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INSTABILITY OF EQUATORIAL WATER WAVES WITH AN
UNDERLYING CURRENT

FRANÇOIS GENOUD AND DAVID HENRY

Abstract. In this paper we use the short-wavelength instability
approach to derive an instability threshold for exact trapped equa-
torial waves propagating eastwards in the presence of an underlying
current.

1. Introduction

In this paper we consider the hydrodynamical stability of a three-
dimensional exact solution of the governing equations for equatorial
geophysical water waves which was recently presented in [26]. This
solution is explicit in the Lagrangian formulation, and it prescribes
trapped equatorial waves which propagate eastwards in the presence of
a constant underlying current. Physically, the equator acts as a natural
waveguide, leading to trapped zonal waves which decay exponentially
away from the equator, cf. the discussions in [7, 18]. Large-scale cur-
rents and wave-current interactions play a major role in the geophys-
ical dynamics of the equatorial region, and it has been proposed that
the interplay between equatorial currents in the ocean and atmosphere
is one of the major generating mechanisms for El Niño and La Niña
phenomena, cf. [30] and the discussions in [8, 10, 27]. In [34], Mollo-
Christensen introduced a current-like term into Gerstner’s solution for
gravity waves in order to describe billows between two fluids, and this
idea was extended to the geophysical setting in [26].

Hydrodynamical stability is an important area of fluid mechanics
which has been addressed systematically since the nineteenth century,
following the seminal work of Kelvin, Helmholtz, Rayleigh and Reynolds,
cf. [16, 17, 21] for an overview of the mathematical approach to hydro-
dynamic stability. From a mathematical viewpoint, establishing the
hydrodynamical stability or instability of a flow is difficult, given that
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the fully nonlinear governing equations for fluid motion are highly in-
tractable, and accordingly there exist only a handful of explicit exact
solutions. Among these is the famous Gerstner’s wave [3, 23, 25], an
exact solution that is explicit in the Lagrangian formulation. Recently,
Gerstner-type solutions have been derived and adapted to model a
number of different physical and geophysical scenarios [4,7,9,11,33,35]
with explicit exact solutions in a Lagrangian framework [2].

The notion of hydrodynamical stability runs as follows. We suppose
that a given fluid motion is perturbed by an infinitesimal disturbance,
and the question of interest is as to how that infinitesimal perturbation
evolves as time progresses. Physically, the question of hydrodynamic
stability is important for numerous reasons. For instance, unstable
flows cannot be observed in practice since they are rapidly destroyed
by any minor perturbations or disturbances. In this paper we employ
the short-wavelength instability method to prove that if the wave steep-
ness exceeds a certain value, then the equatorial water waves presented
in [26] are unstable under short wavelength perturbations. The short-
wavelength instability method, which was independently developed by
the authors of [1,19,32], examines how a localised and rapidly-varying
infinitesimal perturbation will evolve by way of a system of ODEs.
For certain solutions which have an explicit Lagrangian formulation, it
transpires that the short wavelength instability analysis is remarkably
elegant, and the criteria for instability (4.4)–(4.5) takes on a tangible
and explicit formulation in terms of the wave steepness. This was first
established in [31] for Gerstner’s solution to the gravity water wave
problem, and recently for geophysical flows in [13] and for edgewaves
in [29]. The wave-steepness instability criteria which applies to the
equatorially trapped wave with an underlying constant current is pre-
sented in Proposition 4.1 below.

2. Governing equations

In a reference frame with the origin located at a point on earth’s sur-
face and rotating with the earth, we take the x−axis to be the longitu-
dinal direction (horizontally due east), the y−axis to be the latitudinal
direction (horizontally due north) and the z−axis to be vertically up-
wards. We take the earth to be a perfect sphere of radius R = 6378km,
which has a constant rotational speed of Ω = 73 · 10−6rad/s, and
g = 9.8ms−2 is the standard gravitational acceleration at the earth’s
surface. The governing equations for geophysical ocean waves [15, 22]
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are given by

ut + uux + vuy + wuz + 2Ωw cosφ− 2Ωv sinφ = −1

ρ
Px, (2.1a)

vt + uvx + vvy + wvz + 2Ωu sinφ = −1

ρ
Py, (2.1b)

wt + uwx + vwy + wwz − 2Ωu cosφ = −1

ρ
Pz − g, (2.1c)

together with the equation of incompressibility

∇ ·U = 0. (2.2a)

Here U = (u, v, w) is the velocity field of the fluid, the variable φ
represents the latitude, ρ is the density of the fluid (which we take to
be constant), and P is the pressure of the fluid. For latitudes within
5◦ of the equator we operate within the framework of the β−plane
approximation [15] of the governing equations (2.1)

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px, (2.2ba)

vt + uvx + vvy + wvz + βyu = −1

ρ
Py, (2.2bb)

wt + uwx + vwy + wwz − 2Ωu = −1

ρ
Pz − g, (2.2bc)

where β = 2Ω/R = 2.28 · 10−11m−1s−1. The boundary conditions for
the fluid on the free-surface η are given by

w = ηt + uηx + vηy, (2.2c)
P = P0 on y = η(x, y, t), (2.2d)

where P0 is the constant atmospheric pressure. The kinematic bound-
ary condition on the surface simply states that all surface particles
remain confined to the surface. For trapped equatorial waves the wave
surface profile decays in the latitudinal direction away from the equa-
tor, and we assume the water to be infinitely deep. Since we model
waves which propagate over a flow with a constant underlying current,
the flow converges rapidly with increasing depth to a constant uniform
current

(u, v)→ (−c0, 0) as y → −∞. (2.2e)
The direction of the current has a bearing on the dynamics of the
exact solution that we outline below, and additionally it plays a role in
either increasing or decreasing the likelihood of instability of the flow
with respect to short wavelength perturbations.
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3. Exact solution of (2.2b)

Recently, in [26], an exact solution to the β−plane equations (2.2b)
with a constant underlying current was presented. The solution rep-
resents steady waves travelling in the longitudinal direction due east,
which have a constant speed of propagation c > 0, in the presence of a
constant underlying current of strength c0. The Eulerian coordinates of
fluid particles (x, y, z) are expressed as functions of the time t and the
Lagrangian labelling variables (q, r, s), for q ∈ R, r ∈ (−∞, r0] where
r0 < 0, and s in an interval which depends on the direction and size of
c0, as follows:

x = q − c0t−
1

k
ek[r−f(s)] sin [k(q − ct)], (3.1a)

y = s, (3.1b)

z = r +
1

k
ek[r−f(s)] cos [k(q − ct)]. (3.1c)

Here k is the wavenumber and the function f(s) takes the form

f(s) =
cβ

2γ
s2,

where

γ = 2Ωc0 + g > 0

for all physically plausible values of the current c0. The function f(s)
ensures a latitudinal decay in the fluid motion away from the equator
when c > 0. Defining

χ = k (r − f(s)) , θ = k(q − ct),

the determinant of the Jacobian of the transformation (3.1) is 1− e2χ,
which is time independent. Thus it follows that the flow defined by (3.1)
must be volume preserving, ensuring that (2.2a) holds in the Eulerian
setting [2]. In order for the transformation (3.1) to be well-defined, and
to ensure that our flow has the appropriate decay properties (in both
the vertical and the latitudinal directions), it is necessary that

r − f(s) ≤ r0 < 0.

We note that this relation implies that c > 0 for our flow, and so the
waves must propagate in an easterly direction. As we are modelling
trapped equatorial waves, we take v ≡ 0 throughout the fluid, and we
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can express (2.2b) as
Du

Dt
+ 2Ωw = −1

ρ
Px, (3.2a)

Dv

Dt
+ βyu = −1

ρ
Py, (3.2b)

Dw

Dt
− 2Ωu = −1

ρ
Pz − g, (3.2c)

where D/Dt is the material derivative. The velocity gradient tensor

∇U =

 ∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =
ckeχ

1− e2χ

 − sin θ 0 cos θ + eχ

fs(e
χ − cos θ) 0 −fs sin θ

−eχ + cos θ 0 sin θ

 ,

(3.3)

and so the vorticity is given by ω = (wy − vz, uz − wx, vx − uy)

=

(
−skc

2β

g

eχ sin θ

1− e2χ
,− 2kce2χ

1− e2χ
, s
kc2β

g

eχ cos θ − e2χ

1− e2χ

)
.

The motion prescribed by (3.1) satisfies (3.2) when the pressure func-
tion is

P = ργ

(
e2χ

2k
− r +

c0

c
f(s)

)
+ P0 − ρg

(
e2kr0

2k
− r0

)
,

and when the dispersion relation holds:

c =

√
Ω2 + k(2Ωc0 + g)− Ω

k
, c0 6= c. (3.4)

The flow determined by (3.1) satisfies the governing equations (2.2b),
and the free-surface z = η(x − ct, y) is defined parametrically at fixed
latitudes y = s by setting r = r(s) ≤ r0, where r(s) is the unique
solution of the equation

e2k[r− cβ
2γ
s2]

2k
− r +

c0β

2γ
s2 − e2kr0

2k
+ r0 = 0.

When c0 ≤ 0, which corresponds to a following current, the above
equation has a unique solution for all s ∈ R, and the solution (3.1)
defines a travelling trapped equatorial wave. For c0 > 0, an adverse
current, the solution exists only for s in a restricted region, cf. [26].
The surface wave prescribed by (3.1), for fixed values of s and t, is
an upside down trochoid, cf. [6,7,25]. Also, the steepness of the wave-
profile, defined to be half the amplitude multiplied by the wavenumber,
is given by

τ(s) = eχ,



6 F. GENOUD AND D. HENRY

which is maximum τ0 = ekr0 at the equator. In the absence of a current,
or in a reference frame moving with uniform speed c0, we can see from
(3.1) that the particle trajectories for the underlying flow are closed
circles in a fixed latitudinal plane. The effect of the current in (3.1) is
to transport the particles in the zonal direction with uniform speed c0.
The existence of closed particle paths is typical of Gerstner-type waves,
and it is a phenomenon which does not apply to most irrotational water
waves. In the setting of both finite [5,11] and infinite [14] depth Stokes
waves, and for linear irrotational waves [28], the particle trajectories
are in fact not closed.

4. Instability analysis

The main result of this paper may be stated as follows:

Proposition 4.1. The equatorial waves propagating eastward over a con-
stant underlying current, as prescribed by (3.1), are unstable to short
wavelength perturbations if the steepness of the wave

ekr0 >
3Ω +

√
Ω2 + k(2Ωc0 + g)

Ω + 3
√

Ω2 + k(2Ωc0 + g)
'

1

3
. (4.1)

The proof of Proposition 4.1 will be presented in the remainder of this
section. We employ the short-wavelength instability method, which
examines the evolution of a localised and rapidly-varying infinitesimal
perturbation represented at time t by the wave packet

u(X, t) = εb(X, ξ0,b0, t)e
iΦ(X,ξ0,b0,t)/δ. (4.2)

Here X = (x, y, z), Φ is a scalar function, and at t = 0 we have

Φ(X, ξ0,b0, 0) = X · ξ0, b(X, ξ0,b0, 0) = b0(X, ξ0).

The normalised wave vector ξ0 is subject to the transversality condition
ξ0 ·b0 = 0, and b0 is the normalised amplitude of the short-wavelength
perturbation of the flow which has the velocity fieldU(X) ≡ (u v w)T (x, y, z).
Then the evolution in time of X, of the perturbation amplitude b, and
of the wave vector ξ = ∇Φ, is governed at the leading order in the
small parameters ε and δ by the system of ODEs

Ẋ = U(X, t),

ξ̇ = −(∇U)T ξ,

ḃ = −Lb− (∇U)b + ([Lb + 2(∇U)b] · ξ) ξ

|ξ|2
,

(4.3)

with initial conditions

X(0) = X0, ξ(0) = ξ0, b(0) = b0.
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Here (∇U)T is the transpose of the velocity gradient tensor (3.3) and,
for the system defined by (3.1), L = L(X) is given by

L =

 0 −βy 2Ω
βy 0 0
−2Ω 0 0

 ,

cf. [13] for details.
The system of ODEs (4.3) describing the evolution of a rapidly-

varying perturbation was independently derived in [1, 19, 32]. The in-
stability criterion for Lagrangian flows for which X(0) = X0 is deter-
mined by the exponent

Λ(X0) = lim sup
t→∞

1

t
ln

(
sup

|ξ0|=|b0|=1,ξ0·b0=0

{|b(X, ξ0,b0, t)|}

)
. (4.4)

If

Λ(X0) > 0 (4.5)

for a given fluid trajectory then particles become separated at an ex-
ponential rate, and accordingly the flow is unstable [20]. Therefore,
establishing (4.5) provides us with a criterion for instability of a flow.
For certain solutions [13,31] which have an explicit Lagrangian formu-
lation, it transpires that the short wavelength instability analysis is
remarkably elegant, and the criterion for instability (4.5) takes on a
tangible and explicit formulation in terms of the wave steepness. We
now derive this instability criterion for the flow determined by (3.1).

We choose the latitudinal wave vector ξ0 = (0 1 0)T , and from (3.3)
we then have ξ(t) = (0 1 0)T for all t ≥ 0. It follows that the evolution
of b = (b1, b2, b3) is governed by
ḃ1 = βsb2 − 2Ωb3 +

kceχ sin θ

1− e2χ
b1 −

kc2βseχ(eχ − cos θ)

(2Ωc0 + g)(1− e2χ)
b2 +

kceχ(eχ − cos θ)

1− e2χ
b3,

ḃ2 = 0,

ḃ3 = 2Ωb1 −
kceχ(eχ + cos θ)

1− e2χ
b1 +

kc2βseχ sin θ

(2Ωc0 + g)(1− e2χ)
b2 −

kceχ sin θ

1− e2χ
b3.

(4.6)
Noting that the choice b2(0) = 0 implies b2(t) = 0 for all t ≥ 0, and
accordingly ξ(t) · b(t) = 0, the system (4.6) reduces to

Ḃ =

(
kceχ sin θ

1−e2χ −2Ω + kceχ(eχ−cos θ)
1−e2χ

2Ω− kceχ(eχ+cos θ)
1−e2χ −kceχ sin θ

1−e2χ

)
B, (4.7)
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where B =

(
b1

b3

)
. This system is nonautonomous, however the

change of variables induced by the matrix

P =

(
cos (kct/2) sin (kct/2)
− sin (kct/2) cos (kct/2)

)
transforms the planar system (4.7) to an autonomous system for Q =
P−1B,

d

dt
Q(t) = DQ(t),

where

D =

(
kceχ

1−e2χ sin(kq) − kceχ

1−e2χ cos(kq)− 2Ω + kceχ

1−e2χ −
kc
2

− kceχ

1−e2χ cos(kq) + 2Ω− kceχ

1−e2χ + kc
2

− kceχ

1−e2χ sin(kq)

)
.

Since B = PQ, and P is periodic with time, we deduce that the short-
wavelength rapidly-varying perturbation u, defined in (4.2), grows ex-
ponentially with time if D has a positive eigenvalue, which occurs if

eχ >
4Ω + kc

4Ω + 3kc
.

Using the dispersion relation (3.4), this gives us condition (4.1). There-
fore, if the steepness of the wave is sufficiently large at the equator, the
localised small perturbation (4.2) of grows at an exponential rate and
the flow is consequently unstable. We note that since Ω � 1 the left-
hand side of (4.1) is of the form

3ε̃+ 1

ε̃+ 3
'

1

3
,

where

ε̃ =
Ω√

Ω2 + k(2Ωc0 + g)
� 1.

In particular, we deduce that an adverse current with c0 > 0 favours
instability in the sense that the threshold on the steepness for the
wave to be unstable is decreased compared to the case without current.
Conversely, this threshold is increased by a following current with c0 <
0.

Acknowledgment. The authors would like to acknowledge the support
of the ERC Advanced Grant “Nonlinear studies of water flows with
vorticity”.



9

References

[1] B. J. Bayly, Three-dimensional instabilities in quasi-two dimensional
inviscid flows, in Nonlinear Wave Interactions in Fluids, edited by R.
W. Miksad et al., pp. 71–77, ASME, New York, 1987.

[2] A. Bennett, Lagrangian fluid dynamics, Cambridge University Press,
Cambridge, 2006.

[3] A. Constantin, On the deep water wave motion, J. Phys. A 34 (2001),
1405–1417.

[4] A. Constantin, Edge waves along a sloping beach, J. Phys. A 34 (2001),
9723–9731.

[5] A. Constantin, The trajectories of particles in Stokes waves, Invent.
Math. 166 (2006), 523–535.

[6] A. Constantin, Nonlinear Water Waves with Applications to Wave-
Current Interactions and Tsunamis, CBMS-NSF Conference Series in
Applied Mathematics, Vol. 81, SIAM, Philadelphia, 2011.

[7] A. Constantin, An exact solution for equatorially trapped waves, J. Geo-
phys. Res. Oceans 117 (2012), C05029.

[8] A. Constantin, On the modelling of Equatorial waves, Geophys. Res.
Lett., 39 L05602 (2012).

[9] A. Constantin, Some three-dimensional nonlinear Equatorial flows, J.
Phys. Oceanogr. 43 (2013), 165–175.

[10] A. Constantin, On equatorial wind waves, Differential and Integral
equations, 26 (2013), 237–252.

[11] A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic
internal geophysical waves, J. Phys. Oceanogr. 44 (2014), 781–789.

[12] A. Constantin and J. Escher, Symmetry of steady deep-water waves
with vorticity, Eur. J. Appl. Math. 15 (2004), 755–768.

[13] A. Constantin and P. Germain, Instability of some equatorially trapped
waves, J. Geophys. Res. Oceans 118 (2013) 2802–2810.

[14] A. Constantin and W. Strauss, Pressure beneath a Stokes wave, Comm.
Pure Appl. Math. 63 (2010), 533–557.

[15] B. Cushman-Roisin and J.-M. Beckers, Introduction to Geophysical
Fluid Dynamics: Physical and Numerical Aspects, Academic, Waltham,
Mass., 2011.

[16] P. G. Drazin, Introduction to hydrodynamic stability, Cambridge Uni-
versity Press, Cambridge, 2002.

[17] P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge Uni-
versity Press, Cambridge, 2004.

[18] A. V. Fedorov and J. N. Brown, Equatorial waves, in Encyclopedia
of Ocean Sciences, edited by J. Steele, pp. 3679–3695, Academic, San
Diego, Calif., 2009.

[19] S. Friedlander and M. M. Vishik, Instability criteria for the flow of an
inviscid incompressible fluid, Phys. Rev. Lett. 66 (1991), 2204–2206.



10 F. GENOUD AND D. HENRY

[20] S Friedlander and V. Yudovich, Instabilities in fluid motion, Not. Am.
Math. Soc. 46 (1999), 1358–1367.

[21] S. Friedlander, Lectures on stability and instability of an ideal fluid, in
Hyperbolic Equations and Frequency Interactions, 227–304, IAS/Park
City Math. Ser. 5, Amer. Math. Soc., Providence, RI, 1999.

[22] I. Gallagher and L. Saint-Raymond, On the influence of the Earth’s
rotation on geophysical flows, in Handbook of Mathematical Fluid Me-
chanics, vol. 4, edited by S. Friedlander and D. Serre, pp. 201–329,
North-Holland, Amsterdam, 2007.

[23] F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie
der Deichprofile, Ann. Phys. 2 (1809), 412–445.

[24] D. Henry, On the deep-water Stokes flow, Int. Math. Res. Not. (2008),
7 pp..

[25] D. Henry, On Gerstner’s water wave, J. Nonl. Math. Phys. 15 (2008),
87–95.

[26] D. Henry, An exact solution for equatorial geophysical water waves with
an underlying current, Eur. J. Mech. B Fluids 38 (2013), 18–21.

[27] D. Henry and A. Matioc, On the existence of equatorial wind waves,
Nonlinear Anal. 101 (2014), 113–123.

[28] D. Ionescu-Kruse, Particle trajectories in linearized irrotational shallow
water flows, J. Nonlinear Math. Phys. 15 (2008), 13–27.

[29] D. Ionescu-Kruse, Instability of edge waves along a sloping beach, J.
Diff. Eq., DOI: 10.1016/j.jde.2014.03.009.

[30] T. Izumo, The equatorial current, meridional overturning circulation,
and their roles in mass and heat exchanges during the El Niño events in
the tropical Pacific Ocean, Ocean Dyn., 55 (2005), 110–123.

[31] S. Leblanc, Local stability of Gerstner’s waves, J. Fluid Mech. 506
(2004), 245–254.

[32] A. Lifschitz and E. Hameiri, Local stability conditions in fluid dynamics,
Phys. Fluids 3 (1991), 2644–2651.

[33] A. V. Matioc, An exact solution for geophysical equatorial edge waves
over a sloping beach, J. Phys. A 45 365501 (2012).

[34] E. Mollo-Christensen, Gravitational and Geostrophic Billows: Some Ex-
act Solutions, J. Atmos. Sci. 35 (1978), 1395–1398.

[35] R. Stuhlmeier, On edge waves in stratified water along a sloping beach,
J. Nonlinear Math. Phys. 18 (2011), 127–137.

Faculty of Mathematics, University of Vienna, Vienna, Austria
Email address: francois.genoud@univie.ac.at

School of Mathematical Sciences, University College Cork, Cork,
Ireland, Faculty of Mathematics, University of Vienna, Vienna, Aus-
tria.

Email address: d.henry@ucc.ie


	1. Introduction
	2. Governing equations
	3. Exact solution of (2.2b)
	4. Instability analysis
	Acknowledgment

	References

