
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Partial (neighbourhood) singleton arc consistency for constraint
satisfaction problems

Author(s) Wallace, Richard J.

Publication date 2018-05

Original citation Wallace, Richard J. (2018) ‘Partial (Neighbourhood) Singleton Arc
Consistency for Constraint Satisfaction Problems’, Proceedings of the
Thirty-First International Florida Artificial Intelligence Research Society
Conference, FLAIRS 2018, Melbourne, Florida, USA. 21-23 May,
AAAI Press, pp. 140-145

Type of publication Conference item

Link to publisher's
version

https://aaai.org/ocs/index.php/FLAIRS/FLAIRS18/paper/view/17620
Access to the full text of the published version may require a
subscription.

Rights © 2018, Association for the Advancement of Artificial Intelligence
(www.aaai.org).

Item downloaded
from

http://hdl.handle.net/10468/12052

Downloaded on 2021-11-27T15:27:26Z

https://libguides.ucc.ie/openaccess/impact?suffix=12052&title=Partial (neighbourhood) singleton arc consistency for constraint satisfaction problems
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS18/paper/view/17620
http://hdl.handle.net/10468/12052

Partial (Neighbourhood) Singleton Arc Consistency for Constraint Satisfaction
Problems

Richard J. Wallace
Insight Centre for Data Analytics

Department of Computer Science, University College Cork, Cork, Ireland
richard.wallace@insight-centre.org

Abstract

Algorithms based on singleton arc consistency (SAC) show
considerable promise for improving backtrack search algo-
rithms for constraint satisfaction problems (CSPs). The draw-
back is that even the most efficient of them is still compara-
tively expensive. Even when limited to preprocessing, they
give overall improvement only when problems are quite dif-
ficult to solve with more typical procedures such as main-
tained arc consistency (MAC). The present work examines
a form of partial SAC and neighbourhood SAC (NSAC)
in which a subset of the variables in a CSP are chosen to
be made SAC-consistent or neighbourhood-SAC-consistent.
These consistencies are well-characterized in that algorithms
have unique fixpoints and there are well-defined dominance
relations. Heuristic strategies for choosing an effective subset
of variables are described and tested, in particular a strategy
of choosing by constraint weight after random probing. Ex-
perimental results justify the claim that these methods can be
nearly as effective as full (N)SAC in terms of values discarded
while significantly reducing the effort required.

Introduction
Singleton arc consistency (SAC) is a well-known enhance-
ment of arc consistency (AC). The basic idea is to reduce the
set of possible domain values associated with a variable to a
singleton value a before establishing AC. Under these con-
ditions, failure in the form of a domain wipeout somewhere
in the problem implies that there is no solution containing
a. Hence, it can be discarded without affecting the solution
set for the problem. When this is done for each value in the
problem, the resulting problem is singleton arc consistent
(Debruyne and Bessière 1997).

Neighbourhood singleton arc consistency (NSAC) is a
limited form of SAC-based reasoning in which only the sub-
graph based on the neighbourhood of the variable with the
singleton domain is made arc consistent during the SAC
phase (Wallace 2015b). This form of singleton arc consis-
tency can sometimes be nearly as effective as SAC (with
respect to values deleted and proving unsatisfiability) while
requiring much less time. NSAC variants have also been de-
vised and tested in which the neighbourhood in question is
extendeded to the k-neighbourhood (Wallace 2016b). Thus,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

roughly speaking, 2-NSAC refers to singleton arc consis-
tency based on the both the immediate neighbourhood of
a variable and the neighbours of the neighbours, while 3-
NSAC adds the neighbours of the neighbours of the neigh-
bours. (In this paper, “SAC-based reasoning” refers to these
algorithms collectively, since they are all built around the
basic idea of singleton arc consistency.)

Although these algorithms can significantly improve run-
times during subsequent search, even the most efficient al-
gorithm of this type is still fairly expensive. When compared
with the other candidates for enhanced local consistency, in
particular algorithms based on restricted path consistency
(RPC) (Berlandier 1995), they are much more expensive,
although they typically allow more values to be removed
(Wallace 2016d). However, unlike RPC algorithms, (N)SAC
algorithms can be readily extended to problems with n-ary
constraints, including global constraints, which may not be
readily transformed into binary problems. (Wallace 2016b;
2016d). This is sufficient motivation for trying to discover
reduced forms of (N)SAC that are still reasonably effective
while being more efficient.

In the present work, various forms of partial SAC and
NSAC are introduced. In all cases, the basic idea is to select
a small set of variables whose domains are made consistent
in accordance with the specified form of consistency. When
this is done in accordance with some simple rules, the re-
sult is a partial singleton arc consistency that is well-defined
with regard to fixpoints and dominance relations.

There is an extraordinary variety of strategies that can be
devised based on these new methods. So only a fraction of
the possibilities can be considered in a short article. In this
work, we will establish the foundations for the general ap-
proach and examine some ways that it can be utilized. We
also show that if a ‘good’ subset of variables is chosen, the
effectivess of these procedures in terms of reducing subse-
quent search can be almost as great as when the same prob-
lems are made fully (N)SAC.

Section 2 presents background concepts and definitions.
Section 3 describes some algorithms that establish full SAC
or k-NSAC. Section 4 introduces partial (N)SAC algorithms
and their properties. Section 5 describes experimental meth-
ods and Section 6 gives experimental results. Concluding re-
marks are made in Section 7. Due to space limitations most
proofs of propositions are omitted.

Background Concepts
A constraint satisfaction problem (CSP) involves assigning
values to a set of variables subject to restrictions on the way
that values can go together. More formally, a CSP can be
defined as a tuple, (X, D, C) where:

X is a set of variables, X1, . . . , Xn,

D is a set of domains, Di, where each Di is a set of possible
values for variable Xi

C is a set of constraints. Each Ci belonging to C consists of
a relation Ri and a particular subset of the variables in X ,
called the scope of the constraint. Ri is based on the Carte-
sian product of the values of the domains of the variables in
the scope.

A solution to a CSP is an assignment or mapping from
variables to values, A = {(X1, a), (X2, b),, (Xk, x)},
that includes all variables (k = n) and does not violate any
constraint in C.

CSPs have an important monotonicity property in that
inconsistency with respect to even one constraint implies
inconsistency with respect to the entire problem. This has
given rise to methods for filtering out values that cannot par-
ticipate in a solution, based on local inconsistencies, i.e. in-
consistencies with respect to subsets of constraints. By doing
this, these algorithms establish well-defined forms of local
consistency in a problem.

The most widely used methods establish arc consistency.
In problems with binary constraints, arc consistency (AC)
refers to the property that for every value a in the domain of
variable Xi and for every constraint Cij involving Xi there
is at least one value b in the domain of Xj such that (a,b)
satisfies that constraint. A similar definition can be given for
constraints of higher arity.

Singleton arc consistency, or SAC, is a form of AC in
which the just-mentioned value a, for example, is consid-
ered the sole representative of the domain of Xi. (Here, Xi

will be called the focal variable.) If AC cannot be established
under this condition, then there can be no solution with this
value, so a can be discarded. If this condition can be es-
tablished for all values in problem P , then the problem is
singleton arc consistent. (Obviously, SAC implies AC, but
not vice versa.)

Neighbourhood SAC establishes SAC with respect to the
neighbourhood of the variable whose domain is a singleton.

Definition 1. The neighbourhood of a variable Xi is the set
XN ⊆ X of all variables in all constraints whose scope
includes Xi, excluding Xi itself. Variables belonging to XN

are called the neighbours of Xi.

If for each value a ∈ Di, where i is in {1 . . . n}, arc con-
sistency can be established in the subgraph based on that
variable and its neighbours, then the problem is neighbour-
hood singleton arc consistent.

For k-neighbourhood SAC, instead of restricting the vari-
ables in the subgraph to be made singleton consistent to
neighbours of the focal variable, one extends the subgraph to
include all variables connected by a path of length k or less

to the focal variable. For example, 2-NSAC is based on sub-
graphs that include all variables that can be reached from Xi

by a path of length 1 or 2. Obviously, when k becomes large
enough the subgraph includes all variables, and k-NSAC is
equivalent to SAC.

Basic (N)SAC Algorithms
Due to space and time constraints, the work will focus on
“light-weight” SAC and NSAC algorithms given their sim-
plicity and scalability (Wallace 2015a). These include the
original SAC-1 procedure in which SAC or NSAC is per-
formed repeatedly until no values can be deleted (Debruyne
and Bessière 1997)). Interestingly, in the present work where
only a fraction of the variables need to be processed, the dis-
advantage of repeated consistency testing is greatly reduced.

In addition, some algorithms are based on (N)SACQ. This
type of algorithm employs an AC-3 style of processing at the
top-level to avoid (N)SAC-1’s repeat loop. As with SAC-
1, there is a list (a queue) of variables, whose domains are
considered in turn. But in this case, if there is an (N)SAC-
based deletion of a value, then any variables in the current set
and not on the queue are put back on. For SACQ, the current
set is all variables in the problem; for k-NSAC, it refers to
any variable in the k-neighbourhood. The idea behind this
manoeuvre is that if the deletion has any effect it must affect
its neighbours, and any effects elsewhere in the problem can
only occur through effects on its neighbours.

Unlike other (N)SAC algorithms, with (N)SACQ algo-
rithms there is no “AC phase” after a SAC-based value
removal. The idea is that if a deletion from the domain
of focal variable Xi has any further effects on the con-
sistency of the network, then by putting all the variables
back on the queue, this will be discovered by subsequent
SAC tests (since SAC dominates AC). Detailed descrip-
tions of these and other (N)SAC algorithms as well as ref-
erences to earlier work can be found in (Wallace 2015b;
2016b).

Although the worst-case complexity of (N)SACQ is no
different from that of (N)SAC-1 (Wallace 2015b), in prac-
tice, SACQ is usually somewhat faster than SAC-1. Un-
doubtedly because the queue is much smaller, NSACQ is
much faster than NSAC-1 and similar results are found for
k-NSAC with k = 2 or 3 (Wallace 2015b; 2016b).

In this work, all (N)SAC algorithms were preceded by a
step in which arc consistency was established. This was done
to rapidly rule out problems in which AC is sufficient to
prove unsatisfiability. It also eliminates inconsistent values
which are easily detected using a less expensive consistency
algorithm. For partial (N)SAC algorithms, this step is crucial
for guaranteeing dominance over AC.

Partial (N)SAC Algorithms
Basic description of the procedures
In all cases, following selection of a subset of variables, a
given procedure is carried out in a way that is based on the
procedure followed when all variables are chosen. For exam-
ple, when a partial version of (N)SAC-1 is used, then each
variable in the set is made singleton arc consistent. If during

this procedure, any values are deleted, then the entire pro-
cess is repeated. Therefore, the procedure is repeated until
no values are deleted.

Similarly, with partial SACQ, after any value removal, all
variables in the selection set are put back on the queue. For
partial NSACQ, all neighbouring variables in the set chosen
are put back.

It should be emphasized that all partial (N)SAC algo-
rithms described here still entail (N)SAC testing of each
value in the domain of a variable that is tested. For k-NSAC
this means that the full k-neighbourhood is made AC; for
SAC, the entire constraint network is made AC. The only
restriction is that only a subset of variables are subject to
singleton arc consistency checking. In what follows the sub-
set of variables chosen for some form of (N)SAC processing
is called the “variable selection set” or simply the “selection
set”.

Properties of the algorithms
It can be shown that for any subset of variables chosen,
if these procedures are followed in the manner to be de-
scribed, then the procedure is associated with a unique fix-
point. Hence, each procedure produces a well-defined result.
This is easiest to show for (N)SAC-1 algorithms.
Proposition 1. If the basic (N)SAC-1 procedure is followed,
then an algorithm that establishes a partial version of SAC
or k-NSAC for a given variable selection set will always
achieve the same fixpoint.
Proof Sketch. We begin with the fact that full SAC-1
or k-NSAC-1 achieves a unique fixpoint (Wallace 2015b;
2016b). Now we follow the same procedure using only a
selection set that is a proper subset of the full set of vari-
ables. For AC-1 procedures it is obvious that the same logic
holds as for the full algorithms, since one examines every
(selection set) variable and its values again and again until
no values are deleted. This procedure will uncover any de-
pendency between values discarded regardless of the order
in which variables are tested just as it does for any algorithm
that uses AC-1 on the full variable set. In addition, since
in keeping with the basic (N)SAC-1 procedure, AC is re-
established for the entire problem after each (N)SAC-based
deletion, any differences that might accrue because of unde-
tected arc-inconsistent values are avoided. �

Note that in the version of the algorithm described above,
since AC is carried out before (N)SAC, and after every
(N)SAC-based deletion, partial (N)SAC based on any selec-
tion set will dominate AC.

It is fairly obvious that if partial (N)SACQ follows pre-
cisely the same procedure as full (N)SACQ, then it will not
always reach the same fixpoint as partial (N)SAC-1 based
on the same selection set. This is because the former will not
detect arc-inconsistencies outside the selection set, while the
latter will. Moreover, even if an AC step is introduced every
time a value is deleted because of (N)SAC-based reasoning,
this will not guarantee that all values deleted by the corre-
sponding partial NSAC-1 algorithm will be deleted, since
full AC can uncover inconsistencies outside the neighbour-
hoods of the variables remaining on the queue without delet-

ing the values in question. However, results can be obtained
that correspond to those of the equivalent partial NSAC-1
procedure if an additional step is carried out. This is indi-
cated by the next proposition.
Proposition 2. If the basic (N)SACQ procedure is followed,
and in addition, (i) the full problem is made arc consistent
after each (N)SAC-based deletion, (ii) after each AC-based
deletion, any neighbouring variables that are also in the se-
lection set are put back on the queue, then for a given selec-
tion set the algorithm will achieve the same fixpoint as the
corresponding (N)SAC-1 procedure.

Whether this extended form of partial NSACQ will out-
perform or underperform the NSAC-1 version must be eval-
uated experimentally.

Given these varying relations between the two strategies,
the following definition is useful.
Definition 2. An algorithm that deletes the same values as
the corresponding (N)SAC-1 algorithm will be called SAC-
1 equivalent.

Cases where SAC-1 equivalence actually involves k-
NSAC-1 equivalence will be clear from context. Note that
all full (N)SAC algorithms described in the literature are
SAC-1 equivalent, so the definition is only useful for par-
tial (N)SAC.

Since they are correct albeit incomplete in some respects,
either of the simpler NSACQ procedure will delete more val-
ues than can be done with AC alone. In addition, each of the
more elaborate partial NSACQ procedures is well defined in
the sense of leading to a unique fixpoint. Moreover:
Proposition 3. If the basic (N)SACQ procedure is followed
for a selection set that is a proper subset of X (without the
extensions described above), then the procedure will reach a
unique fixpoint.

This proposition has a significant corollary:
Corollary to Proposition 3. Using the basic (N)SACQ pro-
cedure, if the selection set consists of variables none of
which is in the k-neighbourhood of any other, then a well-
defined partial k-NSAC can be established in a single pass
over the selection set.

The next proposition follows immediately from the previ-
ous discussion.
Proposition 4. Partial (N)SAC-1 equivalent procedures
dominate simple pNSACQ procedures, as defined in Propo-
sition 3, when both are based on the same selection sets. That
is, any value eliminated by the simple NSACQ procedure
will be eliminated by the corresponding NSAC-1 equivalent
procedure, while the converse does not hold.

The next proposition shows that given any set of variables,
then for any set that includes the first set, the set of values
deleted after application of some form of SAC or NSAC will
always include the values deleted using the smaller set of
variables.
Proposition 5. Given problem P with variables X and two
selection sets S1 and S2, where S1, S2 ⊆ X and S1 ⊆ S2,
then for a partial (N)SAC algorithm establishing a given
level of SAC or k-NSAC consistency, if a value is deleted

when S1 is tested, it will also be deleted when S2 is tested,
but the converse does not hold.

Corollary. For a given level of (neighbourhood) singleton
arc consistency, the sets of deleted values associated with
each possible variable selection set form a partial order
based on set inclusion.

Heuristics for choosing selection sets
In choosing a selection set our ultimate goal is to minimize
overall runtime, and this means finessing the tradeoff be-
tween preprocessing and search times. Specifically, we want
to reduce preprocessing time with respect to the full form of
(N)SAC without increasing search time excessively.

The key question is where in the problem will deleting
values lead to a maximum reduction of search effort, re-
flected in the number of search nodes. Since search is maxi-
mally reduced when the fail-firstness is maximized (Wallace
and Grimes 2008), it would seem best to choose variables
that participate in significant bottlenecks, and these are nec-
essarily variables of higher degree in the problem.

Unfortunately, if we choose high degree variables for our
selection set, then establishing (N)SAC-based local consis-
tency is likely to take longer, so we are faced with another
tradeoff.

Another issue is the size of the selection set. Presumably
the ‘optimal’ size k, i.e. the size that finesses the tradeoff be-
tween efficiency (run time) and effectness (number of values
deleted) most adequately, will vary for different problems
even within one problem class. It may also vary depending
on the selection strategy used.

Given all these considerations, it would seem most useful
at the outset to establish some empirical relations between
features of the selection sets and preprocessing and search
times as well as collecting data to establish which strategies
are the best. In this analysis, a random selection (repeated
over each problem in the sample) of size k < n was used as
a reference. Then, heuristic strategies were compared based
on the following criteria:
• The k variables of highest degree.
• The k highest degree variables forming a connected sub-

graph.
• The k highest degree variables such that there are no

neighbouring variables among them
• The k variables of highest constraint weight, as estab-

lished by random probing.
The last heuristic in the list incorporates the method

of random probing that has been used with weighted de-
gree heuristics (Boussemart et al. 2004) for hybrid back-
track search (Grimes and Wallace 2007; Wallace and Grimes
2008). In the original context, random probing allows a
search algorithm to utilize the powerful strategy of choosing
variables by their constraint weights from the very begin-
ning of search. Here, the same strategy is used to select vari-
ables that are more likely to be problem bottlenecks on the
assumption that SAC-based reasoning is more likely to find
values that can be discarded. As in the search context, con-
straint weights can be considered to enhance effects obtained

by choosing variables of high degree. Although this tech-
nique is much more elaborate than the original constraint
weighting strategy, it is still fairly efficient even for a mod-
erately large number of probes.

In extensive testing it was found that selection sets based
on the k highest degree variables were significantly more
effective than a random selection of k variables, usually by
about 40%. More elaborate high-degree heuristics (second
and third in the list above) did no better and sometimes did
worse. However, with selection based on random probing,
a further improvement of about 10% was obtained. Hence,
in the main experiments only high degree and high degree-
weight were used to find the selection set.

In addition, it was found that a value of k equal to a size-
able fraction of the variables in the problem had to be used
to delete an appreciable number of values. With this in mind,
a selection set size of 25 was used in the main experiments.

Experimental Methods
In the main experiments algorithms were tested on two
types of structured problem. (Time constraints did not per-
mit further types to be tested.) Problems of the first type
were randomly generated binary CSPs with relational con-
straints of the form Xi op Xj . For half the constraints op
was ≥; for half it was 6=. These problems were relatively
difficult for MAC alone, but could be solved fairly effi-
ciently when MAC was preceded by NSAC. Problems had
150 variables, domain size 20, and degree = 0.25. All prob-
lems had solutions. Here, the algorithms were partial NSAC-
1 and the three forms of partial NSACQ described earlier.
For full NSAC, the NSACQ algorithm was always used
since it is clearly the best such algorithm (Wallace 2015b;
2016b). The MAC algorithm was MAC-3 (see (Wallace
2016a) for reasons to choose this over later elaborations).

Problems of the second type were Radio Link Frequency
Allocation Problems (RLFAPs). All were derived from the
graph3 benchmark at the Université Artois website 1. This
problem has 200 variables, with domain sizes between 6
and 44 inclusive. (This problem has solutions and can be
solved without backtracking or even retraction after AC pre-
processing alone.) Alterations were done using the follow-
ing procedure. For each problem, ten percent of the distance
constraints in the graph3 problem of the form |Xi −Xj | >
k were chosen at random. For each constraint selected,
an equiprobable decision was made to either increment or
decrement the value of k. Then, starting with a base incre-
ment/decrement of 5, this value was either accepted with a
probability of 1/2 or, if not, then the absolute value was in-
creased by 1 and the same decision made, etc., until a value
had been accepted. The k value for that constraint was then
altered by that amount. Four thousand problems were gener-
ated in this way, and the 50 hardest problems with solutions
and 50 without were selected for experimentation.

All algorithms were implemented in Lisp (using Xlisp-
stat), and experiments were run under a Unix OS on a Dell
Poweredge 4600 machine (1.8 GHz). All solutions obtained

1http://www.cril.univ-artois.fr/lecoutre/benchmarks.html

were checked for correctness. In all experiments, the min-
imum domain/weighted-degree heuristic was used during
search to choose the next variable to assign a value. Due
to time and space limitations, experiments are restricted to
simple neighbourhood SAC, because of its efficiency and in-
teresting local properties, which the present methods might
be expected to enhance.

Experimental Results
Results for random relop problems
Table 1 shows results for the highest-degree heuristic, Table
2 for the highest-constraint-weight heuristic based on ran-
dom probing. In earlier runs with the highest-degree heuris-
tic, anomalies were found in the search results that can be
ascribed to the pattern of failures causing domain reduc-
tion when using partial NSAC. This in turn weights con-
straints in a biased way, which can throw off the weighted
degree heuristic used during search. Hence, in these tests
constraint weights were not incremented during preprocess-
ing. Although this problem does not apply to probe-based
weights, in order to make meaningful comparisons the same
convention was followed for the results in Table 2.

Table 1. Preprocessing and Search with Relop
Problems: Hightest-Degree Heuristic

algorithm del nodes time-pre time-srch
full NSACQ 1321 6,255 159 120
pNSAC-1 868 10,553 24 233
pNSACQ0 141 8,450 32 181
pNSACQ-ac 868 12,258 21 280
pNSACQ-acn 868 10,553 21 231
Notes. Means for 50 problems. k = 25. pNASCQ0 is the
simple version of pNSACQ; -ac includes an AC pass af-
ter deletion; -acn is the SAC-1 equivalent version.

For the highest-degree heuristic, while the partial NSAC
algorithms are much faster than full NSAC, there is a consid-
erable fall-off in search efficiency so total runtimes are sim-
ilar. (Node counts are similar to MAC alone, which required
10K nodes.) In addition, partial NSACQ seems always to be
slower in its simplest form, while the SAC-1 equivalent form
does not clearly outperform partial NSAC-1.

Table 2. Preprocessing and Search with Relop
Problems: Hightest-Constraint-Weight Heuristic

algorithm del nodes time-pre time-srch
pNSAC-1 934 4,274 21 82
pNSACQ0 166 2,702 28 52
pNSACQ-ac 916 4,839 17 93
pNSACQ-acn 933 2,889 20 59

Notes. Means for 50 problems. k = 25.

In contrast, when the highest-constraint-weight heuristic
is used to obtain a selection set, the results are even bet-
ter than full NSAC, so that search times are reduced along
with NSAC-preprocessing times. Against these results is of
course the cost of probing, which is not shown in the ta-
ble. The mean time for each probe was about 3 sec (50 fail-
ures), so 100 probes required 300 sec on average. (Note that

with this heuristic, the actual selection set can vary, which
may account for the small difference in deletions between
pNSAC-1 and pNSACQ-acn in Table 2.)

With these results, an obvious question is: can we get
comparable results with fewer and shorter probes? To an-
swer this, a test run was made with 50 probes, each with
20 failures. Time per probe was about 2 seconds. For com-
parison with the previous experiment with random probing,
under one condition probe weights were not used at the be-
ginning of search. Because the normal (and sensible) proce-
dure would be to use them, this variation was also run. In
these tests only pNSAC-1 and pNSACQ were used.

Table 3. Relops: Search w/o Probe Weights

algorithm del nodes time-pre time-sch
probe weights not used in search

pNSAC-1 906 4,493 21 85
pNSACQ0 163 4,225 30 86

probe weights used in search
pNSAC-1 920 1,914 21 30
pNSACQ0 161 2,217 29 39

Notes. Means for 50 problems. Highest-constraint-
weight heuristic, k = 25.

Results are shown in Table 3. Two results stand out:

• One can obtain the benefits shown in the previous experi-
ment with much more limited probing.

• Using probe weights from preprocessing enhances search
efficiency beyond effects of effective consistency prepro-
cessing.

Because of lower costs and additional enhancements, the
mean total time per problem was reduced to 150 or 170 sec,
depending on the algorithm. This is a clear improvement
over results using the high-degree heuristic as well as full
NSACQ. Also, search time was reduced by a factor of six to
eight in comparison with the high-degree heuristic.

Results for Radio Frequency problems

In these experiments only partial NSAC-1 was used. For
the highest-constraint-weight heuristic, the probing schedule
was 50 probes with 20 failures per probe. For a fuller com-
parison, results for MAC alone and MAC following random
probing using the same schedules are also shown (Table 4).

The results are similar to those in the previous section.
With the highest-degree heuristic, many fewer values are
deleted in comparison with full NSAC, and there is a con-
siderable fall-off in search efficiency. Both effects are greatly
ameliorated with the highest-constraint-weight heuristic. In-
terestingly, with this form of preprocessing it was possible
to prove unsatisfiability in almost as many cases as with full
NSAC. As a result, total runtime (including time for prob-
ing) is considerably reduced in comparison with MAC alone
(although in this case the full NSAC algorithm does even
better).

Table 4. Preprocessing and Search with
Radio Frequency Allocation Problems

algorithm del prove nodes time time
insol (NS)AC srch
problems with solutions

MAC only 343 – 5,564 0 104
MAC RP 343 – 1,504 0* 25
NSACQ 4549 – 618 188 5
pNSAC1/dg 820 – 2,025 25 32
pNSAC1/pb 1232 – 1,119 19* 17

problems without solutions
MAC only 341 0 8,040 0 244
MAC RP 341 0 4,351 0* 137
NSACQ 2085 40 556 71 10
pNSAC1/dg 1229 13 2,367 20 67
pNSAC1/pb 1592 37 877 7* 24
Notes. Means for 50 problems. k = 25. “*” additional
time of 100 sec required for 50 probes.

Note that because NSAC preprocessing was able to prove
unsatisfiability in many problems, the mean number of
search nodes is for a different problem set than MAC. For
full NSAC, mean nodes for the ten problems that required
search with both algorithms, was 2781; for MAC alone it
was 7640; for MAC with random probing it was 7721. Cor-
responding figures (13 problems) for partial NSAC with
probing were 4383, 9801, and 10,555. The higher figures
for random probing without NSAC were due to a few cases
of greatly increased search effort compared to either of the
others, although probing does improve on MAC with wdg in
the typical case. It is also of interest that seven of the hard-
est problems for MAC (> 10,000 search nodes) were proven
unsatisfiable by both NSAC and pNSAC.

Conclusions
Partial (N)SAC has the potential to greatly enlarge the scope
of application of SAC-based reasoning by allowing much
larger problems to be handled with these methods. It can
therefore overcome the tradeoff between effectiveness and
efficiency that is a problem for SAC-based methods. The
present experiments show that this approach can be effec-
tive, although care has to be taken when choosing the subset
of variables for greater consistency processing.

An important discovery in this work is that random prob-
ing and partial SAC-based reasoning together form a pow-
erful combination for improving search. This may happen
for the following reasons. Random probing allows one to lo-
cate the chief bottlenecks of the problem and, to use Carla
Gomes’ felicitous phrase, thereby serves to “unlock the
combinatorics of the problem”. When SAC-based reasoning
is applied to the variables located by probing, this removes
extraneous values and reduces the branching factor right at
the top of the search tree, thus avoiding many unproductive
choices.

A related finding is that if one can locate these bottleneck
variables, then one does not need a very large selection set
to significantly improve the efficiency of subsequent search.
This means that these methods are more likely to scale up

than full (N)SAC.
This work opens up a large field for further exploration.

The same methods can of course be used with any form
of k-NSAC or SAC. As noted earlier, SAC-based reasoning
can be applied to problems with n-ary constraints (Wallace
2016b; 2016c), although it may be necessary to develop spe-
cialized heuristics for choosing the selection set. Finally, the
efficiency of these new procedures may allow them to be
used effectively during search as well as preprocessing.

References
Berlandier, P. 1995. Improving domain filtering using re-
stricted path consistency. In Conference on Artificial Intelli-
gence for Applications - CAIA-95, 32–37.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L.
2004. Boosting systematic search by weighting con-
straints. In Proc. Sixteenth European Conference on Arti-
ficial Intelligence-ECAI’04, 146–150. IOS.
Debruyne, R., and Bessière, C. 1997. Some practicable fil-
tering techniques for the constraint satisfaction problem. In
Fifteenth International Joint Conference on Artifcial Intelli-
gence – IJCAI’97. Vol. 1, 412–417. Morgan Kaufmann.
Grimes, D., and Wallace, R. J. 2007. Learning to iden-
tify global bottlenecks in constraint satisfaction search. In
Proc. Twentieth International FLAIRS Conference, 592–
598. AAAI Press.
Wallace, R. J., and Grimes, D. 2008. Experimental studies
of variable selection strategies based on constraint weights.
Journal of Algorithms: Algorithms in Cognition, Informatics
and Logic 63:114–129.
Wallace, R. J. 2015a. Light-weight versus heavy-weight
algorithms for SAC and neighbourhood SAC. In Rus-
sell, I., and Eberle, W., eds., Twenty-Eighth International
Florida Artificial Intelligence Research Society Conference
- FLAIRS-28, 91–96. AAAI Press.
Wallace, R. J. 2015b. SAC and neighbourhood SAC. AI
Communications 28:345–364.
Wallace, R. J. 2016a. Complexity analysis vs. engineering
design in CSP algorithms: Contravening conventional wis-
dom again. In Bistarelli, S.; Formisano, A.; and Maratea,
M., eds., 23rd RCRA Workshop on Experimental Evaluation
of Algorithms for Solving Problems with Combinatorial Ex-
plosion.
Wallace, R. J. 2016b. Neighbourhood SAC: Extensions and
new algorithms. AI Communications 29:249–268.
Wallace, R. J. 2016c. Neighbourhood SAC for con-
straint satisfaction problems with non-binary constraints. In
Markov, Z., and Russell, I., eds., Twenty-Ninth International
Florida Artificial Intelligence Research Society Conference
- FLAIRS-29, 162–165. AAAI Press.
Wallace, R. J. 2016d. Preprocessing versus search process-
ing for constraint satisfaction problems. In Bistarelli, S.;
Formisano, A.; and Maratea, M., eds., 23rd RCRA Workshop
on Experimental Evaluation of Algorithms for Solving Prob-
lems with Combinatorial Explosion.

