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Abstract
Multiple injection dynamic positron emission tomography (PET) scanning is used in the clinical
management of certain groups of patients and inmedical research. The analysis of these studies can
be approached in twoways: (i) separate analysis of data from individual tracer injections, or (ii),
concatenate/pool data from separate injections and carry out a combined analysis. The simplicity of
separate analysis has some practical appeal butmay not be statistically efficient.We use a linearmodel
framework associatedwith a kineticmapping scheme to develop a simplified theoretical under-
standing of separate and combined analysis. The theoretical framework is explored numerically using
both 1D and 2D simulationmodels. These studies aremotivated by the breast cancer flow-metabolism
mismatch studies involving 15O-water (H2O) and

18F-Fluorodeoxyglucose (FDG) and repeat
15O-H2O injections used in brain activation investigations. Numerical results are found to be
substantially in linewith the simple theoretical analysis: mean square error characteristics of
alternativemethods arewell described by factors involving the local voxel-level resolution of the
imaging data, the relative activities of the individual scans and the number of separate injections
involved.While voxel-level resolution has dependence on scan dose, after adjustment for this effect,
the impact of a combined analysis is understood in simple terms associatedwith the linearmodel used
for kineticmapping. This is true for both data reconstructed by directfiltered backprojection or
iterativemaximum likelihood. The proposed analysis has potential to be applied to the emerging long
axialfield-of-view PET scanners.

1. Introduction

Positron emission tomography (PET) scanning is an important diagnostic imaging technique used in the
management of patients with cancer and other diseases, as well as inmedical research. In clinical settings, PET is
typically used to create a single 3D static image of the distribution of the tracer atoms in thefield of view in a time-
frame of interest, after the tracer has been administered. But PET can also be used to obtain a temporal sequence
of scans after radiotracer injection. Such dynamic PET scans give the possibility to analyze the transport and
retention of tracer in order to recovermore detailedmetabolic information (Cunningham and Jones 1993,
O’Sullivan 1993).Most dynamic PET studies involve the use of a single radiotracer, such as 15O-Water (H2O) for
bloodflow (Herscovitch et al 1983), 18F-Fluorodeoxyglucose (FDG) for glucosemetabolism (Phelps et al 1979)
or 11C-verapamil for P-glycoprotein (P-gp) activity (Deo et al 2014). Studies inwhichmultiple radiotracers are
used in the same subject in the same imaging session have the potential to providemore comprehensive profiles
of tissue function (Eary et al 2011, Kadrmas et al 2013), in-vivo. Examples include: repeat 15O-H2O imaging for
brain activation studies (Beason-Held et al 1999), 15O-H2O and 18F-FDG for breast cancer (Mankoff et al 2002),
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13N-NH3 and 18F-FDG formyocardial viability (Yamagishi et al 1999,Dilsizian et al 2009), 15O-H2O and
11C-Verapamil for assessment ofmulti-drug resistance (Eyal et al 2009).

While data frommultiple radiotracer scans could be assembled post-hoc from separate imaging sessions,
acquiring the data in a single imaging session has several advantages. (i) It can reduce issues of anatomic co-
registration. This is important for comparing the facets of biology related tomultiple tracers, especially for
targets thatmaymove between studies, for example, breast (Fowler et al 2016) and ovarian (Makvandi et al 2018)
cancers comparing FDGPET/CT staging studies to therapeutic biomarkers. No doubt longer separation of
injections can lead tomore patientmotions. (ii) It can reduce potential variation in the physiologic state of the
subject fromone session to the next (Huang et al 1982). This is especially true formetabolic studies usingH2O
and FDGorGlutamine and FDG (Zhou et al 2017). (iii)Tracer parameter estimation formulti-tracersmay
providemore reliable kinetic analysis due to commondependence of parameters: tracer delivery onflowor
tracer clearance on plasma volume and hydration, etc.

With the development of newPET scanners like PennPETExplorer (Karp et al 2020) and Explorer total-
body PET scanner (Badawi et al 2019), the longer field of view, increased temporal and spatial resolution, with
lower dose are possible. These new scanners offer new opportunities formulti-tracer studies like the dual-tracer
imagingwith two 18F-labeled tracers using PennPETExplorer (Viswanath et al 2021, 2020)where combined
datawith conjointmodelling can helpmakemore robust the comparison of regional differences in the
relationship between the biologic parametersmeasures (Mankoff et al 2019, Paquette et al 2020).

Multi-tracer studies bring a range of significant challenges (Krohn et al 2007), data analysis being one. There
aremany situations inwhich the analysis ofmulti-tracer dynamic studiesmust consider the full temporal time-
course of data, see for example, Spence et al (1998), Rust andKadrmas (2005), Zhang et al (2016). However,
whenever the temporal separation between different tracer injections ismuch longer than the radiotracer half-
life or there is a simplemechanism to correct for spillover (Huang et al 1982, Koeppe et al 1998, 2001, Black et al
2009, El Fakhri et al 2013), analysis can be approached in one of twoways: (i) studies can be processed separately
to recover kinetic information corresponding to individual tracers (figure 1(A)), or (ii), studies can be
concatenated temporally and a combined analysis (figure 1(B)) of the resulting data carried out.

This paper develops a simplified theoretical framework for understanding the relative performance of
separate and combined analysis ofmulti-tracer PET studies. The approach is based on a type of linearmodelling
framework formapping kinetics (O’Sullivan 1993, 2014)—details in section 2. The theoretical analysis suggests
that after controlling for voxel-level imaging accuracy (resolution), the relative performance of separate and
combine kineticmapping can be understood in simplified termsA series of numerical experiments,motivated
byflow-metabolismmismatch and repeat brain activation studies, are used to directly assessmean square error
(MSE) characteristics of combined and separate analysis techniques. These studies consider bothfiltered
backprojection (FBP) andmaximum likelihood (ML) reconstructed data as well as a number of important
factors including, overall dose, the relative dose of individual tracers and the number of injections involved. Data
fromnumerical experiments are subjected to careful statistical analysis. This helps to clarify themain findings.
Inflow-metabolism studies, combined analysis improvesMSEperformance by between 8%and 30%,

Figure 1.Multi-injection dynamic pet studies. A: Separate analysis; B: combined analysis.
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depending on the reconstructionmethod used. In the repeat injection studies,MSE improvements increase
linearly with the number of injections involved. This is in line with the proposed theory.

The outline of the paper is as follows: the kineticmapping approach and the associated analysis of the impact
of data combination are developed in section 2. An illustrative practical example from aflow-metabolism
mismatch study in a breast cancer patient is given in section 3. Section 4 describes a series of numerical studies
based on 1D and 2D scanningmodels. Results are presented in section 5. Section 6 presents a detailed statistical
analysis of simulation results. The paper concludeswith discussion.

2. Theory

The focus is on dynamic PET studies inwhich it can be assumed that the tracer’s interactionwith tissue is
substantially linear and time-invariant. This assumption is valid for a large class of tracers used in PET,
particularly in a cancer setting. The interpretation of time-course data fromdynamic studies can be approached
using classical indicator dilution theory (Meier andZierler 1954). This theory expresses themeasured time-
course as a convolution between the arterial input function (AIF) and the so-called tissue residue or impulse
response function. The tissue residue is a necessarilymonotone decreasing function.Widely used
compartmentalmodels (Kety and Schmidt 1948, Phelps et al 1979), typically approximate the residue as a
positive linear combination of 1 or 2mono-exponential functions. The spectralmethod (Cunningham and
Jones 1993) generalizes this to allow the positive combination of potentiallymanymono-exponentials. In
statistical terms, the residuemay be viewed as a life-table for tracer atoms introduced to the tissue at time zero via
the arterial supply—indeed this is a key part of (Meier andZierler 1954). As life-tables can be represented in
terms of the underlying distribution (density/histogram) of travel times associatedwith the physiologic/
metabolic journey of individual tracer atoms in the tissue, any residuemodelling assumption carries with it a
specification for the distribution of such travel timeswithin the volume of tissue being analyzed (O’Sullivan et al
2009). Compartmental and spectral approximation requires that travel-time densities be spiked at time zero and
bemonotone decreasing. However, strictmonotonicity of travel-time densitiesmay not always be reasonable (Li
et al 1997). Onemight imagine thismay only be practically important in studies with high-frequency temporal
sampling—perhaps only in the context of the emerging PET scanning technologies (Badawi et al 2019, Karp et al
2020). However (O’Sullivan et al 2009) used circa-1996 PET scanner data involving relatively crude temporal
sampling to demonstrate significant statistical deficiencies in the ability of the standard 2-compartmentalmodel
to correctly represent the regional cerebral time-course of PET-FDGdata in highly homogeneous brain regions
of normal subjects. The anomalywas identified by considering amoreflexible non-parametric analysis of
the residue function, with suitable cross-validation adjustment for potential overfitting relative to the
2-compartmentalmodel. In light of thisfinding, we have beenmotivated to employ a non-parametric
representation of the tissue residue, particularly when analyzing PET time-course data corresponding to large
and potentially heterogeneous regions of interest (ROIs). The concept has been incorporated into a non-
parametric residuemapping (NPRM)methodology that we have found useful for parametric imaging of
dynamic data fromPET imaging of cancer (O’Sullivan 1993, 2014). Figure 2 shows a schematic. Before we
consider the topic of combined analysis ofmultiple-injection studies, we elaborate on important details of the
NPRMapproach. Theoretical points are illustrated numerically in the context of kineticmapping PET-
FDGdata.

Figure 2.Non-parametric residuemapping (NPRM) process.
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2.1. Voxel-level kineticmapping by theNPRMapproach
There is extensive literature on techniques formapping kinetics fromdynamic PETdata—see (Wang et al 2020)
for a recent review includingmany references. A broad family of techniques, including (Cunninghamand
Jones 1993,O’Sullivan 1993), involves voxel-level representation of the tissue residue as a (positive) linear
combination of suitable basis functions.Mono-exponential basis residues are used in (Cunningham and
Jones 1993); more elaborate basis elements, incorporating potentially complex blood-tissue exchangemodels
are proposed in (O’Sullivan 1993). NPRM technique is a variation on the latter approach inwhich basis elements
(known as sub-TACs) are represented in terms offlexiblemodel-free residues. A full account of themethodwith
several cancer imaging applications is provided in (O’Sullivan et al 2014). In the current implementation of
NPRM, sub-TACs are constructed by a 2-step data-adaptive process.We elaborate on these steps and indicate
howderived kinetic aremapped.

Step 1 applies a standard recursivehierarchical clustering scheme to partition the image volume into a set ofS
segments or clusters, with theproperty that the time course data for voxels in the same segment are each
approximately proportional to themean time-course for that segment. Typically the number of segments needed
for this is on the order of 100–200. ThemeanPET-measured time-course data for segments (z̄s) togetherwith their
standarddeviations (s̄s) are used toproduce a reduceddata set {( ¯ ¯ ) }s= = = z s S l N, , 1, 2 ,..., , 1, 2 ,...,S sl sl T .
HereNT is thenumber of time-frameof PETdata acquisition.Next, themean time-course data for each segment is
modelled to create an associated set ofmodelled elements { ˆ }m= = s S, 1, 2 ...,s . In the case of a single-
injection, a generic time-course (z̄) inS ismodelled (m̂)byoneof: (a) a scaled (venous) injection-site signal (CIV),
(b) a non-parametric residue function (R), or (c), a scaled non-parametric distribution function (F) representing
the total number of tracer atomsno longer inblood-tissue exchange as a function of time.This last case is to
accommodate data inwhich thebladder is in thefield of view. Thus

ˆ ˆ · ( ˆ ) ˆ ˆ [ ˆ ] ˆ ˆ [ ˆ ] ( )m m m= - D = - D = - D A C t R C t F C t; ; 1l IV l l p l l p l

for l=1, 2, ...,NT. HereCp is the time-course of the tracer in the arterial blood (AIF). D̂ is an optimized delay
factor. R̂ and F̂ are non-parametrically specified as piece-wise linear functions and estimated using constrained
weighted least squares withweights s̄1 l

2. It is important to appreciate that, apart fromΔ, all unknowns in (1)
are linear, so the computation of the optimalfit, for anyfixedΔ, is evaluated by quadratic programming (QP). A
grid search is used to determine the optimal delay. Choices other than the residue case are only selected if they
significantly improve on the residuefit.Modelled elements are supplemented to include time-courses
corresponding to the AIF and a further time-course corresponding to the integral of the AIF—the AIF exactly
models a spike residue; the integral of theAIF corresponds to a constant residue. In deference to Patlak and
Blasberg (1985), the latter component is referred to as the Patlak-element.Withmultiple injections an
elaboration of (1) is used—details of this are indicated below.

Step 2 of the basis selection procedure takes the full collection ofmodelled time-course patterns and applies
a cross-validation guided backwards elimination procedure to identify a subset of thesewith the property that
positive linear combinations of these patterns adequately fit the reduced dataset S. This leads to afinal set of
basis elements given by aNT×Kmatrix { ˆ ˆ }m m=X ,...., K1 . These basis elements (m̂) are referred to as sub-TACs
andK is their total number. Given themanner inwhich the segmentation process is implemented, voxel-level
time-course data (zi) can be expected to bewell-approximated by a positive linear combination of sub-TACs.
NPRMfits voxel-level data by the linearmodel and approximates the voxel-level residue using the components
that correspond to a residue process (1)

ˆ ˆ ˆ ˆ ( ) ˆ ˆ ( ) ( )å åa m a a» =  =
= Î

z X R t x R t, , 2il
k

K

ik lk i i
k K

ik k
1 r

where ˆ ( · )R t x, i is the residue for the i′th voxel. HereKr is the indices of the subset of sub-TACs that are specified
by a residue in (1). QP is used to evaluate âi.

2.1.1. Residue decomposition andmapping of kinetics
Suppose a generic residue functionR can bemeasured over a time interval [0,TE]—the PET scanning time-
frame. LetTB for 0<TB<TE represent a realistic upper-bound for the large-vessel travel-time of tracer atoms
—aTB value of 15 seconds seems physiologically reasonable, formost PET tracers, including FDG andH2O.
Following (O’Sullivan et al 2014), the residue can bewritten as a sumof vascular, in-distribution and extracted
elements

( ) ( ) ( ) ( ) ( )= + +R t R t R t R t , 3B D E

whereRE(t)=R(TE) for tä [0,TE];RB(t)=R(t)−R(TB) for tä[0,TB] andRB (t)=0 for t>TB;
RD(t)=R(t)−RB(t)−RE(t). Four useful summaries are
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( ) ( ) ( ) ( ) ( )ò ò= = = =V R t dt V R t dt K R K R; ; 0 ; 0 . 4B

T

B D

T

D D D i E
0 0

B E

These assess, large vessel and small vessel distribution volumes (VB,VD), non-large vesselflow (KD) and retention
or apparentflux (Ki) at the end of scanning period. Note, that all of these quantities are linear functions of the
residue. Tracer extraction ismeasured asKi/K1 whereK1=KD+Ki represents the overallflow. By the central
volume theorem (Meier andZierler 1954), mean transit time (MTT) of non-extracted tracer ismeasured by a
ratio of volume toflow. Themeasuremay be adjusted to account for an overall delay (Δ) in the arrival of tracer
atoms to the tissue region. This givesMTT=VD/KD+Δ.

In theNPRMprocedure voxel-level kinetic parameters are based on the estimated residue in (2). This leads
tomapped values for (VB,VD,KD,Ki,Ki/K1). ForMTT,we use ¯+ DV

K
D

D
where D̄ is theflow-weighted average of

the delays (D̂k) associatedwith residue components at the voxel beingmapped, i.e. at voxel i, ¯ ˆ ˆ

ˆD =
a

a

å D

å
Î

Î

K

K

k Kr ik Dk k

k Kr ik Dk

withKDk theflow for R̂k. Note (VB,VD,KD,Ki) are linear and (MTT,Ki/K1) are (smooth)non-linear functions of
α-coefficients in (2).

2.1.2.Why is theNPRMapproach reasonable?
TheNPRMapproach has three important features: (i) in diverse tissue environments the formal theoretical
support for compartmentalmodelsmay be limited (even from an in-vitro stand-point), especially withmore
novel PET tracers. In this context a non-parametric approach has improved flexibility to adapt to the true
(unknown) kinetics. (ii)NPRMcan accommodate significant variations in the arrival of tracer to different parts
of the field of view. This is accomplished by the inclusion of delays in themodelling of sub-TACs. (iii)NPRM
gives an ability to adjust for potential artifacts associatedwith the bladder or the injection site within the scanner
field of view. This is not important in the data presented in this paper but has relevance in abdominal scanning
and in cases where theremay be enhanced temporal scanning resolution.

An alternative non-parametric approach, based on a truncated singular value decomposition (SVD), has
been used tomap perfusion parameters withMR andCTdata (Østergaard et al 1996, Konstas et al 2009). Unlike
themethod used here, the SVD approach does not constrain the target residue to be either positive ormonotone
decreasing. Also, it does not have amechanism to address heterogeneity voxel-level data or indeed to
accommodate artefacts associatedwith the retention of tracer in the bladder or signals associatedwith a venous
injection site in the field of view. Further examinationwould be helpful in getting a detailed clarification of the
performance of the truncated SVD approach relative to theNPRM technique. NPRMmappingwould also seem
to have potential for application to perfusion imagingwithMR andCT. In addition, the approachmay also have
a role in quantitative analysis of digital subtraction angiography imaging (DSA) data—see Liang et al (2019).

A small 1DPET-FDGnumerical simulation study comparingNPRMwith classic voxel-by-voxel
compartmental analysis (Kety and Schmidt 1948, Phelps et al 1979) is implemented. Details of the scanning
model and source distribution are as specified in section 4. The source distribution is specified as a linear
combination of specified sub-TACs (μk)—like (2). In one case (I), source sub-TACs correspond to non-
parametric residues derived from regional analysis of breast cancer imaging data; in the second case (II) source
sub-TACs are replaced by the best fitting one-compartment (1C)model (Kety and Schmidt 1948) to the real
data. The table reports the relative rootmean square error (RMSE) performance ofmapping the six summary
kinetic parameters described above, when voxel-level residues are estimated using either theNPRM technique
or by application of a 2-compartment (2C)model (Phelps et al 1979) that includes adjustment for the fractional
blood volume and tracer delay (O’Sullivan et al 2009). Themodel function (η) is:

( ∣ ) ( ) ( ) ( ) ( )( ) ( )òh b = - D + + - Dl l- - - -t f C t A e A e C s ds, 5b p

t
t s t s

p
0

1 2
1 2

Table 1.Relative performance (6) ofNPRMand 2Ckineticmapping in a PET-FDG setting. Based on a 1D simulationmodel
with source sub-TACs in case Imatched to real breast cancer datafigure 8 and to their best-fitting 1Cmodel fit in case II. Data
reconstruction by both direct (FBP) and iterative (ML)methods.

Parameters

(p) VB VD KD Ki MTT Ki/K1

I FBP 1.64±0.02 1.45±0.03 1.13±0.02 1.06±0.01 1.60±0.03 1.60±0.05
ML 1.78±0.02 1.43±0.03 1.19±0.02 1.05±0.01 1.51±0.03 1.65±0.05

II FBP 1.32±0.01 1.36±0.02 0.92±0.02 0.97±0.01 0.97±0.01 0.84±0.02
ML 1.38±0.02 1.31±0.02 0.97±0.03 0.96±0.01 0.94±0.01 0.85±0.02
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whereCp is the AIF and fb accounts for the contribution from the vasculature. The unknown parameters are
β=(Δ, fb,A1,A2,λ1,λ2)−Δ is unconstrained but the other components ofβ are constrained to be positive.

For computational reasons, associatedwith the 2Cmodel fitting, RMSE values are based onNR=50
replicate simulations at each dose. Relative RMSE values, êipd in (6), are consistent acrossNd=5 dose levels (d)
andN voxels (i). Average values and standard errors are summarized for each of the six parameters (p)–(VB,VD,
KD,Ki,MTT,Ki/K1).

ˆ ˆ ˆ ( )å= = =e
NN

e p e
1

; 1, 2 ..., 6 where RMSE RMSE . 6p
d i d

ipd ipd ipd
C

ipd
NPRM

,

2

Table 1 presents the comparisons between theNPRMand 2Cmethodswhen the source sub-TACs are
generated by a compartmental form (case II) and alsowhen the sub-TACs follow a non-parametric form (case I).
Results show substantially enhanced performance ofNPRMwhen the source is not compartmental and amore
similar performance when the source is compartmental. Remarkably however, perhaps due to spatialmixing
associatedwith data reconstruction, the 2Cmethod does not perform aswell for theVB andVD parameters.
IndeedNPRM is seen to be strongly competitive with the 2Cmapping schemewhen the underlying source is
specified in terms of a compartmentmodel structure. At its worst, in the case ofKi/K1, the relative RMSE
efficiency ofNPRMmapping is 84%. This result is quite typical.

2.1.3. Local error characteristics of NPRMmapping
Although the voxel-levelmodel in (2) used byNPRMhas a linear form, the sub-TACs involved,

{ ˆ ˆ }m m=X ,..., K1 , are derived by a complex data-adaptive process. Hence the overall error in voxel-level kinetics
is a function of the uncertainties in the estimation ofα-coefficients and the uncertainties in the construction of
sub-TACs. Intuitively, because the sub-TACs are constructed bymodelling average time-course data for
segments, onemight expect that the uncertainties associatedwith the sub-TACs have aminor impact on the
error onNPRMvoxel-level kinetics. In order to justify this intuition, we report on another simulation.Herewe
used a standard 2DPET-FDG simulation inwhich voxel-level kinetics were assessed using both known and
unknowndata-estimated sub-TACs. The 2D context is used as the segmentation process with 2Ddata gives rise
tomore realistic subsets of data defining each sub-TACThe scanningmodel and source structure are as
described in section 4. The statistical relation between theRMSE (averaged across voxels) using known and
unknown sub-TACs are shown in table 2. This study only considered a single (realistic) dose andwas restricted
to amodest number of replications (NR=50)—standard errors of simulation estimated quantities of interest
do not suggest we need anymore. The results show that kineticmapping errors are substantially the same
regardless of whether or not sub-TACs are known. Thuswhen analyzing voxel-level NPRMkineticmapping
errors, it seems sufficient to focus on error associatedwith determination of voxel-levelα-coefficients
conditional on knownmodel sub-TACs.Wewill adopt this approach in our analysis of the impact of data
combination.

Wenow focus onwhat controlsNPRMkineticmapping error. A simplistic linearmodel analysis
(Seber 2009) of theNPRMmodel (2)would suggest that the RMSEof the kinetic summaries should substantially
scale with the level of uncertainty in the reconstructed data. Thus for a given voxel (i) the error in an estimate of
kinetic variable, q̂ip, denoted RMSEip

NPRM should have a strong relation to the corresponding root-mean-square
deviation between the reconstructed time-course data (zil) and the true voxel-level time course (λil)—

[ ] ˆl s= å - º= zRMSEi
z

N j
N

il il i
1

1
2

T

T .We examined this numerically using the simulation data used to produce

table 1. The statistical analysis, which incorporated data from a range of dose settings, finds

( ) ( ˆ ) ( )q a b s q» +RMSElog log 7ip ip p p i ip

well-describes the relation between voxel-level errors in kinetics and the local reconstruction accuracy of the
input data (ŝi).ModelR2-values andβ-coefficients are given in table 3. Note that (7) suggests formalMSE
convergence of theNPRMprocedure—as the reconstruction error diminishes so too does the error in
determination of kinetics. The rate of convergence,measured by theβp coefficient, is seen to be close to 1 and
suggests that standard parametric inference asymptotics apply to this situation (Van derVaart 2000). A similarly

Table 2. Impact of data-adaptive sub-TAC selection inNPRMon kineticmapping
errors. Statisticalmodel: b»RMSE RMSEp

unknown
p p

known. Results based on a 2D
PET-FDG simulationwith FBP reconstruction. Standard errors for estimates are
the order of 0.01.

Parameters (p) VB VD KD Ki MTT Ki/K1

β 0.99 0.97 0.82 1.01 0.92 1.03

R2 0.99 0.97 0.93 0.97 0.90 0.94
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strong relation is found between themodelling error associatedwith the linearmodel (2),
[ ˆ ] ˆˆ l l s= å - ºl l

=RMSEi N j
N

il il i
1

1
2

T

T , and the RMSEof the kinetic summaries, i.e.

( ) ( ˆ ) ( )q a b s q» ¢ + ¢ lRMSElog log . 8ip ip p p i ip

In simulations this is important as it allows us to usemodelling error as a surrogatemetric for the analysis of
errors in individual kinetic variables.

2.2.Multiple injections and their combined or separated analysis byNPRM
Withmultiple injections themodel in (1) is elaborated to account for the effect of individual injections and the
separate delay factors thatmay be associatedwithmeasurement of the tracer AIFs. This gives

ˆ ˆ · ( ˆ ) ˆ ˆ [ ˆ ] ˆ ˆ [ ˆ ] ( )( ) ( ) ( )å å åm m m= - D = - D = - D
= = =

 A C t R C t F C t; ; . 9k
j

J

j IV
j

k j k
j

J

j p
j

k j k
j

J

j p
j

k j
1 1 1

Here the index j relates to individual injections. Aswith (1), the residue and outflow functions can either be
modelled using suitable parametric forms (Kadrmas andHoffman 2013, O’Sullivan 1993, Spence et al 1998) or
with non-parametric formulations as used by Lan et al (2019). Note the non-parametric approach leads to an
optimization problem, inwhich only the delay factorsΔj enter in a non-linear fashion. This simplifies
computation.Our interest is in the case where it is possible to consider the separate analysis of kinetics of
individual injections. In this setting, because there is negligible temporal overlap (spillover) between the separate
injections,modelling of sub-TACs in theNPRMvoxelmodel can be accomplished by separate application of the
simple form in (1). Regardless of whether there is overlap or not, voxel-level kinetic parameters, say {θp, p=1,
2, ... P}, are expressed as simple functions of theα-coefficients in (2). Thus ˆ ( ˆ )q a= gip p i where gp is a (smooth)
function defined using the estimated residue functions and delay factors for separate injections.

If data are combined, coefficients are obtained based on the full time-course for themeasured data and the
sub-TACs. Separate analysis recovers kinetics based on the shorter sub-TAC time-course corresponding to
individual injections. Now supposewe are interested in a kinetic summary variable corresponding to the j′th

tracer injection—say θ=g(α). The separate analysis estimate, ˆ ( ˆ )q a= g
j j , is based onfitting (2) using only the

j-injection time-course; the combined estimate, ˆ ( ˆ )q a= g
C C , is based onfitting the full time-course data. Thus

at the i′th voxel wewouldmap the kinetic parameter associatedwith g using one of

ˆ ( ˆ ) ˆ ( ˆ ) ( )q a q a= =g gor . 10i
j

i
j

i
C

i
C

Intuitively, we expect that the combined data estimator will be preferred but it is helpful to have a quantitative
appreciation of the factors thatmight be important. The results reported in the paper address this issue via
numerical simulation. Before that, we present a simplified theoretical analysis thatmay give some intuition.

2.3. An approximate theoretical analysis of combined versus separated analysis
Table 3 suggests that regular parametric statistical inference theory associatedwithGaussian approximation
applies to theNPRMmodel coefficient estimates and the derived kinetic variables. In light of this it seems
reasonable to useGaussian approximation to develop insight into the potential benefits of combined versus
separate analysis formulti-injection studies. ByGaussian approximationwe get the following.

Result 2.1. If the conditions for Gaussian approximation hold, the combined analysis estimator always has lower
variance than the separate injection estimator. For a given kinetic parameter (θ), the ratio of theMSE of the
combined analysis estimate, based on J injections, to theMSE of the separate analysis estimate, using only study j,

Table 3.Voxel-level errors inNPRMkinetics as a function of the local reconstruction (ŝi)
andmodelling (ŝl

i ) errors—see (7), (8). Results based on 1D-PET-FDG simulation.

Parameters (p) VB VD KD Ki MTT Ki/K1

FBP β 0.82 1.03 0.82 0.95 0.99 0.97

R2 0.96 0.93 0.88 0.99 0.99 0.97

ML β 0.78 1.02 0.88 0.97 0.99 0.98

R2 0.78 0.88 0.87 0.98 0.98 0.96

FBP β′ 0.86 1.03 0.88 0.97 0.99 0.99

R2 0.98 0.92 0.92 0.99 0.98 0.96

ML β′ 0.77 1.01 0.89 0.98 0.99 0.99

R2 0.83 0.88 0.88 0.98 0.98 0.96
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is given by the formula

( ˆ )
( ˆ )

( )q

q

s

s s s
=

+ + +

-

- - -
MSE

MSE ...
, 11

C

j

j

J

2

1
2

2
2 2

where s j
2 is the variance of the kinetic parameter based on data from injection j.

The appendix provides a theoretical justification for this result. In replicate studies, individual scan variances
(σj) are identical so theMSE ratio is 1/J, i.e. the percent improvement inMSEwith the combined analysis is
proportional to (J−1).While the combined analysis will always produce better estimates, the amount of
improvement will depend on the reliability of the other scans involved. (8) indicates that the reliability of kinetics
for individual scans kinetics is a function of the associated sourcemodel error.Wewould anticipate that the
study dose and relative sharpness of the AIF, which impact voxel-levelmodel error, would play a role. Numerical
studies will explore this in some detail.

3. Illustrationwith aflow-metabolism study in a breast cancer patient

The data come from a study conducted on a breast cancer patient prior to surgical resection and prior to
scheduled neoadjuvant chemotherapy. PET scanning involved dynamic imagingwith 15O-H2O and 18F-FDG in
the same session. 15O-H2O is a tracer used tomeasure blood flow and perfusion—the gold-standard technique
for in-vivomeasurement of such information. 18F-FDG is themostwidely used clinical PET tracer. FDG
measures information about tissue glucose utilization. It is a keymarker used in the diagnosis and clinical
management of several cancers. Details of PETdynamic imaging protocols forH2O-FDG scanning in breast
cancer and reports on the prognostic utility of the derived information are given in the earlier reports—see
Mankoff et al (2002, 2003), Dunnwald et al (2008, 2011). For the data we present here, 1302MBqof 15OH2O in a
1–4 ml volumewas injected as a bolus and 318MBqof 18F-FDG in 7–10 ml volumewas injected over 2 minwith
a constant infusion pump.Datawere acquired on aGE-Advance scanner using a plane-by-plane FBP
reconstruction algorithmwith corrections for attenuation, scatter, deadtime and random events. The 4DPET
data set consists of an imaging volumewithN=128×128×35 voxels andT=82 (57 forH2O and 25 for
FDG) time frames of acquisition. Dynamic 15O-H2O images were collected for 8.75 min according to the

Figure 3.Estimates offlow,flux andmismatch in aH2O-FDGbreast cancer study from combined and separate analysis. RowA:
Combined analysis; RowB: separate analysis; RowC: ROI analysis.
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following acquisition sequence (number of time frames and their durations): 1×1 min (pre-injection),
15×2 s, 15×5 s, 12×10 s, 8×15 s and 6×20 s. The FDG injection and dynamic imaging followedH2O.
The FDGacquisitions were conducted over 61 min according to the sequence: 1×1 min (pre-injection),
4×20 s, 4×40 s, 4×1 min, 4×3 min and 8×5 min.

The datawere analyzed using theNPRM technique described in section 2. AIFs usedwere recovered from
the left-ventricle (LV) of the heart using the technique reported inO’Sullivan et al (2017). Kinetics weremapped
using both separate and combined analysis of theH2O and FDGdata.

This analysis provides voxel-levelmapping ofH2Oblood flow (K O
1 , mg/ml/min), FDGmetabolic rate or

flux (Ki
F , mg/ml/min) andmetabolism-flowmismatch ratio (K Ki

F O
1 ) for separate or combined analysis

approaches. Results are presented infigure 3. Coronal planes ofmetabolic parameters demonstrate increased
flow andmetabolism in the tumour. Theflow-metabolismmismatch is also seen to be highly elevated in the
tumor region—an elevatedmismatch has been shown to be associatedwith poor response to chemo-therapy
and early cancer relapse (Mankoff et al 2002). In qualitative terms the flow andmismatchmaps recovered by
separate analysis appearmore noisy, the fluxmaps are notmuch different. To explore these differencesmore
carefully, twoROIs—normal breast (335 voxels) and tumour (322 voxels) are extracted, as shown infigure 3.
The distribution ofmetabolic parameters in these twoROIs is presented in boxplots infigure 3.

We can see the flowdistributions in tumour and normal breast aremore variable for the separate analysis,
the standard deviations (SD) offlow from combined and separate analysis in 2ROIs are 0.04 and 0.07 (tumour),
0.014 and 0.018 (normal breast) respectively. The additional variability is on the order of 75%and 28.6% in
tumour and normal breast. For flux, the standard deviations with the two approaches are 0.006 and 0.005
(tumour), 0.0004 and 0.0003 (normal breast). These differences are small. The variability ofmismatch from
separate analysis ismuch bigger than the combined analysis in the tumour region—the situation is somewhat
reversed in the normal region but this could also be due to an underestimation of the normal tissueflow in the
separate analysis. In light of these results, we aremotivated to develop a better understanding of the relative
statistical behaviour of combined and separate analysis of this and similarly structuredmultiple injection
studies.

4.Numerical experiments

Weconducted two sets of experiments, one related to theH2O-FDG study in section 3 and a second one relating
to repeatH2O activation studies. A schematic for the structure of the simulation process is provided infigure 4.
Belowwe provide details of the setup of the 1D and 2D simulationmodels used, the specification for the source

Figure 4.Diagram of simulation process.
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distributions in the two examples and, finally, the procedure used to compare the performance of the combined
and separate analysis techniques. FBP andML reconstructions are both considered in 1D simulation studies, but
for computational efficiencywe restrict theH2O-FDG setup to only FBP reconstruction in the 2D case.

4.1. Scanningmodels
In the 2D case a standard PET scanningmodel involving Poisson sampling of a discretized (attenuated) parallel-
beamRadon transformof the source is used (Kak et al 2002,Natterer 2001). The imaging domain is the unit
square, discretized to an array of dimension 128×128, and the projection domain is the region
[ ] [ ]p- ´2 , 2 0, , discretized to a 183×181 sinogram array of distances and angles. For computational
reasons numerical experiments in 2Donly consider direct FBP reconstruction. In 1D a less familiar Poisson
deconvolutionmodel is employed. Themodel is used because the computational efficiencies enable us to carry
out a sufficient number of replicate studies using both direct and iteratively reconstructed data. Full details of the
model are given inO’Sullivan andRoyChoudhury (2001). The observed data over a given time-frame is a
realization from a projected and scaled source. The projection process is given by the product of a fixed
attenuation profile (a>0) and the discrete convolution between the scaled source and a kernelκβ (β>0). The
kernel acts to smooth the source—its discrete Fourier transform is given by

∣ ∣k n n= =  n
b b- Nfor 1, 2 ... 2.

If y is a realization from the projected and scaled source then the direct reconstruction of y is simply obtained

{∣ ∣ ( ) }
t

n= b
n

-z y a
1

,1*

where ( )y a is the discrete Fourier transformof the attenuation corrected count data, - 1 represents the inverse
transform and τ is the expected total counts (dose) used for scaling. Smoothing is achieved by convolving the raw
reconstruction z*with a discrete Gaussian kernel. The smoothed reconstruction is an analogue of an FBP
reconstruction used in PET.ML reconstructions are readily obtained in this setting. Standard iteratively re-
weighted least squares (with positivity constraints) apply. The convolution structure allows such iterates to be
easily evaluated. Similar to FBP, the rawML estimator can be smoothed to obtain an analogue of the
expectation-maximization (EM) reconstructionmethods used in PET. The simple convolutionmodel captures
the essential estimation complexity of PET. This is because the reconstruction filter acts like a fractional
derivative. By choice ofβ, it is possible to adapt themodel so that the behaviour of the reconstructionMSE as a
function of count rate, ismatched to 2DPET. Experimentation byGu (2021)with the breast FDGdata in
section 3 found that a value ofβ=1.35 in the 1D scanningmodel workedwell. This is the settingwe use in the
studies reported here.

Figure 5. Source distribution, ( ) ( )l a m= å = x txt k k k1 for 2D simulations. Row 1:αmap and normalized time courses (μ) forH2O
and FDG. Row 2: True parametric images for flow,flux andmismatch.
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4.2. Source patterns
The true (target) source is expressed as a linearmodel withK components.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l a m a m a m= + + +x t x t x t x t, ... . 12K K1 1 2 2

In the 2D casewe only consider theH2O-FDG studies. The configuration ismatched to the real data presented in
section 3—see figure 5. Spatial patterns correspond to a central slice through the tumor region; the temporal
patterns including the AIF come from the full data set.

The source specification ismore abstract in the 1D case. Figure 6 shows the spatial pattern of theα-
coefficients and how they are transformed into themeasurement domain. This aspect is the same forH2O-FDG
and the repeatH2O studies. The shape of theAIFs forH2O and FDGmatch those in the breast cancer data. The
time-course patterns for theH2O-FDGare also adapted from the breast cancer analysis; in the repeatH2O
studies, a 1-compartmental Kety-Schmidt (Kety and Schmidt 1948)model is used to create patterns relating to
regions in a normal brain—parameters are given infigure 6. Figure 7 shows observed time course patterns for
H2O and FDG from six ROIs in the breast data, togetherwith the fit corresponding to the analysis in section 3.
The time courses fitted byNPRMare used. The simulation uses a range of seven dose levels τ. The range is
adapted to produce data with a voxel-level noise patternmatched to real data. For theH2O-FDG studies, the
relative dose of theH2O and FDG injections are also varied. A range of seven dose-ratio settings from16: 1 to 64:
1 are examined. Themiddle dose ratio corresponds to the data in section 3. Simulated data, at themiddle dose
and dose ratio for theH2O-FDG studies, are infigure 8. The simulation noise level is a reasonablematch to that
seen in the real data. The repeatH2O study is calibrated in the sameway, but not presented. In repeatH2O

Figure 6. 1Dphantom (mixing coefficients—αk’s) and their projections forH2O-FDG (a), (b) and repeatH2O studies (c), (d). x-axis is
location (1–128) and y-axis is coefficient. Different colors represent different ROIs. Values of theKetymodel parameters (K1,K1/k2)
used to create simulated time courses are given in the legends for (c) and (d).
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Figure 7. Fitted time courses and real data for six kinds of tissues—spleen, tumour,myocardium, normal breast, liver and left ventricle
(LV). Red and blue lines are fitted time courses for theH2O and FDG studies, respectively. Black points are real data. x and y axis are
time (minutes) after injection and activities (MBq/cc).

Figure 8.True time courses and simulated image data atmiddle dose and dose ratio for same six kinds of tissues. Red and blue lines are
true time courses forH2O and FDG studies in simulation, respectively. Grey points are simulated data. x and y axis are time (minutes)
after injection and activities (MBq/cc).
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studies we consider situations inwhich there are 2, 4, 6 and 8 separateH2O injections. In 1D studies with FBP
andML reconstructed data are reported. All studies, both for theH2O-FDG and repeatH2O, are replicated 500
times for each dose and in theH2O-FDG case for each dose-ratio setting.

4.3. Evaluation of performance
Our studies use themodelMSE characteristics of the estimated source, as a surrogate for understanding theMSE
characteristics of estimates of themapped kinetics. Themotivation for this comes from table 3which showed a
settingwhereMSE characteristics ofmapped kinetics are proportional to theMSE reliability of the underlying
source estimate. As indicated infigure 1 the overall scan period,T, ismade up of a set of Jnon-overlapping time
intervals corresponding to the scanning periods for the separate tracer injections under consideration,

È È=T T T T... J1 2 . If âC is the combined estimate coefficient, the corresponding estimated source is
ˆ ( ) ˆ ( ) ( )l a m= å =x t x t,

C
k
K

k
C

k1 and the squared error assessment is

( ˆ ) ¯ [ ˆ ( ) ( )] ( )ò òål l
l

l l= -
W

Se
D

x t x t dtdx,
1

, , , 13
C

j j j T

C

2
2

x j

whereDj and l̄j are the durations andmaximum intensities for the j′th scan. Integrals are evaluated by simple
discretization. For the separate scan case, the estimate of the source for the j′th time-interval is based on the
corresponding coefficients (â j)—i.e. ˆ ( ) ˆ ( ) ( )l a m= å =x t x t,

S
k
K

k
j

k1 for täTj. In this way an overall assessment

for the separate scan analysis is obtained as ( ˆ )l lSe ,
S

.With simulated data, we evaluate the error of combined
and separated scan estimators for study replicates and by averaging anMSE assessment for the source error is
obtained. This gives

( ( ˆ ) ( ( ˆ ) ( )l l l l= =MSE E Se MSE E Se, and , . 14C C S S
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5. Results

Webegin by presenting some sample results for theH2O-FDG and repeatH2O studies. This is followed by
detailedMSE comparisons, including some associated plots.

Figure 9. Samplemetabolic estimates (at amiddle dose setting) based on the FBP andML reconstruction. x-axis gives location (1-128);
y-axis is values ofmetabolic parameters in 1D simulations. See figure 6 for location of different structures. Plots (1) and (2) showflow
andflux inH2O-FDG study; (3) and (4) showflow and blood volume (VB) in the repeat 2H2O studies.
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5.1. Samplemetabolic parameters estimates
In the breast cancer study,H2O and FDG are used tomeasure blood flow and glucosemetabolism, respectively.
Metabolic parameter comparisons for a single replicate at themiddle dose and dose-ratio are presented in
figure 9. True parameters are represented by black lines. Estimated parameters from combined and separate
analysis are shownusing dashed red and blue lines separately.We can seemetabolic estimates from combined
analysis are closer to the true parameters and showmore advantages inH2O study.Metabolism estimated from
these two approaches are both close to the true values in FDG study and difference can be negligible. The
quantitation ofH2O can getmore benefits from the combined analysis and these results are also consistent with
findings from the real dataset in section 3. Similarly, we also showone samplemetabolic parameters—flow and
blood volume (VB) at themiddle dose in a repeatH2O study (H2O

*) infigure 9. The combined analysis is seen to
achieve improvements in both situations.

Table 4.Combined analysis improvements (15) by dose level/ratio forH2O-FDG study.

Dose

0.3 0.5 0.7 1 1.5 2.2 3.2

16.97 17.12 17.37 18.01 18.71 19.25 19.79

17.67 17.60 18.55 19.13 19.38 20.10 19.70

18.13 18.05 18.94 19.09 19.95 20.85 21.17

(a) FBP (1D) 20.10 19.78 19.47 20.85 21.35 21.38 22.34

20.91 20.80 21.16 22.20 22.79 23.44 23.75

23.06 23.11 23.94 24.30 25.23 25.27 26.07

25.08 25.93 26.57 27.22 27.26 27.99 28.86

8.23 8.91 9.19 10.44 10.77 12.34 12.97

8.39 8.74 9.40 10.81 11.29 12.80 13.38

8.55 9.08 9.55 10.45 11.84 13.27 14.81

(b)ML (1D) 8.87 10.18 10.38 11.65 11.64 13.76 14.88

8.98 10.75 10.81 12.11 12.33 13.92 15.65

10.55 11.42 11.60 12.76 13.92 15.50 16.05

10.71 12.35 12.69 13.61 15.06 16.70 17.23

12.98 13.80 13.73 13.30 12.82 14.21 14.17

13.83 13.26 12.75 14.02 13.82 13.28 13.08

14.93 16.23 15.38 15.19 14.89 16.78 14.30

(c) FBP (2D) 16.75 15.74 17.37 16.60 16.31 15.65 15.26

16.21 17.72 16.19 17.85 17.87 17.82 17.10

17.39 19.27 18.33 20.74 19.71 19.29 18.93

23.42 21.59 21.16 19.95 22.55 21.33 21.08

Figure 10.MSEof combined (solid) and separate (dashed) analysis as a function of dose and dose ratio inH2O-FDG study. Different
colors represent different dose ratios.
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5.2.MSEperformance comparisons
5.2.1. H2O-FDG studies
TheMSE in (14) as the function of the dose and dose ratio from combined and separated approach in 1D and 2D
simulations are presented in table 4. Figure 10 presents the information graphically.MSEs from combined and
separated analysis decrease with the dose and increase with relative dose ratio. In 1D simulation studies, the
improvements are 20.85% and 11.65% fromFBP andML reconstruction at the reference dose andmiddle dose-
ratio level—matched to the real dataset and improvement is smaller based on theML reconstructed data.
Benefits by combined approach in 2D simulationwith FBP reconstruction is similar to 1DFBP performance.

5.2.2. RepeatH2O studies
The quantitative improvements for different numbers of injections at seven dose levels from two reconstruction
algorithms are presented in table 5.We can see, the number of injections has a strong effect. See alsofigure 11.
These results show lower doses andmore injections have higherMSEs.Dramatically smaller improvements are
seenwithML. Thismay be because the bandwidth of smoothing process used in reconstruction is adapted based
on the total update scan so there is amore limited impact on individual time frames; theMLprocedure
constrains the reconstruction to be positive and in doing so implicity smooths the voxel-level time-course data.

6. Statistical analysis of simulation results

The highly structured nature of theMSEpatterns infigures 10 and 11, invites amore refined interpretation.

6.1.MSE values scaled by image data accuracy
The overall accuracy of the input data is assessed by ˆ ˆs s= åz N i i

2 1 2—where ŝi was introduced in (7).While we

can scaleMSE values by this, a simpler (and statistically equivalent) procedure is to scale by the voxel-by-voxel

Figure 11.MSEof combined and separate analysis inmultipleH2O studies.

Table 5.Combined analysis improvements (15) inmultipleH2O studies at 7 dose levels.

Dose

0.3 0.5 0.7 1 1.5 2.2 3.2

45.69 46.76 46.67 46.54 48.39 48.49 49.48

(a) FBP 125.91 129.36 133.47 136.76 133.89 140.95 137.81

208.94 211.81 214.03 219.74 222.75 226.32 225.94

284.02 283.77 297.29 293.94 304.76 306.66 314.65

9.51 10.17 11.21 12.14 13.66 15.19 17.15

(b)ML 18.31 20.55 23.44 26.02 28.72 31.48 35.92

23.67 26.53 29.95 33.94 37.92 42.47 48.95

27.86 31.05 35.06 39.93 45.60 51.66 58.28
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error in the total-uptake reconstruction.We label this ŝz•
2 . For theH2O-FDG study, the scaled values are in

figure 12.
These data are well described by themodel

( ˆ ) ( )s ~ + +MSE a a I a DRlog , 16z •
2

0 1 2

Table 6.Modelling scaledMSE in theH2O-FDG study—see (16).

â0 â1 â3

FBP(1D) −6.29±0.03 0.19±0.04 1.40±0.04
ML(1D) −6.17±0.03 0.11±0.04 1.43±0.04
FBP(2D) −6.10±0.03 0.15±0.04 1.26±0.04

Figure 13.MSE values scaled by image data accuracy for combined (solid) and separate (dashed) analysis as a function of dose and
number of studies in the repeatH2O setting.

Figure 12.MSE values scaled by image data accuracy for combined (solid) and separate (dashed) analysis as a function of dose and
dose ratio inH2O-FDG study.

Table 7.Modelling scaledMSE in the repeatH2O study, see (17).

b̂0 b̂1 b̂2 b̂3

FBP 1.80±0.03 0.44±0.04 −0.45±0.01 0.32±0.02
ML 2.23±0.03 0.14±0.04 −0.34±0.02 0.07±0.02
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where I is themethod indicator for combined or separate analysis andDR is the dose ratio. Table 6 reports
estimates values for these coefficients. Note â1 corresponds to about 21% (e0.19−1) and 12% (e0.11−1)
improvements atmiddle dose-ratiowith the FBP andML reconstruction in 1D simulation studies. The results
from2D simulation have the similar performance.

A similar analysis of the scaledMSEdata from the repeatH2O study, leads to amodel with an interaction
term:

( ˆ ) ( ) ( )s b b b b~ + + + ´MSE I No Studies I No Studieslog . . . 17z •
2

0 1 2 3

The scaledMSE values are infigure 13with themodel results in table 7. The improvements of combined analysis
in the repeatH2O studies with two injections are 55% and 15% for the FBP andML reconstructed data,
respectively. The impact of dose, although significant, is not substantial in comparison to the overall impact of
dose onMSE.

6.2. Analysis of the uptakeMSE as a function of dose
Analysis ofMSE of total uptake fromFBP andML reconstruction as a function of dose gives a 2-factor statistical
model:

( ˆ ) ( ) ( )s g g t g~ - +t Mlog log , 18z M•
2

0

where τ is dose level,M is dose ratio (DR) forH2O-FDG study andnumber of injections for repeatH2O studies,
respectively. The estimated coefficients ĝ0, ĝt and ĝM are shown in table 8.We can see ĝt is similar in different
studies and reconstructionmethods. The intercept— ĝ0 in FBP is always bigger thanML,whichmeans uptake
based onMLhas smaller errors. Table 8 shows that themain effect of dose is described by τ−0.42 - this is
consistent with previous asymptotic analyses ofML and FBP in PET, e.g. O’Sullivan (1995). The fact that the rate
of convergence is so similar between the 1D and 2D simulationmodels is a good indicator that the 1DPET
framework captures the estimation complexity of 2DPET.

The rate of convergence analysis allows us to develop a relation between percent improvements obtained by
combined data analysis and the equivalent precent increase in dose thatwould be needed to ensure that the
separate datamatched the benefits of combined analysis. Figure 14 presents this equivalence. In light of table 8,
which gives a dose rate coefficient on the order of 0.42 forML and FBP, a 10% improvement inMSE obtained by
combined data analysis would require a 25% increase in dose if separate data analysismethodswere used.

7.Discussion

Wehave presented a combination of theoretical intuition, real data and numerical simulation to examine the
benefits of combinedNPRManalysis ofmultiple injection studies in PET. This work has been fullymotivated by
practical imaging protocols. The results demonstrate that there are clear gains inMSEperformance by a
combined analysis approach.WithH2O-FDG studies theMSE improvement is around 21%on the same order
of the regional variance comparisons found in section 3. For the repeatH2O studies, improvements increase in
accordancewith the factor (J−1) indicated by the theory in section 2. In general improvements are seen to be a
function of intra-injection dose-ratio but are substantially independent of dose for FBP reconstructed data. In
theML case, the impact of dose is apparent with combined analysis leading to greater improvements at higher
doses. Even though the theoretical analysis looks at the asymptotic situation inwhich variance is themain

Table 8.MSE characteristics of reconstructed data inH2O-FDG andH2O studies
(H2O

*) based on FBP andML.Analysis is based on equation (18).

ĝ0 ĝt ĝM

H2O 2.91±0.01 0.42±0.01 −0.20±0.01
FBP(1D) FDG 4.41±0.02 0.42±0.03 −1.41±0.04

H2O-FDG 4.75±0.02 0.42±0.03 −1.10±0.04
H2O

* −1.71±0.05 0.44±0.04 0.71±0.03

H2O 2.78±0.01 0.42±0.01 −0.16±0.01
ML(1D) FDG 4.30±0.02 0.43±0.03 −1.40±0.04

H2O-FDG 4.65±0.02 0.43±0.03 −1.06±0.04
H2O

* −1.85±0.05 0.43±0.04 0.72±0.03

H2O −2.21±0.01 0.44±0.01 0.03±0.02
FBP(2D) FDG −2.15±0.01 0.37±0.01 −0.03±0.01

H2O-FDG −2.33±0.01 0.42±0.01 −0.05±0.02
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contributor to the error, the predictions from that theory provide good guidance on the nature of benefits that
would be associatedwith combined analysis.

Ourwork has exclusively focused on parameterMSEperformance (MSE andRMSE). In kineticmapping,
the average accuracy of estimation of the target parameters,measured by the RMSE, is a naturalmetric and is
used extensively in quantifying estimation error inmany settings. Nevertheless, a number of othermetrics could
also be of interest. Data-fit or predictive error, with suitable adjustment formodelflexibility,might also be
considered. In addition, criteria based on parameters defined by functions of the kinetics variables associated
with individual tracers would also be of interest.MSE improvements associatedwith combined analysis ofML-
reconstructed data are smaller than those achievedwith FBP-reconstructed data. This phenomenonmaywell
have to dowith the implicit regularization thatML achieves in low-count frames. Our studies used a common
bandwidth for all injections.While this gives some assurance that the resolution of each scan is the same for FBP;
it is not clear, given the implicit regularisation achieved by imposition of positivity, if this is necessarily the case
forML. The effect is probablymost significant in the repeat studies withmany injections. In this setting the total
uptake bandwidth selectionwill lead to very noisy individual scans. The bandwidth selection process ensures
voxel-level FBP time-course data are inherently noisier than inML so the analysis of kinetics for FBP data can
end up beingworse than the same analysis ofML. The issue is apparent in table 5. An obviousway to address this
issue could be to select bandwidths for individual injections separately. Thismay allow the noise characteristics
of FBP to bemore comparable toML (O’Sullivan 1995,O’Sullivan andRoyChoudhury 2001). The issuemerits
further investigation—(Gu andO’Sullivan 2021) reports on some initial work in this direction.

For computational reasonswemade extensive use of a 1D scanningmodel in this work. This allowed
comprehensive evaluation of estimators with iteratively reconstructedMLdata over a range of count rates and
many replicates.While FBP is used very little in practice, we included it in simulations. The relation between 1D
and 2DFBP resultsmight be used as a vehicle to understand how combined analysismethods of 1DMLdata
might perform in a 2Dor 3D setting. Our simulations here demonstrate that combined analysis will significantly
improve the accuracy ofNPRMkineticmapping inmultiple injection studies. It will be important to see how
these results translate into 3D and especially for the next generation total-body PET scanners (Badawi et al 2019,
Karp et al 2020). In this context the emerging techniques for efficient bootstrapping of 3Dmulti-frame PET
studies (Kucharczak et al 2018, Gu et al 2019,Huang et al 2020)may facilitate amore direct practical assessment
of the benefits of combined analysis in a given patient, without the need for highly sophisticated step-by-step
representations of the scanner emissionmeasurements and reconstruction processes.

Figure 14.Estimated relation betweenMSE improvements and study dose. Calculation based on (18)with different colors
corresponding to a range of possible γτ values.
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Appendix. Derivation of formula in (11)

Gaussian approximation of estimates ofα-coefficientsmeans that as any voxel we can assume

ˆ ( ) ( )a a~ SN , , A.1j
j

whereΣj is a covariancematrix associatedwith theweighted least squares estimation process.Within the
Gaussian framework â j is a sufficient statistic, i.e. it captures the full information aboutα based on the j′th can
data. As a result the optimal (maximum-likelihood) combined estimator ofα is amatrix-weighted average of the
individual scan estimators, i.e.
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ClearlyBj is symmetric and positive definite. Thus ifλj is the smallest eigenvalue ofBj, then for any vector v, we
have

[ ] [ ] ( )l¢ + + ¢- -v I B v v v1 . A.4j j
1 1

Since l  0j , it follows that for any parameter (θ) defined by a linear combination θ=ξ′α
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i.e. the combined estimator will always have a smallerMSE than the single scan estimate.
More generally suppose that Gaussian approximation applies directly to the kinetic parameter, θ=g(α).

Thismight follow byfirst-order Taylor series expansion of ( ˆ )ag aboutα (Van derVaart 2000).With this we
would have

ˆ ( ) ( )q q s s~ = ¢SN v v, where A.6
j

j j j
2 2

and v is the gradient of g evaluated atα. As in (A.1), q̂ j
is now (towithin the approximation) sufficient for

estimation of θ based on the information acquired in the j′th scan. The optimal combined scan estimator is a
weighted average of these estimates
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2 2 . The result in (11) follows from this.
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