 1 elements
ρ(l) of the auto-correlation function ρl =

∑2
k=1 θkρl−k. In

the present situation for large T , these coefficients (denoted
as θ̃) for k = −2,−1, 1, 2 are identified by[

1 + ρ2 ρ1 + ρ3
ρ1 + ρ3 1 + ρ4

] [
θ̃1
θ̃2

]
=

[
ρ1
ρ2

]
(4)

where ρl is the auto-correlation at lag l for l = 1, 2, 3, 4.
It is not hard to find a situation where the estimates are
inconsistent. For example, if θ = (0.30, 0.02) then θ̃ =
(−0.54,−0.15). In light of this, least-squares auto-regression
may not be relied on for estimation of SAR models parameters.

Likelihood-based approaches to the estimation of SAR and
ARMA models are well established and have the familiar
behavior of regular maximum likelihood procedures [16, 29].
In the case of an SAR it is well known, see e.g. Mohalp [16],
that the appropriate (conditional) likelihood-based objective
function can be expressed as

`(θ|u(n), n ∈ N/N0) =
∑
n∈N0

[Pθu(n)]2

σ2
+N log(σ2) (5)

+
N

(2π)3

∫
[−π,π]3

log(Pθ(λ)−2)dλ

where N is the number of voxels in N0, λ = (λ1, λ2, λ3) and
σ2

(2π)3 |Pθ(λ)|−2 is the 3-d spectral density of the SAR process.
Pθ(λ) =

∑
k θke

iλ·k, with λ · k = λ1k1 + λ2k2 + λ3k3, is
the 3-D discrete Fourier transform of the SAR coefficients.
Differentiating equation (5) with respect to θ and setting the
derivative to zero we obtain a pseudo-linear (score) equation
for the unknown components of θ

1

N

∑
n∈N0

[Pθu(n)]u(n− l) =

∫
fθ(λ)Pθ(λ)e−iλ·ldλ (6)

where l = (l1, l2, l3) ∈ LP indexes the relevant components
of non-zero θ’s, fθ(λ) = σ2

(2π)3 |Pθ(λ)|−2 is the spectral
density. Using Parseval’s relation, the above equation can
be expressed as a requirement that the maximum likelihood
estimators ensure that select sample auto-covariances, at lags
corresponding to the non-zero θ, match the model-predicted
covariances∑

l′∈LP

ĉN (l′ − l)θl′ =
∑
l′∈LP

c(l′ − l|θ)θl′ (7)

for l ∈ LP . Here ĉN (l− l′) = 1
N

∑
n∈N0

u(n− l)u(n− l′) is a
sample estimate of the auto-covariance and the inverse Fourier
transform of the spectral density fθ(λ) gives the 3-D model
auto-covariance, c(l − l′|θ) =

∫
e−iλ·(l−l

′)fθ(λ)dλ. Equation
(7) might be compared to the score equation that would arise
in the minimization of the non-linear least-squares objective
function

WRSS(θ) =
K∑
m=1

wm
(
ĉN (m)− c(m|θ)

)2
(8)

where K=max{|l′ − l|; l ∈ LP and l′ ∈ LP}, wm is the
number of l′ − l such that |l′ − l| = m and l ∈ LP and
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Fig. 1. Diagram of first (red) and second (blue) order neighbors for a selected
voxel (black) with a set of coefficients for each neighbor.

l′ ∈ LP . Estimation of θ can be expected to produce estimates
of the auto-covariance that are in close agreement with sample
auto-covariance values.

C. Neighborhood Structure

Model (2) is based on specification of the neighborhood
structure of each voxel. Image data has a regular structure
and there are several intuitive strategies for defining the
neighborhood structure of a voxel [6]. We define the s’th order
neighborhood of (i, j, k) as

Ns = {(i′, j′, k′); 0 < |i− i′|+ |j − j′|+ |k − k′| ≤ s};
for s = 1, 2, ...

The first (s = 1) and second (s = 2) neighborhood structures
are sketched in Fig. 1. The first order neighborhood is also
known as the 3-D Rook neighborhood [30].

D. ACF Computation

This section describes a fast and simple computation of
ACF. The hyper-rectangular volume of the normalized data—
u(n) can be processed using the 3-D FFT to obtain the
periodogram, fN (λ). The inverse FFT of the periodogram
provides a set of sample auto-covariances cN (m). For a
specified θ we sample 1

(2π)3 |Pθ(λ)|−2 at the same discrete
Fourier frequencies as the periodogram and apply the inverse
FFT, followed by normalization to ensure c(0|θ) = cN (0), this
provides the model auto-covariances, c(m|θ). These are used
to evaluate (8). Note the auto-correlations of the data and the
model are obtained as

ρN (m) = cN (m)/cN (0) and ρ(m|θ) = c(m|θ)/c(0|θ).

E. Simulation of PET Data

The Cramer representation theorem, see e.g. Mohalp [16],
provides a mechanism to simulate normalized PET data and by
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inverting the Gamma model probability transform in equation
(1), these data can be converted into simulated PET image
values for z(n). The process is as follows: First generate ε(n)
as an iid N(0, σ2) process; transform ε(n) using the FFT and
scale by the Pθ(λ). Next apply the inverse FFT to generate
the normalized data u(n). These steps are summarized by the
formula.

u(n) = F−1[
F [ε](λ)

Pθ(λ)
][n]

where F represents the FFT. Finally simulated PET values are
obtained as

z(n) = F−1
(
Φ(u(n))|τ, µ(n), φ(n)

)
The analysis method and simulation step is summarized

graphically in Fig. 2.

Phantom Data Acquisition
(Iterative Reconstruction)

ROI Extraction {z(n), n ∈ N0}

Gamma Model
Analysis

z(n) ∼ Γ(τ µ(n)φ(n) ,
φ(n)
τ )

Iteratively Re-weighted
Least Squares Estimation

Normalized
Data u(n) = Φ−1(F (z(n)|τ, µ̂(n), φ̂(n))

Spatial
Covariance

Analysis (SAR)

Pθu(n) = ε(n)
Approximate Likelihood

Simulation
ε(n)

iid∼ N(0, σ2)

u(n) = F−1[F [ε](λ)
Pθ̂(λ)

][n]

z̃(n) = F−1
(
Φ(u(n))|τ, µ̂(n), φ̂(n)

)

z(n)

µ̂(n), φ̂(n)

u(n)

θ̂, σ̂2

Fig. 2. Graphical representation of the PET analysis and simulation process.

III. EXPERIMENTAL METHODS

A. Normalized Physical Phantom Data Analysis

Routine quality assurance monitoring of the performance of
installed scanners involves a range of phantom tests matched
to operational clinical practice. We consider the data of this
type collected at a PET imaging facility at a local hospital—
the Cork University Hospital (CUH). The scanner is a GE
Discovery VCT PET/CT and used clinically for imaging
of cancer patients. The reconstruction process used is an
OSEM technique with 3 iterations and 28 subsets. This is

Fig. 3. Top: The transverse and sagittal image of 3-D dynamic PET study on a
cylindrical phantom using iterative (3D-IR) reconstructed methods (24th time
frame of slice 23). The ROI data within white outline are used in analysis. On
the right is the histogram of the data generated from ROIs. Bottom: Images
and histogram of the probability transformed/normalized data generated by
the previous study.

approximately equivalent to 120 iterations of a standard EM
algorithm [17]. In our study, the scanning procedure was in
line with a standard dynamic PET-FDG brain imaging protocol
developed by the American College of Radiology Imaging
Network (ACRIN) [22]. The cylindrical phantom is 189 mm
in length and 195 mm in diameter, filled with a mixed solution
of F-18 radiotracer and water and placed centrally in the
field of view (FOV). Routine clinical image reconstruction is
performed with the iterative OSEM reconstruction technique
(3D-IR). A dynamic sequence of 45 time-frames is acquired
for 55 minutes. For each time-frame, the reconstructed image
has 128×128 pixels in 47 slices, with pixel size of 5.46875×
5.46875 mm2 and slice thickness of 3.27 mm. Region of
interest (ROI) data for the interior cross-sectional circular
volume of the phantom, acquired for each axial slice (except
two extreme slices), k, and for each time-frame, t, are available
for analysis. The data for the set of all K slices and T time-
frames structured as {zikt, i = 1, 2, ..., N, k = 1, 2, ...,K, t =
1, 2, ..., T}. In general, PET images from different time-frames
are independent, here we just focus on the data from a single
time-frame—the t = 24 frame.

Based our previous work [18], measurements have been
normalized based on the multiplicative Gamma model. The
normalized data are well described by the Gaussian distribu-
tion (c.f. Fig. 3). Based on the analysis of 3-D autocorrelation
of the phantom data (Fig. 4), there is little rotational variation
in row and column directions within each slice. Hence we
consider all voxels within the ROI where both 1- and 2-order
neighbors are available. Reasonably assuming that the data
on each direction (row, column and axial) are symmetric,
we denote the regression coefficients as shown in Fig. 1.
We apply the methodology developed in the previous section
to fit to SAR models to the normalized data. The order of
neighborhood, s, is selected based on the significance of
regression coefficients and diagnostic analysis of residuals—
primarily the residual auto-correlation characteristic [3].
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Fig. 4. The 1-D horizontal, vertical and axial profiles through the center of
the 3-D ACF image of the ROI data shown in the top of Fig. 3.

B. SAR Model Simulation

To illustrate the performance of the proposed method in
estimating SAR model coefficients, we simulate 3-D data
according to the following model

u(n) =
∑
k

θku(n− k) + ε(n),

for n ∈ N0 and θk matched to typical values estimated from
the CUH phantom. Mean squared errors (MSE) for the θ
parameter estimation, defined as 1

Nθ

∑
k(θk − θ̂k)2 where Nθ

is the number of the θ parameters, are evaluated as function
of ROI size for the noise level matched to the one in the CUH
Phantom data.

C. Numerical Phantom Simulation

The uniform elliptical phantom as well as two versions, a
symmetric and non-symmetric form, of the 2-D VSK phantom
[26] were used. A sinogram source g was evaluated using a
simple analytic Radon projection. Sinograms generated from
the VSK and uniform phantom were attenuated using the
same attenuation matrix that assumed uniform density in
the phantom region. Poisson data in the sinogram domain
were simulated in R [25] using the function rpois. Data
were reconstructed using the Expectation-Maximization (EM)
algorithm. The EM algorithm, initialized with the true uniform
image, is iterated 200 times. For each count rate, 200 replicate
runs were conducted to produce 200 replicate images. At each
pixel, 200 replicate values were used to estimate Gamma
model parameters and probability transformation [18] was
performed on each replicate image. Methods developed in
Section II were then used to analyze the 2-D autocorrelation
of these normalized image data. To investigate effects of the
noise level and smoothing on performance of the proposed
ACF method, count rates of 105 and 106 were used in
simulation of sinograms. Post-reconstruction smoothing with
Full Width Half Maximum (FWHM) of 2, 4, 8 pixels was
performed. Using 200 replicates, we can calculate the pixel-
wise correlation coefficients of reconstructed image data and
compare them to ACFs calculated by the proposed method.

D. Model-Based Bootstrapping of a Lung Tumor SUVmax

We consider data selected from clinical PET-FDG scans of a
lung tumor patient acquired over a 15-minute time-period, 60
minutes after tracer injection. The full acquisition consisted of

5 bed-positions, each image for a period of 3 minutes. The 3-
minute scan data from the bed-position corresponding to the
primary tumor, located in the hilar region of the left lung,
was re-binned into three consecutive 1-minute frames and
iteratively reconstructed using the standard process—e.g. the
same as that used in the physical phantom studies conducted
on the same scanner (above). Given the metabolism of FDG, it
is reasonable to expect that there will be little or no voxel-level
temporal variation in the FDG profile in 3 consecutive minutes
60+ minutes after injection. Thus, we may approximately
regard the measurements as rough replicates and proceed to
evaluate the voxel-by-voxel mean µx and variance σ2

x and,
based on these, recover corresponding voxel-level Gamma
model parameters—µ and φ. Given the Gamma model param-
eters, we use the probability transform and analyze the 3-D
auto-covariance with the SAR modelling approach. We then
apply the scheme in section II-E, see schematic in Fig. 2, to
simulate PET scan data and use those simulations to recover
assessments of uncertainty in SUV values. The process is an
example of a model-based bootstrapping procedure [7] for
assessment of uncertainties (standard errors) in measurements.
It is of interest here because direct bootstrapping of raw
list-mode data [10] is not practically feasible, for routine
application. We apply the approach to develop an approximate
standard error for the tumor SUVmax.

IV. RESULTS

We begin by presenting results of analysis of physical
phantom data, this is followed by numerical simulation stud-
ies including SAR model simulation and VSK and uniform
phantom simulation. Finally, we present results of analysis of
patient data.

A. Physical Phantom Data

Fig. 3 shows uniform cylindrical phantom data OSEM
reconstructed at a PET imaging facility at a local hospital
before (the top) and after (the bottom) normalizing based on
the Gamma distribution [18]. Histogram at the bottom right
indicates that the normalized data can be modelled using the
Gaussian distribution. Fig. 4 shows 1-D horizontal, vertical and
axial profiles through the center of the 3-D ACF image of the
ROI data shown in the top of Fig. 3. We fit a SAR model with
the second order neighborhood to the normalized data. The 3-
D auto-correlation function (ACF) of the fitted SAR model is
plotted as three 1-D profiles in Fig. 5, in comparison with 3-D
ACF of the normalized physical phantom data, was calculated
as the inverse Fourier transform of the data periodogram as
described in II-D. Also shown in Fig. 5 is the 3-D ACF of the
fitted SAR model residuals. The 3-D ACF of the normalized
data is well described by the model. The model residuals
shows no significant autocorrelation present in transaxial di-
rections, but some significant autocorrelation present in axial
direction. However, the amplitude of autocorrelation is greatly
reduced (in comparison to the normalized data). This may in-
dicate that there is non-stationary axial autocorrelation present
in the data. The estimated model coefficients are presented in
Table I, where ai, bi, ci are representing the coefficients along



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2938411, IEEE
Transactions on Medical Imaging

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Horizontal

x-lag
3-

D
 A

C
F

Physical
Model

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vertical

y-lag

3-
D

 A
C

F

Physical
Model

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Axial

z-lag

3-
D

 A
C

F

Physical
Model

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Horizontal

x-lag

3-
D

 A
C

F

Residuals

0 2 4 6 8 10 12
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Vertical

y-lag

3-
D

 A
C

F

Residuals

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Axial

z-lag

3-
D

 A
C

F

Residuals

Fig. 5. Top: The transverse image of the normalized physical phantom
data and one dimensional profiles of 3-D ACF of the normalized physical
phantom data and the fitted SAR model. Bottom: The transverse image and
one dimensional profiles of 3-D ACF of the fitted SAR model residuals.

TABLE I
NON-LINEAR REGRESSION COEFFICIENTS

â1 0.151± 0.005∗ â2 −0.015± 0.002∗

b̂1 0.149± 0.005∗ b̂2 −0.014± 0.002∗

ĉ1 0.275± 0.006∗ ĉ2 −0.040± 0.003∗

d̂1 −0.018± 0.003∗ d̂2 −0.037± 0.003∗

∗ denotes significant.

vertical, horizontal and axial directions respectively, and di is
for diagonal direction as shown in Fig. 1.

B. SAR Model Simulation

Using the θ parameters estimated from and the same data
size as the CUH ROI data for one time frame (sample size
N0 = 30 × 30 × 45), Fig. 6 shows that the ACF structure in
the CUH ROI data can be well captured and simulated by the
simulation model. The R-squared values of the estimated ACFs
based on the CUH ROI data and simulated data are 99.86%,
99.51% and 99.56% in the horizontal, vertical and axial di-
rection, respectively. At lag 1 the relative differences between
these ACFs are 2.38%, 7.41% and 4.33%, respectively.

To demonstrate estimation accuracy of the proposed
method, data with varying size were generated. The considered
data sizes are created by scaling each dimension of the CUH
ROI using the same scale factor τ , that is τN0 for τ =
0.5, 1, 2, 4, . . . , 64. Then the proposed method was applied to
the simulated data. This process is repeated 20 times for each
data size. Note that the data size in this experiment is referred
to the number of pixels used in simulation. Using different
data sizes is aimed to investigate convergence of estimators as
sample size increases. Fig. 7 shows the log mean square error
(MSE) of the θ estimation, defined as

∑
k(θk−θ̂k)

2

number of θ′s , as function
of the log sample size τN0. This figure seems to indicate that
log MSE decreases linearly in the log sample size, especially
after ignoring the first box. The slope-coefficient is estimated
as (-1.04 ± 0.06), consistent with asymptotic theory[16].

C. Numerical Phantom Simulation

Row 1 of Fig. 8 shows the three phantom images used in
the simulation study. Corresponding sample reconstructions

Physical Physical Physical

Fig. 6. Comparison of the 3-D ACF of the physical phantom data and the
SAR model simulated data in each direction.
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Fig. 7. Log mean squared errors (MSE) of the estimated model parameters
based on simulation study with different sample sizes (20 repetitions for each
size). N0 corresponds to the size of the phantom ROI in the CUH data.

are shown in Row 2. Row 3 shows the mean images of 200
replicate reconstructions. φ’s computed pixel-wisely by fitting
the Gamma distribution to 200 replicate values are shown in
Row 4. We applied normalization (1) to each reconstruction
using the corresponding φ’s and µ’s (means). Samples of nor-
malized reconstruction are shown in Row 1 of Fig. 9. The 1-D
horizontal (short-axis of ellipse) and vertical (long-axis of el-
lipse) profiles through the center of ACF image of normalized
reconstruction data are shown in Row 2 & 3. Comparing the
ACFs results in Fig. 5 for the cylindrical phantom to the pro-
files in Fig. 9, we see that while horizontal and vertical profiles
are very similar in the cylindrical case, there is evidence of
greater persistence in the ACF in the vertical/long-axis profile
versus the horizontal/short-axis profiles in the elliptical case.
This is consistent with the work of Razifar et. al. [20] who
demonstrated a similar effect. Normalized VSK, MVSK and
uniform phantom reconstructions exhibit very similar auto-
correlation structures, and these auto-correlation structures can
be well described by the SAR model. There is no auto-
correlation left in the residual image (as shown in Row 2-3 of
Fig. 9, residual derviations between the data and SAR model
ACFs are all close to zero). To make more reliable comparison
between uniform and non-uniform sources, we fitted the SAR
model to 100 normalized reconstructions of each phantom.
Estimates of the SAR model coefficients are presented in Table
II. As shown in the table there is no significant difference
in auto-correlation of normalized reconstructions of different
phantoms. This suggests that the autocorrelation pattern may
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Fig. 8. Row 1: The VSK, MVSK and uniform elliptical phantom (from left
to right). Row 2: EM reconstructions of the three phantoms; Row 3: The
mean images of 200 replicate reconstructions; Row 4: The estimated φ(n)
of the Gamma model from the 200 replicates. The green colored pixel is an
arbitrarily placed reference pixel, which is used to caculate pairwise pixel
correlations shown in Fig. 10.
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Fig. 9. Row 1: Normalized reconstruction of the VSK, MVSK and uniform
phantoms (from left to right). Row 2 and 3: 1-D horizontal and vertical
profiles through the center of the ACF image of normalized reconstruction—
data (triangle), the SAR model (red dot) and the residual deviation between
data and model(*).
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Fig. 10. Horizontal and vertical profiles of 2-D ACF of Uniform and VSK
phantom reconstructions based on a count rate N = 105 with (black triangle)
and without probability transformation (black plus), overlaid with correlations
of the pixel at the center for 10 lags in different directions (red cross) and the
ones of arbitrary pixel closed to edge of the phantom (green star). The pixel
is shown on the first row of Fig. 8 as a green dot. From left to right, FWHM
of 2, 4 and 8 pixels are used for post-reconstruction smoothing. Calculation
is based on 200 replicates for each setting.

be mostly determined by the attenuation structure and perhaps
less influenced by the source configuration within the volume
where the source is concentrated.

To further validate the ability of the methodology to cap-
ture correlation in images with uniform and non-uniform
source distributions, Fig. 10 presents the average ACFs of
200 normalized VSK and Uniform reconstructions across a
range of count rates (N ) and post-reconstruction Gaussian
smoothing. Average estimates of SAR model ACF show good
agreement with the data. Directly evaluated pairwise pixel-
wise correlations evaluated over 200 replicates are also shown.
These can be regarded as ground truth—they do not make use
of stationarity of the normalized reconstructed data. The results
show that correlation is in line with the stationary assumption
and can be captured by the ACF of fitted SAR model. Fig.
10 also plots the 1-D profiles of 2-D ACF with and without
data transformation. ACFs with and without transformation
are very similar. The same patterns are observed in analysis
of reconstruction data using count rate of 106 and the MVSK
phantom (not shown).

D. Model-Based Bootstrapping of a Lung Tumor SUVmax

Fig. 11 displays a whole-body FDG-PET/CT study in a
lung cancer patient. Both the PET and CT data are presented.
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Fig. 11. A: Whole-body coronal views of the FDG uptake, 60-75 mins post injection. B: The corresponding CT scan. The yellow dashed lines indicate
the bed-position corresponding to the lung tumor in the hilar region of the left lung. C: Coronal views of consecutive 1-minute scans obtained from the
3-minute acquisition of raw list-mode data over the tumor bed position. D: Profile of the average uptake profile per voxel as a function of acquisition, constant
profile shown in red. E: Histogram of the Gamma transformed voxel level data—the red line shows the reference uniform. F-H: ACF plots of the probability
transformed data (black), in 3 co-ordinate directions. The fit of the SAR model is shown in red. I: Deviations between the full 3-ACF and the fitted SAR
model ACF.

TABLE II
FITTED SAR MODEL COEFFICIENTS BASED ON NORMALIZED

RECONSTRUCTION DATA

VSK MVSK Uniform
â1 0.345± 0.038 0.346± 0.037 0.339± 0.046

b̂1 0.357± 0.035 0.355± 0.040 0.366± 0.038
â2 −0.054± 0.014 −0.056± 0.015 −0.052± 0.014

b̂2 −0.074± 0.013 −0.074± 0.015 −0.080± 0.016

d̂ −0.093± 0.029 −0.093± 0.031 −0.097± 0.033

The pattern of FDG uptake is very similar on the three
consecutive 1-minute frames, see Fig. 11 (C), selected for
analysis. We focus analysis on voxels corresponding to the
body—thresholding based on the CT and FDG scans is used
to eliminate background. The average voxel-level tissue uptake
profile, µ̄ = (µ̄1, µ̄2, µ̄3) normalized so that 1

3

∑
j µ̄j = 1, is

quite constant across each of the frames. Our analysis adjusts
for the very slight increase at the voxel level. Letting zxj be
the observed SUV at voxel x and frame j, we model’ these
voxel-level data as

zxj ≈ γxµ̄j

with γx estimated by the simple average, γ̂x = 1
3

∑
j zxj .

Assuming a Gamma model in which φx is constant across
replicates, we estimate φx by the average

φ̂x =
1

2

∑
j

(zxj − γ̂xµ̄j)2

γ̂xµ̄j

An argument could be made for division by 3 instead of 2 in
this formula. We have been guided by the principle that, given
the estimation of γx, there are at most 2 degrees of freedom
associated with the deviations between zxj and γ̂xµ̄j . It is
important to note that here φ, includes the effect of dose. Given
that our analysis, see last row of Fig. 8 indicates that φ should
be very regular, it is appropriate to smooth the raw estimates
in order to improve the expected mean squared error of the
estimation—we use a simple 3-D Gaussian with FWHM of
2-voxels in x-y direction in transverse planes and also axially.
Given estimates of γx and φx, a Gamma transformed variable
is created, at each voxel and at each replicate value, as

uxj = F (zxj |γxµ̄j , φx)

where F is the cumulative Gamma distribution. If the Gamma-
model is correct the transformed data should have a uniform
distribution.

The data analysis results in Fig. 11 (D-I) show substantial
consistency with the Gamma assumption, practically validating
our estimation of γx, µj and φx. Note we also considered the
distribution of the uxj-values within individual replicates and
on different axial planes within the tumor-bed. The uniformity
check of the Gamma structure was reasonable throughout.
Next, the uxj data were transformed into standard Gaussian
values, rxj = Φ−1(uxj), and the 3-D ACF of the rxj-data
evaluated. Using techniques described earlier, a second order
SAR model was found to provide a good representation of the
3-D ACF. Fig. 11 (F-H) show the sample ACF and together



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2938411, IEEE
Transactions on Medical Imaging

Fig. 12. A: Coronal view of the FDG-SUV for the tumor bed position. The SUV color bar is augmented with a white bar-chart providing the bootstrap-
estimated average standard error (SE) for voxels in each color level in the displayed image. B: Histogram of the bootstrap-generated distribution of the SUVmax
in the 3-D volume of the tumor bed position. The sample value of the SUVmax is indicated in red, quantiles corresponding to a 90% confidence interval are
indicated in blue. The analysis is based on 500 model-based bootstrap simulations.

with the fitted SAR model. The overall fit appears quite satis-
factory. It is notable that there is a difference between the range
of the ACF in the x and y directions. This is unlike the physical
phantom data, where the within transverse planes the ACF in
the horizontal(x) and vertical(y) directions matched and is also
unlike our numerical simulations where the ACF was slightly
more persistent in the long-axis direction. The ACF here is
seen to be more persistent perpendicular to coronal planes
(the short axis) than in the direction perpendicular to sagittal
planes (the long-axis). The effect is consistent across all planes
within the tumor bed position.

Given our analysis of the replicates we are in a position to
simulate synthetic copies of the patients 3-D SUV scan data.
This follows the scheme indicated in section II-E. We begin
by simulating three independent 3-D Gaussian processes, εxj
for j = 1, 2, 3, each with ACF given by the SAR model.
As before, this simulation is generated with reliance on the
spectral density corresponding to the SAR model and the 3-D
FFT. Given εxj , SUV values are produced by

z∗xj = F−1(Φ(εxj)|γxµ̄j , φx)

The average these SUV values over replicates, provides a
simulated 3-D image of FDG-SUV in the tumor-bed position.

A set of 500 such model-based bootstrap simulations were
created (the entire process required less than 30 minutes on
a modest laptop), giving a collection of 500, 3-D SUV data
sets for detailed evaluation of measurement error. Fig. 12 (A)
shows a coronal slice of the original SUV but now with a color
bar that has been augmented to provide the average bootstrap-
evaluated standard error (SE) for all voxels on the displayed
slice with that color SUV-value. Standard errors are seen to
be roughly proportional to the size of the SUV. The level
of uncertainty in SUV values is around 7.5%. The bootstrap
also provides an analysis of the uncertainty in the maximum
SUV for the 3-D tumor-bed volume. Fig. 12 (B) shows the
histogram of 500 model-based bootstrap simulations of the
SUVmax in the 3-D volume of the tumor bed position. The
sample value of the SUVmax is indicated in red, quantiles
corresponding to a 90% confidence interval are indicated
in blue. The bootstrap-generated distribution is seen to be
slightly skewed. The bootstrap-estimated standard error in the
SUVmax is 0.72 close to 5.5% of the recovered SUVmax value
from the scan. The analysis demonstrates the potential for the
methodology to generate uncertainty assessments for clinical
PET data. Further validation of this approach is merited.
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V. DISCUSSION

We have described a practical approach to using physical
phantom data to obtain a statistical understanding of the
imaging characteristics of an operational scanner that uses
iterative reconstruction. The approach is based on a 3-D
model taking account of the Gamma-characteristic of positivity
constrained iterative reconstruction, and a novel adaptation
of spatial auto-regressive (SAR) modelling for representation
of covariance patterns. The SAR analysis uses a variation
on the Whittle approach for implementation of conditional
likelihood in general SAR models. SAR analysis is based on
assumption that the correlation is independent of position. We
use simulation and data analysis to assess assumptions. Based
on 200 noise realizations we calculated correlation of 10 lags
in different directions in normalized uniform reconstruction,
showing little deviation from the ACF of the fitted model (Fig.
10). However, without normalization the ACF analysis failed
to capture correlation structures in the data (Fig. 10). Similar
phenomena are observed in VSK and MVSK studies. These
results agree with the empirical analysis of both Physical
phantom and some replicate clinical scan data that shows there
is little slice to slice variation in ACF, although there is large
slice to slice variation in variance. We also found there is
little variation in the 3-D ACF across time frames. Numerical
studies demonstrate the reliability of the SAR estimation
procedure. These results are fully in line with asymptotic
theory, see e.g. [16].

Our techniques, which are implemented in R [25], are
applied to data from a PET scanner in operational clinical
use. In the patient data, we used 1-minute re-binning to obtain
three approximate replicates for estimation of normalization
and covariance structures directly from data. It is significant
that the effort required to produce the re-binned data was
readily facilitated by operational PET scan technical staff at
our institution. Given that institutional configuration of our
scanner is, like the vast majority of modern PET scanners,
fully dedicated to clinical work, it may be that a similar re-
binning approach effort would be practically feasible in a
wider clinical setting. This would facilitate the use of data-
adaptive normalization and ACF modelling with SAR for
patient studies. When there is no opportunity to re-bin, it
may still be possible to use the attenuation map to specify the
Gamma model normalization and perhaps use more simplified
2-D simulation and physical phantom data for specification
of ACF patterns. Kueng et. al. [14] have described how local
reconstruction variability is approximately described by the
local integration of the attenuation pattern over relevant lines
joining the scanner detector pairs that pass through the local
region. Our numerical studies find that in the 2-D setting 95%
of the variance in our normalization factor, φ, can be explained
by the predicted value obtained by such local integration of
the attenuation map. Patient data is 3-D but a combination
the Kueng et. al. [14] formula applied to the PET attenuation
pattern derived from the CT component of the PET/CT scan,
together with slice-by-slice adjustment for axial effects from
the physical phantom data is found to explain more than 90%
of the variability in the normalization factor. Current efforts

are directed towards further investigation of this possibility so
as to obtain an image domain bootstrap procedure that does
not require even the very limited rebinning we have proposed.

Second-order SAR models are found to adequately repre-
sent auto-correlation of the normalized phantom, numerical
simulation and patient data. This extends the analysis reported
in [18]. A numerical phantom study using both uniform and
non-uniform (VSK and MVSK) source distributions, indicates
that after normalization via an appropriate Gamma model
probability transform [18], the 2-D autocorrelation pattern of
iteratively reconstructed data does not appear to depend on
whether the source is uniform or non-uniform. This merits
more detailed investigation. The patient data finds greater
persistence in short-axis, perpendicular to the scanning bed,
than in the long-axis. This is at odds with what we found in
simulations and also the simulation results reported by Razifar
et. al. [20]. There may be a number of ways to explain this.
For example, one might hypothesize that since this is a lung
tumor patient, the effect of respiration which may be quite
abnormal, would be expected to introduce blurring/smoothing
in the short-axis direction. This blurring would smooth the
data in this direction and at the same time induce the stronger
and more persistent short-axis auto-correlation. A referee has
suggested that it may also be an artifact of the OSEM recon-
struction process—perhaps insufficient iterations. A systematic
study of the factors that influence the nature of local Gamma-
model parameters associated with non-uniform sources would
be a valuable next step. This could lead to a practical and
efficient approach to obtaining uncertainties for regional sum-
maries of PET scanning information in clinical settings and
would be particularly valuable in situations where the brute-
force bootstrap [12] with similar numbers of simulations, i.e.
several hundred, and full iterative reconstruction might not be
routinely feasible.

In the current study of the phantom with reconstructed
voxel size of 5.46875× 5.46875 mm2, the neighborhood size
2 would be enough as shown in different ACF plots (Fig.
5, Fig. 6). Although finer voxel size would be expected to
modify the lag-scale of the ACF, if the imaging process is
based on the standard PET the basic shape pattern ought to be
similar. The SAR model analysis is of course easily adapted,
by including more neighbors, to adjust for the effects of more
locally persistent auto-correlation. Our simplified approach to
representing the statistical characteristics of an operational 3-
D scanner, though obviously much less sophisticated than a
proper physical representation, may have some on-going value,
particularly as the ability to fully represent all of the details of
the operational scanner is challenging. The parsimony offered
by the approach described here, should be of practical value.

The reliability of the estimation procedures used for SAR
analysis have been investigated by simulation. See Tian et.
al. [18] for evaluated procedures used for evaluation of nor-
malization factors with physical phantom data. In the patient
data study, we used three approximate replicates to estimate
the Gamma model parameters for the normalization as well
as the parameters of the auto-correlation function. The SAR
model structure is such that there are only a modest number
of parameters relative to the amount of data available. The
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numerical simulations presented in Fig. 7 as well as formal
asymptotic theory [16] support the reliability of the approach.
The normalization process involves estimation of the voxel-
level scale factor—the φ introduced in section II.A. Similar
to the target source, this is a very high dimensional parameter
with effectively only 2 degrees of freedom for estimation at
each voxel. If the φ were very highly unstructured, reliable
estimation would be a potential concern. However, it can
be seen from the simulation studies, c.f. Fig. 8, that the
target scale factor is a much smoother object than the source.
Based on the work of Kueng et. al. [14], it appears to be
largely a function of attenuation characteristics, see above.
As a result there is the opportunity to improve estimation
accuracy by smoothing. This regularizes the estimation process
for normalization and make it more reliable.

After all the investigations of phantom and simulation
studies, the ultimate purpose of our research is to improve
the quantitative use of PET in supporting clinical decisions.
Based on our practical and effective modelling of the noise
structure in PET phantom images, the Gamma distribution
could be included in modelling the noise characteristics in
patient images. Lesion detection and characterization must
be quantitatively impacted by the spatial characteristics of
the supporting data [23]. As demonstrated by our illustration
with a clinical lung scan data, the approach has potential to
provide practical assessments of uncertainty, via model-based
bootstrapping [7]. In a clinical setting, this methodology could
also allow estimation of uncertainties in much more complex
imaging biomarkers, including tumor texture and other het-
erogeneity assessments. The work presented motivates future
efforts to explore this approach, ideally carrying out extensive
validations using the full projection-domain bootstrap with at
least 500 replicates each and a meaningful clinical series of
patients.
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