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Few fossil vertebrate skeletons are complete and fully articulated.  Various taphonomic processes 17 

reduce the skeletal fidelity of decaying carcasses, the effects of most of which are reasonably well 18 

understood.  Some fossil vertebrates, however, exhibit patterns of disarticulation and loss of 19 

completeness that are difficult to explain. Such skeletons are one of two variants. They are 20 

incomplete, often markedly so, but the preserved parts are highly articulated. Alternatively, they 21 

are complete, or nearly so, but articulation varies markedly between parts of the body. A 22 

characteristic feature is the absence of skeletal elements that, on the basis of their larger size 23 

and/or greater density, would be predicted to be present. Here we erect a model, termed “stick 24 

‘n’ peel”, that explains how these distinctive patterns originate.  The model emphasizes the role of 25 

decay products, especially fluids released from the carcass while resting on the sediment surface.  26 

These fluids permeate the sediment below and around the carcass. As a result, skeletal elements 27 

on the downward facing side of the carcass become adhered to the sediment surface, and are less 28 

likely to be remobilized as a result of current activity than others.  The pattern of articulation and, 29 

especially, completeness is thus not what would be predicted on the basis of the size, shape and 30 

density of the skeletal elements. The effects of stick ‘n’ peel are difficult to predict a priori. Stick 31 



 
 

‘n’ peel has been identified in vertebrate fossils in lacustrine and marine settings and is likely to be 32 

a common feature of the taphonomic history of many vertebrate assemblages. Specimens 33 

becoming adhered to the substrate may also explain the preservation in situ of the multi-element 34 

skeletons of invertebrates such as echinoderms, and integumentary structures such as hair and 35 

feathers in exceptionally preserved fossils. 36 

KEYWORDS vertebrate taphonomy, disarticulation, completeness, biostratinomic processes, current 37 

transport, skeleton 38 

1. Introduction 39 

As a vertebrate carcass decays loss of skeletal fidelity is almost inevitable.  As a result, most 40 

fossil vertebrate skeletons exhibit some combination of disarticulation and loss of completeness, as 41 

bones separate from, and are then removed from, the remainder of the carcass.  The extent of any 42 

disarticulation and loss of completeness can be described qualitatively (Soares 2003) or using semi-43 

quantitative (Beardmore et al. 2012a, b) or more fully quantitative methods (McNamara et al. 2011).  44 

Disarticulation of individual bones or a series of co-joined bones (a unit such as a limb) is a 45 

pre-requisite for, but does not always result in, loss of completeness. Other that this basic tenet, it 46 

can be difficult to identify the specific processes that were responsible for loss of skeletal fidelity in a 47 

vertebrate fossil.  Some processes, for example scavenging of carcasses, may leave distinctive 48 

taphonomic signatures (see Madgwick and Mulville 2015, and references therein), but many do not.  49 

The taphonomic history of a carcass after death and before final burial can be extremely complex. 50 

Carcasses may be subjected to multiple taphonomic processes acting in tandem or in sequence. 51 

Even subtle variations in external environmental parameters can impact on whether, and how, 52 

disarticulation and loss of completeness occurs.  For example, variables such as water temperature 53 

and hydrostatic pressure impact on whether a carcass floats before settling to the sediment-water 54 

interface, and/or refloats after the build up of decay gases internally (see review by Reisdorf et al. 55 

2012).  56 

Hydrodynamic sorting of bones due to water current activity is a common cause of the 57 

disarticulation and loss of completeness the skeletons of vertebrate carcasses can experience before 58 

burial. This process occurs in both continental and marine environments. Continental environments 59 

include terrestrial land surfaces, fluvial systems and lakes that may be permanent or temporary. The 60 

carcass may be transported by the current, or currents pass over a carcass that remains in situ.   61 

Tidal, fluvial, floodplain and marginal lacustrine settings may experience regular or episodic changes 62 



 
 

in water level that leave carcasses alternately resting on the sediment-water, and sediment-air, 63 

interface on various timescales.  64 

In the past few decades, substantial progress has been made in understanding how current 65 

activity reduces the completeness and articulation of skeletons.  It has long been recognised (Boaz 66 

and Behrensmeyer 1976) that field (Nasti 2005) and laboratory based experiments are invaluable in 67 

resolving how the skeletal fidelity of a carcass can be reduced by current activity (see Peterson and 68 

Bigalke 2013). The scenario that has been investigated most frequently is how isolated bones are 69 

transported by water currents.  Experimental studies repeatedly confirm that the processes involved 70 

are not just complex, but even unpredictable.  Size, shape, mass and density are key variables that 71 

can be quantified for individual bones.  The interaction of such variables makes it difficult to predict 72 

a priori exactly how individual bones will behave in a current (Voorhies 1969; Boaz and 73 

Behrensmeyer 1976; Blob 1997, Trapani 1998, Peterson and Bigalke 2013).  74 

Skeletons need not be reduced first to individual bones then transported. Transport of a 75 

freshly killed carcass tends not to result in its disarticulation and loss of completeness, i.e., during 76 

the first of the three unit-phases of fluvial transport defined by Nawrocki et al. (1997).  As noted by 77 

Haglund and Sorg (2002) relatively few experimental studies have attempted to simulate scenarios 78 

between the end member conditions of ‘freshly killed’ and ‘reduced to isolated skeletal elements’: 79 

i.e. how current activity impacts carcasses at different stages during progressive decay of their non-80 

biomineralised tissues (the non-skeletonised tissues).  Attempts include the simulation of the 81 

transport of defleshed but articulated limbs (reconstructed by wiring together bones that would 82 

have been juxtaposed in life (e.g. Coard and Dennell 1995)).   Forensic studies including experiments 83 

with analogues, and the study of human remains recovered from aquatic settings, have provided 84 

information on the various variables, including transport, that act in concert to reduce skeletal 85 

fidelity (Anderson and Bell 2014, and references therein). The taphonomy of carcasses in fluvial 86 

systems has been reviewed by Evans (2013).   87 

In this study, we identify and demonstrate the significance of another variable: how 88 

disarticulation and loss of completeness of the skeleton is influenced by whether the carcass 89 

becomes adhered to the substrate in advance of being exposed to current activity. Aspects of this 90 

phenomenon, which we term “stick ‘n’ peel”, have been noted by previous authors, for example 91 

Bickart (1984), Trewin and Davidson (1996) and Mayr (2001). A generalised model that considers the 92 

mechanisms by which stick ‘n’ peel forms has, however, not been developed.  We present this first, 93 

then use a series of existing and new examples to define a series of criteria by which the presence of 94 

stick ‘n’ peel can be tested for in fossil material. These examples demonstrate that stick ‘n’ peel 95 



 
 

occurs in a wide range of fossil taxa preserved in various different environmental settings. This 96 

indicates that it is likely to be a recurrent feature of the taphonomic history of vertebrate fossils, and 97 

merits further study.  Problematically, some of the features produced in vertebrate skeletons as a 98 

result of stick ‘n’ peel can also be produced by other taphonomic processes.    99 

2. Mechanisms for the genesis of stick ‘n’ peel textures  100 

It has long been recognised that carcasses can become adhered to microbial mats coating 101 

the sediment-water interface (see Hellawell and Orr 2012, and references therein).  A classic 102 

example of how this can influence disarticulation and loss of completeness is the fish illustrated by 103 

Viohl (1990, fig. 2; see also Mayr 1967 and Seilacher et al. 1985). The vertebral column of the fish 104 

recurved dorsally while it lay on the sediment surface in response to the osmotic effects of the 105 

hypersaline water. Before it did so, the carcass had adhered to the microbial mat. The tail thus 106 

remained in situ and fully articulated, when the vertebral column ripped free from the carcass and 107 

curved into its new position.  Chellouche et al. (2012) mooted the possibility that a similar process 108 

could explain the occurrence of isolated caudal fins of fish in the Wattendorf Plattenkalk (Upper 109 

Kimmeridgian, southern Germany); the fin had been “overgrown by a microbial mat or was sticking 110 

to the sediment for other reasons” (op cit. p. 111).  If only part of the caracass becomes adhered 111 

other parts can lift off the surface and disarticulate in situ (see Hellawell and Orr, 2012).  Peñalver et 112 

al. (2002) attributed the unusual patterns of completeness and articulation exhibited by insects 113 

preserved in Miocene lacustrine sediments to parts of the carcasses having become adhered to 114 

microbial mats on the lake floor. Subsequently, currents removed or displaced those parts not 115 

adhering to the mat, leaving the fossils incomplete but with the remaining parts preserved in life 116 

position.   117 

The former presence of microbial mats is relatively easy to identify in carbonate successions. 118 

In vertical section there may be thin organic laminae that anastomose and interconnect over short 119 

vertical distances; other biosedimentary structures include roll-up structures (see for example 120 

Simonson and Carney 1999, figs 3A-B, 4, 5).  Even if degradation of the organic matter is complete, 121 

(typical of siliciclastic settings) the former presence of microbial mats is often revealed by various 122 

sedimentary features.  Bedding surfaces often exhibit distinctive textures (microbially induced 123 

sedimentary structures (MISS)) (Noffke 2010; Noffke and Chafetz 2012).   124 

Some of the fossil examples examined in the course of this study show no obvious indication 125 

that the surface of the sediment was covered in a microbial mat. Examples of stick ‘n’ peel originate 126 

via various other mechanisms. During decay, carcasses may become covered by a localised microbial 127 



 
 

biofilm that may extend beyond the periphery of the carcass (see Borkow and Babcock 2003, figs 1 128 

and 2). In other examples, non-biomineralised tissues such as the integument may be infested, even 129 

pseudomorphed, by microbes (Redelstorff and Orr 2015). Potentially, the microbes in such biofilms 130 

may play a role in stick ‘n’ peel, for example via the production of extracellular polymeric substances 131 

(More et al., 2014) that locally coat the organism’s tissues and the substrate and bind each to the 132 

other.  133 

The localised growth of this microbial population will be facilitated by the decay products 134 

generated by autolysis and putrefaction of the carcass (purge fluids) leaking downwards and 135 

outwards from the carcass into the substrate. This is analogous to the cadaver decomposition island 136 

(CDI) of Carter et al. (2007, p. 12), a “highly concentrated island of fertility” centred below, and 137 

extending lateral to, a decaying carcass.  The CDI originates in two steps. In the first (the “bloated” 138 

phase sensu Carter et al. 2007) purge fluids exit via orifices (mouth, nose, anus). In the following 139 

stage, “active decay”, substantial release of cadaveric fluids connects the isolated islands that 140 

formed previously, and the CDI becomes established. These fluids may also serve to bind the carcass 141 

to the substrate. There is conclusive evidence that such fluids can bind a carcass to the substrate in 142 

subaerial settings.  Bickart (1984, p. 527) attributed the adhesion of bird carcasses to the substrate 143 

to “possibly a combination of body fluids and ground moisture”; floodwaters passing over these 144 

carcasses subsequently failed to change the position of most. The escape of fluids from the interior 145 

of decaying carcasses is extremely common, suggesting stick ‘n’ peel is potentially a recurrent 146 

taphonomic feature of vertebrate fossils.   147 

There is also evidence that non-biomineralised tissues decaying in permanently subaqueous 148 

settings can become stuck to the surface on which they are lying, at least under experimental 149 

conditions. The examples in Figure 1 are experimentally decayed specimens of the medusa Aurelia 150 

aurita (Adler 2013; see also Hertweck 1966).The specimens are right-way up, with the exumbrellar 151 

surface upwards. In the specimen in Figure 1A the ventral parts of the lower surface (the oral arms) 152 

are in contact with and have become stuck to the floor of the experimental vessel.  The umbrella 153 

remains free-floating in the experimental tank; it is positioned centrally above the oral arms (Figure 154 

1A, upper image). As decay progresses minimal disturbance of the experimental vessel is sufficient 155 

to tear the umbrella (the circular outline indicated by an arrow in Figure 1B) from the remainder of 156 

the body and offset it laterally.  Other experimental studies have also recorded that carcasses 157 

decaying in fluids can become adhered to surfaces inside the experimental vessel. Freidman (1999, 158 

p. 37-38, Figures 16 and 17) experimentally decayed specimens of the hagfish Myxine glutinosa in 159 



 
 

containers filled with water; a number of the decayed specimens stuck to the floor of the vessels 160 

either locally or along most of their body surface. 161 

How the distribution of the decay fluids are affected by continuous current activity and a 162 

sediment substrate (as opposed to the solid floor of an experimental vessel) are unknown, but 163 

amenable to experimental testing. Decay fluids will settle downwards inside the specimen and from 164 

there leak into the underlying substrate. The effects of current activity may therefore be limited and 165 

the decay products not dispersed into the overlying water column. The binding effects of the decay 166 

fluids would presumably be influenced by the porosity and permeability of the sediment. 167 

3. Indicators of stick ‘n’ peel in fossils 168 

We have identified a series of features indicative of stick ‘n’ peel, one or more of which a 169 

vertebrate fossil will exhibit if its disarticulation and loss of completeness was controlled, at least in 170 

part, by this mechanism. Schematic illustrations of these features using generalised vertebrate 171 

bodyplans are shown in Figure 2, and candidate examples of fossil taxa in Figure 3.  172 

3.1 Displacement of an articulated part of the skeleton beyond the body outline   173 

In many exceptional biotas the body outline of vertebrate fossils is preserved, often as a 174 

dark-coloured carbonaceous stain or a thin film that represents the degraded remains of the non-175 

biomineralised tissues. Part of the skeleton, for example a limb or the tail, may be articulated and 176 

connected with the remainder of the skeleton but occur outside the body outline (Figure 2A, 3A). 177 

While lying on the substrate, this part of the skeleton moved into a position other than that in which 178 

it came to rest initially. Before it did so, the body became sealed to the substrate and thus remained 179 

in situ.  In examples where the tail is moved to a new position, current activity or contraction of the 180 

tissues connecting successive vertebrae (see Seilacher et al. 1985) could produce the same result.  181 

As there is no disarticulation, stick ‘n’ peel that occurs via this process is only apparent if the body 182 

outline is preserved (as in the example in Figure 3A). If the body outline is not preserved the process 183 

can only be identified if it results in disarticulation at a joint, for example, if the distal part of an 184 

appendage such as the tail or a limb remains in situ and the part proximal to it moves to a new 185 

position (Figure 2B; see also Viohl 1990, fig. 2).  In such cases, the original continuity of the 186 

appendage should be recovered if the displaced part is moved back to its original position.  187 

3.2 Localised variations in disarticulation and loss of completeness within a skeleton 188 

In this scenario, part of the skeleton shows extensive disarticulation (but not necessarily loss 189 

of completeness) and the remainder is complete and fully articulated.  190 



 
 

In the example in Figures 2C and 3D, the anterior and posterior halves of the skeleton are 191 

juxtaposed; in the fossil frog (Figure 3D) the body outline of each half is also juxtaposed. In each 192 

example, the anterior half of the skeleton is in life position, complete, and fully articulated.  The 193 

posterior part is complete, out of position, and extensively disarticulated. If decay has progressed 194 

sufficiently, the effects of gravity can force bones out of their in-vivo position when a carcass settles 195 

passively onto the substrate (Syme and Salisbury 2014). In the case of the example in Figure 2C and 196 

3D, disarticulation did not occur when the carcass came to rest on the substrate (or both the 197 

anterior and posterior parts would have disarticulated to the same extent).  Thus disarticulation 198 

occurred later, after decay had progressed sufficiently to weaken or remove the tissues (muscles, 199 

ligaments and tendons) connecting the bones. The process responsible must explain two 200 

phenomena: disarticulation of only the posterior half of the specimen, although the anterior half 201 

would have been decayed to the same extent; the movement of the posterior half as a unit, plus 202 

retention of all its skeletal elements. The second feature would be easiest while the skeleton was 203 

enclosed inside the integument (as seems likely to have occurred in the fossil example in which the 204 

body outline is preserved).  The posterior half either rotated laterally, or flipped vertically, over the 205 

anterior half during current activity.  Definitive evidence for it having flipped would be if the 206 

opposite surfaces of two skeletal elements were exposed on the same bedding plane; for example, 207 

the dorsal side of the skull and the ventral face of the pelvis. Only the anterior of the specimen may 208 

have been fixed to the substrate before the posterior half was moved to its new position.  209 

Alternatively, the carcass may have also have been fixed locally at other points, but ripped free.  This 210 

possibility cannot be rejected on the evidence presented in the specimens in Figure 2C and 3D. It 211 

would be the preferred option if any of the skeletal elements from the posterior of the skeleton 212 

were still in their original position. This scenario is shown in the theoretical example in Figure 2D in 213 

which the articulated distal part of the left hindlimb has remained behind in life position.    214 

Figure 3B is of the skeleton of the holotype of the bird Primotrogon wintersteini described by 215 

Mayr (1999, p. 430) who noted its unusual taphonomy. There are marked discrepancies in the 216 

degree of completeness and articulation between different parts of the body.   Both forelimbs are 217 

fairly complete (the phalanges are absent) and articulated. They, plus the left hindlimb are in life 218 

position relative to each other.  In contrast, other parts of the skeleton are either incomplete (e.g. 219 

the vertebral column) or absent (the right hindlimb and tail).  Mayr (2001) described a second 220 

specimen of Primotrogon wintersteini noting the unusual combination of its feet being articulated 221 

and preserved in life position, but the absence of the tibiotarsi, femora and caudal part of the trunk 222 

(Figure 2C).  The vertebral column is present but disarticulated.  The proximal parts of the forelimbs 223 

are articulated and in life position; the distal parts are truncated by the edge of the slab.   224 



 
 

Both specimens exhibit the combination of (1) moderate to high completeness, (2) extensive 225 

disarticulation of specific parts of the body, plus (3) limited, or no, disarticulation of those parts of 226 

the skeleton that remain in life position relative to each other. Many of the bones present but 227 

displaced from life position did not disarticulate when the carcass settled to the sediment surface; 228 

for example, the more distal parts of the forelimbs would have been unlikely  to remain in life 229 

position if elements such as the coracoid and scapulae were extensively displaced at the time of 230 

deposition.  Skeletal elements that are absent were not lost while the carcass floated in the water 231 

column, i.e. in the interval between death and coming to rest on the sediment surface; most 232 

obviously, it would not be possible to retain the distal part of the hindlimbs but not the proximal 233 

parts. The specimens settled onto the sediment surface shortly after death before decay had 234 

progressed significantly; most, perhaps all, of the disarticulation and loss of completeness they 235 

experienced happened subsequently. Mayr (2001) concluded that current activity might have 236 

removed the bones of the pelvic region and the proximal part of the legs of the specimen in Figure 237 

3C; he (op cit.) envisaged that the distal part of the hindlimbs remained in situ as they had become 238 

adhered to the sediment. This conclusion is supported here and also suggested as the reason why 239 

the wings are articulated and complete in both specimens.  240 

The taphonomy of each specimen would have differed in detail, but a general model can be 241 

erected.  In the first step each bird came to rest with one forelimb either side of the body. This 242 

would have presented the bones of these limbs close to the sediment surface. Other parts of the 243 

skeleton would have been more elevated above the substrate, especially if the body was oriented 244 

ventral side downwards. These bones would only have moved adjacent to, and eventually onto, the 245 

substrate after a period of decay during which the skeleton collapsed.  Therefore, if the carcass 246 

became stuck to the substrate and disturbed by a current before any such collapse, those parts of 247 

the skeleton closest to the substrate at the time of deposition would experience least disarticulation 248 

and loss of completeness.   The high degree of articulation and completeness of the wings is thus 249 

interpreted to indicate their having being stuck to the substrate when the carcass was disturbed.  250 

The two specimens differ as to which bones of the hindlimbs are present. In the specimen in Figure 251 

3B, the left hindlimb is complete and articulated and the right hindlimb absent; only minimal tilting 252 

of the posterior of the specimen at the time of deposition would be required to leave one limb 253 

resting on, and the other above, the substrate (see section 3.4).  In the specimen in Figure 3C the 254 

distal parts of the limbs are present, articulated and but their proximal parts are absent.  This may 255 

imply that the legs were flexed vertically along their length while the specimen rested on the 256 

substrate. The podotheca may have increased the likelihood of the distal parts of the hindlimbs 257 



 
 

remaining an articulated unit (see Casal et al. 2013), but alone would not have ensured they 258 

remained in life position. The right limb is in life position. 259 

3.3 Unpredicted loss of skeletal elements 260 

It may not always be possible to predict definitively which elements of any skeleton would 261 

be affected preferentially by current activity (see section 1). Nonetheless, on the basis of their 262 

shape, density and, especially, size, it is possible to suggest which elements would be more likely to 263 

be affected than others  For example, the smaller bones of a carcass (such as vertebrae and 264 

phalanges), should be transported preferentially compared to larger elements (e.g. the femora and 265 

humeri). Stick ‘n’ peel may, however, ‘trump’ this general rule, and should be suspected when 266 

elements considered more likely to have remained in situ and in life position are those that are 267 

displaced and removed. The example in Figure 2E is of a limb in which the distal part, including the 268 

phalanges, is articulated, complete and in life position relative to the remainder of the carcass; the 269 

humerus is missing.  It is difficult to envisage a scenario where current winnowing would selectively 270 

remove the humerus, yet leave the phalanges not just present, but fully articulated.   It is therefore 271 

envisaged that the distal part of the forelimb, but not the humerus, was adhered to the substrate.  272 

This theoretical example is similar to the example of Primotrogon wintersteini in Figure 3C, in which 273 

the distal parts of the left hindlimb, including the phalanges, are present and articulated, but more 274 

proximal bones, including the relatively large tibiotarsi and femora, are missing. 275 

Trewin and Davidson (1996) observed rare examples of the acanthodians Climatius and 276 

Ischnacanthus in which the fin spines, notably the pectorals, are in life position, but the body scales 277 

almost totally absent.  The spines are among the larger individual elements. They would be unlikely 278 

to be removed preferentially.  It is also unlikely that their mass alone would result in their remaining 279 

precisely in life position while every other element was removed or displaced. It is more likely that, 280 

as Trewin and Davisdon (1996) suggest, the spines became stuck to the substrate; the build-up of 281 

gas inside the decaying carcass may have lifted the remainder above the substrate and it was 282 

removed by weak currents.  283 

3.4 Higher fidelity preservation of the lower facing side of a specimen 284 

Taxa that are strongly laterally compressed often come to rest on the sediment surface in 285 

lateral aspect (many fish, for example). This orientation presents the sagittal plane through the body 286 

parallel to the substrate.  Vertebrates are bilaterally symmetrical either side of this plane. The 287 

taphonomy of paired elements that are identical in size, shape and density can be compared 288 

directly.  The stick ‘n’ peel model predicts that the side in contact with the substrate will become 289 



 
 

adhered to it and is the more likely to retain skeletal fidelity when the specimen is subjected to 290 

current activity.  291 

In specimens preserved in lateral aspect stick ‘n’ peel could result in differences in the 292 

fidelity of preservation between the left and right sides of the body, for example in the 293 

completeness and articulation of the limbs and/or ribs (Figure 2F).  In the example in Figure 2G (see 294 

also Figure 3E), the head of the fish is disarticulated completely, but otherwise, it is almost 295 

exclusively the relatively large, deepened, flank scales from one side of the body only that are 296 

displaced or absent.  The tail of the fish in Figures 2G and 3E is entire. The tail comprises some of the 297 

smallest skeletal elements that should be among the easiest to transport; note their size relative to 298 

that of the flank scales and operculum in Figure 3E.  Furthermore, the tail is at the distal end of the 299 

animal and fully exposed to any currents.   The latter observation falsifies the possibility that the side 300 

in contact with the substrate is more articulate and complete simply because it was protected from 301 

the effects of current activity by the scales from the opposite side of the body without being stuck 302 

down. 303 

4. Discussion 304 

The theoretical models and fossil examples reviewed above suggest that stick ‘n’peel could 305 

potentially be recognised in fossils by a number of diagnostic taphonomic features.  These features 306 

include loss of completeness and articulation in certain areas of the body, although other parts of 307 

the skeleton remain complete and fully articulated. This is most apparent when the left and right 308 

hand sides of a body in lateral aspect are preserved differently.   Differences in completeness and 309 

articulation can occur over short distances and be subtle, for example, the displacement or absence 310 

of a single bone either side of which the adjacent bones are present and in life position.  The 311 

argument that this is due to stick ‘n’ peel is strengthened if the absent skeletal element would be 312 

predicted to be present on the basis of its (larger) size, (greater) density, or shape.    313 

The criteria for recognising stick ‘n’ peel should, however, be used with caution.  314 

Problematically, some of the patterns of disarticulation and completeness characteristic of stick ‘n’ 315 

peel can also originate via other processes.  Unusual patterns of disarticulation and loss of 316 

completeness do not automatically imply that the carcass became adhered to the substrate.  317 

For any carcass resting on a substrate, the bones on the lower facing side will be more 318 

difficult to dislodge from life position. As a carcass decays and collapses skeletal elements on the 319 

lower facing side will rotate in situ to more stable orientations than those at which they came to 320 

rest. These elements may separate from each other, but any displacement is likely to minimal.  321 



 
 

Elements on the upper side of a carcass are more likely to be displaced. This displacement can occur 322 

as bones slide downwards under gravity into more stable orientations.  Gravitational sliding has 323 

been documented in elephant carcasses decaying subaerially (Haynes 1988), and can result in 324 

marked differences in articulation between the left and right sides of a carcass lying in lateral aspect. 325 

On its own the process should not result in loss of completeness.  326 

The animal’s anatomy, in combination with the orientation in which the specimen comes to 327 

rest, can impact on the extent of disarticulation.  Bones that are at a high angle to bedding when the 328 

carcass comes to rest may become disarticulated as the skeleton collapses downwards as it decays. 329 

For example, articulated skeletons of anurans are preserved almost exclusively in dorso-ventral 330 

aspect (although unless the way up of the specimens is known the specific orientation cannot be 331 

determined (McNamara et al. 2012)); often each limb is lateral to the body. In these postures most 332 

of the skeletal elements are presented parallel to bedding and close to the sediment surface in 333 

highly stable orientations.  If there is no disturbance after deposition, anuran skeletons routinely 334 

show a high degree of articulation. The urostyle, ilia, and sacral vertebra, however, are often an 335 

exception. These form a three-dimensional, prism-like structure at the core of the body; these bones 336 

invariably disarticulate from each other as each rotates parallel to bedding in response to decay-337 

induced collapse and sediment loading during burial. There are criteria by which disarticulation due 338 

to decay-induced collapse can be distinguished from stick ‘n’ peel. Decay-induced collapse results in 339 

limited displacement (as each element is likely to remain inside the body outline) and does not result 340 

in any loss of completeness. Stick ‘n’ peel is most obvious if it involves loss of completeness and 341 

displacement of elements is over larger distances. Decay-induced collapse will affect specific joints 342 

and the effects will be the same for all specimens in the same posture. The same need not be the 343 

case for disarticulation resulting from stick ‘n’ peel; this depends on the timing of current activity 344 

relative to how far decay has progressed.  The taphonomic features produced via stick ‘n’ peel need 345 

not therefore be consistent between specimens within an assemblage, even those of the same 346 

taxon.   347 

One of the distinctive features of stick ‘n’ peel is that there are highly localised differences in 348 

completeness and articulation within a specimen. A limited number of other processes can produce 349 

spatial variation in the fidelity of preservation within a single specimen, for example abdominal 350 

rupture, as a result of the explosive release of decay gases. This will reduce the skeletal fidelity of 351 

the thorax and abdomen; other parts of the skeleton are less likely to be affected.  352 

Not all skeletal elements in a vertebrate carcass have equal fossilisation potential.  Less well-353 

ossified elements are likely to dissolve preferentially during early diagenesis. Complete decay or 354 



 
 

dissolution of a skeletal element before sediment lithification would result in no mould to indicate 355 

its former presence. Skeletal completeness can therefore be strongly sensitive to developmental 356 

stage and the pattern of ossification during ontogeny.  Alternatively, decay microenvironments that 357 

are conducive to the dissolution of bone may develop locally within a carcass, for example, inside 358 

the body cavity (see McNamara et al. 2009). As a result, the fossilization potential of skeletal 359 

elements may differ between parts of the body. The specimen of the bat Palaeochiropteryx 360 

tupaiodon illustrated by Franzen (1990, fig. 2) lacks any bones in the body cavity, but is otherwise 361 

complete and highly articulated (limited disarticulation of the tail has occurred). The absence of 362 

bones inside the body was attributed to their having dissolved during diagenesis. 363 

5. Stick ‘n’ peel: limitations of a predictive model 364 

Whether stick ‘n’ peel occurs depends on when skeletal elements become stuck to the substrate 365 

relative to the timing of the current activity responsible for their displacement and removal.  When 366 

skeletal elements become stuck to the substrate depends on the interaction of two variables: rate of 367 

collapse of the carcass; rate at which the CDI builds up, then dissipates (Figure 4). Firstly, as decay 368 

progresses, the muscles, ligaments and tendons that hold the skeleton together lose mass and 369 

strength; the skeleton will progressively collapse downwards under its own weight. Individual bones 370 

will rotate into more stable positions than those in which they were originally deposited, presenting 371 

more of their length or surface area parallel to the substrate. Over time, therefore, progressively 372 

more bones move closer to, and, ultimately, rest on, the substrate. Secondly, the areal extent and 373 

volume of the CDI will initially increase, but then decrease as the decay purge is metabolised and 374 

disperses. Three fields can be defined over time (Figure 4). In stage 1, during the initial stages of 375 

decay, the volume of the CDI is limited and collapse of the skeleton minimal. Current activity will 376 

either transport the entire carcass or have limited impact on the skeletal fidelity of a carcass that 377 

remains in situ.  In stage 3 the extent of the CDI will be limited and the carcass will have been 378 

reduced to individual, or co-joined, bones.  Which skeletal elements are displaced and removed will 379 

be governed largely, possibly exclusively, by their hydrodynamic properties.  The effects of stick ‘n’ 380 

peel on skeletal fidelity will be most pronounced during Stage 2. During Stage 2 the volume of the 381 

CDI will change and collapse of the skeleton will be on-going. Differences in completeness and 382 

articulation will result depending on the timing of current activity.  383 

It is difficult to model what may happen in any more detail, as a number of other variables 384 

are involved. How the skeleton collapses will reflect the animal’s anatomy and the orientation of the 385 

carcass. The rate at which decay progresses and, linked to it, the rate at which purge fluids are 386 

generated and metabolised, will be controlled by environmental conditions (including temperature 387 



 
 

and oxygen levels). The geometry of the CDI and how long it will persist are both difficult to predict. 388 

There is no reason to assume the CDI will retreat from its periphery inwards, and persist longest 389 

centrally. It is likely that it would be most dense and persist longer in proximity to the orifices such 390 

as the mouth and anus and other sites (wounds) via which the decay purge exited the body. The 391 

geometry of the CDI will also be sensitive to the orientation the carcass came to rest in. The nature 392 

of the substrate is potentially important. Carcasses would presumably be more likely to adhere if the 393 

substrate has some, but limited, permeability, as this will inhibit the diffusion of the purge fluids 394 

downwards. 395 

6. Wider Implications 396 

The various fossil examples presented indicate the phenomenon of stick ‘n’ peel is likely to 397 

be a common feature of the taphonomic history of vertebrate fossils deposited on either a subaerial 398 

or subaqueous substrate.  There are implications for various other aspects of vertebrate taphonomy. 399 

Inferences as to the extent of bottom water current activity based on the degree of completeness 400 

and articulation of fossils should be made with caution. Limited disarticulation and near full 401 

completeness need not imply that bottom water currents were absent. Instead, specimens that 402 

adhered to the substrate may have been resistant to the winnowing effects of currents.  403 

Carcasses that become buoyed up by decay gases may refloat after initially sinking. The 404 

reasons whether they refloat or do not are complex; the biology of the organism, and the 405 

temperature, density and depth of the water (and thus the hydrostatic pressure) are important 406 

variables (see review by Reisdorf et al. 2012).  The preservation of complete, fully articulated, 407 

skeletons is often attributed to environmental conditions that inhibited scavenging, and the water 408 

pressure having been high enough to have prevented refloating. Refloating could  also be inhibited if 409 

a carcass became stuck to the sediment-water interface.   Problematically, in the absence of any 410 

disarticulation and loss of completeness (i.e. if the ‘stick’ component occurs but not the ‘peel’) there 411 

may be no evidence in the fossil that the carcass had adhered to the substrate. 412 

 It is likely that stick ‘n’ peel is also an important part of the taphonomy of invertebrate 413 

fossils. The effects of stick ‘n’ peel will be most apparent in invertebrates with multi-element 414 

skeletons, for example echinoderms. Possible examples occur in assemblages of the crinoid 415 

Uintacrinus described by Meyer and Milsom (2001). The assemblages represent in situ mass 416 

mortalities of opportunistic taxa that colonised persistently low-oxygen to anoxic environments 417 

during brief episodes of oxygenation.  Mortality occurred as a result of anoxia not obrution.  418 

Carcasses were therefore exposed on the seafloor after death and buried subsequently.  Meyer and 419 



 
 

Milsom (2001) observed that the downward-facing side of an individual calyx can be highly-420 

articulated and complete, yet the opposite side extensively disarticulated.  At a larger scale, an 421 

Uintacrinus layer routinely comprises disarticulated crinoidal material on its upper surface, but 422 

crinoids with articulated calyxes and arms on its lower side.  Meyer and Milsom (2001) attributed 423 

this unusual combination of preservational states to a microbial mat of necrolytic origin having 424 

grown over the crinoids early in the decay process.  The cohesive properties of this mat held 425 

disarticulated ossicles in place on the upper surface of a layer and prevented their being dispersed 426 

by bottom currents. The occurrence of the latter is indicated by the parallel alignment of Uintacrinus 427 

arms and baculites on some slabs. There is now no evidence for such a microbial mat on the upper 428 

surface of the crinoid layer; Meyer and Milson (2001) suggested it degraded before being covered by 429 

sediment.  Remnants of organic matter persist within the crinoid layer as thin organic laminae. 430 

Meyer and Milson (2001) suggested these represented microbial mats, or organic matter exuded 431 

from the compressed calyxes.  If the latter, the decay products would presumably have leaked 432 

downward under gravity, and may have ‘glued’ skeletal elements in position inside the layer. This 433 

would have enhanced the likelihood of these parts of skeletons remaining articulated and, 434 

contributed to the discrepancy in the fidelity of preservation between the opposite faces of both 435 

single specimens and a layer of crinoids as a whole.  436 

The body outline of the specimen of Apateon pedestris in Figure 3A remained entire and in 437 

situ when the vertebral column rotated into its new position. More generally, it is not uncommon for 438 

integumentary structures such as hair and feathers to be retained in life position in exceptionally 439 

preserved fossils; the inset in Figure 3B shows the outline of the feathers of the holotype of 440 

Primotrogon wintersteini. Fossils can exhibit these features even though their skeletons 441 

disarticulated and lost completeness while resting on the sediment-water interface. It is conceivable 442 

that the integumentary structures are retained in life position because they became adhered to the 443 

sediment surface they were lying on. The possible role of this in the taphonomic history of 444 

exceptionally preserved fossils merits further investigation.   445 

7. Conclusions 446 

Stick ‘n’ peel refers to the distinctive patterns of disarticulation and loss of completeness 447 

that result if vertebrate carcasses become adhered to the substrate in the initial stages of decay and 448 

are then disturbed by water currents.  It has long been known that carcasses can adhere to microbial 449 

mats on the surface of the sediment (Mayr 1967, Viohl 1990, Seilacher et al. 1985). However, many 450 

fossil examples occur in sedimentary contexts that show no evidence for such mats having been 451 

present. The degraded tissues of the carcass, the associated microbiota, and especially, the decay 452 



 
 

purge released from inside the decaying carcass, are alternative mechanisms by which carcasses can 453 

become locally adhered to the substrate. Field and laboratory experiments confirm that this occurs 454 

in both subaerial and subaqueous settings. 455 

 Retrospective identification in fossils that stick ‘n’ peel occurred is not straightforward. Two unusual 456 

features of the skeletal taphonomy of vertebrates may be indicative:  457 

(1) in disarticulated and incomplete skeletons the presence of bones that, on the basis of size, shape 458 

and/or density, would be expected to have been displaced and removed, and the absence of bones 459 

that would have been predicted to be present; 460 

(2) those parts of the carcass that can be shown on independent criteria (by knowing the way up of 461 

the specimen) to have been in contact with the substrate will be more fully articulated and complete 462 

than those that were not in contact with the substrate.   463 

Stick ‘n’ peel can result in various different patterns in fossil skeletons. Problematically some of 464 

these can also originate via other mechanisms.  There is sufficient evidence to confirm that the 465 

phenomenon recurs in fossil assemblages preserved in both marine and freshwater systems. Field 466 

observations confirm that it can also develop on land (Bickart 1984). Stick ‘n’peel is likely to be a 467 

common feature in vertebrate fossil assemblages in which caracsses experienced an extended 468 

residence time at the sediment-water or sediment-air interface as part of their taphonomic history.  469 

The phenomenon is also likely to have affected invertebrate taxa with similar taphonomic histories 470 

preserved in the same environments.  Finally, stick ‘n’ peel offers a potential mechanism by which 471 

the body outline, and integumentary structures such as feathers and hair, can be retained in life 472 

position in exceptionally preserved vertebrate fossils in which the skeleton is disarticulated and 473 

incomplete. 474 
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 598 

FIGURE CAPTIONS 599 

Figure 1. Stick ‘n’ peel exhibited by experimentally decayed examples of the moon jellyfish Aurelia 600 

aurita. (A) Those parts of decaying specimens that come into contact with the bottom of the 601 

experimental vessel can become stuck to it. (B) Even minimal disturbance of the experimental vessel 602 

is sufficient to tear the floating umbrella from those body parts stuck to the floor of the 603 

experimental vessel. When the umbrella settles to the floor of the vessel it can be laterally offset 604 

from the adhered parts. Upper and lower images show corresponding planar and lateral views of the 605 

same experimental vessel. The arrow in the upper image in part B indicates the margin of the 606 

umbrella (Adler 2013). 607 

Figure 2. Schematic illustrations of taphonomic features that form via stick ‘n’ peel.  (A) The 608 

vertebral column of the tetrapod is intact but curves outside the body outline. The integument has 609 

adhered to the substrate and remained in situ when the vertebral column of the tail rotated into its 610 

new position.  This evidence for stick ‘n’ peel requires the body outline to be preserved. (B) The 611 

skeleton is entire and fully articulated except for one point of separation within the tail (at arrow).  612 

The carcass came to rest on the substrate and the distal part of the tail (and possibly other parts of 613 

the skeleton) became adhered to it.  The distal part of the tail remained in situ when part of the 614 

vertebral column rotated into a new position.  The alignment of successive vertebrae was retained in 615 

both parts of the tail. Note that in contrast to the example in Figure 2A, evidence for stick ‘n’ peel 616 

does not require that the body outline is preserved.  (C) The anterior half of the skeleton is complete 617 

and fully articulated. The posterior half is complete, but extensively disarticulated and out of life 618 

position.  The carcass came to rest on the substrate fully articulated and complete; subsequently, 619 

after an extended period of decay, the posterior part either flipped over, or rotated anticlockwise 620 

onto, the anterior part. In doing so, it disarticulated.  Completeness and articulation of the anterior 621 

half was unaffected. On the evidence available it cannot be proven whether the anterior was the 622 

only part that adhered to the substrate, or whether the specimen was also adhered elsewhere and 623 

the posterior half preferentially tore free (contrast with the scenario in Figure 2D). (D) The only 624 

difference in the distribution of this skeleton and that in Figure 2C is that the distal part of the left 625 

hindlimb is in life position. This implies that the carcass first adhered to the surface at both the 626 

anterior and at the distal part of the left hindlimb; when the posterior part tore free the latter 627 

remained in situ.    (E) The skeleton is fully articulated and, except for loss of a single humerus (at 628 

arrow), complete. All elements are in life position. The isolated limb is separated from the remainder 629 

of the carcass by exactly the length of the humerus; i.e. the limb did not separate from the 630 



 
 

remainder of the carcass as a unit. The distal part of the limb (and presumably other parts of the 631 

skeleton) adhered to the substrate and remained in situ while the humerus was selectively removed. 632 

(F) and (G) The carcass came to rest in right lateral aspect. Only the left side of the skeleton is 633 

extensively disarticulated.  Elements displaced significantly from life position include some of the 634 

largest bones, for example the left femur and humerus in F and the chevron-shaped flank scales in G. 635 

The skeletal elements that remained in situ share two features. Firstly, they would have been in 636 

contact with the substrate after the carcasses came to rest. Secondly, not all would have been 637 

shielded from the effects of currents by being concealed on the lower-facing side of the carcass. 638 

Those that would have been exposed include some of the smallest bones, for example the phalanges 639 

of the limbs from the right hand side of the body and the distal vertebrae of the tail in F, and the 640 

bones of the caudal fin ray in G.    641 

Figure 3. Examples of fossil taxa interpreted to show taphonomic features derived via stick ‘n’ peel. 642 

(A) Specimen of the amphibian Apateon pedestris (Museum für Naturkunde Berlin: Institut für 643 

Palaontologie, MB Am1300). (B) and (C) Specimens of the early Oligocene bird Primotrogon 644 

wintersteini. Inset in B shows distribution of feathers. Line drawings based on Figures 1 and 2 in 645 

Mayr (2001). (B, Bayerische Staatssammlung für Paläontologie und Historiche Geologie, BSP1997I38. 646 

C, Forschungsinstitut Senckenberg Frankfurt am Main, Germany SMFAv423). c, coracoid; f, furcular; 647 

h, humerus; r, radius; s, scapula; tm, tarsometatarsus; tt, tibiotarsus; u, ulna; ub, unidentified bone; 648 

v, vertebrae; prefix l and r indicate left and right hand side of the body, respectively. (D) 649 

Palaeobatrachus sp. from the Late Eocene - Oligocene Ústí Formation (36.1-25.5 Ma) of North 650 

Bohemia (Czech Republic) (Natural History Museum Prague Specimen Pb684). (E) Specimen of the 651 

fish Habroichthys minimus from the Prosanto Formation, Early Ladinian, southeastern Switzerland 652 

(Paläontologisches Institut und Museum der Universität, Zürich, PIMUZ A/I 3733). fs, flank scales, o, 653 

operculum; pf pectoral fin; so, suboperculum. All scale bars 10mm. 654 

Figure 4. Model for the formation of stick ‘n’ peel textures, indicating the potentially complex 655 

interplay of the three principal factors: (1) progressive, decay-induced, collapse of the skeleton; (2) 656 

development and then loss of the cadaver decay island; (3) the timing of any disturbance of the 657 

carcass by current activity. Factors 1 and 2 allow three fields to be defined in each of which the 658 

impact of current activity on the taphonomy of the skeleton will be different.  A-E represent 659 

schematic illustrations of a generalised tetrapod showing the changes in posture, extent of collapse 660 

of the skeleton (see transverse sections through body) and the areal extent of the CDI at different 661 

times.   662 
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