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Abstract 17 

Iron is essential for the functioning of all cells and organs, most critically for the developing 18 

brain in the fundamental neuronal processes of myelination, energy and neurotransmitter 19 

metabolism. Iron deficiency, especially in the first 1,000 days of life, can result in long-20 

lasting, irreversible deficits in cognition, motor function and behaviour. Pregnant women, 21 

infants and young children are most vulnerable to iron deficiency, due to their high 22 

requirements to support growth and development, coupled with a frequently inadequate 23 

dietary supply. An unrecognised problem is that even if iron intake is adequate, common 24 

pregnancy-related and lifestyle factors can affect maternal-fetal iron supply in utero, resulting 25 

in an increased risk of deficiency for the mother and her fetus. While preterm birth, 26 

gestational diabetes mellitus and intrauterine growth restriction are known risk factors, more 27 

recent evidence suggests that maternal obesity and delivery by Caesarean section further 28 

increase the risk of iron deficiency in the newborn infant, which can persist into early 29 

childhood. Despite the considerable threat that early-life iron deficiency poses to long-term 30 

neurological development, life chances and a country’s overall social and economic progress, 31 

strategies to tackle the issue are non-existent, too limited or totally inappropriate. Prevention 32 

strategies, focused on improving the health and nutritional status of women of reproductive 33 

age are required. Delayed cord clamping should be considered a priority. Better screening 34 

strategies to enable the early detection of iron deficiency during pregnancy and early-life 35 

should be prioritised, with intervention strategies needed to protect maternal health and the 36 

developing brain.  37 
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Introduction 38 

Iron deficiency is the most common micronutrient deficiency in the world and continues to 39 

present a major burden to health in both low and high-resource settings(1). Iron deficiency 40 

anaemia, reported in over 1.2 billion people in 2016, is one of the top five leading causes of 41 

years lived with disability globally and the leading cause of years lived with disability in low 42 

and middle-income countries(2). Given the critical role of iron in the functioning of all cells 43 

and organ systems, reducing the prevalence of iron deficiency and anaemia globally is 44 

considered an urgent priority by the World Health Organisation (WHO)(3). 45 

Iron stores become depleted if dietary iron intake and/or absorption is inadequate or 46 

physiological losses through blood are uncompensated for. Iron deficiency occurs when iron 47 

stores are insufficient to meet the needs of an individual; therefore, individuals with increased 48 

iron requirements are at the greatest risk. Iron requirements are at their highest during the first 49 

1,000 days of life. They increase almost 10-fold during pregnancy, increasing from 0.8 50 

mg/day in the first trimester to ~7.5 mg/day in the third trimester(4). This means close to 51 

1000mg of iron must be acquired during the pregnancy to preserve maternal iron balance and 52 

support fetoplacental development(5). As infancy and early childhood is characterised by 53 

rapid growth and development, iron requirements per kilogram of body weight are higher 54 

from 6-24 months of age than during any other period of life(6). Failure to meet these 55 

increased requirements predisposes pregnant women, infants and young children to iron 56 

deficiency and iron deficiency anaemia. 57 

The aim of this paper is to provide an in-depth review of the current perspectives on iron 58 

deficiency in the first 1,000 days of life, with a particular focus on the key determinants of 59 

iron status during this period. The lasting consequences for neurological development are 60 

discussed, while challenges in defining and diagnosing iron deficiency in pregnant women, 61 

infants and young children are identified. Finally, suggestions are made for prevention and 62 

screening strategies to help tackle this global public health issue. 63 

 64 

Iron deficiency in the first 1,000 days 65 

The first 1,000 days arguably represents the period of life with the greatest risk of iron 66 

deficiency. In Europe, the prevalence of iron deficiency during pregnancy ranges from 28 to 67 

85%, with the highest rates reported in women in their third trimester and in those 68 
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unsupplemented(7). Up to a third of pregnant women have iron deficiency anaemia in Europe, 69 

with higher rates reported in low and middle-income countries, ethnic minorities and 70 

pregnant adolescents(1; 7; 8). Rates of iron deficiency anaemia are typically <5% amongst 6-24-71 

month-old children, although iron deficiency and depleted iron stores have been reported in 72 

up to half of European children in this age group(9; 10). 73 

 74 

Dietary determinants of iron status 75 

Inadequate dietary iron intakes and/or poor iron absorption are considered significant risk 76 

factors for iron deficiency during pregnancy and early childhood. Current dietary 77 

recommendations for the first 1,000 days are presented in Table 1, with much variability 78 

observed across agencies due to differing assumptions around the efficiency of iron 79 

absorption and utilisation in these population groups. 80 

Important physiological adaptations in iron absorption and mobilisation occur during 81 

pregnancy, but women must still enter pregnancy with sufficiently large iron stores and 82 

consume a diet abundant in bioavailable iron during pregnancy to avoid iron deficiency(11). 83 

However, inadequate dietary iron intakes and poor compliance with dietary guidelines are 84 

widely reported amongst pregnant women worldwide(12; 13), with 60-100% of pregnant 85 

women in Europe not meeting recommended intakes(14). To further compound this, many 86 

women begin pregnancy with already depleted iron stores as inadequate iron intakes are also 87 

common amongst women of reproductive age(7; 15). 88 

The assumption is that healthy term infants are born with sufficient body iron stores to meet 89 

their requirements until they have doubled their birth weight, usually around 4-6 months of 90 

age(16). As iron is transferred back from stores to the blood compartment to meet the infant’s 91 

iron requirements, exclusive breastfeeding during this period, despite its low iron 92 

concentration, is sufficient to meet the needs of the infant(6). It is only after this point that the 93 

infant becomes dependent on external dietary iron sources, as evidenced by the considerable 94 

increase in recommended intakes from 7 months onwards. Failure to incorporate sufficient 95 

iron-rich complementary foods into the diet and the early introduction and/or excessive intake 96 

of unmodified cow’s milk are significant risk factors for iron deficiency in 6-24-month 97 

olds(17-19). Unfortunately, inadequate iron intakes are widely reported amongst infants and 98 

young children in Ireland(18; 20), the UK(21) and across Europe(9). 99 
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 100 

Non-dietary determinants of iron status  101 

Even if dietary iron supply is adequate, there are several pregnancy-related and lifestyle 102 

factors that can compromise maternal-fetal iron supply in utero. Any disruption to maternal-103 

fetal iron supply is especially detrimental to the developing fetus who is entirely dependent 104 

on maternal supply to meet its increased iron requirements for growth and development. Iron 105 

is actively transported from the mother to the fetus through the placenta(11), with the iron-106 

regulatory hormone, hepcidin, particularly critical at this time in controlling plasma iron 107 

concentrations and tissue iron distribution(22). Maternal hepcidin concentrations are decreased 108 

in the second and third trimester of healthy pregnancies to allow for an increased iron supply 109 

into maternal circulation to support fetal demand(5; 23). 110 

Disruption in maternal-fetal iron supply generally occurs through three key pathways; 111 

compromised maternal iron status, altered fetal iron delivery and/or demand or a reduction in 112 

fetal iron accretion. Critically, such disruption in iron supply to the fetus increases the risk of 113 

iron deficiency in the newborn infant, with 10-85% iron deficiency reported in infants at 114 

birth, depending on the aetiology of the disruption(24). Infants born deficient are also at an 115 

increased risk of iron deficiency later in infancy and early childhood, as low iron stores at 116 

birth track into early childhood(25; 26). 117 

 118 

Compromised maternal iron status 119 

Despite the earlier assumption that the fetus could accumulate enough iron independent of 120 

maternal iron status(23; 27; 28), more recent evidence has emphasised the importance of 121 

maternal iron status to fetal and neonatal iron status. Infants born to mothers with iron 122 

deficiency with and without anaemia at delivery and/or mid-late gestation have lower 123 

umbilical cord ferritin concentrations at birth, indicative of poorer iron stores(29-34). A 124 

maternal ferritin concentration of 12-13.6 µg/L has been suggested by some as the threshold 125 

below which fetal iron status is compromised(33; 34). Maternal anaemia has also been shown to 126 

result in reduced neonatal haemoglobin concentrations at birth in some cohorts(35-37). 127 

Worryingly, this effect of maternal anaemia appears long-lasting(38; 39). Zhang and colleagues 128 

in China observed that maternal anaemia in the 2nd trimester was associated with an increased 129 

risk of infant anaemia at both 5-7 and 11-13 months of age(40). 130 
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 131 

Disruption to fetal iron delivery and/or demand 132 

Several pregnancy complications can result in a decrease in fetal iron delivery and/or an 133 

increase in fetal iron demand, thereby increasing the risk of iron deficiency in the newborn 134 

infant. Maternal hypertension, intrauterine growth restriction (IUGR) and gestational diabetes 135 

mellitus are characterised by intrauterine fetal hypoxia, which stimulates erythropoiesis and 136 

the production of haemoglobin, thereby increasing fetal iron demand beyond the system’s 137 

capacity(24). In pregnancies complicated by IUGR, approximately 10% of all pregnancies, 138 

placental iron transport is also decreased due to uteroplacental vascular insufficiency, with 139 

reduced liver and brain iron concentrations observed in these infants(41; 42)`. Similar findings 140 

are observed in infants of diabetic mothers; almost 65% of these infants are born iron 141 

deficient with worrying evidence of brain iron depletion reported(43; 44). 142 

In addition to these clinical complications, there are common lifestyle factors that can further 143 

disrupt maternal-fetal iron supply. Maternal smoking during pregnancy can induce fetal 144 

hypoxia, resulting in reduced cord ferritin concentrations at birth(25; 32; 45; 46). Though widely 145 

acknowledged as a risk to maternal and infant health(47), only recently has maternal obesity 146 

both prior to and during pregnancy emerged as a considerable risk factor for iron deficiency. 147 

Maternal obesity is associated with poorer iron status, particularly low ferritin concentrations, 148 

in both pregnant women(48-51) and their newborn infants(46; 48; 52-54). While micronutrient 149 

deficiencies often coexist with obesity, termed the “double burden” of malnutrition, the effect 150 

of maternal obesity on iron status is thought to be due to reduced iron absorption rather than 151 

just reduced dietary iron intakes(55; 56). The low-grade, chronic inflammation associated with 152 

obesity is thought to result in an over-expression of hepcidin, inhibiting intestinal iron 153 

absorption and iron stores mobilisation, thereby reducing maternal-fetal iron supply(52). 154 

However, further investigation into this mechanism is required, as some(48; 49; 51; 52) but not all 155 

studies(50; 57; 58) have observed elevated hepcidin and inflammatory marker concentrations in 156 

obese pregnant women. Additionally, a potential BMI threshold above which upregulation of 157 

hepcidin is induced has been suggested by some investigators recently(50; 58; 59). 158 

 159 

Reduction in iron accretion 160 
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The majority of fetal iron accretion occurs in the third trimester of pregnancy, therefore 161 

infants born premature miss out on this critical period of accretion(23; 60). Preterm infants have 162 

lower total body iron content, haemoglobin and ferritin concentrations than term infants(61; 62). 163 

Worryingly, this means that up to 50% of preterm infants are either born iron deficient or will 164 

develop deficiency very early in infancy(63-66). In addition to the impact of preterm birth itself, 165 

preterm infants have very high iron requirements given their high rate of postnatal growth 166 

and an earlier onset of erythropoiesis. They can also experience significant iron loss through 167 

uncompensated phlebotomy blood losses(60; 67; 68). Similarly, low birthweight infants are born 168 

with low iron stores(6; 69). In particular, extremely low birthweight infants of <1000g can be in 169 

negative iron balance within the first month of life if an appropriate external iron source isn’t 170 

provided(70). Timely, appropriate iron supplementation is therefore of the utmost importance 171 

to this vulnerable cohort, although much variability still exists with respect to iron dosing, 172 

duration of supplementation and delivery method in practice(71). 173 

Interestingly, although widely unacknowledged, obstetric mode of delivery can have a 174 

significant influence on the accretion of iron in the infant. Infants born by Caesarean section 175 

have lower haemoglobin, haematocrit and erythrocyte concentrations in peripheral and cord 176 

blood when compared to infants delivered vaginally(72). In our own prospective maternal-177 

infant cohort in Ireland, infants delivered by Caesarean section were twice as likely to be iron 178 

deficient at birth in comparison to those delivered vaginally(46). This effect is thought to be 179 

due to a shorter placental transfusion period because of immediate cord clamping and a 180 

weaker placental transfusion force, all reducing the transfer of iron to the infant through the 181 

umbilical cord at delivery(73; 74). Rates of deliveries by Caesarean section have increased 182 

dramatically worldwide, with rates of 26-33% reported in Ireland and the UK(75; 76). 183 

 184 

Neurological consequences of iron deficiency during the first 1,000 days 185 

The rate of growth and development of the brain is among the highest during the first 1,000 186 

days, making this period critical for immediate brain function but also for laying the 187 

foundations for later brain function(77). Figure 1 illustrates the key milestones and processes 188 

that occur in brain development throughout the lifespan, with the importance of the early-life 189 

period particularly evident. 190 

Iron deficiency during pregnancy and early-life has many health consequences for both the 191 

mother and her child, but the long-lasting neurological consequences are perhaps the most 192 
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concerning. Consistent mechanistic evidence has shown that iron plays a key role in the 193 

fundamental neuronal processes of myelination and neurotransmitter and energy 194 

metabolism(11). Iron deficiency can therefore disrupt these processes, resulting in adverse 195 

neurological consequences that often remain long after correction of the deficiency itself. 196 

Excellent reviews of the neurobiological effects of iron deficiency are provided elsewhere(11; 197 

78; 79), with the focus of this review on the observational evidence underpinning the 198 

association between iron deficiency and brain development in early life. 199 

The impact of maternal iron status on neonatal iron status has been discussed, but it can also 200 

present an immediate threat to fetal brain development. Monk and colleagues observed that 201 

low maternal iron intakes in the third trimester were associated with altered neonatal brain 202 

structure, particularly of the cortical grey matter(80). Using health and population register data 203 

from Sweden, the offspring of women diagnosed with anaemia in the first and/or second 204 

trimester of pregnancy were at an increased risk of developing neurological disorders such as 205 

autism spectrum disorder and attention-deficit/hyperactivity disorder(81). The significant 206 

variability in study design can make it difficult to interpret studies in this field, but a 2019 207 

systematic review by Janbek et al. did conclude that maternal iron status during pregnancy 208 

may be associated with offspring cognition, academic achievement and behaviour(82). Since 209 

then, significantly higher scores in working memory and executive function at 7 years of age 210 

were observed in children born to mothers that had ferritin concentrations >12µg/L in the 211 

first trimester in a large birth cohort in Spain(83). 212 

The long-lasting consequences of postnatal iron deficiency, particularly from 6-24 months of 213 

age, are widely reported and acknowledged, with poorer cognition, intelligence, motor 214 

function and behaviour commonly observed(79; 84). To date, little consideration has been given 215 

to the consequences of iron deficiency in the neonatal period. Neurophysiological 216 

disturbances are observed within 24-48 hours of birth in infants born iron deficient 217 

(frequently defined as cord ferritin <70-76µg/L), with abnormalities in the auditory system 218 

often reported(85; 86). Neonatal iron deficiency is also associated with poorer recognition 219 

memory at 15 days old(44), poorer motor outcomes at 9 months(87) and poorer language ability, 220 

fine motor skills and tractability at 5 years(88). We recently identified lasting behavioural 221 

consequences of iron deficiency at birth in our prospective, low-risk maternal-infant cohort, 222 

with this effect most apparent in the children born to mothers with obesity or delivered by 223 

Caesarean section(89). This is concerning as we know early social-emotional development is 224 
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considered an important determinant of future educational attainment, career and earning 225 

potential and overall quality of life(90). 226 

 227 

Challenges in the diagnosis of iron deficiency 228 

In contrast to other nutrients, there is no single biomarker that can truly assess the iron status 229 

of an individual or population. Iron status should be considered as a spectrum, moving from 230 

the early stage of depleted iron stores to iron deficiency to the final stage of iron deficiency 231 

anaemia. A wide range of biomarkers that reflect storage, transport, supply and functional 232 

iron are available to assess the different stages of iron status as outlined in Figure 2. 233 

Additional indicators including hepcidin and reticulocyte haemoglobin content are currently 234 

under investigation as potentially useful biomarkers in some populations(11; 91). However, 235 

there are limitations to each biomarker, given that they are frequently confounded by other 236 

factors, particularly inflammation or lack specificity and/or sensitivity for iron. Difficulties in 237 

standardisation and harmonisation across different labs also present significant challenges to 238 

interpretation(92). 239 

The diagnosis of iron deficiency is further complicated in pregnant women, infants and young 240 

children, as serious knowledge gaps remain as to the most appropriate biomarkers and 241 

thresholds for this stage of life. Haemoglobin, a marker of functional iron is routinely 242 

employed in practice, but this is perhaps given the ease with which it can be measured with a 243 

point-of-care test. The over-reliance on haemoglobin, particularly in this population is a 244 

major concern, as iron is prioritised to the red blood cells for erythropoiesis above all other 245 

organs. The liver, heart, skeletal muscle and critically, the brain will all become iron deficient 246 

prior to any disturbances in haemoglobin concentrations(43; 93). 247 

Secondly, the thresholds applied to each biomarker are often not specific to this population 248 

and are not related to any relevant health outcomes. Currently used thresholds for many 249 

biomarkers are either extrapolated from other populations and do not account for the unique 250 

physiological adaptations in iron homeostasis that occur during pregnancy and early infancy 251 

or are solely based on the distribution of a marker in a given population(94). This means many 252 

thresholds currently used are completely arbitrary and certainly not related to any meaningful 253 

health outcomes in this high-risk population. The huge variability and lack of consistency in 254 

the current use of thresholds, even amongst international agencies, further complicates 255 

matters. 256 
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While much debate continues as to the most appropriate biomarkers and thresholds(95-97), 257 

health professionals, clinicians and researchers should aim to assess iron status using a 258 

battery of biomarkers, but at a very minimum, using both ferritin (with an inflammatory 259 

marker as it is an acute phase reactant) and haemoglobin(98). The WHO recommend ferritin 260 

thresholds of 12µg/L for children <5 years and 15µg/L for everybody else, including 261 

pregnant women, with thresholds of 110g/L for children <5 years and pregnant women for 262 

haemoglobin(98; 99). Ferritin continues to be considered an important indicator of the earliest 263 

stage of iron deficiency, although some investigators have suggested adjustments to the 264 

thresholds applied in infants and young children(100; 101). Research is also ongoing into novel 265 

biomarkers that may provide more sensitive indicators of impending brain dysfunction due to 266 

iron deficiency in infants and young children(102-104). 267 

 268 

Strategies to combat iron deficiency in the first 1,000 days 269 

While the first 1,000 days of life represents the period of greatest risk for iron deficiency, it 270 

also represents the period of greatest opportunity to tackle this global public health issue. 271 

Many of the risk factors outlined in this paper are modifiable and thus preventable, while the 272 

impact of those that aren’t preventable could certainly be lessened through early 273 

identification. Interventions targeting the fetal and early-life period represent the best 274 

opportunity to prevent iron deficiency and its lasting consequences for health. While several 275 

intervention targets could be considered, in this review, we’ve suggested three key targets 276 

that we feel are the most achievable and meaningful. 277 

 278 

Target 1 - improvements in nutrition and health status of women prior to conception 279 

Many of the risk factors for iron deficiency in the first 1,000 days are maternal or pregnancy-280 

related. Therefore, interventions targeting the mother should be considered as one of the best 281 

ways to prevent iron deficiency in infancy and early childhood. As a starting point, poor 282 

micronutrient status and obesity are the major challenges that need to be addressed by any 283 

such interventions. 284 

To combat the widespread issue of iron deficiency, iron supplementation is commonly used, 285 

as daily supplementation has been shown to reduce the prevalence of iron deficiency and iron 286 

deficiency anaemia in pregnant women at term(105). However, the positive effect of 287 
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supplementation during pregnancy outside of this, for neonatal iron status or health outcomes 288 

remains very much unclear(6; 105). Moreover, compliance with supplementation strategies is 289 

often poor, particularly in low and middle-income countries and untargeted supplementation 290 

can be dangerous(106). Taking all of this into consideration, it’s likely that starting 291 

supplementation during pregnancy is too late to influence long-term health outcomes in the 292 

offspring, so strategies to improve nutrient intakes and status in girls and women prior to 293 

conception are more pertinent. 294 

Changes in body mass index require an even earlier intervention than that required to 295 

improve the nutritional status of women prior to pregnancy. Lifestyle and behavioural 296 

interventions among pregnant women with overweight and obesity have been shown to 297 

improve dietary intakes and physical activity levels(107-109). However, for the most part, such 298 

interventions have not resulted in improved clinical outcomes in the mothers or their 299 

offspring(109; 110). A life course approach has been suggested as a better alternative, whereby 300 

the prevention of obesity prior to conception is recommended, with a focus on a healthy 301 

weight status beginning in adolescence and right through the childbearing years(111; 112). An 302 

integrated approach is required to achieve this, composed of community-based awareness 303 

initiatives and education programmes targeting adolescent girls, women of reproductive age, 304 

women and couples planning a pregnancy and those not planning but still able to conceive. 305 

 306 

Target 2 – consistent, widespread employment of delayed clamping of the umbilical cord 307 

After birth, placental transfusion continues with a net transfer of blood, along with red blood 308 

cells, stem cells and plasma from the placenta to the newborn infant(113). Clamping of the 309 

umbilical cord stops this transfer, with varying practices in the timing of cord clamping 310 

reported. 311 

Delayed clamping of the umbilical cord, considered by many to be 1-3 minutes after birth or 312 

after cord pulsations stop, will allow for a greater placental transfusion than if the cord was 313 

clamped immediately. This increased placental transfusion results in increased haemoglobin, 314 

haematocrit and ferritin concentrations after birth in both term(114; 115) and preterm infants(116-315 

118). These benefits are long-lasting with improved iron stores and a decreased risk of iron 316 

deficiency observed throughout infancy, up to 8-12 months of age(119-122). An increased risk 317 

of jaundice requiring phototherapy in infants receiving delayed cord clamping has been 318 

suggested as a potential risk of this practice(115), but a recent review by Andersson and Mercer 319 
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stresses that this conclusion is exaggerated and not evidence based(113). Furthermore, 320 

improved neurological outcomes have been observed following delayed cord clamping, with 321 

increased brain myelination at 4 months and improved fine motor and social development at 322 

4 years reported(122; 123). 323 

Delayed cord clamping, albeit with varying definitions around timing, is recommended for all 324 

term neonates, regardless of mode of delivery, by multiple professional bodies worldwide(124-325 

126). The WHO also recommend delayed cord clamping for preterm infants, where 326 

possible(124), although this can be difficult given the complicated nature of many preterm 327 

deliveries. As preterm infants are especially vulnerable to iron deficiency, efforts are now 328 

being made to allow for the incorporation of delayed cord clamping into the stabilisation 329 

procedures of these infants in the delivery room(127). Despite consistent evidence to support 330 

the benefits of delayed cord clamping and recommendations from professional bodies, the 331 

practice of delayed cord clamping is not widespread or even consistent within countries and 332 

regions(128; 129). 333 

 334 

Target 3 – development of appropriate screening strategies to enable early detection 335 

When secondary to preterm birth and some pregnancy complications, prevention of iron 336 

deficiency may not always be feasible. Therefore, strategies targeting both prevention but 337 

also screening are needed to reduce the risk of iron deficiency and its lasting health 338 

consequences. Screening during the first 1,000 days will allow for the early detection of iron 339 

deficiency, thereby enabling prompt and targeted treatment to prevent its associated 340 

neurological consequences. 341 

Current screening strategies to tackle the issue are either non-existent, too limited or totally 342 

inappropriate to protect the developing brain. There are currently no screening strategies for 343 

the early detection of iron deficiency in pregnant women, infants or young children in 344 

Ireland. Some assessment of iron status is undertaken in pregnant women and hospitalised 345 

preterm or low birth weight infants, but this frequently relies on haemoglobin concentrations 346 

to indicate the need for further investigation and tests. The American Academy of Pediatrics 347 

recommend universal screening of infants at 12 months of age using haemoglobin 348 

concentrations(130). In 2015, the US Preventive Services Task Force concluded that there was 349 

insufficient evidence to assess the benefits and harms of screening for iron deficiency 350 

anaemia in pregnant women and children aged 6-24 months(131; 132). In contrast, the recent UK 351 
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guidelines on the management of iron deficiency in pregnancy outline that haemoglobin 352 

should be routinely measured around 28 weeks’ gestation and followed up with an 353 

assessment of ferritin concentrations, if anaemia detected(133).  354 

Future screening strategies need to be appropriately timed, incorporate the most relevant and 355 

meaningful biomarkers and identify those at the highest risk. Many questions remain as to the 356 

most appropriate biomarkers for use in this population group, but a move away from relying 357 

solely on haemoglobin to screen for risk is warranted. However, this does require further 358 

development of other biomarkers and better education as to why the use of haemoglobin for 359 

such purposes does not protect the developing brain. Perhaps screening tools that identify 360 

individuals as high-risk based on their own and their mother’s clinical history and past 361 

exposures/risks are a stepping stone towards the development of a much-needed screening 362 

programme. Without such a screening programme, iron deficiency and its long-lasting 363 

neurological consequences will continue to threaten those most vulnerable. 364 

 365 

Conclusions 366 

The first 1,000 days of life represents the period of greatest risk for iron deficiency and its 367 

long-lasting neurological consequences. Inadequate dietary intakes prior to and during 368 

pregnancy can be compounded by several pregnancy-related and lifestyle factors that disturb 369 

maternal-fetal iron supply in utero. Unfortunately, this means that many of the commonly 370 

held assumptions during this period, particularly pertaining to women and newborn infants 371 

having sufficient iron stores to meet their increased requirements do not always hold true. To 372 

further complicate matters, serious questions remain as to the most appropriate biomarkers 373 

and thresholds for the diagnosis of deficiency in this population, with re-evaluation of the 374 

diagnostic criteria necessary. There continues to be a lack of research into this area, with 375 

trimester-specific ferritin thresholds during pregnancy one area that needs urgent attention to 376 

enhance our ability to identify the women at most risk. 377 

The lasting neurological consequences of iron deficiency represent a real cost and burden to 378 

individuals, but also wider society. Therefore, the earlier we can protect the developing brain 379 

from the consequences of suboptimal iron, the better it is for our society’s long-term health 380 

and prosperity. To do so, a dual approach encompassing both prevention and screening 381 

strategies must be adopted. Prevention strategies need to focus on improving the health and 382 

nutritional status of young women, prior to ever becoming pregnant, while delayed cord 383 
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clamping should be considered a priority in the obstetric field. Better screening strategies, 384 

incorporating screening tools and point-of-care tests, are needed, to facilitate the early 385 

detection and identification of those at the greatest risk. These targets need to be achieved to 386 

protect both maternal health and the developing brain.  387 
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Table 1 Dietary reference values for iron (mg/day) during the first 1,000 days of life* 

 FSAI SACN EFSA IOM 

Women, >18 years 14 14.8 16 18 

Pregnant women, >18 years 15 14.8 16 27 

Lactating women, >18 years 15 14.8 16 9 

Infants, 0-3 months 1.7 1.7 - 0.27† 

Infants, 4-6 months 4.3 4.3 - 0.27† 

Infants, 7-12 months 7.8 7.8 11 11 

Children, 1-3 years 8 6.9 7 7 

FSAI, Food Safety Authority of Ireland(134); SACN, Scientific Advisory Committee on 

Nutrition(135); EFSA, European Food Safety Authority(136); IOM, Institute of Medicine(137). 

* Dietary reference values presented as RDA/PRI/RNI values. 

† Adequate Intake.  
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Figure 1 Developmental milestones in human brain development. 

Copyright © 2001 by American Psychological Association. Reproduced with permission 

from Thompson and Nelson(138) 
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Figure 2 Relationship of storage, transport, supply and functional iron indices to the 

spectrum of iron status. 

Modified from McCarthy and Kiely(139) 

 


