
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Phase tipping: how cyclic ecosystems respond to contemporary climate

Author(s) Alkhayuon, Hassan; Tyson, Rebecca C.; Wieczorek, Sebastian

Publication date 2021-11-06

Original citation Alkhayuon, H., Tyson, R. C. and Wieczorek, S. (2021) 'Phase tipping:
how cyclic ecosystems respond to contemporary climate', Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
477(2254), 20210059 (26 pp). doi: 10.1098/rspa.2021.0059

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://royalsocietypublishing.org/doi/10.1098/rspa.2021.0059
http://dx.doi.org/10.1098/rspa.2021.0059
Access to the full text of the published version may require a
subscription.

Rights © 2021 The Author(s). Published by the Royal Society. All rights
reserved

Item downloaded
from

http://hdl.handle.net/10468/12058

Downloaded on 2021-11-27T16:02:58Z

https://libguides.ucc.ie/openaccess/impact?suffix=12058&title=Phase tipping: how cyclic ecosystems respond to contemporary climate
https://royalsocietypublishing.org/doi/10.1098/rspa.2021.0059
http://dx.doi.org/10.1098/rspa.2021.0059
http://hdl.handle.net/10468/12058


Phase tipping: How cyclic ecosystems respond to

contemporary climate

Hassan Alkhayuon∗, Rebecca C. Tyson†, and Sebastian Wieczorek∗

June 2021

Abstract

We identify the phase of a cycle as a new critical factor for tipping points (critical
transitions) in cyclic systems subject to time-varying external conditions. As an example,
we consider how contemporary climate variability induces tipping from a predator-prey
cycle to extinction in two paradigmatic predator-prey models with an Allee effect. Our
analysis of these examples uncovers a counter-intuitive behaviour, which we call phase
tipping or P-tipping, where tipping to extinction occurs only from certain phases of the
cycle. To explain this behaviour, we combine global dynamics with set theory and introduce
the concept of partial basin instability for attracting limit cycles. This concept provides a
general framework to analyse and identify easily testable criteria for the occurrence of phase
tipping in externally forced systems, and can be extended to more complicated attractors.

1 Introduction

Tipping points or critical transitions are fascinating nonlinear phenomena that are known to
occur in complex systems subject to changing external conditions or external inputs. They are
ubiquitous in nature and, in layman’s terms, can be described as large, sudden, and unexpected
changes in the state of the system triggered by small or slow changes in the external inputs [1, 2].
Owing to potentially catastrophic and irreversible changes associated with tipping points, it is
important to identify and understand the underlying dynamical mechanisms that enable such
transitions. To do so, it is helpful to consider base states (attractors for fixed external conditions)
whose position or stability change as the external conditions vary over time. Recent work on
tipping from base states that are stationary (attracting equilibria) has been shown to result from
three generic tipping mechanisms [3]:

• Bifurcation-induced tipping or B-tipping occurs when the external input passes through a
dangerous bifurcation of the base state, at which point the base state disappears or turns
unstable, forcing the system to move to a different state [4, 5, 6].

• Rate-induced tipping or R-tipping occurs when the external input varies too fast, so the
system deviates too far from the moving base state and crosses some tipping threshold [7,
8, 9, 10, 11], e.g. into the domain of attraction of a different state [12, 13, 14, 15, 16, 17].
The special case of delta-kick external input is referred to as shock-tipping or S-tipping [18].
In contrast to B-tipping, R-tipping need not involve any bifurcations of the base state.

• Noise-induced tipping or N-tipping occurs when external random fluctuations drive the
system too far from the base state and past some tipping threshold [19], e.g. into the
domain of attraction of a different state [20, 21, 22, 23].

Many complex systems have non-stationary base states, meaning that these systems exhibit
regular or irregular self-sustained oscillations for fixed external inputs [24, 25, 26, 27, 28, 29, 30,
31]. Such base states open the possibility for other generic tipping mechanisms when the external
inputs vary over time. In this paper, we focus on tipping from the next most complicated base
state, a periodic state (attracting limit cycle), and identify a new tipping mechanism:
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• Phase tipping (Partial tipping [26]) or P-tipping occurs when a too fast change or random
fluctuations in the external input cause the system to tip to a different state, but only
from certain phases (or certain parts) of the base state and its neighbourhood. In other
words, the system has to be in the right phases to tip, whereas no tipping occurs from other
phases.

The concept of P-tipping naturally extends to more complicated quasiperiodic (attracting
tori) and chaotic (strange attractors) base states and, in a certain sense, unifies the notions of
R-tipping, S-tipping and N-tipping. A simple intuitive picture is that external inputs can trigger
the system past some tipping threshold, but only from certain parts of the base state and its
neighbourhood. Thus, P-tipping can also be interpreted as partial tipping. Indeed, examples
of P-tipping with smoothly changing external inputs include the recently studied “partial R-
tipping” from periodic base states [26], and probabilistic tipping from chaotic base states [32,
28, 31]. Furthermore, P-tipping offers new insight into classical phenomena such as stochastic
resonance [20, 33, 34], where noise-induced transitions between coexisting non-stationary states
occur (predominantly) from certain phases of these states and at an optimal noise strength.
Other examples of P-tipping due to random fluctuations include “state-dependent vulnerability
of synchronization” in complex networks [35], and “phase-sensitive excitability” from periodic
states [19], which can be interpreted as partial N-tipping.

Here, we construct a general mathematical framework to analyse irreversible P-tipping from
periodic base states. By “irreversible” we mean that the system approaches a different state
in the long-term. The framework allows us to explain counter-intuitive properties, identify the
underlying dynamical mechanism, and give easily testable criteria for the occurrence of P-tipping.
Furthermore, motivated by growing evidence that tipping points in the Earth system could be
more likely than was thought [2, 36, 37], we show that P-tipping could occur in real ecosystems
subject to contemporary climate change. To be more specific, we uncover robust P-tipping
from predator-prey oscillations to extinction due to climate-induced decline in prey resources in
two paradigmatic predator-prey models with an Allee effect: the Rosenzweig-McArthur (RMA)
model [38] and the May (or Leslie-Gower-May) model [39]. Intuitively, the phase sensitivity
of tipping from predator-prey oscillations arises because a given drop in prey resources has
distinctively different effects when applied during the phases of the cycle with the fastest growth
and the fastest decline of prey. Both the RMA and May models have been used to study predator-
prey interactions in a number of natural systems [40, 41, 42]. Here, we use realistic parameter
values for the Canada lynx and snowshoe hare system [43, 44], together with real climate records
from various communities in the boreal and deciduous-boreal forest [45].

The nature of predator-prey interactions often leads to regular, high amplitude, multi-annual
cycles [46]. Consumer-resource and host-parasitoid interactions are similar, and also often lead
to dramatic cycles [47]. In insects, cyclic outbreaks can be a matter of deep economic concern,
as the sudden increase in defoliating insects leads to significant crop damage [48]. In the boreal
forest, one of the most famous predator-prey cycles is that of the Canada lynx and snowshoe
hare [47]. The Canada lynx is endangered in parts of its southern range, and the snowshoe hare is
a keystone species in the north, relied upon by almost all of the mammalian and avian predators
there [49]. These examples illustrate the ubiquitous nature of cyclic predator-prey interactions,
and their significant economic and environmental importance. Their persistence in the presence
of climate change is thus a pressing issue.

Anthropogenic and environmental factors are subjecting cyclic predator-prey systems to ex-
ternal forcing which, through climate change, is being altered dramatically in both spatial and
time-dependent ways [41, 50, 51, 52, 53, 54]. In addition to long-term changes due to global
warming, there is a growing interest in changes in climate variability on year-to-decade timescales,
owing to its more imminent impacts [55]. In particular, increased variability of short-term cli-
matic events manifests itself as, for example, larger hurricanes, hotter heatwaves, and more severe
floods [56, 57, 58, 59, 60, 61, 53, 62, 63]. It is unknown how cyclic predator-prey systems will
interact with these changes in climate variability.

Beyond ecology, oscillatory predator-prey interactions play an important role in finance and
economics [64, 65]. Thus, our work may also be relevant for understanding economies in de-
veloping countries [66]. Such economies are non-stationary by nature, and it may well be that
developing countries have only short phases in their development, or narrow windows of oppor-
tunity, during which external investments can induce transitions from poverty to wealth.
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Figure 1: One-parameter bifurcation diagrams with different but fixed-in-time r for (a) the
autonomous RMA frozen model (1) and (b) the autonomous May frozen model (3). The other
parameter values are given in Appendix A, Table 1.

This paper is organised as follows. In Section 2, we introduce the Rosenzweig-MacArthur and
May models, define phase for the predator-prey oscillations, and describe the random processes
used to model climatic variability. In Section 3, Monte Carlo simulations of the predator-prey
models reveal counter-intuitive properties of P-tipping and highlight the key differences from
B-tipping. In Section 4, we present a geometric framework for P-tipping and define the concept
of partial basin instability for attracting limit cycles. In Section 5, we produce two-parameter
bifurcation diagrams for the autonomous predator-prey frozen systems with fixed-in-time external
inputs, identify bistability between predator-prey cycles and extinction, and reveal parameter
regions of partial basin instability - these cannot be captured by classical bifurcation analysis
but are essential for understanding P-tipping. Finally, we show that partial basin instability
explains and gives testable criteria for the occurrence of P-tipping. We summarise our results in
Section 6.

2 Oscillatory predator-prey models with varying climate.

We carry out our study of P-tipping in the context of two paradigmatic predator-prey models,
which we present here. We also define ”phase” in the context of the predator-prey limit cycles
and nearby oscillations. Finally, we introduce our climate variability model.

2.1 The Rosenzweig-MacArthur and May models

The Rosenzweig-MacArthur (RMA) model [38, 9] describes the time evolution of interacting prey
N and predator P populations [67]:

Ṅ = r(t)N

(
1− c

r(t)
N

)(
N − µ
ν +N

)
− αNP

β +N
,

Ṗ = χ
αNP

β +N
− δP.

(1)

In the prey equation, −r(t)µ/ν is the low-density (negative) prey growth rate, cµ/ν quantifies
the nonlinear modification of the low-density prey growth, the term (N − µ)/(ν +N) gives rise
to the strong Allee effect that accounts for negative prey growth rate at low prey population
density, α is the saturation predator kill rate, and β is the predator kill half-saturation constant.
The ratio r(t)/c is often referred to as the carrying capacity of the ecosystem. It is the maximum
prey population that can be sustained by the environment in the absence of predators [44]. In
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the predator equation, χ represents the prey-to-predator conversion ratio, and δ is the predator
mortality rate. Realistic parameter values, estimated from Canada lynx and snowshoe hare data
[44, 43], can be found in Appendix A, Table 1.

As we explain in Sec. 22.3, r(t) is a piecewise constant function of time that describes the
varying climate. This choice makes the nonautonomous system (1) piecewise autonomous in the
sense that it behaves like an autonomous system over finite time intervals. Therefore, much
can be understood about the behaviour of the nonautonomous system (1) by looking at the
autonomous frozen system with different but fixed-in-time values of r.

The RMA frozen system can have at most four stationary states (equilibria), which are
derived by setting Ṅ = Ṗ = 0 in (1). In addition to the extinction equilibrium e0, which is stable
for r > 0, there is a prey-only equilibrium e1(r), the Allee equilibrium e2, and the coexistence
equilibrium e3(r), whose stability depends on r and other system parameters:

e0 = (0, 0), e1(r) = (r/c, 0), e2 = (µ, 0), e3(r) = (N3, P3(r)). (2)

In the above, we include the argument (r) when an equilibrium’s position depends on r. The
prey and predator densities of the coexistence equilibrium e3(r) are given by:

N3 =
δβ

χα− δ
≥ 0 and P3(r) =

r

α

(
1− c

r
N3

) (β +N3)(N3 − µ)

ν +N3
≥ 0.

The one-parameter bifurcation diagram of the RMA frozen system in Fig. 1(a) reveals various
bifurcations and bistability, which are discussed in detail in Sec. 55.1. Most importantly, as r is
increased, the coexistence equilibrium e3(r) undergoes a supercritical Hopf bifurcation H, which
makes the equilibrium unstable and produces a stable limit cycle Γ(r). The cycle corresponds to
oscillatory coexistence of predator and prey and is the main focus of this study. In the ecological
literature, this Hopf bifurcation is referred to as the paradox of enrichment [68]. As r is increased
even further, Γ(r) disappears in a dangerous heteroclinic bifurcation h at r = rh, giving rise to a
discontinuity in the branch of coexistence attractors. Past rh, the only attractor is the extinction
equilibrium e0. This heteroclinic bifurcation indicates where complete depletion of the predator
becomes part of the cycle. Note that, in the absence of noise, the predator remains extinct once
its level reaches zero because the subspace {P = 0} is invariant. Hence the counter-intuitive
transition to predator extinction at high prey growth rates.

To show that phase tipping is ubiquitous in predator-prey interactions, we also consider
another paradigmatic predator-prey model, the May model [39, 44]:

Ṅ = r(t)N
(

1− c

r
N
)(N − µ

ν +N

)
− αNP

β +N
,

Ṗ = sP

(
1− qP

N + ε

)
.

(3)

This model has the same equation for the prey population density N as the RMA model, but
differs in the equation for the predator population density P . Specifically, s is the low-density
predator growth rate and ε is introduced to allow prey extinction. In other words, this model
assumes that the predator must have access to other prey which allow it to survive at a low
density ε/q in the absence of the primary prey N . The parameter q approximates the minimum
prey-to-predator biomass ratio that allows predator population growth, and Table 1 in Appendix
A contains realistic parameter values, estimated from Canada lynx and snowshoe hare data
[44, 43].

In addition to the extinction equilibrium e0, which is always stable, the May frozen system
has a prey-only equilibrium e1(r), an Allee equilibrium e2, and two coexistence equilibria e3(r)
and e4(r), whose stability depends on the system parameters. Further details and analysis of the
May frozen model are provided in Appendix A.

2.2 Phase of the cycle

To depict phase tipping, each point on the limit cycle, as well as in a neighbourhood of the
cycle, must be characterised by its unique phase. In the two-dimensional phase space of the
autonomous predator-prey frozen systems (1) and (3), the stable limit cycle Γ(r) makes a simple
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Figure 2: Phase portraits showing the (green) predator-prey limit cycles Γ(r) together with their
phases ϕγ and basin boundaries θ(r) in (a) the autonomous RMA frozen model (1) with r = 2.47
and (b) the autonomous May frozen model (3) with r = 2. The other parameter values are
given in Appendix A, Table 1. Schematic phase portraits depicting all equilibria and invariant
manifolds are shown in Appendix A, Fig. 10.

rotation about the coexistence equilibrium e3(r). We take advantage of this fact and assign a
unique phase ϕγ ∈ [0, 2π) to every point γ = (Nγ , Pγ) on the limit cycle using a polar coordinate
system anchored in e3(r) = (N3(r), P3(r)):

ϕγ = tan−1

(
103

Pγ − P3

Nγ −N3

)
. (4)

In other words, the phase of the cycle is the angle measured counter-clockwise from the horizontal
half line that extends from e3(r) in the direction of increasing N , as is shown in Fig. 2. Since the
values of P (t) for the limit cycles in systems (1) and (3) are three orders of magnitude smaller
than the values of N(t), the ensuing distribution of ϕγ along Γ(r) is highly non-uniform. To
address this issue and achieve a uniform distribution of ϕγ , we include the factor of 103 in (4).

In the problem of P-tipping, we often encounter oscillatory solutions that have not converged
to the limit cycle Γ(r). Equation (4) allows us to define the ”phase” of such oscillatory solutions
in a neighbourhood of Γ(r).

2.3 Climate variability

Climate variability here refers to changes in the state of the climate occurring on year-to-decade
time scales. We model this process by allowing r(t), i.e., the prey birth rate and the carrying
capacity of the ecosystem, to vary over time. This variation can be interpreted as climate-induced
changes in resource availability or habitat quality. Seasonal modelling studies often assume
sinusoidal variation in climate parameters [69, 70, 71, 72], but many key climate variables vary
much more abruptly [41]. Since our unit of time is years, rather than months, we focus on abrupt
changes in climate.1

Guided by the the approach proposed in [45] and [74], we construct a piecewise constant r(t)
using two random processes; see Fig. 3(a). First, we assume the amplitude of r(t) is a random
variable with a continuous uniform probability distribution on a closed interval [r2, r1]. Second,
we assume the number of consecutive years ` during which the amplitude of r(t) remains constant

1 In ecology, abrupt changes in the form of a single-switch between two values of an input parameter are called
press disturbances [73].
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is a random variable with a discrete probability distribution known as the geometric distribution2

g(`) = Pr(x = `) = (1− ρ)` ρ, (5)

where ` ∈ Z+ is a positive integer and ρ ∈ (0, 1). Such an r(t) can be viewed as bounded autocor-
related noise. Using actual climate records from four locations in the boreal and deciduous-boreal
forest in North America, we choose a realistic value of ρ = 0.2 [45]. We say the years with constant
r(t) are of high productivity, or Type-H, if their amplitude is greater than the mean (r1 + r2)/2.
Otherwise we say the years are of low productivity, or Type-L, as indicated in Fig. 3(a).

3 B-tipping vs. P-tipping in oscillatory predator-prey
models

In this section, we use the nonautonomous RMA model (1) to demonstrate the occurrence of P-
tipping in predator-prey interactions. Furthermore, we highlight the counter-intuitive properties
of P-tipping by a direct comparison with the intuitive and better understood B-tipping.

Note that, in the nonautonomous system, e0 remains the extinction equilibrium, but the
predator-prey limit cycle Γ(r) is replaced by (irregular) predator-prey oscillations. Nonetheless,
since the system is piecewise autonomous, the dynamics and bifurcations of the autonomous
frozen system help us to understand the behaviour of the nonautonomous one.

3.1 B-tipping from predator-prey cycles

We begin with a brief description of B-tipping due to the dangerous heteroclinic bifurcation h
of the attracting predator-prey limit cycle Γ(r). In the autonomous frozen system, the cycle
Γ(r) exists for the values of r below rh, and disappears in a discontinuous way when r = rh; see
Fig. 1(a). Thus, we expect one obvious tipping behaviour in the nonautonomous system with a
time-varying r(t):

(B1) B-tipping from predator-prey oscillations to extinction e0 will occur if r(t) increases past
the dangerous bifurcation level r = rh, and the system converges to e0 before switching
back to r < rh.

(B2) B-tipping will occur from all phases of predator-prey oscillations, but phases where the
system spends more time are more likely to tip. An invariant measure µ(ϕγ) of Γ(r) can be
obtained and normalised to approximate the probability distribution for B-tipping from a
phase ϕγ as shown in Fig. 3(e); see Ref. [76] and Appendix B for more details on calculating
µ(ϕγ).

(B3) B-tipping from predator-prey oscillations cannot occur when r(t) decreases over time
because Γ(r) does not undergo any dangerous bifurcations upon decreasing r.

To illustrate properties (B1)–(B3), we perform a Monte Carlo simulation of the nonau-
tonomous RMA system (1). We restrict the variation of r(t) to the closed interval [r2, r1] con-
taining the bifurcation point rh (see the ”Climate variability” label in Fig. 1(a), upper arrow),
and perform 103 numerical experiments. In each experiment, we start from a fixed initial con-
dition (N0, P0) = (3, 0.002) within the basin of attraction of Γ(r), and let r(t) vary randomly as
explained in Sec. 22.3. We allow the system to continue until tipping from predator-prey oscil-
lations to extinction occurs (Fig. 3(b)) due to a step change in r(t) from rpre to rpost (Fig. 3(a)).
We then record the values of rpre in red and the values of rpost in blue in Fig. 3(c), the state in the
(N,P ) phase space when the switch from rpre to rpost occurs in Fig. 3(d), and the corresponding
phase of this state to produce the tipping-phase histograms in Fig. 3(f). B-tipping is identified
as the blue dots above r = rh in Fig. 3(c), meaning that transitions to extinction occur when
r(t) changes from rpre < rh to rpost > rh in agreement with (B1) and (B3). The tipping phases
corresponding to grey dots in Fig. 3(d), and the ensuing grey histogram in Fig. 3(f), correlate
almost perfectly with the green invariant measure µ(ϕγ) of Γ(r) in Fig. 3(e), in agreement with
(B2).

2 In the statistical literature, the above form of the geometric distribution models the number of failures in a
Bernoulli trail until the first success occurs, where ρ is the probability of success [75].
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Figure 3: Results of a Monte Carlo simulation for the RMA model (1), where time-varying
r(t) is generated using p = 0.2 and “Climate variability” interval [r2, r1] = [1.6, 2.7] containing
rh. Shown are 103 numerical tipping experiments (B-tipping and P-tipping) for a fixed initial
condition (N0, P0) = (3, 0.002). The other parameter values are given in Appendix A, Table 1.
(a-b) The time profiles of r(t), N(t) and P (t) in a single tipping experiment. (c) The values
of r(t) (red) pre and (blue) post each switch that causes a tipping event. (d) States in the
(N,P ) phase plane at the time of the switch that causes a tipping event (i.e. states at the
“tipping time” defined in Definition 4.3), (gray dots) B-tipping and (black dots) P-tipping. (e)
The invariant measure µ(ϕλ) of the limit cycle Γ(r) parameterised by the cycle phase ϕλ. (f)
Probability distribution of tipping phases ϕλ for (gray) B-tipping and (black) P-tipping.

3.2 P-tipping from predator-prey cycles

The most striking result of the simulation is that B-tipping is not the only tipping mechanism
at play. It turns out that there are other, unexpected and counter-intuitive tipping transitions.
These transitions indicate a new tipping mechanism, whose dynamical properties are in stark
contrast to B-tipping:

(P1) Tipping from the predator-prey oscillations to extiction occurs when r(t) decreases and
does not cross any dangerous bifurcations of Γ(r), which is in contrast to (B1) and (B3).
This is evidenced in Fig. 3(c) by the blue dots below r = rh depicting transitions to
extinction when r(t) changes from rpre < rh to rpost < rpre.
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Figure 4: (a-b) and (d) The same as in Fig. 3 except for r(t) taking values from a different
“Climate variability” interval [r2, r1] = [1.6, 2.5] that does not contain rh. As a result, each of
the 1000 tipping events is P-tipping. (c) The probability distribution of tipping at time t. The
other parameter values are given in Appendix A, Table 1.

(P2) Tipping occurs only from certain phases of predator-prey oscillations, which is in contrast
to (B2). This is evidenced by the black dots in Fig. 3(d), and the ensuing black tipping-
phase histogram in Fig. 3(f).

(P3) The tipping phases do not correlate at all with the invariant measure µ(ϕγ) of Γ(r) shown
in Fig. 3(e). This is evidenced by a comparison with the black histogram in Fig. 3(f).

Since the unexpected tipping transitions occur only from certain phases of predator-prey oscil-
lations, we refer to this phenomenon as phase tipping or P-tipping.

Although P-tipping is less understood than B-tipping, it is ubiquitous and possibly even
more relevant for predator-prey interactions. In Fig. 4 we restrict climate variability in the RMA
model (1) to a closed interval [r2, r1] that does not contain rh. In other words, we set r1 < rh.
Since the time-varying input r(t) cannot cross the dangerous heteroclinic bifurcation, all tipping
transitions are P-tipping events. Furthermore, owing to the absence of dangerous bifurcations of
Γ(r) in the May model (3) in Fig. 1(b), P-tipping from predator-prey oscillations to extinction
e0 is the only tipping mechanism in Fig. 5. Note that P-tipping is more likely to occur in the
May model, as evidenced by shorter tipping times; compare Figs. 4(c) and 5(c).

The numerical experiments in Figs. 4 and 5 serve as motivating examples for the development
of a general mathematical framework for P-tipping in Section 4.

3.3 The Allee threshold: Intuitive explanation of P-tipping

Intuitively, P-tipping from predator-prey oscillations to extinction in the nonautonomous system
can be understood in terms of an Allee threshold θ(r) in the autonomous frozen system, separating
trajectories that lead to extinction from those that approach the predator-prey cycle (see Figs. 2
and 10), and how a given drop in prey resources r(t) affects different phases near the predator-
prey cycle via the changing Allee threshold.

8



Figure 5: (a-d) The same as in Fig. 4 but for the May frozen model (3) with r(t) taking values
from the “Climate variability” interval [r2, r1] = [2, 3.3]. Each of the 1000 tipping events is an
instance of P-tipping. The other parameter values are given in Appendix A, Table 1.

The shape and position of both the Allee threshold θ(r) and the predator-prey cycle Γ(r)
are modified by a drop in prey resources r(t). The strongest impact is expected when the
drop coincides with the region of the fastest decline in prey N(t) and a large predator population
P (t). These situations occur near the part of the cycle within a range of phases around ϕγ = π/2,
which is close to θ(r). There, the drop speeds up the prey decline, which, in conjunction with
high predation pressure, creates perfect conditions for the ecosystem to move away from the
modified cycle, cross the even closer modified Allee threshold, and move towards extinction.
Indeed, Figs. 4 and 5 show that P-tipping occurs from a range of phases around ϕγ = π/2.
The ecosystem response is very different if the same drop in prey resources coincides with the
region of the fastest growth of prey N(t) and a small predator population P (t). These situations
occur near a different part of the cycle, within a range of phases around ϕγ = −π/2, which
is away from θ(r). There, the drop slows or even reverses the prey growth, but low predation
pressure prevents the ecosystem from crossing the distant Allee threshold and helps it adapt to
the modified cycle instead. Hence the observed phase sensitivity of tipping from predator-prey
oscillations to extinction in the nonautonomous systems.

4 A geometric framework for P-tipping: Partial basin in-
stability

Motivated by the numerical experiments in Figs. 4 and 5, and the fact that P-tipping is not
captured by classical bifurcation theory, the aim of this section is to provide mathematical tools
for analysis of P-tipping. Specifically, we develop a simple geometric framework that uses global
properties of the autonomous frozen system to study P-tipping from attracting limit cycles and
their neighbourhoods in the nonautonomous system. The key concept is basin instability3. This

3 Not to be confused with the notion of ”basin stability” introduced as a measure related to the volume of the
basin of attraction [77].
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concept was first introduced in [13, Section 5.2] to study irreversible R-tipping from base states
that are stationary (attracting equilibria) for fixed-in-time external inputs. Here, we extend this
concept to base states that are attracting limit cycles for fixed-in-time external inputs. Our
framework will allow us to give easily testable criteria for the occurrence of P-tipping from limit
cycles in general, and explain the counter-intuitive collapses to extinction in the predator-prey
systems from Sec. 3.

To define basin instability and P-tipping for limit cycles in general terms, we consider an
n-dimensional nonautonomous system

ẋ = f(x, p(t)), (6)

with x ∈ Rn, and a piecewise constant external input p(t) that can be single-switch or multi-
switch. When it is important to highlight the dependence of multi-switch inputs on ρ

(
see

Eq. (5)
)
, we write pρ(t) instead of p(t). Note that the RMA (1) and May (3) models with r(t)

from Section 22.3 are examples of (6). Furthermore, we write

x(t, x0; t0)

to denote a solution to the nonautonomous system (6) at time t started from x0 at initial time t0.
We also consider the corresponding autonomous frozen system with different but fixed-in-time
values of the external input p, and write

x(t, x0; p)

to denote a solution to the autonomous frozen system at time t started from x0 for a fixed p.

4.1 Ingredients for defining basin instability

One key ingredient of a basin instability definition is the base attractor in the autonomous frozen
system, denoted Γ(p), whose shape and position in the phase space vary with the input pa-
rameter(s) p. The second key ingredient is the basin of attraction of the base attractor, denoted
B(Γ, p), whose shape and extent may also vary with the input parameter(s) p. For non-stationary
attractors Γ(p), we work with the distance 4 between a solution x(t, x0; p) and the set Γ(p), and
write

x(t, x0, p)→ Γ(p) as t→ +∞,

when this distance tends to zero as t→ +∞. We define B(Γ, p) as the open set of all x0 whose
trajectories converge to Γ(p) forward in time:

B(Γ, p) = {x0 : x(t, x0, p)→ Γ(p) as t→ +∞} .

We often refer to the closure of the basin of attraction of Γ(p), denoted B(Γ, p), which comprises
B(Γ, p) and its boundary, and to the basin boundary of Γ(p), which is given by the set difference
B(Γ, p)\B(Γ, p). Additionally, we assume that either all or part of the basin boundary of Γ(p) is
a basin boundary of at least two attractors. This property, in turn, requires that the autonomous
frozen system is at least bistable, meaning that it has at least one more attractor, other that Γ(p),
for the same values of the input parameter(s) p.

The third key ingredient is a parameter path ∆p, which we define as a connected set of all
possible values of the external input p(t). It is important that ∆p does not cross any classical
autonomous bifurcations of the base attractor Γ(p).

4.2 Definitions of basin instability for limit cycles

In short, basin instability of the base attractor on a parameter path describes the position of the
base attractor at some point on the path relative to the position of its basin of attraction at other
points on the path. Here, we define this concept rigorously for attracting limit cycles setwise.

4 The distance between x(t, x0; p) and Γ(p) is d [x(t, x0; p),Γ(p)] = infγ∈Γ(p) ‖x(t, x0; p)− γ‖.
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Definition 4.1. Consider a parameter path ∆p. Suppose the frozen system has a family of
hyperbolic attracting limit cycles Γ(p) that vary C1-smoothly with p ∈ ∆p. We say Γ(p) is basin
unstable on a path ∆p if there are two points on the path, p1, p2 ∈ ∆p, such that the limit cycle
Γ(p1) is not contained in the basin of attraction of Γ(p2):

There exist p1, p2 ∈ ∆p such that Γ(p1) 6⊂ B(Γ, p2). (7)

Furthermore, we distinguish two observable (or typical) cases of basin instability:

(i) We say Γ(p) is partially basin unstable on a path ∆p if there are two points on the path,
p1 and p2 ∈ ∆p, such that the limit cycle Γ(p1) is not fully contained in the closure of the
basin of attraction of Γ(p2), and, for every two points on the path, p3 and p4 ∈ ∆p, Γ(p3)
has a non-empty intersection with the basin of attraction of Γ(p4):

There exist p1, p2 ∈ ∆p such that Γ(p1) 6⊂ B(Γ, p2), and

Γ(p3)
⋂
B(Γ, p4) 6= ∅ for every p3, p4 ∈ ∆p.

(8)

(ii) We say Γ(p) is totally basin unstable on a path ∆p if there are (at least) two points on the
path, p1 and p2 ∈ ∆p, such that Γ(p1) lies outside the closure of the basin of attraction of
Γ(p2):

There exist p1, p2 ∈ ∆p such that Γ(p1)
⋂
B(Γ, p2) = ∅. (9)

Remark 4.1. Additionally, there are two indiscernible (or special) cases of basin instability
for limit cycles. They cannot be easily distinguished by observation from total basin instability,
or from lack of basin instability. However, the indiscernible cases are necessary (although not
sufficient) for the onset of partial basin instability and for transitions between partial and total
basin instability.

(iii) We say Γ(p) is marginally basin unstable on a path ∆p if, in addition to (7), for every two

points on the path, p3 and p4 ∈ ∆p, the limit cycle Γ(p3) is contained in B(Γ, p4):

Γ(p3) ⊂ B(Γ, p4) for every p3, p4 ∈ ∆p. (10)

The special case of marginal basin instability separates the typical cases of “no basin in-
stability” and “partial basin instability”. Furthermore, it is related to “invisible R-tipping”
and to transitions between “tracking” and “partial R-tipping” identified in [26].

(iv) We say Γ(p) is almost totally basin unstable on a path ∆p if there are (at least) two points
on the path, p1 and p2 ∈ ∆p, such that Γ(p1) does not intersect B(Γ, p2), and, for every

two points on the path, p3 and p4 ∈ ∆p, the limit cycle Γ(p3) intersects B(Γ, p4):

There exist p1, p2 ∈ ∆p such that Γ(p1)
⋂
B(Γ, p2) = ∅, and

Γ(p3)
⋂
B(Γ, p4) 6= ∅ for every p3, p4 ∈ ∆p.

(11)

The special case of almost total basin instability separates the typical cases of “partial basin
instability” and “total basin instability”. Furthermore, it is related to transitions between
“partial R-tipping” and ”total R-tipping” described in [26].

Note that, for equilibrium base states, “partial basin instability” is not defined, whereas “marginal
basin instability” and “almost total basin instability” become the same condition.

Guided by the approach proposed in [13], we would like to augment the classical autonomous
bifurcation diagrams for the autonomous frozen system with information about (partial) basin
instability of the base attractor Γ(p). The aim is to reveal nonautonomous instabilities that
cannot be explained by classical autonomous bifurcations of the frozen system. To illustrate
basin instability of Γ(p) in the bifurcation diagram of the autonomous frozen system, we define
the region of basin instability of Γ(p) in the space of the input parameters as follows:
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Definition 4.2. In the autonomous frozen system, consider a C1-smooth family of hyperbolic
attracting limit cycles Γ(p), and denote it with G. For a fixed p = p1, we define a region of basin
instability of Γ(p1) ∈ G as a set of all points p2 in the space of the input parameters p, such that
Γ(p1) is not contained in the basin of attraction of Γ(p2) ∈ G:

BI(Γ, p1) := {p2 : Γ(p1) 6⊂ B(Γ, p2) and Γ(p2) ∈ G} . (12)

4.3 Partial basin Instability and P-tipping

Thus far, we have worked with a loosely defined concept of P-tipping. In this section, we give
rigorous definitions of P-tipping for single-switch and multi-switch p(t), show that partial basin
instability of Γ(p) for a single-switch p(t) is necessary and sufficient for the occurrence of P-tipping
from Γ(p), and discuss the applicability of this result to multi-switch p(t).

Definition 4.3. Consider a nonautonomous system (6) with a piecewise constant input p(t) on
a parameter path ∆p. Suppose the autonomous frozen system has a family of hyperbolic attracting
limit cycles Γ(p) that vary C1-smoothly with p ∈ ∆p.

(i) Suppose p(t) is a single-switch that changes from p1 ∈ ∆p to p2 ∈ ∆p at time t = t1.
Suppose also the system is on Γ(p1) at t = t1. We then say that system (6) undergoes
irreversible P-tipping from Γ(p1) if there are xa, xb ∈ Γ(p1), such that

x(t, xa; p2)→ Γ(p2) as t→ +∞ and x(t, xb; p2) /∈ B(Γ, p2) for all t > t1.

We call ϕxb
a tipping phase associated with each such xb.

(ii) Suppose pρ(t) is multi-switch with a fixed ρ. If x(t,x0; t0) leaves the basin of attraction
B(Γ, pρ(t)) for good, we use t1 to denote the smallest switching time such that

x(t, x0; t0) /∈ B(Γ, pρ(t)) for all t > t1.

We use xb = x(t1, x0; t0) to denote the corresponding state, and ϕxb
to denote the corre-

sponding tipping phase. We then say that system (6) undergoes irreversible P-tipping if,
for some initial condition x0 ∈ B(Γ, pρ(t0)) and all realisations of pρ(t), there are tipping
phases ϕxb

and also a non-zero Lebesgue measure subset of [0, 2π) that does not contain
any tipping phases ϕxb

.

We call t1 the tipping time

Remark 4.2. It should be possible to extend Definition 4.3 to:

(i) Smoothly varying p(t), for which P-tipping from Γ(p) is expected to depend on the rate of
change of p(t) [26, 30].

(ii) Non-periodic attractors such as tori or chaotic attractors, which may require an alternative
phase definition. We return to this point in Section 6.

In general, the occurrence of P-tipping depends on the initial state, the properties of the
external input p(t), and the topological structure of the phase space. We now show that partial
basin instability of Γ(p) for a single-switch p(t) is necessary and sufficient for the occurrence of
P-tipping from Γ(p).

Proposition 4.1. Consider a nonautonomous system (6) and a parameter path ∆p. Suppose
the frozen system has a family of hyperbolic attracting limit cycles Γ(p) that vary C1-smoothly
with p ∈ ∆p, and Γ(p) is partially basin unstable on ∆p. Then, for all p1 and p2 ∈ ∆p, a
single-switch parameter change from p1 to p2 gives irreversible P-tipping from Γ(p1) if and only
if Γ(p1) 6⊂ B(Γ, p2).

Proof. A single-switch parameter change from p1 to p2 at time t = t0 reduces the problem to
an autonomous initial value problem with initial condition x0 = x(t0) and fixed p = p2. It
follows from the definition of basin of attraction that only solutions x(t, x0; p2) started from
x0 ∈ B(Γ, p2) are attracted to the limit cycle Γ(p2). Thus, if Γ(p) is partially basin unstable on
∆p and Γ(p1) 6⊂ B(Γ, p2), then there will be γ ∈ Γ(p1) \ B(Γ, p2), that give irreversible tipping,
and γ ∈ Γ(p1)∩B(Γ, p2), that give no tipping. Conversely, if there is irreversible P-tipping from
Γ(p1), then there must be γ ∈ Γ(p1) \B(Γ, p2), which implies Γ(p1) 6⊂ B(Γ, p2).
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This rigorous statement no longer holds for multi-switch piecewise constant inputs pρ(t). The
reason is that trajectories are no longer guaranteed to converge to the limit cycle Γ(p), or to
the alternative attractor of the frozen system, if the time interval between consecutive switches
is short compared to the time of convergence. Additionally, trajectories started in the basin
of attraction of Γ(p) may move away from Γ(p) for finite time. These differences allow for
two dynamical scenarios that cannot occur in a system that starts on Γ(p) and is subject to a
single-switch p(t).

In the first scenario, following a switch, the system leaves the basin of attraction of Γ(p), but
fails to converge to an alternative attractor before the next switch happens, re-enters the basin
of attraction of Γ(p) upon the second switch, and avoids P-tipping in spite of basin instability
of Γ(p). We refer to such events as “rescue events”[45]. Hence, basin instability of Γ(p) for a
given switch within a mulit-switch p(t) does not guarantee the occurrence of tipping upon this
particular switch. For the second scenario, we extend the concept of partial basin instability to
the whole basin of attraction of Γ(p). Suppose that Γ(p) is basin stable on ∆p, but its basin
of attraction is partially basin unstable on ∆p. Following a switch, the trajectory moves away
from Γ(p) and enters the basin unstable part of the basin of attraction of Γ(p), then the next
switch happens, and the system undergoes P-tipping in the absence of basin instability of Γ(p).
Hence, partial basin instability of Γ(p) need not be necessary for the occurrence of P-tipping
with multi-switch p(t).

Keeping in mind that multi-switch P-tipping is defined for all realisations of pρ(t), it should
be possible to show that, for multi-switch piecewise constant p(t):

• Partial basin instability of Γ(p) on ∆p is sufficient for the occurrence of P-tipping in sys-
tem (6).

• If pρ(t) allows trajectories to converge to Γ(p) between all consecutive switches, then partial
basin instability of Γ(p) on ∆p is necessary and sufficient for the occurrence of P-tipping
in system (6).

5 Partial basin instability and P-tipping in predator-prey
models

In this section, we start with classical autonomous bifurcation analysis of the predator-prey frozen
systems (1) and (3) to identify parameter regions with bistability between predator-prey cycles
and extinction. Then, we show that predator-prey cycles can be partially basin unstable on
several parameter paths ∆r that lie within these regions of bistability. Finally, we demonstrate
that partial basin instability of predator-prey cycles on a path ∆r explains the counter-intuitive
collapses to extinction that occur only from certain phases of predator-prey oscillations, and
gives simple testable criteria for the occurrence of P-tipping in the nonautonomous predator-
prey system.

5.1 Classical bifurcation analysis: Limit cycles and bistability

There are four ecologically relevant parameter regions in the predator-prey frozen systems (1)
and (3), shown in Figure 6. These regions have qualitatively different dynamics that can be
summarised in terms of stable states as follows:

• Oscillatory Coexistence or Extinction: The system is bistable and can either settle at the
extinction equilibrium e0, or self-oscillate as it converges to the predator-prey limit cycle
Γ(r). Here is where P-tipping may occur; see the green regions in Fig. 6.

• Stationary Coexistence or Extinction: The system is bistable and can settle either at the
extinction equilibrium e0, or at the coexistence equilibrium e3(r); see the yellow regions in
Fig. 6.

• Prey Only or Extinction: The system is bistable and can settle either at the extinction
equilibrium e0, or at the prey-only equilibrium e1(r); see the upper pink region in Fig. 6(a).

13



Figure 6: Two-parameter bifurcation diagrams for (a) the autonomous RMA frozen model (1) in
the (r, δ) parameter plane, and (b) the autonomous May frozen model (3) in the (r, q) parameter
plane. The other parameter values are given in Appendix A, Table 1.

• Extinction: The system is monostable and can only settle at the extinction equilibrium e0;
see the other pink regions in Fig. 6.

The region boundaries are obtained via two-parameter bifurcation analysis using the numerical
continuation software XPPAUT [78]. This analysis extends our discussion of the one-parameter
bifurcation diagrams from Fig. 1. We refer to Appendix C for the details of the bifurcation
analysis, and to [79] for more details on classical autonomous bifurcation theory.

5.2 Partial basin instability of predator-prey cycles

We now concentrate on the bistable regions labelled “Oscillatory Coexistence or Extinction”,
apply Definitions 4.1 and 4.2 to predator-prey cycles, and show that

• Predator-prey cycles Γ(r) can be partially basin unstable on suitably chosen parameter
paths.

• Both predator-prey models have large parameter regions of partial basin instability. When
superimposed onto classical bifurcation diagrams, these regions reveal P-tipping instabilities
that cannot be captured by the classical autonomous bifurcation analysis.

• Partial basin instability of Γ(r) in the frozen system is sufficient for the occurrence of
P-tipping in the nonautonomous system.

The base attractor is the predator-prey limit cycle Γ(r), and the alternative attractor is the
extinction equilibrium e0. The basin boundary of Γ(r) is the Allee threshold θ(r), which can be
computed as the stable invariant manifold of the saddle equilibrium es(r):

θ(r) := W s(es(r)) =
{

(N0, P0) ∈ R2 : (N(t), P (t))→ es(r) as t→ +∞
}
.

In the RMA frozen model, es(r) is the saddle Allee equilibrium e2, whereas in the May frozen
model, es(r) is the saddle coexistence equilibrium e4(r) that lies near the repelling Allee equilib-
rium e2. To uncover the full extent of partial basin instability for the predator-prey cycles Γ(r),
we fix a point p1 that lies within the region labelled “Oscillatory Coexistence or Extinction”; see
Figs. 7(a) and 8(a). Then, we apply definition (12) to identify all points p2 within this region such
that the predator-prey limit cycle Γ(p1) is not contained in the closure of the basin of attraction
of Γ(p2). The ensuing (light grey) regions of partial basin instability bounded by the (dark grey)
curves of marginal basin instability are superimposed on the classical bifurcation diagrams in
Figs. 7(a) and 8(a). Note that the basin instability regions BI(Γ, p1) depend on the choice of

14



Figure 7: (a) The two-parameter bifurcation diagram for the autonomous RM frozen model (1)
from Fig. 6(a) with the addition of the (grey) region of partial basin instability, BI(Γ, p1) for
p1 = (2.47, 2.2), as defined by (12), and the parameter path ∆r from p1. (b) The range of
basin unstable phases for the predator-prey limit cycle Γ(r) along ∆r. (c)–(e) Selected (N,P )
phase portraits showing (c) no basin instability for r2 = 2.05, (d) marginal basin instability for
r2 = 1.923, and (e) partial basin instability of Γ(r) on ∆r for r2 = 1.8. Basin stable parts of Γ(r)
are shown in green, basin unstable parts of Γ(r) are shown in red. The other parameter values
are given in Appendix A, Table 1.

p1, and are labelled simply BI for brevity. To illustrate the underlying mechanism in the (N,P )
phase plane, we restrict to parameter paths ∆r that are straight horizontal lines from p1 in the
direction of decreasing r. In other words, we set p = r; see Figs. 7(a) and 8(a). When r2 ∈ ∆r

lies on the dark grey curve of marginal basin instability, there is a single point of tangency be-
tween Γ(r1) and and θ(r2), denoted γ± in Figs. 7(d) and 8(d). When r2 ∈ ∆r lies within the
light grey region of partial basin instability, there are two points of intersection between Γ(r1)
and and θ(r2), denoted γ− and γ+ in Figs. 7(e) and 8(e). These two points bound the (red)
part of the cycle that is basin unstable. The corresponding basin unstable phases are shown in
Figs. 7(b) and 8(b). Suppose that r(t) = r1, and a trajectory of the nonautonomous system is on
the same side of θ(r2) as the (red) basin unstable part of Γ(r1). Then, when r(t) changes from
r1 to r2, the trajectory finds itself in the basin of attraction of the extinction equilibrium e0, and
will thus approach e0.

The striking similarity is that predator-prey cycles from both models exhibit partial basin
instability upon decreasing r. This decrease corresponds to climate-induced decline in the re-
sources or in the quality of habitat. Furthermore, while the predator-prey cycle in the May model
has a noticeably wider range of basin unstable phases, neither cycle appears to be totally basin
unstable. All these observations are consistent with the counter-intuitive properties (P1)–(P3)
of P-tipping identified in the numerical experiments in Sec. 3.
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Figure 8: (a) The two-parameter bifurcation diagram for the autonomous May frozen model (3)
from Fig. 6(b) with the addition of the (grey) region of partial basin instability, BI(Γ, p1) for
p1 = (3.3, 205), as defined by (12), and the parameter path ∆r from p1. (b) The range of
basin unstable phases for the predator-prey limit cycle Γ(r) along ∆r. (c)–(e) Selected (N,P )
phase portraits showing (c) no basin instability for r2 = 2.82, (d) marginal basin instability for
r2 = 2.41, and (e) partial basin instability of Γ(r) on ∆r for r2 = 2. Basin stable parts of Γ(r)
are shown in green, basin unstable parts of Γ(r) are shown in red. The other parameter values
are given in Appendix A, Table 1.

5.3 Partial basin instability explains P-tipping

Now, we can demonstrate that partial basin instability of Γ(r) in the autonomous predator-prey
frozen systems explains and gives simple testable criteria for the occurrence of P-tipping in the
nonautonomous systems. The families of attracting predator-prey limit cycles Γ(r), and their
basin boundaries θ(r), are the two crucial components of the discussion below.

First, recall the numerical P-tipping experiments from Sec. 3, and focus on the crescent shaped
‘clouds’ of states from which P-tipping occurs; see the black dots Figs. 4 and 5. Second, recognise
that each P-tipping event occurs for a different value of rpre ∈ [r2, r1], and thus from a different
predator-prey cycle Γ(rpre) or its neighbourhood. Therefore, we must consider the union of all
cycles from the family along the parameter path ∆r bounded by r2 and r1:

G :=
{

Γ(r) : r ∈ [r2, r1]
}
, (13)

which is shown in Fig. 9. Furthermore, we use the basin boundary θ(r2) of the cycle Γ(r2)
at the left end of the path to divide G into its (light green) basin stable part and (pink) basin
unstable part on ∆r with r ∈ [r2, r1]. The ‘clouds’ of states from which P-tipping occurs agree
perfectly with the basin unstable part of G. A few black dots that lie slightly outside the basin
unstable part of G in Fig. 9(b) correspond to those P-tipping events that occur from states that
have not converged to the limit cycle Γ(rpre) and lie visibly away from Γ(rpre) when the switch
that causes tipping happens. Those P-tipping events occur if the time interval ` during which
r(t) = rpre is shorter than the time of convergence to the limit cycle Γ(rpre) in the autonomous
frozen system. For this particular parameter path, we could not detect any tipping events in the
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Figure 9: The concept of partial basin instability on a parameter path ∆r with r ∈ [r2, r1] (see
Def. 4.1) is applied to the union G of all predator-prey limit cycles Γ(r) on the path (see Eq.(13))
to explain the counter-intuitive P-tipping phenomenon uncovered in Figs. 4 and 5. The (black
dots) states from which the system P-tips to extinction agree perfectly with the (pink) basin
unstable parts of G for (a) the RMA model (1) with r1 = 2.5, r2 = 1.6, and δ = 2.2, and (b)
the May model (3) with r1 = 3.3, r2 = 2, and q = 205. The other parameter values are given in
Appendix A, Table 1.

absence of partial basin instability of Γ(r). However, we could detect multiple “rescue events”
described in Section 44.3 (not shown in the figure). In a “rescue event”, the system leaves the
basin of attraction of the predator-pray cycle after a switch that gives basin instability, but avoids
tipping upon this switch because it re-enters the basin of attraction of the predator-prey cycle
after some future switch. “Rescue events” occur if the time interval ` during which r(t) = rpre is
shorter than the time of convergence to the extinction equilibrium e0 in the autonomous frozen
system. In summary, the general concept of partial basin instability of Γ(r) on a parameter path
∆r from Definition 4.1 is an excellent indicator for the occurrence of P-tipping in the RMA (1)
and May (3) models.

6 Conclusions

This paper studies nonlinear tipping phenomena, or critical transitions, in nonautonomous dy-
namical systems with time-varying external inputs. In addition to the well-known critical factors
for tipping in systems that are stationary in the absence of external inputs, namely bifurcation,
rate of change, and noise, we identify here the phase of predator-prey limit cycles and nearby
oscillations as a new critical factor in systems that are cyclic in the absence of external inputs.

To illustrate the new tipping phenomenon in a realistic setting, we consider two paradigmatic
predator-prey models with an Allee effect, namely the Rosenzweig-MacArthur model [38] and the
May model [39]. We describe temporal changes in the carrying capacity of the ecosystem with
real climate variability records from different communities in the boreal and deciduous-boreal
forest [45], and use realistic parameter values for the Canada lynx and snowshoe hare system [43,
44]. Monte Carlo simulation reveals a robust phenomenon, where a drop in the carrying capacity
tips the ecosystem from a predator-prey oscillations to extinction. The special and somewhat
counter-intuitive result is that tipping occurs: (i) without crossing any bifurcations, and (ii) only
from certain phases of the oscillations. Thus, we refer to this phenomenon as phase tipping
(partial tipping), or simply P-tipping. Intuitively, P-tipping from predator-prey oscillations to
extinction arises because a fixed drop in prey resources has distinctively different effects when
applied during the phases of the oscillations with the fastest growth and the fastest decline of
prey.
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Motivated by the outcome of the simulation, we develop an accessible and general mathemati-
cal framework to analyse P-tipping and reveal the underlying dynamical mechanism. Specifically,
we employ notions from set-valued dynamics to extend the geometric concept of basin instability,
introduced in [13] for equilibria, to limit cycles. The main idea is to consider the autonomous
frozen system with different but fixed-in-time values of the external input along some parameter
path, and examine the position of the limit cycle at some point on the path relative to the posi-
tion of its basin of attraction at other points on the path. First, we define different types of basin
instability for limit cycles, and focus on partial basin instability that does not exist for equilibria.
Second, we show that partial basin instability in the autonomous frozen system is necessary
and sufficient for the occurrence of P-tipping in the nonautonomous system with a single-switch
external input. Furthermore, we discuss applicability of this result to multi-switch external
inputs. Third, we relate our results to those of Alkhayuon and Ashwin [26] on rate-induced
tipping from limit cycles.

We then apply the general framework to the ecosystem models and explain the counter-
intuitive transitions from certain phases of predator-prey oscillations to extinction. We use
classical autonomous bifurcation analysis to identify parameter regions with bistability between
predator-prey cycles and extinction. In this way, we show that predator-prey cycles can be
partially basin unstable on typical parameter paths within these bistability regions. Moreover,
we superimpose regions of partial basin instability onto classical autonomous bifurcation diagrams
to reveal P-tipping instabilities that are robust but cannot be captured by classical bifurcation
analysis.

We believe that this approach will enable scientists to uncover P-tipping in many different
cyclic systems from applications, ranging from natural science and engineering to economics. For
example, the predator-prey paradigm is found across biological applications modelling, including
epidemiology [80], pest control [81], fisheries [82], cancer [83, 84], and agriculture [85, 86]. The
fundamental relationship described in predator-prey models also appears in many areas outside
of the biological sciences, with recent examples including atmospheric sciences [87], economic
development [64, 65], trade and financial crises [88, 89, 90], and land management [91]. Exter-
nal disturbances of different kinds exist in all of these systems, suggesting that the P-tipping
behaviours discovered in this paper are of broad practical relevance.

Furthermore, the concept of P-tipping, for base states that are attracting limit cycles with
regular basin boundaries, naturally extends to more complicated base states, such as quasiperi-
odic tori and chaotic attractors, and to irregular (e.g. fractal) basin boundaries [28, 92, 32, 31].
Defining phase for more complicated cycles in higher dimensions, and for non-periodic oscil-
lations, will usually require a different approach. For example, one could define phase for an
attracting limit cycle in a multidimensional system in terms of its period T as a linear function
of time ϕ = 2πt/T . This definition is independent of the coordinate system, and can be extended
to every point in the basin of attraction using isochrones. Another approach is to work with a
time series of a single observable and use the Hilbert transform to construct the complex-valued
analytic signal, and then extract the so-called instantaneous phase [93, 94]. This phase variable
may provide valuable physical insights into the problem of P-tipping when the polar coordinate
approach does not work, or when the base attractor or its basin boundary have complicated ge-
ometry and are difficult to visualise. Such systems will likely exhibit even more counter-intuitive
tipping behaviours, but their analysis requires mathematical techniques beyond the scope of this
paper.

Another interesting research question is that of early warning indicators for P-tipping. In the
past decade, many studies of noisy real-world time-series records revealed prompt changes in the
statistical properties of the data prior to tipping [1, 21, 95, 22], which appear to be generic for
tipping from equilibria. However, it is unclear if these statistical early warning indicators appear
for P-tipping, or if one needs to identify alternatives such as Finite Time Lyapunov Exponent
(FTLE) [96].
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A Equilibria and bifurcations of the May frozen system

The May frozen system can have at most five stationary solutions (equilibria), which are derived
by setting Ṅ = Ṗ = 0 in (3). In addition to the extinction equilibrium e0, which is always stable,
there is a prey-only equilibrium e1(r), the Allee equilibrium e2, and two coexistence equilibria
e3(r) and e4(r), whose stability depends on the system parameters

e0 = (0, ε/q), e1(r) = (r/c, 0), e2 = (µ, 0), e3(r) = (N3(r), P3(r)) , e4(r) = (N4(r), P4(r)) . (14)

In the above, we include the argument (r) when an equilibrium’s position depends on r. The
prey population densities of the coexistence equilibria e3(r) and e4(r) are the two non-negative
roots, denoted N3(r) and N4(r) respectively, of the third degree polynomial

N3 −
(
µ− β +

r

c
− α

cq

)
N2 −

(
βµ+

r(β − µ)

c
− α(ν + ε)

cq

)
N +

(
rβµ

c
+
ανε

cq

)
= 0, (15)

and the corresponding predator population densities are given by

Pi(r) =
Ni(r) + ε

q
, i = 3, 4.
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Figure 10: Schematic phase portraits showing stable (black dots), unstable (black circles) and
saddle (black plus signs) equilibria; the stable/unstable manifolds (black dashed curves) of the
saddle equilibria; and the (green) limit cycles Γ in (a) the autonomous RMA frozen model (1)
with r ∈ (1.53, 2.61) and (b) the autonomous May frozen model (3) with r ∈ (1.66, 3.81). The
other parameter values are given in Appendix A, Table 1.

The one-parameter bifurcation diagram of the May frozen system in Fig. 1(b) reveals different
bifurcations and bistability. Most importantly, as r is increased, the coexistence equilibrium e3(r)
gives rise to a stable limit cycle Γ(r) via a safe supercritical Hopf bifurcation, denoted H1. The
cycle exists for a range of r, and disappears in a reverse supercritical Hopf bifurcation, denoted
H2, for larger r.

Table 1: Realistic parameter values for the RMA model (1) and the May model (3), estimated
from Canada lynx and snowshoe hare data [44, 43].

Parameter Units RMA model May model
r 1/yr [0, 3] [0, 4]
c ha/(prey·yr) 0.19 0.22
α prey/(pred·yr) 800 505
β prey/ha 1.5 0.3
χ pred/prey 0.004 n/a
δ 1/yr 2.2 n/a
s 1/yr n/a 0.85
q prey/pred n/a 205
µ prey/ha 0.03 0.03
ν prey/ha 0.003 0.003
ε prey/ha n/a 0.031

B Numerical computations of invariant measures

We estimate the invariant measure µ(ϕγ) as the fallowing:

1. We start with a large number J of initial conditions, evenly distributed around the periodic
orbit Γ and solve the system subject to these initial conditions up to time T . This gives J
trajectories xj(t) for j = 1, 2, . . . , J and t ∈ [0, T ].
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2. We consider the final points of all of these trajectories, xj(T ) and compute the phase of
cycle for these points ϕxj

, for j = 1, 2, . . . , J .

3. For any point γ ∈ Γ, suppose that for some ε > 0 there are K points with the respective
phases ϕxk

∈ [ϕγ − ε, ϕγ + ε], for k = 1, 2, . . .K. We then define the invariant measure
µ(ϕλ) as:

µ(ϕλ) =
K

J
.

In Fig. 3(e) we choose J = 10000, T = 100, and ε = 0.1.

C Classical autonomous bifurcation analysis.

We start with the autonomous RMA frozen model (1), consider the climatic parameter r together
with the predator mortality rate δ, and examine the bifurcation structure in the (r, δ) parameter
space in Fig. 6(a). The dynamics are organised by the codimension-two double-transcritical
bifurcation point TT , due to an intersection of two transcritical bifurcation curves, namely T1,
along which e1(r) and e2(r) meet and exchange stability, and T2, along which e1(r) and e3(r)
meet and exchange stability. (Since a Hopf bifurcation for a complex variable z = r eiθ is a
transcritical bifurcation for the “amplitude” variable ρ = r2, we expected the unfolding of TT to
be the same as one of the unfoldings in the “amplitude equations” for the Hopf-Hopf bifurcation.
This, however, is not the case. The unfolding of TT is akin, although not identical, to the
unfolding of the “amplitude equations” for the Hopf-Hopf bifurcation point in subregion 6 of
the “difficult” case from Ref. [79, Sec.8.6].) TT is the origin of the Hopf H and heteroclinic h
bifurcation curves, both of which are subcritical (dashed) near TT . Furthermore, H changes from
subcritical (dashed) to supercritical (solid) at the codimension-two generalised Hopf bifurcation
point GH, from which the curve Fl of the fold of limit cycles emerges. The stable limit cycle
Γ(r) shrinks onto e3(r) along the supercritical (solid) part of H, or collides with an unstable
limit cycle and disappears along Fl. Then, Fl has another endpoint on h. This point is the
codimension-two resonant heteroclinic bifurcation point Rh, where h changes from subcritical
(dashed) to supercritical (solid). The stable limit cycle Γ(r) collides simultaneously with two
saddles, e1(r) and e2, and disappears along the supercritical (solid) part of h. Our main focus
is on the (green) region of bistability between oscillatory coexistence Γ(r) and extinction e0.
This region is bounded by the three bifurcation curves along which the stable limit cycle Γ(r)
disappears: the fold of limit cycles Fl, the (solid) supercritical part of the Hopf curve H, and
the (solid) supercritical part of the heteroclinic curve h. Finally, note that there is a third
transcritical bifurcation curve corresponding to T0 in the inset of Fig. 1(a). This curve is not
shown in Fig 6(a) for clarity reasons; it lies very close to T1 and is not relevant to our study.

For the autonomous May frozen model (3), we consider the climatic parameter r together
with q. Here, q specifies the minimum prey-to-predator biomass ratio required for predator
population growth, and can be thought of as an ‘equivalent’ of the predator mortality rate from
the RMA frozen model (1). The qualitative picture, shown in Fig. 6(b), is very similar to that
for the RMA frozen model in Fig. 6(a). The main difference is that the organising centre for the
dynamics is the codimension-two Bogdanov-Takens bifurcation point BT . Furthermore, instead
of the three transcritical bifurcation curves there is just one, denoted T , along which e1(r) and
e2 meet and become degenerate, together with a single (dark blue) curve Fe of fold of equilibria,
where e3(r) and e4(r) become degenerate and disappear. As a result, the region of “Extinction or
Prey Only” is gone, leaving just three ecologically relevant parameter regions. The heteroclinic
bifurcation curve h is replaced by a homoclinic bifurcation curve h∗, along which Γ(r) collides
with one saddle, namely e4(r), and disappears. The resonant heteroclinic point Rh is replaced
by a resonant homoclinic point Rh∗. Most interestingly, except for the change from h to h∗, the
boundary of the (green) region of bistability between oscillatory coexistence Γ(r) and extinction
e0 consists of the same bifurcation curves as in the RMA frozen model.
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