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Abstract Microcrystalline cellulose (MCC) is a

semi-crystalline material with inherent variable crys-

tallinity due to raw material source and variable

manufacturing conditions. MCC crystallinity variabil-

ity can result in downstream process variability. The

aim of this study was to develop models to determine

MCC crystallinity index (%CI) from Raman spectra of

30 commercial batches using Raman probes with spot

sizes of 100 lm (MR probe) and 6 mm (PhAT probe).

A principal component analysis model separated

Raman spectra of the same samples captured using

the different probes. The %CI was determined using a

previously reported univariate model based on the

ratio of the peaks at 380 and 1096 cm-1. The

univariate model was adjusted for each probe. The

%CI was also predicted from spectral data from each

probe using partial least squares regression models

(where Raman spectra and univariate %CI were the

dependent and independent variables, respectively).

Both models showed adequate predictive power. For

these models a general reference amorphous spectrum

was proposed for each instrument. The development

of the PLS model substantially reduced the analysis

time as it eliminates the need for spectral deconvolu-

tion. A web application containing all the models was

developed.
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Introduction

Microcrystalline cellulose is widely used and has

diverse applications across different industry sectors.

MCC is used as a binder and filler in pharmaceutical

formulations, a fat replacement and stabilizer in food

products, a rheology control agent in cosmetics, and as

a component of biodegradable polymers and wooden

products (Gibis et al. 2015; Terinte et al. 2011;

Thoorens et al. 2014; Vonbehren et al. 2010; Yang

et al. 2018). The most common source of MCC is

wood. Cellulose chains are present in wood pulp in the

form of packed layers that are held together by lignin,

and strong hydrogen bonds (Thoorens et al. 2014).

MCC is obtained by purification of wood using

mineral acid solution, i.e. acid hydrolysis, followed

by rinsing and drying. The presence of hydroxyl

groups in the product of this purification process and

the relatively large surface to volume ratio of micro

fibrils give rise to MCC’s hygroscopic character (Sun

2008).

MCC has an atypical semi-crystalline structure and

its attributes can vary between suppliers and batches.

Batch to batch variability can be caused by different

factors, such as wood source (hard or soft wood),

climate differences from region to region, harvesting

time, the process of pulp delignification, hydrolysis

reaction time, and the process of drying (O’Regan

2018; Rowe et al. 1994). The term crystallinity index

(%CI) refers to the percentage by weight occupied by

the crystallites (Foster et al. 2018). During depoly-

merization (hydrolysis) the acid preferentially attacks

the amorphous regions of the pulp (Landı́n et al. 1993).

MCC crystallinity has been reported to influence its

behaviour during processing. Tabletability was inves-

tigated with differences observed between batches

with substantial differences in crystallinity. Suzuki

and Nakagami used a rod mill to reduce crystallinity of

a MCC batch from an initial %CI of 65%. A reduction

in tabletability was observed for batches with a %CI

below 12%, and an increase in dissolution rate was

observed for acetaminophen tablets produced with

MCC that had a %CI less than 26% (Suzuki and

Nakagami 1999). The crystallinity of MCC has also
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been shown to influence water sorption (Amidon and

Houghton 1995; Bolhuis and Chowhan 1996;

Nokhodchi 2005). Increased water sorption was

observed with decreased MCC crystallinity, as mois-

ture sorption occurs predominately in amorphous

regions which are more hydrophilic than the crys-

talline regions (Mihranyan et al. 2004; Segal et al.

1959; Suzuki and Nakagami 1999).

A range of techniques has been utilised to deter-

mine MCC crystallinity. Diffraction techniques are

most widely reported, employing the Segal peak

height method (Segal et al. 1959), peak decomposition

or deconvolution (Lanson 1997; Park et al. 2010;

Ahvenainen et al. 2016; Yao et al. 2020), and Rietveld

refinement based methods (Madsen et al. 2011; Ling

et al. 2019). Other spectroscopic techniques proposed

include Fourier transform infrared (Liu and Kim

2015), solid state NMR (Atalla and Vanderhart 1984;

Harris et al. 2012; Wickholm et al. 1998), and Sum

frequency generation (Ling et al. 2019). Raman

spectroscopy, the focus of this study, has been

investigated to determine cellulose crystallinity

(Agrawal et al. 2010; Agarwal et al. 2018; Agarwal

2019). An initial Raman approach for quantifying

MCC crystallinity employed relatively weak bands at

1462 and 1481 cm-1 (CH2 bending modes) in con-

junction with spectral deconvolution (Schenzel et al.

2005). Two further methods were proposed employing

bands at 380 and 93 cm-1 (Agarwal et al. 2018, 2010).

The 93 cm-1 method is advantageous compared to the

380 cm-1 method as it differentiates crystalline and

organized cellulose and an aggregated form which is

not crystalline. However, the 93 cm-1 method

requires an FT-Raman instrument with 1064 nm

excitation to avoid Rayleigh scattering that masks

the sample Raman scattering at 93 cm-1.

The quantification of cellulose crystallinity using

Raman spectroscopic analysis has primarily employed

instruments with laser spot sizes between 50 lm and

1 mm and limited depth of penetration (Agarwal et al.

2018, 2010; Foster et al. 2018). The irradiation area of

such instrumental setups results in a limited area being

sampled. Therefore, analysis requires the acquisition

of multiple spectra at a number of locations to obtain a

representative profile of the sample. Reduced depth of

penetration also results in spectra that focus on surface

spectral features. To date Raman probes with larger

laser spot sizes and depth penetration, designed for

non-contact analysis of solids, have not been applied

to the quantification of cellulose crystallinity. The

larger sample volume irradiated using these probes

would reduce the requirement for multiple spectra

acquisition and surface mapping.

The objective of this study was to demonstrate the

capability of Raman spectra acquired using non-

contact Raman probes to predict the crystallinity index

of commercial MCC batches. The %CI in this study

refers to the ratio between the amount of crystalline

cellulose and the total amount of sample. Raman

spectra acquired for 30 commercial MCC batches,

using two probes with spot sizes of 100 lm (MR

probe) and 6 mm (PhAT probe), were used to develop

models to determine %CI.

Materials

Thirty batches of commercial microcrystalline cellu-

lose were studied (Table S1 supplemental data).

Samples comprised MCC manufactured by 3 different

suppliers; 25 batches from Dupont Nutrition &

Biosciences, 4 batches from JRS Pharma, and 1 batch

from Asahi Kasei Corporation. All MCC samples

analysed compiled with USP/NF, Ph.Eur and JP

pharmacopeia. Samples analysed encompassed a

range of different MCC grades which varied in

average particle size distribution, bulk density and

moisture content; PH101, PH102, PH200, 90 M.

Wood pulp was confirmed as the botanical source

for 29 of the 30 batches analysed, for one batch the

botanical source could not be confirmed whether it

came for a cotton or wood source.

Methods

Milling standards to produce reference amorphous

samples

Milling was performed in order to obtain amorphous

reference spectra. Prior to milling, the samples were

kept in the oven at 40 �C for 24 h. To produce

amorphous reference materials for each batch 1 g of

MCC was milled at 25 Hz in an oscillatory ball mill,

Mixer Mill MM400 (Retsch GmbH, Germany), in

order to decrease the crystallinity (Mattonai et al.

2018). All samples were milled for 90 min to replicate

the methodology of previous studies (Agarwal et al.
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2010). A break of 15 min was performed after every

30 min of milling operation. Samples were confirmed

to be amorphous after 90 min milling by powder

X-Ray diffraction (PXRD). A representative PXRD

diffractogram of a batch before and after ball milling is

included Fig. S2 in the supplemental material.

Powder X-ray diffraction

Powder X-Ray diffraction (PXRD) analysis was

performed using a Stoe Stadi MP diffractometer

operating in transmission mode, with a tube voltage

of 40 kV and current of 40 mA, using Cu Ka1

monochromated radiation (1.5406 Å) and a gas-filled

PSD detector. MCC powder samples were held

between acetate foils and the diffractogram was

collected between 10� and 30� 2h. Environmental

background was removed by subtracting a blank

diffractogram (2 acetate films with no sample) from all

spectra.

Preparation of MCC pellets for Raman

spectroscopy

Cylindrical, flat, 13 mm diameter, 250 mg pellets

were produced using an Atlas 15 T Manual Hydraulic

Press (Specac Ltd, Orpington, UK). Three tonnes were

applied for a duration of 30 s. Two pellets were

produced for each batch; one from the powder ‘as

received’ and one from the corresponding ball milled

sample.

Raman spectroscopy

Raman spectra for each pellet were acquired using two

different probes. The first was a MR probe connected

to a RamanRxnTM instrument (Kaiser Optical Sys-

tems Inc., Ann Arbor, USA), with nominal laser beam

diameter at a focal position of 100 lm. The exposure

time set was 60 s, using a laser power of 785 mW, over

the range 200–1500 cm-1, and analysis was per-

formed in triplicate. The second was a PhAT probe

connected to a RamanRxn2PhATTM instrument (Kai-

ser Optical Systems Inc., Ann Arbor, USA), with

nominal laser beam diameter at a focal position of

6 mm. The exposure time was set to 15 s, using a laser

power of 785 mW, over the range 200–1500 cm-1,

and analysis was performed in duplicate. Moreover,

while the MR probe is primarily a surface technique,

the PhAT probe has a collection zone depth of around

2 mm.

In addition to the sample Raman fingerprint, the

spectra obtained contained a background contribution

that may be caused by fluorescence or thermal

fluctuations on the Charge Coupled Device (CCD

detector) (Bocklitz et al. 2011; Gautam et al. 2015).

The fluorescence background was removed by pre-

processing. The spectra underwent a baseline subtrac-

tion of an interpolated linear fit between the anchor

points fixed on the X axis: 1500, 1200, 952, 857, 743,

632, 550, 260, and 200 cm-1. The intensity differ-

ences observed between the spectra were removed by

standard normal variate (SNV). This normalization

consisted of subtracting each spectrum from the mean

and dividing the result by the spectrum standard

deviation.

Univariate determination of crystallinity index

Crystallinity index was calculated according to the

method proposed by Agarwal et al., which is based on

the ratio between the intensity of the peaks at

380 cm-1 and 1096 cm-1 deconvoluted from a refer-

ence amorphous spectrum (referred to henceforth as

the ‘‘380-method’’) (Eq. 1) (Agarwal et al. 2010).

Deconvolution in this study refer to the extraction of

the amorphous and the crystalline spectral contribu-

tions from the actual measured spectrum. Deconvolu-

tion is required because cellulose Raman spectra are

composed of the amorphous and crystalline spectra

superimposed (Agarwal et al. 2010). The ratio of these

peaks was compared to other peaks ratios and showed

efficiency and great sensitivity to cellulose crys-

tallinity changes (Agarwal et al. 2018, 2010).

%CI ¼
I380 � I380 am=I1096 � I1096 am

� �
� 0:0286

0:0065

ð1Þ

I380 and I380_am are the intensities at the Raman shift

380 cm-1 of the commercial batch as received and its

amorphous corresponding sample, respectively. I1096

and I1096_am are the intensities at the Raman shift

1096 cm-1 of the commercial batch as received and its

amorphous corresponding sample, respectively.

The spectra of corresponding amorphous samples

were obtained by ball milling a sample of the batch,

pressing the powder into a pellet, and acquiring
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spectra of the pellet. Each Raman spectrum was then

pre-processed and peak normalized by equalizing the

intensity values at Raman shifts above 857 cm-1 to

the intensity at 857 cm-1, following the method

previously reported by Agarwal et al. (Agarwal et al.

2010). The resulting spectrum was considered to

represent the amorphous contribution to the Raman

spectra of the sample as received (Agarwal et al.

2010). Thus, in Eq. 1, I380_am and I1096_am are equal to

the intensity of the peaks at 380 cm-1 and 857 cm-1

in the spectrum of the milled sample, respectively.

Correction of 380-method due to Raman

instrument-dependence

The 380-method was originally developed using a

Raman instrument RFS-100 (Bruker Inc.) and the

coefficients in Eq. 1 (used to calculate %CI) are

specific to the study’s instrumental setup (Agarwal

et al. 2010). Equation 1 was established by plotting the

intensity ratios of interest from the Raman spectra

against %CI of a calibration set samples determined

using a PXRD peak intensity methodology (Segal

et al. 1959). It is important to note that the %CI values

determined by the 380-method show instrument-

dependence and therefore it is recommended that a

calibration be performed should the instrumental set-

up alter (Foster et al. 2018). Therefore. It was

necessary to perform a calibration study to correct

this methodology for the specific Raman instruments

used in the this study, i.e. the MR and the PhAT probes

connected to a RamanRxnTM and a RamanRxn2-

PhATTM (Kaiser Optical Systems Inc., Ann Arbor,

USA), respectively.

A single MCC batch (batch #7) was selected to

create a series of MCC samples with a range of

crystallinity values for the calibration study. To create

samples with varying crystallinity, binary mixtures

MCC prior to ball milling and MCC after ball milling

(amorphous) were prepared at a total mass of

0.20 ± 0.03 g. The blends prepared contained

100%, 83%, 72%, 58%, 44%, 33%, and 22% w/w

MCC prior to ball milling. The crystallinity index

(%CIPXRD) of each blend was determined from its

PXRD diffractogram (Eq. 2)

%CIPXRD ¼ I200 � Iamð Þ
I200

ð2Þ

I200 is the averaged intensity in the range 22.55–22.65�
2h representing the crystalline peak, and I18.7 is the

averaged intensity in the range 18.0.65–18.75� 2h
corresponding to the amorphous scatter (Segal et al.

1959). PXRD diffractograms for individual blends are

shown in Fig S2 (supplemental data).

%CIPXRD determined for each blend from the

PXRD data was plotted against the peak ratio of the

Raman wavenumbers 380/1096 cm-1 after amor-

phous contribution subtraction. The amorphous con-

tribution subtraction was described in ‘‘Raman

spectroscopy’’ section. A linear regression between

the theoretical %CI and the ratio 380/1096 cm-1 was

obtained for each instrument and the linear equation

obtained was used to determine the %CI by

380-method (‘‘Raman spectroscopy’’ section) for all

other batches.

Principal component analysis

Principal component analysis (PCA) was performed in

order to identify differences between the Raman

spectra obtained for the 30 commercial batches of

MCC investigated. Unscrambler� X 11.0 software

(CAMO software, Norway) was used to perform the

analysis on the pre-treated (baseline and SNV) Raman

spectra. The algorithm NIPALS and cross validation

were performed with 29 segments determined so that

spectra of the same batch acquired using both probes

were kept within the same segment to avoid overfit-

ting. A total of 145 spectra were used to build the PCA

model.

Partial least square regression

Two partial least square regression models were built

using Unscrambler� X 11.0 software (CAMO soft-

ware, Norway) aiming to predict crystallinity index

from Raman spectral analysis of the 30 commercial

MCC batches. One model was built using the pre-

treated (baseline and SNV) Raman spectra acquired

using the MR probe and another model using the pre-

treated spectra acquired using the PhAT probe. The

intensity of the pre-treated Raman spectra between

1500 and 250 cm-1 were used as X variables. For both

models, the Y variable was the %CI determined by the

380-method. The algorithm Kernel was used. A total

of 24 batches were used to calibrate the model and 6
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batches were used to validate the model. The number

of spectra used were 85 and 60 for MR probe and

PhAT probe models, respectively.

Shiny web application

A web application, McCrystal–crystallinity research�,

was built using ‘shiny’ (Chang et al. 2019) version

1.4.0 in R (R Core Team 2019) using the development

environment RStudio (RStudio Team 2019). This

application was built to facilitate the dissemination of

the models developed in this study. The web applica-

tion framework for R was developed in tab set panels

using the package ‘shinydashboard’ (Chang and

Borges Ribeiro 2018) version 0.7.1. The package

‘RcppArmadillo’ (Eddelbuettel and Sanderson 2014)

version 0.9.800.3.0 was used to manipulate matrices,

graphics were built using the package ‘ggplot2’

(Wickham 2016) version 3.2.1, the spectra were

normalized using the package ‘prospectr’ (Stevens

and Ramirez-Lopez 2013) 0.1.3, and manipulated

using the package ‘spectrolab’ (Meireles et al. 2018)

version 0.0.8. Spectra baseline, i.e. linear interpolation

between predetermined points, was performed using

the package ‘spftir’ (Pozo Valenzuela and Rodriguez-

Llamazares 2016) version 0.1.0 and ‘pracma’ (Borch-

ers 2019) version 2.2.9. After the PCA analysis,

samples were clustered in 2-D scores plots using the

package ‘cluster’ (Maechler et al. 2019) version 2.1.0.

The package ‘basicTrendline’ (Mei and Yu 2018)

version 2.0.3 was used to plot the trendline between

scores and crystallinity index. This web application

can be accessed at https://sspc.ie/mccrystal-

registration/. The design code is available in the sup-

plementary material.

Results

Raman spectra fluorescence background removal

Prior to establishing the crystallinity models from

Raman spectra, it was necessary to remove spectral

interference. Fluorescence background and intensity

shifts were observed (Fig. 1). The baseline subtraction

method developed (‘‘Raman spectroscopy’’ section)

eliminated the fluorescence background and standard

normal variate (SNV) eliminated intensity differences

observed between the spectra. The SNV normalization

consisted of subtracting each spectrum by its mean and

dividing the result by the spectrum standard deviation.

All spectra used in this study were baselined and SNV

normalized accordingly.

Principal component analysis of spectra

A PCA model was used to explore spectral differences

due to the probe set-up used. For this purpose, the

model was built from treated spectra (baseline and

SNV) acquired using both, MR and PhAT probes. The

scores plot (Fig. 2a) show a clear separation of the

samples into two groups based on the spectra acquired

using either the MR probe or the PhAT probe. The

Raman shifts that lie within the upper and lower

bounds of the correlation loadings plot are the regions

where the variability was modelled by that principal

component (Fig. 2b and 2c). Variability in the regions

containing the peaks at 380 and 1096 cm-1 are

captured by the PCA model. Spectral comparisons

showed that the peak intensity at 1096 cm-1 is higher

and at 380 cm-1 is lower for the PhAT probe in

comparison to the MR probe. Figure 3 provides

representative spectra for a single batch highlighting

that differences in intensities were observed for

spectra acquired using the different probes, and these

differences could not be removed by baseline correc-

tion or SNV. This is a strong indication that the

crystallinity index determined using spectral data from

a MR probe cannot be compared to the crystallinity

index determined using spectra data from a PhAT

probe.

Development of specific 380-method equations

for MR and PhAT Raman instruments

Linear regression plots of %CIPXRD determined from

PXRD diffractograms for the calibration sample set

(‘‘Correction of 380-method due to Raman instru-

ment-dependence’’ section) and the ratio between the

Raman intensities at 380 and 1096 cm-1 showed

correlation for spectra acquired using both the MR and

PhAT probes. Pearson’s r values of 0.895 and 0.969

for the MR probe and PhAT probe, respectively were

obtained (Fig. 4). Differences in the linear relation-

ship can be explained by the capacity of each probe to

capture the intrinsic crystallinity heterogeneity of

MCC samples. A PhAT probe averages a larger area

(12.57 mm2) in comparison to a MR probe
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(7.85 9 10–3 mm2). Thus, the PhAT probe was able to

capture a more representative measurement of the

sample. This may explain why the PhAT probe

showed a better correlation to the PXRD crystallinity

index, %CIT. Replicate spectra acquired by the PhAT

probe also provided more consistent peak ratio values

for the same sample. Figure 4 contains replicates

(n = 3 for MR probe and n = 2 for PhAT probe) and it

was clear that the replicate PhAT probe measurement

deviated less than the MR probe measurements.

Based on the correlations of Fig. 4, specific 380-

method equations were proposed for MR and PhAT

instrumental systems, Eqs. 3–4, respectively.

%CIMRprobe ¼
I380 � I380 amorphous

�
I1096 � I1096 amorphous

� �
þ 0:134

0:005

ð3Þ

%CIPhATprobe ¼
I380 � I380 amorphous

�
I1096 � I1096 amorphous

� �
þ 0:129

0:005

ð4Þ

Fig. 1 Spectra acquired by

PhAT probe a raw spectra

exhibiting the fluorescence

background and intensity

shifts, b spectra following

baseline transformation, and

c spectra following SNV and

baseline transformation

123

Cellulose



Determination of MCC crystallinity indexes

for commercial batches

The %CI for a set of 30 commercial batches was

determined using the corrected 380-method (Eqs. 3

and 4) applied to spectral data acquired using the MR

and PhAT probes, respectively. Amorphous spectra

were obtained for each MCC batch with both probes.

From the processed amorphous spectra from each

batch obtained using the MR probe (n = 70) and PhAT

probe (n = 55), an averaged amorphous spectrum was

generate for both probes. The averaged intensities and

standard deviations for the peaks of interest for the MR

probe averaged amorphous spectrum were I380_am

(0.627 ± 0.246) and I1096_am (2.745 ± 0.489) and for

the PhAT probe averaged amorphous spectrum were

A

B

C

Fig. 2 a PCA Scores plot, b correlation loadings of the first

principal component and c correlation loadings of the second

principal component of the model built using spectra of

30 MCC batches acquired with MR (n = 85 spectra) and PhAT

(n = 60 spectra) probes

Fig. 3 Spectra acquired using a MR and a PhAT probe after

baseline correction and SNV normalization for a sample of

single batch
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Fig. 4 Correlation between the ratio of the Raman intensities at

380 and 1096 cm-1, and the crystallinity index determined for

PXRD data using the Segal method (Segal et al. 1959). Pre-

treated deconvoluted spectra obtained for blends using MR and

PhAT probes were used
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I380_am (1.194 ± 0.277) and I1096_am (2.607 ± 0.277).

These averaged amorphous spectra were used in the

determination of %CI for each batch. The %CI values

obtained for all MCC batches investigated are shown

in Fig. 5.

Partial least square regression models

A PLS model was built as an alternative to the

380-method in order to avoid having to undertake

milling and spectra deconvolution. Agarwal et al. also

used a PLS model to determine %CI (Agarwal et al.

2010). However, the present study involved a greater

number of MCC batches and reflects the variability

across commercial batches, while the study published

by Agarwal et al. included several blends including

commercial batches as received and their reference

milled sample, at different mass fractions.

Statistically significant PLS models were deter-

mined for both probes (Table 1, Figs. 6 and 7). The

optimal number of factors for both models was

considered to be three, which represented 97.47% of

variance for the MR probe data and 97.16% of the

variance for PhAT probe data. The variability captured

by the first factor of both models included the Raman

shifts known to be correlated to MCC crystallinity

(also used to calculate MCC crystallinity by the

380-method), which was not surprising because the

independent variable used to build the model was the

%CI from the 380-method. This can be seen in the

correlation loadings where the Raman shifts that fall

within the upper or lower outer lines are the Raman

shifts used by that factor to build the model (Figs. 6b–

d and 7b–d).

The scores plot of the PLS models was used to

investigate spectral differences between batches of

different average particle size and grades. However,

the model was not able to separate the batches by

average particle size nor grade, i.e. the PLS model was

not able to identify patterns in the Raman spectra to

cluster the batches in groups of the same average

particle size nor groups of the same grade (Fig. 8).

Discussion

It is challenging to determine the properties of

microcrystalline cellulose compared to other materi-

als. MCC shows great variability due to its natural

source, i.e. wood pulp, and the different processes

from which the commercial grades are produced,

especially different drying processes. In this study the

application of two models to determine the crys-

tallinity index of MCC commercial batches was

investigated. Both models showed predictive power.

The crystallinity of MCC was firstly determined

using the 380-method proposed by Agarwal et al.

(Agarwal et al. 2010). A calibration curve was

developed using %CI values of a calibration set of

blends determined by PXRD and used to correct the

model for each instrument employed in this study (MR

and PhAT probes, Kaiser Optical Systems Inc., USA).

This modification was previously performed for a

different instrument (Foster et al. 2018). Reference

amorphous spectra for each batch were produced and

an averaged spectrum (n = 30 batches) was deter-

mined for each probe. As a result, the production of a

reference amorphous material and spectral subtraction

for new batches are no longer required for future

analysis. The time for analysis was shortened and

milling and PXRD analysis steps (required to confirm

that the sample is indeed amorphous) can be elimi-

nated from the analytical procedure.

Crystallinity of MCC was also determined by

partial least squares regression models. The crys-

tallinity values used in this regression analysis were

those determined using the established 380-method.

The ability of the models to predict crystallinity from
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Fig. 5 Crystallinity index (%CI) determined for commercial

batches using spectra obtained for pellets and different probes

(MR probe n = 3, and PhAT probe n = 2, using Eq. 3 and 4,

respectively). Individual %CI values reported are included in

supplemental material, Table S1
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Table 1 Summary statistics of the partial least square regression models

MR probe PhAT probe

Number of calibration samples 67 48

Number of validation samples 18 12

Optimal number of factors 3 3

N 1 2 3 1 2 3

RMSEC 1.339 0.978 0.703 1.132 1.026 0.612

RMSEP 1.346 0.597 0.460 1.212 1.1843 0.790

Explained variance (Calibration) (%) 86.97 93.05 96.40 93.84 94.94 98.20

Explained variance (validation) (%) 78.31 95.73 97.47 93.32 93.62 97.16

Bias - 1.092 - 0.065 0.015 - 0.543 - 0.457 - 0.068

N is the Number of factors, RMSEC is the Root Mean Square Error of Calibration, RMSEP is the Root Mean Square Error of

Prediction

A B

C D

Fig. 6 a Values of crystallinity index (%CI) predicted by the

Partial Least Square Regression model vs Reference values for

the MR probe and considering three factors, and b, c,

d correlation loadings of factors 1, 2, and 3, respectively,

obtained from the model designed using baselined and

normalized spectra. The further the correlation loading is from

the zero, the stronger the Raman shift contributed to explain the

variability encountered by the factor. In blue are the calibration

and in red the validation sets
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Raman spectra were 97.47% for MR and 97.16% for

PhAT probes and the predicted values for the test set

showed a small prediction error (RSMEP equal to

0.4596 and 0.7900 for MR and PhAT probe, respec-

tively). The correlation loadings showed that the main

wavenumbers used to build the model were 380, 437,

458, 521, 1,096, 1,120, 1,330, 1,340, 1,380, and

1,475 cm-1. Those wavenumbers were correlated to a

change in cellulose crystallinity due to contributions

from OH rocking and bending, CH and CH2 bending,

CO and COC stretching, CH wagging, and anhy-

droglucose ring stretching, twisting, and torsion

modes (Agarwal et al. 2010). The models built may

be used to rapidly determine crystallinity for future

MCC batches without the necessity to produce an

amorphous reference spectrum. A PLS model had

been previously used to predict crystallinity (Agarwal

2019; Agarwal et al. 2010), however, the model was

built with only ten samples (a control, 4 mixtures, 3

samples milled during different times and 2 commer-

cial MCC grades). The present study investigated

thirty MCC commercial batches including ones with

different particle sizes (from 50 to 180 lm average

particle size) and MCC grades. Thus, the present study

confirmed the finding of the previous study reported

by Agarwal et al. and enriched the validation of the

models by investigating the variability encountered in

commercial grades of MCC.

In this study Raman probes that can scan large

surface areas and give an averaged spectrum in a short

A

B

C D

Fig. 7 a Values of crystallinity index (%CI) predicted by the

Partial Least Square Regression model vs Reference values for

the PhAT probe and considering three factors, and b, c,

d correlation loadings of factors 1, 2, and 3, respectively,

obtained from the model designed using baselined and

normalized spectra. The further the correlation loading is from

the zero, the stronger the Raman shift contributed to explain the

variability encountered by the factor. In blue are the calibration

and in red the validation sets
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time were used (1 min for MR probe and 15 s for

PhAT probe). Previous studies used Raman spectra of

microscopic surface areas (Agarwal 2019; Agarwal

et al. 2010; Foster et al. 2018). The PhAT probe used

in the present study acquires spectra from an area of

12.57 mm2 and the MR probe from an area of

7.85 9 10–3 mm2. A PhAT probe also has a depth of

analysis of approximately 2 mm. Thus, less replicates

are necessary to achieve a representative sample when

a PhAT probe is used. As a result, Raman spectrum

containing more averaged information of the overall

semi-crystalline structure of MCC samples is

obtained. Comparing the PhAT and the MR probes,

the larger coverage area of the PhAT probe resulted in

better fits for both the 380-method and PLS models.

This was quantified by Pearson’s coefficients obtained

from the calibration of the 380-method (Fig. 7,

Pearson’s-r of 0.969 and 0.895 for PhAT and MR

probes, respectively) and the PLS model (correlation

of 0.982 and 0.964 for PhAT and MR probes,

respectively). The variability observed between dupli-

cate values determined using the PhAT probe was

greater than when using the MR probe, for a number of

the commercial samples. A possible explanation may

be due to spectra being acquired on the same surface of

the pellet (top surface) for the MR probe, while for the

PhAT probe one spectrum was acquired on the top

surface and another was acquired on the bottom

surface of the pellet. The difference in %CI due to the

differences in the positions from which the Raman

spectra were may be due to the characteristic of

uniaxial compression, which does not hold a homo-

geneous stress distribution in the interior of the pellet

(Takeuchi et al. 2004).

It is important to also emphasis the limitations of

quantifying the %CI of cellulose materials, including

MCC, using the Raman spectroscopy. Key limitations

include the lack of 100% crystalline or amorphous

A B

C D

Fig. 8 Scores plots of factors one and two highlighted by a and b average particle size in lm, and c and d manufacturer for the

calibration test sets of the MR and PhAT probes, respectively
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cellulose standards or references and the need to adjust

model parameters for each instrumental set-up by

calibration against diffraction data. Therefore, the

%CI determined by Raman analysis is dependent on

the diffraction analysis methodology. In this study, a

simplistic approach was undertaken which mimicked

that of Agarwal et al. (2010). The %CI of calibration

set samples were determined using the Segal peak

height method and theoretical %CI values were

determined based on the %CI of a single MCC batch.

It is proposed that an improvement to this approach

should include a wider calibration set of samples in the

calibration study to improve model robustness. It is

also important recognize the limitations of the Segal

peak height method employed. Driemeier and Calli-

garis (2011) highlighted that peak area is more

representative of the crystalline fraction and French

Santiago Cintrón (2013) demonstrated that the use of

the Segal method to determine MCC %CI is influ-

enced by sample crystallite size. The respective

strengths and limitations of more commonly diffrac-

tion method discussed by French (2020), as are

standards for conducting crystallographic work to

study cellulose crystallinity (French 2020). Advance-

ment from the Segal peak height method during

calibration, towards other methods such as decompo-

sition or deconvolution of peak area during calibration

(Lanson 1997; Park et al. 2010; Ahvenainen et al.

2016; Yao et al. 2020), and Rietveld refinement based

methods (Madsen et al. 2011; Ling et al. 2019) could

further improve the models proposed in this study.

A R Shiny web application (McCrystal–crys-

tallinity research�), was designed (i) to perform

baseline correction and SNV normalization, (ii) to

predict MCC crystallinity using the 380-method for

the MR and the PhAT probes, (iii) to predict MCC

crystallinity from PLS models, and (iv) to perform

PCA analysis from Raman spectra within the range of

1500–250 cm-1. This application was developed

based on the knowledge generated in this study. Thus,

baseline correction, SVN normalization, and the PCA

model can be applied to Raman spectra of microcrys-

talline cellulose obtained using different Raman

instruments. However, the prediction of the crys-

tallinity index can only be undertaken if a MR or a

PhAT probe was used to acquire the Raman spectra.

Even if those instruments are used, results should be

evaluated with caution since different units of a same

instrument design might require instrument-specific

correction of the model.

Conclusions

Crystallinity index was determined for 30 commercial

batches of microcrystalline cellulose using two dif-

ferent models, i.e. 380-method and PLS regression.

Both models showed adequate predictive power.

However, the development of the PLS model takes

substantially less time for analysis because it elimi-

nates the need for milling and deconvolution of the

spectra of the milled sample into amorphous and

crystalline contributions before the actual %CI deter-

mination. For these models a general reference

amorphous Raman spectrum was proposed for each

instrument. Spectral comparison and principal com-

ponent analysis showed that values of crystallinity

index were relative to the instrument used to acquire

the Raman spectra. Also, larger laser spot sizes give

more reproducible and representative information on

the overall crystallinity of the sample. The crys-

tallinity index values obtained with either model

depend on the XRD methodology and calibration

sample set employed during calibration. The method-

ology presented can be further advanced by employing

a broader sample set and more advanced XRD

methodologies to measure microcrystalline cellulose

crystallinity during calibration of the model. A web

application (McCrystal–crystallinity research�) was

developed which facilitates the use of the predictive

models developed in this study to measure MCC

crystallinity.
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