
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Federated adaptive asynchronous clustering algorithm for Wireless
Mesh Networks

Author(s) Qiao, Cheng; Brown, Kenneth N.; Zhang, Fan; Tian, Zhihong

Publication date 2021-10-14

Original citation Qiao, C., Brown, K. N., Zhang, F. and Tian, Z. (2021) 'Federated
adaptive asynchronous clustering algorithm for Wireless Mesh
Networks', IEEE Transactions on Knowledge and Data Engineering. doi:
10.1109/TKDE.2021.3119550

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://dx.doi.org/10.1109/TKDE.2021.3119550
Access to the full text of the published version may require a
subscription.

Rights © 2021, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Item downloaded
from

http://hdl.handle.net/10468/12113

Downloaded on 2021-11-27T17:13:25Z

https://libguides.ucc.ie/openaccess/impact?suffix=12113&title=Federated adaptive asynchronous clustering algorithm for Wireless Mesh Networks
http://dx.doi.org/10.1109/TKDE.2021.3119550
http://hdl.handle.net/10468/12113

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Adaptive Asynchronous Clustering Algorithms for
Wireless Mesh Networks

Cheng Qiao, Kenneth N. Brown, Fan Zhang, Member, IEEE and Zhihong Tian, Senior Member, IEEE

Abstract—It is a challenge to generate an accurate machine learning model in a distributed network due to the increased concern in data
privacy and high cost in gathering all raw data. This paper presents an adaptive asynchronous distributed clustering algorithm and two
centralised methods for agents in wireless network to learn the global models, while the privacy is protected. Moreover, the communication
cost and clustering quality can be adaptively balanced. The proposed clustering algorithms do not require the number of clusters to be
pre-defined, and we propose a bounding boxes based method to fully utilize the shape information of clusters to improve the accuracy of the
global model. Furthermore, we consider different knowledge levels of agents and different requirements about the global model. In
experiments on randomly generated network topologies, we demonstrate that methods which do all the iterations of clustering in each cycle,
and which exchange descriptions of cluster shape and density instead of just centroids and data counts, achieve higher accuracy, in
significantly shorter elapsed time.

Index Terms—Distributed algorithm, Asynchronous, Clustering algorithm, Wireless Mesh Network

F

1 Introduction

Amassive amount of data, generated by devices such as smart
phones and sensors, has facilitated the machine learning

(ML) methods. They are widely explored in the applications of
Internet of Things (IoT) [1–4]. For IoT system, Wireless Mesh
Networks (WMN) are becoming increasingly important in many
applications [5–7]. According to the research report from IDC, the
global datasphere could grow up to 175 zettabytes (ZB) by 2025,
and IoT devices are expected to create over 90 ZB of data in 2025
[8]. However, data are usually isolated and it is a challenge to
centralise all data to a central server due to the privacy issue and
the high cost [9].

Distributed learning is proposed to address this problem
[10, 11]. One distributed learning technique, named Federated
Learning (FL), is widely applied in various applications for its ef-
ficiency and privacy benefits, where agents in the network learn or
train their models locally and only periodically exchange models
with a central server [12]. However, this centralised method can
not be implemented directly due to the limited wireless resources
(i.e., transmission range and non-rechargeable battery). Therefore,
it is necessary to consider a new framework in wireless network,
where agents in the network exchange model with its neighbours
(hereinafter called distributed methods) or a designated agent
(hereinafter called centralised methods) instead. Our intuition is
that this in-network learning, by reducing reliance on the server,
can reduce high communication cost, respect the privacy and
potentially improve robustness (e.g., agent failures).

In the context of wireless network, the shortage of labeled data
severely hinders the applicability of supervised learning [13]. In
this paper, we concentrate on the distributed clustering problem

• Corresponding author: Zhihong Tian (tianzhihong@gzhu.edu.cn).
• Cheng Qiao, Fan Zhang and Zhihong Tian are with Cyberspace Institute

of Advanced Technology, Guangzhou University, China.
Email: qiao.cheng@insight-centre.org, zhangf@gzhu.edu.cn and tianzhi-
hong@gzhu.edu.cn

• Kenneth N.Brown is with Insight Centre for Data Analytics, Department of
Computer Science, University College Cork, Ireland.
Email: k.brown@cs.ucc.ie

[14, 15]. Many works have explored techniques for distributed
clustering (i.e., federated clustering, parallel and distributed clus-
tering), but most do not take into account the challenges of
wireless networks (for instance, systems heterogeneity, dynamic
networks and limited resources), clustering algorithms (i.e, how
to choose the number of clusters k) and actual demand from
end-users. While many methods aim to address these concerns
individually, in this paper, we suggest that those deficiencies
can be addressed by a unified framework, adaptive asynchronous
clustering algorithm (AAC).

Different knowledge levels of the network (e.g., the size of
network) plays a crucial part in the performance of distributed
and centralised methods. As the agents may leave and join in
a network dynamically, it is hard to know the actual size of the
network in some applications (e.g., sensors deployed in a grassland
for tracking the populations of animals). Thus, we consider two
different scenarios for the initial state of network: 1) Each agent
knows the size of network, i.e., the number of agents in the
network, or 2) Each agent does not know the size of the network
and is only aware of its immediate neighbours.

Personalization from end-users is another important concern
for the algorithm. It poses a crucial role in the overall performance
of network. In particular, it may be unfair to compute a single
global model for all agents when local datasets are sufficiently
private and the data distribution is non-IID [16]. Thus, we consider
two assumptions about the final clustering model: 1) all agents
may finish with slight different but similar models, or 2) all
agents must finish with identical models. Figure 1 shows different
scenarios considered in this paper.

Example 1: Suppose some sensors are deployed in a forest to
monitor the temperature. We could centralise all collected readings
to a designated sensor and compute the average temperature (for
the case of centralised methods C B and C R). Alternatively,
sensors could cluster its local readings first and share the clusters
with its neighbours (for the case of distributed methods). Given
different settings about the network and requirements from end-
users, the procedure for distributed methods is different. For

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Fig. 1: Different scenarios considered in this paper

instance, how to learn the average temperature in this area when
there are N agents in the network (for the case of S 1 A1), how
to learn the average temperature computed by the first agent in
this area when there are N agents in this network (for the case of
S 1 A2) and how to learn the average temperature when the size
of network is not known (for the case of S 2 A1).

Intuitively, the data are partitioned in an non-IID fashion in
heterogeneous networks, since the distribution of data on each
agent may differ. So we expect that the number of clusters for
some agents (or all agents cross the network) is different. However,
all algorithms that we discussed, including existing state-of-the-art
[17–20], assumed that the number of clusters k is known by all
agents in advance. Therefore, an adaptive asynchronous clustering
algorithm is required, which can derive the best number of clusters
as part of the algorithm. In this paper, we take the system
heterogeneity into account and assume that each agent estimates
the initial k value based on its local raw data independently, and
adjusts this value constantly.

The proposed algorithm AAC allows each agent to learn a
global picture and take appropriate actions. Each agent acts as
its own decision maker, but must communicate with neighbouring
agents to learn wider network patterns [21]. Each agent represents
its raw data points as a cluster model (the number of clusters is not
necessarily consistent), and shares this model with its neighbours.
Agents must combine the shared models into a single description,
and eventually, all agents agree with the description (similar or
identical). Cluster centroids and counts are used in existing studies
to summarise the description of data distributions of cluster [17,
19, 20]. Transmitting clusters centroids and counts is not enough,
as it loses important information about the distribution of data
points around the centroids.

At some stages in the overall algorithm, an agent will need to
combine cluster models from two or more agents. The weighted
average scheme is widely used for this aggregation procedure
[17, 19, 20]. Note that the underlying data distribution for this
approach is assumed to be uniform. Furthermore, this method
cannot be used when the number of clusters for each agent in
the network is not the same. We consider a regeneration based
method to update centroids and counts. Agents generate new sets
of data points by sampling from the distributions or descriptions,
and then re-running local clustering.

We develop an asynchronous mechanism for sharing infor-
mation, to avoid synchronisation delays. Different approaches
to in-network clustering, and trade-offs between sharing local

clusters and incremental clustering as information flows through
the network are considered. We design and implement different
methods for describing the shapes of locally identified clusters, to
improve the global clustering performance. The proposed methods
are evaluated empirically, using an asynchronous message delay
simulator, and the evaluations show that the new approaches
can improve clustering accuracy compared to existing methods
(relative to a centralised solution) by up to 10%, while decreasing
the cost of message transferring by 15% and dropping convergence
time by up to 85%, all without transmitting any raw data.

This paper is an extension of our previous conference paper
[22]. The new contributions in this paper are summarized as
follows.

1) We design, implement and evaluate adaptive asynchronous
distributed clustering algorithms that allow each agent to
learn the global view, which relaxes the assumption that
the number of clusters is fixed in advance. Furthermore, we
consider two different requirements about the final cluster
models from end-users: identical or similar.

2) We also propose centralised algorithms to learn the global
cluster model. Agents could centralise all raw data points or
basic models to a designated internal agent.

3) We consider three different underlying synthetic datasets
(from heavily overlapped to well separated) and three real-
world datasets, to evaluate the performance of the proposed
algorithm.

4) We introduce a new method to measure the accuracy. This
new measurement will not penalise the algorithm if the
learned model does not fit its local raw data well.

In the remainder of the paper, we survey related works in next
section, then define our methods, followed by the experimental set-
up, and finally present and discuss the results of the experiments.

2 related works

FL is gaining more and more attention for the benefits of
privacy and security, and zhang et al. [23] presented a compre-
hensive survey of various applications of FL. Personalization in
FL is crucial for some practical applications, and it is explored
in multi-task [18] and meta-learning [24]. Mansour et al. [16]
proposed three different approaches to compute the personalized
models in the context of FL: 1) central agent trains the same model
for a group of clients (cluster), 2) agent adds a hyper-parameter
λ to balance the effect caused by different size of global data and
personal data, 3) agent adds an interpolated weight λk to merge
the global model and local model.

For distributed data mining, in which more general patterns
must be inferred, clustering algorithms are mainly used in two
directions: design the routing protocol [25, 26] and compute the
local model of individual agent [17, 18, 27]. For planning the
routing, the basic idea is clustering agents as groups to reduce the
network overhead. Those groups are managed by cluster heads,
which gather data from nodes inside the group, aggregate the data,
and then transmit summaries as needed to the central base station
[25]. However, deciding which agents should be cluster heads is
a challenging task [28]. Vural et al. proposed an asynchronous
clustering method for multi-hop Wireless Sensor Network, where
the cluster head is elected based on residual agent energy levels
and traffic loads [29]. It only requires synchronisation in local area
and can be extended to different types of network topology, but a
hierarchical network is assumed.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Clustering is also used in computing the local representation
of agent for large-scale peer-to-peer networks, which substantially
reduce the energy consumption of message transmission. Dis-
tributed K-means was proposed in [17, 18], where the K-means
algorithm is distributed by inserting an exchange of messages
between neighbouring agents after each internal iteration of the
basic K-means loop (the selection of centroids, and the assignment
of individual data points to each centroid) on the agent’s local
data. In this scheme, no raw data is exchanged, thus satisfying the
basic privacy requirements, and the centroid summaries reduces
the amount of data being transmitted. However, the algorithm
requires synchronisation, which in wireless networks may intro-
duce significant delay, and may fail to converge if one agent has
initial data whose distribution is significantly different from the
average. The exchange of just centroids and counts also discards
information about the shape of the cluster. When clusters have
significantly different shapes, this may again cause problems for
convergence. Another method is coreset-based method [30, 31].
The main idea is constructing coresets for each partition of the
whole data set and representing the whole data set as coresets.

Gossip-based aggregation methods for distributed K-means are
proposed by Fatta et al. [19] and Bénézit et al [20]. Each agent
selects a small subset of its neighbours to communicate with at
each round, and includes a damping factor in the weighted average
to avoid oscillations. Although global synchronisation is avoided,
local synchronisation is still required. In practice, the nature of
the gossip algorithm means that many rounds are required before
convergence.

The most related work in the literature is [32], in which the
authors propose a decentralized and adaptive K-means clustering
for Non-IID data. To avoid the problem of data over-represented,
the hyperLogLog counters are employed to approximate the total
number of distinct data points involved in the weighting process.
The number of clusters is re-estimated constantly by further
clustering the centroids. However, representing the clusters as
centroids only will lose important information about how data
points spread inside the cluster. Thus the re-estimated number of
clusters relies on the centroids will be biased. In addition, only
clustering accuracy is measured. Note that the low accuracy of
approximate algorithm hyperLogLog used to track the unique data
points will undoubtedly degrade the model [33].

To address the cluster shape issue, for tree-based network
topologies, Bendechache et al. [27] represent each cluster by its
boundary points, and then exchange the boundary and the number
of internal points. Messages flow up the tree to the root. When an
agent receives multiple descriptions, it computes a new description
by merging any overlapping clusters into a single cluster, and
computing the new boundary. The algorithm is initialised with a
much higher k value than is expected, to allow this cluster merging
to reduce the number of clusters. This approach solves the issue of
arbitrary shapes, but introduces failure points at each aggregation,
and requires a secondary communication from root to leaves to
disseminate the final clusters. It also exposes some of the raw data
to neighbouring agents, in order to specify the cluster boundary.

The assumption that the number of clusters is known by
all agents in advance, is adopted by most existing state-of-the-
art work [17–20]. However, in most practical applications, there
is no prior information on how many clusters there should be.
Therefore, an adaptive asynchronous clustering algorithm is re-
quired, which can derive the best number of clusters as part of the
algorithm. We could simply rerun the algorithm for each possible

k value, but this would be expensive in both elapsed time and in
communication cost. We note that one recent paper on distributed
clustering, [27], does derive the appropriate k value automatically,
by starting with large k values, and then combining multiple
clusters together as information flows up a tree in the network.
We focus here on algorithms for a flat network. For comparison,
we also consider methods which send all raw data or basic models
to a single identified agent.

3 AAC Framework Description
3.1 Overall Structure

In this section, we show the overall framework, where dis-
tributed method and centralised method are mainly described. We
assume a flat ad hoc communication network with no specific
topology, and no distinguished agents. Agents observe some
triggers to start clustering - the trigger could be synchronized
across the whole network, or could be local to one or more agents.
If an agent receives a request to exchange its cluster models, it
will interpret this as the trigger to start clustering.

3.1.1 Distributed methods
For distributed methods, we describe the overall structure

of adaptive asynchronous clustering algorithm (AAC) for all
agents to learn wider network patterns (see algorithm 1). As we
mentioned before, we aim to propose a unified framework and
address the challenges of wireless network, clustering algorithms
and actual demand from end-users.

The knowledge level of network size will change if the
network is dynamic. Thus, we consider two levels of agents’
knowledge: the size of the network is known in advance or agents
only know their immediate neighbours. Note that the clustering
algorithm itself plays an important role in the overall performance
of network and it is indispensable to decide the number of clusters
in advance. We consider two different assumptions about the
number of clusters: the number of clusters k is pre-defined and
agents estimate the k locally and independently.

Algorithm 1: Asynchronous distributed clustering algo-
rithm for agent Ni

1 Input: knowledge level S l, number of clusters k, local
dataset Xi

2 Initialization: generate initial cluster model;
3 Exchange cluster descriptions with neighbours;
4 Wait until messages received or time exceeded ;
5 while time not exceeded and messages received do
6 Incorporate received neighbours’ cluster information;
7 Run local clustering to completion;
8 Transmit new summaries to neighbours;
9 Wait until message received or time exceeded;

The basic steps are as follows: an agent Ai performs a local
clustering algorithm based on the knowledge level S l and the
number of clusters k (line 2). Ai summarizes the local clustering
result then transmits it to Ai’s neighbours (line 3). After receiving
cluster summaries from all neighbours, Ai executes the local
clustering algorithm again with the new information (line 7).
Once Ai detects no significant changes (measured by a threshold)
comparing to the clustering in the previous iteration and there are
no incoming messages from other agents, AAC terminates (line
9). We explore these steps in more detail in Section 3.2.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

3.1.2 Centralised methods

The centralised method is also a potential method to learn
the network wider pattern. Agents in this network forward their
observations or summaries to a designated agent, and the global
model is computed. Then a secondary communication from this
designated agent to all other agents is required to disseminate the
final model. Based on this procedure, we assume that all agents
know the size of network (S 1) and an identical global model (A2)
is required by the centralised methods.

We proposed two new centralising methods to learn the global
model. These two centralising methods are based on a tree based
topology, which differs from the flat topology used in distributed
methods. The central agent is picked by centrality. Finding out
which is the most central agent is crucial, because it could help to
disseminate information in the network faster and protect network
from breaking. We decide the central agent by closeness centrality
because it is very intuitive and suitable to characterise a process
in which the information travels through the shortest distances.
Formally, the closeness centrality of i is defined as:

Ci =
N∑N

j=1, j,i di j
(1)

where di j is the length of the shortest path between i and j in a
N-agent network. Figure 2 shows an example how to construct an
tree structure based on the agent centrality.

Fig. 2: Tree structure based on centrality

For this tree based structure, we consider the following two
approaches:

1) Centralise raw data points to a designated central agent. For
individual agents, it requires multiple packets to send out all
its raw data points. We consider two different assumptions:
in the first, there is no inter-packet delay, while in the second
there is a uniform inter-packet delay of 0.1s.

2) Each agent produces its own basic model as before, and then
transmits that model to the designated central agent.

To do this, we have to define the routing table for agents.
We assume that this routing table is available for each sensor in
advance and the computation cost to compute the routing path is
ignored here. A shortest-path tree is constructed with the central
agent as the root. For different types of agents, the sharing strategy
is listed as follows:

1) Root agent: wait until all information is received from its
children, and then compute the final model.

2) Leaf agent: send all messages to its parent agent (raw data
points or basic models).

3) Other agents: send all its local data to its parent agent and
whenever messages are received from child agents, relay the
message on to the parent.

3.2 Descriptions of Local Clustering Algorithm and Clus-
ter Integration

In the last section, we described the general framework for
distributed methods and centralized methods. These two methods
do not require any prior information about the underlying dis-
tributions. In this section, we describe the procedure and related
technique for each step outlined in algorithm 1.

3.2.1 Estimate the number of clusters k
The initial step is to choose an appropriate k based on its

local data. There is no clear way to choose the appropriate
number of clusters, since the shape and scale of the distribution
of points in a dataset and the desired clustering resolution vary
with applications. Note that increasing the number of clusters
k will always reduce the amount of error (for example, Mean
Squared Error), but the performance, usually measured by minimal
intra-cluster distance and maximal inter-cluster distance, would be
degraded when k is getting large until we reach the extreme case
that k equals the number of data points.

Although choosing an appropriate k for clustering algorithms
is well studied, it has not yet explored in the context of distributed
learning. The assumption that the number of clusters is known
by all agents and fixed to be the same for all agents in advance,
is adopted by most existing state-of-the-art works [18, 19, 19,
20, 27], then a weighted averaged scheme is used to update the
centroids. However, in most practical applications, there is no prior
information on how many clusters there should be. We propose
that each agent estimates its k locally and independently, which
means that some agents may have different k values.

Olatz et al. shows that Silhouette achieves the best results
among the 30 cluster validity indices in most cases [34]. It
measures how similar a point is to its own cluster (cohesion)
compared to other clusters (separation). The cohesion is measured
based on the distance between all the points in the same cluster
and the separation is based on the nearest neighbour distance.
The silhouette value ranges from −1 to +1, where a high value
indicates that the object is well matched to its own cluster and
poorly matched to the nearest clusters. In this paper, we use the
Silhouette method to pick the number of clusters k.

We proposed that a regeneration based method (see Section
3.2.4) to integrate message from neighbours, which does require
the number of clusters k for all agents is consistent. Agents
could estimate and recover neighbours’ datasets by exploring the
summary descriptions. The recovered dataset is then combined
with its local data. A new k is estimated based on this combined
dataset. Since this combined dataset will update constantly, the k
will update correspondingly. Algorithm 2 shows that the silhouette
method used to pick the k. Given a combined dataset Xc with
a range of number of clusters, the k value that maximises the
average silhouette will be the provisional best number of cluster.
This silhouette method can be automated, since it is simple to
determine the maximum value [35].

3.2.2 clustering and cluster summaries

After the confirmation of K value, the next step is doing clus-
tering and describing the clusters. Transmitting cluster centroids
and counts is not enough, since it loses important information
about the distribution of data points around the centroids (see
Example 2). Intuitively, the cluster shape descriptions could im-
prove the performance of proposed algorithm (i.e., fewer messages

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Algorithm 2: Method to pick the number of clusters

1 Input: Range of number of clusters: k = {k0, k1, · · · , kn},
The combined dataset Xc ;

2 Output: The number of clusters that fits model best kb;
3 for i = 0; i ≤ n do
4 Compute clustering algorithm for different values ki ;
5 Calculate the average silhouette (S) on dataset Xc;

6 Plot the curve of S for all different values ki;
7 Find out the location kb with maximum S in the plot;

transmission and higher accuracy). In this paper, we propose that
each cluster is described by centroids, estimation of size, and a
description of distribution and shape instead, which fully describe
the clusters.

K-means and GMM are two widely used clustering algorithms
since they are robust, computationally fast and easy to imple-
ment. We use these two algorithms to compute the local model
for agents. Although GMM describes the cluster as mean and
variance, it assumes that the underlying distribution of cluster is
normal (denoted as GMM). This motivates us to find a new method
to describe the shape of cluster. In this paper, we use K-means to
cluster the dataset and describe the cluster as nested bounding
boxes (denoted as K-means). Note that an intermediate method is
finding clusters by distance and describing the clusters as mean
and standard deviation (denoted as SG). Figure 3 shows the three
different schemes:

1) K-means. Local data are clustered by K-means. Nested
bounding boxes are then used to describe the shape of
clusters. Centroids, counts and bounding boxes are shared
with neighbours.

2) Separate Gaussians (SG). Similarly, local data are clustered
by K-means and then a separate multi-dimensional Gaussian
is fitted to each cluster, where the shape of cluster is denoted
by mean and variance. In this case, the Gaussians, plus a
count of the data points in each cluster, are shared with
neighbours.

3) Gaussian Mixture Model (GMM). A Gaussian Mixture
Model is fitted to the local data by the EM algorithm [36].
The shape of each cluster is described by the means and vari-
ances of the GMM. The GMM, plus a count of the number
of data points in each cluster, is shared with neighbours.

Fig. 3: Clustering algorithms and corresponding description of
clusters

To generate the shape and density description for clusters ob-
tained by K-means, we first apply Principal Component Analysis

(PCA) to each cluster [37], to generate the axes of the cluster
shape, centred on the centroid. For each positive and negative axis,
we generate the maximal data point, and some other intermediate
percentile points. We then adjust these percentile points to midway
between that point and next closet point. Taken together, this pro-
duces several bounding boxes (or hyperrectangles), containing the
maximal data point and other percents of the points respectively,
oriented along the PCA axes, and thus approximates the shape
and density of points in the cluster. Figure 4 shows an example
generation of bounding boxes for a 2-dimensional dataset, where
100%, 80% and 40% are used as percentiles.

Fig. 4: Original data and its summary description

3.2.3 Data exchange

The next step is to share these obtained representation of
clusters with neighbours. While an agent is doing local clustering,
more messages may arrive from neighbours. We considered two
approaches: transmit the result of local clustering, and then read
any stored messages and repeat; read stored messages and repeat
clustering, until the inbox is empty, and then transmit the cluster-
ing results. In practice, transmitting before reading new messages
produced better performance, so we only report those results 1.
As well as transmitting their own summaries, we allow each
agent to send on summaries received from other agents without
modification if needed. Further, to each summary we attach a list
of all agents whose data was used to generate the clusters. This
supports the delayed clustering above, where an agent waits until it
has received information from all known agents. In some cases, we
also allow an agent to issue a request for reduced data summaries
(summaries built from a specific subset of agents). Finally, we
consider the case where messages are sent to all direct neighbours
[17, 20], and where messages are sent to a randomly selected
subset of neighbours [19].

Example 3 - delayed clustering : agent Ai waits for message
from agent Ak who are two hops away, then this message could be
forwarded by agent A j who connects these two agents, since the
message remains unchanged and is labeled.

Example 4 - Issue a request: suppose agent Ai received two
messages: abc and ac, then agent could issue a request for b if b
is a necessary part for building the final model.

3.2.4 Incorporating neighbours’ descriptions

An agent has to decide how to incorporate neighbours’s de-
scriptions when those descriptions arrive after some delay. The
weighted average aggregation function [18, 19, 19, 20, 27] is
suitable for the case where the number of clusters k is fixed to
be the same for all agents only. Moreover, it assumes that the
underlying distribution of measurement to be weighted is uniform.

1Note that agents will do repeat clustering if reading before transmitting
is applied, since it always find new message in the inbox after clustering.
This will drain the energy. Alternatively, agents could do only one around of
clustering after it receives all information

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Example 2. Given three clusters that generated from uniform distributions in a 2D space (figure on the left), K-means forms three
cluster areas as balls centered at their gravity center (figure in the middle). However, the balls are not fit well with the data points. It
could be further improved by extra shape information of the cluster (figure on the right).

Thus, a data aggregation function with adaptive number of clusters
is desired.

We proposed a generation based method to integrate message
from neighbours. When we receive descriptive summaries, we
generate new data points by sampling from those descriptions, and
we sample in proportion to the cluster counts. The sampled data is
then combined with the local data, and provides the input to next
round of local clustering. For the PCA/bounding box description,
we generate points uniformly at random in the 40% box, and then
generate points uniformly in each sector to extend to the 80% box,
and then repeat to fill the remainder of the 100% box (Fig 5, for
the same case as Fig 4). For the Gaussian summaries, we simply
sample from the Gaussian distribution.

Algorithm 3 shows the re-generation steps for three cluster-
ing variants. If K-means is used as clustering algorithm, nested
bounding boxes, density and centroids are used to describe the
clusters. Then uniformly generate the same number of data points
inside the nested bounding boxes. If GMM or SG is used as
clustering algorithm, simply regenerate the data points based on
the mean and standard deviation of clusters. The performance of
this regeneration method is evaluated in Section 5.

Algorithm 3: Regeneration algorithm

1 Input: Summary descriptions S = {S 1, S 2, · · · , S k};
2 Output: Regenerated dataset Rs;
3 for each cluster description S i ∈ S do
4 if Clustering algorithm is K-means then

/* p: array of box percentile, ;

sval: corresponding values of p */

5 S i = {n, p, sval} ;
6 Generate data points;
7 Append generated dataset to Rs;
8 else if Clustering algorithm is GMM or SG then

/* µ: mean of cluster,;
val: the variance of cluster */

9 S i = {n, µ, var};
10 Randomly generate n data points based on µ and

val;
11 Append generated dataset to Rs;

12

Fig. 5: Bounding boxes and the corresponding regenerated data

3.3 Agent knowledge: known number of agents

We consider two different scenarios for the initial knowledge
agents have of the rest of the network. In this first scenario, we
assume that each agent in the network knows the total number
of other agents. In any uncontrolled process, we run the risk of
creating a feedback problem, where the neighbours of an agent
send it summaries which already incorporate that agent’s own
cluster descriptions. For example, A sends its summaries to B,
which incorporates the data, generates new summaries, and sends
them on to C; C updates its global view, and passes it on to A; if A
then incorporates that model into its local data, it will effectively
give double the weight to its own data. To avoid this problem,
each agent can simply transmit its own summaries labeled with its
own ID, and then simply relay other received previously unseen
summaries without re-clustering. Once it has received the correct
number of summaries, it can combine them all to get a global
picture. At that point, it can transmit the global summary, with
a flag to indicate that no new information will be received. Each
agent receiving this termination message stops its own process,
adopts the global summary, and retransmits the message. We call
this algorithm variant Model Merge after Filtering 1 (MMF1),
shown in Algorithm 4. We note that there is some privacy loss
here, since at least one agent will see the individual summaries
from each other agent.

Compared to methods in [17, 19], our proposed algorithms
are asynchronous, which means agents do not have to wait for
message from all agents to proceed to the next step. It could avoid
the performance degradation caused by agent failure or stragglers.
Further more, we provide more information about the cluster. The
clustering for each iteration is more accurate, leading a higher final
clustering accuracy and fewer message transmission.

3.4 Agent knowledge: direct neighbourhood only

In this scenario, we assume that each agent knows only its
immediate neighbours, and does not know the identity of other
agents, or even the size of the network. The same feedback

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Algorithm 4: MMF1 for agent Ni in n agent network

1 Require: Local dataset Xi;
Input : Message box B
Output: Final representatives of clusters

2 Randomly generate k initial centroids in the space;
3 Clustering Xi with specific centroids as input;
4 Initialise list of received model T;
5 while not terminated do
6 if Message box B is not empty then
7 if Receive terminate message then
8 Call algorithm 3;
9 Send terminate message to all neighbours;

10 Terminated;
11 else if Receive data message x and x < T then
12 Add x to T;
13 if len(T) == n then
14 Compute global view;
15 Send converge command to neighbours;
16 else
17 Share message x with neighbours;

problem as in the previous scenario still applies. In this case,
we cannot wait until all summaries are received, since no agent
knows how many summaries are expected. Instead, we exploit the
IDs that we can attach to each model. When an agent receives
a summary constructed only from IDs it has not seen before, it
applies the basic summary incorporation approach. If it receives
a summary constructed entirely from IDs it has already seen,
it ignores it. If it receives a summary built from some old and
some new IDs, it then applies a model subtraction procedure, to
avoid the feedback problem. It generates sample data points for the
parent model, then generates temporary data points for the model
to be subtracted, and for each temporary data point, it removes the
closest data point generated for the parent model. If it does not
have an appropriate set of smaller models to subtract, it identifies
a small missing set, and sends a request to one or more neighbours
which transmitted a superset. Those neighbours either reply with
the summaries, or issue their own requests in turn. The algorithm,
MMF2, is described in Algorithm 5.

Algorithm 5: MMF2 for agent Ni

1 Require: Local dataset Xi ;
Input : Message box B
Output: Final representatives of clusters

2 Randomly generate k initial centroids in the space;
3 Clustering Xi with specific centroids as input;
4 Sending representatives and model name Mi to

neighbours;
5 while not terminated do
6 if Message box B is not empty then
7 if Received message then
8 Call algorithm 3;

9 else
10 turn to sleep but ready to work;

Algorithm 6 shows the procedure for model subtraction. First,

the final model fmodel, which contains all unique message it saw,
is computed and the largest subset lsub of fmodel is computed as
well. For instance, agent i received two messages: abc and bce f ,
then the final model fmodel is abce f and lsub is bce f . After that,
dset is defined as the difference between lsub and fmodel. Then, the
elements of dset are searched in History table T. If any item is
still missing, send out a request to specific neighbours who have
transmitted this message before. Finally, models for fmodel are
combined by substracting and regenerating and the regenerated
dataset is clustered to get the new model.

Algorithm 6: Model Subtraction

Input : History table T̄, Message list mi (0 ≤ i ≤ N)
Output: regenerated dataset Rs

1 H← set of agent IDs in T̄;
2 fmodel ← union of H & agent IDs in mi;
3 T̄ = T̄ + mi;
4 if there exists a set of model IDs S ∈ T̄ such that S = H

then
5 fmodel = S
6 else
7 lsub ← biggest subset from T̄;
8 dset ← fmodel \ lsub;
9 Find elements of dset missing from T̄;

10 Send request to neighbours to get those models;
11 fmodel = lsub + dset ;

12 Call algorithm 3 with fmodel as input;
13 Clustering regenerated dataset;
14 Summarise the clusters;
15 Return new model of clusters;

As mentioned before, we consider two different assumptions:
all agents may finish with slightly different models or must finish
with identical models. The basic process for these two assumptions
is as follows:

1) If we accept that agents could end up with slightly different
models, then the agent picks the model that is received or
produced first as their final model and ignores any model that
comes later.

2) If converging with identical models is required, all agents
choose the model with the earliest timestamp as their final
model. In this case, an agent will update its model only when
the received model has an earlier timestamp than its previous
model.

Example 5: suppose there are three agents 0, 1, 2 in a chain,
where agent 0 connects to the other 2 agents, and the clustering
algorithm used is K-means. Suppose the transmission delay for
the first round of communication is T01 = 0.2s, T02 = 0.3s, T10 =

0.4s and T20 = 0.1s, where T20 means the delay for transmission
from agent 2 to agent 0. We assume that agents in this network do
not know the size of network, the k value is not pre-defined and
agents may finish with slightly different models. The basic steps
is as follows:
• All agent will run one-round K-means with some initial

centroids, and compute the initial model (contains centroids,
counts and cluster description). The timestamp for each agent
after initialization is [0.76, 0.85, 0.75].

• Agent 0 receives message from agent 2 at timestamp 0.85s.
Then it regenerates the data points based on this message.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

These regenerated data points will be combined with its local
raw data points. Agents 0 computes new centroids by doing
K-means on the combined data points. The difference before
and after updating is substantial, so agent 0 does clustering
again (finish at 1.87s). After that, agent 0 sends out the
updated model to its neighbours agent 1 and 2.

• Similarly, agent 1 receives message from agent 0 at times-
tamp 0.96s and finishes clustering at timestamp 1.58s. Again,
the updated model is sent to its neighbors agent 0. Agent 2
receives message from agent 0 at timestamp 1.06s. It finishes
processing at timestamp 1.6s and shares its model with agent
0.

• Agent 0 receives message from agent 1 at timestamp 1.25s.
At this time, agent 0 is doing clustering (finish at 1.87s), it
will read this message after the processing.

• Agents 0 read its inbox at 1.87s and recomputes the centroids.
There is only slightly difference before and after updating, so
it stops updating. It sends out a convergence message (the
global model is included) to agent 1 and 2.

• Agent 1 and 2 will accept the global model sent from agent
0 as its final model.

4 Time Complexity
Algorithm 4 and 5 consists of updating local model, generating

data points and computing the global models. The time complexity
to generate N data points uniformly or from a normal distribution
is bounded by O(N). First, we consider the scenario that the
number of clusters k is pre-defined. If the size is known in
advance, an agent computes the global model as soon as it receives
local model descriptions for each agent in the network. In this case,
the time complexity depends on the clustering algorithm used to
compute the local and global models.

1) K-means is used as clustering algorithm. Since we calculate
the distance in a 2-dimensional space, we assume the cost
of computing the distance from a point to a cluster centroid
is constant. Running t iterations of K-means loops (Lloyd’s
algorithm) exhibits the complexity of O(N kpt), where k is
the number of clusters, p is the dimensionality of the data
[38]. Usually the iterations t and k are small, so the time com-
plexity is O(N) 2 [39]. In this case, PCA is used to compute
the nested bounding boxes. Computing PCA involves a time
complexity of O(p2∗h+p2∗N) [40], where p is the dimension
of the data and h is the number of eigenvector in a reduced
dimension to be computed 3. Given the underlying dataset is
2-dimensional, computing the PCA takes time in O(N). So
the overall time complexity is bounded by O(N + N + N + N)
= O(N).

2) GMM is used as clustering algorithm. The time complexity
of GMM is O(N ∗ k ∗ p3) = O(N) [42]. The overall time
complexity is bounded by O(N + N + N) = O(N).

3) SG is used as clustering algorithm. Compared the process
with that of K-means, the computation of PCA is not re-
quired. Applying a Gaussian process to a dataset of size N
has complexity O(N3), and it could be reduced to O(N) by
various approximate techniques (i.e., partition the dataset into
several groups) [43]. Since we fit each cluster to a separate
Gaussian, so the overall complexity is O(kN̄), where N̄ is the

2In the worst case, k-means is exponential.
3When p is larger than N, the time complexity is bounded by

O(min(p3,N3)) [41]

size of cluster and N̄ < N. So the overall time complexity is
bounded by O(N + kN̄ + N) = O(N).

When an agent is only aware of its immediate neighbours,
the agent has to compute the provisional global model whenever
received new message. Suppose an agent has to update T rounds
until convergence.

1) K-means is used as clustering algorithm. In this case, an
agent has to compute PCA, re-generate data points and do
clustering for T rounds. So the overall time complexity is
bounded by O(N + T (2N + N)) = O(T N).

2) GMM is used as clustering algorithm. The overall time
complexity is bounded by O(N + 2T N) = O(T N).

3) SG is used as clustering algorithm. The overall time com-
plexity is bounded by O(N + 2T N)) = O(T N).

When the number of cluster k is not pre-defined, an extra
step to define k is required. The time complexity of silhouette
method to define is bounded by O(N2). The time complexity for
the distributed algorithms under this scenario, no matter which
clustering algorithm is used, is bounded by O(N2). If agent is
only aware of its neighbours, the time complexity is bounded by
O(N2 + 2Tn)) = O(N2).

The centralised method C R consists of selecting the number
of clusters k and doing a complete clustering. The overall time
complexity for three clustering variants is bounded by O(N2 + N)
= O(N2). The centralised method C B takes three steps: selecting
the number of clusters k, generating data points based on received
local models, and computing the final model and it takes time in
O(N2 + N + N) = O(N2).

5 Evaluation of nested bounding boxes
In this section, we evaluate the performance of proposed

method to describe the clusters with nested bounding boxes before
showing the results of proposed algorithm (see Section 6). The
performance is measured by comparing the summary description
of generated data points with the ground truth summary descrip-
tion. To measure how close the new summary description is to the
ground truth summary description, we calculate the difference of
three measurements before and after regeneration:

1) Ed: Euclidean Distance between the original centroids and
new centroids,

2) Es: shift distance of bounding box (measures the shift dis-
tance of four coordinates (leftmost, rightmost, bottom, top)
of the box), and

3) Er: rotation degree from old PCs to new PCs.
We evaluate the performance with different underlying distri-

butions, different percentiles and different sizes of datasets. Exper-
iment results show that the summary descriptions do appear to be
stable after data regeneration, changing the coordinates, shape and
rotation by only small amounts. And we could get a similar new
generated dataset even the size is small. Moreover, we observe that
percentiles, which describe more information about the boundary
points (located inside the 100% bounding box but outside the
second inner bounding boxes), performs the best. Note that there
appears to be little advantage in generating more bounding boxes
in the summaries. More details about the experiments are attached
in the technique report (https://ershao.github.io/Response)

Possible issues caused by regeneration. Regenerating data
from the bounding box descriptions does seem to be feasible, and
would allow an agent to generate similar clusters of data. But

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

https://ershao.github.io/Response

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

there may be an issue if this is done repeatedly. If a bounding
box extends to exactly the bounds of the extreme points, when
we regenerate points inside the box, we are unlikely to generate
points on the edges, and so the spread of the cluster shrinks after
each regeneration, and repeated regeneration will make it worse. In
order to address this issue, we considered four potential solutions:

1) P1: do nothing.
2) P2: impose 4 data points on the extremes of the outer box

during regeneration.
3) P3: adjust the bounding boxes on creation by expanding the

inner boxes to midway to the next relevant point.
4) P4: combine step 3 and 4 above.

Figure 6 shows that the proposed algorithm without any
make-up plan (P1) and with bounding line extension outperforms
other schemes (P3). Comparing to P1, there is little difference
in convergence time, but the moving distance of three bounding
boxes and rotation increase, and accuracy decreases when we
make up the shrink of outer box only (P2). If we extend the inner
boxes to midway to the next relevant point (P3), the convergence
time decreases. Although there is slightly increase in rotation
(but with a higher standard deviation), the accuracy still remains
high. When step 3 and 4 combined (P4), the rotation increases
with a higher standard deviation and accuracy decrease. The
most possible reason lies in the re-generated data. Without any
shrink make-up plan, data points of different clusters are tender
to be more separated from each other, that is the reason why the
clustering accuracy is high by this scheme.

Fig. 6: Comparision results of different solutions with elliptical
well separated clusters

However, when there are overlaps among clusters, the later
scheme outperforms the previous scheme (see Figure 7). In some
practical applications, there are slight overlaps, even huge overlaps
between clusters, we used the scheme that extending the bounding
line to half way to the closet points to address the shrink up
problem.

6 Empirical Evaluation
To simulate the operation of the algorithms on a WMN, we

implement an Asynchronous Message Delay Simulator, based on
[44]. Random network topologies are generated based on [45],
where the probability pN is larger than (1+ε)ln(N)

N , where ε is a
positive constant, to ensure that a random graph generated is
a connected graph (we set ε = 1). To generate dense graph
topologies, pN is set to 0.8. The initial raw data is generated in

Fig. 7: Comparision results of different solutions with overlapped
clusters

k clusters, sampled from a two-dimensional normal distribution,
scaled to the range [0,1] before being assigned randomly to
network agents. Each message transmission delay is generated
uniformly from the range [0.5, 1.0] [19], and agents begin their
work at time randomly selected in [0, 0.1s].

In addition to the convergence time and communication costs,
we also measure the number of learned clusters for all agents on
average. The accuracy measurement percentage of membership
mismatch (PMM) used in [17, 22] measures how accurate each
agent’s model is on its own data compared to the centralised
baseline or to the ground truth (original generation of the data
points), and it is denoted by M1. Before we distribute the data
points over the agents, we run a single centralised clustering
method, to get a benchmark clustering result. We use PMM as
our formal measure of clustering error.

PMM(i) = 100
|~x ∈ X(i) : Lc(~x) , Li

p(~x)|

|X(i)|
(2)

where Lc(~x) denotes the label of the cluster to which ~x is assigned
at the end of centralized clustering and Li

p(~x) denotes the label
of the cluster to which ~x is assigned once the agent reaches the
termination state. However, this penalises the agent when its local
data does not fit well with global model learned. In this paper,
we propose that the accuracy against a new test dataset is applied
(denoted by M2). Measuring the accuracy against all raw data is
expensive and slow, so we use a new test dataset that sampled
from the same ground truth distribution instead.

Two types of underlying network topology are used: dense
and sparse graphs. Three different types of datasets are tested:
fully symmetric multi-dimensional Gaussians, partially asymmet-
ric multi-dimensional Gaussians, and rectangle uniformly dis-
tributed data. For each type of dataset, there are five generated
clusters and three different types of clusters: heavily-overlapped
clusters, slightly-overlapped clusters and well-separated clusters.
Figure 8 shows an example of different overlaps between cluster.

We evaluate a number of different instantiations of the AAC
framework. MMFi-P uses full k-means, exchanging PCA and
Bounding Box summaries, regenerating data by sampling, for
the two MMF variants. Similarly, MMFi-SG uses full k-means,
but then exchanges separate Gaussian models with counts fitted
to each cluster. MMFi-GMM fits a Gaussian Mixture Model for
clustering, and exchanges the Gaussian models with counts. We
also evaluate [17] partial k-means, exchanging centroids and

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

Fig. 8: An example of different overlaps between clusters: fully symmetric Gaussians with heavy overlap, partially symmetric Gaussians
with slight overlap and well separated uniform distributions (left to right)

counts with all neighbours, and [19, 20] (full k-means, exchanging
weighted centroids and counts with a single neighbour).

Since GMM is a soft clustering method, which assigns to a
single data point a probability of membership of each cluster,
PMM may be unfair to GMM, since it can never achieve 100%
clustering accuracy. In order to compare with the hard assignment
obtained by k-means, we assume that the final assignment of a
data point to a cluster is determined by the highest probability. In
addition to clustering accuracy, we measure the convergence time,
which records the interval between the time when the first agent
initialised and the last agent terminated. For communication costs,
we record the total number of received messages. The notation is
summarised in Table 1.

None of our methods use a central controller, and we assume
an additional process which detects termination if required. For
termination time, we record the last time at which any agent or
message was active. For MMF2, we also measured the time that
the first agent reached stability (t0), and the time that the last agent
reached stability (t1). In those MMF2 experiments, t2 is the final
termination.

S1 A1 The size of network is known and agents may
finish with different models

S1 A2 The size of network is known and agents must
finish with identical model

S2 Agents are only aware their neighbours and may
finish with different models

C R Centralise all raw data point to a central agent
C B Centralise basic models to a central agent

Accu c Accuracy against centralised clustering method
Accu g Accuracy against ground truth

M1 Evaluate the performance on agent’s own data only
M2 Evaluate the performance on a new test data

TABLE 1: Notation of different methods and measurements

The number of messages received is not necessarily sufficient
to measure communication cost, since large messages require
more packets and thus longer transmission times. For IEEE
802.11ac, the maximum size of a single packet (MPDU) is 11,454
bytes. For our experiments, we limit the number of clusters to 5
(ground truth). Five centroid locations plus counts, or five Gaus-
sians plus counts, can be described in just over 1000 bytes. The
principal components and bounding boxes for five clusters can be
described in just 9,272 bytes, and thus, for our experiments, each
model description can be transmitted in a single packet, and so
the total number of messages is a good proxy for communication
energy costs. In our experiments, each agent is randomly assigned
200 raw data points, and the size is 22,500 bytes. So there are in

total 3 packets to send if centralising raw data to a central agent is
applied.

6.1 The number of cluster k is known

In this section, we show the comparison result when the
number of clusters k is known to all agents in advance. First we
evaluate performance under scenario 1, in which agents know the
size of the network. The results for densely connected networks
of 10 agents are shown in Figure 9. MMF1-P and -SG show the
highest accuracy (relative to centralised k-means); Both of these
methods use full k-means at each agent to generate the initial
clustering and the final clustering, but differ in the summaries that
are exchanged. MMF1-P requires the fewest messages, but takes
significantly longer than MMF1-SG to terminate – this appears
to be because of the extra time required to analyse the clusters
using PCA and to generate the bounding boxes. MMF1-GMM
requires the least time to stabilise, and achieves reasonably high
accuracy. The existings methods from [17], [19] and [20] are
outperformed on all measures. In Figure 10, we show the result
for sparsely connected networks of 10 agents. MMF-1 achieves
the highest accuracy and requires the least amount of messages
to converge. Again, MMF1-GMM converges faster than other
methods and achieves high accuracy. Again, [17], [19] and [20] are
outperformed on all measures. To summarise, selecting between
MMF1-P, -SG and -GMM will depend on the relative costs of
inaccuracy, message transmission, and elapsed time.

Fig. 9: Comparison of MMF1 method in 10-agent dense network.

In Figure 11 we show the result of densely connected networks
for scenario 2, in which agents only know of the existence of their
immediate neighbours. We report three different time measures.
MMF2-P again requires the fewest messages. MMF-SG again has
the highest accuracy. The relative performance of MMF2-GMM
has improved, with close to the highest accuracy, and clearly the

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

Fig. 10: Comparison of MMF1 method in 10-agent sparse network

fastest termination time. [17] is still outperformed by the other
methods, although the number of messages (including both data
messages and polling messages) are no longer significantly higher.
[19] and [20] are still outperformed on all measures. The result
for sparse networks are shown in Figure 12. MMF2-SG shows
the highest accuracy and MMF2-P requires the fewest messages
but takes substantially longer time than MMF2-SG to terminate.
MMF2-GMM converges much faster than other methods and still
achieves high accuracy. The methods in [17], [19] and [20] are
outperformed on all measures.

Table 2 shows the experimental results on real-world datasets
Flame [46], Cassini [47] and Aggregations [48]. We compare the
accuracy against ground truth (denoted by At) as well as accuracy
against centralised method (Ac), since the ground truth is now
available. In term of accuracy against centralised method Ac, the
proposed methods are outperformed on all datasets. However, the
accuracy against ground truth At obtained by proposed methods
is higher than the methods in [17], [19] and [20] on all datasets.
More information about the clusters are described in the proposed
methods, leading a better performance than the state-of-the-arts.
Although the clusters are well separated in Flame [46], the
structures make it a challenge to cluster. MMF1-P performs better
than other methods since an additional nested bounding box is
used to describe the clusters. When the underlying distributions
are normal or there are tiny gaps between clusters [47, 48], GMM
achieves a much higher accuracy than other algorithms.

TABLE 2: Comparison of performance on different datasets

Datasets Flame Cassini Aggregation

MMF1-P
Ac 93.25±3.67 72.68±19.0 88.93±4.91
At 89.4±1.54 66.45±0.56 85.25±3.16

MMF1-SG
Ac 93.71±4.01 76.92±18.9 88.8±4.60
At 89.61±2.67 66.1±4.24 84.85±3.61

MMF1-GMM
Ac 90.26±6.14 82.15±7.47 87.3±4.60
At 87.1±2.42 82.25±4.24 87.86±4.19

Fatta
Ac 98.45±3.03 94.7±7.88 95.03±5.63
At 88.83±3.25 66.7±.1.02 81.83±4.57

Datta
Ac 94.68±4.9 76.02±17.2 89.08±5.02
At 85.85±1.35 67.5±2.5 84.83±3.16

Bénézit
Ac 95.4±6.0 82.5±2.0 88.35±4.32
At 84.25±3.0 72.5±3.2 80.29±3.20

Table 3 shows the significance study of the experimental
results. A statistical comparison is thought to be significant when
its P-value is less than 0.05. We apply the Tukey test to conduct
pairwise comparisons of the approaches. The statistical analysis
is carried out through the built-in functions in Python. It shows
that, for all the scenarios, the null hypothesis is rejected with the

Fig. 11: Comparison of MMF2 method in 10-agent dense network

Fig. 12: Comparison of MMF2 method in 10-agent sparse network

P-values all less than 0.05. It indicates that there is a significant
difference between proposed algorithms and the state-of-the-arts
and the improvement is significant.

Then we show the results with different size of networks. Note
that we only compare the proposed algorithm AAC, where K-
means is used as clustering algorithm and nested bounding boxes
are used to describe the clusters, with the existing methods. Figure
13, 14 and 15 shows the performance on dense network. When
agents in the network are well connected, the accuracy decreases
when the size of network increases. But still the accuracy is
above 80%, and the highest accuracy is achieved by AAC. In
term of convergence time, method in [17] and AAC converge
faster than other methods, and they are robust even in large scale
network. Figure 28 shows the network overload. The least amount
of network overhead is obtained by AAC, followed by method in
[19].

Figure 16, 17 and 18 show the accuracy, convergence time
and transmitted message in the sparse network, respectively. The
highest accuracy is achieved by method in [17], followed by AAC.
Similarly, method in [17] and AAC are the farthest method. Again,
method proposed by [19]. and AAC require the least amount of
message transmission. When the size of network is less than 50,
AAC performs slightly better. When the size of network is large
than 50, method proposed in [19] is slightly better. The most
possible reason behind this is that, the gossip way shows some
advantages to broadcast information in a sparse network.

In summary, the methods that use full clustering at each agent
on each cycle, and which exchange more informative descrip-
tions, outperform [17]. Taking MMF2-GMM as representative,
it achieves 10 percentage points higher accuracy relative to cen-
tralised k-means (reduces the misclassification rate from 12% to
1.7%), reduces the message count by 20%, and reduces elapsed
time by 75%. In all cases, we respect the privacy of the original
data, and do not exchange any individually identifiable data points.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

TABLE 3: Pairwise Tukey test for proposed methods and the state-of-the-arts. � denotes the difference of mean.

Dense Graph Spare Graph

Time Accuracy R-msg Time Accuracy R-msg
MMF1 (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)

P − Datta (-3.6, 0.001) (11.30, 0.001) (-67.80, 0.001) (-8.0, 0.001) (10.20, 0.001) (-38.50, 0.001)
P − Fatta (-53.0, 0.001) (9.20, 0.001) (-84.0, 0.001) (-33.6, 0.001) (17.5, 0.001) (-66.0, 0.001)
P − Bénézit (-12.0, 0.001) (20.1, 0.001) (-119.67, 0.001) (-63.0, 0.001) (20.4, 0.001) (-183.1, 0.001)
S G − Datta (-10.0, 0.001) (11.5, 0.001) (-54.0, 0.001) (-13.6, 0.001) (8.40, 0.001) (-31.0, 0.001)
S G − Fatta (-59.0, 0.001) (9.20, 0.001) (-71.0, 0.001) (-39.3, 0.001) (15.70, 0.001) (58.20, 0.001)
S G − Bénézit (-18.3, 0.001) (16.3, 0.001) (-18.56, 0.001) (-68.30, 0.001) (18.60, 0.001) (-185.2, 0.001)
GMM − Datta (-10.6, 0.001) (7.40, 0.001) (-19.0,0.001) (-14.0, 0.001) (7.70, 0.001) (-30.0, 0.001)
GMM − Fatta (-60.6, 0.001) (5.20, 0.001) (-68.1, 0.001) (-39.60, 0.001) (15.0, 0.001) (-67.3, 0.001)
GMM − Bénézit (-19.0, 0.001) (15.30, 0.001) (-103.0, 0.001) (-69.03, 0.001) (17.8, 0.001) (-174.1, 0.001)

Dense Graph Spare Graph

Time Accuracy R-msg Time Accuracy R-msg
MMF2 (�, P value) (�, P value) (�, P value) (�, P value) (�, P value) (�, P value)

P − Datta (-1.13, 0.001) (9.7, 0.001) (-52.0,0.001) (-3.16, 0.001) (4.50, 0.001) (-27.3, 0.001)
P − Fatta (-50.50, 0.001) (7.6, 0.001) (-68.30, 0.001) (-29.40, 0.001) (11.8, 0.001) (-137.5, 0.001)
P − Bénézit (-8.8, 0.001) (18.9, 0.001) (-104.70, 0.001) (-58.10, 0.001) (14.60, 0.001) (-172.54, 0.001)
S G − Datta (-9.30, 0.001) (11.19, 0.001) (-8.20,0.001) (-10.7, 0.001) (8.02, 0.001) (3.30, 0.001)
S G − Fatta (-58.0, 0.001) (9.1, 0.001) (-45.20, 0.001) (36.6, 0.001) (15.36, 0.001) (-24.20, 0.001)
S G − Bénézit (-17.0, 0.001) (20.30, 0.001) (-60.0, 0.001) (-65.70, 0.001) (8.02, 0.001) (-141.10, 0.001)
GMM − Datta (-8.90, 0.001) (20.70, 0.001) (-18.30,0.001) (-10.70, 0.001) (7.60, 0.001) (-2.20, 0.001)
GMM − Fatta (-58.30, 0.001) (8.60, 0.001) (-45.40, 0.001) (-36.30, 0.001) (15.40, 0.001) (-30.10, 0.001)
GMM − Bénézit (-16.50, 0.001) (18.80, 0.001) (-70.50, 0.001) (-65.60, 0.001) (17.70, 0.001) (-147.6, 0.001)

Fig. 13: Accuracy on dense network Fig. 14: Convergence on dense network Fig. 15: Network overload on dense network

Fig. 16: Accuracy on sparse network Fig. 17: Convergence on sparse network Fig. 18: Network overhead on sparse network

6.2 The number of cluster k is not known

6.2.1 K-means as clustering algorithm

First, we measure the performance when K-means is used as
the local clustering algorithm. Figure 19 shows the comparison
result when the underlying network is dense. Centralising raw
data points C R converges faster than other methods when inter-
package delay is not considered. Centralised basic model C B
requires fewest message transmissions. Since we assume that the
routing table is known in advance and a shortest-path based tree is
used, we expect this method will show the least network overhead.
However, the standard deviation shows that some agents relayed
many messages while other agents did not.

For distributed methods, S 1 A1 converges faster than other
methods. This is as expected because S 1 A1 assumes that the
size of network is known and agents could end up with different
models, where agents do not need to keep updating their models
and sending more packets, and that fewer communications are
needed to share the final models. S 2 requires the largest amount
of message transmissions, followed by S 1 A2. The most likely
reason behind this is each agent is only aware of its immediate
neighbours under S 2 and has no idea about the size of network.
Agents in S2 are repeatedly updating their models and transmitting
them again, while in S 1 A2, if multiple final models are created
independently, agents may be forced to accept updates with lower
timestamps and so have to retransmit a final model to their

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

neighbours. The accuracy of S 2 A2 is similar to that of S 1 A2,
but requires longer time to converge (around 80s in three variants
of underlying datasets).

Fig. 19: K-means with symmetric multi-dimensional Gaussians on
dense network

The extent of overlapping of clusters affects how accurate the
number of learned clusters is, compared to the ground truth. The
third row of figure 19 shows that centralised methods predict a
more accurate number of clusters than the distributed methods
for the overlapped cases. For the well-separated case, they are all
getting approximately 5. The last four rows show the accuracy
against centralised method and ground truth, measured by M1
and M2 separately. Centralising all raw data points C R achieves
the highest accuracy against ground truth. That is as expected.
C R receives all the raw data unfiltered, while the other methods
are summarising, regenerating and re-clustering, and so can be
expected to introduce errors.

When accuracy against the centralised method is measured
with an agent’s own data M1, centralising all basic models
C B achieves the highest accuracy. However distributed method
S 1 A1 performs better than C B when the same accuracy is
measured with a new test data M2. It indicates that agent’s local
data may not fit the learned model very well in some cases. Note
that when accuracy against ground truth is measured, there is very
little difference between M1 and M2.

Figure 20 shows the performance when data points that gener-
ated from partially asymmetric Gaussians are used. Compared to
that with symmetric Gaussians, the accuracy against data points
and accuracy of the inferred number of clusters has dropped.
However, the convergence time and total message transmission

remains unchanged. Note that when the clusters are well separated
from each other, there is no difference in accuracy against data
points and accuracy of the inferred number of clusters. That is
because K-means is able to cluster data points when clusters are
well separated.

Fig. 20: K-means on dense network with asymmetric multi-
dimensional Gaussians

Figure 21 shows the performance when uniformly distributed
datasets are tested. Again, the convergence time and the number
of transmitted messages remains stable. Compared to the previous
two figures, accuracy of the inferred k is poorer. In addition,
accuracy on data points against ground truth (both M1 and M2) has
dropped significantly. This is as expected because it is a challenge
for K-means to handle uniformly rectangle distributed data. If the
data is uniform inside a long rectangle, that K-means will struggle,
because points at the end of one rectangle may be closer to the
centroids of another. Compared to accuracy on data points against
centralised method (the fourth and sixth row), the accuracy on data
points against ground truth (the fifth and seventh row) is much
lower. It indicates that simply comparing to centralised method is
not reliable when clustering algorithm is not fitting well with the
underlying dataset.

To summarise, centralised method C R takes the shortest
time to converge if inter-packet delay is not considered, and
the convergence time depends on what value you use in the
simulator for inter-packet delay. Centralised method C B requires
the fewest transmissions. However, the high standard deviation
shows that agents close to the root have to relay many packets
while agents far away from the root only forward a few packets.

In terms of the number of learned clusters, the extent of

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

Fig. 21: K-means on dense network with uniform distributed
datasets

overlapping between clusters plays a vital role. When clusters are
well separated from each other, our proposed algorithm matches
the ground truth number of clusters perfectly, no matter what the
underlying dataset and network topology are.

When K-means is used as clustering algorithm, it achieves
the highest accuracy on data points against centralised algorithm
and ground truth when the underlying datasets are formed from
symmetric Gaussians clusters. The accuracy on data points against
ground truth drops to about 70% when partially-symmetric Gaus-
sians are used, then declines to around 65% when uniformly
distributed clusters are used. However, the accuracy on data points
against the centralised algorithm remains stable even when the
underlying dataset appears a challenge for K-means to cluster. It
indicates that the drop in accuracy is due to the underlying K-
means algorithm, and not the distributed protocol.

6.2.2 GMM as clustering algorithm
In this section, we measure the performance when GMM is

used as clustering algorithm 4. In this case, the collection of
clusters is described as a collection of Gaussians. Figure 22 shows
the result on dense networks with data points formed from fully
symmetric Gaussians. Again, centralising all data points C R
takes the shortest time to converge when inter-packet delay is
ignored. In addition, C B requires the least amount of message
to transmit. All centralised methods and distributed methods
achieved really high accuracy, even when there are heavy overlaps
between clusters.

4We omit the result of SG, which is similar to that of GMM

Fig. 22: GMM on dense network with symmetric multi-
dimensional Gaussians

Figure 23 shows the result on dense graphs when partially
symmetric Gaussians are tested. Compared to Figure 22, there
is little difference between the accuracy on data points against
ground truth and centralised algorithm when clusters are well sep-
arated from each other. However, when the extent of overlapping
increased, the accuracy against ground truth dropped sharply while
the corresponding accuracy against centralised algorithm dropped
by less than 10%.

When uniformly distributed data is used as the underlying
dataset, we expected that accuracy against ground truth would be
lower than that with symmetric or asymmetric Gaussians. Figure
24 shows that the accuracy against ground truth is around 62%
for both M1 and M2. However, the accuracies against centralised
algorithm for M1 and M2 are still high, more than 80%.

Compared to K-means and SG, the result is similar when
GMM is used as local clustering method. The centralised method
C R converges slower than other methods if inter-packet delay
is considered and centralised method C B requires the fewest
transmissions. When clusters are well separated from each other,
our proposed algorithm learned the perfect number of clusters,
achieved nearly perfect accuracy against centralised algorithm and
ground truth, no matter what the underlying dataset and network
topology are.

7 Conclusion and future directions
We proposed an asynchronous distributed clustering algo-

rithms framework for Wireless Mesh Networks, which respect
data privacy, while balancing communication cost and clustering

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 15

Fig. 23: GMM on dense network with asymmetric multi-
dimensional Gaussians

quality. Methods that use full k-means clustering at each agent
each cycle, and which exchange cluster shape and density descrip-
tions, require fewer messages and give higher accuracy relative to
centralised k-means, compared to previous methods. Distributed
Gaussian Mixture Model clustering is almost as high in accuracy,
and requires less elapsed time. The methods do, however, leak
some privacy about the data sensed by each individual agent. The
results show that more informative cluster descriptions improve
distributed clustering.

More information is required to be transmitted if it is required
that agents must finish with identical models. However, if we ac-
cept that agents may finish with different models, it requires much
less information transmission and much less elapsed time. Agent
converges fast if it knows the size of network. We expected this
since an agent have to compute the provisional model whenever
receives new messages if they do not know the size of network.
Our proposed algorithm could learn the same number of clusters
as ground truth even there is no prior information about this value.

If we assume that there is no inter-packet delay, centralising
all raw data requires the transmission of less information and the
shortest convergence time. However, this method suffers from the
problem of single point of failure and leakage of data privacy. The
standard deviation of communication cost is high, which means
some agents have relayed huge amounts of information while
others have not. This will drain the energy of agents and frequently
recomputing the routing table will become an issue. Note that we
assume that the shortest path is available for each agent in advance
and we ignore the cost to compute the routing table.

Fig. 24: GMM on dense network with uniform distributed dataset

The distributed method offers similar clustering accuracy to
the centralised methods but relaxes the assumption that agents
know the whole routing path in advance. Compared to the high-
est accuracy of the centralised method, the clustering accuracy
achieved by the distributed method dropped by around 9% and the
communication cost increased by up to 20%. But the convergence
time has been reduced and the problem of a single point of failure
has been avoided. In addition, we respect the data privacy.

For a more comprehensive conclusion, we will extend the
evaluation, to consider networks in which agents fail (e.g. because
of limited batteries). We will extend the problem to consider the
case where sub-groups of agents receive data from different envi-
ronments, and so the inferred cluster models should be different
for each sub-group.

Acknowledgments
This research was supported by National Natural Science

Foundation of China under Grant No. U20B2046, Guangdong
Province Key Area RD Program of China under Grant No.
2019B010137004, Science Foundation Ireland under Grant Num-
ber SFI/12/RC/2289-P2 and 16/SP/3804 and Guangdong Province
Universities and Colleges Pearl River Scholar Funded Scheme
(2019).

References
[1] L. Lou, Q. Li, Z. Zhang, R. Yang, and W. He, “An iot-driven

vehicle detection method based on multisource data fusion
technology for smart parking management system,” IEEE

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

Internet of Things Journal, vol. 7, no. 11, pp. 11 020–11 029,
2020.

[2] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh,
“Semisupervised deep reinforcement learning in support of
iot and smart city services,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 624–635, 2018.

[3] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang, “A
survey on access control in the age of internet of things,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4682–
4696, 2020.

[4] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani,
“Corrauc: A malicious bot-iot traffic detection method in iot
network using machine-learning techniques,” IEEE Internet
of Things Journal, vol. 8, no. 5, pp. 3242–3254, 2021.

[5] H. Harb, A. Makhoul, S. Tawbi, and R. Couturier, “Compar-
ison of different data aggregation techniques in distributed
sensor networks,” IEEE Access, vol. 5, pp. 4250–4263, 2017.

[6] Y.-Y. Ting, C.-W. Hsiao, and H.-S. Wang, “A data fusion-
based fire detection system,” IEICE TRANSACTIONS on
Information and Systems, vol. 101, no. 4, pp. 977–984, 2018.

[7] Z. Ullah, “A survey on hybrid, energy efficient and dis-
tributed (heed) based energy efficient clustering protocols
for wireless sensor networks,” Wireless Personal Commu-
nications, pp. 1–29, 2020.

[8] https://www.i-scoop.eu/big-data-action-value-context/
data-age-2025-datasphere/.

[9] C. Li, G. Li, and P. K. Varshney, “Decentralized federated
learning via mutual knowledge transfer,” IEEE Internet of
Things Journal, 2021.

[10] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning
with cooperating devices: A consensus approach for massive
iot networks,” IEEE Internet of Things Journal, vol. 7, no. 5,
pp. 4641–4654, 2020.

[11] D. K. Kotary and S. J. Nanda, “Distributed robust data
clustering in wireless sensor networks using diffusion moth
flame optimization,” Engineering Applications of Artificial
Intelligence, vol. 87, p. 103342, 2020.

[12] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of deep
networks from decentralized data,” in Artificial Intelligence
and Statistics. PMLR, 2017, pp. 1273–1282.

[13] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion de-
tection,” IEEE Communications surveys & tutorials, vol. 18,
no. 2, pp. 1153–1176, 2015.

[14] L. Faramondi, G. Oliva, R. Setola, and C. N. Hadjicostis,
“Distributed c-means clustering via broadcast-only token
passing,” IEEE Transactions on Control of Network Systems,
vol. 7, no. 1, pp. 315–325, 2020.

[15] G. B. Giannakis, Q. Ling, G. Mateos, I. D. Schizas, and
H. Zhu, “Decentralized learning for wireless communica-
tions and networking,” in Splitting Methods in Communica-
tion, Imaging, Science, and Engineering. Springer, 2016,
pp. 461–497.

[16] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three
approaches for personalization with applications to federated
learning,” arXiv preprint arXiv:2002.10619, 2020.

[17] S. Datta, C. Giannella, and H. Kargupta, “Approximate
distributed k-means clustering over a peer-to-peer network,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 10, pp. 1372–1388, 2009.

[18] D. Dennis, T. Li, and V. Smith, “Heterogeneity for the win:
One-shot federated clustering,” in ICML, 2021.

[19] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino, “Fault
tolerant decentralised k-means clustering for asynchronous
large-scale networks,” Journal of Parallel and Distributed
Computing, vol. 73, no. 3, pp. 317–329, 2013.

[20] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli,
“Weighted gossip: Distributed averaging using non-doubly
stochastic matrices,” in 2010 IEEE International Symposium
on Information Theory, 2010, pp. 1753–1757.

[21] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Ver-
belen, and J. S. Rellermeyer, “A survey on distributed ma-
chine learning,” ACM Computing Surveys (CSUR), vol. 53,
no. 2, pp. 1–33, 2020.

[22] C. Qiao and K. N. Brown, “Asynchronous distributed clus-
tering algorithm for wireless sensor networks,” ser. ICMLT,
2019, p. 76–82.

[23] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey
on federated learning,” Knowledge-Based Systems, vol. 216,
p. 106775, 2021.

[24] M. Khodak, M.-F. Balcan, and A. Talwalkar, “Adap-
tive gradient-based meta-learning methods,” arXiv preprint
arXiv:1906.02717, 2019.

[25] H. Lu, J. Li, and M. Guizani, “Secure and efficient data trans-
mission for cluster-based wireless sensor networks,” IEEE
transactions on parallel and distributed systems, vol. 25,
no. 3, pp. 750–761, 2013.

[26] R. Logambigai, S. Ganapathy, and A. Kannan, “En-
ergy–efficient grid–based routing algorithm using intelligent
fuzzy rules for wireless sensor networks,” Computers Elec-
trical Engineering, vol. 68, pp. 62–75, 2018.

[27] M. Bendechache, A.-K. Tari, and M.-T. Kechadi, “Parallel
and distributed clustering framework for big spatial data
mining,” International Journal of Parallel, Emergent and
Distributed Systems, vol. 34, no. 6, pp. 671–689, 2019.

[28] M. Narendran and P. Prakasam, “An energy aware compe-
tition based clustering for cluster head selection in wireless
sensor network with mobility,” Cluster Computing, vol. 22,
no. 5, pp. 11 019–11 028, 2019.

[29] S. Vural, P. Navaratnam, N. Wang, and R. Tafazolli, “Asyn-
chronous clustering of multihop wireless sensor networks,”
in 2014 IEEE International Conference on Communications
(ICC), 2014, pp. 472–477.

[30] M. Bateni, A. Bhaskara, S. Lattanzi, and V. S. Mirrokni,
“Distributed balanced clustering via mapping coresets.” in
NIPS, 2014, pp. 2591–2599.

[31] O. Bachem, M. Lucic, and A. Krause, “Scalable k-means
clustering via lightweight coresets,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 1119–1127.

[32] A. Soliman, S. Girdzijauskas, M.-R. Bouguelia, S. Pashami,
and S. Nowaczyk, “Decentralized and adaptive k-means
clustering for non-iid data using hyperloglog counters,” in
Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 2020, pp. 343–355.

[33] S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in prac-
tice: Algorithmic engineering of a state of the art cardinality
estimation algorithm,” in Proceedings of the 16th Interna-
tional Conference on Extending Database Technology, 2013,
pp. 683–692.

[34] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

https://www.i-scoop.eu/big-data-action-value-context/data-age-2025-datasphere/.
https://www.i-scoop.eu/big-data-action-value-context/data-age-2025-datasphere/.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3119550, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

I. Perona, “An extensive comparative study of cluster validity
indices,” Pattern Recognition, vol. 46, no. 1, pp. 243–256,
2013.

[35] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an
introduction to cluster analysis. John Wiley & Sons, 2009,
vol. 344.

[36] J. A. Bilmes et al., “A gentle tutorial of the em algorithm and
its application to parameter estimation for gaussian mixture
and hidden markov models,” International Computer Science
Institute, vol. 4, no. 510, p. 126, 1998.

[37] S. Wold, K. Esbensen, and P. Geladi, “Principal component
analysis,” Chemometrics and intelligent laboratory systems,
vol. 2, no. 1-3, pp. 37–52, 1987.

[38] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause, “Ap-
proximate k-means++ in sublinear time,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 30, no. 1,
2016.

[39] D. Arthur and S. Vassilvitskii, “How slow is the k-means
method?” in Proceedings of the Twenty-Second Annual
Symposium on Computational Geometry. Association for
Computing Machinery, 2006, p. 144–153.

[40] A. Sharma and K. K. Paliwal, “Fast principal component
analysis using fixed-point algorithm,” Pattern Recognition
Letters, vol. 28, no. 10, pp. 1151–1155, 2007.

[41] I. M. Johnstone and A. Y. Lu, “Sparse principal components
analysis,” arXiv preprint arXiv:0901.4392, 2009.

[42] R. C. Pinto and P. M. Engel, “A fast incremental gaussian
mixture model,” PloS one, vol. 10, no. 10, p. e0139931,
2015.

[43] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian pro-
cesses for big data,” in Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence, ser.
UAI’13. AUAI Press, 2013, p. 282–290.

[44] R. Zivan and A. Meisels, “Message delay and discsp search
algorithms,” Annals of Mathematics and Artificial Intelli-
gence, vol. 46, no. 4, pp. 415–439, 2006.

[45] H. Cherifi, G. Palla, B. K. Szymanski, and X. Lu, “On
community structure in complex networks: challenges and
opportunities,” Applied Network Science, vol. 4, no. 1, pp.
1–35, 2019.

[46] L. Fu and E. Medico, “Flame, a novel fuzzy clustering
method for the analysis of DNA microarray data,” BMC
Bioinform., vol. 8, 2007.

[47] https://CRAN.R-project.org/package=mlbench.
[48] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggre-

gation,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 1, pp. 1–30, 2007.

Cheng Qiao Cheng Qiao is a Postdoc reseacher
in Guangzhou University. He received the Ph.D de-
gree from University College Cork, Ireland, in 2021.
He completed his M.S. from Fujian Normal Univer-
sity, China in 2013 and B.E from Xidian University,
China in 2010. Before joined UCC, he worked as
Research Assistant in Shenzhen Institute of Ad-
vanced Technology, Chinese Academy of Science
(CAS). His research interests include clustering
algorithms, distributed autonomous networks, and
distributed learning in Wireless Networks.

Kenneth N. Brown Kenneth N. Brown is a Pro-
fessor of Computer Science at University College
Cork in Ireland. He joined UCC Computer Science
Department as a senior lecturer in 2003. Prior to
that he was a lecturer at the University of Ab-
erdeen, a Research Fellow at Carnegie Mellon Uni-
versity, and a Research Associate at the University
of Bristol. His research interests are in the applica-
tion of AI, optimisation and distributed reasoning,
with a particular focus on wireless networks. He is a
Co-Principal Investigator/Group Leader in Insight:

Centre for Data Analytics.

Fan Zhang Fan Zhang is currently an associate
professor in Guangzhou University. He was a re-
search associate in the School of Computer Sci-
ence and Engineering, University of New South
Wales. He received the BEng degree from Zhejiang
University in 2014, and the PhD from University
of Technology Sydney in 2017. His research inter-
ests include graph algorithms and social networks.
Since 2017, he has published more than 20 papers
in top venues including SIGMOD, PVLDB, ICDE,
IJCAI, AAAI, TKDE and VLDB Journal.

Zhihong Tian Zhihong Tian is currently a Pro-
fessor, and Dean, with the Cyberspace Institute
of Advanced Technology, Guangzhou University,
Guangdong Province, China. Guangdong Province
Universities and Colleges Pearl River Scholar (Dis-
tinguished Professor). He is also a part-time Pro-
fessor at Carlton University, Ottawa, Canada. Pre-
viously, he served in different academic and admin-
istrative positions at the Harbin Institute of Technol-
ogy. He has authored over 200 journal and confer-
ence papers in these areas. His research interests

include computer networks and cyberspace security. His research has been
supported in part by the National Natural Science Foundation of China,
National Key Research and Development Plan of China, National High tech
RD Program of China (863 Program), and National Basic Research Program
of China (973 Program). He also served as a member, Chair, and General
Chair of a number of international conferences. He is a Senior Member of
the China Computer Federation, and a Senior Member of IEEE.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on October 20,2021 at 09:12:07 UTC from IEEE Xplore. Restrictions apply.

https://CRAN.R-project.org/package=mlbench

