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GLOBAL BIFURCATION OF CAPILLARY-GRAVITY STRATIFIED

WATER WAVES

DAVID HENRY AND ANCA�VOCIHITA MATIOC

Abstract. We study steady periodic water waves with variable vorticity and density, where
we allow for stagnation points in the �ow, and where we admit the capillarity e�ects of surface
tension. Using global bifurcation theory, we extend a local curve of nontrivial solutions of the
governing equations to a global continuum of solutions. Furthermore, we obtain a description
of the behaviour of the solutions along this continuum.

1. Introduction

In this paper we consider a model for strati�ed water waves which experience the capillarity
e�ects of surface tension. Strati�ed water waves are �ows where the �uid density varies as
a function of the streamlines. Physically, the density of a �uid may vary signi�cantly when
certain factors� such as the salinity, temperature, pressure, topography, or oxygenation�of
the �uid body �uctuates dramatically, cf. the discussion in [19,29]. Surface tension plays a key
role for small to medium amplitude water waves, and in particular for waves which are wind
generated. For such wind generated waves there is an appreciable layer of vorticity adjacent to
the surface, cf. [8, 17]. All of these factors are encompassed in the model which is considered
in this paper.

The �rst results concerning the existence of small-amplitude waves for strati�ed �ows were
obtained by Dubreil-Jacotin [11], in 1937. More recently, rigorous results concerning the ex-
istence of small and large amplitude strati�ed �ows were obtained via bifurcation methods
in [37], building on techniques �rst applied to rotational homogeneous �ows in [6]. The exis-
tence of small and large amplitude waves for strati�ed �ows with the additional complication
of surface tension was then addressed in [38], building on results in [35]. These papers all
excluded stagnation points from their models. The presence of stagnation points in a �uid has
long been a source of great mathematical and physical interest, dating back to Kelvin's work
concerning cat's eyes and Stokes conjecture on the wave of greatest height (see [2, 19, 34] for
discussions of these phenomena). Allowing for stagnation points adds massive complications to
the mathematical problem (cf. [7]), but we note that there have been two recent papers [9,36]
where di�erent approaches were successfully used, for homogeneous �uids, to prove the ex-
istence of small amplitude waves with constant vorticity where stagnation points or critical
layers occur. Recently, in [12], for strati�ed �ows which have a linear density distribution,
the existence of small amplitude waves was established. The existence of large amplitude
waves was with capillary e�ects and stagnation points traveling over a homogeneous �uids
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2 D. HENRY AND A.�V. MATIOC

was proved only recently [32]. In this paper, we allow for both variable vorticity and variable
density, subject to conditions (A1)-(A3), (B1)-(B3) of Section 3 holding.

Using global bifurcation techniques we construct a global continuum of steady periodic
strati�ed water waves, which is either unbounded or contains a wave of largest admissible
amplitude, and which extends the local bifurcations curves of [19]. The relevant governing
equations are reformulated as a nonlinear, nonlocal operator, and, building on the results
of [19], we �nd a local bifurcation curve of non-trivial solutions via the Crandall-Rabinowitz
[1,10] local bifurcation theorem. In this paper, in Theorem 4.1, we show that this formulation
of the governing equations is amenable to global bifurcation techniques, and accordingly we
can extend the local bifurcation curves to a global continuum of solutions. The continuum
contains waves of large amplitude in the sense that the solutions either become unbounded,
or they approach a wave which has the largest admissible amplitude, as de�ned in (2.1). The
outline of the paper is the following: after presenting in Section 2 the mathematical model
for capillary-gravity strati�ed water waves we recall in Section 3 the local bifurcation results
obtained in [19]. Section 4 is dedicated to the proof of our main result, Theorem 4.1.

2. The mathematical model

In this model we consider a two-dimensional inviscid, incompressible �uid with variable
density ρ > 0 occupying the domain

Ωη := {(x, y) : x ∈ S and −1 < y < η(t, x)},

where the unknown wave surface pro�le η is assumed to satisfy

|η(t, x)| < 1 for all (t, x). (2.1)

The symbol S denotes the unit circle, whereby functions on S are identi�ed with 2π−periodic
functions on R. The line y = 0 represents the location of the mean water level, and so for any
�xed time t we have ∫

S
η(t, x) dx = 0. (2.2)

We seek traveling wave solutions of the governing equations, which presupposes a functional
(x, y, t)−dependence of the form (x− ct, y):

η(t, x) = η(x− ct), (ρ, u, v, P )(t, x, y) = (ρ, u, v, P )(x− ct, y),

where (u, v) is the velocity �eld, P is the pressure function and c > 0 is the constant wave
speed. This assumption is equivalent to the �ow being steady in the frame of reference moving
with the wave speed c, and in this frame the �uid motion is prescribed by the two-dimensional
Euler equations and the continuity equation ρ(u− c)ux + ρvuy = −Px in Ωη,

ρ(u− c)vx + ρvvy = −Py − gρ in Ωη,
ux + vy = 0 in Ωη,

(2.3a)

where we have imposed the non-di�usive condition

ρx(u− c) + ρyv = 0, (2.3b)
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cf. [26, 39]. The boundary conditions are prescribed by
v = (u− c)η′ on y = η(x),

P = P0 − ση′′/(1 + η′2)3/2 on y = η(x),
v = 0 on y = −1,

(2.3c)

with P0 being the constant atmospheric pressure at the surface, σ the coe�cient of surface
tension and g is the gravitational constant of acceleration. The �rst kinematic surface condition
in (2.3c) implies a non-mixing condition, namely that the wave surface consists of the same
�uid particles for all times, while the last kinematic boundary condition in (2.3c) ensures that
the bottom of the ocean is impermeable. The contribution of the surface tension is felt on the
free surface where it exerts a force which is proportional to the curvature of the surface at any
given point, the constant of proportionality being the coe�cient of surface tension [2,25]. The
continuity equation (2.3a) and relation (2.3b) enable us to de�ne the pseudo-streamfunction
ψ by

∂xψ = −√ρv and ∂yψ =
√
ρ(u− c) in Ωη. (2.4)

The level sets of this function are the streamlines of the steady �ow, and ψ is formulated for
ρ > 0 by the expression

ψ(x, y) := λ+

∫ y

−1

√
ρ(x, s)(u(x, s)− c) ds, (x, y) ∈ Ωη.

Since ψ is constant on the free surface we have the freedom to choose λ such that ψ = 0 on
y = η(x). We then have

λ =

∫ η(x)

−1

√
ρ(x, s)(c− u(x, s)) ds,

where λ is a constant called the mass �ux. We note that, for waves without stagnation
points, without underlying currents containing strong non-uniformities, and which are not
near breaking, the mass �ux will be positive, λ > 0, cf. the discussion in [19]. However, we
do not exclude points of stagnation in this paper, and so λ is not restricted to being strictly
positive. Bernoulli's theorem states that the quantity

E := P + ρ
(u− c)2 + v2

2
+ gρy (2.5)

is constant along streamlines, and in particular at the wave surface we obtain

|∇ψ|2

2
− σ η′′

(1 + η′2)3/2
+ gρ(0)y = Q on y = η(x)

for some constant Q ∈ R, where Q is known as the hydraulic head of the �ow. The governing
equations (2.3) can now be reformulated in terms of ψ, giving us the Long-Yih governing
equations [26,39] for steady strati�ed water waves:

∆ψ = l(y, ψ) in Ωη, (2.6a)

ψ = 0 on y = η(x), (2.6b)

ψ = λ on y = −1, (2.6c)

|∇ψ|2

2
− σ η′′

(1 + η′2)3/2
+ gρ(0)y = Q on y = η(x), (2.6d)
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where we de�ne l : [−1, 1]× R→ R to be the function

l(y, ψ) := gyρ′(−ψ) + β(−ψ), (y, ψ) ∈ [−1, 1]× R.
Here β is the so-called Bernoulli function, which corresponds to vorticity in the setting of
homogeneous �uid, and we note that it can be shown that ρ and β are indeed constant along
streamlines, cf. [19]. The velocity formulation (2.3) is equivalent to (2.6) if we assume that
u < c in Ωη. On the other hand, even if the latter condition is not satis�ed, any solution of
(2.6) de�nes a solution of the velocity formulation (2.3). We also note, from the divergence
structure of the curvature operator

κ(η) :=
η′′

(1 + η′2)3/2
=

(
η′

(1 + η′2)1/2

)′
for η ∈ V,

and from (2.2), that the head Q can be determined from (2.6d), namely

Q =

∫
S

|∇ψ|2

2
(x, η(x)) dx, (2.7)

if we normalize the integral such that
∫
S 1 dx = 1. Here, we de�ne

V := {η ∈ Ĉ2+α
e,k (S) : |η| < 1}.

where the subspace Ĉm+α
e,k (S), m ∈ N, of the Hölder space Cm+α(S) consists of even functions

which are 2π/k−periodic and have integral mean zero, and we de�ne Cm+α
e,k (Ω), as the subspace

of Cm+α
per (Ω) containing only even and 2π/k−periodic functions in the x variable. The evenness

condition imposes a symmetry on the free-surface (and on the underlying �ow), which is natural
for homogeneous rotational water waves [3,4]. Although we seek solutions of the problem (2.6)

with the property that η ∈ Ĉm+α
e,k (S), the wave surface has in fact more regularity. Indeed, in

the absence of stagnation points, it was shown in [18] that if the Bernoulli function is Hölder
continuous and the variable density function has a �rst derivative which is Hölder continuous,
then the free-surface pro�le is the graph of a smooth function. Moreover, if the Bernoulli
function and the streamline density function are both real analytic functions then all of the
streamlines, including the wave pro�le, are real analytic for all three physical regimes. These
results concur with the recent literature determining the a priori regularity of water waves
with vorticity [5, 9, 15, 16,27,28,30,31].

3. Local bifurcation

In this section we present the main local bifurcation result of [19], while outlining details
which are most pertinent to reformulating (2.6) in a form which renders it amenable to the
global bifurcation analysis of the next Section. The strati�ed capillary-gravity water wave
problem (2.6) is an over-determined semilinear Dirichlet system, with (2.7) an additional
boundary condition to be satis�ed on the wave surface. In [19] it was proven that, for any
�xed λ, the semilinear system (2.6a)�(2.6c) is well-posed when the following conditions hold:

(A1) ρ ∈ C4−(R, (0,∞)), β ∈ C3−(R), and β, ρ′ ∈ BC 2(R);

(A2) ∂ψl(y, ψ) ≥ 0 for all (y, ψ) ∈ [−1, 1]× R;

(A3) 2l(y, ψ) + g(1 + y)ρ′(−ψ) ≤ 0 for all (y, ψ) ∈ [−1, 0]× (−∞, 0].
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Here, BC 2(R) is the subspace of C2(R) which contains only functions with bounded derivatives
up to order 2, while, given m ∈ N with m ≥ 1,

Cm−(R) := {h ∈ Cm−1(R) : h(m−1) is Lipschitz continuous}.

A consequence of this result is the existence of laminar-�ow solutions

ψ := ψλ(y) (3.1)

to (2.6). Laminar �ows have a �at surface, η(x) ≡ 0, with non-trivial underlying sheared �uid
motion. Further to this, the existence of non-laminar �ow solutions to the entire system (2.6),
which correspond to waves with non-trivial undulating free-surfaces, was proven in [19] by re-
casting the water wave problem (2.6) in terms of a non-local, nonlinear operator reformulation,
which we will present in (3.2) below. By calculating the relevant Fréchet derivatives of this
operator, and employing certain restrictions on the density and Bernoulli function, namely

(B1) ∂ψψl ≥ 0 on [−1, 0]× (−∞, 0];

(B2) 2∂ψl(y, ψ)− g(1 + y)ρ′′(−ψ) ≥ 0 for all (y, ψ) ∈ [−1, 0]× (−∞, 0];

(B3) ∂ψl(y, 0) ≤ 2 for all y ∈ [−1, 0],

it was then shown that there exists a sequence of values of the bifurcation parameter λ for
which the Crandall-Rabinowitz local bifurcation theorem applies. Regarding the additional
assumptions (B1)-(B3), we remark that for the particular setting of homogeneous �ows (ρ
constant), we can see that (B1) requires that the vorticity function γ′′(−ψ) ≥ 0. Also, in the
case of homogeneous �ows, (B2) is simply equivalent to (A2), and (B3) requires that on the
surface γ′(0) ≥ −2. In particular, for homogeneous �ows, our analysis covers the constant
vorticity, and in particular the irrotational case, when ρ=const. and β =const.. We note that,
as we will outline below, our analysis places a restriction on the wavenumber k, which greatly
simpli�es the local bifurcation problem. The local bifurcation problem for capillary-gravity
waves, which does not make such restrictions on the wave-number, was �rst rigorously studied
in [20�22] in the context of homogeneous, irrotational waves. It is immediately evident that in
this physical setting the local bifurcation phenomena is very involved, and so the restrictions
that we place on the wavenumber k are vital for our local and global bifurcation analysis to
apply.

3.1. The operator reformulation. Assuming that (A1)-(A3) are satis�ed, the Long-Yih
governing equations (2.6) are equivalent to a nonlinear and nonlocal equation for a compact
perturbation of the identity. This will be seen below when we reformulate the problem by
exploiting the invertibility of the curvature operator, allowing us to implement the global
bifurcation results from [24] in the analysis of our reformulated problem. To proceed, we
de�ne, for each η ∈ V, the mapping Φη : Ω = S× (−1, 0)→ Ωη by the relation

Φη(x, y) := (x, (y + 1)η(x) + y), (x, y) ∈ Ω.

This operator Φη is a di�eomorphism for all η ∈ V, and it transforms the unknown domain
problem (2.6) onto the rectangle Ω. Corresponding to the semilinear elliptic operator in (2.6a)
we introduce the transformed elliptic operator A : V × C2+α

e,k (Ω)→ Cαe,k(Ω) with

A(η, ψ̃) := ∆(ψ̃ ◦ Φ−1η ) ◦ Φη − l(y, ψ̃ ◦ Φ−1η ) ◦ Φη, (η, ψ̃) ∈ V × C2+α
e,k (Ω).
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Furthermore, corresponding to (2.6d), we de�ne the boundary operator B : V × C2+α
e,k (Ω) →

Cαe,k(S) by the relation

B(η, ψ̃) :=
tr |∇(ψ̃ ◦ Φ−1η )|2 ◦ Φη

2
,

with tr denoting the trace operator with respect to S = S× {0}. The problem (2.6) can now
be reformulated as the following non-local and non-linear equation

Ψ(σ, λ, η) = κ(η) (3.2)

where Ψ : (0,∞)× R× V → Ĉαe,k(S) is given by

Ψ(σ, λ, η) :=
1

σ

[
B(η, T (λ, η)) + gρ(0)η −

∫
S
B(η, T (λ, η)) dx

]
, (3.3)

with T : R× V → C2+α
e,k (Ω) being the solution operator to the semi-linear Dirichlet problem

A(η, ψ̃) = 0 in Ω,

ψ̃ = 0 on y = 0,

ψ̃ = λ on y = −1.

(3.4)

In [19] it was shown, using ideas from [13], that the assumptions (A1)-(A3) ensure that T
is well-de�ned between these spaces, that the problems (2.6) and (3.2) are equivalent, and
furthermore:

• T ∈ C2(R× V, C2+α
e,k (Ω));

• Since B depends analytically on (η, ψ̃), we have

Ψ ∈ C2((0,∞)× R× V, Ĉαe,k(S)). (3.5)

The following Lemma enables us to reformulate the problem (3.2) in a form which is most
appropriate for the global bifurcation methods of the next Section, by expressing it as a
compact perturbation of the identity.

Lemma 3.1. Let R denote the open subset of Ĉαe,k(S) de�ned by

R :=

{
ξ ∈ Ĉαe,k(S) : sup

[0,2π]

∣∣∣∣∫ x

0
ξ(x) dx

∣∣∣∣ < 1

}
.

Then, the operator κ : V → R is a di�eomorphism.

Proof. The fact that curvature operator is bijective follows from its de�nition. Let now ξ ∈ R
be given. If κ(η) = ξ, then we obtain by integration that

η′(x)

(1 + η′2(x))1/2
= ζ(x) :=

∫ x

0
ξ(t) dt for all x ∈ R.

Therefore η′ and ζ have the same sign and

η′ =
ζ

(1− ζ2)1/2
.
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Integrating once more with respect to time and using the fact that η has integral mean zero,
we conclude that curvature operator κ : V → R is invertible and its inverse is given by

κ−1(ξ) :=

∫ x

0

ζ(t)

(1− ζ2(t))1/2
dt− 1

2π

∫ 2π

0

∫ x

0

ζ(t)

(1− ζ2(t))1/2
dtdx (3.6)

for ξ ∈ R, whereby ζ is the odd anti-derivative of ξ. �

In virtue of Lemma 3.1, we conclude that if (σ, λ, η) is a solution of problem (3.2), then
(σ, λ, η) ∈ U := Ψ−1(R). With this notation, the problem (3.2) can be reformulated as

F (σ, λ, η) := η + f(σ, λ, η) = 0 in Ĉ2+α
e,k (S), (3.7)

where f ∈ Cω(U , Ĉ2+α
e,k (S)) is the mapping de�ned by

f(σ, λ, η) := −κ−1(Ψ(σ, λ, η)) for (σ, λ, η) ∈ U . (3.8)

3.2. Local bifurcation results. We note that (λ, σ, 0) ∈ U for all λ ∈ R and that

F (σ, λ, 0) = 0. (3.9)

. The local existence Theorem 3.2 follows upon showing that, for certain values of λ, the
operator Fη(λ, σ, 0) satis�es the relevant criteria of the Crandall-Rabinowitz theorem [1, 10],
namely: it is a Fredholm operator of index zero, with a one-dimensional kernel, and it satis�es
the transversality condition. The Fréchet deriviative Fη(λ, σ, 0) takes the form of a Fourier
multiplier, with weights determined as follows. Let the Fourier series expansions of η be

η =

∞∑
m=1

am cos(mkx),

then, as in [19], we obtain that

Fη(λ, 0)
∞∑
m=1

am cos(kmx) =
∞∑
m=1

µm(σ, λ)am cos(kmx),

with

µm(σ, λ) := 1 +
1

σ(km)2
(
−ψ′2λ (0) + ψ′λ(0)w′m(0) + gρ(0)

)
, (3.10)

where wm is the unique solution of the boundary value problem{
w′′m − ((mk)2 + ∂ψl(y, ψλ))wm = bm, −1 < y < 0,

wm(0) = wm(−1) = 0,
(3.11)

and

bm(y) := 2l(y, ψλ(y)) + g(1 + y)ρ′(−ψλ(y))− (mk)2(1 + y)ψ′λ(y).

The following local existence results derives from a careful analysis of the Fourier weights
µm(σ, λ), and subsequent application of the Crandall-Rabinowitz local bifurcation theorem.

Theorem 3.2 ([19, Theorem 4.6]). Let ρ and β be given such that (A1)-(A3) and (B1)-(B3)
are satis�ed and let σ > 0 be �xed. There exists a positive integer K ∈ N and for all k ≥ K a

sequence (λm)m≥1 ⊂ R with λm → −∞ and:
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(i) Given m ≥ 1, there exist a continuously di�erentiable curve (λm, ηm) : (−ε, ε)→ R×V
consisting only of solutions of (3.2), that is Ψ(σ, λm(s), ηm(s)) = 0 for all |s| < ε.

(ii) We have the following asymptotic relations

λm(s) = λm +O(s), ηm(s) = −s cos(mkx) +O(s2) for s→ 0.

All the solutions of (3.2) close to (σ, λm, 0) are either laminar �ows or belong to the curve

(σ, λm, ηm). Moreover, there exists a constant Λ− ∈ R with the property that if (σ, λ, 0) is a

bifurcation point of (3.2) with λ ∈ (−∞,Λ−), then λ ∈ {λm : m ≥ 1}.

The restriction on k means physically that we consider the bifurcation problem for waves
with a small wavelength. We also emphasize that this restriction rules out the possibility of
double local bifurcation, which might occur in general only for small values of the parameter λ,
cf. [20�22]. For irrotational waves, cf. [20�22], the possibility of a double bifurcation depends
strictly on the value of the coe�cient of surface tension σ.

4. Global bifurcation

The aim of this section is to extend the local curve (σ, λm, ηm) to a global continuum
C, consisting of solutions of (2.6), and to describe the behavior of the solutions along this
continuum. Our main result is the following.

Theorem 4.1. Let σ ∈ (0,∞) be �xed and let the assumptions of Theorem 3.2 be satis�ed.

Moreover, let C be the maximal connected component of the set

{(σ, λ, η) : (σ, λ, η) ∈ U is a solution of (3.9)}
containing (σ, λm, 0).. Then, we have:

(i) C is unbounded in {σ} × (−∞,Λ−)× Ĉ2+α
e,k (S), or

(ii) sup
(σ,λ,η)∈C

max
[0,2π]

|η| = 1.

A key component in the proof of Theorem 4.1 is the following version of the Rabinowitz
global bifurcation theorem [1,33], which applies to operators which are compact perturbations
of the identity:

Theorem 4.2. Let X be a Banach space and O ⊂ R ×X a bounded and open set. Assume

that

(a) the function F (λ, x) := x+ f(λ, x) belongs to C1(O, X),
(b) f : O → X is completely continuous,

and let S denote the set of nontrivial solutions of the equation F (λ, x) = 0. If Fx(λ, 0) has

an odd crossing number at λ = λm, with (λm, 0) ∈ O, then (λm, 0) ∈ S and the connected

component C to which (λm, 0) belongs

(i) intersects the boundary of ∂O, or
(ii) contains some (0, λ∗) ∈ O with λm 6= λ∗.

Proof. The proof follows as [24, Theorem II.3.3]. �

The idea of an odd crossing number, as stated in Theorem 4.2, goes as follows. To study the
bifurcation at (λm, 0) we need to know how the isolated eigenvalue 0 of Fx(λ, 0) is perturbed
when λ varies in a neighborhood of λm. To this end, we de�ne the 0-group of Fx(λ, 0) as being
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the set consisting of the perturbed eigenvalues of Fx(λ, 0) near 0, which depend continuously
on λ, cf. [23]. We de�ne s(λ) = 1 if there are no negative real eigenvalues in the 0−group of
Fx(λ, 0) and s(λ) = (−1)i1+...+ik if µ1, . . . , µk are all negative real eigenvalues in the 0-group
having algebraic multiplicities i1, . . . , ik, respectively. If

Fx(λ, 0) is bijective for λ ∈ (λm − δ, λm) ∪ (λm, λm + δ)

and s(λ) changes at λ = λm,
(4.1)

then Fx(λ, 0) has an odd crossing number at λ = λm, cf. [24, De�nition II.3.1]. As a conse-
quence of Fx(λ, 0) having an odd crossing number at λ = λm, the index i(Fx(λ, 0), 0) jumps
at λ = λm from −1 to +1 or vice versa.

Proof of Theorem 4.1. The idea of the proof is as follows. We assume that neither of the
alternatives (i) − (ii) in Theorem 4.1 holds for C. We show that this assumption implies
that f in (3.8) is completely continuous, and hence the operator F in (3.7) is a compact
perturbation of the identity. By invoking the Rabinowitz global bifurcation Theorem 4.2 we
obtain a contradiction.

So, assume that (i) − (ii) do not hold. We claim that C is then a compact subset of U .
Indeed, let ((σ, λp, ηp))p ⊂ C be a bounded sequence in C. If ε is su�ciently small, since the
assumptions (i) and (ii) of the Theorem do not hold, we are guaranteed that −ε−1 ≤ λp ≤
Λ− − ε for all p ∈ N. Whence, there exists a converging subsequence of (λp)p, which we also
denote by (λp)p. On the other hand, by the invalidity of (i) and (ii), we may assume that
ε > 0 is su�ciently small to guarantee that max[0,2π] |ηp| ≤ 1 − ε and ‖ηp‖2+α ≤ ε−1 for
all p ∈ N. Pick now β ∈ (0, α) and a subsequence (denoted again by (ηp)p) which converges

in Ĉ2+β
e,k (S) towards a function η. Then, since T is continuous, we deduce that (T (λp, ηp))p

is a bounded sequence in C2+β
e,k (Ω). Particularly, this implies together with the assumption

(A1) that (l(y, T (λp, ηp) ◦Φ−1η ) ◦Φη)p is a bounded sequence in Cαe,k(Ω). We also observe that

T (λp, ηp) solves for each p ∈ N the Dirichlet problem (3.4) when λ = λp and η = ηp, the

leading part of A(ηp, ψ̃) being a linear and uniformly elliptic operator

∆(ψ̃ ◦ Φ−1ηp ) ◦ Φη = ψ̃yy −
2(1 + y)η′p

1 + ηp
ψ̃xy +

1 + (1 + y)2η′p
2

(1 + ηp)2
ψ̃yy − (1 + y)

(1 + ηp)η
′′
p − 2η′2p

(1 + ηp)2
ψ̃y

with coe�cients bounded in Cαe,k(Ω), uniformly with respect to p. Therefore, by Schauder's

estimate, cf. [14, Theorem 6.6], we �nd a positive constant C such that ‖T (λp, ηp)‖2+α ≤ C
for all l ∈ N. Invoking (3.2) and (3.3), we conclude that supp ‖η′′p‖1+α < ∞, so that (ηp) is a

bounded sequence in Ĉ3+α
e,k (S). Since Ĉ3+α

e,k (S) is compactly embedded in Ĉ2+α
e,k (S) there exists

a subsequence of (ηp)p (not relabeled) which converges in Ĉ2+α
e,k (S) to η. We still need to show

that the limit point belongs to C. Clearly, we have that η ∈ V. Moreover, relation (3.2) is
satis�ed along the sequence ((σ, λp, ηp))p, so that it is satis�ed also by the limit point (σ, λ, η).
This shows that (σ, λ, η) ∈ U , and consequently (σ, λ, η) ∈ C.

Since C is compact in U , we may cover C by a �nite number of balls Bi, i = 1...N, having
the property that Bi ⊂ U and sup(σ,λ,η)∈Omax[0,2π] |η| = 1 − ε for some ε > 0, whereby we

set O := ∪i=1...NBi. The restriction of F to O satis�es all the assumptions of Theorem 4.2.
First, let us note that the arguments presented above show that f is a completely continuous
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map. Next, we study how the eigenvalues in the 0-group perturb when λ crosses λ = λm. This
reduces to studying the behavior of µl(λ, σ) when λ is close to λm. To this end, we have from
the proof of [19, Theorem 4.6] that

∂λµp(σ, λm) > 0,

which shows that Fη(σ, λ, 0) has an odd crossing number at λ = λm. Using Theorem 4.2, we
deduce, in virtue of C ⊂ O that C must intersect a further bifurcation point λp of (3.8)
with p 6= m. We claim that p = Nm whereby N ∈ N satis�es N ≥ 2. Indeed, if we
restrict the bifurcation problem (3.8) to the space of 2π/(km) periodic functions, the set

C ∩
(
{σ} × R× Ĉ2+α

e,m (S)
)
satis�es non of the properties (i)-(ii), and our analysis shows that

it contains a further bifurcation point λNm with N ≥ 2. Considering now the bifurcation

problem from λNm in the space {σ}×R× Ĉ2+α
e,Nm(S), our previous arguments show that there

exists a further bifurcation point λN1m on C with N1 being a multiple of N. In this way we �nd
a sequence Np →∞ such that λNpm belongs to C for all p ∈ N. But since λn ↘n→∞ −∞, this
contradicts our assumption that (i) and (ii) do not hold, thereby proving the theorem. �
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