
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Connecting the continents. Power system modelling and capacity
building for detailed assessments of global power sector decarbonization
pathways

Author(s) Brinkerink, Maarten

Publication date 2021

Original citation Brinkerink, M. 2021. Connecting the continents. Power system
modelling and capacity building for detailed assessments of global
power sector decarbonization pathways. PhD Thesis, University College
Cork.

Type of publication Doctoral thesis

Rights © 2021, Maarten Brinkerink.
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information Not applicable

Item downloaded
from

http://hdl.handle.net/10468/11927

Downloaded on 2021-11-27T15:12:13Z

https://libguides.ucc.ie/openaccess/impact?suffix=11927&title=Connecting the continents. Power system modelling and capacity building for detailed assessments of global power sector decarbonization pathways
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/11927


 
   

Ollscoil na hÉireann, Corcaigh 

National University of Ireland, Cork 

 

 

 

Connecting the Continents 

Power System Modelling and Capacity Building for Detailed 

Assessments of Global Power Sector Decarbonization Pathways. 

 

Thesis presented by 

Maarten Brinkerink, B.Env.Sc, M.Sc 

for the degree of 

Doctor of Philosophy 

 

University College Cork 

School of Engineering  

&  

MaREI Centre, Environmental Research Institute 

 Head of School: Dr Jorge Oliveira 

Supervisors: Professor Brian P. Ó Gallachóir & Dr Paul Deane 

 

2021 

 



2 
  

Table of Contents 

DECLARATION .................................................................................................................................................. 5 

ACKNOWLEDGEMENTS .................................................................................................................................... 6 

EXECUTIVE SUMMARY ..................................................................................................................................... 8 

UNITS AND ABBREVIATIONS ............................................................................................................................ 9 

TABLE OF FIGURES ......................................................................................................................................... 11 

TABLE OF TABLES ........................................................................................................................................... 13 

CHAPTER 1 INTRODUCTION .................................................................................................................... 14 

1.1 BACKGROUND ................................................................................................................................... 14 
1.2 THESIS AIM ....................................................................................................................................... 16 
1.3 THESIS IN BRIEF ................................................................................................................................. 17 
1.4 METHODOLOGY ................................................................................................................................. 18 

1.4.1 Power System Unit Commitment & Economic Dispatch Modelling .............................................. 19 
1.4.2 Model Soft-Linking and Scenario Analysis ................................................................................... 19 
1.4.3 Open Data and Methods for Capacity Building ........................................................................... 20 

1.5 ROLE OF COLLABORATORS .................................................................................................................... 20 
1.6 THESIS OUTPUTS ................................................................................................................................ 21 

1.6.1 Journal Papers ........................................................................................................................... 21 
1.6.2 Technical Reports and Working Papers ...................................................................................... 21 
1.6.3 Seminar & Workshop Presentations ........................................................................................... 22 

1.7 CONTRIBUTION OF THESIS .................................................................................................................... 23 

CHAPTER 2 A COMPREHENSIVE REVIEW ON THE BENEFITS AND CHALLENGES OF GLOBAL POWER GRIDS 

AND INTERCONTINENTAL INTERCONNECTORS .............................................................................................. 25 

2.1 ABSTRACT ........................................................................................................................................ 25 
2.2 INTRODUCTION .................................................................................................................................. 26 
2.3 REVIEW OF PREVIOUS LITERATURE .......................................................................................................... 27 
2.4 INITIATIVES AND PROJECTS .................................................................................................................... 30 

2.4.1 Review and Comparison of Intercontinental Interconnection Projects ......................................... 30 
2.4.2 Supporting Initiatives on the Global Grid Concept ....................................................................... 34 

2.5 BENEFITS, OPPORTUNITIES, RISKS AND CHALLENGES ................................................................................... 35 
2.5.1 Benefits and Opportunities ........................................................................................................ 36 
2.5.2 Challenges and Risks .................................................................................................................. 40 

2.6 TECHNO-ECONOMIC ASSESSMENT .......................................................................................................... 47 
2.6.1 Global Grid ................................................................................................................................ 47 
2.6.2 Intercontinental interconnectors ................................................................................................ 49 

2.7 DISCUSSION ...................................................................................................................................... 52 

CHAPTER 3 DEVELOPING A GLOBAL INTERCONNECTED POWER SYSTEM MODEL .................................... 54 

3.1 ABSTRACT ........................................................................................................................................ 54 
3.2 INTRODUCTION .................................................................................................................................. 55 
3.3 LITERATURE REVIEW............................................................................................................................ 56 
3.4 METHODOLOGY ................................................................................................................................. 58 

3.4.1 PLEXOS® Integrated Energy Model ............................................................................................. 58 
3.4.2 European Electricity Dispatch Model .......................................................................................... 58 
3.4.3 Connecting the Continents ......................................................................................................... 59 

3.5 PRELIMINARY RESULTS AND LESSONS LEARNED .......................................................................................... 62 
3.5.1 Europe – North America Interconnector Utilization..................................................................... 62 



3 
  

3.5.2 Data Availability ........................................................................................................................ 66 
3.5.3 Computational Time .................................................................................................................. 68 

3.6 DISCUSSION AND FUTURE WORK ............................................................................................................ 69 

CHAPTER 4 BUILDING AND CALIBRATING A COUNTRY-LEVEL DETAILED GLOBAL ELECTRICITY MODEL 

BASED ON PUBLIC DATA ................................................................................................................................ 71 

4.1 ABSTRACT ........................................................................................................................................ 71 
4.2 INTRODUCTION .................................................................................................................................. 72 
4.3 DATA INPUT AND METHODOLOGY .......................................................................................................... 73 

4.3.1 Unit Commitment & Economic Dispatch Model .......................................................................... 73 
4.3.2 Spatial and Temporal Representation ........................................................................................ 75 
4.3.3 Technical Representation and Input Data ................................................................................... 76 

4.3.3.1 Power Plant Portfolios .....................................................................................................................77 
4.3.3.2 Renewable Profiles ..........................................................................................................................80 
4.3.3.3 Storage ............................................................................................................................................83 
4.3.3.4 Hourly Demand Data........................................................................................................................83 
4.3.3.5 Net Transfer Capacities ....................................................................................................................84 

4.3.4 Model Calibration and Benchmarking ........................................................................................ 86 
4.3.5 Model Availability ...................................................................................................................... 87 

4.4 RESULTS ........................................................................................................................................... 87 
4.5 DISCUSSION ...................................................................................................................................... 91 

CHAPTER 5 ASSESSING GLOBAL CLIMATE CHANGE MITIGATION SCENARIOS FROM A POWER SYSTEM 

PERSPECTIVE USING A NOVEL MULTI-MODEL FRAMEWORK ......................................................................... 93 

5.1 ABSTRACT ........................................................................................................................................ 93 
5.2 INTRODUCTION .................................................................................................................................. 94 

5.2.1 Background ............................................................................................................................... 94 
5.2.2 Model Interlinkage .................................................................................................................... 95 
5.2.3 Contribution of this Study .......................................................................................................... 96 

5.3 METHODOLOGICAL FRAMEWORK ........................................................................................................... 98 
5.3.1 IAM Model Simulation ............................................................................................................... 99 
5.3.2 Spatial Downscaling .................................................................................................................. 99 
5.3.3 Temporal Downscaling ............................................................................................................ 100 
5.3.4 Power System Model Capacity Allocation ................................................................................. 102 
5.3.5 Power System Model Unit Commitment & Economic Dispatch .................................................. 103 
5.3.6 Feedback Loop ......................................................................................................................... 103 

5.4 APPLICATION OF THE FRAMEWORK ........................................................................................................ 103 
5.4.1 MESSAGEix-GLOBIOM .............................................................................................................. 104 
5.4.2 PLEXOS-World ......................................................................................................................... 106 
5.4.3 Scenarios ................................................................................................................................. 107 
5.4.4 Results..................................................................................................................................... 109 

5.4.4.1 Generation and Storage ................................................................................................................. 109 
5.4.4.2 Curtailment and Unserved Energy .................................................................................................. 112 
5.4.4.3 Firm Capacity ................................................................................................................................. 115 
5.4.4.4 Intra-Regional Trade ...................................................................................................................... 116 
5.4.4.5 Inter-Regional Trade ...................................................................................................................... 117 

5.4.5 Study Limitations ..................................................................................................................... 119 
5.4.6 Feedback on Power System Representation in MESSAGEix-GLOBIOM ....................................... 120 

5.5 CONCLUSIONS AND DISCUSSION ........................................................................................................... 122 

CHAPTER 6 CONCLUSIONS .................................................................................................................... 124 

6.1 CONCLUSIONS ON STATE OF THE ART IN GLOBAL POWER SYSTEM MODELLING (RQ-1) ...................................... 124 
6.2 CONCLUSIONS ON OPEN DATA, METHODS AND MODELS (RQ-2 AND RQ-3) .................................................. 126 
6.3 CONCLUSIONS ON INTERCONTINENTAL ELECTRICITY TRANSMISSION (RQ-4) .................................................... 129 



4 
  

6.4 CONCLUSIONS ON ANALYSIS OF POWER SYSTEM REPRESENTATION IN GLOBAL IAMS (RQ-5 AND RQ-6) ............... 131 
6.5 FUTURE WORK ................................................................................................................................ 133 

6.5.1 Data and Methods ................................................................................................................... 133 
6.5.2 Model Application ................................................................................................................... 134 

BIBLIOGRAPHY ............................................................................................................................................. 136 

APPENDIX A : PLEXOS DETAILED EQUATIONS ............................................................................................... 152 

A.1 INDICES .......................................................................................................................................... 152 
A.2 VARIABLES ...................................................................................................................................... 152 
A.3 PARAMETERS .................................................................................................................................. 152 
A.4 OBJECTIVE FUNCTION ........................................................................................................................ 153 
A.5 ENERGY BALANCE EQUATION .............................................................................................................. 153 
A.6 OPERATION CONSTRAINTS ON UNITS ..................................................................................................... 154 
A.7 WATER BALANCE EQUATIONS ............................................................................................................. 155 

APPENDIX B : SUPPLEMENTARY MATERIAL CHAPTER 3 ................................................................................ 156 

APPENDIX C : SUPPLEMENTARY MATERIAL CHAPTER 4 ................................................................................ 157 

C.1 SUB-COUNTRY NODES ....................................................................................................................... 157 
C.1.1 Australia .................................................................................................................................. 157 
C.1.2 Brazil ....................................................................................................................................... 157 
C.1.3 Canada and the United States .................................................................................................. 158 
C.1.4 China ....................................................................................................................................... 162 
C.1.5 India ........................................................................................................................................ 163 
C.1.6 Japan ...................................................................................................................................... 163 
C.1.7 Russia ...................................................................................................................................... 164 

C.2 SUPPLEMENTARY GRAPHS MODEL BENCHMARK ........................................................................................ 165 
C.3 LIST OF NODES IN THE PLEXOS-WORLD MODEL ..................................................................................... 167 
C.4 LIST OF PUBLICLY AVAILABLE HOURLY LOAD DATA .................................................................................... 173 
C.5 LIST OF GLOBAL CROSS-BORDER TRANSMSSION CAPACITIES ........................................................................ 176 

APPENDIX D : SUPPLEMENTARY MATERIAL CHAPTER 5 ................................................................................ 189 

D.1 DETAILS ON SPATIAL AND TEMPORAL ELECTRICITY DEMAND DOWNSCALING ................................................... 189 
D.2 DETAILS ON SPATIAL CAPACITY DOWNSCALING ......................................................................................... 194 
D.3 PLEXOS-WORLD AND MESSAGEIX-GLOBIOM SCENARIO INTEGRATION ..................................................... 195 

D.3.1 PLEXOS long-term capacity expansion ...................................................................................... 195 
D.3.2 PLEXOS Unit Commitment and Economic Dispatch ................................................................... 213 
D.3.3 MESSAGEix-GLOBIOM integration of inter-regional trade ......................................................... 214 

 

  



5 
  

Declaration 

This is to certify that the work I, Maarten Brinkerink, am submitting is my own and has not 

been submitted for another degree, either at University College Cork or elsewhere. All 

external references and sources are clearly acknowledged and identified within the contents. 

I have read and understood the regulations of University College Cork concerning plagiarism. 

__________________ 

Maarten Brinkerink 

  



6 
  

Acknowledgements 

My gratitude goes to Professor Brian Ó Gallachóir and Dr. Paul Deane for their supervision 

and overall guidance during all phases of my research. You’ve both helped me tremendously 

to improve the quality of the work and inspired me to become an overall better academic. 

Furthermore, I would like to thank my collaborators and fellow PLEXOS modellers in and 

outside the Energy Policy and Modelling Group without whom this work would have not been 

possible, Dr. Behnam Zakeri and Dr. Daniel Huppmann from IIASA as well as former EPMG 

colleagues Dr. James Glynn, Dr. Seán Collins, Dr. Fiac Gaffney and Laura Mehigan. 

While working from home during the never-ending COVID-19 lockdown in Ireland it made me 

realize how much I appreciate having had the ability to work at the Environmental Research 

Institute with an amazing group of colleagues and friends. The PhD journey would have not 

been the same without the daily lunch-time chats and general banter. Big shoutout to Alessia 

Elia, Alparslan Zehir, Aoife Long, Archisman Bose, Connor McGookin, Conor Hickey, Davis 

Rusmanis, Duncan Mathews, Eamonn Mulholland, Evan Boyle, Fionn Rogan, Gideon Fadiran, 

Hannah Daly, Jason Mc Guire, Liliana Benitez, Mitra Kami Delivand, Nathan Gray, Parveen 

Kumar, Richard O’Shea, Shane McDonagh, Siddharth Joshi, Tarun Sharma, Tomás Mac Uidhir, 

Vahid Aryanpur, Vera O’Riordan and Xiufeng Yue, along with all others in the wider EPMG 

group and the Environmental Research Institute with whom I’ve worked over the years.  

Special thanks to Aoife Dunne, Helen McMahon and Tara Reddington for making things run 

so smoothly behind the scenes. 

Thanks to Energy Exemplar for all the support I’ve received during my research and in 

particular to the London office for allowing me to join the team for an exciting three month 

research visit. I am grateful to IIASA for proceeding with the virtual Young Scientists Summer 

Program despite the inherent difficulties following the COVID-19 pandemic. Thanks to all the 

participants and the organizing committee, the members of the Energy Program and to Janet, 

Katie and Lisa for introducing me to the very effective ‘Shut up and Write’ sessions.  

Thankfully there is also a life outside academia and in that respect there have been numerous 

people who have made a big impact along the way. To name just a few, Daniel, Harmeet, 

Jessie, Nicole, Rohil, Sarah, Sascha, Stephanie, thanks for enriching my Cork experience and 

for the well needed distractions from my PhD. Thanks to all my friends and extended family 



7 
  

in and around my birthplace Haaksbergen who have always been there for me whenever 

being back home.  

Finally, I would like to express my gratitude to my direct family without whose support I would 

not have been able to successfully start nor finish my PhD journey. Jasper, you have been one 

of my biggest role models, both as a brother and as a successful academic. Thank you for all 

your insights and feedback when needed. Ma en pa, dank jullie wel voor jullie 

onvoorwaardelijke steun door dik en dun. Zonder jullie zou ik niet staan waar ik sta, zowel als 

persoon als professioneel. Anina, I am incredibly lucky to be able to call you my partner. I have 

no doubt not always been the easiest to be around when locked in our tiny city apartment 

while working on the final stretch of this thesis. Thank you for your patience and cheerfulness 

which from time to time was desperately needed. I am incredibly proud of your own 

accomplishments after all your hard work throughout the last few years. For everyone’s sake, 

I am happy you will be the one called upon when a ‘doctor’ is needed. 

  



8 
  

Executive Summary 

Deep decarbonization of the global energy sector is essential for reaching increasingly 

ambitious climate change mitigation targets. The momentum on global climate action is 

gathering speed, hence the need for energy research to accurately inform development 

pathways and decision making processes for the global energy sector is both critical and 

urgent. Electricity end use is expected to gain a larger role due to the potential for emission 

reductions in the electricity sector combined with the ability of electricity to displace fossil 

fuel use in other sectors. While completely decarbonised power systems based on very high 

penetrations of wind and solar energy are desirable, the technical and economic feasibility of 

power systems mostly or fully based on renewables remains a matter of debate. Furthermore, 

from a continental or global perspective, the role of flexible assets such as large-scale 

transmission interconnections are poorly understood. 

This thesis develops, applies, and disseminates a number of key foundation blocks for robust 

assessments of global power system decarbonization pathways by means of open methods 

and datasets that can be used with a broad range of modelling tools. The author constructs 

and uses a detailed global power system model with high technical, temporal, and spatial 

modelling resolution to assess the technical feasibility of scenarios coming from long-term 

planning models. The methodological open source soft-link framework presented here is 

carefully designed to respond to known limitations of Integrated Assessment Models in a 

manner that allows for iterative model coupling to pinpoint and improve key areas of power 

system representation within Integrated Assessment Models. The thesis results provide 

insights that planning models struggle to generate, for example regarding curtailment of 

renewable electricity, occurrence of unserved energy and the operation of flexible assets at 

hourly modelling resolution. The research pays particular attention to the potential for 

intercontinental trade of electricity in context of a globally integrated power grid. 

The main contributions of this thesis are the development, application and dissemination of 

new methods, datasets and models that improve power system modelling and capacity 

building efforts at the global scale. The foundation blocks provided by this research are 

currently contributing to improved assessments of power system decarbonization pathways 

and are enriching the evidence base underpinning global climate- and energy policy decisions. 
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Chapter 1 Introduction 

1.1 Background 
As many major economies across the world have introduced targets to achieve net-zero 

emissions by 2050, the momentum on global climate action is gathering speed. While the 

COVID-19 pandemic has led to a temporary reduction in global Carbon Dioxide (CO2) 

emissions (7%) [1], without structural changes in the economy and energy sectors, emissions 

are expected to return to- and exceed pre-COVID-19 levels [1–3]. Despite its tremendous 

impact on society, the pandemic provides a unique opportunity for governments to stimulate 

a green recovery in which short-term economic recovery can be coupled with acceleration on 

measures to reach medium- and long-term climate and environmental goals [4]. 

Approximately 76% of global Greenhouse Gas (GHG) emissions can be allocated to the energy 

sector [5] making deep decarbonization of the global energy sector essential for reaching set 

climate change mitigation targets. Electricity end use is expected to gain a significantly larger 

role [1,6,7] due to success in emissions reduction in electricity supply coupled with the 

potential to use electricity to displace fossil fuel use in heating and transportation. However, 

the large expected role for Variable Renewable Electricity Sources (VRES) such as wind and 

Solar-Photovoltaics (Solar-PV) is raising concerns on the technical feasibility and economic 

viability of electricity systems mostly- or completely based on Renewable Electricity Sources 

(RES) [8–12] as well as on the role of flexible assets such as large-scale transmission 

interconnection. 

Model-informed assessments of development pathways for the global electricity sector are 

essential for the design of global climate and energy policy. Global Integrated Assessment 

Models (IAMs) are utilized and relied on to analyse and inform interlinked developments such 

as the effect of potential emission mitigation policies on climate change and the wider global 

economy [7,13,14]. Yet, IAMs were originally not designed to capture the technical 

implications of VRES integration or associated assets such as transmission interconnections 

or electricity storage and are significantly challenged in trying to realistically represent short 

term variations in electricity demand and supply [13–16]. This constrains the value of the 

evidence IAMs are delivering to energy and climate mitigation policy. Dedicated sectoral 

power system models are more suited for this exercise, but the application of power system 

models to date has mostly been restricted to assessments of continental size power systems 
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as largest spatial modelling scale – e.g. [17–20]. This can be explained historically due to 

limitations on computational modelling complexity and restrictions in power system input 

data for developing regions. However, developments in recent years regarding hardware, 

software and solving techniques [21,22] as well as open data initiatives [23–28] has opened 

new doors for novel global power system modelling. Furthermore, advancements in costs and 

efficiency of long-distance electricity transmission infrastructure enabling the integration of 

cross-country or continental power markets has led to a growing interest in the concept of a 

globally interconnected power grid [29–31], meriting the utilization of a global power system 

model. 

Energy research has been shown to lag behind other scientific disciplines when it comes to 

transparency and in moving to open and reproducible science [32,33]. Considering the critical 

timeframe in combatting climate change and decarbonization of the global energy system, it 

is important that scientific research informing energy policy can be reproduced and critically 

scrutinized by peers. For this to occur it is recommended to make use of ‘open’ models which 

can be freely accessed, used, modified and shared [32,34]. Where deemed infeasible to 

switch to fully open tools, a minimum requirement is to make the model input- and output 

data, supporting code and model formulation open for reproducibility by others. 

A further challenge for energy systems modelling is the lack of available tools and data for 

capacity building purposes and a general bias in geographic origin and scope of scientific 

research. Assessing energy research from a geographical perspective, a review by Sovacool 

[35] regarding the research output of three main energy journals for the period 1999 to 2013 

(4500 papers) highlighted that 87% of associated authors were affiliated to a European or 

North American institution. Furthermore, only 30% of case studies included areas outside 

Europe and North America. These statistics highlight a discrepancy in research focus and 

geographical urgency in clean energy- and decarbonization efforts. There is an important role 

for the energy modelling community to enable energy modelling capacity in the developing 

world. This can partly be approached by making use of existing knowledge and resources from 

developed countries, yet capacity building exercises to empower domestic scientists and 

policy workers are critical for successful locally informed sustainable development pathways 

[36]. 
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The motivation for this thesis is to address the four points introduced above namely, 1) to 

develop a state of the art power system model capable of simulating power systems globally 

with a focus on assessing the role of long-distance transmission of electricity, 2) to support 

the improvement of power system representation in global IAMs to strengthen its accuracy 

in international climate policy, 3) to improve the dissemination of methods, tools and data to 

encourage greater transparency within the international energy research community and 4) 

to be an enabler of capacity building for energy research addressing climate change by 

providing the required methods, tools and data. 

1.2 Thesis Aim 
This thesis addresses a range of research questions as follows: 

RQ-1. What is the present state of the art in the application of global power system 

models? 

RQ-2. What is the status of open power systems data and what are the shortcomings for 

utilizing open data in global power systems modelling? 

RQ-3. What insights can be provided regarding best practices in using proprietary energy 

systems modelling software for academic purposes? 

RQ-4. What are the techno-economic benefits and limitations of long-distance 

transmission of electricity and the concept of a globally integrated power grid? 

RQ-5. What are the main limitations in the power system representation of global IAMs? 

RQ-6. How can global power system models be utilized as a complementary tool for 

global IAMs and facilitate methodological improvements within global IAMs? 

The chapters in this thesis provide the knowledge base to address the above research 

questions. The questions are designed to shed light on the current status of global power 

systems research and to explore the potential research directions that can be accomplished 

by utilizing global power system models. Touching on a novel research area, this thesis is not 

intended to provide conclusive answers for all questions possible. Rather, it intends to enable 

others to build upon this work by providing a set of open datasets and methodologies that 

can be applied broadly. 
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1.3 Thesis in Brief 
• Chapter 2: This chapter provides a comprehensive review of the existing literature 

regarding the concept of a globally integrated power grid and the intercontinental 

transmission of electricity. It scrutinizes the known benefits and challenges of the 

concept and assesses the current gaps in the literature from a techno-economic 

modelling perspective. The chapter furthermore includes a review on existing work to 

date related to the application of global power system models. 

• Chapter 3: This chapter includes a proof-of-concept study for the modelling of 

integrated inter-continental power systems through long-distance electricity 

transmission by examining the functionality of a conceptual transmission line between 

Europe and North America. As an intermediate step to developing a global power 

system model, this study is designed to derive the necessary lessons regarding model 

building and functionality as well as the required insights on availability of data inputs 

and data quality. 

• Chapter 4: Global climate and energy policy requires model informed insights in 

equitable global decarbonization pathways. This chapter describes the development 

of a reference detailed country-level global power system model dubbed PLEXOS-

World that can be used as a baseline for a variety of assessments. The model has been 

benchmarked by emission and generation output with historical data. By making all 

model data openly available, this work provides a comprehensive global power system 

dataset that can support energy modelling activities and capacity building efforts 

globally. 

• Chapter 5: This chapter provides an open-source methodological framework for soft-

linking of global IAMs with global power system models. The framework can be used 

to assess and improve the technical feasibility of IAM power system decarbonization 

pathways through benchmarking with power system model simulations with 

enhanced spatial, technological, and temporal modelling resolution. A proof of 

concept application of the framework is presented by linking global IAM MESSAGEix-

GLOBIOM with PLEXOS-World. 
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The final chapter, Chapter 6, presents the conclusions as drawn based on the content of this 

thesis. It furthermore includes a preview of- and recommendations for future work that builds 

on this thesis. Figure 1-1 shows an overview of the thesis chapters and their interlinkages. 

Figure 1-1 Overview map of existing, commissioned, considered and conceptually studied intercontinental 

transmission pathways. 

1.4 Methodology 
Different methodologies and methodological tools can be used to understand future 

decarbonisation pathways. Dedicated power system models can be used to analyse 

decarbonisation pathways for the power system and due to their high temporal and technical 

modelling resolution would provide the most accurate insights from a power sector 

perspective. However, to date, the computational complexity of this exercise limits the ability 

of power system models to perform long-term global planning studies with the level of spatial, 

technological, and temporal resolution required for realistic simulation of short-term power 

system operations1. Furthermore, assessing development pathways from solely a power 

 
1 In context of this thesis, long-term modelling covers timespans of multiple decades and short-term involves 
modelling at hourly resolution. 
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system perspective gives a narrow focus that lacks interactions with- and broader insights 

from other sectors relevant in the development of the overall energy system. To overcome 

these limitations, this thesis applies a Unit Commitment & Economic Dispatch (UCED) 

methodology combined with a model soft-linking approach. This means that results from a 

secondary model or study are fed into the power system model and used as baseline for 

extended assessments. Consequentially, this thesis applies detailed operational power 

system analyses in context of long-term global energy system decarbonization pathways. 

1.4.1 Power System Unit Commitment & Economic Dispatch Modelling 

Power system UCED modelling refers to the modelling exercise in which for a given generator 

portfolio the utilization of available capacity is optimized to match system demand while 

abiding to technical- and operational constraints. Within this thesis UCED modelling occurs 

within PLEXOS [37] which is a transparent energy- and power system modelling tool with free 

licenses for academic use. The fundamental linear programming equations can be viewed, 

modified and shared, which makes it transparent and appropriate for use in a research 

context. PLEXOS is used by organisations such as the IEA, IRENA, NREL and a wide range of 

universities for research. Model data can be shared in PLEXOS standard format for other 

PLEXOS users or exported for sharing in raw data format to non-PLEXOS users. Refer to 

Appendix A for detailed equations of the objective function of the UCED modelling as applied 

for this thesis. 

1.4.2 Model Soft-Linking and Scenario Analysis 
The baseline input data for the UCED modelling as applied in Chapter 3 and Chapter 5 is based 

on soft-linking to scenario data coming from external energy system models and IAMs. Soft-

linking of power system models with energy systems models and IAMs has first been 

introduced by [38] and reviewed by [14]. Generation portfolios, electricity demand values and 

other power system properties from the energy system model or IAM are imported in the 

power system model. Operational analysis in power system models of given long-term 

planning scenarios can provide detailed insights in aspects such as the utilization of electricity 

storage and transmission infrastructure, cycling of thermal generators, electricity curtailment 

and more. For the soft-linking exercise as applied in Chapter 5 an intermediate step in the 

soft-linking workflow has been applied in which regionally aggregate scenario results from 

IAMs are spatially downscaled to sub-country level. An open-source methodological 
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framework has been developed that automates model soft-linking between global IAMs and 

global power system models which allows for iterative feedback loops. 

1.4.3 Open Data and Methods for Capacity Building 

The global models as developed and used for Chapter 4 and Chapter 5 have been made 

publicly available in raw data format allowing for reproducibility of results in open source 

modelling tools. Furthermore, the methodological framework developed in Chapter 5 for 

soft-linking of global IAMs and global power system models has been designed to be 

uniformly applicable to any IAM or power system modelling tool with the supporting python 

script being fully open. The comprehensive global power system datasets and modelling 

methodologies resulting from this thesis are designed to support adoption externally as well 

as to contribute to energy modelling capacity building exercises globally. 

1.5  Role of Collaborators 
• Chapter 2: This chapter is based on a published peer-reviewed journal article of which 

I am the lead author. I performed the literature review and wrote the chapter in its 

entirety. Dr. Paul Deane reviewed drafts of the manuscript and together with 

Professor Brian Ó Gallachóir provided overall guidance.  

• Chapter 3: This chapter is based on a published peer-reviewed journal article of which 

I am the lead author. I developed the power system model for North America, 

performed all modelling and wrote the chapter in its entirety. Dr. Seán Collins 

developed the power system model for Europe and reviewed drafts of the manuscript. 

Dr. Paul Deane reviewed drafts of the manuscript and together with Professor Brian 

Ó Gallachóir provided overall guidance. 

• Chapter 4: This chapter is based on a published peer-reviewed journal article of which 

I am the lead author. I lead the development of the global power system model, 

performed all modelling, and wrote the chapter in its entirety. Dr. Paul Deane 

contributed to the model building and validation and together with Professor Brian Ó 

Gallachóir reviewed drafts of the manuscript and provided overall guidance. 

• Chapter 5: This chapter is based on an article submitted to a peer-reviewed journal of 

which I am the lead author. I developed the global power system model, performed 

the PLEXOS model simulations, lead the methodological design of the study, 
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developed the supporting python scripts for the workflow and wrote the chapter in 

its entirety. Dr. Behnam Zakeri assisted with the methodological design of the study 

and performed the modelling in MESSAGEix-GLOBIOM. Dr. Daniel Huppmann 

reviewed the developed python script. All co-authors provided guidance and reviewed 

drafts of the manuscript. 

1.6 Thesis Outputs 

1.6.1 Journal Papers 

Brinkerink M, Zakeri B, Huppmann D, Glynn J, Ó Gallachóir B, Deane P (2021). Assessing global 

climate change mitigation scenarios from a power system perspective using a novel multi-

model framework. Environmental Modelling & Software (In Review). 

Brinkerink M, Ó Gallachóir B, Deane P (2021). Building and Calibrating a Country-Level 

Detailed Global Electricity Model Based on Public Data. Energy Strategy Reviews 33: 100592. 

doi: 10.1016/j.esr.2020.100592 

Deane P, Brinkerink M (2020). Connecting the Continents-A Global Power Grid. IEEE Power 

and Energy Magazine 18:121–127. doi: 10.1109/MPE.2020.2974610 

Brinkerink M, Ó Gallachóir B, Deane P (2019). A comprehensive review on the benefits and 

challenges of global power grids and intercontinental interconnectors. Renewable and 

Sustainable Energy Reviews 107: doi: 10.1016/j.rser.2019.03.003 

Brinkerink M, Deane P, Collins S, Ó Gallachóir B (2018). Developing a global interconnected 

power system model. Global Energy Interconnection 1: 330–343. doi: 10.14171/j.2096-

5117.gei.2018.03.004 

1.6.2 Technical Reports and Working Papers 
Allington L , Cannone C, Ioannis P, Barron KC, Usher W, Pye S, Brown E, Howells M, Walker 

MZ, Ahsan A, Charbonnier F, Halloran C, Hirmer S, Taliotis C, Sundin C, Sridharan V, Ramos E, 

Brinkerink M, Deane P, Gritsevskyi A, Moura G, Rouget A, Wogan D, Barcelona E, Rogner H. 

Selected ‘ Starter Kit ’ energy system modelling data for Niger (# CCG)2. Research Square 

Preprint. doi: https://doi.org/10.21203/rs.3.rs-480051/v2 

 
2 Energy systems modelling ‘starter kit’ papers have been created for most developing countries as a capacity 
building effort. Refer to https://climatecompatiblegrowth.com/starter-kits/ for a full overview.  

https://climatecompatiblegrowth.com/starter-kits/
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Huppmann D, Gidden MJ, Nicholls Z, Hörsch J, Lamboll R, Kishimoto PN, Burandt T, Fricko O, 

Byers E, Kikstra J, Brinkerink M, Budzinski M, Maczek F, Zwickl-Bernhard S, Welder L, Álvarez 

Quispe EF, Smith CJ. pyam: Analysis and visualisation of integrated assessment and macro-

energy scenarios [version 1; peer review: awaiting peer review]. Open Research Europe 2021, 

1:74 (https://doi.org/10.12688/openreseurope.13633.1) 

Pye S, Butnar I, Mittal S, Giarola S, Hawkes A, Beltramo A, Usher W, Brinkerink M, Deane P, 

Benitez L, Niet T, Shivakumar A (2021). Coal phase out and renewable electricity expansion 

under Paris targets. Research Square Preprint. doi: https://doi.org/10.21203/rs.3.rs-

380763/v3 

Brinkerink M (2020). Assessing 1.5-2°C scenarios of integrated assessment models from a 

power system perspective - Linkage with a detailed hourly global electricity model. IIASA YSSP 

Report. Laxenburg, Austria: IIASA. http://pure.iiasa.ac.at/id/eprint/16957/ 

1.6.3 Seminar & Workshop Presentations 
Brinkerink M, Zakeri B, Huppmann D, et al (2021). Assessing global climate change mitigation 

scenarios from a power system perspective using a novel multi-model framework. 

Proceedings of the 39th International Energy Workshop 2021. June 14th-17th, 2021, Webinar. 

Brinkerink M (2021). PLEXOS-World. Webinar presentation as part of the 4th Openmod 

Online Lightning Talk Mini-workshop. May 5th, 2021. 

Brinkerink M (2021). PLEXOS-World. Webinar presentation as part of the 2021 PLEXOS 

Academic Program. February 4th, 2021. 

Brinkerink M, Zakeri B, Huppmann D, et al (2020). PLEXOS-World: Assessing 1.5-2°C scenarios 

of integrated assessment models from a power system perspective. Webinar presentation on 

‘Research Excellence’ as part of the 2020 MaREI symposium. November 27th, 2020. 

Brinkerink M (2020). Assessing 1.5-2°C scenarios of integrated assessment models from a 

power system perspective. Webinar presentation as part of the 2020 Young Scientists 

Summer Program (YSSP) of the International Institute for Applied Systems Analysis (IIASA). 

August 26th, 2020. 

Brinkerink M, Glynn J, Ó Gallachóir B, et al (2019). Detailed Power System Analysis of IAM 

1.5°C-2°C Scenarios with an Hourly Global Electricity Model. Proceedings of the Integrated 
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Assessment Modelling Consortium (IAMC) 12th Annual Meeting. December 2nd-4th, 2019, 

National Institute for Environmental Studies (NIES), Tsukuba, Japan. 

Brinkerink M (2019). Development of a detailed global electricity model. European Utility 

Week. November 12th-14th, 2019, Expo Porte de Versailles, Paris, France. 

Brinkerink M, Ó Gallachóir B, Deane P (2019). The Development of a Detailed Global 

Electricity Model at Plant and Country Level Using Open Access Data. 2019 MaREI symposium. 

November 6th, 2019, University of Limerick, Limerick, Ireland. 

Brinkerink M (2019). Development of a detailed global electricity model: PLEXOS-World. 

Conseil International des Grands Réseaux Electriques (CIGRE) Ireland Next Generation 

Network Workshop. July 11th, 2019, ESB Networks, Dublin, Ireland. 

Brinkerink M, Glynn J, Ó Gallachóir B, et al (2019). Detailed Power System Analysis of IAM 

1.5°C-2°C Scenarios with an Hourly Global Electricity Model. Proceedings of the 38th 

International Energy Workshop 2019. June 3rd-5th, 2019, International Energy Agency, Paris, 

France. 

1.7 Contribution of Thesis 
This section briefly highlights the contributions this thesis provides in terms of added value to 

the scientific literature- and knowledge base, new data, methods, and models as well as its 

resulting impact. For the modelling work performed in this thesis a global power system 

model has been developed. Insights are provided regarding lessons learned in the 

development of a global model concerning data acquisition, automation, and management, 

as well as regarding trade-offs in prioritization of model detail versus computational 

complexity. A number of these insights are specific for energy systems modelling whereas 

others are applicable for any large scale modelling effort while working with large datasets. 

This thesis includes a review of existing scientific literature regarding research on the role of 

long-distance transmission interconnectors and the concept of a globally integrated power 

grid. A full overview of known benefits, risks and limitations is presented. Performed power 

systems modelling in this thesis reveals operational complications of integrating different 

market types through intercontinental interconnectors. It furthermore highlights which areas 

in the world could potentially benefit the most from intercontinental electricity trade. 
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Given the limitations of global IAMs in trying to realistically represent short term variations in 

electricity demand and supply as well as known complications of linking IAMs with sectoral 

power system models, this thesis includes a methodological framework that allows for 

iterative and where possible automated model soft-linking. A proof of concept application 

shows the benefits of the framework and its ability to pinpoint and improve key areas of the 

power system representation in global IAMs. The use of standardized data formats allows for 

non-discriminatory application of the framework for a wide range of different IAMs and 

power system models. 

Following the modelling work in this thesis insights are given regarding best practices for use 

and dissemination of (open) models, data, and methods. Open global power system datasets 

are provided to support adoption in other modelling tools and overall capacity building 

efforts. To date the datasets have been used in multiple projects and adopted by institutions 

involved in energy- and climate modelling and capacity building at the global scale.  
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Chapter 2 A Comprehensive Review on the Benefits and Challenges of 

Global Power Grids and Intercontinental Interconnectors 

2.1 Abstract 
Globally interconnected power grids are proposed as a future concept to facilitate 

decarbonisation of the electricity system by enabling the harnessing and sharing of vast 

amounts of renewable energy. Areas with the highest potential for renewable energy are 

often far away from current load centres, which can be integrated through long-distance 

transmission interconnection. The concept builds on the proven benefits of transmission 

interconnection in mitigating the variability of renewable electricity sources such as wind and 

solar by import and export of electricity between neighbouring regions, as well as on other 

known benefits of power system integration. This paper reviews existing global and regional 

initiatives in context of a sustainable future and presents the associated benefits and 

challenges of globally interconnected power grids and intercontinental interconnectors. We 

find that while the challenges and opportunities are clearly qualified, actual quantification of 

costs, benefits and environmental implications of the global grid concept remains in its 

infancy, imposing a significant gap in the literature.3 

 

 

  

 
3 Published as: Brinkerink M, Ó Gallachóir B, Deane P (2019). A comprehensive review on the benefits and 
challenges of global power grids and intercontinental interconnectors. Renewable and Sustainable Energy 
Reviews 107: doi: 10.1016/j.rser.2019.03.003 



26 
  

2.2 Introduction 
The Paris climate change agreement sets a long-term goal of holding global average 

temperature increase to well below 2 degrees and pursuing efforts to limit this to 1.5 degrees 

above pre-industrial levels. Substantial research gaps in attaining the 1.5-degree target have 

been identified, including the ability of the energy system to transition to a zero-carbon 

system. Electricity is emissions free at its point of use and the decarbonisation of the power 

sector can enable decarbonisation elsewhere in the economy. Research on low carbon 

pathways to avoid dangerous climate change indicate a significant increase in global 

electrification [6,7,39,40]. It is not known whether this increase in electrification can be 

managed with the current infrastructure. 

Many studies show the vast theoretical potential of RES for decarbonisation of the power 

system [41–43], yet the extent of practical implementation and reliability of such a system in 

the foreseeable future is a matter of debate due to the inherently variable nature in 

generation of core technologies such as solar-PV systems and wind turbines [44–47]. A valid 

approach to tackle the variability challenge is by interconnecting adjacent power systems to 

be able to import or export electricity during peaks and lows in generation [48]. Even more 

ambitious projects examine the extent to which interconnection between continental grids 

can be achieved. 

The origin of the concept of globally interconnected power grids dates back to the first half 

of the 20th century when inventor Buckminster Fuller considered the potential benefits of a 

global grid4 with RES as backbone, yet also dismissed the practicality at that time due to the 

limited maximum distances of power transmission (around 350 miles) [49]. Decades later, 

Buckminster Fuller presented a first representation of his concept of the global grid at the 

World Game Seminar in 1969, resulting in acknowledgement of the potential of the concept 

by the United Nations (UN) [50]. More recently at the 2015 UN Sustainable Development 

Summit in New York, Chinese president Xi Jinping announced that China will take the lead on 

discussions about establishing a ‘global energy internet’, to facilitate efforts to meet the 

global power demand with clean and green alternatives [51]. Furthermore, current UN 

 
4 Within the literature a variety of terminology is applied such as Global Energy Interconnection (GEI), Global Energy Internet, 

Global Transnational Grid (GTG), global interconnected power grid and global grid for a similar concept. Throughout this article 
we refrain from using multiple terminologies and henceforth the term global grid will be used. The term intercontinental 
interconnectors will be used for transmission lines crossing multiple continents. 
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Secretary General António Guterres considered the benefits of a global grid to be in line with 

UN’s commitment to the 2030 Agenda for Sustainable Development and its objectives in 

regard to climate change [52]. Although there are some clear arguments supporting the 

concept of a global grid, implementation of intercontinental interconnectors to date have 

been limited to short distance subsea Alternating Current (AC) links such as the Morocco-

Spain and Egypt-Jordan interconnectors [53], and land-based interconnectors with limited 

flow between eastern Europe and central Asia. 

This paper provides a comprehensive review, assessment and comparison of developments 

in- and research on global grids and intercontinental interconnectors as a potential pathway 

to future power system decarbonisation. To date, no such overarching review exists within 

the scientific literature. Section 2.3 presents an assessment of the implications of grid 

integration of VRES and outlines reviewed aspects of the global grid concept. Section 2.4 

provides an overview of initiatives and compares projects and development trends related to 

the promotion or development of intercontinental interconnectors and the global grid 

concept. Section 2.5 provides an assessment of the arguments put forward in the literature 

supporting said developments, as well as potential risks and challenges. Section 2.6 

incorporates an analysis of quantified results from performed techno-economic modelling 

studies in a global or intercontinental context. The review ends in Section 2.7 where we 

discuss overarching research outcomes, limitations in the assessed literature and potential 

research gaps. 

2.3 Review of Previous Literature 
Historically, hydropower has been the most mature form of RES. Yet, throughout the last 

decade, new additions of both solar-PV and wind energy were underlined with impressive 

annual growth rates [54] showing an increase in global installed capacities of (on- and 

offshore) wind energy from 115 Gigawatt (GW) in 2008 to 514 GW in 2017 and 15 GW to 386 

GW for solar-PV [55]. The inherently variable nature of solar-PV and wind energy in 

generation output and its impact on the electricity grid is a well-known challenge 

[44,45,48,56–58]. The dispatch of flexible generators can compensate for the variability up 

until a certain level of penetration of VRES. At higher penetration levels, especially when VRES 

displaces part of the dispatchable portfolio, this becomes a significant issue in terms of 

securing a match between demand and supply [44,45], as well as for maintaining stable 



28 
  

inertia levels on the grid [46,47,59]. Despite these difficulties, a variety of continental- or 

global 100% renewable energy scenarios have been put forward [8,42,60–62]. Although these 

modelling studies show the vast theoretical potential of RES for decarbonisation of the power 

system, the practical implementation and reliability of such a system in the foreseeable future 

is often questioned [9,11]. To be able to decarbonize the electricity sector to contribute to 

overall emission reduction targets, while maintaining power system reliability, a variety of 

studies indicate the importance of a diverse and flexible low-carbon generation portfolio 

[47,58,63,64]. 

RES integration in the last decades has also emerged to decrease the dependency on import 

of fossil fuels from distant regions and to avoid its associated risks. As Robinson argues, “most 

countries favour renewables because they are indigenous resources” [65]. Following this 

analogy, the benefits of transitioning to a RES oriented power system with a focus on 

optimally utilizing local resources is being researched. Kaundinya and colleagues [66] 

conducted an extensive review on success and failure stories for standalone- and grid-

connected decentralized RES-based power systems. Pleßmann et al. [67] assessed a global, 

decentralized 100% RES supply scenario with optimal combinations of solar-PV, Concentrated 

Solar Power (CSP), wind energy and electricity storage for approximately 15.400 regions 

within 163 countries. This scenario, and similar power system scenarios depending on mostly 

storage technologies for balancing purposes (e.g. in [42,60,68]), can become viable in a 

situation where the availability and cost curve of storage technologies progresses 

significantly. Yet, to date, an assessment of such scenarios fully depending on the availability 

of so far mostly unproven and costly storage technologies are often considered to “represent 

low probability outcomes” [11]. 

With growing penetration of VRES, an alternative or complementary approach to tackle the 

variability challenge is by interconnecting adjacent power systems to be able to import or 

export electricity during peaks and lows in generation. Historically speaking, transmission 

interconnectors were initially utilized to provide additional system security [65,69], after 

which the demand for cross-border trading, integration of wholesale electricity markets and 

these days the balancing of VRES have become core arguments for new transmission 

interconnectors [70]. Next to providing direct flexibility, interconnectors make the sharing of 

peak capacity possible [69], as well as the utilization of an overall more diverse, flexible and 
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cost-efficient generation portfolio. The European Commission (EC) has underlined the 

importance of further market integration by endorsing a 10% interconnection target by 2020 

(import capacity over installed generation capacity per member state) and 15% by 2030 for 

all member states [71]. Besides the earlier mentioned benefits, the expert group initiated to 

provide advise on how to make the 15% target operational [72], argues “that a fundamental 

role of transmission infrastructure is to enable the integration of areas of high renewable 

energy potential with main consumption areas”. Assessing this remark from a global 

perspective, it becomes clear that there is a discrepancy between on the one hand main 

consumption areas and existing grid infrastructure, and on the other hand areas with the 

highest RES potential [41,43,59,69,73–75]. This observation is one of the core thoughts 

behind the concept of a global grid. 

Certain specific aspects relevant to a global grid concept have been reviewed in detail. [53,76–

83] provide an overview of the characteristics, trends and developments, prospects, reliability 

and commercial application of High Voltage Direct Current (HVDC) cables and convertors. 

Besides the former, [69] also reviews potential other required technologies for a global grid. 

Furthermore, [53] assesses the spatial implications, best practice of cable instalment, 

reliability and accident risks, and potential environmental issues for HVDC subsea power cable 

projects. Thomas and colleagues provide a review on the current research and prospects of 

superconducting transmission lines [84]. Engeland et al. [85] reviews the space-time 

variability of VRES generation from a regional to global perspective. Other reviewed aspects 

focus on the integration between backbone HVDC systems and smart grids [69,77,82], 

potential market models and development strategies [31,69,86–88], standardization needs 

for technologies in context of a global grid [69] and important treaties and laws for subsea 

HVDC cables [53]. Details of the elements assessed in these papers are therefore outside the 

scope of the current review. An assessment of previous literature demonstrates the 

availability of technical solutions such as HVDC cables, converters and laying equipment 

technology, but highlights a gap in the maturity of knowledge on the costs, benefits, 

challenges and opportunities of a global grid. The aim of this paper is to assess and compare 

these aspects to be able to determine the overall viability of the global grid concept as a 

means to global power system decarbonisation. 
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2.4 Initiatives and Projects 

2.4.1 Review and Comparison of Intercontinental Interconnection Projects 

On a continental scale, Europe is on the forefront in terms of power system integration 

through transmission interconnection. Expansion outside the borders of the European Union 

(EU) is an item of significant interest [89,90]. Feasibility studies conducted during the early 

2000s’ on Trans-Mediterranean interconnectors, such as between Algeria-Spain or Algeria-

Italy (direct or indirectly through Sardinia and the already existing SAPEI HVDC 

interconnector), indicated that financial feasibility is highly dependent on factors such as 

investment costs and sales prices of electricity [91]. The original ‘Desertec’ project proposed 

to supply between 700 Terawatt hour (TWh)/year [92] and roughly 1000 TWh/year [93] of 

electricity generated by RES (mostly CSP) from the Middle East and North Africa (MENA) to 

Europe by 2050. The required investments of approximately 400 billion € [92] and the political 

unrest following the Arab spring revolution are often believed to be the downfall of the 

project [94] in its original form [95]. A similar project was The Medgrid Industrial Initiative 

which was formed in 2010 to support the design and promotion of a Mediterranean 

transmission network able to export 5 GW of electricity from MENA to Southern Europe 

[69,96]. This would be supported by 20 GW of mostly solar powered RES in MENA, with an 

overall estimated cost of the combined project between 38-46 billion € [96]. The MedGrid 

consortium ceased its operation in 2016 after completion of a number of planning and pre-

feasibility studies [69]. 

Although projects on such scales have not been pursued any further, smaller scale projects 

between Europe and MENA - and within MENA - are in order at different stages of 

development, gaining support from a range of regional initiatives and organizations (e.g. 

Friends of the Supergrid, Med-TSO and RES4MED). By receiving environmental approval from 

the Cypriot government late 2017 [97], the construction of the EuroAsia interconnector, 

interconnecting Greece (with Crete as intermediate landing point), Cyprus and Israel, can be 

commenced. Once completed, this 2GW, 1518 km long transmission link [98] will be the first 

(partial) subsea HVDC intercontinental interconnector and will reach maximum depths of 

around 3000 m. Moreover, the Cypriot, Greek and Egyptian governments agreed on a route 

for the 2 GW EuroAfrica HVDC interconnector [99]. The proposed route would cover 1707 km 

in total, with Cyprus and Crete as intermediate landing points. Italian Transmission System 

Operator (TSO) Terna is currently assessing plans for a 600 MW HVDC interconnector 

http://www.friendsofthesupergrid.eu/
http://www.med-tso.com/
https://www.res4med.org/
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between Tunisia and Sicily [74,100]. Furthermore, Morocco and Portugal agreed on 

conducting a feasibility study for a 1 GW interconnector [74] and a 2 GW HVDC interconnector 

between Libya and Greece (with again Crete as intermediate landing point) is under 

consideration [101]. Other plans for interconnections between Northern Africa and Europe 

are in earlier stages of development, such as prospects of the TuNur project combining the 

development of a 4.5 GW CSP project in the Tunisian part of the Sahara with three 

transmission pathways between Tunisia on the one hand and France, Italy and Malta on the 

other [102].  

Next to the cross-Mediterranean subsea interconnection initiatives, a variety of land-based 

interconnection projects are in development to complete the so-called Mediterranean Ring 

of interconnected countries around the Mediterranean Sea [70]. Due to their advantageous 

geographical placement, Turkey is able to interconnect and synchronize their power system 

with Europe (synchronization with the European continental grid occurred in 2014) through 

AC links with Bulgaria and Greece, as well as towards Asia and the Middle East [103]. Multiple 

existing- and planned AC- and Back-to-Back (B2B) HVDC interconnections exist towards 

Armenia, Georgia, Iran, Iraq and Syria. Within the MENA region, Egypt is interconnected to 

Jordan with a 400 kilovolt (kV) 450 MW AC subsea power cable crossing the red sea [53] and 

further plans have been made to reach a total transmission capacity of 2 GW between both 

countries [104]. Furthermore, a 3 GW HVDC interconnector linking Egypt and Saudi Arabia is 

expected to be operational by 2022, with an estimated total investment cost for the project 

of $1.56 billion [104]. This latter development could be the beginning of a pan-Arab power 

pool as envisioned by the Gulf Cooperation Council (GCC) [105]. 

One of the outcomes of the EU-Russia energy dialogue at the beginning of this decade was an 

“objective of moving towards a subcontinent wide interconnected electricity system and 

market” [106]. The possibility to utilize the vast renewable energy potential in Russia to partly 

supply the European market [69,107], introduced in the literature as the RUSTEC concept 

[108], would be an interesting option for further decarbonisation. Russia is currently 

interconnected to Finland with a 1 GW interconnector and with a number of smaller (below 

200 MW) interconnectors to the Baltics and Norway. Yet, besides two additional small 

interconnectors towards Finland and Norway, concrete plans for further integration are not 



32 
  

in sight. More than that, political unrest and conflicts in the region has led to a movement 

towards reduced dependency on energy from Russia [109,110].  

In recent years, State Grid Corporation of China (SGCC) has been very active in pushing the 

integration of regional and intercontinental power grids as part of China’s ‘one belt, one road’ 

initiative to export China’s industrial overcapacity and engineering expertise [111]. Liu 

Zhenya, (now former) chairman of SGCC, stated that wind- and thermal power in the west of 

China can be produced and delivered to Germany at half of the current cost of locally 

produced electricity [112]. Following this concept, the Joint Research Centre (JRC) of the EC 

studied potential routes for a future power interconnection between China and the EU to 

inform policy makers, potentially by utilizing a multi-terminal setup integrating a range of 

European and Asian countries [113]. Figure 2-1 shows a simplified representation of these 

routes, as well as an overview of other existing, commissioned, considered and conceptually 

studied (see Section 2.6) intercontinental interconnection projects. 

Figure 2-1 Overview map of existing, commissioned, considered and conceptually studied intercontinental 

transmission pathways. Routes are indicative, they do not reflect accurate locational representation, nor do 

they show relative transmission capacities per pathway. Map includes intercontinental projects as described 

in this section as well as conceptually studied projects as mentioned in Section 2.6. Continental supergrid 

projects (e.g. the Gobitec proposal) are not incorporated. 

On the western periphery of Europe, the development of the 1-1.2 GW, 1200 km long subsea 

HVDC Icelink interconnector, integrating the power systems of Iceland and Great Britain to 

utilize the high geothermal potential in Iceland, has been delayed. Although studies show the 
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potential economic viability of such an interconnector depending on the setup of the business 

case [114,115], the progress in development is believed to be delayed by the ‘Brexit’ and fears 

of increasing electricity prices in Iceland [116]. Crossing the Atlantic by interconnecting 

Iceland and Greenland – or interconnecting Greenland and Canada – is currently deemed to 

be unrealistic by the relevant authorities despite the significant renewable energy potential 

[117]. Even more conceptual was an initiative in the early 90’s to connect load centres in 

Russia and the United States (US) by bridging the Bering Strait with a 10,000 km long HVDC 

interconnector [118,119], yet this concept hasn’t seen the light of day since then. 

During the sixth summit of the Americas held by the Organization of American States (OAS, 

covering all 35 independent states in North- and South America) in 2012, the ‘connecting the 

Americas 2022’ initiative was endorsed. This includes the goal to achieve universal electricity 

access by 2022, among others by enhanced electrical interconnections throughout the 

Americas [120]. Currently, the six central American countries within the Central American 

Electrical Interconnection System (SIEPAC) are interconnected through a 300 MW backbone 

grid with plans for further expansion to 600 MW. The electricity markets of Belize and Mexico 

are expected to integrate with SIEPAC in the near future [121], as well as potentially Colombia 

after completion of the 400 MW HVDC interconnector towards Panama [74,122]. These ties 

link North- and South America, albeit with limited flow capacity. Additionally, the 

interconnectivity expansion between countries in both continents stimulates trade between 

the Americas even more. For example, the US signed bilateral principles with Mexico in 2017 

for further power system integration [123], as of early 2017 there are 11 pending applications 

for new Canada-US cross-border interconnectors [124] and additional cross-border 

interconnectors in South America are being commissioned [125–127]. 

The ‘Gobitec’ proposal was put forward in 2009, fuelled by the concept of the Desertec 

project, to interconnect the North East Asia power grid (NEAG) by means of China, Japan, 

Mongolia and North- and South Korea [128]. Other NEAG advocates include Russia as well 

[129]. Following the Fukushima nuclear accident in 2011, the Renewable Energy Institute was 

initiated in Japan by the SoftBank Group to support the transition to renewables, among 

others by interconnecting the power systems of Asian countries [130]. The visualized Asian 

supergrid builds further on the NEAG concept, in addition to integrating India and the 

Association of Southeast Asian Nations (ASEAN). The vision of the institute is being backed by 
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Korea Electric Power Company, SGCC and Russian power company PSJC Rossetti after signing 

a memorandum of understanding in 2016 [131]. According to the International Energy Agency 

(IEA), the developments towards an integrated ASEAN power system remain promising, yet 

challenging, due to a variety of natural and man-made obstacles [132]. Although these Asian 

super grid initiatives focus on grid integration on a continental level, it could enable and 

stimulate the flow of electricity between and throughout continents, for example towards 

Europe [112,113,133], or towards Australia by means of an ambitious prospect of integrating 

Australia with the Asian mainland through a subsea HVDC interconnector [134–136]. 

When comparing these projects, a number of trends and developments can be observed, 

namely; Due to the large capital investments, most projects require political support. Despite 

this, until recently, projects tend to fail due to costs, political unrest, lack of support or a 

combination of the above. Early concept projects tended to pursue large capacities of 5GW+ 

whereas more recent initiatives favour capacities in the range of 2GW reflecting the current 

standard of HVDC projects. The bulk of projects are land-based, but recently there has been 

a move to investigate subsea interconnections, exploiting advances made in this area. Overall, 

the idea of power system integration towards an (inter)continental scale is gaining significant 

traction. 

2.4.2 Supporting Initiatives on the Global Grid Concept 
The Global Energy Network institute (GENI) was founded in 1986 to investigate the original 

global grid concept of Buckminster Fuller [137]. GENI’s objective is to conduct research and 

inform the public and other relevant actors on the viability of interconnecting power systems 

between nations and continents. 

In response to the ‘one belt, one road’ initiative and China’s president Xi Jinping’s vision of a 

global grid, SGCC initiated the Global Energy Interconnection Development and Cooperation 

Organization (GEIDCO) in March 2016 [138]. Currently, over 200 universities and research 

institutes, energy enterprises and other entities are engaged in membership of GEIDCO [139]. 

Its purpose is to conduct research and promote the development of a global grid to meet the 

growing global demand for electricity in a sustainable fashion and to support the UN’s agenda 

for sustainable development [140,141]. In 2017, GEIDCO signed a memorandum of 

understanding with multiple international organizations, including the United Nations 
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Department of Economic and Social Affairs (UNDESA), to strengthen the cooperation for the 

purpose of sustainable development [142]. 

The Climate Parliament, an international cross-party network of legislators, initiated the 

Green Grid Initiative which among others supports the build of (inter)continental ‘electricity 

highways’ [143]. Compared to GENI and GEIDCO, this initiative utilizes a more top-down 

approach to create the political leadership- and will required to support the development 

towards a global green grid. To date, ministers of 19 countries expressed their intention to 

participate (e.g. of Brazil, India, Indonesia and Mexico) as well as partnerships with among 

others the IEA and the International Renewable Energy Agency (IRENA) to provide technical 

advice. Similarly, under the umbrella of the Clean Energy Ministerial, discussions on the 

policy- and regulatory framework required for a global grid were undertaken [144].  

While these support networks and organisations promote the idea of a global grid, there is 

still a lack of evidence on the concept to objectively inform policy development and decision-

making to justify construction of any project. 

2.5 Benefits, Opportunities, Risks and Challenges 
Defining possible benefits, opportunities, risks and challenges of- and for intercontinental 

interconnectors and a global grid is of vital importance to support necessary decision-making 

for a future low-carbon power system and an overall sustainable future. The chart in Figure 

2-2 gives an initial overview of these aspects as mentioned within the literature, which will be 

discussed in more detail within this Section.  
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Figure 2-2 Overview of mentioned benefits, opportunities, risks and challenges for the global grid concept 

within the literature. The outer ring corresponds to further description of the benefits and opportunities (A) 

and risks and challenges (B) within this section. 

2.5.1 Benefits and Opportunities 
The discrepancy between on the one hand main consumption areas and existing grid 

infrastructure, and on the other hand areas with high renewable energy potential 

[41,43,59,69,73–75,145] is often regarded as a core argument for the benefits of a global grid. 

Considering the projected required RES capacities around the globe in line with the 1.5-2 

degrees climate targets [6,7], utilizing the possibility to interconnect highly efficient-, unused- 

and sparsely populated regions for RES integration (A01), in parallel with optimizing the use 

of domestic RES resources, has gained significant interest. Czisch [146] indicates that in 

essence Europe has significant RES potential, yet the high population density could limit 
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expansion towards higher RES penetration levels. Similar observations have been made for 

load centers in North East Asia [128] and South East Asia [134–136,147]. Norrga and 

Hesamzadeh [145] argue that next to the siting of RES, the possibility to install vast capacities 

of nuclear power plants at unpopulated and safe locations can be an important driver for a 

global grid and decarbonisation of the power system, however the analysis doesn’t consider 

public acceptability as a significant challenge. Areas with significant RES potential and low 

population density, potentially able to supply intercontinental markets as identified in the 

literature, are on the outskirts of Russia for the European and Asian market [108], parts of 

Central and North East Asia (e.g. Kazakhstan, Mongolia and Western China) for Europe, North- 

and South East Asia [113,128,129,148–150], the Australian deserts for the South East Asian 

market [75,81,134,135,147,149–152], MENA for the European market [74,92,93,105

,146,153–156], Greenland for Europe and North America [29,157,158] and unpopulated 

regions in South America for the Central and North American markets [159]. While these 

studies focus on spatial availability, the consideration of geopolitical or public acceptance 

risks is often limited. For long-distance intercontinental interconnectors it is often argued to 

use a multi-terminal setup with connections to secondary lines. This allows transit regions to 

feed in RES or take out electricity as well, making optimal use of local resources 

[81,113,147,160]. However, such concepts would require detailed economic analysis. 

The inherent variability in generation of VRES as well as the variability in locational demand 

can be smoothed by utilizing time-zone diversity through longitudinal power system 

integration with intercontinental interconnectors (A02, e.g. [29,113,161–164]). Ardelean and 

Minnebo [113] highlight the potential of a China-Europe transmission pathway by indicating 

that periods of high consumption on either side of the pathway often occur simultaneously 

with off-peak hours on the other side due to a time difference of seven hours. Furthermore, 

the authors show that solar output in Central Asia coincides with peaks in consumption in 

Europe or in China depending on the time of day, allowing for constant power exchange at 

peak electricity prices and an overall larger market for power exchange (A09). A similar 

strategy is envisioned by Chatzivasileiadis and colleagues [29] for RES export from Greenland 

to the European and North American continents. Grossmann et al. indicate that by linking the 

main deserts in North- and South America the longest night (zero generation from solar-PV) 

can be reduced from 14 to 9 hours [159]. Conceptually, Kuwano [161] proposes to utilize the 
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diurnal cycle of solar-PV generated electricity around the globe by linking significant solar-PV 

capacities with a global grid. Besides the importance of time-zone diversity, a range of studies 

[93,146,147,149,159,162,163,165] also indicate the potential benefits of the smoothing 

effect of area enlargement in VRES generation to an intercontinental scale. This is the case 

for longitudinal power system integration, but also for latitudinal integration by capturing 

seasonal and regional differences in load and VRES generation (A03). While utilizing time-

zone diversity is a valid concept, it does necessitate longer interconnection distances for full 

exploitation. This increases the risk and complexity of such projects when compared to more 

local interconnections. Equally, the reviewed literature doesn’t always account for future 

impacts of smart grid initiatives which also aim to smooth out local demand and supply, and 

therefore may dampen the benefit of time-zone diversity. 

The ability to dispatch available low-cost generation capacity throughout larger regions by 

integrating continental markets can improve cost-efficiency in electricity generation (A05, e.g. 

[33,70,104,105,109,116,118]). Besides cost savings during dispatch, integrating continental 

markets allows for the sharing of costly operating reserves and an overall reduction in 

required generating capacity (A07, e.g. [29,69,74,81,162,167]). Furthermore, intercontinental 

interconnectors can support the rapid growth of electricity demand in developing regions by 

utilizing existing generating capacity elsewhere (A10, [69,74,129,167]). In context of 

interconnecting the European and North African power systems, a recent IEA report [74] 

argues that “interconnections are a viable option to ease the burden of North Africa’s 

increasing demand: compared to investment in additional generation and operational costs, 

grid infrastructure is a low-cost solution. The structural overcapacity in Europe can help meet 

the North Africa’s increasing need for energy.” While such a concept has theoretical merit, it 

would be required to comply with existing European climate and energy regulations such as 

the European Emissions Trading Scheme (ETS) and European Renewable Energy Policy, 

complicating the operability of such an idea. Grossmann and colleagues [159,168] indicate 

that when considering an interconnected Americas power system to be solely supplied by 

generation from solar-PV, the total capacity required is about equal to the capacity required 

for supplying the North American continent alone based on purely domestic resources. 

Interconnections make the utilization of seasonal and diurnal differences in solar-PV 

generation possible, reducing the overall required capacity, as well as significantly reduce the 
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demand for costly electricity storage (A06) compared to the original ‘Solar Grand Plan’ for the 

North American continent [169]. However, these and similar studies do not include detailed 

reliability and adequacy assessments to demonstrate that this type of grid could be operated 

with the same level of reliability as today. Until successfully completed, such ideas remain 

conceptual. 

The possibility to invest in regions with potential highly efficient RES resources promotes 

foreign investment in the RES industry in developing countries, which in turn can lead to 

further cooperation and commitment between regions (A14, e.g. [105,108,128,129,

146,148,170,171]). Seliger and Kim [128] argue that the Gobitec proposal could be a catalyst 

for policy cooperation in the political tense region of North East Asia. Grossmann and 

colleagues [159] highlight the significant role interconnections between the Americas could 

have on economic development in South America. Not only due to the expected revenue 

flows, but also in regard to an overall economic growth following the improved energy 

availability in the region. Other benefits and opportunities of intercontinental interconnectors 

and- or a global grid as mentioned within the literature are that it can improve diversity and 

security of supply (A04, e.g. [29,69,83,147,163,165]) and that it brings forth a lower price 

volatility in the interconnected regions resulting in an overall more stable price for consumers 

(A08, [29,69,93]). Boute and Willems [108] argue that the export of locally produced RES from 

biomass in Russia further into Europe might be a more cost-efficient and sustainable 

alternative to exporting the raw fuel itself (A11). A range of studies highlight the potential 

contribution intercontinental interconnectors and intercontinental RES import could have on 

policy targets, such as the earlier mentioned decarbonisation- and interconnection targets 

within Europe (A13, [65,74,108,113,153,164]). Additional socio-economic benefits are the 

possibility to improve a country’s image from fossil fuel exporter to RES supplier (A15, 

[108,134,135]), positive effects on green job growth [148,151,172] and an overall expected 

welfare improvement [129,164,172] (A16). Furthermore, significant environmental benefits 

are expected as a result of the higher RES integration and the decrease in electricity 

generation from fossil sources (A17, e.g. [69,73,92,129,165]). Bompard et al., [83] 

qualitatively benchmarks a global grid scenario to alternative decarbonization pathways and 

indicates that the concept could be particularly beneficial from an environmental viewpoint.  
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Lastly, some studies indicate that by directly interconnecting to areas with high RES potential, 

local grids with voltages of 110 kV and below can by bypassed (A12, [29,70]). Yet, to date, a 

core limit on RES integration lies within the weakness of local grids. Hence, although 

bypassing local grids might be an option in certain situations, for an optimally functioning 

intercontinental interconnector or possible (global) super grid it is essential that local 

Transmission and Distribution (T&D) networks are able to support and distribute these bulk 

flows. Both in terms of Net Transfer Capacity (NTC) as well as coordination and exchange of 

information between T&D networks- and operators [59,70,78,82,173,174]. 

2.5.2 Challenges and Risks 
Although the development of interconnections between countries and continents could 

enhance cooperation and economic development between regions as indicated earlier, it 

could also bring forth risks in case of supply dependency from non-domestic sources in often 

unstable regions (B03, e.g. [65,83,88,175–179]). An often made argument is that import of 

electricity from centralized distant regions has obvious similarities to the current dependency 

of large parts of the world on gas and oil imports from a set number of suppliers, including 

the risk of supply interruptions and its consequences [65,88,175,180,181]. Despite the 

similarities, there are also inherent differences, such as the fact that oil and gas can potentially 

be rerouted from different suppliers whereas electricity is dependent on fixed grids [175]. 

Next to that, gas and oil can be stored, allowing importers to store buffers, but more 

importantly, it allows suppliers to stop exporting without an immediate monetary loss on the 

long-term [88,175]. Electricity needs to be consumed directly after generation, creating a 

different balance of power between supplier and consumer. Furthermore, unless a 

transmission line is physically disconnected, Kirchhoff’s laws determine the flow of electricity 

[182], limiting the potential to alter supply directions. The vulnerability to supply 

interruptions in a Desertec scenario is assessed by Lilliestam and Ellenbeck [175]. They show 

that Europe in principle is not very susceptible to extortion following a potential export 

embargo from a single country. Only modest economic damage can be created, yet the 

exporting party might undermine its own market position in terms of direct income and long-

term reputation. Only if all North African countries combined would engage in an embargo 

Europe’s vulnerability would increase [175]. Similarly, certain politically unstable countries 

such as North Korea would significantly benefit from linkage into an Asian supergrid due to 
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their poor power status [178], making it unlikely to engage in activities affecting the exchange 

of electricity. Czisch and Giebel [180] furthermore indicate that the amount of partners 

involved in a RES supergrid is much higher compared to the current relative monopolies in 

fossil fuel supply (e.g. the Organization of the Petroleum Exporting Countries (OPEC)), 

securing a higher intrinsically stable and diverse system. However, many investors are risk 

adverse and previous literature shows that political support and backing would be required 

for such projects. Overall, it can be argued that the N-1 contingency criteria for countries 

utilizing intercontinental interconnectors is of vital importance to limit the associated risks 

[128,129,175]. This can either be through interconnectivity with other regions or by securing 

sufficient domestic supply potential. 

Utilizing potential resources in areas with high RES potential might be an attractive means to 

fuel decarbonisation, yet a stream of research highlights a competing development trend 

towards prioritization of decentral RES (B05). Certain studies advocate that it is deemed to be 

the cost-efficient solution [136,183–186] whereas others argue the societal preference for 

making use of indigenous resources [65,181]. Another societal concern is that by utilizing 

distant RES for import purposes, a ‘sell-out’ of local resources might occur which could 

otherwise be used for the domestic market (B06, [108,184]). Although this is a viable concern, 

it has also been indicated earlier that areas with some of the highest renewable energy 

potential are also areas with very low population density. That said, it is vital that expected 

trends in population growth, such as in Northern- [74,92] and Sub-Saharan Africa [187], are 

taken into account. Vice versa, by importing distant RES rather than making use of domestic 

resources, the economic- and employment opportunities that energy projects bring along are 

partly being lost to the exporting regions [108]. When it comes to providing flexibility for the 

variability of VRES, it is often argued that energy storage solutions in parallel with decentral 

VRES is a more economically viable solution (B09, [60,68,176]). However, because of the 

absence of detailed modelling of a global grid, as we’ll discuss in more detail in Section 2.6, 

such a statement cannot be verified. Despite that, storage could provide auxiliary services 

required for a functioning global grid [59] and although storage and interconnectors may 

often compete for similar roles [48], they can also reinforce each other by optimizing the 

utilization rate of interconnectors [59,147,151,188]. Again, the role of storage in a future 

global grid is poorly understood and requires research for greater insight. 
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A challenge for any transmission project, especially for long-distance and often sub-sea 

interconnectors, are the high investment costs- and risks associated with projects of this 

magnitude (B01, [17,32,36,58,80,103,153]). In the past, and arguably so for the near future, 

it’s been one of the core limiting factors on intercontinental interconnection projects 

[91,136]. Table 2-1 gives an overview of expected investment costs and transmission losses 

for intercontinental HVDC interconnectors as mentioned within the literature. Furthermore, 

costs of a range of installed- or planned subsea HVDC interconnectors have been included as 

an indication for the current state of the art. 

Table 2-1 Overview of normalized investment costs, conversion- and transmission losses for existing- and 

conceptual HVDC (intercontinental) transmission projects. 

Ref. Year 

study 

Status Pathway Specifics 

line 

Costs 

Land- 

based  

line (€ 

Billion 

/1000 

km) 

Costs 

Subsea 

line (€ 

Billion / 

1000 

km) 

Line losses 

/ 1000 km1 

(%) 

Costs 

Conver-

ter pair 

(€ 

Billion) 

Conver-

ter pair 

losses (%) 

[189] - Existing BritNed 1 GW, 

450 kV 

- - - - - 

[190] - Commissioned EuroAsia 2 GW, 400 

kV 

     

[191] - Existing NordBalt 0.7 GW, 

300 kV 

- 0.6753 - 0.1934 - 

[192] - Commissioned NordLink 1.4 GW, 

525 kV 

- 1.4883 - 0.396 - 

[53,193] - Existing NorNed 0.7 GW, 

450 kV 

-  5% incl. 

conversion 

 5% incl. 

line 

losses 

[192] - Commissioned NorthSea-

Link 

1.4 GW, 

500 kV 

- 1.2243 - 0.409 - 

[53] - Existing SAPEI 1 GW,  

500 kV 

- - - - - 

[146] 2008 Conceptual Europe-

MENA 

5 GW 0.35 

 

3.5 4 0.3 1.2 

[93] 2012 Conceptual Europe-

MENA 

3 GW5 1.986 

 

2.386 1.6 0.43 1.4 

[68] 2014 Conceptual Europe-

MENA 

3 GW5 1.657 1.657 - - - 

[92] 2007 Conceptual Europe-

MENA 

5 GW - - 3.33 - - 

[29] 2013 Conceptual Europe-

Greenland-

N. America 

3 GW, 800 

kV 

- 1.15-1.8  3 0.6 1.2 
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[164] 2018 Conceptual Europe-

Greenland-

N. America 

4 GW, 640 

kV 

- - 2.12 - 2 

[114] 2010 Conceptual Iceland-UK 1.2 GW - 1.24  4.3 0.28 1 

[113] 2017 Conceptual China-

Europe 

- 1.8-28 6-88 - 0.7-0.8 - 

[194] 2016 Conceptual North East 

Asia 

3 GW5 1.496 2.386 1.6 0.43 1.4 

[148] 2014 Conceptual North East 

Asia 

10 GW, 

1000 kV 

- - 1.63 - 2.1 

[147] 2012 Conceptual South East 

Asia-

Australia 

5 GW, 800 

kV 

0.774,7 0.774,7 3 - 2.7 

[151] 2017 Conceptual South East 

Asia-

Australia 

3 GW 0.644 2.584 - 0.86 - 

[149] 2012 Conceptual South East 

Asia-

Australia 

- - - 3 - - 

[159] 2014 Conceptual Americas - - - 2-3 - - 

[163] 2004 Conceptual Global 3 GW5 0.797 0.797 3 - - 

    Mean 1.196 1.646 2.757 0.465 1.625 

    Median 1.14 1.475 3 0.42 1.4 
1 At full rated power, lower losses at non-full load. 
2 Note that total project costs can be lower than combined line and converter costs. Line costs are normalized to 

billion €/1000 km. 
3 Line costs for subsea interconnectors include line costs for land-based connections to converter stations. 
4 Applied exchange rate of €1-US$1.16379. 

5 3 GW used for conversion. 
6 Costs converted back from NTC with indicated 20% reserve margin [93]. 
7 Averaged value for HVDC, no distinction between land-based and subsea interconnectors. 
8 Includes potential costs for high capacity HVDC interconnectors as currently commissioned in China (800-1100 

kV, 10-12 GW). 

 

The table indicates a significant range in normalized investments costs per 1000 km of 

transmission distance. Expected line costs for land-based HVDC interconnectors range 

between 0.35-2 billion €/1000 km and line costs for subsea HVDC interconnectors between 

0.675-8 billion €/1000 km. A multitude of factors influence the cost expectations, such as 

cable characteristics (e.g. setup, type, voltage and wattage), the geography of the route (e.g. 

flat, mountainous or subsea) [53,113,177] and recency of the study. Refer to Ardelean and 

Minnebo [53] for a detailed assessment of these factors for subsea HVDC interconnectors. 

The majority of normalized costs as indicated within the literature are above the investment 

costs of existing projects due to the generally higher voltage and wattage per line and 
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converter. Yet, taking this and technological learning curves into account, assessment of the 

existing literature indicates that there’s a development trend of decreasing project costs for 

(intercontinental) long-distance HVDC transmission. Another visible trend is the growing 

interest of intercontinental projects in China and other parts of Asia, reflecting the growing 

economy in Asia and its resulting need for power.  

The median, as included in the table to limit the influence of outliers, in mentioned 

transmission losses normalized/1000 km is 3%, which seems to be a common assumption in 

intercontinental interconnector studies. Losses for a converter pair are deemed to be around 

1.4-1.6%. The significant transmission losses associated with the utilization of long-distance 

transmission lines can be seen as a limiting factor to the overall feasibility of potential 

intercontinental interconnection projects (B02, [65,113,149]). 

Clearly, the high capital investments required for intercontinental interconnectors and the 

associated risks are an obstacle to be overcome. The BritNed and NorNed projects indicate 

that a merchant investment mechanism, where profit margins are determined based on the 

price differential between interconnected regions, can be successful for long-distance HVDC 

transmission projects and that it might be a realistic option for future intercontinental 

interconnectors [88]. Yet, a merchant investment approach encounters significant limitations, 

such as the lack of transparency in long-term regulated planning, making it difficult to assess 

the viability of investments [74]. Furthermore, profits run on short-term spot- or day ahead 

markets and not so much on long-term contracts, adding uncertainty for investors [29]. Next 

to that, a significant part of the benefits of power system integration on an intercontinental 

scale, such as the reduction in RES curtailment [93], the strengthening of regional grid stability 

[74] and significant cost-reductions in electricity generation are not part of the remuneration 

for private interconnector investors. This can be considered as a lack of incentives for market 

players to make high capital investments in developments which provide system-level 

advantages [93]. Hence, it is often argued that interconnectors can be seen as a public good 

and that a regulated investment strategy could be anticipated [29,65,74,81]. Robinson [65] 

suggests that “interconnectors should be built as part of a multi-country planning process and 

that the costs and benefits of the interconnectors should be socialised – in other words, 

shared – according to a set of principles agreed in advance”. Furthermore, Gellings [81] argues 

that a global tax on greenhouse gas emissions could be a financial incentive to shift to carbon-
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free energy and that once first segments of a global grid are in place, such a carbon tax would 

catalyse private funding for further power system integration and RES capacity expansion. 

While this argument work in theory, real world implementation of carbon taxes has been 

politically difficult. Whatever investment mechanism is used for intercontinental 

interconnectors and a global grid, the costs and benefits of any project need to be clearly 

defined. This aspect will be further assessed in Section 2.6.  

Regulatory issues and challenges in market operations (B04) in a global grid context, such as 

the difficulty of integrating different types of power markets, are potential obstacles which 

need to be tackled [29,65,75,83,88,164,179]. Al Asaad [105] indicates the potential for a pan-

Arab power pool, yet also highlights the differences in power market structures within the 

different countries of the GCC, from partly competitive to state-owned. In context of a 

possible transatlantic interconnector between Europe and North America, Purvins and 

colleagues [164] state that power exchange between both continents would be challenging 

due to often incomplete exchange of information in competitive bilateral trading. 

Furthermore, the to date lack of carbon pricing in power markets in large parts of North 

America relative to the European ETS would prevent a level playing field in the transatlantic 

context [195]. Allowing competition between non-harmonized countries and regions as in the 

examples above would affect the competitiveness of market participants and possibly create 

unfair situations. Defilla therefore argues for an existing or new supranational institution to 

be assigned to act as global regulating institution [179]. Similarly, Chatzivasileiadis and 

colleagues [29,88] anticipate the need for a global regulator to provide a forum for 

communication among interested parties, coordinate investments and ensure a global 

competitive market environment, but also expect the need for an independent global TSO 

with a similar role compared to current regional and national TSO’s. The authors envision two 

potential market models for a global grid, a hierarchical one where the backbone DC grid is 

separated from the underlying AC grid, or a more horizontal model where every regional 

market participates as an individual player [29]. 

Another challenge is that by integrating power systems an improved balance in marginal 

electricity prices between regions will occur, and although this leads to an overall cost 

reduction, it also means that in certain regions the cost of electricity generation- and 

potentially the electricity prices for consumers will go up (B08, [69,149,164]). Besides that, 
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concerns regarding energy sovereignty [136], influence of politics on protecting the domestic 

energy mix [65], resistance of market participants to new entries [65] and local resistance 

against interconnector development (NIMBY) [179] are all factors influencing occurrence of 

opposition against interconnector development or power system integration (B10). Defilla 

argues that local opposition is the most time-consuming and often limiting factor in 

interconnector development. Considering the larger range of parties involved in case of an 

intercontinental interconnector project, good governance and communication within all 

layers of involved actors is deemed to be essential [179]. 

The inexperience in long-distance interconnection projects, especially when considering 

subsea pathways, causes uncertainties in regard to the impact of the local environment, 

geography and terrain on the feasibility of the project (B07, [53,70,91,113,135,177]). Walter 

and Bosch indicate that the most optimal transmission pathway is through flat barren lands 

and that it becomes significantly more expensive when considering occupied terrains such as 

agricultural areas or woodlands, sloped corridors or subsea sections. The calculated cost 

optimal-route for a conceptual interconnection between the east of Morocco and Paris does 

therefore not run upwards through Spain, but through the Mediterranean and the Italian- 

and Swiss mainland, mostly due to the ability to bypass natural barriers such as mountains 

and rivers [177]. Ardelean and Minnebo [53] mention the importance of avoiding deep 

trenches and steep slopes while maintaining the shortest path possible when considering a 

subsea interconnection. Maximum depths expected to be feasible were set at 2000 metres 

about a decade ago [196] and although depths of above 1000 metres are only reached in the 

Mediterranean sea so far [53], the commissioned EuroAsia and EuroAfrica interconnectors 

will reach depths of near 3000 metres [98,99], expanding the technological boundaries. Refer 

to [53] for a more detailed review of environmental aspects influencing cable performance 

and factors affecting the physical implementation of subsea interconnection projects. 

On operational aspects, the risk of propagation of disturbances becomes more prominent 

with enhanced interconnectivity [197–199], especially on the scale of a global grid. Using B2B 

HVDC interconnectors to prevent propagation between interconnected AC grids can be a 

solution [199,200], albeit with significant costs due to the high investments required for HVDC 

interconnectors as indicated earlier in this section. A collaboration between eight institutions 

and universities in Europe and the US engaged in 2017 in a project called the ‘Global RT-Super 
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Lab’ [199,201]. During a demo event, an HVDC transatlantic interconnector was simulated 

through cloud-based communication, interconnecting the transmission systems of Europe 

and the US represented by the locations of the collaborating institutions. Different 

components of the power system, such as an actual wind farm in the US, were integrated 

during the simulations. Main goal of the demo was to assess the robustness of the 

interconnection in terms of acting as a ‘firewall’ against the real-time propagation of 

disturbances between the interconnected AC grids on both side of the DC link. The results 

indicated that the dispersed assets can simultaneously solve a grid stability problem by 

making use of the interconnection [202]. 

Finally, according to the European Network of Transmission System Operators for Electricity  

(ENTSO-E), occurrence of inter-area oscillations [203] are a “major concern when 

enlargements of the [Continental European] system are studied or carried out” [204]. It is 

clear that this challenge becomes more difficult to tackle when considering power system 

integration towards a global scale. Within Europe, Coreso has been appointed as a centralised 

regional security coordinator allowing the exchange of information between TSO’s among 

others to help prevent significant disturbances to occur. A similar role could be assigned to a 

global institution such as the global regulator as introduced by Chatzivasileiadis and 

colleagues [29,88], or a separate independent institution. 

2.6 Techno-Economic Assessment 
In the previous section we indicated the significant investments required for intercontinental 

interconnectors and a global grid. Yet, to be able to determine if these investments would be 

worth the capital and the associated risks, it’s of vital importance that the net benefits are 

assessed and quantified while considering the full market impact [69]. Within this section we 

review and compare studies attempting to assess the techno-economic aspects of 

intercontinental interconnectors and the global grid. 

2.6.1 Global Grid 
The first ever attempt to simulate the functionality of a global grid was done by Dekker and 

colleagues [205] in 1995. However, the complexity of the optimization problem and the 

available modelling software limited the practical implementation of the envisioned nine 

region global model at that time. Bompard et al., [83] benchmarks the global grid concept 

with alternative decarbonization pathways, yet does not include a quantified assessment of 
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system-wide techno-economic effects. Albeit the limitations of this aspect are acknowledged 

in the study, the claim from the authors that the global grid option seems sustainable from 

an economic point of view remain unverifiable based on today’s knowledge and literature. 

Biberacher [163] performed a linear least-cost optimization solely based on optimal utilization 

of available solar-PV and wind energy potential for a global grid based on 11 nodes. The 

author indicates that in a scenario with sufficient availability of low-cost storage, global 

interconnectors are mostly used to compensate for recurring geographical discrepancies in 

demand and supply. Storage is deemed to be the cost-efficient solution in case of peak 

oversupply by storing the generated electricity locally. If storage is not available, global 

interconnectors are utilized to balance the short-term variability in generation as well, yet as 

Biberacher mentions; “the grid becomes massively oversized”. Following the flow dynamics 

of the simulated global grid, a core flow of globally generated electricity towards load centers 

in South East Asia and China can be identified, with Australia as main exporter. 

In contrast, Aboumahboub and colleagues [162] used a optimization methodology for a global 

grid model consisting of 51 nodes of similar geographical size, disregarding current borders 

of power systems and associated generation portfolios. The results indicate that the overall 

required conventional backup capacity can be reduced by a factor eight when comparing the 

optimization of an interconnected- versus a non-interconnected scenario of the 51 regions. 

This shows the potential of utilizing seasonal and diurnal (time-zone differences) variability 

for smoothing of the global VRES generation. Similar to [163], the study showcases the 

importance of the duality between storage and global interconnectors. It furthermore 

indicates the cost-efficient RES import potential for China, India and South East Asia in the 

global grid context. These findings are in line with the earlier described trend of growing 

interest in (intercontinental) interconnection projects in Asia due to its growing need for 

power. In a second study by the same authors [165], the potential of global carbon pricing 

was assessed in context of CO2 abatement targets. In a scenario where capacity expansion of 

interconnectors between the 51 regions is permitted, a shift can be seen in the cost-optimal 

solution from mostly biomass- and gas-based generation to increased levels of wind power 

penetration to reach the same abatement targets. 

Ummel [73] applies a realistic limit on solar power capacity expansion while optimizing the 

deployment around the globe by restricting the global supply of solar powered electricity 
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generation at 2000 TWh by 2030 (approximately 7% of 2030 global demand). The author 

indicates that “there is generally low correlation of optimal generating sites and the location 

of electricity consumption”, which from an intercontinental perspective results in core power 

flows from MENA to Europe, the Persian Gulf to India and from Australia to Indonesia. The 

modelling approach utilized in this study is restricted to the least-cost optimization of solar 

powered generation capacity. The supply of the remaining 93% of 2030 electricity demand is 

not incorporated in the simulations. In a similar study Bogdanov and Breyer [60] performed a 

linear optimization for a 2030 100% RES global energy system consisting of 23 regions across 

the globe. The authors highlight that the optimal solution is highly decentral, only 4% of 

energy demand is supplied by import of energy. Furthermore, besides a pathway 

interconnecting the Americas and a pathway interconnecting Southern Europe with MENA, 

the authors conclude that the results are a clear indication that a global grid does not 

generate benefits. Yet, the view of the authors that a 100% renewable energy system (heat, 

power and transport) can be reached by 2030 seems optimistic. 

A comparative assessment of these studies show some potential benefits of power system 

integration towards a global grid, however they contain a number of weaknesses which limits 

their value, namely; 1) the relatively low nodal representation [162,163,165,183,205], 2) low 

technological representation [73,163], 3) limited locational data representation (e.g. lack of 

input data based on actual locational load- or VRES profiles outside Europe) [73,162,163,183], 

4) a focus on 100% RES modelling [162,163,183] and 5) the overall limited quantification of 

costs and benefits [60,73,83,205]. In a recent paper [195], we introduced a project aimed to 

fill this gap by developing a global interconnected power system model to assess the global 

grid concept with high technological and temporal resolution for a variety of future 

decarbonisation pathways. Furthermore, developments in open power system data 

[23,206,207] and computational power [21] can support improved assessments of the global 

grid concept. 

2.6.2 Intercontinental interconnectors 
Compared to studies assessing the global scale, studies focussing on the potential of separate 

intercontinental interconnectors or transmission pathways are more numerous and often 

supported by more detailed quantification. Brancucci and colleagues [153] indicate the 

potential for cost-efficient RES export from North Africa to the European market. Although 
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these findings are relevant within their respective scenario, being an EU power system largely 

based on coal and gas, the trend in continental Europe has evolved towards a more 

established RES portfolio. Potentially, a reversed flow could assist in transitioning the current 

fossil-fuel dominated power systems in North Africa as well as support the growing demand 

for electricity [74]. Yet, as mentioned earlier, political instability in North Africa in the past has 

limited the development of potential economically feasible interconnection projects due to 

uncertainty regarding the return on investments. Despite the uncertainty on transmission 

interconnection developments between Europe and MENA, studies assessing deep 

decarbonization of the 2050 Pan-European power system do highlight the cost-efficiency of 

utilizing the RES potential across the Mediterranean [27,93,146,208,209]. The E-Highway 

2050 project, funded by the EC, showcases that in the higher RES scenarios approximately 10-

40 GW of transmission capacity should be integrated between North Africa and Italy, 

supporting the supply from up to 116 GW of installed solar capacity for demand centres in 

the European power market [208]. Overall, in a 2050 cost-optimal low-carbon combined 

energy system of Europe and MENA, Hess [210] identifies an empirical probability of 

technological integration of CSP export from MENA to EU through HVDC interconnectors of 

up to 66%. 

Chatzivasileiadis and colleagues [29] assess the economics of a 3 GW transatlantic 

interconnector between Europe and North America with intermediate landing points in 

Greenland and Iceland, while also incorporating a 3 GW offshore wind farm near Greenland 

with a Capacity Factor (CF) of 40%. The authors assume that electricity from the wind farm 

can always be sold at peak prices by utilizing time-zone diversity. The remaining capacity of 

the 3 GW interconnector can be used for power exchange between both continents. By 

assuming similar revenues compared to the NorNed project, the study indicates that the 

income for each delivered kilowatt hour (kWh) would exceed 2-4 times the initial 

investments. In a follow-up study, the authors suggest that the amortization period for a 

direct link between the PJM interconnection (US) and Portugal is expected to be between 18-

35 years [157]. Purvins and colleagues [164] simulate an interconnected European–North 

American power system in a 2030 power dispatch model (North America represented by a 

singular node). The results indicate that the majority of power exchange, being 27.4 TWh with 

a total CF of 78%, through the 4 GW interconnector is directed towards North America. The 
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authors conclude that the overall socio-economic benefits for society, around 177 million 

€/year, are sufficient to cover the investment costs and hence that the project is welfare 

improving. Brinkerink et al. [195] confirms the potential for power exchange between Europe 

and North America in an integrated 2050 power system model. Similarly to [164], the study 

identifies a general direction of flow towards North America when considering standardized 

fuel and carbon pricing, mostly due to the higher relative RES penetration in Europe. Yet, the 

study also indicates the sensitivity of the combined merit order to integration of localized fuel 

and carbon pricing. This highlights the challenge of integrating different markets, as put 

forward in Section 2.5. 

Grossmann et al. [159] argues that considering expected solar electricity costs by 2030, and 

calculated costs of HVDC transmission for respectively interconnections between San Diego 

in the US and the Atacama- and Sechura deserts in South America, solar electricity can be 

supplied for between 0.057-0.061 $c/kWh. This takes into account that 50% of installed 

capacity is based in South America and 50% in the US, making optimal use of time-zone- and 

seasonal diversity in supply and demand. In an optimized 15 region 100% RES based 2030 

energy system for Central- and South America, Barbosa and colleagues [18] indicate that the 

overall cost can be reduced with 8.7% if transmission capacity expansion is part of the 

optimization. Yet, the overall flow of electricity between both continents is limited at 1 TWh. 

Continental generation in combination with significant storage capacities is deemed to be the 

cost-efficient solution.  

In a similar study for the North East Asian super grid context [194], the same authoring team 

showcases the significance of grid integration to make optimal use of available RES resources. 

Highly efficient wind power displaces decentralized solar-PV capacity. Mano et al. [148] 

indicate that a 100 GW RES project in the Gobi desert, including transmission pathways to 

China, Japan, North- and South Korea, can be cost-efficient when a minimal CF of 30% can be 

reached, which is feasible [211]. Zhenya and colleagues [129] argue in favour of a similar 

concept by highlighting that the average electricity price in Eastern China in 2016 was around 

$0.12/kWh, whereas the feed in tariff in Eastern Russia for RES is less than $0.05/kWh. In a 

cost-optimized 100% RES power system for Europe and China, Wu and Zhang [133] indicate 

that a transmission pathway between both regions could reduce annual investments by more 

than 30%. 
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The potential feasibility of Australia-(South East) Asia interconnectors are underlined by a 

number of studies [147,149,151,152]. At today’s prices and cost estimates, delivering solar 

electricity from Pilbara in Australia to Java can be delivered at an expected LCOE of $AUS 0.18-

0.25/kWh [151]. Compared to the current feed-in tariff for solar electricity in Java at $AUS 

0.193/kWh, the authors of the study argue that if present trends in cost reduction continue, 

the business case for this interconnector can be commercially viable within five to ten years. 

Blakers et al., [147] argues the importance of electricity storage to capture the midday solar-

PV peak supply in Australia; the required capacity for an interconnector towards South East 

Asia can be reduced with a factor four if peak generation- and flow can be smoothed out 

throughout the day. Contrary to the above studies, Gulagi et al. [186] concludes that the costs 

associated to the transmission of generated low-cost solar and wind electricity from Australia 

is too high compared to the option of regional generation and storage in South East Asia. 

Cova and colleagues [91] argued at the beginning of this century that financial feasibility of 

trans-Mediterranean interconnectors highly depends on factors such as investment costs and 

sales prices of electricity. Based on the analysis above, it is clear that almost two decades later 

the same conclusion is still valid for any intercontinental interconnection project. Although 

the benefits of intercontinental power system integration are obvious, the assessed studies 

show that actual feasibility strongly depends on among others the assumed required capex 

investments, assumed cost-reductions for technologies in future scenarios due to the 

technological learning curve and the contextual scenarios in which projects are assessed. 

More detailed power system modelling studies with high temporal, technical and spatial 

resolution, including sensitivity analyses, are a must. 

2.7 Discussion 
This paper provides a comprehensive review of the current literature related to the concept 

of a global grid. It reviews the benefits and challenges associated with a global grid- and with 

intercontinental interconnectors. It furthermore assesses existing initiatives supporting the 

concept, as well as an assessment of the state of the art of intercontinental interconnection 

projects. 

The potential to utilize the vast quantities of efficient RES resources around the globe to 

decarbonize the global power system is significant. Among others, the possibility to smoothen 

demand and supply through area enlargement and time-zone diversity, as well as the 
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discrepancy between consumption centres, existing grid infrastructure, and areas with high 

RES potential, could be valid reasons for power system integration towards a global grid and 

for the intercontinental exchange of electricity. Whether or not such a transformation to 

decarbonize the power system is worth the significant capital investments required is 

uncertain. A comparative assessment of literature and projects reveals that although the 

possible costs, benefits, challenges and opportunities of a global grid and intercontinental 

interconnectors are clearly qualified within the literature, actual quantification of costs and 

benefits remains in its infancy. Furthermore, to date performed techno-economic modelling 

studies attempting to assess a global grid are often limited in their regional and technological 

representation and are mostly focused on 100% RES assessments. The limited quantification- 

and scope of these studies prohibits benchmarking of the concept to alternative pathways for 

decarbonisation of the global power system. 

Key development trends related to the global grid concept include a decrease in costs for 

long-distance transmission technologies, in particular land-based and subsea HVDC, partly 

driven by China and other Asian countries as a result of their growing economies and 

consequential power demand. Furthermore, a transition towards projects pursuing the 

development of intercontinental interconnectors with overall lower transmission capacities 

as a result of failed overly ambitious projects in the past (e.g. Desertec) can be witnessed. 

Overall, initiatives supporting the global grid concept have been gaining traction in the last 

years [140,143,144]. 

Despite these initiatives, as Robinson [65] argues; “The case for the Global Grid rests on a 

fundamental geopolitical principle: that physical integration of world electricity grids will 

lower costs and make the world a safer place“. As long as the detailed costs and benefits of 

global grids remain largely unquantified, it is inherently impossible to objectively inform 

policy development and decision-making, this being an essential factor for any large-scale 

transition to succeed. For future work [195], we aim to contribute to the filling of this gap in 

the literature by developing a global interconnected power system model with high 

technological and temporal resolution to assess the global grid concept for a variety of 

decarbonisation pathways and an overall sustainable future. 
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Chapter 3 Developing a Global Interconnected Power System Model 

3.1 Abstract 
Decarbonizing the power sector is a necessary step towards a low-carbon future. 

Interconnecting power systems on different continents could be a method to contribute to 

such a future, by utilizing highly efficient renewable resources around the globe, while 

simultaneously providing additional benefits of power system integration. In this paper, we 

describe the process of constructing and simulating a global interconnected power system 

model with high technological and temporal resolution. Being the first of its kind on the global 

scale, this paper is designed to showcase the proof of concept as an intermediate step to a 

high-resolution global model, by integrating an existing European power system model with 

the North American continent. The work to date has been focused on testing the 

methodology and building up necessary knowledge to realistically simulate the functionality 

of a possible future global grid. Some initial results are analysed to support the viability of the 

model and the concept in general. Furthermore, key factors influencing the development and 

optimal performance of the global interconnected power system model are identified.5 

 

  

 
5 Published as: Brinkerink M, Deane P, Collins S, et al (2018). Developing a global interconnected power system 
model. Global Energy Interconnection 1: 330–343. doi: 10.14171/j.2096-5117.gei.2018.03.004 



55 
  

3.2 Introduction 
Following the 2015 Paris Climate Change Agreement, ambitious climate mitigation targets 

have been set in place to pursue a goal of containing global average temperature increase to 

well below 2 degrees above pre-industrial levels, with a further aim to limit the increase to 

1.5 degrees. Considering an increase in global future energy demand, as well as expected 

increasing shares of electricity in final energy consumption from below 20% today to between 

23%-27% by 2040 [40], the power sector requires a drastic transition to a low-carbon future 

in response to said mitigation targets.  

The theoretical potential of RES to decarbonize power systems is a well-documented aspect 

[41–43], yet the fluctuating characteristic in the generation of electricity from VRES such as 

solar-PV systems and wind energy influences the practical implementation and reliability of 

power systems with increasing VRES penetration [44–47,56,57]. A common approach to 

handle the variability in generation is by interconnecting nearby power systems to cope with 

peaks and lows in non-dispatchable generation output. Other advantages of transmission 

interconnection relate to the provision of system security [65,69], possibility of cross-border 

trading and the integration of wholesale power markets [70], sharing of operating reserves 

[69,74] and accessibility to an overall more diverse, flexible and cost-efficient generation 

portfolio [69,105]. Technological progress in HVDC transmission has been significant in recent 

years [53,76–80]. Currently, 800 kV land-based HVDC interconnectors with rated capacities 

of up to 8 GW exist in China, with even higher ratings of 1100 kV and 12 GW to be reached in 

the near future [113]. Progress in subsea HVDC transmission projects occurs as well, albeit in 

smaller steps, for example with the commissioning of the EuroAsia interconnector, 

interconnecting Greece, Cyprus and Israel. Once completed, this 2GW, 1518 km long 

transmission link, will be the first (partial) subsea HVDC intercontinental interconnector [190]. 

Ardelean and Minnebo [53] conclude that subsea HVDC power cables can now be considered 

a mature technology able to pay back the generally high investment costs. 

A to date limitedly used application of transmission interconnection is the possibility to 

integrate the vast and highly efficient RES potential in distant and often unpopulated areas 

[29,146,147]. On a global scale, it’s clear that there’s an overall discrepancy between areas of 

high electricity consumption and areas with high RES potential [41,43,69,75,212]. The overall 

benefits of power system integration through transmission interconnection and the ability to 
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utilize distant high RES resources are two core aspects underlying the concept of a globally 

interconnected power system.6 

In this article we describe the process of constructing and simulating a globally interconnected 

power system model as a proof of concept. An existing European power system model is 

interconnected to the North American continent as an intermediate step to the global model, 

to test the methodology and for the purpose of knowledge building. Section 3.3 gives a short 

review on similar analyses done to date as an indicator of the necessity of this research. In 

Section 3.4 we elaborate on the applied methodology for building the model. Section 3.5 

includes an overview of lessons learned during early stages of the model building and 

highlights implications from modelling results. In Section 3.6 we discuss future work and the 

possibilities for engaging with GEIDCO and its members. 

3.3 Literature Review 
To date, a number of studies have made efforts to simulate a global grid in a power system 

model. Although these studies show some potential benefits of power system integration 

towards a global grid, the relatively low nodal representation [162,163,165,205], low 

technological representation [73,163], limited locational data representation (e.g. lack of 

input data based on actual locational load- or VRES profiles outside Europe) [73,162,163] and 

the main focus on 100% RES modelling [162,163] impose a significant research gap 

surrounding the global grid concept.  

In 1995, Dekker and colleagues [205] attempted to simulate a nine region interconnected 

global grid, yet the complexity of the optimization problem and the available modelling 

software limited the practical implementation at that time. No further research based on this 

model has been made public since. Biberacher [163] applied a linear least-cost optimization 

for the global grid with 11 nodes solely based on optimal utilization of available solar-PV and 

wind energy potential. They showed that in a scenario with large availability of low-cost 

storage, global interconnectors are primarily used to compensate for consistent geographical 

discrepancies in demand and supply. The high availability of storage made it more cost 

effective to store electricity locally in case of peak oversupply. In a scenario without storage, 

global interconnectors were used to handle short term variability in generation as well, but 

 
6 Henceforth mentioned as global grid. 
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as Biberacher mentions “the grid becomes massively oversized”. He furthermore indicates 

the compatibility of wind energy with a global grid due to the lower seasonal and diurnal 

variability compared to solar-PV, and a core flow of globally generated electricity (with 

Australia as main exporter) towards load centers in South East Asia and China.  

Aboumahboub and colleagues [162] applied a similar optimization methodology for a global 

grid model based on 51 nodes of equal geographical size, disregarding current borders of 

power systems and its associated generation portfolios. The results showed that when 

comparing the optimization of an interconnected- versus a non-interconnected scenario of 

the 51 regions, the overall required conventional backup capacity can be reduced by a factor 

eight. This highlights the potential of smoothing global generation of VRES by utilizing 

seasonal and diurnal (time-zone differences) variability. Similar to [163], the authors highlight 

the importance of the duality between global interconnectors and regional storage, and also 

indicate the potential for South East Asia, China and India to become main importers in a 

global grid context. In a follow-up study by the same authoring team [165], the importance of 

a global CO2 price was reviewed in context of CO2 abatement targets. When allowing the 

possibility of investment in interconnections between the 51 regions, a shift can be seen in 

the cost-optimal solution from high capacities of biomass- and gas-based generation capacity 

to increasing levels of wind energy penetration to reach the same abatement targets. 

By restricting the global supply of solar powered electricity generation at 2000 TWh by 2030 

(approximately 7% of 2030 global demand), Ummel [73] attempts to apply a realistic limit on 

capacity expansion while optimizing the deployment of least-cost solar capacity around the 

globe. The author indicates “that there is generally low correlation of optimal generating sites 

and the location of electricity consumption”, which from an intercontinental perspective 

results in significant flows through interconnections from MENA to Europe, the Persian Gulf 

to India and from Australia to Indonesia. The modelling approach applied in this study is 

limited to the least-cost optimization of solar powered generation capacity, other parts of the 

power system, to supply the remaining 93% of 2030 demand, are not incorporated in the 

simulations. 
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3.4 Methodology 

3.4.1 PLEXOS® Integrated Energy Model 

To realistically simulate the operation of a potential future global grid, a UCED methodology 

will be applied by means of the power system modelling tool PLEXOS Integrated Energy Model 

[213]. The PLEXOS software is a market leader in large scale power and energy system 

optimisation and is freely available for academic research. XPRESS-MP is used as the solver. 

UCED within power systems refer to the optimal utilization of available power generation 

capacity to match system demand within the simulation period, while behaving in accordance 

with the technical constraints and limitations within said power system. The model optimises 

the dispatch of thermal and renewable generation and Pumped-Storage Hydro (PSH). It does 

so subject to operational constraints at hourly resolution while holding the installed capacity 

constant. The model seeks to minimise the overall generation cost to meet demand, subject 

to the mix of installed generation fleets and their technical characteristics such as ramp rates, 

start costs, minimum up times etc. This includes operational costs consisting of fuel and 

carbon costs, start-up costs consisting of a fuel offtake at start-up of a unit and a fixed unit 

start-up cost. In these day-ahead market simulations, a perfect market is assumed across the 

globe without consideration of market power or competitive bidding practices. 

3.4.2 European Electricity Dispatch Model 

The starting point of developing the global grid power system model is an existing European 

electricity dispatch model with hourly temporal resolution (EU-287
 + Norway and Switzerland) 

as constructed for previous work on the implications of the potential future European power 

system [47]. The European model (EU model) has been developed using a soft-linking 

approach to provide additional insights on the European Commission’s EU 2016 Reference 

Scenario (EU-REF) [214]. The EU model consists of a single node per country. Furthermore, 

generator categories as constructed in PLEXOS for the EU model also follow EU-REF. A 

disaggregation approach has been used to convert aggregated overall capacities per power 

plant and country as given in EU-REF into generator portfolios with standardized 

characteristics per generator unit. An overview of some of these characteristics can be found 

in Table 3-1. Localised hourly profiles for load and VRES are incorporated based on historical 

hourly data at country level. A carbon price of 88€/Tonne CO2 is incorporated following EU-

 
7 Including the United Kingdom as representing the EU at time of writing. 
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REF. For more details on the methodology and data assumptions behind the EU model we 

refer to [47]. 

Table 3-1 Sample of standardized  generator characteristics as applied for the modelling in this chapter. 
Fuel Type Capacity 

(MW) 

Start Cost 

(€) 

Min Stable 

Factor (%) 

Biomass and Waste Fired 300 10000 30 

Derived Gasses 150 12000 40 

Geothermal Heat 70 3000 40 

Hydro Lakes 150 0 0 

Hydro Run of River (ROR) 200 0 0 

Hydrogen 300 5000 40 

Natural Gas CCGT 450 80000 40 

Natural Gas OCGT 100 10000 20 

Nuclear Energy 1200 120000 60 

Oil Fired 400 75000 40 

Coal Fired1 300 80000 30 
     1 Also includes lignite-based capacity.  

3.4.3 Connecting the Continents 

As a proof of concept, the existing EU model has been expanded and interconnected to a 

combined European - North American (NAM, consisting of Canada and the United States) 

power system model for the 2050 reference scenario. The purpose of this intermediate step 

towards a globally interconnected power system model is to validate the functionality of the 

applied methodology and to build up relevant knowledge and experience. Thus, potential 

limitations can be identified in an early stage and can be regarded as lessons for the larger 

project resulting in an overall more efficient process. North America was chosen due to the 

availability of generally open access power system data, especially compared to other regions 

of the world. 

The EU model consists of 30 nodal regions (one per country) in total. The NAM model has 

been constructed based on a relatively similar sized nodal representation with 20 nodes in 

the United States (US) following the identified regions within the National Energy Modelling 

System (NEMS, the three New York NEMS regions are combined into a single node) as used 

for the annual energy outlook (AEO) by the U.S. Energy Information Administration (EIA) 

[215,216], and eight nodes in Canada composing of the grid-connected provinces of Alberta, 

British Columbia, Manitoba, Newfoundland and Labrador, Ontario, Quebec, Saskatchewan 

and a combined node of the remaining Atlantic regions. Figure 3-1 shows an overview of the 
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nodes in the combined model, together with the relative demand per node for the 2050 

reference case.  

 
Figure 3-1 Nodal representation of the combined 2050 EU-NAM power system model. Relative demand per 

node is showcased by a colour scheme ranging from dark blue (EU-LT 11 TWh) to dark red (EU-DE 663 TWh). 

The map is cropped horizontally for visibility reasoning, the interconnector between EU-FR and US-SRVC 

stretches approximately 6000 km. Red sections in US-MROE are part of balancing authorities in US-RFCW. 

The 2050 generator portfolio for the US, nodal fuel pricing and total demand are based on 

the reference scenario of the 2017 AEO of the EIA [216,217]. Compared to Europe, fuel prices 

in the AEO for coal and gas are significantly lower. An overview of fuel and carbon pricing for 

all regions can be seen in Table 3-2. Load profiles for different US nodes are developed by 

combining and scaling historical (mostly 2015) load profiles of the relevant balancing 

authorities (BA) within each node, as retrieved from the Federal Energy Regulatory 

Commission (FERC) [218]. BA’s per node have been identified based on geographical 

visualizations from the EIA and FERC [219,220], and individual market reports of the BA’s. For 

this study it has been assumed that peak loads per node scale linearly with the overall increase 

in load between 2015 and 2050. Due to a lack of available transmission capacity data for the 

US, NTCs between nodes have been determined by assuming that the maximum hourly flow 

between BAs during 2015 and 2016, as retrieved through EIA’s data plugin [221], can be seen 

as representative. 
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Table 3-2 Overview of fuel- and carbon pricing for the 2050 reference model as used within this chapter. 

Applied exchange rate of €1 – US$1.16 and €1 – CA$1.525. 
Region/Node Coal price (€/GJ) Gas price (€/GJ) Oil price (€/GJ) CO2 price (€/Tonne) 

Canada 2.49 3.71 11.77 18 

Europe 4.1 11.08 18.5 88 

US-CAMX1 2.24 5.38 22.93 0 

US-ERCT1 2.19 5.34 20.90 0 

US-RFCW1 2.15 5.74 22.30 0 

US-SRSE1 2.49 5.35 21.99 0 

US-SRVC1 2.75 5.70 18.47 0 
1 The AEO incorporates region specific fuel prices for the different US regions depending on accessibility to fuels 

and regional policies. Pricing for other US nodes fall within the range of the above sample. 

The reference scenario for the Canadian nodes is based on the projected energy future by the 

National Energy Board of Canada (NEB) [222]. The projected future runs until 2040, hence for 

the purpose of this study, the trends for factors such as generator portfolios, overall demand 

per node and fuel prices have been extrapolated to 2050. Contrary to the US in the AEO, 

carbon pricing is introduced in the projected energy future scaling to CA$50/Tonne CO2  by 

2022 (€32.8/Tonne CO2, €1 - CA$1.525) and remaining steady afterwards, equalling an 

inflation adjusted carbon price of €18/Tonne CO2 by 2050. 

Historical hourly load profiles for the different nodes are retrieved from the relevant system 

operators through online data portals [44–48] and personal communication (L. St- Laurent, 

Hydro Quebec, 12-02-2018 – B. Owen, Manitoba Hydro, 01-12-2017 – R. Mall, SaskPower, 21-

12-2017), and scaled to expected 2050 values. Gas and oil fuel prices are based on NEB’s 

projected energy future, yet coal prices are not included in the study. Hence to retain 

uniformity, an averaged coal fuel price based on the AEO is incorporated for the Canadian 

nodes. Interregional transmission capacities and cross-border transmission capacities 

towards the US are retrieved from the market reports of the Canadian system operators. For 

the purpose of testing the methodology in the 2050 reference scenario, a uniform increase of 

25% of NTC has been applied for all existing transmission pathways between nodes in North 

America compared to the reference 2015 values. 

Localised hourly wind and solar profiles for the North American nodes are retrieved from the 

Renewables Ninja database [25,26] (https://www.renewables.ninja). A single locational 

sample pattern per node for the 2015 meteorological year is taken to capture the diversity in 

profiles. A more detailed approach will be applied in a later stage to incorporate geographical 

differences within nodal regions. All hourly profiles, both for VRES as well as load, have been 

https://www.renewables.ninja/
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centred around Coordinated Universal Time (UTC). This means that the first hourly timestep 

is set at UTC 12 AM and all profiles shifted accordingly depending on the longitudinal time-

zone differences.  

For this proof of concept study, the European and North American systems are 

interconnected by a 5 GW intercontinental interconnection linking the EU-FR and US-SRVC 

nodes, as shown in Figure 3-1. These nodes are chosen due to their geographical location, 

relatively large size (demand and installed capacity) and its significant interconnectivities to 

other nodes in the continents. These factors influence the possibility for trade. Incremental 

losses of 15% for transmission and conversion are applied on the interconnection, assuming 

a near 6000 km transmission distance, as well as wheeling charges of €4/MWh. 

3.5 Preliminary Results and Lessons Learned 
This section showcases some early stage results of the possible functionality of a 

transcontinental interconnector between Europe and North America. It furthermore 

highlights the experiences to date regarding the development of a global interconnected 

power system model. By no means are these early stage results definitive, they are 

incorporated to support the proof of concept. 

3.5.1 Europe – North America Interconnector Utilization 
Due to the longitudinal direction of the interconnector, multiple time-zones are covered when 

bridging the continents. This affects the match in absolute time of occurrence of factors such 

as peaks in load and variable generations (especially solar-PV). An example of this is visualized 

in Figure 3-2, showcasing the load profiles of Germany (EU-DE) and US-RFCW as the nodes 

with the highest demand in 2050 in both continents (EU-DE 663 TWh, US-RFCW 608 TWh). 

The six-hour time-zone difference between both nodes causes peaks in demand to occur on 

different timesteps during the diurnal cycles. The graph shows that in some cases, peaks in 

one continent partially coincide with off-peak hours on the other continent. This indicates the 

potential benefit of utilizing intercontinental interconnectors for trade by dispatching low-

cost generators on either side of the link, especially considering the total time-zone span of 

between UTC +2 in Eastern Europe and UTC -8 at the west coast of North America. 
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Figure 3-2 Impact of longitudinal time-zone differences on match in load profiles. The graphs shows the hourly 

demand for EU-DE (UTC +1) and US-RFCW (UTC-5) during three days in January (left) and July (right). 

The utilization of the EU-NAM interconnector within the context of this study is visualized in 

Figure 3-3. The vast majority of flow in the 2050 reference scenario is oriented towards 

Europe, with a total flow of 39.2 TWh in the European direction and only 2.5 TWh towards 

North America. Overall, the interconnector has a CF of just above 95.3% with occurrence of 

Full Load Hours (FLH) during 91.8% of the year8. Due to the almost constant transmission 

congestion, impact of the interconnector on balancing market prices between both nodes 

(and continents) is limited. The high utilization of the interconnector all year round indicates 

that the impact of diurnal or seasonal variability on the size of flow is limited. 

 
Figure 3-3 Hourly utilization of the 5 GW EU-NAM interconnector in the 2050 reference model. Positive flow 

is in the European direction, negative flow is in the North American direction. 

The main driver for the flow towards Europe can be allocated to the significantly lower Short 

Run Marginal Cost (SRMC) for thermal based generation capacity in North America, mostly 

due to lower applied fuel and carbon pricing compared to Europe as indicated in Table 3-2. 

Combined Cycle Gas Turbines (CCGT) and coal power plants in North America are often 

 
8 FLH - here defined as the hours per year during which the interconnector operates at full rated capacity - can 
be used as an indicator for the occurance of transmission congestion. 
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dispatched before similar plants in Europe to supply the European market. To assess the 

sensitivity of these elements, multiple alternative scenarios are simulated with incremental 

carbon prices for North America, gradually increasing towards European levels. The results 

can be seen in  Figure 3-4. 

Figure 3-4 Interconnector utilization under different carbon price assumptions. Scenario names are based on 

applied carbon pricing in North America per scenario; REF (EU €88/Tonne CO2, CA €18/Tonne CO2, US 

€0/Tonne CO2), 18 (EU 88, NAM 18), 45 (EU 88, NAM 45), 65 (EU 88, NAM 65), 88 (EU 88, NAM 88), 0 (EU 0, 

NAM 0). 

Based on this graph several important observations can be made. Firstly, the incremental 

carbon price has limited impact on the flow direction when compared to the REF scenario, 

until it reaches €88/Tonne CO2 in both continents. Overall utilization of the interconnector 

decreases with increasing carbon prices in North America, due to lower price differentials in 

SRMC between power plants on both continents. The significant increase in export towards 

North America in the €88/Tonne CO2 scenario results from displacement of coal fired power 

plants (coal and lignite) and Open Cycle Gas Turbines (OCGT) in North America in favour of 

CCGTs in Europe following a shift in the merit order of the combined market. When carbon 

pricing is omitted from the model, as shown in the €0/Tonne CO2 scenario, the majority of 

flow remains oriented towards Europe. Considering the setup of power plant portfolios in 

both continents, as shown in Table B-1 in Appendix B, with Europe incorporating significantly 

higher penetration of VRES, this is counter-intuitive. It indicates that carbon pricing is not the 

only impacting factor in this reference scenario, but that also the differences in baseload (US 

much more coal capacity) and differences in fuel pricing are of paramount importance. The 

impact of fuel pricing on the interconnector utilization is visualized in Figure 3-5, where the 

original scenarios as assessed in Figure 3-4 (REF, 0 and 88) are compared to scenarios with 
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similar carbon pricing but with standardized fuel prices for all regions based on the reference 

EU fuel prices. 

Figure 3-5 Interconnector utilization under different fuel and carbon price assumptions. REF, 0 and 88 

scenarios incorporate incremental carbon pricing with reference continental (or nodal in case of US) specific 

fuel pricing followingTable 3-2. REF (EU), 0 (EU) and 88 (EU) scenarios incorporate incremental carbon pricing 

with standardized fuel pricing based on the reference European fuel prices. 

The flow dynamics on the interconnector within the REF scenario with standardized European 

fuel prices REF (EU) are relatively similar to the baseline REF scenario. Although the 

differences in SMRC’s on both continents are reduced, the lack of carbon pricing in the US 

alone remains sufficient to cost-efficiently supply the European market. Yet, when 

considering scenarios with equal carbon pricing and equal standardized fuel prices as in 0 (EU) 

and 88 (EU) the market situation changes drastically. The interconnector in both scenarios is 

almost fully utilized for trade in the direction of North America, with total yearly unidirectional 

flows of around 41 TWh. Overall interconnector CFs of above 97% are reached. The main 

reason for the consistent flow towards North America relates to the relatively high 

penetration of RES in Europe and the strong interconnectivity between European countries 

which allows for coordinated export of low carbon power. Within the 88 (EU) scenario, the 

RES capacity in Europe is able to supply 1345 TWh for the total 2050 demand of 4237 TWh 

(31.7% RES penetration), whereas the RES capacity in NA is limited to a supply of 860 TWh for 

the total 2050 demand of 5373 TWh (16% RES penetration). The higher RES penetration in 

Europe allows for dispatch of cost-efficient unused thermal capacity for export purposes 

towards North America. Depending on the carbon pricing, this can either be CCGT capacity or 

coal fired, next to available nuclear baseload in EU-FR during periods of high VRES generation. 

From a North American viewpoint, the RES capacity in North America in this reference model 

is insufficient to stimulate bidirectional utilization of the interconnector by making use of 
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seasonal- or diurnal time-zone differences. That said, the high overall CF does indicate that 

there is potential for an EU-NAM interconnector. This is supported by findings in other studies 

[29,164]. Determining the market revenues and investment costs would be the next step to 

assess the viability in more detail.  

This section shows the sensitivity of market elements on intercontinental interconnector 

utilization. Yet it is safe to say that the indicated unilateral export of emission intensive power 

from the US towards Europe in the reference scenario, without appropriate carbon pricing, 

would never be acceptable in a real market environment. The sensitivity and importance of 

clear market rules for interconnecting different regions are commonly raised points of 

interest, especially in context of intercontinental interconnectors and the global grid concept 

[74,75,81,88]. 

For further development of the global interconnected model, it is crucial to assess the 

functionality and economic utility of the global grid in a variety of possible future pathways 

of the power systems worldwide. This will be captured by constructing a global reference 

model based on current policies and developments, as well as a variety of realistic mitigation 

scenarios. 

3.5.2 Data Availability 
The decision to initially use a combined EU-NAM power system model as an intermediate step 

towards the global model is due to the availability of detailed power system data for both 

continents. To expand the model further to the global scale, a combination of approaches to 

retrieve necessary data must be utilized, since open-access data for other regions in the world 

is not always available. 

Hourly load data can in some cases be accessed through data portals of representative system 

operators (e.g. Australia [223], Japan [224], Mexico [225] and Russia [226]). Secondly, it might 

be possible to retrieve profiles from system operators through personal communication, as 

has been done for this study for some of the Canadian provinces. Yet, it is unlikely that this is 

accomplishable for all regions in the world since it’s a time-intensive process. Furthermore, 

operators are not always willing to make data publicly accessible. An alternative approach 

would be to make use of existing profiles of relatively similar regions (e.g. similar sectoral 

demand distribution or similar climate zone) by shifting and scaling the profiles based on time-
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zone, total demand and possibly peak demand if available. This is a commonly used approach 

in global power system studies [162,163], yet it does limit the accuracy of locational 

representation. Decisions regarding the approach will be made by balancing time-intensity 

and data accuracy. Hourly profiles for VRES will be developed by utilizing historical locational 

profiles from the Renewables Ninja database [25,26] (https://www.renewables.ninja). 

Samples will be taken based on a raster approach with fixed dimensions (e.g. 100 x 100 km) 

and aggregated to incorporate regional differences within nodal regions. Profiles will be 

scaled based on prospects for technology efficiency, impacting the hourly CFs. 

Generation portfolios for 2050 global grid reference and mitigation scenarios could 

potentially be developed through two methods. The first approach would be to make use of 

existing scenario studies as developed for different regions in the world, with the AEO, EU-

REF and the NEB energy futures as exemplary studies. Yet, this has two disadvantages. Firstly, 

it is difficult to accurately combine data from multiple studies into one aggregated scenario 

since assumptions behind the different studies are rarely in line. For example, portfolios in 

the studies are often optimized based on different emission reduction targets, or different 

assumptions are incorporated on global learning curves for generation technologies, 

impacting the cost-optimal capacity expansion per study in a different fashion. Furthermore, 

existing studies have not incorporated the possibility of power exchange between continents 

or accessing remote RES through global interconnectors. Hence, applied capacity expansions 

in these studies are not optimized in the context of the global grid concept. An alternative 

approach would be to make use of the capacity expansion function within PLEXOS. Performing 

optimizations in the global grid context in PLEXOS, by allowing capacity expansion of 

intercontinental interconnectors and RES capacity in distant areas, could overcome the 

described issues. For this approach a baseline reference model is required as a starting point 

for the capacity expansion. The recently published global database of power plants initiated 

by the World Resources Institute (WRI) and partners would be an important background 

source for this approach [23]. The database currently covers 62% of global installed capacity 

at unit level, with expected expansion to over 85% in the near future. The capacity at unit 

level can be manually aggregated based on the chosen nodal representation for the global 

model and integrated with the previously constructed 2015 European and North American 

reference models in PLEXOS.  

https://www.renewables.ninja/
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Final aspect to consider is input data for the existing power grid. Power system operators are 

often protective of grid data, mostly for security reasons, yet also because grid data could 

give insights in operator revenues through power system modelling which is regarded as 

sensitive information [24]. Approaches to recreate transmission capacities between nodes as 

used for the NAM model (using hourly exchange values or market reports) are of limited 

applicability for other regions of the world. As an alternative, open-access grid databases such 

as OpenStreetMap (openstreetmap.org) can be utilized to retrieve voltage data for 

interconnections between nodes. The voltage data can then be converted into NTC by 

applying a standardized conversion based on voltage size and transmission type (AC or DC). 

Although the final NTCs will be simplified, it can act as a baseline for the 2050 power grid. 

Recently, Liang [206] introduced an initiative focused on the construction of a global database 

with detailed grid and generation capacity data for over 140 countries in six continents. In 

time, this could potentially become an important source by linking the database with the 

global grid model in PLEXOS. 

3.5.3 Computational Time 
In earlier studies for which global grid models were utilized, the Computational Time (CT) of 

these models has been identified as a limiting factor because of the mere size and complexity 

of the unit commitment and dispatch problem [163,205]. Yet, developments in hardware, 

software and solver since these studies, allow for significant reductions in CT for similar sized 

problems. Table 3-3 shows an overview of CT for a variety of scenario runs for the 

interconnected 2050 reference model with different unit commitment optimalities - 

determining how integers are treated in the unit commitment - and deviating complexity of 

the power system. 

Table 3-3 CT in hours for multiple scenario runs in the interconnected 2050 reference model. Simulations 

performed with a Dell laptop (I5 processor, 8 GB RAM, 256 GB SSD) and with Xpress-MP. Results showcase CT 

for the full 2050 year with hourly timesteps (8760 in total). 

2050 REF Detailed1 CT (hours) Constrained flow2 CT (hours) Unconstrained flow 

MIP3 27 25.2 

RR4 5 4.8 

LP5 4.2 3.4 

2050 REF Simplified CT (hours) Constrained flow2 CT (hours) Unconstrained flow 

MIP3 14 11.8 

RR4 1.1 1 

LP5 0.8 0.6 
1 Includes PSH and multiple start states for CCGT’s in the simulation. 
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2 Flow between EU-FR and US-SRVC through the EU-NA interconnector is constrained at 5 GW. 
3 Mixed Integer Programming 
4 Rounded Relaxation. 
5 Linear Programming 

Depending on the complexity of the problem and the chosen unit commitment optimality, 

the CT ranges from below an hour to more than a day. Initial scenario runs while building and 

testing the global grid model, as also done for this article, will be done with limited complexity 

and rounded relaxation (RR) to limit the CT. Mixed Integer Programming (MIP) will only be 

applied in runs when quantification of final results is of importance. A CT of 27 hours for a 

two-continent model is acceptable for now. Yet, when the model will be expanded to the 

global context, simulations might potentially be performed on a high-performance computer 

or cloud limiting the required CT. Overall, limitations as a result of CT in context of the 

development and utilization of the global grid model are expected to be of modest impact. 

3.6 Discussion and Future Work 
The purpose of this paper has been to introduce the process of developing and simulating a 

global interconnected power system model as a proof of concept. The work to date has been 

focused on testing the methodology and building up necessary knowledge to realistically 

simulate the functionality of a possible future global grid. Some initial results have been 

analysed to support the viability of the model and the potential concept in general. 

Furthermore, key factors influencing the development of the global interconnected power 

system model are identified, as well as factors influencing the optimal performance of said 

model in PLEXOS. 

Going forward, several steps must be taken to construct a usable global model to assess the 

functionality and (economic) utility of a global grid. Firstly, decisions must be made regarding 

the methodology for retrieving input data as well as on the spatial resolution for the different 

continents. A balance will be sought between time intensity and data accuracy. After that, in 

parallel with retrieving the input data, an unpopulated model for all continents needs to be 

constructed based on the template of the European and North American models. Once the 

empty model is created and the input data is retrieved, the model can be populated. A global 

reference model based on current policies and developments will be developed, as well as a 

variety of realistic mitigation scenarios to assess a global grid in a variety of potential future 

pathways. 
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GEIDCO consists of a broad range of member experts from academia, industry, and other 

associations. Within this community, considerable knowledge and data regarding the power 

system and power grid (e.g. [206]) for areas outside Europe and North America should be 

available. For the purpose of constructing the global model this experience could potentially 

be utilized, hence active engagement and collaboration with GEIDCO and its members is being 

sought. 
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Chapter 4 Building and Calibrating a Country-Level Detailed Global 

Electricity Model Based on Public Data 

4.1  Abstract 
Deep decarbonization of the global electricity sector is required to meet ambitious climate 

change targets. This underlines the need for improved models to facilitate an understanding 

of the global challenges ahead, particularly on the concept of large-scale interconnection of 

power systems. Developments in recent years regarding availability of open data as well as 

improvements in hardware and software has stimulated the use of more advanced and 

detailed electricity system models. In this paper we explain the process of developing a first-

of-its-kind reference global electricity system model with over 30,000 individual power plants 

representing 164 countries spread out over 265 nodes. We describe the steps in the model 

development, assess the limitations and existing data gaps and we furthermore showcase the 

robustness of the model by benchmarking calibrated hourly simulation results with historical 

emission and generation data on a country level. The model can be used to evaluate the 

operation of today’s power systems or can be applied for scenario studies assessing a range 

of global decarbonization pathways. Comprehensive global power system datasets are 

provided as part of the model input data, with all data being openly available under the FAIR 

Guiding Principles for scientific data management and stewardship allowing users to modify 

or recreate the model in other simulation environments. The software used for this study 

(PLEXOS) is freely available for academic use.9 

  

 
9 Published as: Brinkerink M, Gallachóir BÓ, Deane P (2021). Building and Calibrating a Country-Level Detailed 
Global Electricity Model Based on Public Data. Energy Strategy Reviews 33: 100592. doi: 10.1016/j.esr.2020.10
0592 
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4.2 Introduction 
In energy systems literature, modelled global pathways limiting global warming to 1.5°C 

generally meet energy service demand with lower energy use and significant electrification 

of energy end use [6,7]. These requirements signal a potential system transition in global 

electricity generation and the role of increased interconnection becomes an important 

question. Large scale modelling of continental power systems can facilitate a better 

understanding of potential pathways towards a zero-carbon supply of our future energy 

needs, yet to date research in this area is limited by a lack of detailed global electricity models 

[227]. 

Due to limitations in either computational complexity or data availability, electricity system 

modelling studies tend to make a trade-off between the spatial scale of the study area and 

technical representation of power plant characteristics and transmission components. In 

modelling studies on a multi-country scale, a single node per country copperplate approach 

is generally applied [17,47,164,228] and technical properties such as turbine unit sizes, heat 

rates, and start-up costs [210,228,229] are usually represented in a standardized manner with 

uniform characteristics for every individual power plant of a certain type. This approach is 

acceptable for long-term scenario studies where development of power plants and its 

technological characteristics are uncertain, yet for realistic assessments of today’s electricity 

system a finer representation of the diversity in power plant- and electricity system 

characteristics is preferable. 

There are a limited number of modelling studies assessing electricity systems from a global 

perspective. This can partly be explained because of the aforementioned issues, yet an 

additional factor is that generally the use of a global electricity model is seen as unnecessary 

and even impractical. Different to most other energy carriers, electricity to-date is produced 

and consumed domestically or exchanged between several countries within a region or 

continent. That said, the interest in the concept of long-distance electricity transmission and 

the potential evolution towards an interconnected global grid has gained significant traction 

in the last few years [29,83,227], resulting in a range of modelling studies on this topic 

[30,73,134,162–164,195]. Other research utilizing global electricity models focuses on 

feasibility assessments of possible 100% renewable energy systems, without the utilization of 
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low-carbon technologies such as nuclear energy, Carbon Capture and Storage (CCS) [42,230] 

or even bioenergy [42].  

In order to provide improved insights in the diversity of the worlds electricity system we 

developed ‘PLEXOS-World’, a detailed global electricity model capable of simulating over 

30,000 existing power plants using public data. Although the issues of computational intensity 

and data access are still relevant, developments in recent years regarding faster computers, 

improved solvers and solving techniques [22], as well as relevant open electricity system data 

initiatives [23–25] have made this project possible. An assessment by Pfenninger and 

colleagues of the use of open data and software within energy policy research indicates that 

it generally lags behind other fields of research [32]. Extended efforts are being made for this 

study regarding this gap by means of showing the potential of open power system data as 

well as openness of model. The PLEXOS-World model is openly accessible for any PLEXOS 

user, with the software being freely available for academic use. The model in raw data format 

and all model input data is openly available and can be retrieved from the supplementary 

datasets [231], allowing users to modify or recreate the model in other simulation 

environments. 

In this paper we describe the process of building a detailed global electricity model at plant- 

and country level. Section 4.3 includes the methodology, full overview of the data inputs and 

any made assumptions. A benchmarking exercise of calibrated simulation results with 

historical emission and generation data to secure accurate model performance is included in 

Section 4.4. The paper concludes in Section 4.5 with a discussion of the findings, the existing 

limitations and data gaps and an outlook on possible future work based on the developed 

model. 

4.3 Data Input and Methodology 
This section introduces the software used to simulate the global electricity model, describes 

the main methods and assumptions and gives a full overview of the input data. 

4.3.1 Unit Commitment & Economic Dispatch Model 
The software used in this study to solve the UCED problem in the global electricity model is 

PLEXOS® Integrated Energy Model. PLEXOS is a transparent electricity system modelling tool 

used for electricity market modelling and planning. Detailed linear equations can be queried, 

modified and viewed by the user to facilitate a deeper understanding of model dynamics. The 
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equations as applied for this study can be found in Appendix A. All data input is fully 

customizable and the tool facilitates use of a range of open source (GLPK, SCIP) and 

commercial (CPLEX, Gurobi, MOSEK, Xpress-MP) solvers depending on preference and 

accessibility to licenses. PLEXOS comes with a fully build-in user interface enabling data 

management, model building and simulation all to be done within, yet also supports 

automation of data flows and model simulation from outside the user interface by means of 

COM or .NET. The software package comes with detailed documentation of all features. 

Modelling can be carried out using MIP that aims to minimize an objective function subject 

to the expected cost of thermal and renewable electricity dispatch and a range of technical 

constraints. It is also possible to select LP for the model simulation to limit the computational 

complexity, albeit with lower detail in technical parameters. In the default setup of the 

software each time step is modelled in sequence and is linked to the previous for initial 

conditions. PLEXOS also provides the option to perform model simulations in a parallel 

fashion, meaning that otherwise chronological time steps can be simulated at once while 

spread out over multiple cores after which results are ‘stitched’ back together. This approach 

has the advantage of optimized utilization of computational resources with the trade-off 

being reduced accuracy considering cross-period parameters (e.g. number of online 

generator units) are not being tracked between steps. A comparison in the CT performance 

between both approaches in context of PLEXOS-World can be found in Table 4-1. For the 

simulations in this study we applied MIP with linked time steps for optimal accuracy.  

Table 4-1 Runtime performance of the PLEXOS-World model. The model simulations have been performed on 

a Dell Intel(R) Core (TM) i7-8700K CPU @ 3.70GHz with 63.83 GB Memory with Xpress-MP 35.01.01 as solver.

The objective function of the model includes operational costs, consisting of fuel costs, start-

up costs consisting of a fuel offtake at start-up of a unit and a fixed unit start-up cost. Penalty 

costs for unserved energy and a penalty cost for not meeting reserve requirements can also 

be included in the objective function. Fuel consumption is calculated using piecewise linear 

functions based on the generator heat rate. System level constraints consist of an energy 

balance equation ensuring supply meets the regional demand at each simulation period. 

Water balance equations ensure water flow within PSH units is conserved and tracked. 

 Unit Commitment Optimality Step Link Mode Interval Time step CT 

MIP Linked Hourly Daily + 6 Hour Look-ahead 30 hrs 

MIP Parallel Hourly Daily + 6 Hour Look-ahead,  

12 steps in Parallel 

7 hrs 
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Constraints on unit operation include minimum- and maximum generation, maximum- and 

minimum up and down time and ramp- up and down rates. A zonal pricing methodology is 

applied with an assumed perfect market across the globe without consideration of market 

power or competitive bidding practices. A large number of open energy models are available 

covering different energy sectors and varying geographical regions10. PLEXOS-World’s 

configuration is similar in set-up to other UCED models (for example Dispa-SET) but has a 

simplified representation of cross border transmissions by making use of NTCs. 

4.3.2 Spatial and Temporal Representation 

PLEXOS-World covers the electricity systems of 164 countries, subdivided into a total of 265 

nodes. Larger countries, both in terms of size as well as relative electricity demand, are spread 

out over multiple nodes allowing for the integration of regional diversity as well as time-zone 

differences. This is the case for Australia (7 nodes), Brazil (10 nodes), Canada (9 nodes), China 

(34 nodes), India (5 nodes), Japan (6 nodes), Russia (7 nodes) and the United States (24 

nodes). Subdivision of nodes is generally based on geographical borders, operating areas of 

different authorities or following the availability of data. See Figure 4-1 for an overview of the 

nodal representation in PLEXOS-World and Section C.3 of Appendix C for a full list of nodes. 

Section C.1 of Appendix C can be consulted for more details on the approach of sub-country 

division of nodes and data. 

The model is setup to run for the 2015 calendar year, with customizable timesteps adjustable 

for the aim of the study and the size of the simulated model. Typically, two-hourly, hourly or 

five-minute intervals are used. 2015 has been chosen as simulation year due to restrictions 

on data availability for more recent years. Continents and nodes can be manually selected or 

deselected based on the user’s preferences, keeping in mind that changing the spatial or 

temporal resolution can significantly affect the CT of the simulation. Hourly simulations are 

generally sufficient to get a basic understanding of the optimal UCED, yet to incorporate 

ramping constraints of generator units or to assess aspects such as system inertia sub-hourly 

modelling is advisable [232]. The input data for demand- and VRES time-series are based on 

hourly patterns, yet the software linearly interpolates data values in case sub-hourly 

 
10 https://en.wikipedia.org/wiki/Open_energy_system_models 

https://en.wikipedia.org/wiki/Open_energy_system_models
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modelling is required. Hourly intervals are used for the simulations in this study based on daily 

time steps with a 6-hour look-ahead. 

Figure 4-1 Nodal representation of PLEXOS-World. Every copperplated area of an individual colour represents 

a node with a total of 164 countries and 265 nodes. Australia (7 nodes), Brazil (10 nodes), Canada (9 nodes), 

China (34 nodes), India (5 nodes), Japan (6 nodes), Russia (7 nodes) and the United States (24 nodes) are 

subdivided into multiple nodes. Note that besides a range of smaller islands, certain land-based countries are 

also not incorporated in the model due to absence of data in the WRI Power Plant Database. 

4.3.3 Technical Representation and Input Data 
The model draws solely on public sources of information for input data. The sources and 

accompanying assumptions for this study are introduced in the next sections. Figure 4-2 gives 

an overview of the different steps within the modelling process as well as for the different 

sources and their interrelationships with the data inputs. The steps and data as used for the 

calibration exercise are also shown. Note that the data in the model is from best available 

public sources, but users of the model have freedom to change and edit any data if more 

advanced local or site-specific data is at hand. 
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Figure 4-2 Flow chart visualizing the different methodological steps within Chapter 4. The left side indicates 

the main sources used for the data input of the model and their interrelationships. Hourly model simulations 

in PLEXOS occur based on the model input, from which among others generation and emission values per 

power plant are the main simulation output. These values are benchmarked on a country-level with historical 

data for 2015 retrieved from IEA and IRENA datasets as indicated on the right side of the chart. Through an 

iterative process, a range of fuel and generator properties are calibrated (indicated with the red connections) 

to mimic the 2015 context. These aspects are further explained in the next sections. 

4.3.3.1 Power Plant Portfolios 

The World Resources Institute (WRI), in collaboration with the Global Energy Observatory, 

Google, KTH Royal Institute of Technology in Stockholm and Enipedia, has made extended 

efforts to create the first open access Global Power Plant Database covering more than 85% 

of global capacity [23]. The WRI database differentiates power plants per fuel type and has 

integrated geolocations. It has been used as the primary source for power plant capacity data 

for PLEXOS-World. Approximately 55% of power plants in the WRI database have a 

commissioning year attached. For the remaining 45% it is unclear whether these power plants 

were already operational as of 2015. Power plants for which it is known that they became 

operational after 2015 are incorporated in the model yet are ‘turned off’ (units are set to 

zero) for simulations of the 2015 calendar year. The geolocations were used to allocate power 
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plants to the relevant nodes. Figure 4-3 shows a visualization of the power plant data with 

the height of the bar indicating the relative capacity size. This visualization does not only 

reflect the differences in density of power plants between regions, but also highlights the data 

gap of the missing 15% of global power plant capacity. The coverage in developing regions, as 

well as countries such as China, India and Russia is not fully exhaustive. Furthermore, wind 

and solar coverage is limited due to the more decentralized nature of these technologies. The 

remaining power plant capacity not accounted for in the WRI database has been estimated 

using standardized generators per country and per technology based on a number of quality 

sources such as the EIA [233], ENTSO-E [234], IEA [40,235], IRENA [107] and India’s Central 

Electricity Authority [236]. For smaller countries where no diversified fossil capacity data 

exists within the above sources, it is assumed that the relative share of coal, gas and oil 

capacity per country within the WRI database can be used to scale up to the reported 

aggregate fossil capacity as indicated by the EIA [233]. Due to a gap in sub-country capacity 

data for especially China, Japan and Russia, it is assumed that missing capacity in these larger 

countries can be spread out relative to the share of existing capacity per technology per sub-

country node in the WRI database. 

Figure 4-3 Visualization of the power plant data of the WRI database. Relative height of the bar is an indicator 

for the capacity of the specific power plant. 
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Power plant capacity data in the WRI database is supplied in an aggregate format without 

differentiating individual turbine unit sets per power plant. To be able to incorporate 

generator characteristics such as minimum stable levels, ramp rates and to assess system 

inertia contributions it is important to disaggregate the power plant capacity data into 

individual units. This is done by utilizing a standard unit size methodology per fuel type as 

applied in earlier studies [47,195,237], both for the WRI database data as well as for the 

missing capacities, with the standard turbine unit sizes per generator type indicated in Table 

4-2. Other renewable power plants such as solar and wind power plants, as well as all other 

storage technologies other than PSH, use the capacities as given by the different databases. 

Note that CSP to-date is not included as a separate power plant type because the WRI 

database does not differentiate between different solar technologies. 

It has been assumed that gas power plants in the WRI database with a capacity <130 MW 

represent OCGT and vice versa >130 MW CCGT. The number of units per power plant U 

(rounded upwards) can be calculated with Eq. 4-1, with MWt being the total nameplate 

capacity of the power plant and MWst the standard unit size of the relevant technology. 

Consequently, the MW capacity per unit C equals Eq. 4-2. 

Eq. 4-1  U = ⌈MWt/MWst⌉ 

Eq. 4-2  C = MWt/U 

Generic relationships have been derived based on historical power plant data to calculate 

generator specific heat rates and start costs depending on the capacity per turbine unit. By 

using the constants SCa and SCb as included in Table 4-2, the specific start cost SC per unit C 

can be calculated with Eq. 4-3. These characteristics are modifiable by users and available as 

part of the model input data. 

Eq. 4-3  SC = (C ∗ SCa) + SCb 

Similarly, the generator specific heat rate can be calculated with Eq. 4-4, by using the 

constants HRd, HRe, and HRf. 

Eq. 4-4  HR = ((C2) ∗ HRd) + (C ∗ HRe) + HRf 

In unconstrained model runs, baseload power plants such as coal (2015 context with higher 

gas prices), nuclear, biomass and geothermal are over utilized compared to historical data. In 

real life, generators can be limited in their operation due to a variety of factors such as 
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outages, maintenance, limitations in fuel supply or through policy-based constraints. Data 

regarding restrictions in operation at power plant level are not available within the public 

domain, hence for these baseload technologies we’ve incorporated operational constraints 

specified per country and technology which forces generator units to be ‘turned off’ for part 

of the simulation horizon. IEA’s ‘Electricity Information’ [235] provides insights in generation 

values for 2015 per country and fuel type. The difference between these values and the 

combined power output of all power plants per country and fuel type in the unconstrained 

model run can be used as indicator for the initial size of the required operational constraints. 

Through an iterative process with model simulations, these initial values have been calibrated 

up or down until further change negatively impacted the match with reported historical 

generation. 

Table 4-2 Standard generator characteristics and variables as applied for the modelling in Chapter 4.  SCa, SCb, 

HRd, HRe, HRf represent constants in derived relationships based on historical power plant data to calculate 

generator specific Heat Rates (HR) and Start Costs (SC) with the capacity per generator unit as variable. 

 

4.3.3.2 Renewable Profiles 

The supply of electricity from hydro, solar and wind is determined using location specific CFs. 

The Renewables Ninja database [25] has been used to extract hourly CF profiles for every on- 

and offshore wind (5187 in total) and solar (5929 in total) power plant location in the WRI 

database by making use of the geolocations. The profiles are developed by making use of 

NASA’s MERRA-2 global reanalysis data [238]. The current set of profiles are based on the 

2015 meteorological year, future updates of the model will include a wider range of data 

years considering that weather patterns can have significant impact on the operation of 

electricity systems, especially with increasing VRES integration [239]. Standardized solar- and 

Generator Type MWst 

(MW) 

SCa SCb HRd HRe HRf Minimum 

Stable 

Level (%) 

Biomass 200 246.51 1412.6 6.00E-05 -0.0392 14.432 30 

Coal 300 6.2646 1166.7 -2.00E-07 -0.0016 10.892 30 

CCGT 400 251.5 -9875 2.00E-06 0.0025 8.307 40 

OCGT 130 91.525 -186.44 8.00E-05 -0.0235 11.516 20 

Hydro (non-PSH) 400 - - - - - - 

Nuclear 600 134.55 87 091 5.00E-08 -0.0004 4.0717 60 

Oil 300 91.525 -186.44 8.00E-05 -0.0235 11.516 50 

PSH 200 - - - - - - 

http://www.renewables.ninja/
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wind power plants integrated to scale up missing capacities within the different nodes make 

use of an averaged profile based on all CF profiles from within that node. For nodes where no 

wind or solar power plants exist within the WRI database, a sample of between 4-8 patterns 

per node spread out over its respective geographical area have been manually extracted from 

the Renewables Ninja database. 

Initial model simulations indicated that the overall generation of solar and wind per node as 

a result of the integrated CF profiles was in some cases significantly overestimated compared 

to historical generation data for 2015 as reported by IRENA [240]. As shown by the authors of 

the Renewables Ninja database [26], use of the database in particular for regions outside the 

EU requires bias correction. For this reason, we’ve applied country-level multipliers to the 

hourly profiles to calibrate overall generation from solar and wind in the model with historic 

2015 data. 

Due to the size of the model, hydro other than PSH is modelled in a simplified manner without 

actively simulating the use of (cascaded) reservoirs. Location specific monthly CFs for every 

hydro power plant (7155 in total) are developed by making use of the Global Reservoir and 

Dam Database (GRAND) [241] and a study by Gernaat and colleagues [242]. In this latter 

study, the authors identified over 60,000 potential new locations for hydro power plants and 

developed monthly water discharge profiles for every new location, as well as for every 

existing location as identified in the GRAND database based on 30-years of runoff data. The 

geolocations of the hydro power plants from the WRI database are matched with the nearest 

dam from the GRAND database, with every plant above 1 GW matched manually to secure 

accuracy. The coverage of the GRAND database for dams above 58 latitude is limited, hence 

for hydro power plants in the Scandinavian countries of Iceland, Finland, Norway and Sweden 

we use country average profiles as used for earlier studies assessing the European electricity 

system [47,195,239]. For the northern parts of Canada and Russia we use a country average 

fully based on GRAND data. The profiles for the standardized hydro power plants used to fill 

gaps in power plant capacities within the WRI database are based on an average of all profiles 

of the specific node. Countries without hydro power plants in the WRI database, yet with 

mentioned capacity following EIA data, are assigned an average profile from a neighbouring 

country. 
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Following [242], the design discharge of hydro turbines is assumed to be based on the 4th 

highest discharge month in the discharge profiles meaning that during at least three months 

of the year spillage of water occurs. Base profiles for the month specific maximum CF CFt per 

GRAND location can be calculated with Eq. 4-5, with Qd being the design discharge and Qt 

being the discharge of month t. Following on to that, to secure accuracy on the macro level, 

the individual profiles from Eq. 4-5 are scaled by comparing the calculated capacity weighted 

average CF per country with a country-level 15-year average CF based on historical capacity 

and generation data from IRENA [240]. 

Eq. 4-5  CFt =Qt/Qd*100 

Hydro power plants within the WRI database do not differentiate between types of hydro, 

being Run-of-River or reservoir-based systems. Early stage model simulations indicated that 

the generation potential for a large share of hydro power plants in months with high CFs was 

not fully utilized, whereas the occurrence of significant unserved energy in hydro dominated 

regions (e.g. Canada) in months with lower CFs indicated the importance of seasonal storage 

of water for these regions. To mimic the possibility of having a certain flexibility in cross-

monthly storage of water for more dispersed generation of electricity, the original profiles 

were rescaled with (eq6) to fit within a narrower range of monthly values by calibrating the 

original min (minold) and max (maxold) of the distribution of CFt’s of the specific hydro power 

plant. The adjusted min (minnew) and max (maxnew) values were determined based on an 

iterative process of model simulations with a hard-upper limit set at 80% of the highest Qt of 

every individual profile. At all times, the capacity weighted average of the profiles within a 

country equal the 15-year average country CF as identified with the IRENA data. As a last step 

specifically for this study, scalers have been applied in the calibration exercise to slightly in- 

or decrease the profiles for 2015 conditions again following reported country-level generation 

data from IRENA. All CF profiles as used for this study can be found in [231]. Hydro plants are 

constrained at a monthly level with the above profiles but are free to provide flexibility and 

balancing at hourly level. 

Eq. 4-6   CFt(𝑛𝑒𝑤) = (CFt − min
old

)/(max
old

− min
old

) ∗ (max
new

− min
new

) + min
new

 

Yearly CFs for Ocean, Tidal and Wave based power plants have been integrated based on 

[235]. No seasonality or variability has been included for these technologies to-date. 
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4.3.3.3 Storage 

Large scale electricity storage to-date is mostly based on PSH, albeit integration of other 

storage technologies for balancing of VRES or other ancillary services is becoming more 

prominent. The US Department of Energy (DOE) Global Energy Storage Database11 is a 

regularly updated database of operational and commissioned electricity storage projects. The 

DOE database provides rated power per project yet does not consistently include storage size 

(MWh) or charge and discharge efficiencies. Technology specific full cycle efficiencies are 

incorporated based on mean values from reported data in [243]. Similarly, indicative hours of 

storage values from the same study are used to calculate project specific storage sizes for all 

technologies apart from PSH. For approximately 130 of the PSH projects, mostly in Europe 

and the US, actual data on storage size has been retrieved through [244,245] as well as 

through individual Wikipedia pages as best indication. Based on this project data, a calculated 

average ratio (MWh/MW) between storage size and power rating for PSH of 18.9 has been 

determined after exclusion of outliers with a ratio above 200. This average ratio has been 

applied to all PSH projects where storage size data was missing. Altogether, the model 

incorporates over 1100 operational electricity storage projects, of which 323 PSH. 

4.3.3.4 Hourly Demand Data 

Availability of hourly public demand data for countries outside Europe and North America is 

limited. A common approach in electricity system modelling studies for regions outside these 

areas is therefore to use standardized profiles from other countries (mostly European) and 

adapt the profiles based on locational characteristics [73,163,194]. Extended efforts have 

been made to integrate a more detailed spatial representation within the demand data for 

this study. To-date, the model includes load profiles based on actual historical hourly data for 

approximately 50 countries and regional specific historical load profiles for 55 sub-regions. 

This includes data from geographically dispersed load centres around the globe such as 

Canada, the US, Mexico, Brazil, Russia, South-Africa, Japan, South Korea and Australia. The 

data portal of the ENTSO-E includes historical hourly load data for all EU member states, as 

well as for most non-EU countries connected to the European synchronous grid [246,247]. 

Data for Ukraine has been retrieved through direct communication with the national system 

operator (SE NPC Ukrenergo, 29-10-2018). A range of system operators or governing entities 

 
11 https://www.sandia.gov/ess-ssl/global-energy-storage-database/ 

https://www.sandia.gov/ess-ssl/global-energy-storage-database/
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provide historical hourly load data on an individual (sub-)country level. A full overview of the 

existing publicly accessible hourly load data can be found in Section C.4 of Appendix C with all 

global demand profiles as used for this study to be retrieved as a separate file from [231]. 

Details on availability and development of hourly load profiles for all sub-country nodes can 

be found in Section C.1 of Appendix C. 

Within the available historic data, differences exist that need to be overcome to retain 

uniformity in the input data for the 2015 model. Not all profiles cover the full electricity 

system of a country. As a best estimate for hourly demand in the respective country, we 

scaled the available profiles to 100% of 2015 electricity demand. Furthermore, not all 

available profiles are based on the 2015 calendar year, hence these profiles have been scaled 

and shifted to 2015 values. Shifting profiles is required to retain balance in weekdays and 

weekends while scaling profiles from year to year. Scaling of the hourly profiles occurs linearly 

with the difference in final demand between the reference year of the data and 2015 as proxy. 

It has been assumed that there are no changes in relative peak demand. Final electricity 

demand per country has been determined by multiplying consumption per capita data from 

the World Bank with the total population, combined with integrating country-level T&D losses 

[248]. All in all, 28 countries did not have a value for electricity consumption per capita. These 

countries were assigned a value from the nearest neighbouring country with similar Gross 

Domestic Product (GDP) per capita. This was done manually to verify the consistency of data. 

Countries without available historic hourly demand profiles have been assigned country 

specific synthetic profiles as developed by Toktarova and colleagues [249]. The authors 

constructed a calibrated method to generate demand profiles for future years based on 

locational economic, technical and climatic characteristics. Profiles as developed for 2020 are 

scaled and shifted to the 2015 calendar year. For a number of smaller countries for which no 

historical or synthetic profile were available we assigned profiles from the nearest node with 

similar GDP per capita. 

4.3.3.5 Net Transfer Capacities 

Significant developments in the availability of open data regarding existing power 

transmission infrastructure around the globe has occurred in recent years [250,251]. Yet, no 

complete global dataset exists incorporating cross-border NTCs. Hence, for the 2015 global 

electricity system model NTCs were retrieved through a variety of sources to fill this data gap. 
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NTCs have been applied rather than modelling transmission infrastructure line by line due to 

restrictions on the availability of data as well as to set a limit on computational complexity of 

the model simulations. The values represent the technical potential for power flow and do 

not take into account possible geopolitical or market restrictions on utilization. 

As part of a study on indicative scenarios of power plant investments based on potential for 

electricity trade in the African continent, Taliotis and colleagues [252] composed a dataset 

with all existing and planned NTCs between adjacent African countries. For the 2015 model 

we only incorporated the existing lines. The ‘Comision de Integracion Energetica Regional’ 

(CIER) published a report in 2016 on the current state of the energy systems within Central- 

and South-America, including an overview of the interconnectivity between countries with 

existing and planned power transmission projects [253]. Similarly, The World Bank analyzed 

the current power market structure and design of the electricity networks in the Middle East 

and Northern-Africa [254], and an overview of existing grid infrastructure for South-East Asia 

can be found in [255,256]. For reference NTCs between countries covered by the ENTSO-E we 

used the 2016 Ten Year Network Development Plan (TYNDP) as background [257]. Given 2020 

values per border in [258] were taken while capacities from projects finished after 2015 have 

been excluded. Furthermore, the transparency platform of the ENTSO-E provides NTCs 

[259,260] and hourly exchange values [261] for the majority of pathways within Europe not 

directly covered by the TYNDP. Finally, a wide range of additional journal papers, reports and 

other sources contribute to a global dataset of existing cross-border and cross-regional NTCs 

as of 2015. This is included in Section C.5 of Appendix C, with Table C-3 showcasing NTCs per 

adjacent pathway as well as the references behind the values. Section C.1 of Appendix C 

includes a more detailed description of the approaches used regarding NTCs between sub-

country nodes. Figure 4-4 highlights the cross-border transmission pathways with the highest 

existing NTC as of 2015. 
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Figure 4-4 Global top 25 cross-border transmission pathways with highest NTCs as of 2015. Max Flow 

represents flow for direction node A - node B and Min Flow vice versa. Pathways between sub-country nodes 

are not included. For a full list see Table C-3 in Appendix C. 

To-date, pathways with the highest NTCs are mostly used to facilitate supply of surplus 

electricity from hydro power plants to the power systems of neighbouring countries. 

Examples are the Paraguayan part of the Itaipu plant mostly used to supply Southern Brazil 

and a range of hydro power plants in Mozambique which are being used to supply power 

hungry South-Africa. Looking passed these mostly unilateral flows, Europe is on the forefront 

of power system integration to a combined market reflected by the generally high cross-

border transmission capacities. 

4.3.4 Model Calibration and Benchmarking 
As described in earlier sections of this paper, part of the model input data such as renewable 

CFs, operational constraints of thermal power plants and fuel prices have been calibrated to 

secure model accuracy. This has been done through an iterative process of comparing model 

simulation output with 2015 benchmark data and calibrating the input data accordingly. 

Model calibration is important as it allows users to judge the quality of the results against 

international benchmarks such as the IEA. Note that users of the model can ignore the 

calibration by turning off the specific calibration scenario and dialling back to the raw model 

input. However, we believe it is a helpful asset and gives a more realistic representation of 

the global power system.  
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The sources used for the benchmark and calibration are as follows. Annex A of the World 

Energy Outlook (WEO) [40] provides historical CO2 emissions from power generation for the 

different continents. Differences in geographical coverage per continent compared to 

PLEXOS-World (e.g. Turkey is part of ‘Europe’ within the WEO whereas in PLEXOS-World it’s 

part of ‘Asia’) have been adjusted by removing or adding calculated country-level power 

sector CO2 emissions from or to the continental totals. These country-level values were 

calculated based on IEA’s ‘CO2 emissions from fuel combustion’ [262] which provides 

historical CO2 emissions per generated kWh per fuel type for a range of countries, multiplied 

with country-level generation data per fuel type from IEA’s ‘Electricity Information’ [235]. 

[235] has also been used to calibrate generation values for most fuel types. Unfortunately, 

the report does not differentiate generation values of solar and wind and does not include 

data for all countries around the world. Hence for solar and wind as well as for other 

renewable technologies where country-level generation data is missing we’ve used an 

additional dataset from IRENA [240]. Comparison of the benchmark data with simulation 

results based on the calibrated model input can be found in Section 4.4. 

4.3.5 Model Availability 
The full model (and its future updates) in PLEXOS- and in raw data format as well as the input 

datasets for PLEXOS-World are available at [231] and we use the ‘FAIR Guiding Principles for 

scientific data management and stewardship’ for dissemination [263], allowing users to 

modify or recreate the model in other simulation environments. FAIR encourages the 

findability, accessibility, interoperability, and reuse of digital assets. The principles emphasize 

machine-actionability, in essence the capacity of computational systems to find, access, 

interoperate, and reuse data with none or minimal human intervention because humans 

increasingly rely on computational support to deal with data as a result of the increase in 

volume, complexity, and creation speed of data. 

4.4 Results 
This section includes a benchmarking exercise in which the calibrated model simulation 

results of the over 30,000 simulated power plants are being compared to historical data with 

2015 as base year. Benchmarking is undertaken at an aggregated continental and country 

level and not at plant level as this model is intended to allow users to examine large scale and 
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continental power systems. Users have the option to downscale the spatial size of the model 

simulations yet would have to undertake their own calibration in this case. 

Figure 4-5 showcases a comparison between the overall generation and CO2 emissions on a 

continental and global level from the PLEXOS-World simulations with historically reported 

data. Main observations based on the graphs are that both the generation as well as the 

emissions are generally in line with reported data. Small deviations exist with the reported 

generation values, predominantly in Asia and Europe, which can be the result of a 

combination of factors. 

Figure 4-5 Comparison of the overall generation values and CO2 emissions from the calibrated PLEXOS-World 

simulations with historically reported data for 2015. 

First, the use of different datasets for input and calibration can lead to small yet insuperable 

differences. The overall demand for every country within the model, determining the 

required generation, has been based on World Bank data, whereas the reported 2015 

generation values are based on IEA and IRENA datasets. Furthermore, although load shedding 

in mostly developing countries is not uncommon, limited occurance of unserved energy 

(global total of 92.4 TWh on 24,000 TWh demand) in especially sub-country nodes indicates 

a possible limitation of the assumption of relative distribution of missing power plant 

capacities based on the existing share of capacity per sub-country node within the WRI 

database. It is likely that as a result of said assumption slight underestimation of power plant 

capacity in a specific sub-country node can occur in favour of another and vice versa. Yet, due 

to a lack of openly available robust datasets including sub-country level power plant capacities 

the current approach is near optimal. 
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Finally, besides the technical potential for power flow, to-date there are no restrictions 

implemented in the model regarding trade of electricity between nodes which can lead to 

overestimation of flows and consequently underestimation of domestic generation. Current 

model results indicate a significant flow from European nodes to Asia (mostly Russia) 

contributing to the slight differences with historically reported data in both continents. 

Comparison of the overall continental emissions with reported data as shown in Figure 4-5 

indicates a similar story, values are generally in line, with small differences mostly as a result 

of the described differences in required generation. 

Figure 4-6 shows a more detailed view on both aspects by comparing the historical and 

simulated generation and emission values per fuel type. More detailed graphs that include 

comparisons with total emission- and generation values per fuel type and continent can be 

found in Section C.2 in Appendix C. The generation output of operationally low-cost 

technologies such as coal, hydro, nuclear, solar and wind has been calibrated at country level 

through an iterative process to come as close as possible to reported 2015 generation values. 

This has generally been successful, yet the earlier indicated differences in total (required) 

generation leads in certain cases to a mismatch in the overall use of peaking power plants 

based on gas and oil compared to historically reported data. These power plants are generally 

at the end of the merit order (2015 context with higher gas prices), and hence dispatched last 

or switched off first making it most susceptible of all power plant types to changes in demand. 

Next to an overall deviation in use of peaking power plants, there’s also a slight mismatch in 

the relative use of oil versus gas in countries where both fuel types compete. The main reason 

for this mismatch is the approach used to scale missing power plant capacities based on 

relative influence of coal, gas and oil in the WRI database for countries where no capacity 

data is available in the IEA datasets. It is possible that the country-level power plant capacity 

of a specific fossil fuel is underestimated, meaning that the theoretical generation potential 

is insufficient to reach the benchmark values. The reason that this is especially visible in Africa 

is that relatively speaking Africa is underrepresented in the WRI database compared to other 

continents. Furthermore, to-date secondary fuels for thermal power plants are not 

incorporated in the model which affects the use of oil and gas. 
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Figure 4-6 Comparison of the difference in generation- and emission values per fuel type for 2015 between 

the benchmark- and calibrated simulation values. Total global generation in 2015 was 24,267 TWh. A value of 

0 indicates that the benchmark and simulation values are exactly equal, negative values indicate that 

simulation values from PLEXOS-World are lower compared to the benchmark values and positive values vice 

versa. 

These aspects are also visible on a country-level as indicated in Figure 4-7. Utilization of gas 

and oil-based power plants is controlled by means of its fuel price, with oil prices calibrated 

at country-level to optimize the balance in use of both fuel types compared to historical data. 

Despite this, in certain cases oil is slightly underutilized in favour of gas and vice versa. Yet, it 

is important to realize that in absolute terms the role of oil for the purpose of power 

generation is very limited (see Section C.2 in Appendix C). Overall deviations in the use of gas 

compared to the benchmark values are mostly as a result of lower or higher required 

generation in the model. The underutilization of oil in India results from data discrepancies in 

the different datasets. The IEA reports a gross electricity production from oil in 2015 of almost 

23 TWh [235], whereas the diesel-based installed capacity according to India’s Central 

Electricity Authority in March 2015 was 1.2 GW [236] and in March 2016 only 0.99 GW [236]. 
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Even at full utilization this would lead to a maximum generation potential of 8.7-10.5 TWh. 

The relatively low usage of gas in China is a direct result from the earlier described limitations 

in sub-country allocation of generator capacities as well as a slightly lower total demand 

compared to benchmark generation values. That said, the role of gas for power generation in 

China is limited compared to other fuel types. Beyond gas and oil, the graph shows that 

country-level total generation as well as generation from baseload- and other low-cost 

technologies is generally in line with historical generation values. 

Figure 4-7 Comparison of normalized generation values per fuel type for the top 10 countries with highest 

2015 electricity demand. Score of 1 indicates that the calibrated simulation value is equal to the reported 

benchmark value, <1 is shortage, >1 is surplus. Total generation within the PLEXOS-World simulations per fuel 

type and country is indicated on the X-axis with a logarithmic scale. 

4.5 Discussion 
This paper describes the model development of a first-of-its-kind reference detailed hourly 

global power system model at plant and country level. The model – dubbed PLEXOS-World 

after the simulation software used – can simulate the dispatch of over 30,000 individual 

power plants representing 164 countries spread out over 265 nodes. Alongside the existing 

storage facilities around the world as well as the globally existing cross-border transmission 

capacities, the model optimizes the supply of electricity to match the system demand by 

minimizing the overall operational system cost. 

We’ve shown that the model can be a useful tool for the simulation of the global power 

system through a benchmarking exercise of calibrated simulation results with historical data 
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for 2015. That said, the model is as strong as its input data and the underlying model 

assumptions. Significant improvements can still be made, for example regarding the 

representation of existing power plant portfolios, the level of spatial detail in aspects such as 

fuel- and carbon prices and by incorporating a wider range of data years for demand- and 

VRES profiles [239]. The main strength of the model is therefore not in its absolute accuracy 

but in its openness, adaptability and flexibility for other users. All model input is available as 

supplementary material [231] to allow other users to modify the model in PLEXOS or recreate 

the model in other simulation environments. This includes a full global dataset of cross-border 

transmission capacities, hourly demand profiles, and plant-specific CF profiles for existing 

hydro, solar and wind power plants. The model can be used for assessments on the global 

scale, but it is as easy to zoom in on a specific country or area in the world allowing it to be 

used for a wide range of research. The model is setup in a straight-forward fashion that makes 

it easy for users to switch to more accurate and detailed data for specific regions while 

modelling other areas with base data (or exclude completely). 

The study has given us some valuable insights in the availability, importance- and strength of 

open data initiatives [32]. Nonetheless, it has also highlighted the still existing data gaps in 

especially areas outside Europe and North-America as well as the general difficulty of dealing 

with data discrepancies while using multiple large datasets. The study also showcased the 

clear differences in power plant portfolios and overall power system characteristics in 

different parts of the world. This latter aspect highlights once again that there is no single 

uniform pathway in the energy transition and decarbonization of the global power system, 

fuelling the importance of modelling tools like PLEXOS-World to support research in this area. 

In future research, the model will be used as a reference model based on which a range of 

global decarbonization pathways will be assessed. For example, advanced analyses of the 

concept of a globally interconnected power grid [30,195,227] will be conducted as well as the 

application of known soft-linking techniques [38] to investigate the technical feasibility of 

projected power systems in global scenarios as constructed by IAMs. 
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Chapter 5 Assessing Global Climate Change Mitigation Scenarios from 

a Power System Perspective Using a Novel Multi-Model Framework 

5.1 Abstract 
There is a debate within the scientific and policy making community as to the suitability of 

global IAMs for long-term planning exercises of the global power system. This study informs 

this debate and proposes a methodological framework for soft-linking of global IAMs with 

detailed global power system models. With the proposed open-source framework, the 

scenario results from IAMs can be fed into a power system model to assess given scenarios 

with enhanced spatial, technological, and temporal resolution. Results from these simulations 

can be redirected to the IAM through iterative bi-directional soft-linking. A proof of concept 

application of the proposed framework is presented by linking global IAM MESSAGEix-

GLOBIOM with global power system model PLEXOS-World. Among others, the results 

highlight that the assumption of unconstrained electricity flows inside large regional 

copperplates causes an overestimation of variable renewables integration potential within 

MESSAGEix-GLOBIOM. We propose areas for informed improvements in MESSAGEix-

GLOBIOM.12 

  

 
12 In review as: Brinkerink M, Zakeri B, Huppmann D et al (2021). Assessing global climate change mitigation 
scenarios from a power system perspective using a novel multi-model framework. Environmental Modelling & 
Software. 
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5.2 Introduction 

5.2.1 Background 

IAMs are widely used to assess scenarios for the long-term evolution of the global energy 

system over multiple decades [13,264]. IAMs are intended to broadly assess the long-term 

impact of interlinked developments such as the impact of emission mitigation policies on 

climate change and the economy [7,13,14,265]. IAMs therefore not only represent different 

energy demand and supply sectors, but also integrate the constraints and impacts associated 

with land-use requirements and emissions, as well as water consumption and fossil- and 

renewable resource availability [7,14]. In addition to the broad sectoral representation, IAMs 

are commonly applied for analysing policy questions that deal with large spatial coverage – 

often global – and long modelling horizons of up to one century. Hence, to remain 

computationally tractable, limits must be placed on the overall computational details of 

model simulations, and as such IAMs are restricted in temporal resolution with a significant 

geographical aggregation of model regions [14,15,264,266,267]. 

A significant challenge for IAMs is the modelling of the variability in electricity demand and 

supply as a result of the integration of large amounts of VRES in emission mitigation scenarios 

[13–16,264,268]. Traditional power systems with high levels of dispatchable technologies can 

be well represented in IAMs due to their often-predictable operation. However, due to the 

limited amount- or absence of sub-annual time resolution, a weakness of IAMs lies in 

realistically representing the operation of VRES technologies and the corresponding 

integration challenges [13–15,264,269]. To account for the above challenges, global IAMs 

such as AIM/GCE [270], IMAGE [271], MESSAGEix-GLOBIOM [272], POLES [273], REMIND 

[274] and WITCH [275] integrate generic relationships to represent the integration of VRES 

technologies in a stylized manner. For example, in MESSAGEix-GLOBIOM the amount of solar 

and wind curtailment per region is accounted for as a model input based on a marginal curve 

with increasing curtailment at higher VRES penetration levels [276]. 

A number of model improvements have been made in recent years regarding power system 

representation in IAMs among others as a result of the ADVANCE project [13,56,264,269,276–

280]. Pietzcker et al. [13] developed a set of qualitative and quantitative criteria which allows 

for critical scrutiny of power system representation in IAMS. Based on these criteria additional 

required improvements for future versions of global IAMs have been identified. This includes 
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the overall modelling of electricity transmission infrastructure with a focus on the general 

pooling effect of shared generation resources through transmission integration as well as 

limitations on internal electricity flows in large model regions like Latin America due to power 

transmission constraints [13,56,277–279]. Furthermore, often mentioned as the most critical 

improvement in IAMs is to extend the data basis to enhance the overall spatial representation 

as well as refined implementation of region specific model input- and assumptions 

[13,264,276,278,279]. For integration of new model assumptions in IAMs, it is recommended 

to benchmark simulation results with operational power system dispatch models 

[13,14,276,281]. Power system models can assess operational aspects of a given power 

system with high spatial, temporal, and technological detail. Due to the dedicated sectoral 

scope, a range of state of the art energy or power system models such as Artelys Crystal Super 

Grid [48,282,283], LUSYM [284,285], LUT Energy System Transition model [230], PLEXOS 

[17,37,239,286,287] and PyPSA [288,289] have proven ability to simulate spatially rich 

continental- or global-scale models with hourly temporal resolution at minimum. 

5.2.2 Model Interlinkage 
By accepting that all sets of optimization and simulation models have clear limitations, it is 

possible to make use of the strengths of one type of model to inform and improve the other 

by means of inter-model linkages that facilitate data flows. There are two main approaches 

that can be distinguished, one being a soft-link approach in which results from the IAM are 

being fed into the power system model to gain insights into important aspects of power 

system design and operation and to assess the overall feasibility of a given scenario [38]. 

Optionally, by means of an iterative process between the two models through bi-directional 

coupling, the results from the power system model simulations can be used to adjust the 

model input- and assumptions in the IAM. The other main approach that can be applied is a 

hard-link method in which the optimization occurs in a parallel fashion by means of an 

algorithm that communicates dynamically between both models and leads to a singular set 

of results [290]. Both the soft-link [38,47,291–296] and the hard-link [279,297] approach have 

proven to be suitable methods for linking IAMs and power system models. 

That said, both methods have their disadvantages that can act as barriers for implementation. 

Soft-linking often requires manual data manipulation, and as time passes or the users 

involved in the specific soft-link change, it becomes challenging to repeat the exercise 
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[276,290]. Hard-linking involves significant time and resources to develop a smooth operation 

of co-optimization of both models which is not always feasible [290], nor are all modelling 

tools computationally able to function in this setting. Next to the above, Collins et al. [14] 

argue that due to the small number of very sizable regions in global IAMs – each of which is 

assumed to be a “copperplate” without internal network constraints – as well as long 

modelling horizons, it can be challenging to perform power system model simulations for 

every region for all horizon years.  

A common approach therefore is to make use of a power system model based on a limited 

spatial scale to benchmark given scenarios from global IAMs. The results from these spatially 

limited power system model simulations are often used to develop stylized relationships for 

power system representation in the IAM uniformly for all regions [276,279,281]. This 

approach is viable given practical constraints such as availability of data to construct accurate 

power system models for all regions globally, yet recent open-data initiatives [23–

25,231,249,287,298,299] have made the development of detailed global power system 

models possible [230,231,287] from which the model input data can easily be transferred to 

other modelling tools [231]. 

5.2.3 Contribution of this Study 
This paper proposes a methodological framework for soft-linking of continental- or global 

IAMs with power system models. With the proposed framework, output from IAMs can be 

fed into a power system model to assess given scenarios with increased spatial, technological, 

and temporal resolution. The power system model output can in turn be redirected to the 

IAM to use assessment outcomes for internal improvements such as renewed region-specific 

power system input and model assumptions. The novelty of this framework and paper is 

multifold and developed in response to the identified limitations of IAMs and existing model 

linking methodologies. First, the framework is not used to assess scenarios with the often 

coarse spatial representation of IAMs as is, but actually uses the long-term capacity expansion 

module within the power system model to downscale the regional copperplates as used in 

the IAM to a more spatially detailed level. This allows for a more realistic assessment of local 

power system operations within the given IAM scenario. Secondly, the framework promotes 

using a standardized data format, making it non-discriminatory and useful for a wide range of 

IAMs and power system models while simultaneously allowing the exercise to be easily 
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repeated when needed. Lastly, being a first of its kind, the framework is designed and applied 

in this paper to link a global IAM with a global power system model. Although the focus of the 

framework is particularly oriented towards the key limitations of IAMs, where needed the 

framework can also be applied to other long-term planning models like energy system 

optimization models. 

Considering the importance of global IAMs for key scientific reports such as Chapter 2 of the 

Special Report on Global Warming of 1.5°C by the Intergovernmental Panel on Climate 

Change (IPCC) [7] and Chapter 3 of the forthcoming Sixth Assessment Report, an ongoing 

debate exists within the scientific community [300–302] whether global IAMs are suitable for 

long-term planning of the global energy system due to among others the limitations as 

described in this Section. The proposed framework informs this debate by providing the 

ability to scrutinize IAM scenarios in dedicated power system models while simultaneously 

supporting internal improvements of power system representation within the IAMs. As a 

proof of concept, the global implementation of the IAM MESSAGEix-GLOBIOM [303,304] is 

soft-linked to PLEXOS-World [231,287], a 258-nodal detailed global power system model 

developed in PLEXOS [37]. By means of a snapshot analysis for the year 2050, a 1.5°C and high 

VRES scenario from MESSAGEix-GLOBIOM is assessed with the aim to determine whether the 

generic stylized relationships regarding generator reserve requirements, generator capacity 

factors, storage- and transmission integration in MESSAGEix-GLOBIOM are deemed 

appropriate or whether these could be improved with more accurate regional 

representations. Section 2 describes the proposed methodological framework and Section 3 

includes the results of the proof of concept application of the framework. Section 4 includes 

a discussion regarding the framework, its limitations and a commentary on the theoretical 

discussion regarding the suitability of IAMs for planning exercises of the global power system. 
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5.3 Methodological Framework 
The proposed methodological framework for soft-linking spatially coarse IAMs with dedicated 

power system models allows for assessments of the technical feasibility of specific IAM 

scenarios with higher spatial, technological, and temporal resolution. This model soft-linking 

enables enhanced insights regarding VRES integration and provides the ability to assess the 

suitability of uniformly applied stylized relationships and model inputs for the power system 

representation in IAMs. 

Figure 5-1 Overview of the proposed framework for soft-linking of global IAMs and power system models. 

Figure 5-1 provides an overview of the different steps of the framework. The framework is 

setup in a non-discriminatory way allowing it to be applied to any specific IAM and power 

system model that meet certain base requirements. First, the scope of this framework from 

a spatial perspective is to downscale the coarse regional copperplates in IAMs to a detailed 

spatial resolution in the power system model. This framework is appropriate in the 

assessment of global or continental models with multi-country scale regions versus scenarios 

from already more spatially defined IAMs. Second, the power system model requires a long-

term capacity expansion module capable of integrating expansion constraints based on IAM 

scenario outputs. Lastly, although not a prerequisite, the openly available python script13 

 
13 https://github.com/iiasa/IAM-powersystemmodel-linkage 

https://github.com/iiasa/IAM-powersystemmodel-linkage
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accompanying this paper that can be used to coordinate the soft-link between IAMs and 

power system models is based on IAMC data template format14. Note that the script is a 

helpful tool to automate the data processing workflow within the soft-link yet other 

languages or manual data conversion (e.g. in Excel) can also be applied. Although the 

methodological framework is developed to address the limitations of global IAMs, the 

framework is also suitable for soft-linking or hard-linking to other long-term planning models 

like energy system optimization models. This section introduces the different parts of the 

framework. Refer to Sections D.1 and D.2 of Appendix D for details on the required data 

downscaling and conversion steps of the framework including provided examples based on a 

1.5°C and high VRES scenario from the global implementation of MESSAGEix-GLOBIOM. 

5.3.1 IAM Model Simulation 
The minimum scope of required scenario output data from the IAM model simulations 

consists of technology specific regional level powerplant capacities and regional electricity 

demand. Other data such as carbon- and fuel prices as well as capacities of balancing assets 

such as storage, power to gas and electric vehicles can either be standardized (pricing) or 

optimized (balancing assets) in the power system model. To assess the technical feasibility of 

a given scenario, it is recommended to use as much of the IAM scenario output in the power 

system model as possible. After that constraints can be relaxed to optimize the scenario solely 

from a power system perspective to assess in which areas improvements can be made 

regarding power system representation within the specific IAM. 

5.3.2 Spatial Downscaling 
One of the core aspects of the framework is the ability to assess regionally coarse IAM 

scenarios with higher spatial resolution in the power system model. Especially relevant from 

a power system perspective, this allows for any IAM scenario to be assessed in the context of 

local characteristics with the ability to provide detailed insights that cannot be provided with 

a coarser representation. For this to occur IAM scenario data must be downscaled to a newly 

defined spatial resolution to be used as input for the power system model. An exemplary 

visualization of indicative spatial resolutions of both sets of models is shown in Figure 5-2.  

 
14 https://data.ene.iiasa.ac.at/database/ 

https://data.ene.iiasa.ac.at/database/
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Figure 5-2 Example of indicative spatial resolutions for global IAMs and global power system models. The left 

side shows the CPA region of the global IAM MESSAGEix-GLOBIOM consisting of the combined area of 

Cambodia, China, Laos, Mongolia, North Korea, Taiwan, and Vietnam. The right side shows the spatial 

resolution of global power system model PLEXOS-World which represents every country in the CPA region 

individually and China as 34 separate nodes. 

IAM scenario- and region specific yearly electricity demand values need to be downscaled and 

although any downscaling approach can be applied, within the accompanying script we apply 

a forecasting methodology to project country-level yearly electricity demand based on 

multivariate linear regression with GDP at purchasing power parity per capita and 

urbanization share as independent variables and electricity consumption per capita as the 

dependent variable. The projected country-level values are used as proxy to downscale the 

IAM scenario regional electricity demand. Furthermore, for larger countries such as China, 

India and the United States, we use the PLEXOS-World 2015 dataset [231,287] for further 

downscaling to sub-country level by applying relative historical shares of electricity demand 

per sub-country node as proxy. 

As well as electricity demand, other main IAM scenario outputs that requires downscaling are 

regional powerplant – and optionally balancing asset – capacities. Regional capacity 

expansion- and retirement constraints need to be developed that can be calculated by 

comparing the IAM scenario output with existing baseline capacities. These constraints 

determine per scenario region and technology how much capacity needs to be expanded or 

retired compared to the baseline to match the values provided by the specific IAM scenario 

for a given year. The constraints are used as boundary condition for the capacity allocation 

exercise within the power system model as described in Section 5.3.4. 

5.3.3 Temporal Downscaling 
Global IAMs and power system models have different modelling horizons and temporal 

resolution. An example of this is visualized in Figure 5-3. IAMs focus on the long-term 

development of the energy system with planning horizons of up to a century and modelling 
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periods of between 1 to 10 years with a specified baseline year as starting point. Timesteps 

in global IAMs are generally applied on an annual basis with investment decisions reported at 

the end of every modelling period. Within the framework, the power system model is used to 

assess IAM model output for a specific year with detailed temporal resolution, for example 

on an hourly basis for the full year depending on the aim of the study [232]. Results can be 

reported per timestep or on a yearly basis for direct comparison with the IAM.  

 

Figure 5-3 Comparison of indicative modelling horizons and temporal resolutions for global IAMs and global 

power system models within the framework. 

The spatially downscaled yearly electricity demand values from Section 5.3.2 require 

additional downscaling in terms of temporal resolution. Once again multiple approaches are 

possible, yet for the results in this study we use historical timeseries as proxy based on the 

PLEXOS-World 2015 dataset [231,287] which includes hourly demand data for all countries 

globally as well as for a wide range of sub-country regions for the 2015 calendar year. Details 

on the applied methodology for electricity demand downscaling including examples can be 

found in Section D.1 of Appendix D. The downscaled IAM scenario data as well as other input 

data that can be derived from the IAM scenario output needs to be integrated in the power 

system model. This can be done manually or partially automated by means of scripts that can 

assist with the overall workflow. 
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5.3.4 Power System Model Capacity Allocation 
Traditionally capacity expansion exercises in power system models are used to optimize the 

long-term development of the power system. In contrast to the traditional application, the 

framework we propose in this article does not allow powerplant capacities to be expanded 

and retired in an unconstrained fashion. Instead, we use the expansion and retirement 

decisions from the IAM by means of the developed expansion- and retirement constraints in 

Section 5.3.2 as boundary conditions for the power system model. The capacity expansion 

module is used to optimize the allocation of powerplant resources to the different nodes 

within a region with the IAM regional capacities as boundary. An examplary application of this 

exercise can be seen in Figure 5-4. 

Figure 5-4 Example of the capacity allocation exercise within the framework based on the Former Soviet Union 

(FSU) region of the global IAM MESSAGEix-GLOBIOM. The left bar indicates the region and technology specific 

powerplant capacities for a given year based on the regional IAM output. These capacities are used as input 

for the power system model acting as boundary condition for the capacity allocation exercise. The right side 

shows nodal level powerplant capacities as output of the capacity allocation exercise within the power system 

model. Refer to [231,287] for naming conventions of nodes as used in the PLEXOS-World model. 

Together with the allocation of powerplant capacities, the power system model capacity 

expansion module can optimize the expansion and integration of balancing assets such as 

transmission infrastructure, different storage technologies, flexible utilization of electric 

vehicles and demand side management. Although these assets are usually accounted for in 

IAMs, their operational benefits and technical limitations are only visible in model simulations 

with detailed spatial and temporal resolution. For example, global IAMs generally assume that 

there are no internal network constraints within large model regions like Latin America. This 

“copperplate" assumption means that intra-regional electricity exchange limitations cannot 

be adequately modelled. More detailed power system models can identify whether this 
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assumption is valid or whether limitations in available electricity transmission infrastructure 

might necessitate different results. Details on development of the capacity expansion- and 

retirement constraints as well as the application of power system models’ capacity expansion 

module for capacity allocation and balancing asset integration can be found in Sections D.2 

and D.3.1 of Appendix D. 

5.3.5 Power System Model Unit Commitment & Economic Dispatch 
The next step in the framework is to use the output from the capacity allocation exercise as 

input for the UCED modelling. UCED within power system models refers to the optimal 

utilization of available generating capacity to match system demand within a given simulation 

period while abiding to technical- and operational constraints. Temporally detailed model 

simulations, being hourly or even sub-hourly, of the downscaled generator portfolio and 

balancing assets can provide detailed insights in the technical feasibility of a given IAM 

scenario. It furthermore allows for benchmarking of simulation results with generic model 

assumptions within the IAM. Examples can be assumed CFs and predefined technology 

utilization rates as well as stylized relationships regarding curtailment and occurrence of 

possible unserved energy. Similar to the results from the capacity expansion exercise, the 

output from the UCED can indicate whether there are significant regional differences that 

could merit a tailored approach for the IAM input or whether generic stylized input 

assumptions are viable. 

5.3.6 Feedback Loop 
The results from the model soft-link exercise within this framework consists of quantified 

simulation output that can assist with optimizing the power system representation in IAMs 

while considering the computational requirements of model simulations. The power system 

model output data can be converted into a readable format for the specific IAM (e.g. IAMC 

data template format) and directly integrated where appropriate. The scripted feedback loop 

within the framework allows for an iterative process between the IAM and power system 

model until the power system representation in the IAM is deemed satisfactory in terms of 

power system adequacy. 

5.4 Application of the framework 
This Section includes a proof of concept application of the proposed soft-link framework with 

the global IAM MESSAGEix-GLOBIOM [272] being used from which the ENGAGE SSP2 NPI2020 
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500 scenario will be assessed in power system model PLEXOS-World [231,287]. The objective 

is to determine whether the generic stylized assumptions regarding generator reserves (i.e. 

firm capacity requirements), generator CFs, storage- and transmission integration in 

MESSAGEix-GLOBIOM are appropriate, or whether this could be improved by means of 

regional refinement. Furthermore, an iteration between MESSAGEix-GLOBIOM and PLEXOS-

World will be applied to showcase the potential for informed model improvements in global 

IAMs by means of the framework. 

5.4.1 MESSAGEix-GLOBIOM 

MESSAGEix-GLOBIOM is a process-based IAM with a detailed representation of technological, 

socioeconomic and biophysical processes in energy and land-use systems [272]. The global 

implementation of the model has different spatial resolutions, typically ranging between 11 

and 14 world regions [305], with the spatial resolution of the 11-region model as assessed in 

this study visualized in Figure 5-5. The focus of this paper is on the power system 

representation in MESSAGEix-GLOBIOM. Readers should refer to [272,305] for a full 

description of the MESSAGEix framework and [303] for details on the MESSAGEix-GLOBIOM 

model. Although MESSAGEix can perform model simulations with sub-annual timeslices, 

simulations of the global implementation of MESSAGEix-GLOBIOM generally occur with yearly 

resolution. To account for challenges associated with VRES integration only quantifiable in 

modelling exercises with detailed temporal resolution, Sullivan et al. [281] introduced two 

sets of power system reliability constraints in MESSAGEix-GLOBIOM related to (I) capacity 

reserves to meet system peak load at all times and (II) operating reserves to provide a pre-

defined level of system flexibility relative to the installed capacity of different types of power 

plants. Albeit a significant step forward compared to earlier versions of the model, Johnson 

et al. [276] argue that the approach has a range of limitations such as the fact that the globally 

uniform parametrization is based on UCED simulations from a six-region power system model 

of the ERCOT system in Texas US [277,281,306] and in general that the use of a detailed power 

system model for parameterization makes reproducibility difficult. 
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Figure 5-5: Spatial representation of the 11-region MESSAGEix-GLOBIOM global IAM based on [305] as well as 

the spatial representation for MESSAGEix-GLOBIOM scenarios in PLEXOS-World. Every individual colour 

represents a copperplated region following MESSAGEix-GLOBIOM, whereas every area separated by borders 

as shown on the map represents a single (sub-)country node in PLEXOS-World with a total of 258 individual 

nodes. Refer to Section C.1 and C.3 in Appendix C for details on sub-country nodes in PLEXOS-World. 

Due to the above limitations, Johnson et al. applied a hybrid approach using region specific 

Residual Load Duration Curves (RLDCs) from [264]. RLDCs represent the load of a specific 

region that must be met by non-VRES calculated by subtracting the projected VRES generation 

from the demand values per interval. These curves have been used to create regionally 

stylized parameterization for the impact of VRES deployment on VRES curtailment, non-VRES 

flexibility requirements and VRES capacity values. Firm capacity requirements following 

Johnson et al. have been defined per region and decade as a multiplier of average annual 

load. Firm capacity represents capacity that is available at any given time. The multiplier is 

based on the region-specific relative ratio between average load and peak load combined 

with a 20% reserve margin. CFs for VRES technologies are based on regional resource 

potentials identified per range of CFs, whereas assumed CFs for thermal powerplants are 

globally uniform per technology for all regions based on the ability of powerplants to operate 

between baseload- and flexible operational modes [276].  

In previous versions of MESSAGEix-GLOBIOM, inter-regional exchange of electricity occurred 

as any other commodity based on a global market. In essence this meant that regions had the 

ability to either supply to- or import electricity from the global market, without consideration 

of the spatial feasibility of exchange between regions. However, as part of the modelling 
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effort in parallel to this study, the representation in MESSAGEix-GLOBIOM has been adapted 

to only allow for inter-regional exchange bilaterally by means of investments in transmission 

grid infrastructure. Iterations with PLEXOS-World have been used to inform the input 

parameters in MESSAGEix-GLOBIOM for this new setup as explained in more detail in Section  

D.3.3 of Appendix D. Intra-regional electricity flows within the regional copperplates are not 

modelled within MESSAGEix-GLOBIOM. 

Despite Johnson and colleagues valid concerns regarding the reproducibility of soft-linking 

MESSAGEix-GLOBIOM to a detailed power system model, the authors mention: “it would be 

useful to compare the results of MESSAGE with those from a detailed power system model 

with high temporal resolution to validate how well MESSAGE simulates the impacts of VRE 

deployment”. The proposed standardized framework for soft-linking IAMs and power system 

models makes the soft-link easier to reproduce and hence the exercise as envisioned by 

Johnson et al. can be applied as shown in this study. 

5.4.2 PLEXOS-World 
PLEXOS [37] is a transparent energy- and power system modelling tool among others used for 

electricity market modelling and planning freely available for academic use. All data input is 

customizable and the linear equations can be queried and modified by the user. PLEXOS has 

an integrated user interface enabling data management and model simulation to occur within 

the tool, yet also supports automation of data flows and model simulation by means of COM 

or .NET. The tool facilitates use of open source (GLPK, SCIP) and commercial (CPLEX, Gurobi, 

MOSEK, Xpress-MP) solvers depending on availability of licenses, with Xpress-MP being used 

for the simulations in this study. For a detailed description of the tool refer to [231,287]. 

The model used for this study is based on the PLEXOS-World model, a detailed global power 

system model with 2015 as baseline year capable of simulating the generation of over 30,000 

individual powerplants [231,287]. The spatial representation of the model specified for this 

study is visualized in  Figure 5-5, with a total of 258 nodes grouped per larger modelling region 

following the spatial representation of MESSAGEix-GLOBIOM. The existing portfolios in the 

different nodes consisting of aggregated powerplant capacities per technology, transmission 

infrastructure and storage assets are used as baseline for the capacity allocation exercise as 

described in Section 5.3.4. The modelling of electricity transmission in PLEXOS-World is based 

on physical transmission grids with development of new capacity compared to the 2015 
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baseline being part of the expansion exercise. Every unique potential high voltage 

transmission pathway in the model – totalling 545 – has customised associated costs and 

transmission losses as a function of transmission distance and specific transmission 

technology. Intra-nodal grids are not modelled in PLEXOS-World. Refer to Section D.3 of 

Appendix D for full details on the modelling as well as for details on scenario integration of 

MESSAGEix-GLOBIOM in PLEXOS-World and Appendix A for detailed equations of the UCED 

modelling in PLEXOS-World. The PLEXOS-World model as applied for this study including all 

input data and timeseries can be found in [307]. 

5.4.3 Scenarios 
The ENGAGE SSP2 NPI2020 500 scenario is consistent with end-of-century warming of below 

1.5°C after a temperature overshoot in the second half of the century. It exhibits high 

penetration of VRES and has therefore been chosen for this study to critically scrutinize 

MESSAGEix-GLOBIOM in a setting where IAMs generally struggle in terms of realistically 

incorporating the implications of variability in electricity supply. We perform a ‘Baseline’ 

simulation and a set of sensitivity simulations in PLEXOS-World summarized in Table 5-1. As 

a proof of concept for the potential of the framework to streamline informed model 

improvements in global IAMs, the results of the model simulations in PLEXOS-World related 

to inter-regional electricity trade are fed back to MESSAGEix-GLOBIOM and used as model 

input for a second iteration. The simulations in MESSAGEix-GLOBIOM as performed for this 

study can be found in Table 5-2. It is important to recall that in line with the framework, key 

model input in PLEXOS-World such as powerplant capacities and electricity demand are equal 

to the MESSAGEix-GLOBIOM model output at all times. 

Table 5-1 Overview of PLEXOS-World model simulations to assess the MESSAGEix-GLOBIOM 1.5°C scenario 

from a power system perspective. 

 

PLEXOS-World 

simulation 

Soft-linked to Renewable capacity 

factors  

Storage assumptions 

Baseline First iteration 

MESSAGEix-GLOBIOM 

Renewable capacity 

factors based on 

MESSAGEix-GLOBIOM 

Storage capacity expansion 

constrained by MESSAGEix-

GLOBIOM scenario 

Conservative CFs First iteration 

MESSAGEix-GLOBIOM 

Renewable capacity 

factors based on PLEXOS-

World 2015 

Storage capacity expansion 

constrained by MESSAGEix-

GLOBIOM scenario 

No Storage 

Constraints 

First iteration 

MESSAGEix-GLOBIOM 

Renewable capacity 

factors based on 

MESSAGEix-GLOBIOM 

Storage capacity expansion 

freely optimized 
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Table 5-2 Overview of MESSAGEix-GLOBIOM model simulations for the 1.5°C scenario.  

The ‘Baseline’ simulation represents the reference for the soft-link framework in that it 

replicates the original MESSAGEix-GLOBIOM scenario. Input CF profiles for hydro, solar and 

wind technologies in the ‘Baseline’ simulation within PLEXOS-World are in line with 

MESSAGEix-GLOBIOM levels. Compared to current day CFs for renewable technologies, 

region specific CFs in MESSAGEix-GLOBIOM are significantly higher, both due to assumed 

technological learning as well as investments in new capacity at currently untapped locations 

with efficient hydro, solar and wind resources. Due to the large regional copperplates in 

MESSAGEix-GLOBIOM, renewable resource potential for a specific region can be informed by 

often very different geographical areas. In PLEXOS-World, if domestic resource potentials are 

to be used elsewhere within the region it must be physically transferred by means of 

transmission infrastructure including associated costs and losses whereas in MESSAGEix-

GLOBIOM no intra-regional barriers for trade exist. This can lead to different investment 

dynamics, and hence as a sensitivity analyses it is merited to assess the specific MESSAGEix-

GLOBIOM scenario in context of conservative CFs as is the case with the ‘Conservative CFs’ 

model simulation. CF profiles in this simulation are based on the PLEXOS-World 2015 dataset 

which includes profiles based on benchmarked values at year- and country level for 2015 

[231,287]. 

Whereas in the ‘Baseline’ and ‘Conservative CFs’ simulations the expansion of storage 

capacity is bound at a regional level following the MESSAGEix-GLOBIOM scenario output, the 

‘No Storage Constraints’ simulation allows for full optimization of storage capacity. This allows 

for an assessment of how realistically storage expansion is integrated in MESSAGEix-

GLOBIOM and moreover how it impacts other variables such as generator CFs, generator 

reserve requirements and transmission utilization. Because this simulation allows for 

unconstrained competition between transmission and storage in the optimization it provides 

the best indication for the potential of inter-regional electricity trade. The results from the 

‘No Storage Constraints’ simulation regarding interconnector CFs are therefore used as model 

MESSAGEix-GLOBIOM 

simulation 

Inter-regional trade 

First Iteration Inter-Regional trade based on expansion of bilateral transmission infrastructure. 

Input parameters uniform for all possible inter-regional transmission pathways. 

Second Iteration Inter-Regional trade based on expansion of bilateral transmission infrastructure. 

Transmission pathway specific input parameters are informed by PLEXOS-World. 
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input for a second iteration in MESSAGEix-GLOBIOM to optimize its representation of inter-

regional electricity trade. This exercise can be seen as a proof of concept for the framework 

in terms of facilitating power system model informed adjustments of IAM power system 

representation and model input. Refer to Table D-4 in Section D.3.3 of Appendix D for an 

overview of the adjusted input parameters in MESSAGEix-GLOBIOM based on PLEXOS-World. 

5.4.4 Results 
This Section includes the modelling results of PLEXOS-World for the assessed MESSAGEix-

GLOBIOM 1.5°C scenario. The results will be compared to the model outputs from 

MESSAGEix-GLOBIOM based on which suggestions are being made for additional internal 

model improvements regarding power system representation. Sections 5.4.4.1-5.4.4.4 are 

focused on simulations based on the first iteration in MESSAGEix-GLOBIOM whereas Section   

5.4.4.5 analyses the differences for both iterations in MESSAGEix-GLOBIOM related to inter-

regional electricity trade. 

5.4.4.1 Generation and Storage 

Figure 5-6 shows the differences in generation mix per PLEXOS-World model simulation in 

comparison to the MESSAGEix-GLOBIOM output. The main observation is that for both the 

‘Baseline’- as the other simulations in PLEXOS-World the total generation output is lower 

compared to the MESSAGEix-GLOBIOM scenario output. For example, following the given 

scenario in MESSAGEix-GLOBIOM the 2050 electricity generation in the CPA region – 

consisting of China and a number of neighbouring countries – equals approximately 55.5 EJ 

whereas generation in the PLEXOS-World simulations ranges between 43-45 EJ. The lower 

generation compared to MESSAGEix-GLOBIOM is in most cases occurring for both renewable 

technologies as well as for non-renewable thermal-based powerplants.  
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Figure 5-6 Differences in generation mix per PLEXOS-World simulation in comparison to the MESSAGEix-

GLOBIOM output. The bars represent generation differences per fuel type (primary Y-axis) with positive values 

indicating surplus generation in the MESSAGEix-GLOBIOM output compared to PLEXOS-World and negative 

values vice versa. The markers represent total generation values (secondary Y-axis). 

Figure 5-7 shows the technology and region-specific CFs based on model output for a range 

of key generator technologies. The ‘Baseline’ and ‘No Storage Constraints’ simulations have 

maximum CF input assumptions for hydro, solar and wind technologies in line with the 

MESSAGEix-GLOBIOM scenario. Yet as the graphs in Figure 5-7 indicate, the equal availability 

of renewable resources does not always lead to comparable CFs as output. CFs for renewable 

technologies in PLEXOS-World are lower following the implications of the more detailed 

spatial, temporal and technical modelling resolution as will be explained in the following 

pages. For example the regionally aggregated CF for Solar-PV based on the ‘Baseline’ 

simulation output for the CPA region is only 16.2% compared to 17.7% in MESSAGEix-

GLOBIOM. CFs for hydro, solar and wind technologies in the ‘Conservative CFs’ model 

simulation are based on 2015 benchmarked values and as expected lead to signifcantly lower 

VRES penetration compared to the MESSAGEix-GLOBIOM scenario output. This highlights the 

sensitivity of modelling assumptions in IAMs regarding uncertain developments such as the 

availability of highly efficient untapped renewable resources. 
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Figure 5-7 Output CFs for a range of generator technologies for the different PLEXOS-World model simulations 

in comparison to MESSAGEix-GLOBIOM. 

Non-renewable thermal-based powerplants partly compensate for the lower availabilty of 

renewable resources. However – with the exception of regional outliers – all PLEXOS-World 

simulations indicate that CFs for these technologies are below par compared to the 

MESSAGEix-GLOBIOM scenario output. Even in a case with less efficient renewable resources 

as in the ‘Conservative CFs’ model simulation CFs are not comparable to assumed values in 

MESSAGEix-GLOBIOM. The exceptions are Gas and Coal powerplants without CCS from which 

higher utilization is required to mitigate part of the existing supply shortage from renewables. 

The unconstrained expansion of electricity storage in the ‘No Storage Constraints’ leads to 

lower CFs for Solar-PV yet higher CFs for other technologies compared to the ‘Baseline’. This 

is a direct result of lower investments in storage capacity in PLEXOS-World for the ‘No Storage 

Constraints’ simulation compared to MESSAGEix-GLOBIOM as higlighted in Figure 5-8 
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compensated by larger investments in transmission infrastructure. This observation ties in 

with recent literature which highlights that at a regional or continental level the sharing of 

resources through transmission integration is favourable compared to mostly domestic 

generation and storage [308]. 

 

Figure 5-8 Capacity (left) and discharge CFs (right) for electricity storage for the different PLEXOS-World model 

simulations in comparison to MESSAGEix-GLOBIOM. 

Expansion of storage in MESSAGEix-GLOBIOM occurs with predefined energy balance and 

firm capacity contributions leading to e.g. large scale investments of over 1000 Gigawatt (GW) 

in CPA and the North America (NAM) region. However, the results show that with similar 

capacities in PLEXOS-World the discharge CFs following MESSAGEix-GLOBIOM are not being 

met. When PLEXOS-World is allowed to freely optimize the expansion of storage not bound 

to capacities following the MESSAGEix-GLOBIOM output – as in the ‘No Storage Constraints’ 

simulation – total build capacities are approximately one third of MESSAGEix-GLOBIOM, 

albeit with higher CFs compared to the other simulations in PLEXOS-World. There are multiple 

aspects that contribute to the underutilization of available storage, however the main factor 

is the lack of diversity in storage technologies following MESSAGEix-GLOBIOM which to date 

is represented by a single technology with 24-hour storage potential [276]. Integration of 

storage technolgies in MESSAGEix-GLOBIOM with higher power versus storage ratios – for 

example batteries – that can be utilized on a diurnal basis to mitigate peaks in supply from 

Solar-PV would be beneficial. Similarly, other long-term storage technologies next to 

hydrogen electrolysis such as PSH could assist with seasonal storage purposes for especially 

wind based generation. 

5.4.4.2 Curtailment and Unserved Energy 

Any electricity coming from VRES technologies that cannot be instantaneously used, stored, 

transmitted to a neighbouring node or converted to hydrogen gets curtailed – i.e the 
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unplanned reduction of generation output. Curtailment is an important factor in power 

systems with large penetration of variable renewables and based on the PLEXOS-World 

simulations an element that is underestimated in MESSAGEix-GLOBIOM. This is visualized in 

Figure 5-9 which as an example higlights the region specific curtailment values for Solar-PV.  

Figure 5-9 Curtailment values for Solar-PV specified per model simulation. The left graph indicates curtailment 

in absolute values (EJ) and the right graph indicates curtailment relative to the theoretical generation 

potential per region for Solar-PV. 

In almost all cases curtailment is signficantly higher compared to MESSAGEix-GLOBIOM which 

accounts for curtailment through stylized relationships ex ante as a function of relative VRES 

penetration [276]. Although this kind of stylized relationship is inherently not incorrect – the 

‘Baseline’ and ‘Conservative CFs’ PLEXOS-World model simulations indeed indicate that 

curtailment grows in parallel with relative VRES penetration – the observed curtailment 

values in PLEXOS-World are a magnitude higher. The lower investments in storage capacities 

in the 'No Storage Constraints' simulation lead to overall highest Solar-PV curtailment values 

due to reduced possibilities to mitigate peak Solar-PV supply. On the global scale, curtailment 

values relative to the theoretical generation potential ranges between 4-11% for Solar-PV 

depending on the PLEXOS-World simulation and compartively between 4-8% for wind based 

technologies. 

The combined effect of VRES curtailment and the underutilization of dispatchable 

technologies leads to the occurance of unserved energy15 in the global power system. 

Unserved energy represents the share of final electricity demand that cannot be met with the 

available resources. This is visualized in Figure 5-10 which highlights the occurrence of 

unserved energy per region and model simulation. Note that in power systems the occurance 

 
15 Different to MESSAGEix-GLOBIOM where occurrence of unserved energy is not possible, PLEXOS-World allows for unserved energy at a 

cost of 10,000 €/MWh. The model can determine that often it is more efficient for unserved energy to occur than to invest in additional 
flexiblity assets such as storage or in further transmission expansion to mitigate this unserved energy. 
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of unserved energy can be partly mitigated by load shifting or shedding through demand side 

management. However, demand side management is not actively incorporated in 

MESSAGEix-GLOBIOM in relation to system flexibility. 

Figure 5-10 Occurrence of unserved energy per PLEXOS-World simulation and region. The green bars represent 

the absolute values in EJ (primary Y-axis) and the blue markers represent the relative values compared to the 

regional final electricity demand (secondary Y-axis). 

At a global level unserved energy ranges between 2.5-5% of final electricity demand 

depending on the PLEXOS-World simulation. Unserved energy is lowest in the ‘No Storage 

Constraints’ simulation due to the unconstrained competition in investments for storage- and 

transmission infrastructure. Within this simulation, regions such as NAM who rely for a large 

share of its electricity supply on operationally low-cost hydro-, nuclear- and wind based 

powerplants within the given MESSAGEix-GLOBIOM scenario see the largest drop in unserved 

energy. To optimally utilize these resources it is beneficial to have the ability to share 

resources through a well integrated regional power system. More details on transmission 

utilization within the different model simulations will be provided in Sections 5.4.4.4 and 

5.4.4.5. 

The simultaneous occurance of significant curtailment as well as large scale unserved energy 

could be seen as paradoxical. The PLEXOS-World simulations indicate that generator capacity 

and storage are often available in the wrong place at the wrong time leading to both surplus- 
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as shortage of electricity supply. This observation leads to the conclusion that from a regional 

and temporally coarse perspective following MESSAGEix-GLOBIOM the projected global 

power system is deemed technically feasible, however the application of the soft-link 

framework by means of temporally and spatially detailed model simulations in PLEXOS-World 

higlight that the power system adequacy is insufficient. There are a few key factors that 

contribute to this aspect which will be discussed next. 

5.4.4.3 Firm Capacity 

Firm capacity requirements in PLEXOS-World per country follow the same assumptions as 

MESSAGEix-GLOBIOM applies per region. These requirements are determined by taking the 

relative ratio between average load and peak load in addition to a standardized 20% reserve 

margin. Whereas in MESSAGEix-GLOBIOM these ratios are approximated, in PLEXOS-World 

they are determined by matching the relative peak load per country based on [231,287] with 

the projected electricity demand. Table 5-3 compares the firm capacity requirements as 

multiplier of average load for 2050 following MESSAGEix-GLOBIOM values [276] and the 

regionally aggregated demand-weighted values in PLEXOS-World. 

Table 5-3 Firm capacity requirements per region in MESSAGEix-GLOBIOM following [18] and in PLEXOS-World 

for 2050. The values are relative to average annual electricity demand. Values for PLEXOS-World are regional 

aggregates based on country-level demand weighted values. 

 

 

 

 

 

 

 

Compared to MESSAGEix-GLOBIOM, firm capacity requirements per region in PLEXOS-World 

have a much wider range. It’s also worth noting that the values in Table 5-3 represent a 

regional average, but that values per country in PLEXOS-World can range significantly. For 

example values for countries in CPA range from 1.39 to 2.21. Firm capacity requirements in 

MESSAGEix-GLOBIOM affect the long-term development of the regional generator portfolios. 

However, the different values in PLEXOS-World creates a situation where for some regions 

Region MESSAGEix-GLOBIOM PLEXOS-World 

AFR 1.66 1.78 

CPA 1.61 1.52 

EEU 1.76 1.68 

FSU 1.72 1.64 

LAM 1.73 1.67 

MEA 1.75 1.88 

NAM 1.78 2.01 

PAO 1.7 1.92 

PAS 1.68 1.6 

SAS 1.68 1.6 

WEU 1.71 1.82 
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available firm capacity based on the MESSAGEix-GLOBIOM scenario is insufficient to meet 

peak demand. Furthermore, the widespread occurance of unserved energy for basically all 

regions suggests that the standardized 20% reserve margin in MESSAGEix-GLOBIOM might 

not be sufficient. 

Next to firm capacity requirements, the largescale VRES curtailment following the PLEXOS-

World simulations is an indicator that the assumed contributions of VRES technologies to firm 

capacity in MESSAGEix-GLOBIOM are overestimated. This overestimation causes negative 

knock-on effects in the simulated global power system within PLEXOS-World. The capacity 

allocation in PLEXOS-World incorporates pre-defined firm capacity contributions specific per 

technology and region in line with MESSAGEix-GLOBIOM to fulfill the set minimum reserve 

requirements. Yet, if the actual contributions to firm capacity are lower than expected 

inherently this means that the capacity allocation is sub-optimal. Lower assumed 

contributions of VRES to firm capacity would have meant a more balanced allocation of 

dispatchable generator capacity per node to retain system adequacy. Yet, in the current 

situation following MESSAGEix-GLOBIOM assumptions there is a distortion of dispatchable 

capacity in certain nodes per region versus oversupply of VRES in others explaining the overall 

low CFs and high curtailment values. 

5.4.4.4 Intra-Regional Trade 

Despite the distortion in capacity allocation, in an optimally functioning integrated global 

power system a mismatch between real-time demand and supply of electricity can be 

mitigated by sharing resources between nodes and regions by means of power pooling 

through transmision integration. However, the results have shown that because MESSAGEix-

GLOBIOM doesn’t take intra-regional network constraints into account within the regional 

copperplates the difficulty of large-scale integration of VRES in terms of matching demand 

and supply is underestimated. Despite significant intra-regional transmission flows within 

PLEXOS-World – both land-based as well as through long-distance subsea interconnectors – 

the built transmission infrastructure cannot sufficiently compensate for the large variability 

in supply and sub-optimal placement of generator capacities. Other flexibility assets such as 

electricity storage and hydrogen electrolysis assist with mitigating the mismatch but are not 

able to handle the required quantities in the simulated global power system based on the 

MESSAGEix-GLOBIOM scenario. Figure 5-11 shows mapped electricity flows in 2050 for the 
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‘No Storage Constraints’ simulation. For contextual purposes, 1 EJ roughly equals the current-

day electricity demand of Australia or Mexico. 

Figure 5-11 Cumulative electricity transmission flows in 2050 for the ‘No Storage Constraints’ model 

simulation in PLEXOS-World. Locations of transmission pathways are indicative and do not reflect a 

geographically accurate representation. 

5.4.4.5 Inter-Regional Trade 

Figure 5-12 highlights the occurance of inter-regional trade of electricity for both iterations 

of MESSAGEix-GLOBIOM in comparison to the simulations in PLEXOS-World. The Second 

Iteration of MESSAGEix-GLOBIOM has adjusted input parameters based on the results of the 

‘No Storage Constraints’ simulation in PLEXOS-World and general PLEXOS-World input 

parameters – refer to Table D-4 in Section D.3.3 of Appendix D for a full overview. Within the 

PLEXOS-World results, the ‘Conservative CFs’ simulation has the overall largest trade. For this 

simulation the inter-regional transmission flows are a means to compensate for the lower 

input RES CFs compared to MESSAGEix-GLOBIOM. The ‘Baseline’ simulation has the lowest 

trade values correlated to the earlier identified surplus capacity of electricity storage 

following MESSAGEix-GLOBIOM values. In the ‘No Storage Constraints’ simulation where the 

expansion of storage and transmission occurs in competition the inter-regional trade values 

are significantly higher compared to the ‘Baseline’ simulation at a net total of 6.3 EJ versus 

2.5 EJ globally. To put these values in context, total 2015 inter-regional trade values based on 

simulations of PLEXOS-World [287] are approximately 0.1 EJ. In line with MESSAGEix-

GLOBIOM, the FSU region has been identified as resource rich exporting region within 

PLEXOS-World albeit with CPA as main importing region compared to South Asia (SAS) in 

MESSAGEix-GLOBIOM. 
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Figure 5-12 Inter-regional electricity trade for the different PLEXOS-World simulations compared to both 

iterations of the MESSAGEix-GLOBIOM output. Positive values represent export and negative values import. 

Compared to PLEXOS-World, the inter-regional trade values for both iterations of MESSAGEix-

GLOBIOM are lower. The adjusted input parameters in MESSAGEix-GLOBIOM based on 

PLEXOS-World stimulate higher inter-regional trade between FSU and SAS as well as a modest 

uptake of inter-regional trade in other regions. However, considering the relatively minor 

differences between both iterations, it is clear that the allignment of input parameters in 

MESSAGEix-GLOBIOM based on PLEXOS-World has minor impact. It can therefore be 

concluded that the differences in spatial and temporal modelling resolution between 

MESSAGEix-GLOBIOM and PLEXOS-World are a direct cause for the underutilization of inter-

regional trade in MESSAGEix-GLOBIOM. Due to the absence of sub-annual timeslices in the 

global implementation of MESSAGEix-GLOBIOM, there is a singular decision in the 

optimization to determine whether inter-regional import or export of electricity is cost-

optimal within the modelling period. This means that transmission is solely utilized for bulk 

unilateral flows of electricity within the modelling period, yet on an aggregate level it does 

not provide additional flexibility for the power systems involved in the inter-regional trade. 
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PLEXOS-World for this study operates based on hourly intervals and hence is not only able to 

assess unilateral flows but also the occurance of bilateral flows for the purpose of balancing 

electricity demand and supply between regions and for contributions to the mitigation of 

VRES variability. Furthermore, whereas a singular inter-regional transmission pathway exists 

between regions in MESSAGEix-GLOBIOM, PLEXOS-World has transmission pathways 

between all bordering nodes meaning that multiple inter-regional transmission lines between 

two regions can be operational at any given time. The restrictions in spatial and temporal 

resolution in MESSAGEix-GLOBIOM inherently means that there is a model bias against the 

uptake of inter-regional electricity trade. 

5.4.5 Study Limitations 

Like all modelling tools, PLEXOS-World has its limitations that affect the accuracy of the 

results. As of now electric vehicles and demand side management are not included in the 

modelling which reduces the ability of the system to compensate for variability in supply. That 

said, demand side management is not actively incorporated in MESSAGEix-GLOBIOM in 

relation to system flexibility and the impact of electric vehicles on bulk storage capacity is 

limited. Next to this, additional model runs with sensitivity analysis on a range of parameters 

such as costs for transmission infrastructure, forecasted demand profiles as well as switching 

to different weather years for VRES CF profiles could increase the robustness of the results. 

Furthermore, the sampling approach used for deriving representative timeslices as applied 

for the capacity allocation exercise in PLEXOS-World – see Section D.3.1 of Appendix D for 

details – has to be assessed in more detail. Increasing the number of timeslices for the full 

global model is computationally challenging, hence it would have added value to benchmark 

the results with single-region model simulations with enhanced time slicing. Lastly, by 

attempting to replicate the MESSAGEix-GLOBIOM scenario in PLEXOS-World as closely as 

possible the risk arises of over constraining the optimization. A next step could be to apply 

the optimization in context of the MESSAGEix-GLOBIOM scenario by making use of projected 

variables such as electricity demand and commodity prices, while allowing PLEXOS-World to 

optimize the long-term development of generator portfolios and balancing assets without 

further constraints. This would allow for an actual comparison of the optimal long-term 

planning in the integrated context in MESSAGEix-GLOBIOM versus a solely optimized planning 
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from a power system perspective with higher detailed spatial, technical, and temporal 

resolution in PLEXOS-World. 

5.4.6 Feedback on Power System Representation in MESSAGEix-GLOBIOM 

The proof of concept application of the proposed methodological soft-link framework in this 

paper has revealed that the differences in modelling resolution between MESSAGEix-

GLOBIOM and PLEXOS-World can lead to different results. From a regionally and temporally 

coarse perspective following MESSAGEix-GLOBIOM the projected global power system is 

deemed technically feasible. However, the temporally and spatially detailed model 

simulations in PLEXOS-World higlight that the power system adequacy of the assessed 

scenario is insufficient. The focus in this paper has been on the global implementation of the 

MESSAGEix-GLOBIOM model. Hence, suggestions for improvement of the power system 

representation in MESSAGEix-GLOBIOM are being made in this context. The use of sub-annual 

timeslices would be beneficial for the representation of VRES, however, to date its integration 

has been hampered due to its impact on computational complexity and resulting model 

runtime. Continuous developments regarding faster computers, cloud-based solutions, 

improved solvers and solving techniques merits a regular reassessment of the feasibility of 

implementing sub-annual timeslices in the global implementation of MESSAGEix-GLOBIOM. 

As part of the modelling effort in parallel to this study, the power system representation in 

MESSAGEix-GLOBIOM regarding inter-regional trade of electricity has been adapted by 

integrating bilateral trade through investments in region specific transmission grid 

infrastructure. Model data and simulation results from PLEXOS-World have been used to 

inform the input parameters in MESSAGEix-GLOBIOM for this new setup. However, modelling 

results from the updated version of MESSAGEix-GLOBIOM indicate an underestimation of 

inter-regional trade potential as a result of the limited spatial and temporal modelling 

resolution. All technologies in MESSAGEix-GLOBIOM have pre-defined values relative to their 

capacity for assumed positive or negative contributions to power system flexibility. To date it 

is assumed that inter-regional trade of electricity has positive contributions to system 

flexibility for the exporting region whereas inter-regional trade for the importing region has 

an equal negative contribution – i.e. it needs equally sized additional domestic flexibility to 

compensate for the import of electricity from another region. On a macro level this means 

that inter-regional trade does not contribute to flexibility in the power system within 
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MESSAGEix-GLOBIOM which may restrict investments in new transmission capacity. Studies 

assessing the benefit of large-scale transmission integration in power systems with high VRES 

penetration higlight the potential for cross-border transmission as a means to provide 

flexbility, among others due to often asynchronous occurences of peaks and lows in electricity 

demand and VRES generation in different regions [227]. Transmission integration in this 

context can decrease the need for domestic reserves providing flexibility [168,308–310]. With 

this in mind it is recommended to reassess whether an equal negative contribution to 

flexibility for importing regions in MESSAGEix-GLOBIOM is overly conservative. The trade 

values in PLEXOS-World can act as a baseline to calibrate the flexibility contributions for inter-

regional trade in MESSAGEix-GLOBIOM.  

As of now MESSAGEix-GLOBIOM includes a single generic electricity storage technology with 

24-hour storage potential. The absence of other short- and longer-term storage technologies 

in MESSAGEix-GLOBIOM prevents the proper allocation of storage technologies depending 

on the requirements in the specific power system. Expansion of long-term storage 

technologies such as PSH would be beneficial for seasonal storage purposes. Furthermore, 

integration of short-term storage technologies such as batteries with a relatively higher 

power versus storage ratio would help with mitigating peaks in supply from especially Solar-

PV. Next to storage, the integration of demand side management could assist with shifting of 

peaks in electricity demand to decrease the likelihood of occurance of unserved energy. 

The spatially and temporally detailed modelling in PLEXOS-World shows that the assumption 

of unconstrained power pooling in the regional copperplates within MESSAGEix-GLOBIOM is 

the main reason for possible overestimation of VRES integration potential. In most global 

IAMs internal grid expansion is accounted for in terms of costs as a function of total build 

generator capacity or as a function of final electricity demand. The latter is the case for 

MESSAGEix-GLOBIOM, in addition to a cost premium for grid integration of VRES depending 

on the relative penetration and the size of the region. It is fair to assume that with longer 

transmission distances the costs - as well as losses - for internal electricity transmission 

increases. The results from the modelling in PLEXOS-World can benchmark the cost premiums 

in MESSAGEix-GLOBIOM for internal transmission integration to make sure they are not 

underestimated, which in turn would lead to overestimation of VRES integration potential. 

Where needed, values can be informed and updated on a regional basis. 
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The PLEXOS-World simulations have shown that the large-scale integration of VRES based on 

the MESSAGEix-GLOBIOM scenario is accompanied by the occurance of both significant 

electricity curtailment as well as unserved energy in electricity demand. Hence, it can be 

argued that the contribution of VRES technologies to firm capacity in MESSAGEix-GLOBIOM 

is overvalued and that a standardized reserve margin of 20% might not be sufficient. From a 

power system adequacy perspective, given the limitations in modelling resolution and model 

assumptions within global IAMs such as the unconstrained intra-regional power pooling, it is 

merited to be rather conservative when it comes to estimating parameters for the integration 

of VRES. The above aspects and a range of other stylized parameters and input assumptions 

such as region-specific curtailment parameters and technology CFs could benefit from being 

updated based on the spatially and temporally detailed modelling in PLEXOS-World. By means 

of the developed soft-link framework in this study, results from PLEXOS-World can be directly 

fed back into MESSAGEix-GLOBIOM as has been shown by the proof of concept for inter-

regional electricity trade. 

5.5 Conclusions and Discussion 
To date, a large part of global analyses on climate change mitigation is based on modelling 

results from global IAMs. However, within the scientific community an ongoing debate exists 

regarding the suitability of IAMs for among others the long-term planning of the global energy 

system [300,301]. From a power system perspective, the critique focuses among others on 

the limited replication of integrational- and operational challenges following high levels of 

VRES [300]. In recent years the IAM community has made efforts to improve the power 

system representation in global IAMs [13,56,264,269,276–280] as well as general efforts 

regarding model evaluation and transparency [302,311–313]. However, as Gambhir and 

colleagues rightly argue, there is a limit on internal IAM model improvement both regarding 

computational functionality as regarding available time resources for model development 

[300]. To fill this gap, additional modelling tools can be utilized to complement IAMs regarding 

assessments of sectoral specific detailed dynamics. 

This study proposes a methodological framework for soft-linking of continental- or global 

IAMs with detailed global power system models. With the soft-link framework, output from 

IAMs can be fed into a power system model to assess given scenarios with enhanced spatial, 

technological, and temporal resolution. Results from the power system model simulations 
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can be used to identify core gaps in power system representation and can be fed back for 

further internal improvements in the IAM while considering computational requirements. 

Within the framework, scenarios are not assessed based on the regionally coarse spatial 

representation of global IAMs as is. Rather, the long-term capacity expansion capabilities of 

power system models are used to downscale the regional copperplates as used in the IAM to 

a more spatially defined level. The use of standardized data formats and where possible 

automated workflows within the framework allow for efficient replication of the soft-link 

exercise. The proposed soft-link framework can be used as a method to put boundaries on 

the theoretical debate regarding the suitability of global IAMs for the long-term planning of 

power systems. It can furthermore be used as a template for soft-linking of global IAMs to 

other dedicated sectoral models. 

By means of a proof of concept application of the soft-link framework through soft-linking of 

global IAM MESSAGEix-GLOBIOM with global power system model PLEXOS-World, the results 

of this paper reflect that global IAMs are not constructed with the aim to perform spatially 

and temporally detailed assessments of power system operations. That said, it is the authors’ 

view that this not necessarily means that global IAMs are unsuitable for providing boundaries 

in possible mitigation pathways for the development of the global power system from a multi-

disciplinary perspective. From a solely power system point of view, tools like PLEXOS-World 

would be better suited to optimize the long-term planning of the global power system. Yet, 

as it stands, computational requirements for temporally detailed model simulations do not 

permit simulations for long-term horizons – an average model run of PLEXOS-World based on 

the 2050 snapshot analysis in context of this study takes approximately 12 hours. 

Furthermore, the lack of interaction with other sectors and ecological- and economical 

systems gives power system models a narrow scope. Hence, considering limitations of both 

sets of models, we conclude that IAMs can be applied for long-term planning of the global 

power system assuming benchmarking with dedicated sectoral models occurs regularly. By 

making use of the soft-link framework proposed in this study, power system models like 

PLEXOS-World can be used in a complimentary fashion to pinpoint areas for model-informed 

improvements in global IAMs. 
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Chapter 6 Conclusions 

This thesis provides a foundation for assessments of global power system decarbonization 

pathways by developing open methods and datasets that can be applied to a broad range of 

modelling tools. In order, Chapters 2-5 bring forth a review of relevant literature, a proof of 

concept of modelling methodologies, insights in model development and calibration and 

finally an example model application. The developed global power system model PLEXOS-

World is used to analyse the potential role of long-distance electricity transmission in context 

of a globally integrated power grid. It is furthermore being used to assess the technical 

feasibility of power system representation in global IAMs and to provide suggestions for 

model-informed improvements. This final chapter concludes the thesis by summarizing 

gained insights from the different chapters. The original aim of this thesis was defined in a set 

of research questions as stated below. These questions will be answered in the following 

sections by topic, being i) state of the art in global power system modelling, ii) the use of open 

data, methods and models, iii) intercontinental electricity transmission and iv) analysis of 

power system representation in global IAMs. 

RQ-1. What is the present state of the art in the application of global power system 

models? 

RQ-2. What is the status of open power systems data and what are the shortcomings for 

utilizing open data in global power systems modelling? 

RQ-3. What insights can be provided regarding best practices in using proprietary energy 

systems modelling software for academic purposes? 

RQ-4. What are the techno-economic benefits and limitations of long-distance 

transmission of electricity and the concept of a globally integrated power grid? 

RQ-5. What are the main limitations in the power system representation of global IAMs? 

RQ-6. How can global power system models be utilized as a complementary tool for 

global IAMs and facilitate methodological improvements within global IAMs? 

6.1 Conclusions on State of the Art in Global Power System Modelling (RQ-1) 
The scientific discipline of power systems modelling is novel at the global scale. Chapter 4 

highlights how until recently the application of global power system models could have been 



125 
  

seen as impractical. Electricity to date is mostly produced and consumed domestically or 

within integrated power markets at a multi-country scale which does not necessitate the use 

of global models. However, as argued in Chapter 2, required decarbonization efforts in power 

systems globally have led to a growing interest in the concept of sharing of resources by 

means of long-distance transmission of electricity at a continental or inter-continental scale 

[18,75,113]. The potential role and feasibility of transmission interconnectors in this context 

merits the utilization of a detailed global power system model. 

Existing techno-economic modelling studies of a future global power grid are shown to be 

limited, both in terms of quantity of studies and moreover regarding spatial and technological 

resolution applied in the modelling that lead to over simplified results and conclusions. There 

is a gap within the modelling community regarding tools that are able to assess this concept 

with sufficient detail. The developed PLEXOS-World global power system model following this 

thesis contributes to this gap by means of (ongoing) research in the feasibility and 

functionality of a global grid. The open source Supergrid16 model that recently surfaced has 

the same potential. Next to global grid modelling, other existing applications of global power 

system models relate to the assessment of power- and full energy systems based on 100% 

RES [8,42,60–62]. Although very relevant from a feasibility perspective, the inherent 

technology bias in these modelling studies provides a narrow scope on potential cost-efficient 

decarbonization pathways. In recent past, IRENA has developed a novel global power system 

model build in PLEXOS that has the integrated ability for co-optimization of global hydrogen 

production, transport and conversion next to temporally detailed power system modelling 

[314]. 

Compared to other existing global power system models, PLEXOS-World is state of the art 

when it comes to its ability to run spatially detailed power system simulations at high 

temporal resolution. It is therefore most suitable to perform assessments of the technical 

feasibility of projected developments such as the integration of high shares of variable 

renewables or the coupling of power systems through transmission interconnection. In the 

proof of concept application of PLEXOS-World in Chapter 3 it was stated that going forward, 

limitations as a result of computational modelling complexity for the global model were 

 
16 https://github.com/niclasmattsson/Supergrid 

https://github.com/niclasmattsson/Supergrid


126 
  

expected to be of modest impact. Looking back this observation can partly be confirmed. 

Indeed, computational time for UCED simulations in PLEXOS-World are manageable due to 

advanced solvers and solving techniques. The possibility of parallelizing simulation steps in 

detailed models for example as applied in Chapter 4 allows for simulations to be performed 

in a matter of hours without utilizing high performance computers or cloud-based solutions. 

However as highlighted in Chapter 5, the main limitation of the model besides a lack of 

interactions with other sectors is its limited ability to perform long-term planning exercises of 

the global power system. For the latter, a trade-off would have to be made by reducing the 

spatial, technical, and temporal detail which would hamper the main strengths of the model 

based on which it is designed. As it stands, other global models such as the recently developed 

OSeMOSYS global17 are more suitable for this purpose. 

Rather than reducing detail to allow for long-term planning in global power system models, 

an alternative approach is to make use of scenario data from dedicated planning models like 

IAMs or energy system models through model soft-linking. The developed methodological 

framework following Chapter 5 is designed to automate this process. The applied model soft-

link between PLEXOS-World and global IAM MESSAGEix-GLOBIOM to assess and improve the 

power system representation in MESSAGEix-GLOBIOM is a novelty in terms of the application 

of power system models. 

Overall global power system modelling as a new area of research has significant room for 

growth. Both in terms of extending the scope and detail of studies on existing topics as well 

as by interlinking with other modelling disciplines in the space of climate-, environmental- 

and wider energy systems modelling. It furthermore has the potential to directly contribute 

to informing global energy policy alongside other proven energy modelling tools.  

6.2 Conclusions on Open Data, Methods and Models (RQ-2 and RQ-3) 
In the introduction of this thesis it has been argued that energy research tends to lag behind 

other scientific disciplines when it comes to open and reproducible science [32,33]. Focussing 

on global power systems modelling, the majority of existing global modelling tools are indeed 

not available in the public domain with the exception of the Supergrid model16. The developed 

PLEXOS-World model cannot be categorized as either a fully open or fully closed tool. The 

 
17 https://github.com/OSeMOSYS/osemosys_global 

https://github.com/OSeMOSYS/osemosys_global
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software used PLEXOS is freely available for academic use with subscription based fees for 

commercial application. The formulation of the model is transparent – refer to Appendix A – 

and the PLEXOS-World models as used for Chapter 4 and Chapter 5 including all input data 

have been made available in raw data format to be FAIR compliant. 

Chapter 4 highlights relevant open data initiatives for the modelling of power systems 

globally. However, both Chapter 3 and Chapter 4 indicate that gaps still exist for areas outside 

Europe and North America for example when it comes to aspects such as details on 

powerplant portfolios and demand timeseries. The PLEXOS-World dataset developed in 

Chapter 4 feeds into this gap by providing an entry level comprehensive global dataset that 

can be used in PLEXOS or plugged into other modelling tools. Furthermore, the in 2019 

published GlobalEnergyGIS package18 enables the automated development of renewable 

energy input data and synthetic demand timeseries for arbitrary world regions to be used for 

scenario analysis in energy system models [28]. Although there is still a need for enhanced 

insights and transparency in operational power systems data especially for developing 

countries, the wide range of open data initiatives in recent years have pushed the boundaries 

for energy systems modelling globally [23–25,28,251]. 

One of the original objectives of this thesis was to develop tools, methods and data that can 

support capacity building efforts to enable researchers around the world to contribute to 

energy and climate science. The PLEXOS-World model and dataset have been widely adopted 

externally through its public repository [231]. IRENA makes use of the datasets as one of the 

sources to populate their global hydrogen and power system model [314]. To push for open 

models able to assess power system developments from a global perspective, the open 

source OSeMOSYS global model generator17 is being constructed that uses the PLEXOS-World 

dataset as foundation [315]. Furthermore, the dataset is also being used for the development 

of energy modelling country starter kits in OSeMOSYS for developing countries globally (e.g. 

[316]) as part of the Climate Compatible Growth initiative19. Finally, the open source 

methodological framework for soft-linking of global IAMs with global power system models 

as developed in Chapter 5 has been used to inform and improve the power system 

representation in global IAM MESSAGEix-GLOBIOM. By extension, the work in this thesis 

 
18 https://github.com/niclasmattsson/GlobalEnergyGIS 
19 https://climatecompatiblegrowth.com/starter-kits 

https://github.com/niclasmattsson/GlobalEnergyGIS
https://climatecompatiblegrowth.com/starter-kits
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indirectly contributes to the work done globally with MESSAGEix-GLOBIOM. In a similar 

manner, the framework is currently being used in ongoing collaboration with other leading 

IAM teams as part of the ENGAGE project20. 

Next to openness, reproducibility of data and methods is key for energy research and science 

in general. The PLEXOS-World dataset following Chapter 4 is developed with the 2015 

calendar year as baseline. There is interest to expand and update the dataset for more recent 

years, yet the wide range of sources with often very different data formats makes automation 

complicated and hence reproducibility time intensive. Chapter 3 applied a soft-link 

methodology to integrate scenario data from a range of different studies into a proof of 

concept version of PLEXOS-World. This exercise showed the complications of repeating a soft-

link exercise, especially when it comes to integrating data from different sources. A review on 

linking methodologies as conducted in Chapter 5 highlights how concerns regarding 

repeatability of soft-linking techniques is often a key argument against its application 

[276,290]. The soft-link framework for linking global IAMs with global power system models 

as developed in Chapter 5 overcomes this argument by partly automating and standardizing 

the link between both model types. That said, the key to its success is the fact that scenario 

data from a wide range of IAMs is reported in a consisted manner by means of the IAMC data 

template format in openly accessible data depositories. This data consistency is unique for 

IAMs and not directly applicable to other model types which makes soft-linking not always 

straight-forward. 

To conclude, significant efforts have been made in recent years to push for open and 

reproducible science within the energy research community. The use of open source 

modelling tools is key in terms of transparency, however the work in this thesis has also 

brought forth insights regarding best practices in the application of tools like PLEXOS. Aspects 

such as its large user base, available support system, convenient user interface and wide 

application potential for modelling of the full energy system allows you to hit the ground 

running. This is especially relevant for smaller research groups where the time and resources 

are not always available to develop inhouse tools or integrate a wider set of open source 

models for diverse research questions. Whatever tool is being used, it is critical to be fully 

 
20 https://www.engage-climate.org/ 

https://www.engage-climate.org/
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transparent in model formulation, data inputs, applied methods and to support the adoption 

and shareability of model data as emphasised in the literature [24,32,33,313]. 

6.3 Conclusions on Intercontinental Electricity Transmission (RQ-4) 
An emerging global trend is visible in the integration of electricity markets by means of cross-

border transmission of electricity. Due to its success in for example Europe and China, the 

logical next step would be to assess the feasibility of extending this integration across 

continents to a globally interconnected power grid. However, opinions are divided on the 

technical feasibility as well as on the overall benefits compared to alternative solutions for 

deep decarbonization of the global electricity supply [65,66,317]. During the last two decades, 

overly ambitious transmission projects aimed to interconnect different continental power 

markets have failed due to uncertainty regarding investment costs-, benefits- and risks as well 

as a lack of political support. 

Techno-economic modelling can provide the necessary insights for objective assessments of 

the technical- and economic feasibility of proposed interconnection projects and the global 

grid concept as a whole. A review of scientific literature in Chapter 2 indicates potential 

benefits of power system integration towards a global grid, however, the accuracy of 

performed modelling studies to date are affected by limitations in spatial and technological 

modelling resolution. Until now, no single techno-economic assessment exists based on a 

globally optimized power system with sufficient detail to provide insights from a global 

perspective, while also capturing local dynamics needed to ensure system adequacy or to 

assess domestic welfare implications. Furthermore, there is a lack of benchmarking of 

envisioned cost-benefits compared to alternative system setups such as decentralized 

demand and supply of electricity or a global interconnected electricity system with 

transportable green hydrogen as main energy carrier rather than physical transmission 

infrastructure. Chapter 3 introduced a project aimed to do the above, however this work is 

ongoing at the time of writing among others as a result of the identified complexity of capacity 

expansion exercises in a detailed global power system model. 

Following the review in Chapter 2, the ability to integrate areas with high potential for RES 

with larger demand centers around the world as well as the potential to smooth demand and 

supply by means of time-zone and seasonal differences are often considered as main 

arguments for intercontinental interconnectors and the global grid concept [29,113,161–
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164]. The modelling as performed in Chapter 5 confirms this potential by optimizing the 

capacity expansion and operation of transmission infrastructure in a given scenario from 

MESSAGEix-GLOBIOM. The results show how resource rich regions like Australia, the Middle 

East and Russia can be used to supply growing markets in among others Asia. The results also 

indicate the benefits of latitudinal transmission integration within Asia and between Asia and 

Europe to make optimal use of time-zone differences. Chapter 3 also highlights how by means 

of a conceptual transmission interconnector between the East coast of the US and Western 

Europe the dispatch of powerplants can be optimized through a larger region among others 

due to different occurrences of peaks in demand following the time zone differences. Similar 

observations have been made by [164]. 

The significant investment costs and transmission losses of long-distance transmission 

infrastructure projects are one of the key arguments negating the potential benefits of the 

global grid concept. However, Chapter 5 shows that from a central planner perspective 

objectively speaking investments in intercontinental transmission lines can be merited. That 

said, the results also indicate that there is a limit on the marginal benefits of additional 

investments in transmission infrastructure. Despite significant unserved energy and 

occurance of electricity curtailment, the benefits of additional transmission infrastructure 

does not always outweigh the required investments. Overall, it can be concluded that the 

feasibility of projects need to be determined on a case by case basis. Following the review in 

Chapter 2, besides costs and losses, a big factor in this is also the appropriate investment 

mechanism to determine whether projects are feasible from a merchant investment 

perspective or whether a regulated investment strategy should be anticipated since the 

system wide advantages of transmission infrastructure justifies projects to be treated as 

public good. 

A second hurdle that needs to be overcome are aspects related to the integration of power 

systems with different market structures. For example, Chapter 3 shows the sensitivity of 

applied carbon pricing mechanisms on electricity flows of the modelled interconnector 

between the East coast of the US and Western Europe. Following a reference scenario in the 

US without carbon pricing, the interconnector is mostly used to facilitate the dispatch of fossil 

fuel based thermal powerplants in the US to supply the European market while displacing 

cleaner alternatives in Europe. From a market and policy perspective this seems 



131 
  

unacceptable. Chapter 4 indicates how from a purely technical perspective with existing 

transmission infrastructure the benefits of electricity trade between for example Europe and 

Russia are significant. However, despite the technical potential being there, political 

considerations or different market structures in the real world hamper its full potential. Given 

the spatial scale of electricity markets in context of the global grid concept, the 

implementation of clear market rules and appointment of regulating authorities are critical 

as also emphasised in the literature [30,65,88]. 

In the review in Chapter 2 it has been concluded that the challenges and opportunities of the 

global grid concept are clearly qualified, yet that the actual quantification of costs, benefits 

and environmental implications of the concept remains in its infancy, imposing a significant 

gap in the scientific literature. Roughly three years after publication this conclusion still 

stands. Despite a growing number of papers on the topic in recent years [30,317], the 

identified limitations in among others techno-economic modelling are still applicable. Hence, 

as argued, as long as the detailed costs and benefits of the global grid concept remain largely 

unquantified, it is inherently impossible to objectively inform policy development and 

decision-making. 

6.4 Conclusions on Analysis of Power System Representation in Global IAMs 

(RQ-5 and RQ-6) 
Due to their long track record and ability to analyse interlinked sectoral developments, IAMs 

are the main tools used to assess potential pathways for the long-term evolution of the global 

energy system. In Chapter 5 it has been argued that from a purely power system perspective 

dedicated sectoral power system models might be more suited for this exercise given the 

importance of accurately representing power system integration challenges with rapidly 

growing shares of VRES. However, for the time being, limitations on computational 

complexity for temporally detailed model simulations as well as a narrow modelling scope 

due to a lack of interactions with other sectors sets a limit on the usefulness of power system 

models in this context. 

Continuous improvement of power system representation within global IAMs is essential due 

to its known limitations in spatial, technical, and temporal modelling resolution. 

Improvements can be sought internally, for example by assessing whether the integration of 

sub-annual timeslices is feasible. Yet, there are limits to the extent of feasible internal 
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improvements both regarding computational complexity as well as available time resources 

[300]. A useful approach is therefore to make use of complementary power system models 

to benchmark IAM simulation results and to assist with optimizing the power system 

representation within the IAM. Most common is to apply a one-directional model soft-link 

due to the complexity of facilitating data exchange between models. However, bi-directional 

soft-linking should be encouraged to support power system model informed improvements 

of long-term planning exercises within IAMs. 

A review of scientific literature in Chapter 5 regarding existing IAM and power system model 

soft-linking exercises indicates that the main concern for its application are difficulties to 

repeat a soft-link among others due to changing data formats or different users involved 

[276,290]. The soft-link exercise as applied in Chapter 3 highlights the complications of 

integration scenario data based on different data formats into PLEXOS-World. Following these 

observations, a standardized methodological soft-link framework has been developed in 

Chapter 5 that enables the bi-directional soft-linking of global IAMs with global power system 

models in an iterative fashion.  

Limitations in the power system representation of global IAMs and potential areas for 

improvement are generally well documented and fall in two larger categories. The first 

category relates to extending the data basis to enhance the overall spatial representation as 

well as refined implementation of region specific IAM data input- and assumptions. Datasets 

such as the PLEXOS-World 2015 dataset as developed in Chapter 4 can assist with that, for 

example by using detailed country-level electricity demand timeseries to improve the RLDCs 

as used in most global IAMs. Furthermore, power system model simulation output can be 

used to finetune generic IAM model inputs at a regional level. As an example, in Chapter 5 it 

has been shown how model output from PLEXOS-World has been used to inform global IAM 

MESSAGEix-GLOBIOM regarding the modelling of bilateral electricity transmission 

infrastructure with region specific input parameters. 

The second category of potential IAM model improvements relates to the representation of 

power system technologies and the general model structure of stylized relationships that 

replicate power system integration challenges within IAMs. Following the literature, examples 

that merit prioritization are the representation of storage technologies including power-to-X, 

parameterization of thermal power plants, explicit modelling of demand side management 



133 
  

and the overall modelling of electricity transmission infrastructure with a focus on the general 

pooling effect of shared generation resources through transmission integration as well as 

limitations on internal electricity flows due to transmission constraints [13]. By means of a 

proof of concept application of the soft-link framework in Chapter 5 linking PLEXOS-World 

and MESSAGEix-GLOBIOM it has been shown that the assumption of unconstrained electricity 

flows inside large regional copperplates causes an overestimation of VRES integration 

potential within MESSAGEix-GLOBIOM. In the case of MESSAGEix-GLOBIOM the soft-link has 

also shown that some stylized relationships are inherently not incorrect, for example the 

assumption that accounted costs for T&D should increase relative to the area size of the 

specific region and the relative VRES penetration. However, the parameters could benefit 

from model informed adjustments by means of the soft-link framework. 

Overall, it can be concluded that global IAMs are useful tools to provide boundaries on 

potential development pathways for the global energy system. That said, it is essential that 

the power system representation is regularly benchmarked with dedicated power system 

models to secure model accuracy. 

6.5 Future Work 
This thesis provides an initial introduction to the wide range of possibilities in the application 

of global power system models, however it is by no means designed to give conclusive 

answers to all questions possible. Future work lies in two directions, the first being 

improvements and extensions of model data and applied methods and the second relates to 

the application of the PLEXOS-World model and its underlying datasets. 

6.5.1 Data and Methods 
The PLEXOS-World model and dataset as developed in Chapter 4 including all used demand- 

and renewables timeseries are fully based on the 2015 calendar year. For model calibration 

purposes this is justifiable, however for application in feasibility studies as for example in 

Chapter 5 it is recommended to make use of a wider set of data years to assess the robustness 

of a given system under different conditions. Future applications of PLEXOS-World require a 

wider range of timeseries to be applied, this can either be done by means of different calendar 

years or through stochastic modelling. Furthermore, expected electrification in among others 

the heating- and transportation sectors will affect the relative shape of demand timeseries 
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which to date has not been incorporated. This, as well as the potential for flexible load in 

these sectors, is a subject for further examination. 

The PLEXOS-World dataset following Chapter 4 has proven to be successful in terms of 

external adoption and overall engagement. In a next phase the model and datasets will be 

updated to a more recent baseline year, for example 2020. Albeit challenging due to a wide 

range of data sources, the aim is to do this in a mostly automated fashion to allow for more 

regular updates in the years to come. 

It has been argued that until now the application of long-term planning exercises within 

PLEXOS-World is computationally not feasible at its high spatial, technological, and temporal 

modelling resolution. However, there are sufficient arguments to keep pursuing this goal for 

example to objectively compare long-term planning pathways from a purely power system 

perspective to those from cross sector models like IAMs. To achieve this, one solution would 

be to make use of cloud-based solutions for advanced computational power yet this would 

put restrictions on the external useability of the model. An alternative is to reduce the 

complexity of the optimization by finding the optimal balance in modelling resolution suitable 

for the scope of the specific research question [318,319]. 

6.5.2 Model Application 
Given the identified limitations of the PLEXOS-World model – i.e. the complexity of long-term 

planning exercises, the lack of interactions with other sectors in the energy system and its 

restrictions in openness – the open source OSeMOSYS global model generator17 is currently 

being developed that uses the PLEXOS-World datasets as foundation. Once completed, 

OSeMOSYS global can be used for the long-term planning of energy systems and can be 

applied to any combination of countries and regions or for the full global energy system. It 

can be used standalone or as shown in a recent proof of concept application soft-linked to 

PLEXOS-World [320]. By using similar techniques as in Chapter 5, the results from the long-

term planning in OSeMOSYS global can be fed to PLEXOS-World for an operational analysis of 

the projected power system. 

One of the applications of the OSeMOSYS global and PLEXOS-World soft-link in the pipeline is 

focused on the global grid concept. Based on the earlier identified limitations of existing 

techno-economic modelling studies of global grids, OSeMOSYS global will be used to perform 
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long-term planning exercises at detailed spatial resolution with different levels of allowed 

power system integration ranging from local demand and supply to a fully integrated global 

power system. This will provide insights on the cost-optimality of a global grid and 

simultaneously allows for benchmarking with alternative system setups. PLEXOS-World will 

be used to benchmark the feasibility of results, perform assessments of overall system 

adequacy and to provide detailed insights in electricity trade and flows within the global 

market. 

Finally, the methodological soft-link framework from Chapter 5 will be further utilized in 

ongoing collaboration with nine global IAM teams as part of the ENGAGE project. A set of 

scenarios as designed for the IPCCs forthcoming Sixth Assessment Report will be assessed in 

PLEXOS-World regarding the technical feasibility of the projected power systems globally. 

Furthermore, following the recommendations in Chapter 5 regarding the power system 

representation in MESSAGEix-GLOBIOM, PLEXOS-World will be used for further 

benchmarking of simulation results from MESSAGEix-GLOBIOM to assess the effect of 

integrated improvements such as the addition of sub-annual timeslices. Additional work that 

needs to be carried out relates to the application of the soft-link framework to power system 

models other than PLEXOS-World to test its overall robustness. 
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Appendix A: PLEXOS Detailed Equations 

A.1 Indices 
j Generation Unit 

t  Time Period 

stor Index related specifically to pumped storage unit 

RESup Upper Storage Reservoir 

RESlow Lower storage Reservoir 

A.2 Variables  
Vjt Integer on/off decision variable for unit j at period t  

Xjt Integer on/off decision variable for pumped storage pumping unit j at period t  

Ujt Variable that = 1 at period t if unit j has started in previous period else 0  

Pjt Power output of unit j (MW) 

Hjt Pump load for unit j period t (MW) 

Wint Flow into reservoir at time t (MWh) 

Woutt Flow out of reservoir at time t (MWh) 

Wt Volume of storage at a time t (MWh) 

A.3 Parameters   
vl Penalty for loss of load (€/MWh) 

vs Penalty for Reserve not met 

use Unserved Energy (MWh) 

usr Reserve not met (MWh) 

D Demand (MW) 

obj Objective Function 

njt No load cost unit j in period t (€) 

cjt Start cost unit j in period t (€)           
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mjt Production Cost unit j in period t (€) 

estor Efficiency of pumping unit (%) 

pmaxj Max power output of a unit j (MW) 

pminj Mini stable generation of unit j (MW) 

pmpmaxstor Max pumping capacity of pumping unit  

Jj Available units in each generator 

Jstor Number of pumping units 

MRUj Maximum ramp up rate (MW/min) 

MRDj Maximum ramp down rate (MW/min) 

MUTj Minimum up time (hrs) 

Ap Number of hours a unit must initially be online due to its MUT constraint (hrs)  

WINT Initial Volume of reservoir (GWh)  

W Maximum volume of storage (GWH) 

A.4 Objective Function 
Eq. A-1   

The objective function in PLEXOS is to minimise the start-up cost of each unit (start cost (€)* 

number of starts of a unit) + the no load cost of each online unit + production costs of each 

online unit + the penalty for unserved load+ the penalty of unserved reserve. The objective 

function is minimised within each simulation period. The simulation solution must also satisfy 

the constraints below: 

A.5 Energy Balance Equation 
Eq. A-2   

Energy balance equation states that the power output from each unit at each interval minus 

the pump load from pumped storage units for each interval + unserved energy must equal 

the demand for power at each interval. (Note that line losses can also be included here but is 

ttjtjtjt

Tt

jtjtjt usrvsusevlPmVnUcMinOBJ ..... ++++= 
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Tt

ttjtjt DuseHP
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not shown). As the penalty for unserved energy is high and part of the objective function, the 

model will generally try to meet demand. 

A.6 Operation Constraints on Units 
Basic operational constraints that limit the operation and flexibility of units such as maximum 

generation, minimum stable generation, minimum up/down times and ramp rates. 

Eq. A-3    

Eq. A-4    

These two equations define the start definition of each unit and are used to track the on/off 

status of units. 

Eq. A-5    

Max Export Capacity: A units power output cannot be greater than it maximum export 

capacity. 

Eq. A-6    

Minimum Stable Generation: A units output must be greater than its minimum stable 

generation when the unit is online. 

Eq. A-7    

Pumping load must be less than maximum pumping capacity for each pumping unit  

Eq. A-8    

Eq. A-9    

These constraints limit a pumped storage unit from pumping and generating at same time.  

Eq. A-10     

Eq. A-11   

Minimum Up Times21: (Note the following text is directly from the PLEXOS Help files). The 

variable Ap tracks if any starts have occurred on the unit inside the periods preceding p with 

a window equal to MUT. i.e. if no starts happen in the last MUT periods then Ap will be zero, 

 
21 PLEXOS Help Files 

11 =−+− t      UV jtjt

011 +− ++ jtjtjt UVV

0.max − jtjjt VPP

0.min − jtjjt VPP

0.max − jtStorjt XPmpH

storjXV jtjt +     where1

JjJXJV Storjjj      

1..1,,, −−− − jtjtjjp MUTttVVA


+−

−

1

,,, /

jMUTt

t

jtjjptj tMUTVAV
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but if one (or more) starts have occurred then Ap will equal unity. The MUT constraints then 

set a lower bound on the unit commitment that is normally below zero, but when a unit is 

started, the bound rises above zero until the minimum up time has expired. This fractional 

lower bound when considered in an integer program forces the unit to stay on for its 

minimum up time.  

Eq. A-12   

Eq. A-13  

 

Minimum Down Times: The variable Ap tracks if any units have been shut down inside the 

periods preceding p with a window equal to MDT. i.e. if no units are shut down in the last 

MDT periods then Ap will be zero, but if one (or more) shutdown then Ap will equal unity. The 

MDT constraints then set an upper bound on the unit commitment that is normally above 

unity, but when a unit is stopped, the bound falls below unity until the minimum down time 

has expired. 

Eq. A-14    

Eq. A-15    

Maximum Ramp up and down constraints: These constraints limit the change in power output 

from one time period to another. 

A.7 Water Balance Equations 
These equations track the passage of water from the lower reservoir to the upper reservoir. 

In this set-up there is no inflow and water volume is conserved. 

Eq. A-16   

Eq. A-17   

Eq. A-18   

Eq. A-19   
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Appendix B: Supplementary Material Chapter 3 
Table B-1 Installed capacities and total load for the 2050 EU-NAM reference model. ‘Other’ nodes are 

aggregations of the remaining nodes in the respective country or region.  

Node Hydro1 Solar2 Wind 

Offshore 

Wind 

Onshore 

NG 

CCGT 

NG 

OCGT 

Nuclear Oil Coal 

Fired4 

Load  

 MW MW MW MW MW MW MW MW MW TWh 

EU 189513 295194 47448 319081 241726 29131 96199 3367 55210 4237 

EU-DE 7170 86141 9369 77180 36754 4672 0 674 24057 663 

EU-ES 17158 49359 153 46989 12965 1517 0 782 97 333 

EU-FR 26559 45200 6056 51513 30812 4112 32276 625 2892 617 

EU-IT 19588 56765 644 25314 40549 4513 0 128 1901 438 

EU-UK 1818 11255 16533 24935 41457 4645 17302 339 448 502 

EU 

'Other' 

117220 46475 14693 93150 79189 9673 46621 818 25815 1694 

CA 92260 7131 0 27508 31345 11999 9838 2485 1172 705 

CA-AB 913 368 0 7347 16576 6217 0 7 0 107 

CA-ON 9978 5916 0 7224 8789 3698 9133 294 0 175 

CA-QC 43289 355 0 6781 560 31 0 159 0 251 

CA 

'Other' 

38079 491 0 6156 5420 2052 705 2025 1172 171 

US 80902 148026 29 186296 374400 213024 76500 8091 159781 4669 

US-

CAMX 

10105 10343 0 21402 16756 12204 0 100 33 295 

US-

ERCT 

457 2031 0 23375 64334 32630 4628 27 9891 280 

US-

RFCW 

1638 7350 0 24587 38811 27592 10568 456 30300 608 

US-

SRSE 

3760 23370 0 15 27627 8919 6942 277 9259 301 

US-

SRVC 

3590 27775 0 1001 31858 11573 14686 685 9440 394 

US 

'Other' 

61353 77156 29 115916 195014 120105 39675 6547 100859 2791 

1 Includes hydro impoundment and hydro run of river, PSH not incorporated in early-stage simulations. 
2 Includes concentrated solar power and solar-PV. 
3 Includes biomass and waste, geothermal, tidal and wave-based capacity. 
4 Also includes lignite-based capacity. 
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Appendix C: Supplementary Material Chapter 4 

C.1 Sub-Country Nodes 
This section describes the used data and methodologies for the spatial representation, hourly 

demand profiles and transmission capacities of sub-country nodes within the global model. 

C.1.1 Australia 

Australia is subdivided into seven nodes, consisting of the six states (New South Wales, 

Queensland, South Australia, Tasmania, Western Australia and Victoria) plus the Northern 

Territory as visualized in Figure C-1. The Australian Capital Territory is assumed to be part of 

the New South Wales node (OC-AUS-SW). The National Electricity Market (NEM) is a 

wholesale market operated by the Australian Energy Market Operator (AEMO) that covers 

the grid connected areas of all nodes apart from OC-AUS-WA and OC-AUS-NT [321]. Historical 

hourly load for the different regions of NEM, which can be directly correlated to the nodes 

used for this study, can be retrieved through AEMO’s data dashboard [322]. Albeit not part of 

the NEM, OC-AUS-WA has its separate wholesale market also operated by AEMO. Historical 

hourly load data can be retrieved through [323]. No hourly data for OC-AUS-NT could be 

found, hence we used the profile shape of OC-AUS-WA and scaled it based on 2015 final 

electricity demand data from [324]. Aggregated transmission capacities between nodes 

within the NEM has been determined based on [325]. To-date, no cross-nodal transmission 

lines exist outside the NEM territory [326]. 

Figure C-1 Nodal representation of Australia in PLEXOS-World. Every copperplated area of an individual colour 

represents a node with a total of 7 independent nodes. 

C.1.2 Brazil 
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Historically, Brazil’s national interconnected electricity system (SIN) consisted of four large 

grid-connected regions ranging from the South of the country to the North and North-East 

[327]. In more recent years, several long-distance transmission projects have been 

implemented which directly interconnect the hydro rich West and North-West of the country 

with demand centres in central Brazil [328]. We follow Gils and colleagues [329] for the nodal 

representation of the Brazilian electricity system. Next to the nodes as shown in Figure C-2, 

this also includes three transmission junction nodes connecting large hydro facilities with 

demand centers as indicated with an asterisk on the map. We’ve furthermore used [329] to 

retrieve the transmission capacities between nodes. The system operator of SIN, ‘Operador 

Nacional do Sistema Eléctrico’ (ONS), provides hourly demand data for historical years 

including 2015 [330]. The profiles for the ‘Nordeste’ and ‘Sul’ regions correlate to the nodes 

SA-BRA-NE and SA-BRA-SO as used for this study, whereas ‘Norte’ covers SA-BRA-CN, SA-BRA-

NW, SA-BRA-WE and ‘Sudeste/Centro-Oeste’ covers SA-BRA-CW and SA-BRA-SE. For these 

latter two groups of nodes, we’ve used the relative population size per node based on [331] 

as a best estimate to disaggregate the regional demand profiles on a nodal basis. 

Figure C-2 Nodal representation of Brazil in PLEXOS-World. Every copperplated area of an individual colour 

represents a node with a total of 10 independent nodes, consisting of 7 nodes with demand and generation 

portfolios and 3 transmission junction nodes that represent transmission interconnections connecting large 

hydro facilities with demand centres (indicated with asterisks on the map). 

C.1.3 Canada and the United States 
The grid-connected electricity system in Canada and the US spans multiple time zones, 

stretching from Pacific Standard Time (-8 UTC) on the west coast to Atlantic Standard Time (-

4 UTC) in eastern Canada. There are four main interconnected grids; The Eastern, Western, 
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Quebec and ERCOT interconnections [332]. Electricity system integration through 

transmission interconnection between these independent grids is limited. As of 2015, the 

reliability of the four interconnections is governed by 16 different North-American Electric 

Reliability Corporation (NERC) coordinating regions [333]. To add more complexity, there are 

nine wholesale markets operated by Independent System Operators (ISO) or Regional 

Transmission Organizations (RTO) [332]. Approximately 70% of demand in the US is supplied 

through wholesale markets, the remainder through vertically integrated utilities [334]. The 

US Energy Information Administration (EIA) developed a nodal representation for their 

National Energy Modelling System (NEMS) with these aspects in mind by disaggregating the 

country in 22 regions [215]. We follow this approach for the nodal representation of the US, 

apart from combining the three New York NEMS regions into a singular node. In addition, the 

insular areas of Alaska, Guam, Hawaii and Puerto Rico are added as seperate nodes. The grid-

connected provinces of Canada are represented with eight nodes (New Brunswick, Nova 

Scotia and Prince Edward Island combined into one node). Furthermore, the isolated systems 

of The Northwest Territories, Nunavut and Yukon [335] are aggregated into a singular node. 

Both sets of nodes are visualized in Figure C-3. 

All Canadian and US nodes are populated with localized load and transmission data. Hourly 

load profiles for the Canadian provinces are retrieved from the relevant system operators 

through online data portals [336–340] and personal communication (L. St-Laurent, Hydro 

Quebec, 12-02-2018 – B. Owen, Manitoba Hydro, 01-12-2017 – R. Mall, SaskPower, 21-12-

2017). Interregional transmission capacities and cross-border capacities towards the US 

regions are based on reported values [341–347] or derived from maximum reached hourly 

power exchange values in 2015 as retrieved from [338,348]. We assume that these values 

equal the NTC between adjacent nodes.  

To be able to incorporate accurate data for the US nodes we need to determine which ISO’s, 

RTO’s and smaller Balancing Authorities (BA) cover the different NEMS regions. This has been 

done by comparing the status map on the EIA’s US electric system operating data portal [219] 

with the mapped NEMS regions following [215]. Generally, the different operators clearly fit 

within a singular node. Yet, in certain situations it is less obvious, requiring additional sources 

such as market reports of the different BA’s to define the correct spatial representation [349–

368]. Furthermore, the Southwest Power Pool (SPP), Midcontinent Independent System 
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Operator (MISO) and the PJM interconnection span a larger area covering multiple NEMS 

regions. Historically, these larger areas were operated by smaller utilities as shown in [220]. 

We use these former utilities to disaggregate the load and transmission data of the larger SPP, 

MISO and PJM regions as explained in more detail below. 

 

Figure C-3 Nodal representation of Canada and the US in PLEXOS-World. Every copperplated area of an 

individual colour represents a node with a total of 24 nodes in the US (mainland, in addition to Guam, Hawaii 

and Puerto Rico) and 9 in Canada. Blue sections in and around NA-USA-ME are part of balancing authorities 

within NA-USA-RW. 

The 2015 hourly load profiles for the US nodes are constructed predominantly based on 

historically reported data for the different operators as administrated by the Federal Energy 

Regulatory Commission (FERC) [218]. PJM’s data directory [369] is used to retrieve 2015 

hourly load data for the sub-regions within PJM. Profiles from the different operators per 

node, as identified earlier, are aggregated into a single profile. If available, this has been done 

by utilizing 2015 data, yet in certain cases data from deviating years had to be scaled and 

shifted to 2015 values by making use of reported yearly demand or sales data from the 

relevant operators [370–373]. The profile builder tool within PLEXOS has been used to 
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correctly shift profiles from year to year. Rather than using the reported profiles for SPP, MISO 

and PJM, we used scaled and shifted historical data from the former utilities who compose 

these larger operators. This approach allows for more accurate spatial representation of load 

per US node within the model. Finally, the initial aggregated profiles per node are scaled to 

overall 2015 demand by combining reported final electricity sales to customers per NEMS 

region in the Annual Energy Outlook (AEO) of the EIA [216,217] with state level T&D losses 

[374].  

Although a dataset exists with all individual power transmission lines in the US [375], this 

dataset does not incorporate info on potential NTC per line. We therefore use historical 

hourly exchange data (July 2015-2017) between the different operators [221] as indicator for 

NTC between US nodes. Data from before July 2015 isn’t available. It is assumed that the 

maximum reached hourly exchange in the period 2015-2017 counts as indicative NTC 

between two operators. Similar to the approach for hourly demand, we use additional 

sources to determine transfer capacities to- and within the SPP, MISO and PJM parts of the 

US nodes for improved spatial representation. Transmission lines and capacities towards sub-

areas of SPP can be derived from [376] with help from [332,377] to determine where 

transmission lines cross bordering nodes. No recent data can be found on transmission 

capacities within the larger SPP region. Hence, we assume that the maximum external flow 

from a single pathway coming in to a node covered by SPP can also flow towards adjacent 

nodes covered by SPP. Looking at the quantity- and voltage of lines running between regions 

covered by SPP compared to lines to external regions [378] this is a simplified yet best 

estimate assumption to work with. NTCs to external operators for nodes (partially) covered 

by MISO are based on hourly exchange data [221], again with additional sources being used 

to determine where lines cross bordering nodes [379–381]. Flow between the Midwest and 

South MISO subregions, in essence between the MISO parts of the US-SRDA and US-SRGW 

nodes, is constrained to 3GW since exchange occurs through infrastructure of other operators 

[370]. We assume that this flow can be sustained throughout all areas operated by MISO. 

Finally, maximum interregional and internal 2015 hourly exchange values for the PJM 

interconnection are retrieved from their data directory [369] and used to determine NTCs. All 

identified capacities between operators are aggregated into a single bidirectional NTC per 
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transmission pathway between adjacent nodes. These values can be found in Table C-3 in 

Section C.5. 

C.1.4 China 

From a data perspective, it is generally difficult to retrieve accurate information on China’s 

electricity system. This is the case for powerplant information as mentioned in the main text 

of this study, yet also for sub-country demand and transmission data. For this study, China’s 

electricity system is mostly based on received data from the authors of a range of studies by 

He and colleagues in which they introduce a systems approach to decarbonize China’s 

electricity system [20] and assess China’s renewable resource potential [382,383]. We follow 

the nodes as used for these studies which is on a per state basis as shown in Figure C-4, in 

addition we include Hong Kong (AS-CHN-HK) and Macau (AS-CHN-MA) as separate nodes 

within China’s larger electricity system. Transmission capacities in between the Chinese nodes 

as of 2015 are based on the same study of He et al. 

 
Figure C-4 Nodal representation of China and Japan in PLEXOS-World. Every copperplated area of an individual 

colour represents a node with a total of 34 nodes in China and 6 in Japan. 

To-date there’s no detailed historical data on hourly demand available for China, not on a 

regional level nor on an aggregate country level. We therefore developed simplified node 

specific synthetic hourly demand profiles for the different sub-country Chinese nodes, based 

on a standard daily shape of hourly demand for China as developed by State Grid [384]. [385] 
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provides state specific monthly electricity demand data for the period 2007-2008. Using the 

historical relative share of demand per month per state, combined with the standard hourly 

shape and with 2015 demand data per state or region [386–388] allows us to develop a hourly 

demand profile for 2015 that is month and node specific. Albeit its obvious limitations, e.g. 

every day of a certain month has the exact same hourly values, it is currently the best possible 

approach based on available open data. 

C.1.5 India 
India’s nodal representation is based on the five main regional grids, integrated since 2014 as 

a national interconnected grid [389]. The nodal representation is shown in Figure C-5. Internal 

transmission capacities between the nodes are based on reported values by the Ministry of 

Power of India [390]. Toktarova et al. [249] has developed synthetic hourly demand profiles 

for India as a whole. We’ve used their 2020 profile and scaled and shifted it to 2015 values. 

Monthly peak demand data per state or regional power grid is provided by the Ministry of 

Power [391]. Per regional grid, directly correlated to our nodes in this study, we’ve altered 

the synthetic profile for India by scaling the hourly values per month based on the historical 

2015 monthly peak demand, creating a node specific hourly profile. 

       
Figure C-5 Nodal representation of India in PLEXOS-World. Every copperplated area of an individual colour 

represents a node with a total of 5 nodes. 

C.1.6 Japan 
The electricity system of mainland Japan is divided into two asynchronous grids. Western 

Japan, including the islands of Kyūshū and Shikoku, runs at 60 Hz and Eastern Japan, including 
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the island of Hokkaido, runs at 50 Hz. To-date, the grids are limitedly interconnected with 

back to back DC links allowing a maximum flow of 0.9 GW [392]. Supply on the islands of 

Okinawa is mostly based on decentral diesel-based generation and an increasing integration 

of renewables [393]. For this study, Honshu is divided into two nodes, with the 50/60 Hz grids 

as separator. Furthermore, the separate islands (Hokkaido, Kyūshū, Okinawa and Shikoku) are 

represented by individual nodes. See Figure C-4 in Section C.1.4 for the relative nodal 

representation. Transmission capacity between the Japanese nodes is based on [392], to-date 

no cross-border interconnections to the Asian mainland exist. The Japanese ministry of 

Economy, Trade and Industry has provided hourly demand per system operator for the period 

April 2010 – March 2011. For simplicity, we’ve assumed that the shape of the hourly data for 

January – March 2011, while maintaining a correct representation of weekdays and 

weekends, can be used as data for January – March 2010 to create an hourly profile for a full 

calendar year. The hourly values of the different relevant system operators are combined into 

a singular profile and scaled and shifted to a node-specific 2015 demand profile.  

C.1.7 Russia 
Russia has the largest landmass around the world and covers 11 time zones from UTC +2 

(Kaliningrad) to UTC +12 (Far East). From an electricity system perspective, the country is 

divided in seven operational territories called ‘united energy systems’ (UES) [394]. These UES 

are used for the nodal representation of Russia in the global electricity system model as 

shown in Figure C-6. Despite the size of the country, only 2% of electricity consumption in 

Russia is decentralized. The five most western UES are relatively well integrated with 

significant transmission capacity between regions. Connections towards- and in between AS-

RUS-UR and AS-RUS-FE are weak. Interregional transmission capacities between Russian 

nodes are based on 2010 data from [395]. The System Operator of the UES (SO UES) provides 

historical hourly demand data per UES per day [396]. By making use of an automated script, 

we’ve extracted all data for 2015 and developed node specific hourly profiles for all UES. 
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Figure C-6 Nodal representation of Russia in PLEXOS-World. Every copperplated area of an individual colour 

represents a node with a total of 7 nodes. 

C.2 Supplementary graphs model benchmark 
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Figure C-7 Comparison of generation values per fuel type from the calibrated PLEXOS-World simulations with 

historically reported data for 2015.  
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Figure C-8 Comparison of CO2 emissions per fuel type from the calibrated PLEXOS-World simulations with 

historically reported data for 2015.  

C.3 List of Nodes in the PLEXOS-World Model 
Table C-1: List of nodes with their geographical representation. Description of the geographical representation 

of sub-country nodes can be found in Section C.1.  

Node Continent Country Geographical region 

AF-AGO Africa Angola Angola 

AF-BDI Africa Burundi Burundi 

AF-BEN Africa Benin Benin 

AF-BFA Africa Burkina Faso Burkina Faso 

AF-BWA Africa Botswana Botswana 

AF-CAF Africa Central African Republic Central African Republic 

AF-CIV Africa Cote DIvoire Cote DIvoire 

AF-CMR Africa Cameroon Cameroon 

AF-COD Africa Congo (Kinshasa) Congo (Kinshasa) 

AF-COG Africa Congo (Brazzaville) Congo (Brazzaville) 

AF-CPV Africa Cape Verde Cape Verde 

AF-DJI Africa Djibouti Djibouti 

AF-DZA Africa Algeria Algeria 

AF-EGY Africa Egypt Egypt 

AF-ERI Africa Eritrea Eritrea 

AF-ESH Africa Western Sahara Western Sahara 

AF-ETH Africa Ethiopia Ethiopia 

AF-GAB Africa Gabon Gabon 

AF-GHA Africa Ghana Ghana 

AF-GIN Africa Guinea Guinea 

AF-GMB Africa Gambia Gambia 

AF-GNB Africa Guinea-Bissau Guinea-Bissau 

AF-GNQ Africa Equatorial Guinea Equatorial Guinea 

AF-KEN Africa Kenya Kenya 

AF-LBR Africa Liberia Liberia 



168 
  

AF-LBY Africa Libya Libya 

AF-LSO Africa Lesotho Lesotho 

AF-MAR Africa Morocco Morocco 

AF-MDG Africa Madagascar Madagascar 

AF-MLI Africa Mali Mali 

AF-MOZ Africa Mozambique Mozambique 

AF-MRT Africa Mauritania Mauritania 

AF-MUS Africa Mauritius Mauritius 

AF-MWI Africa Malawi Malawi 

AF-NAM Africa Namibia Namibia 

AF-NER Africa Niger Niger 

AF-NGA Africa Nigeria Nigeria 

AF-RWA Africa Rwanda Rwanda 

AF-SDN Africa Sudan Sudan 

AF-SEN Africa Senegal Senegal 

AF-SLE Africa Sierra Leone Sierra Leone 

AF-SWZ Africa Swaziland Swaziland 

AF-TGO Africa Togo Togo 

AF-TUN Africa Tunisia Tunisia 

AF-TZA Africa Tanzania Tanzania 

AF-UGA Africa Uganda Uganda 

AF-ZAF Africa South Africa South Africa 

AF-ZMB Africa Zambia Zambia 

AF-ZWE Africa Zimbabwe Zimbabwe 

AS-AFG Asia Afghanistan Afghanistan 

AS-ARE Asia United Arab Emirates United Arab Emirates 

AS-BGD Asia Bangladesh Bangladesh 

AS-BHR Asia Bahrain Bahrain 

AS-BRN Asia Brunei Brunei 

AS-BTN Asia Bhutan Bhutan 

AS-CHN-AN Asia China Anhui 

AS-CHN-BE Asia China Beijing 

AS-CHN-CH Asia China Chongqing 

AS-CHN-EM Asia China Inner Mongolia (East) 

AS-CHN-FU Asia China Fujian 

AS-CHN-GA Asia China Gansu 

AS-CHN-GD Asia China Guangdong 

AS-CHN-GU Asia China Guizhou 

AS-CHN-GX Asia China Guangxi 

AS-CHN-HA Asia China Hainan 

AS-CHN-HB Asia China Hebei 

AS-CHN-HE Asia China Henan 

AS-CHN-HJ Asia China Heilongjiang 

AS-CHN-HK Asia China Hong Kong 
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AS-CHN-HN Asia China Hunan 

AS-CHN-HU Asia China Hubei 

AS-CHN-JI Asia China Jilin 

AS-CHN-JS Asia China Jiangsu 

AS-CHN-JX Asia China Jiangxi 

AS-CHN-LI Asia China Liaoning 

AS-CHN-MA Asia China Macau 

AS-CHN-NI Asia China Ningxia 

AS-CHN-QI Asia China Qinghai 

AS-CHN-SC Asia China Sichuan 

AS-CHN-SD Asia China Shandong 

AS-CHN-SH Asia China Shanghai 

AS-CHN-SI Asia China Shaanxi 

AS-CHN-SX Asia China Shanxi 

AS-CHN-TI Asia China Tibet 

AS-CHN-TJ Asia China Tianjin 

AS-CHN-WM Asia China Inner Mongolia (West) 

AS-CHN-XI Asia China Xinjiang 

AS-CHN-YU Asia China Yunnan 

AS-CHN-ZH Asia China Zhejiang 

AS-IDN Asia Indonesia Indonesia 

AS-IND-EA Asia India Eastern Region 

AS-IND-NE Asia India North-Eastern Region 

AS-IND-NO Asia India Northern Region 

AS-IND-SO Asia India Southern Region 

AS-IND-WE Asia India Western Region 

AS-IRN Asia Iran Iran 

AS-IRQ Asia Iraq Iraq 

AS-ISR Asia Israel & Palestina Israel & Palestina 

AS-JOR Asia Jordan Jordan 

AS-JPN-CE Asia Japan Main 60Hz system (Central) 

AS-JPN-HO Asia Japan Hokkaido 

AS-JPN-KY Asia Japan Kyushu 

AS-JPN-OK Asia Japan Okinawa 

AS-JPN-SH Asia Japan Shikoku 

AS-JPN-TO Asia Japan Main 50Hz system (Tohoku & Tokyo) 

AS-KAZ Asia Kazakhstan Kazakhstan 

AS-KGZ Asia Kyrgyzstan Kyrgyzstan 

AS-KHM Asia Cambodia Cambodia 

AS-KOR Asia South Korea South Korea 

AS-KWT Asia Kuwait Kuwait 

AS-LAO Asia Laos Laos 

AS-LBN Asia Lebanon Lebanon 

AS-LKA Asia Sri Lanka Sri Lanka 
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AS-MMR Asia Myanmar Myanmar 

AS-MNG Asia Mongolia Mongolia 

AS-MYS Asia Malaysia Malaysia 

AS-NPL Asia Nepal Nepal 

AS-OMN Asia Oman Oman 

AS-PAK Asia Pakistan Pakistan 

AS-PHL Asia Philippines Philippines 

AS-PRK Asia North Korea North Korea 

AS-QAT Asia Qatar Qatar 

AS-RUS-CE Asia Russia UES Center 

AS-RUS-FE Asia Russia UES Far East 

AS-RUS-MV Asia Russia UES Middle Volga 

AS-RUS-NW Asia Russia UES Northwest 

AS-RUS-SI Asia Russia UES Siberia 

AS-RUS-SO Asia Russia UES South 

AS-RUS-UR Asia Russia UES Ural 

AS-SAU Asia Saudi Arabia Saudi Arabia 

AS-SGP Asia Singapore Singapore 

AS-SYR Asia Syria Syria 

AS-THA Asia Thailand Thailand 

AS-TJK Asia Tajikistan Tajikistan 

AS-TKM Asia Turkmenistan Turkmenistan 

AS-TUR Asia Turkey Turkey 

AS-TWN Asia Taiwan Taiwan 

AS-UZB Asia Uzbekistan Uzbekistan 

AS-VNM Asia Vietnam Vietnam 

AS-YEM Asia Yemen Yemen 

EU-ALB Europe Albania Albania 

EU-ARM Europe Armenia Armenia 

EU-AUT Europe Austria Austria 

EU-AZE Europe Azerbaijan Azerbaijan 

EU-BEL Europe Belgium Belgium 

EU-BGR Europe Bulgaria Bulgaria 

EU-BIH Europe Bosnia and Herzegovina Bosnia and Herzegovina 

EU-BLR Europe Belarus Belarus 

EU-CHE Europe Switzerland Switzerland 

EU-CYP Europe Cyprus Cyprus 

EU-CZE Europe Czech Republic Czech Republic 

EU-DEU Europe Germany Germany 

EU-DNK Europe Denmark Denmark 

EU-ESP Europe Spain Spain 

EU-EST Europe Estonia Estonia 

EU-FIN Europe Finland Finland 

EU-FRA Europe France France 
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EU-GBR Europe United Kingdom United Kingdom 

EU-GEO Europe Georgia Georgia 

EU-GRC Europe Greece Greece 

EU-HRV Europe Croatia Croatia 

EU-HUN Europe Hungary Hungary 

EU-IRL Europe Ireland Ireland 

EU-ISL Europe Iceland Iceland 

EU-ITA Europe Italy Italy 

EU-KOS Europe Kosovo Kosovo 

EU-LTU Europe Lithuania Lithuania 

EU-LUX Europe Luxembourg Luxembourg 

EU-LVA Europe Latvia Latvia 

EU-MDA Europe Moldova Moldova 

EU-MKD Europe Macedonia Macedonia 

EU-MNE Europe Montenegro Montenegro 

EU-NLD Europe Netherlands Netherlands 

EU-NOR Europe Norway Norway 

EU-POL Europe Poland Poland 

EU-PRT Europe Portugal Portugal 

EU-ROU Europe Romania Romania 

EU-SRB Europe Serbia Serbia 

EU-SVK Europe Slovakia Slovakia 

EU-SVN Europe Slovenia Slovenia 

EU-SWE Europe Sweden Sweden 

EU-UKR Europe Ukraine Ukraine 

NA-CAN-AB North America Canada Alberta 

NA-CAN-AR North America Canada Atlantic region 

NA-CAN-BC North America Canada British Columbia 

NA-CAN-MB North America Canada Manitoba 

NA-CAN-NL North America Canada Newfoundland & Labrador 

NA-CAN-NO North America Canada Northern Provinces 

NA-CAN-ON North America Canada Ontario 

NA-CAN-QC North America Canada Quebec 

NA-CAN-SK North America Canada Saskatchewan 

NA-CRI North America Costa Rica Costa Rica 

NA-CUB North America Cuba Cuba 

NA-DOM North America Dominican Republic Dominican Republic 

NA-GTM North America Guatemala Guatemala 

NA-HND North America Honduras Honduras 

NA-JAM North America Jamaica Jamaica 

NA-MEX North America Mexico Mexico 

NA-NIC North America Nicaragua Nicaragua 

NA-PAN North America Panama Panama 

NA-SLV North America El Salvador El Salvador 
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NA-TTO North America Trinidad and Tobago Trinidad and Tobago 

NA-USA-AK North America United States Alaska 

NA-USA-AZ North America United States EIA NEMS Region AZNM 

NA-USA-CA North America United States EIA NEMS Region CAMX 

NA-USA-ER North America United States EIA NEMS Region ERCT 

NA-USA-FR North America United States EIA NEMS Region FRCC 

NA-USA-GU North America United States Guam 

NA-USA-HA North America United States Hawaii 

NA-USA-ME North America United States EIA NEMS Region MROE 

NA-USA-MW North America United States EIA NEMS Region MROW 

NA-USA-NE North America United States EIA NEMS Region NEWE 

NA-USA-NW North America United States EIA NEMS Region NWPP 

NA-USA-NY North America United States EIA NEMS Regions NYCW, NYLI & NYUP 

NA-USA-PR North America United States Puerto Rico 

NA-USA-RA North America United States EIA NEMS Region RMPA 

NA-USA-RE North America United States EIA NEMS Region RFCE 

NA-USA-RM North America United States EIA NEMS Region RFCM 

NA-USA-RW North America United States EIA NEMS Region RFCW 

NA-USA-SA North America United States EIA NEMS Region SRDA 

NA-USA-SC North America United States EIA NEMS Region SRCE 

NA-USA-SE North America United States EIA NEMS Region SRSE 

NA-USA-SN North America United States EIA NEMS Region SPNO 

NA-USA-SS North America United States EIA NEMS Region SPSO 

NA-USA-SV North America United States EIA NEMS Region SRVC 

NA-USA-SW North America United States EIA NEMS Region SRGW 

OC-ATA Oceania Antarctica Antarctica 

OC-AUS-NT Oceania Australia Northern Territory 

OC-AUS-QL Oceania Australia Queensland 

OC-AUS-SA Oceania Australia South Australia 

OC-AUS-SW Oceania Australia New South Wales 

OC-AUS-TA Oceania Australia Tasmania 

OC-AUS-VI Oceania Australia Victoria 

OC-AUS-WA Oceania Australia Western Australia 

OC-FJI Oceania Fiji Fiji 

OC-NZL Oceania New Zealand New Zealand 

OC-PNG Oceania Papua New Guinea Papua New Guinea 

SA-ARG South America Argentina Argentina 

SA-BOL South America Bolivia Bolivia 

SA-BRA-CN South America Brazil Center-Northern Region 

SA-BRA-CW South America Brazil Center-Western Region 

SA-BRA-J1 South America Brazil Transmission Junction J1 

SA-BRA-J2 South America Brazil Transmission Junction J2 

SA-BRA-J3 South America Brazil Transmission Junction J3 

SA-BRA-NE South America Brazil North-Eastern Region 
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SA-BRA-NW South America Brazil North-Western Region 

SA-BRA-SE South America Brazil South-Eastern Region 

SA-BRA-SO South America Brazil Southern Region 

SA-BRA-WE South America Brazil Western Region 

SA-CHL South America Chile Chile 

SA-COL South America Colombia Colombia 

SA-ECU South America Ecuador Ecuador 

SA-GUF South America French Guiana French Guiana 

SA-GUY South America Guyana Guyana 

SA-PER South America Peru Peru 

SA-PRY South America Paraguay Paraguay 

SA-URY South America Uruguay Uruguay 

SA-VEN South America Venezuela Venezuela 

 

C.4 List of Publicly Available Hourly Load Data 
This Section includes a full overview of publicly available load data with (sub-)hourly time 

intervals. Furthermore, hourly data retrieved through personal communication (L. St-Laurent, 

Hydro Quebec, 12-02-2018 – R. Mall, SaskPower, 21-12-2017, Ukrenergo, 29/10/2018) is 

included as part of the model input. For synthetic hourly load profiles for countries where no 

data exists in the public domain it is worth highlighting a study by Toktarova and colleagues 

[249]. The authors constructed a calibrated method to generate demand profiles for future 

years based on locational economic, technical and climatic characteristics for almost all 

countries around the world. All load profiles as used for this study can be found in a separate 

file on the Dataverse [231]. 

Table C-2: Global list of publicly available load data with (sub-)hourly time intervals. 

Area Years Coverage of data Resolution Source 

AF-ETH 2013 Full country Hourly [249] 

AF-KEN 2010 Full country Hourly [249] 

AF-MAR 2010 Full country Hourly [249] 

AF-TUN 2010 Full country Hourly [249] 

AF-ZAF 2010 Full country Hourly [397] 

AS-IRN 2015 Full country Hourly [249] 

AS-ISR 2012 Full country Hourly [249] 

AS-JPN 2010-2011 

Full country or per operating area/

bidding zone Hourly [224] 

AS-KOR 2015 Full country Hourly [398] 

AS-LKA 2013 Full country Hourly [249] 

AS-MYS 2017-2020 Peninsular Malaysia Hourly [399] 

AS-OMN 2013-2016 Main Interconnected System Hourly [400] 

AS-PAK 2008 Full country Hourly [249] 



174 
  

AS-RUS 2008-2020 

Full country or per operating area/

bidding zone Hourly [396] 

AS-SAU 2013 Full country Hourly [249] 

AS-SGP 2004-2020 Full country Half-Hourly [401] 

AS-TUR 2016-2020 Full country Hourly [402] 

EU-AUT 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-BEL 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-BGR 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-BIH 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-CHE 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-CYP 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-CZE 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-DEU 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-DNK 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-ESP 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-EST 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-FIN 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-FRA 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-GBR 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-GEO 2017-2020 Full country Hourly [404] 

EU-GRC 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-HRV 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-HUN 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-IRL 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-ISL 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-ITA 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-LTU 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 
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EU-LUX 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-LVA 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-MKD 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-MNE 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-NLD 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-NOR 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-POL 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-PRT 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-ROU 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-SRB 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-SVK 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-SVN 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

EU-SWE 2006-2020 

Full country or per operating area/

bidding zone Hourly [247,403] 

NA-CAN-AB 2016 Alberta Hourly [339] 

NA-CAN-AR 2013-2020 New Brunswick Hourly [337] 

NA-CAN-AR 2012-2020 Nova Scotia Hourly [336] 

NA-CAN-BC 2001-2020 British Columbia Hourly [340] 

NA-CAN-ON 1994-2020 Ontario Hourly [338] 

NA-CRI Last 24 hrs Full country Per 15 mins [405] 

NA-GTM 2010-2020 Full country Hourly [406] 

NA-MEX 2016-2018 

Full country or per operating area/

bidding zone Hourly [407] 

NA-NIC 2010-2020 Full country Hourly [408] 

NA-PAN 2016-2020 Full country Hourly [409] 

NA-SLV 2018-2020 Full country Hourly [410] 

NA-USA 2016-2020 

Full country or per operating area/

bidding zone Hourly [219] 

NA-USA 1993-2018 

Full country or per operating area/

bidding zone Hourly [218] 

OC-AUS 2019-2020 Full NEM Territory or per province Hourly [322] 

OC-AUS-WA 2006-2019 Western Australia Hourly [323] 

OC-NZL 2010-2020 

Full country or per operating area/

bidding zone Half-Hourly [411] 

SA-ARG 2006-2013 Full country Hourly [412] 
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SA-BRA 1999-2020 

Full country or per operating area/

bidding zone Hourly [330] 

SA-CHL 2005-2018 Central System Hourly [413] 

SA-COL 2010 Full country Hourly [249] 

SA-PER 2015-2020 Full country Half-Hourly [414] 

SA-URY 2015-2020 Full country Hourly [415] 

 

C.5 List of Global Cross-Border Transmssion Capacities 
Table C-3: Global list of Cross-Border Transmission Capacities. The values represent net transfer capacities 

between neighbouring nodes as well as capacities for transmission pathways of existing and planned subsea 

interconnectors. Extensive attempts have been made to base the data on reliable sources with 2015 as base 

year, yet this data is not always available in the public domain. The ‘Data Year’ column indicates for which 

year the data is valid and footnotes are added at the bottom of the table in case additional comments on the 

data are required. More detailed description regarding transmission capacities between sub-country nodes 

can be found in Section C.1. 

From To 

Max 

Flow 

(MW) 

Min 

Flow 

(MW) Data Year Source 

 

 

Note 

AF-AGO AF-COD 0 0 2015 [252]  

AF-AGO AF-COG 0 0 2015 [252]  

AF-AGO AF-NAM 0 0 2015 [252]  

AF-AGO AF-ZMB 0 0 2015 [252]  

AF-BDI AF-COD 475 -475 2015 [252]  

AF-BDI AF-RWA 430 -430 2015 [252]  

AF-BDI AF-TZA 0 0 2015 [252]  

AF-BEN AF-BFA 0 0 2015 [252]  

AF-BEN AF-GHA 936 -936 2015 [252]  

AF-BEN AF-NER 0 0 2015 [252]  

AF-BEN AF-NGA 686 -686 2015 [252]  

AF-BEN AF-TGO 0 0 2015 [252]  

AF-BFA AF-CIV 327 -327 2015 [252]  

AF-BFA AF-GHA 0 0 2015 [252]  

AF-BFA AF-MLI 0 0 2015 [252]  

AF-BFA AF-NER 0 0 2015 [252]  

AF-BFA AF-TGO 0 0 2015 [252]  

AF-BWA AF-NAM 0 0 2015 [252]  

AF-BWA AF-ZAF 1300 -1300 2015 [252]  

AF-BWA AF-ZMB 0 0 2015 [252]  

AF-BWA AF-ZWE 650 -650 2015 [252]  

AF-CAF AF-CMR 0 0 2015 [252]  

AF-CAF AF-COD 0 0 2015 [252]  

AF-CAF AF-COG 0 0 2015 [252]  

AF-CAF AF-SDN 0 0 2015 [252]  

AF-CIV AF-GHA 982 -982 2015 [252]  

AF-CIV AF-GIN 0 0 2015 [252]  
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AF-CIV AF-LBR 338 -338 2015 [252]  

AF-CIV AF-MLI 0 0 2015 [252]  

AF-CMR AF-COG 0 0 2015 [252]  

AF-CMR AF-GAB 0 0 2015 [252]  

AF-CMR AF-GNQ 0 0 2015 [252]  

AF-CMR AF-NGA 0 0 2015 [252]  

AF-COD AF-COG 60 -60 2015 [252]  

AF-COD AF-RWA 527 -527 2015 [252]  

AF-COD AF-TZA 0 0 2015 [252]  

AF-COD AF-UGA 0 0 2015 [252]  

AF-COD AF-ZMB 310 -310 2015 [252]  

AF-COG AF-GAB 0 0 2015 [252]  

AF-COG AF-RWA 0 0 2015 [252]  

AF-COG AF-TZA 0 0 2015 [252]  

AF-DJI AF-ERI 0 0 2015 [252]  

AF-DJI AF-ETH 180 -180 2015 [252]  

AF-DZA AF-ESH 0 0 2015 [252]  

AF-DZA AF-LBY 0 0 2015 [252]  

AF-DZA AF-MAR 400 -400 2013 [254]   

AF-DZA AF-MLI 0 0 2015 [252]  

AF-DZA AF-MRT 0 0 2015 [252]  

AF-DZA AF-NER 0 0 2015 [252]  

AF-DZA AF-TUN 150 -150 2013 [254]  

AF-EGY AF-LBY 180 -180 2013 [254]   

AF-EGY AF-SDN 0 0 2015 [252]  

AF-EGY AS-ISR 17 0 2015 [252]  

AF-EGY AS-JOR 450 -200 2013 [254]  Subsea line 

AF-ERI AF-ETH 0 0 2015 [252]  

AF-ERI AF-SDN 0 0 2015 [252]  

AF-ESH AF-MAR 0 0 2015 [252]  

AF-ESH AF-MRT 0 0 2015 [252]  

AF-ETH AF-KEN 0 0 2015 [252]  

AF-ETH AF-SDN 200 -200 2015 [252]  

AF-GAB AF-GNQ 0 0 2015 [252]  

AF-GHA AF-TGO 963 -963 2015 [252]  

AF-GIN AF-GNB 0 0 2015 [252]  

AF-GIN AF-LBR 0 0 2015 [252]  

AF-GIN AF-MLI 0 0 2015 [252]  

AF-GIN AF-SEN 0 0 2015 [252]  

AF-GIN AF-SLE 0 0 2015 [252]  

AF-GMB AF-SEN 0 0 2015 [252]  

AF-GNB AF-SEN 0 0 2015 [252]  

AF-KEN AF-TZA 0 0 2015 [252]  

AF-KEN AF-UGA 418 -418 2015 [252]  
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AF-LBR AF-SLE 0 0 2015 [252]  

AF-LBY AF-NER 0 0 2015 [252]  

AF-LBY AF-SDN 0 0 2015 [252]  

AF-LBY AF-TUN 200 -200 2015 [252]  

AF-LSO AF-ZAF 230 -230 2015 [252]  

AF-MLI AF-MRT 0 0 2015 [252]  

AF-MLI AF-NER 0 0 2015 [252]  

AF-MLI AF-SEN 100 -100 2015 [252]  

AF-MOZ AF-MWI 0 0 2015 [252]  

AF-MOZ AF-SWZ 1450 -1450 2015 [252]  

AF-MOZ AF-TZA 0 0 2015 [252]  

AF-MOZ AF-ZAF 3850 -3850 2015 [252]  

AF-MOZ AF-ZMB 0 0 2015 [252]  

AF-MOZ AF-ZWE 700 -700 2015 [252]  

AF-MRT AF-SEN 0 0 2015 [252]  

AF-MWI AF-TZA 0 0 2015 [252]  

AF-MWI AF-ZMB 0 0 2015 [252]  

AF-NAM AF-ZAF 750 -750 2015 [252]  

AF-NAM AF-ZMB 200 -200 2015 [252]  

AF-NER AF-NGA 169 -169 2015 [252]  

AF-NGA AF-TGO 686 -686 2015 [252]  

AF-RWA AF-TZA 0 0 2015 [252]  

AF-RWA AF-UGA 250 -250 2015 [252]  

AF-SWZ AF-ZAF 1450 -1450 2015 [252]  

AF-TZA AF-UGA 59 -59 2015 [252]  

AF-TZA AF-ZMB 0 0 2015 [252]  

AF-ZAF AF-ZWE 600 -600 2015 [252]  

AF-ZMB AF-ZWE 700 -700 2015 [252]  

AS-AFG AS-CHN-XI 0 0 2015 [416]  

AS-AFG AS-IRN 56 -56 2006 [417]  

AS-AFG AS-PAK 0 0 2018 [418]  

AS-AFG AS-TJK 300 -300 2006 [417]  

AS-AFG AS-TKM 300 -300 2006 [417]  

AS-AFG AS-UZB 300 -300 2017 [113]  

AS-ARE AS-OMN 400 -400 2013 [254]  

AS-ARE AS-SAU 900 -900 2013 [254]  

AS-BGD AS-IND-EA 500 -500 2018 [419]  

AS-BGD AS-IND-NE 160 -160 2018 [419]  

AS-BGD AS-MMR 0 0 2018 [419]  

AS-BHR AS-SAU 600 -600 2013 [254]  

AS-BRN AS-MYS 0 0 2015 [255,256]  

AS-BTN AS-CHN-TI 0 0 2015 [416]  

AS-BTN AS-IND-EA 1980 0 2014 [420]  

AS-CHN-AN AS-CHN-HB 4000 -4000 2016 [20,382,383]  
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AS-CHN-AN AS-CHN-HE 0 0 2016 [20,382,383]  

AS-CHN-AN AS-CHN-HU 0 0 2016 [20,382,383]  

AS-CHN-AN AS-CHN-JS 5000 -5000 2016 [20,382,383]  

AS-CHN-AN AS-CHN-JX 0 0 2016 [20,382,383]  

AS-CHN-AN AS-CHN-SD 0 0 2016 [20,382,383]  

AS-CHN-AN AS-CHN-ZH 0 0 2016 [20,382,383]  

AS-CHN-BE AS-CHN-EM 5000 -5000 2016 [20,382,383]  

AS-CHN-BE AS-CHN-HB 4000 -4000 2016 [20,382,383]  

AS-CHN-BE AS-CHN-TJ 5000 -5000 2016 [20,382,383]  

AS-CHN-CH AS-CHN-GU 0 0 2016 [20,382,383]  

AS-CHN-CH AS-CHN-HB 4000 -4000 2016 [20,382,383]  

AS-CHN-CH AS-CHN-HN 0 0 2016 [20,382,383]  

AS-CHN-CH AS-CHN-HU 0 0 2016 [20,382,383]  

AS-CHN-CH AS-CHN-SC 4000 -4000 2016 [20,382,383]  

AS-CHN-CH AS-CHN-SI 0 0 2016 [20,382,383]  

AS-CHN-CH AS-CHN-SX 0 0 2016 [20,382,383]  

AS-CHN-EM AS-CHN-HB 4000 -4000 2016 [20,382,383]  

AS-CHN-EM AS-CHN-HJ 0 0 2016 [20,382,383]  

AS-CHN-EM AS-CHN-JI 0 0 2016 [20,382,383]  

AS-CHN-EM AS-CHN-LI 4000 -4000 2016 [20,382,383]  

AS-CHN-EM AS-CHN-SD 14400 -14400 2016 [20,382,383]  

AS-CHN-EM AS-CHN-TJ 4000 -4000 2016 [20,382,383]  

AS-CHN-EM AS-CHN-WM 0 0 2016 [20,382,383]  

AS-CHN-EM AS-MNG 0 0 2016 [20,382,383]  

AS-CHN-FU AS-CHN-GD 0 0 2016 [20,382,383]  

AS-CHN-FU AS-CHN-JX 0 0 2016 [20,382,383]  

AS-CHN-FU AS-CHN-ZH 0 0 2016 [20,382,383]  

AS-CHN-GA AS-CHN-JS 7200 -7200 2016 [20,382,383]  

AS-CHN-GA AS-CHN-NI 0 0 2016 [20,382,383]  

AS-CHN-GA AS-CHN-QI 0 0 2016 [20,382,383]  

AS-CHN-GA AS-CHN-SC 0 0 2016 [20,382,383]  

AS-CHN-GA AS-CHN-SI 0 0 2016 [20,382,383]  

AS-CHN-GA AS-CHN-WM 0 0 2016 [20,382,383]  

AS-CHN-GA AS-CHN-XI 0 0 2016 [20,382,383]  

AS-CHN-GA AS-MNG 0 0 2015 [416]  

AS-CHN-GD AS-CHN-GX 0 0 2016 [20,382,383]  

AS-CHN-GD AS-CHN-HA 600 -600 2015 [421]  

AS-CHN-GD AS-CHN-HK 1978 -1978 2014-2018 [422] Estimate1 

AS-CHN-GD AS-CHN-HN 0 0 2016 [20,382,383]  

AS-CHN-GD AS-CHN-JX 0 0 2016 [20,382,383]  

AS-CHN-GD AS-CHN-MA 1750 -1750 2016 [20,382,383]  

AS-CHN-GD AS-CHN-SC 6400 -6400 2016 [20,382,383]  

AS-CHN-GD AS-CHN-YU 5000 -5000 2016 [20,382,383]  

AS-CHN-GU AS-CHN-GX 0 0 2016 [20,382,383]  
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AS-CHN-GU AS-CHN-HN 0 0 2016 [20,382,383]  

AS-CHN-GU AS-CHN-JS 7200 -7200 2016 [20,382,383]  

AS-CHN-GU AS-CHN-SC 0 0 2016 [20,382,383]  

AS-CHN-GU AS-CHN-YU 0 0 2016 [20,382,383]  

AS-CHN-GX AS-CHN-HN 0 0 2016 [20,382,383]  

AS-CHN-GX AS-CHN-XI 0 0 2016 [20,382,383]  

AS-CHN-GX AS-CHN-YU 0 0 2016 [20,382,383]  

AS-CHN-GX AS-VNM 0 0 2015 [416]  

AS-CHN-HB AS-CHN-HE 4000 -4000 2016 [20,382,383]  

AS-CHN-HB AS-CHN-LI 0 0 2016 [20,382,383]  

AS-CHN-HB AS-CHN-SD 0 0 2016 [20,382,383]  

AS-CHN-HB AS-CHN-SX 0 0 2016 [20,382,383]  

AS-CHN-HB AS-CHN-TJ 0 0 2016 [20,382,383]  

AS-CHN-HB AS-CHN-WM 0 0 2016 [20,382,383]  

AS-CHN-HE AS-CHN-HU 4000 -4000 2016 [20,382,383]  

AS-CHN-HE AS-CHN-JS 0 0 2016 [20,382,383]  

AS-CHN-HE AS-CHN-SD 0 0 2016 [20,382,383]  

AS-CHN-HE AS-CHN-SI 0 0 2016 [20,382,383]  

AS-CHN-HE AS-CHN-SX 0 0 2016 [20,382,383]  

AS-CHN-HE AS-CHN-XI 14400 -14400 2016 [20,382,383]  

AS-CHN-HJ AS-CHN-JI 0 0 2016 [20,382,383]  

AS-CHN-HJ AS-RUS-FE 1000 -1000 2015 [423]  

AS-CHN-HJ AS-RUS-SI 0 0 2015 [416]  

AS-CHN-HN AS-CHN-HU 0 0 2016 [20,382,383]  

AS-CHN-HN AS-CHN-JX 0 0 2016 [20,382,383]  

AS-CHN-HN AS-CHN-SC 8000 -8000 2016 [20,382,383]  

AS-CHN-HN AS-CHN-SX 5000 -5000 2016 [20,382,383]  

AS-CHN-HU AS-CHN-JX 0 0 2016 [20,382,383]  

AS-CHN-HU AS-CHN-SI 0 0 2016 [20,382,383]  

AS-CHN-JI AS-CHN-LI 0 0 2016 [20,382,383]  

AS-CHN-JI AS-PRK 0 0 2015 [416]  

AS-CHN-JS AS-CHN-SD 5000 -5000 2016 [20,382,383]  

AS-CHN-JS AS-CHN-SH 5000 -5000 2016 [20,382,383]  

AS-CHN-JS AS-CHN-SI 4000 -4000 2016 [20,382,383]  

AS-CHN-JS AS-CHN-SX 5000 -5000 2016 [20,382,383]  

AS-CHN-JS AS-CHN-ZH 0 0 2016 [20,382,383]  

AS-CHN-JX AS-CHN-WM 7200 -7200 2016 [20,382,383]  

AS-CHN-JX AS-CHN-ZH 0 0 2016 [20,382,383]  

AS-CHN-LI AS-PRK 100 -100 2017 [424] Estimate2 

AS-CHN-NI AS-CHN-SD 4000 -4000 2016 [20,382,383]  

AS-CHN-NI AS-CHN-SI 0 0 2016 [20,382,383]  

AS-CHN-NI AS-CHN-WM 0 0 2016 [20,382,383]  

AS-CHN-NI AS-CHN-ZH 7200 -7200 2016 [20,382,383]  

AS-CHN-QI AS-CHN-SC 0 0 2016 [20,382,383]  
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AS-CHN-QI AS-CHN-TI 1500 -1500 2016 [20,382,383]  

AS-CHN-QI AS-CHN-XI 0 0 2016 [20,382,383]  

AS-CHN-SC AS-CHN-TI 0 0 2016 [20,382,383]  

AS-CHN-SC AS-CHN-YU 0 0 2016 [20,382,383]  

AS-CHN-SD AS-CHN-SX 4000 -4000 2016 [20,382,383]  

AS-CHN-SD AS-CHN-TJ 5000 -5000 2016 [20,382,383]  

AS-CHN-SH AS-CHN-ZH 5000 -5000 2016 [20,382,383]  

AS-CHN-SI AS-CHN-SC 0 0 2016 [20,382,383]  

AS-CHN-SI AS-CHN-SX 0 0 2016 [20,382,383]  

AS-CHN-SI AS-CHN-WM 0 0 2016 [20,382,383]  

AS-CHN-SX AS-CHN-WM 9000 -9000 2016 [20,382,383]  

AS-CHN-TI AS-CHN-XI 0 0 2016 [20,382,383]  

AS-CHN-TI AS-CHN-YU 0 0 2016 [20,382,383]  

AS-CHN-TI AS-IND-NE 0 0 2016 [20,382,383]  

AS-CHN-TI AS-IND-NO 0 0 2016 [20,382,383]  

AS-CHN-TI AS-MMR 0 0 2016 [20,382,383]  

AS-CHN-TI AS-NPL 0 0 2015 [416]  

AS-CHN-TI AS-PAK 0 0 2015 [416]  

AS-CHN-WM AS-MNG 0 0 2015 [416]  

AS-CHN-WM AS-RUS-SI 0 0 2016 [20,382,383]  

AS-CHN-XI AS-IND-NO 0 0 2016 [20,382,383]  

AS-CHN-XI AS-KAZ 0 0 2015 [416]  

AS-CHN-XI AS-KGZ 0 0 2015 [416]  

AS-CHN-XI AS-MNG 0 0 2015 [416]  

AS-CHN-XI AS-PAK 0 0 2015 [416]  

AS-CHN-XI AS-RUS-SI 0 0 2015 [416]  

AS-CHN-XI AS-TJK 0 0 2015 [416]  

AS-CHN-YU AS-CHN-ZH 7200 -7200 2016 [20,382,383]  

AS-CHN-YU AS-MMR 600 -600 2015 [416]  

AS-CHN-YU AS-VNM 500 -500 2015 [416]  

AS-IDN AS-MYS 0 0 2015 [255,256] Planned subsea line 

AS-IDN AS-PHL 0 0 2014 [255,256] Planned subsea line 

AS-IDN AS-SGP 0 0 2015 [255,256] Planned subsea line 

AS-IDN OC-PNG 0 0 2015 [425]  

AS-IND-EA AS-IND-NE 2860 -2860 2015 [390]  

AS-IND-EA AS-IND-NO 14230 -14230 2015 [390]  

AS-IND-EA AS-IND-SO 3630 -3630 2015 [390]  

AS-IND-EA AS-IND-WE 10690 -10690 2015 [390]  

AS-IND-EA AS-NPL 150 -150 2015 [426]  

AS-IND-NE AS-MMR 3 -3 2018 [419]  

AS-IND-NO AS-IND-WE 8720 -8720 2015 [390]  

AS-IND-NO AS-NPL 350 -350 2015 [426]  

AS-IND-NO AS-PAK 500 -500 2014 [427]  

AS-IND-SO AS-IND-WE 5720 -5720 2015 [390]  
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AS-IND-SO AS-LKA 0 0 2018 [419] Planned subsea line 

AS-IND-WE AS-PAK 0 0 2014 [427]  

AS-IRN AS-IRQ 700 -700 2015 [428]  

AS-IRN AS-PAK 74 -74 2015 [429]  

AS-IRN AS-TKM 350 -350 2016 [430]  

AS-IRN AS-TUR 0 0 2017 [103]  

AS-IRQ AS-JOR 0 0 2015 [428]  

AS-IRQ AS-KWT 0 0 2015 [428]  

AS-IRQ AS-SAU 0 0 2015 [428]  

AS-IRQ AS-SYR 0 0 2015 [428]  

AS-IRQ AS-TUR 0 0 2017 [103]  

AS-ISR AS-JOR 0 -20 2013 [254]  

AS-ISR AS-LBN 0 0 2018 [431]  

AS-ISR AS-SYR 0 0 2018 [431]  

AS-JOR AS-SAU 0 0 2019 [432]  

AS-JOR AS-SYR 350 -200 2013 [254]  

AS-JPN-CE AS-JPN-KY 2800 -2800 2015 [392]  

AS-JPN-CE AS-JPN-SH 2600 -2600 2015 [392]  

AS-JPN-CE AS-JPN-TO 900 -900 2015 [392]  

AS-JPN-HO AS-JPN-TO 600 -600 2015 [392]  

AS-KAZ AS-KGZ 2540 -2540 2016 [433]  

AS-KAZ AS-RUS-CE 0 0 2016 [433]  

AS-KAZ AS-RUS-MV 370 -370 2016 [433]  

AS-KAZ AS-RUS-SI 4200 -4200 2016 [433]  

AS-KAZ AS-RUS-UR 5860 -5860 2016 [433]  

AS-KAZ AS-TKM 0 0 2016 [433]  

AS-KAZ AS-UZB 1900 -1900 2016 [433]  

AS-KGZ AS-TJK 412 -412 2016 [434]  

AS-KGZ AS-UZB 1500 -1500 2016 [434]  

AS-KHM AS-LAO 0 0 2015 [255,256]  

AS-KHM AS-THA 100 -100 2015 [255,256]  

AS-KHM AS-VNM 200 -200 2015 [255,256]  

AS-KOR AS-PRK 0 0 2015 [435]  

AS-KWT AS-SAU 1200 -1200 2013 [254]  

AS-LAO AS-MMR 5 -5 2018 [436]  

AS-LAO AS-THA 2111 -2111 2015 [255,256]  

AS-LAO AS-VNM 248 -248 2015 [255,256]  

AS-LBN AS-SYR 160 -50 2013 [254]  

AS-MMR AS-THA 0 0 2015 [255,256]  

AS-MNG AS-RUS-SI 100 -100 2017 [113]  

AS-MYS AS-PHL 0 0 2015 [255,256] Planned subsea line 

AS-MYS AS-THA 380 -380 2015 [255,256]  

AS-OMN AS-SAU 0 0 2013 [254]  

AS-OMN AS-YEM 0 0 2018 [437]  
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AS-PRK AS-RUS-FE 0 0 2015 [435]  

AS-QAT AS-SAU 750 -750 2013 [254]  

AS-RUS-CE AS-RUS-MV 3500 -3500 2010 [395]  

AS-RUS-CE AS-RUS-NW 1500 -1500 2010 [395]  

AS-RUS-CE AS-RUS-SO 2400 -2400 2010 [395]  

AS-RUS-CE EU-UKR 1800 -1800 2019 [438]  

AS-RUS-FE AS-RUS-SI 0 0 2010 [395]  

AS-RUS-MV AS-RUS-UR 3000 -3000 2010 [395]  

AS-RUS-NW AS-RUS-UR 0 0 2010 [395]  

AS-RUS-SI AS-RUS-UR 3300 -3300 2010 [395]  

AS-RUS-SO EU-UKR 1200 -1200 2019 [438]  

AS-SAU AS-YEM 0 0 2018 [437]  

AS-SYR AS-TUR 250 -250 2013 [254]  

AS-TJK AS-UZB 5445 -5445 2016 [434]  

AS-TKM AS-UZB 0 0 2018 [439]  

EU-ALB EU-GRC 250 -250 2015 [260] Estimate3 

EU-ALB EU-KOS 210 -210 2012 [440]  

EU-ALB EU-MKD 0 0 2012 [440]  

EU-ARM AS-IRN 300 -300 2016 [441]  

EU-ARM AS-TUR 0 0 2015 [442]  

EU-ARM EU-AZE 0 0 2016 [441]  

EU-ARM EU-GEO 150 -150 2015 [443]  

EU-AUT EU-CHE 1700 -1700 2015 [47] UCC EU model 

EU-AUT EU-CZE 1000 -1200 2015 [47] UCC EU model 

EU-AUT EU-DEU 2100 -2100 2015 [47] UCC EU model 

EU-AUT EU-HUN 1200 -800 2015 [47] UCC EU model 

EU-AUT EU-ITA 405 -235 2015 [47] UCC EU model 

EU-AUT EU-SVK 0 0 2015 [47] UCC EU model 

EU-AUT EU-SVN 1200 -1200 2015 [47] UCC EU model 

EU-AZE AS-IRN 800 -800 2015 [444]  

EU-AZE AS-RUS-SO 500 -850 2015 [444]  

EU-AZE AS-TUR 100 -100 2015 [444]  

EU-AZE EU-GEO 1020 -1020 2015 [443]  

EU-BEL EU-DEU 0 0 2015 [47] UCC EU model 

EU-BEL EU-FRA 1800 -3300 2015 [47] UCC EU model 

EU-BEL EU-GBR 0 0 2015 [53] Planned subsea line 

EU-BEL EU-LUX 180 0 2015 [47] UCC EU model 

EU-BEL EU-NLD 400 -400 2015 [47] UCC EU model 

EU-BGR AS-TUR 650 -500 2017 [445]  

EU-BGR EU-GRC 1728 -1032 2015 [47] UCC EU model 

EU-BGR EU-MKD 400 -200 2011 [446]  

EU-BGR EU-ROU 400 -300 2015 [47] UCC EU model 

EU-BGR EU-SRB 600 -300 2015 [259] Estimate3 

EU-BIH EU-HRV 800 -800 2015 [259] Estimate3 
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EU-BIH EU-MNE 725 -725 2015 [261] Estimate4 

EU-BIH EU-SRB 600 -600 2015 [259] Estimate3 

EU-BLR AS-RUS-CE 859 -1117 2006 [447]  

EU-BLR AS-RUS-NW 141 -183 2006 [447]  

EU-BLR EU-LTU 1300 -1350 2014 [448]  

EU-BLR EU-LVA 0 0 2015 [449]  

EU-BLR EU-POL 0 0 2013 [450]  

EU-BLR EU-UKR 900 -900 2018 [438]  

EU-CHE EU-DEU 4700 -3286 2015 [47] UCC EU model 

EU-CHE EU-FRA 1300 -3200 2015 [47] UCC EU model 

EU-CHE EU-ITA 4090 -3260 2015 [47] UCC EU model 

EU-CYP AF-EGY 0 0 2018 [99] Planned subsea line 

EU-CYP AS-ISR 0 0 2015 [53] Planned subsea line 

EU-CYP EU-GRC 0 0 2015 [53] Planned subsea line 

EU-CZE EU-DEU 300 0 2015 [47] UCC EU model 

EU-CZE EU-POL 500 -600 2015 [47] UCC EU model 

EU-CZE EU-SVK 2100 -1100 2015 [47] UCC EU model 

EU-DEU EU-DNK 2350 -2380 2015 [47] UCC EU model 

EU-DEU EU-FRA 3000 -3000 2015 [47] UCC EU model 

EU-DEU EU-LUX 2300 -2300 2015 [47] UCC EU model 

EU-DEU EU-NLD 3100 -3300 2015 [47] UCC EU model 

EU-DEU EU-NOR 0 0 2015 [53] Planned subsea line 

EU-DEU EU-POL 0 -1500 2015 [47] UCC EU model 

EU-DEU EU-SWE 600 -600 2015 [47] Subsea, UCC EU model 

EU-DNK EU-GBR 0 0 2015 [258] Planned subsea line 

EU-DNK EU-NLD 0 0 2015 [258] Planned subsea line 

EU-DNK EU-NOR 1640 -1640 2015 [47] Subsea, UCC EU model 

EU-DNK EU-SWE 2440 -1980 2015 [47] Subsea, UCC EU model 

EU-ESP AF-MAR 700 -700 2015 [47] Subsea, UCC EU model 

EU-ESP EU-FRA 1900 -2700 2015 [47] UCC EU model 

EU-ESP EU-PRT 2600 -2150 2015 [47] UCC EU model 

EU-EST AS-RUS-NW 850 -1000 2014 [448]  

EU-EST EU-FIN 1016 -1000 2015 [47] UCC EU model 

EU-EST EU-LVA 1100 -1100 2015 [47] UCC EU model 

EU-FIN AS-RUS-NW 320 -1300 2016 [451]  

EU-FIN EU-NOR 126 -126 2015 [452]  

EU-FIN EU-SWE 1500 -1900 2015 [47] UCC EU model 

EU-FRA EU-GBR 2000 -2000 2015 [47] Subsea, UCC EU model 

EU-FRA EU-IRL 0 0 2015 [258] Planned subsea line 

EU-FRA EU-ITA 4350 -2160 2015 [47] UCC EU model 

EU-FRA EU-LUX 380 0 2015 [47] UCC EU model 

EU-GBR EU-IRL 800 -800 2015 [47] Subsea, UCC EU model 

EU-GBR EU-ISL 0 0 2015 [53] Planned subsea line 

EU-GBR EU-NLD 1000 -1000 2015 [47] Subsea, UCC EU model 
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EU-GBR EU-NOR 0 0 2015 [53] Planned subsea line 

EU-GEO AS-RUS-SO 750 -850 2015 [443]  

EU-GEO AS-TUR 850 -850 2015 [443]  

EU-GRC AS-TUR 650 -500 2017 [445]  

EU-GRC EU-ITA 500 -500 2015 [47] Subsea, UCC EU model 

EU-GRC EU-MKD 350 -450 2015 [259] Estimate3 

EU-HRV EU-HUN 2000 -2000 2015 [47] UCC EU model 

EU-HRV EU-MNE 0 0 2015 [449]  

EU-HRV EU-SRB 600 -600 2015 [259] Estimate3 

EU-HRV EU-SVN 2000 -2000 2015 [259] Estimate3 

EU-HUN EU-ROU 1300 -1400 2015 [47] UCC EU model 

EU-HUN EU-SRB 700 -800 2015 [259] Estimate3 

EU-HUN EU-SVK 1800 -450 2015 [47] UCC EU model 

EU-HUN EU-SVN 1700 -2000 2015 [47] UCC EU model 

EU-HUN EU-UKR 650 -650 2018 [438]  

EU-ITA AF-TUN 0 0 2016 [74] Planned subsea line 

EU-ITA EU-SVN 580 -530 2015 [47]  

EU-KOS EU-MKD 400 -400 2011 [453]  

EU-KOS EU-MNE 400 -400 2011 [453]  

EU-KOS EU-SRB 600 -600 2011 [453]  

EU-LTU AS-RUS-NW 680 -600 2014 [448]  

EU-LTU EU-LVA 1500 -1200 2015 [47] UCC EU model 

EU-LTU EU-POL 500 0 2015 [47] UCC EU model 

EU-LTU EU-SWE 700 -700 2015 [47] Subsea, UCC EU model 

EU-LVA AS-RUS-NW 1200 -1500 2006 [447]  

EU-MDA EU-ROU 0 0 2015 [259] Estimate3 

EU-MDA EU-UKR 700 -700 2018 [438]  

EU-MKD EU-SRB 300 -700 2015 [259] Estimate3 

EU-MNE EU-SRB 700 -700 2015 [259] Estimate3 

EU-NLD EU-NOR 700 -700 2015 [47] Subsea, UCC EU model 

EU-NOR AS-RUS-NW 50 -50 2013 [454]  

EU-NOR EU-SWE 3695 -3995 2015 [47] UCC EU model 

EU-POL EU-SVK 990 -990 2015 [47] UCC EU model 

EU-POL EU-SWE 600 -600 2015 [47] Subsea, UCC EU model 

EU-POL EU-UKR 235 -235 2018 [438]  

EU-ROU EU-SRB 700 -800 2015 [259]  

EU-ROU EU-UKR 650 -650 2018 [438]  

EU-SVK EU-UKR 650 -650 2018 [438]  

NA-CAN-AB NA-CAN-BC 1000 -1200 2015 [345]  

NA-CAN-AB NA-CAN-NO 0 0 2015 [345]  

NA-CAN-AB NA-CAN-SK 150 -150 2015 [345]  

NA-CAN-AB NA-USA-NW 325 -300 2015 [345]  

NA-CAN-AR NA-CAN-QC 785 -1029 2015 [347]  

NA-CAN-AR NA-USA-NE 1120 -750 2015 [326]  
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NA-CAN-BC NA-CAN-NO 0 0 2015 [348] Estimate4 

NA-CAN-BC NA-USA-AK 0 0 2015 [348] Estimate4 

NA-CAN-BC NA-USA-NW 2364 -2364 2015 [348] Estimate4 

NA-CAN-MB NA-CAN-NO 0 0 2015 [346]  

NA-CAN-MB NA-CAN-ON 234 -234 2015 [346]  

NA-CAN-MB NA-CAN-SK 220 -175 2015 [346]  

NA-CAN-MB NA-USA-MW 2100 -2100 2015 [346]  

NA-CAN-NL NA-CAN-QC 5150 0 2012 [344]  

NA-CAN-NO NA-CAN-SK 0 0 2015 [343]  

NA-CAN-ON NA-CAN-QC 1970 -2705 2015 [326]  

NA-CAN-ON NA-USA-MW 132 -132 2015 [338] Estimate4 

NA-CAN-ON NA-USA-NY 1949 -1949 2015 [338] Estimate4 

NA-CAN-ON NA-USA-RM 1747 -1747 2015 [338] Estimate4 

NA-CAN-QC NA-USA-NE 2275 -2170 2015 [326]  

NA-CAN-QC NA-USA-NY 1999 -1100 2015 [326]  

NA-CAN-SK NA-USA-MW 100 -50 2015 [343]  

NA-CRI NA-NIC 300 -300 2015 [253]  

NA-CRI NA-PAN 300 -300 2015 [253]  

NA-GTM NA-HND 300 -300 2015 [253]  

NA-GTM NA-MEX 200 -200 2015 [253]  

NA-GTM NA-SLV 300 -300 2015 [253]  

NA-HND NA-NIC 300 -300 2015 [253]  

NA-HND NA-SLV 300 -300 2015 [253]  

NA-USA-AZ NA-MEX 0 0 2015-2017 [221] Estimate4 

NA-USA-AZ NA-USA-CA 7247 -7247 2015-2017 [221] Estimate4 

NA-USA-AZ NA-USA-ER 0 0 2015-2017 [221] Estimate4 

NA-USA-AZ NA-USA-NW 2067 -2067 2015-2017 [221] Estimate4 

NA-USA-AZ NA-USA-RA 1960 -1960 2015-2017 [221] Estimate4 

NA-USA-AZ NA-USA-SS 400 -400 2015-2017 [376]  

NA-USA-CA NA-MEX 408 -408 2015-2017 [221] Estimate4 

NA-USA-CA NA-USA-NW 10211 -10211 2015-2017 [221] Estimate4 

NA-USA-ER NA-MEX 431 -431 2015-2017 [221] Estimate4 

NA-USA-ER NA-USA-SA 0 0 2015-2017 [221] Estimate4 

NA-USA-ER NA-USA-SS 834 -834 2015-2017 [221] Estimate4 

NA-USA-FR NA-USA-SE 3897 -3897 2015-2017 [221] Estimate4 

NA-USA-ME NA-USA-MW 3000 -3000 2015-2017 [221] Estimate6 

NA-USA-NW NA-CAN-SK 0 0 2015-2017 [221] Estimate4 

NA-USA-NW NA-USA-MW 187 -187 2015-2017 [221] Estimate4 

NA-USA-NW NA-USA-RA 1827 -1827 2015-2017 [221] Estimate4 

NA-USA-NY NA-USA-NE 1764 -1764 2015-2017 [221] Estimate4 

NA-USA-RA NA-USA-MW 432 -432 2015-2017 [221] Estimate4 

NA-USA-RA NA-USA-SN 210 -210 2015-2017 [376]  

NA-USA-RA NA-USA-SS 0 0 2015-2017 [221] Estimate4 

NA-USA-RE NA-USA-NY 4086 -4086 2015-2017 [369]  
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NA-USA-RE NA-USA-SV 4529 -4529 2015-2017 [369]  

NA-USA-RW NA-USA-ME 1456 -1456 2015-2017 [369]  

NA-USA-RW NA-USA-MW 2196 -2196 2015-2017 [369]  

NA-USA-RW NA-USA-RE 6793 -6793 2015-2017 [369]  

NA-USA-RW NA-USA-RM 5320 -5320 2015-2017 [369]  

NA-USA-RW NA-USA-SV 7342 -7342 2015-2017 [369]  

NA-USA-SA NA-USA-SN 0 0 2015-2017 [221] Estimate4 

NA-USA-SA NA-USA-SW 3000 -3000 2015-2017 [221] Estimate6 

NA-USA-SC NA-USA-RW 4859 -4859 2015-2017 [221] Estimate4 

NA-USA-SC NA-USA-SA 2371 -2371 2015-2017 [221] Estimate4 

NA-USA-SC NA-USA-SV 592 -592 2015-2017 [221] Estimate4 

NA-USA-SE NA-USA-SA 2032 -2032 2015-2017 [221] Estimate4 

NA-USA-SE NA-USA-SC 4405 -4405 2015-2017 [221] Estimate4 

NA-USA-SE NA-USA-SV 4896 -4896 2015-2017 [221] Estimate4 

NA-USA-SN NA-USA-MW 2668 -2668 2015-2017 [376] Estimate5 

NA-USA-SN NA-USA-SW 6978 -6978 2015-2017 [376]  

NA-USA-SS NA-USA-SA 6889 -6889 2015-2017 [221] Estimate4 

NA-USA-SS NA-USA-SN 6889 -6889 2015-2017 [221] Estimate5 

NA-USA-SW NA-USA-MW 3000 -3000 2015-2017 [221] Estimate6 

NA-USA-SW NA-USA-RW 6295 -6295 2015-2017 [221] Estimate6 

NA-USA-SW NA-USA-SC 2970 -2970 2015-2017 [221] Estimate4 

OC-AUS-NT OC-AUS-QL 0 0 2019 [326]  

OC-AUS-NT OC-AUS-SA 0 0 2019 [326]  

OC-AUS-NT OC-AUS-WA 0 0 2019 [326]  

OC-AUS-QL OC-AUS-SA 0 0 2019 [326]  

OC-AUS-QL OC-AUS-SW 1288 -707 2017 [325]  

OC-AUS-SA OC-AUS-SW 0 0 2019 [326]  

OC-AUS-SA OC-AUS-VI 660 -680 2017 [325]  

OC-AUS-SA OC-AUS-WA 0 0 2019 [326]  

OC-AUS-SW OC-AUS-VI 1350 -1600 2017 [325]  

OC-AUS-TA OC-AUS-VI 594 -478 2017 [325]  

SA-ARG SA-BOL 0 0 2015 [253]  

SA-ARG SA-BRA-SO 2250 -2250 2015 [253]  

SA-ARG SA-CHL 633 -633 2015 [253]  

SA-ARG SA-PRY 3320 -3320 2015 [253]  

SA-ARG SA-URY 3276 -3276 2015 [253]  

SA-BOL SA-BRA-CW 0 0 2015 [253]  

SA-BOL SA-BRA-WE 0 0 2015 [253]  

SA-BOL SA-CHL 0 0 2015 [253]  

SA-BOL SA-PER 0 0 2015 [253]  

SA-BOL SA-PRY 0 0 2015 [253]  

SA-BRA-CN SA-BRA-CW 0 0 2017 [329]  

SA-BRA-CN SA-BRA-J2 8518 -8518 2017 [329]  

SA-BRA-CN SA-BRA-J3 13700 -13700 2017 [329]  
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SA-BRA-CN SA-BRA-NE 0 0 2017 [329]  

SA-BRA-CN SA-BRA-NW 0 0 2017 [329]  

SA-BRA-CN SA-GUY 0 0 2015 [253]  

SA-BRA-CW SA-BRA-J2 5598 -5380 2017 [329]  

SA-BRA-CW SA-BRA-NE 0 0 2017 [329]  

SA-BRA-CW SA-BRA-NW 0 0 2017 [329]  

SA-BRA-CW SA-BRA-SE 15000 -15000 2017 [329]  

SA-BRA-CW SA-BRA-SO 0 0 2017 [329]  

SA-BRA-CW SA-BRA-WE 7092 -7092 2017 [329]  

SA-BRA-CW SA-PRY 0 0 2015 [253]  

SA-BRA-J1 SA-BRA-SE 6800 -6800 2017 [329]  

SA-BRA-J1 SA-BRA-SO 8726 -8617 2017 [329]  

SA-BRA-J2 SA-BRA-J3 4115 -4115 2017 [329]  

SA-BRA-J2 SA-BRA-NE 8200 -4849 2017 [329]  

SA-BRA-J3 SA-BRA-NW 2700 -2700 2017 [329]  

SA-BRA-J3 SA-BRA-SE 8000 -8000 2017 [329]  

SA-BRA-NE SA-BRA-SE 6936 -6500 2017 [329]  

SA-BRA-NW SA-BRA-WE 0 0 2017 [329]  

SA-BRA-NW SA-COL 0 0 2015 [253]  

SA-BRA-NW SA-GUF 0 0 2015 [253]  

SA-BRA-NW SA-GUY 0 0 2015 [253]  

SA-BRA-NW SA-PER 0 0 2015 [253]  

SA-BRA-NW SA-VEN 200 -200 2015 [253]  

SA-BRA-SE SA-BRA-SO 14920 -14608 2017 [329]  

SA-BRA-SO SA-PRY 7000 -7000 2015 [253]  

SA-BRA-SO SA-URY 570 -570 2015 [253]  

SA-BRA-WE SA-PER 0 0 2015 [253]  

SA-CHL SA-PER 0 0 2015 [253]  

SA-COL NA-PAN 0 0 2015 [253]  

SA-COL SA-ECU 613 -613 2015 [253]  

SA-COL SA-PER 0 0 2015 [253]  

SA-COL SA-VEN 394 -394 2015 [253]  

SA-ECU SA-PER 110 -110 2015 [253]  

SA-GUY SA-VEN 0 0 2015 [253]  
1 Estimate based on contracted supply from Guangdong to Hong Kong. 
2 Estimate based on mentioned yearly export values. 
3 Estimate based on forecasted month/year ahead values. 
4 Estimate based on the assumption that the maximum hourly exchange value in the specified period represents 

the NTC. 
5 Estimate based on the assumption that maximum external flow from a single pathway coming into a node 

covered by SPP can also flow towards adjacent nodes covered by SPP (See Section S2 underneath Canada and 

the United States for further explanation). 
6 Estimate based on the assumption that maximum external flow from a single pathway coming into a node 

covered by MISO can also flow towards adjacent nodes covered by MISO (See Section S2 underneath Canada and 

the United States for further explanation). 
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Appendix D: Supplementary Material Chapter 5 

D.1 Details on Spatial and Temporal Electricity Demand Downscaling 
Section 5.3 describes the different steps of the soft-link framework for connecting global IAMs 

with global power system models. This Supplementary Material provides enhanced details on 

the required spatial and temporal demand downscaling and conversion steps within the 

framework including provided examples based on the ENGAGE SSP2 NPI2020 500 scenario of 

the global IAM MESSAGEix-GLOBIOM. The accompanying python script22 that can be used to 

coordinate a soft-link between IAM and power system model uses pyam, an open source 

python package for analysis and visualization of IAM scenario data [455]. The pyam package 

is used to extract scenario data from known databases such as the IAMC 1.5°C scenario 

explorer [312] that among others includes scenario data underpinning chapter 2 of the Special 

Report on Global Warming of 1.5°C by the IPCC [7]. 

Although any downscaling approach can be applied for downscaling of IAM scenario regional 

electricity demand in the proposed soft-link framework, within the accompanying python 

script of the main paper we apply a forecasting methodology for country-level electricity 

demand based on multivariate linear regression with GDP at purchasing power parity 𝑋𝐺𝐷𝑃𝑝𝑝𝑝 

per capita and urbanization share 𝑋𝑢𝑟𝑏 as independent variables and electricity consumption 

per capita 𝑌𝑝𝑐 as dependent variable. Historical country level values ℎ for the above variables 

have been retrieved by means of the World Banks World Development Indicators [456] and 

the World Bank Data python package23. Country level values are grouped per region according 

to the spatial representation of the specific scenario followed by the derivation of the regional 

regression equations (Eq. D-1) for the period 1980-2014 with 𝑎 being the intercept and 𝑏𝐺𝐷𝑃𝑝𝑝𝑝 

and 𝑏𝑢𝑟𝑏 the respective slopes and 𝑒 the residual.  More recent data years for electricity 

consumption per capita are not available within the World Bank World Development 

Indicators hence 2014 as most recent year. The regression has been applied per region and 

not per country because historical data is not available for all countries globally. 

Eq. D-1   𝑌𝑝𝑐ℎ = 𝑎 + 𝑏𝐺𝐷𝑃𝑝𝑝𝑝𝑋𝐺𝐷𝑃𝑝𝑝𝑝ℎ + 𝑏𝑢𝑟𝑏𝑋𝑢𝑟𝑏ℎ + 𝑒 

For country-level projections of the independent variables as well as population projections 

we used the Shared Socioeconomic Pathways (SSPs) [265] and the accompanying 

 
22 https://github.com/iiasa/IAM-powersystemmodel-linkage 
23 https://github.com/mwouts/world_bank_data 

https://github.com/iiasa/IAM-powersystemmodel-linkage
https://github.com/mwouts/world_bank_data
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quantifications [457–461], all retrievable through the SSP Public Database24. The SSPs are 

developed based on five different narratives that describe alternative global socio-economic 

developments. The choice for a specific SSP is in certain cases straightforward, but when in 

doubt it is advisable to use SSP2 as the ‘middle-of-the-road’ pathway. Given the regional 

regressions and the country-level projections 𝑝 for GDP at Purchasing Power Parity (PPP) 

𝑋𝐺𝐷𝑃𝑝𝑝𝑝𝑝  and urbanization share 𝑋𝑢𝑟𝑏𝑝 , per capita electricity demand at country-level 𝑌𝑝𝑐𝑝 can 

be projected specific per SSP (Eq. D-2). An example regression is visualized in Figure D-1 for 

the Latin America region. 

Eq. D-2    𝑌𝑝𝑐𝑝 = 𝑎 + 𝑏𝐺𝐷𝑃𝑝𝑝𝑝𝑋𝐺𝐷𝑃𝑝𝑝𝑝𝑝 + 𝑏𝑢𝑟𝑏𝑋𝑢𝑟𝑏𝑝 

By multiplying 𝑌𝑝𝑐𝑝 with country-level population projections for the corresponding SSP 𝑋𝑝𝑜𝑝𝑝 , 

aggregate projected country-level electricity demand 𝑌𝑝 can be calculated (Eq. D-3). The 

regression can be applied manually as shown in this section, yet in the python script we use 

the linear regression module of the sklearn python package25. 

Eq. D-3   𝑌𝑝 =  𝑌𝑝𝑐𝑝𝑋𝑝𝑜𝑝𝑝 

Figure D-1 Regression example with GDPppp per capita as independent variable (2017 $) and electricity 

demand per capita (kWh) as dependent variable. Every red dot in the graph represents a single year value for 

one of the countries in the MESSAGEix-GLOBIOM_R11LAM region for the period 1980-2014. The blue dots 

represent the country-level projected values based on SSP specific projections for the independent variables. 

𝑌𝑝 is used as a proxy to downscale IAM scenario regional demand values to country-level 

scenario demand values (𝑌𝑠). Within the python script this occurs by making use of 

downscaling functionalities within pyam, example code shown in Figure D-2. Refer to the 

 
24 https://tntcat.iiasa.ac.at/SspDb 
25 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html 

https://tntcat.iiasa.ac.at/SspDb
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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GitHub page22 for the full code as used for the different steps in the spatial demand 

downscaling. 

Figure D-2 Snapshot of the code for electricity demand spatial downscaling by using the downscale_region 

function. 

Figure D-3 showcases an example comparison of 𝑌𝑝, 𝑌𝑠 and 2015 country-level historical 

demand 𝑌ℎ based on the PLEXOS-World 2015 dataset [231,287] for contextual purposes. 

Compared to the historical demand, the graph indicates different growth ratios as a result of 

different projections for the independent variables per country. It can also be seen that in the 

given example the projected demand is lower compared to the downscaled scenario demand. 

There are multiple aspects that can affect the relative growth of electricity demand compared 

to the historical linear regression. For example, it could be expected that due to efficiency 

improvements and behavioural change a partial decoupling of economic growth and increase 

in energy demand could occur in the more developed parts of the world, yet on the global 

scale this trend is less obvious [462]. More importantly, electricity as end-use is expected to 

gain a more predominant role in a variety of sectors (e.g. transport), leading to significant 

expected growth of the share of electricity in global final energy demand [6,7]. 

Explicit modelling of intra-nodal T&D is not incorporated in PLEXOS-World. Hence, country-

level final electricity demand 𝑌𝑓 includes projected T&D losses specific per country 𝑇𝐷𝑝 based 

on [298] (Eq. D-4). 

Eq. D-4   𝑌𝑓 =  
𝑌𝑠𝑇𝐷𝑝

100
+ 𝑌𝑠  
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Figure D-3 Comparison of regional- and country-level projected electricity demand Yp, the downscaled 

scenario demand Ys and the 2015 historical demand Yh for the MESSAGEix-GLOBIOM_R11 LAM region. 

Contrary to model runs for most continental or global IAM scenarios, power system models 

have the ability to perform model simulations with highly detailed hourly or even sub-hourly 

temporal resolution. This requires further downscaling of the country-level yearly electricity 

demand, and while there are multiple approaches possible, the most straightforward way to 

do this is to use temporally detailed historical electricity demand data as proxy. For this paper 

we use the PLEXOS-World 2015 dataset [231,287], which includes hourly demand data for all 

countries globally and a wide range of sub-country regions based on the 2015 calendar year. 

Approximately 50% of profiles in the dataset are based on actual historical operational power 

system data. The country-level final electricity demand per hourly interval 𝑖 can be calculated 

with Eq. D-5.  

Eq. D-5    𝑌𝑓𝑖 =  
𝑌

ℎ𝑖

∑ 𝑌
ℎ𝑖

𝑌𝑓 

The upper part of Figure D-4 shows an example of the temporally downscaled final electricity 

demand for Brazil for the specific scenario. Note that the occurance of periods with relative 

lower demand - i.e. weekends - does not coincide in both calendar years. Scaling of demand 

profiles for this study occurs with a profile builder module within PLEXOS which has the ability 

to shift profiles based on a given calendar year. The relative peak demand is kept equal to 

2015 and grows in parallel with the total demand. That said, peak demand can also be altered 
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either exogenously as indicated in Figure D-4 with a relative peak demand of 90% or 

endogenously in the power system model by allowing market participants to adjust their 

demand for a given price through demand side management. Optionally, depending on 

availability of data and the aim of a particular study, it’s possible to downscale country-level 

demand profiles to sub-country level 𝑌𝑓𝑠𝑐𝑖 with Eq. D-6 by using historical relative demand 

shares for sub-country nodes per interval 𝑌ℎ𝑠𝑐𝑖 as proxy. This is visualized in the lower part of 

Figure D-4. 

Eq. D-6  𝑌𝑓𝑠𝑐𝑖 =  
𝑌

ℎ𝑠𝑐𝑖

𝑌
ℎ𝑖

𝑌𝑓𝑖  

Figure D-4 Downscaled hourly final electricity demand for South America - Brazil (SA-BRA). The upper graph 

showcases the baseline 2050 hourly final demand profile, an exemplary profile with adjusted peak demand 

at 90% and the 2015 demand profile for reference. The lower graph shows the hourly final demand profiles 

of the largest sub-country nodes within Brazil (Central North (CN), Central West (CW), North East (NE), South 

East (SE), South (SO)). 
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D.2 Details on spatial capacity downscaling 
Next to the downscaled demand profiles as described in Section D.1, other main input data 

for the power system model that requires spatial downscaling based on the IAM scenario 

output are regional powerplant expansion and retirement constraints. These determine per 

region and technology how much capacity needs to be expanded or retired to match the 

values given by the specific IAM scenario for a given year. The constraints are used as basis 

for the capacity allocation exercise within the power system model and can be setup in 

multiple ways. First, a ‘greenfield’ approach can be used in which existing powerplant capacity 

portfolios in individual (sub-)country nodes are not considered. Albeit easier to apply, existing 

portfolios are in the near to medium term of significant relevance considering the often-long 

lifetimes of powerplants. It’s therefore advisable to start with a baseline portfolio, which can 

be based on any preferable source. This paper and the accompanying script uses the PLEXOS-

World 2015 dataset [231]. The dataset includes global powerplant-, storage- and transmission 

capacities as of 2015 separated by 258 nodes. 

Given the high temporal resolution of power system models, UCED exercises are usually 

restricted to a year at maximum per model simulation as a snapshot analysis of the operations 

of a given power system. Taking 2050 as an example as intended simulation year for the UCED, 

scenario specific expansion and retirement constraints 𝐸𝑥 for the period up to 2050 can be 

calculated with Eq. D-7 by subtracting the region 𝑟 and technology 𝑡 specific capacities 𝐶𝑠 

retrieved from the IAM scenario output from the baseline powerplant capacities 𝐶𝑏. 

Eq. D-7    𝐸𝑥𝑟𝑡 =  𝐶𝑠 − 𝐶𝑏 

If the difference is positive it means that expansion of capacity is required for that specific 

technology and region and vice versa retirement. For optimally realistic modelling of 

powerplant expansion and retirements, constraints can be calculated per interval (e.g. 

constraints for the period 2015-2020 … 2045-2050) or constraints can be determined for the 

full period to make the capacity expansion exercise computationally less intensive. The latter 

approach is used for this proof of concept study as automated in the python script. Figure D-5 

shows an example of calculated expansion and retirement constraints for the period 2015-

2050 for the MESSAGEix-GLOBIOM_R11LAM region. 
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Figure D-5 Example powerplant expansion and retirement constraints for MESSAGEix-GLOBIOM_R11LAM for 

the period 2015-2050. Per technology, the left bar indicates the existing baseline capacity in 2015 (blue) and 

the to be expanded capacity (green). The right bar indicates the required capacity in 2050 (yellow) and the to 

be retired capacity (red). 

D.3 PLEXOS-World and MESSAGEix-GLOBIOM scenario integration  

D.3.1 PLEXOS long-term capacity expansion 

The PLEXOS-World model as applied for this study including all input data and timeseries can 

be found in [307]. There are two main simulation modules in PLEXOS relevant for this study, 

the long-term capacity expansion module and the short term UCED module. The objective 

function of the long-term module in PLEXOS is to minimize the net present value of asset build 

costs, plus fixed operations- and maintenance costs as well as production costs. As described 

in Section 5.3.4, in context of the soft-link framework, the capacity expansion module is used 

to downscale given regional powerplant capacities to nodal level in parallel with optimizing 

the expansion of balancing assets such as transmission and storage. 

To limit the computational complexity of the downscaling and expansion exercise, linear 

optimization is applied with the expanded generator units rounded to the nearest integer. 

Traditionally MIP is used in power system expansion planning exercises but the problem size 

following the global spatial scale of this study merits linearization. Furthermore, whereas in 

UCED modelling simulations generally occur at (sub-)hourly temporal resolution, for capacity 

expansion a trade-off has to be made between the temporal detail and the computational 

complexity. A common method in planning exercises is to use LDCs to determine the optimal 

generator portfolio expansion together with an approximation of required system reserves 
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and flexibility, yet with increased variability and uncertainty following the large-scale 

integration of VRES it becomes critical that the chronology of demand and capacity factor 

profiles is being kept. Following recommendations in the literature [318,319], we apply a 

sampling approach that picks representative periods while keeping chronology. PLEXOS has 

the built-in ability to select samples statistically such that 'like' periods (days/weeks/months) 

are removed leaving a sample set that is representative of the variation in the original demand 

and VRES profiles. Figure D-6 shows an example of different sampling combinations for 

demand and VRES series. 

For the analysis in this paper we apply a sampling approach using 3-weeks per year at 4-hourly 

time resolution (total of 126 4-hourly timeslices) for the different profiles in the expansion 

exercise. In essence, this means that PLEXOS selects 3 weekly timeseries per original profile, 

aggregated per 4 hours, and applies these timeseries throughout the horizon based on a best 

fit compared to the original profile. Following  Figure D-6, generally speaking sampling for 

demand and solar timeseries can be reasonably accurate due to the relative predictability of 

diurnal cycles. Picking representative days per month results in a slightly better fit for 

especially demand and solar profiles, yet due to the variability of wind-based resources 

beyond diurnal cycles sampling is more tedious. As shown in the graph, using representative 

days for on- and offshore wind leads to a sample profile with a consistent ‘peaky’ behaviour 

that is not realistic in terms or real-world dynamics. Hence, the choice has been made to apply 

samples in terms of weeks per year. Despite the occurrence of peaks and lows in wind not 

always matching with the base profiles, the occurrence of longer term peaks in the sample 

profiles triggers PLEXOS to invest in technologies that are compatible with this type of 

variability such as transmission infrastructure versus solely short-term storage.  
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Figure D-6 Examples of sampling combinations for a variety of demand and VRES series. Examples are given 

for Asia - Central Russia (AS-RUS-CE), Europe - Ireland (EU-IRL) and North America - Panama (NA-PAN). 

Next to the expansion- and retirement constraints and the load profiles developed based on 

the MESSAGEix-GLOBIOM scenario data, input data for PLEXOS-World based on MESSAGEix-

GLOBIOM for this exercise consists of regional specific carbon- and fuel prices, generator heat 

rates and storage capacities- and characteristics. All data input is integrated by making use of 

a python script that converts and directs IAM scenario output. The expansion of storage in 

PLEXOS-World follows the representation of MESSAGEix-GLOBIOM where storage is 

modelled as a single generic technology with a cycle efficiency of 80%, storage capacity of 24 

hours and a capital cost of $800/kW [276]. Hydrogen electrolysis is included but not part of 

the expansion. Electrolysis is constrained at a regional level following capacities indicated by 

the MESSAGEix-GLOBIOM scenario, without possibilities for conversion back to electricity. 

Conversion efficiency is set at 80% in line with MESSAGEix-GLOBIOM.  

Expansion of transmission infrastructure requires additional sources and assumptions. 

Following Zappa et al. [17], we use a ‘centre-of-gravity’ approach to model electricity 

transmission, with the to-be expanded transmission lines located between the main 

population-weighted demand centers in adjacent nodes. All capacity is standardized as a 
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combined interface rather than individual lines. The distance between demand centers based 

on longitudes and latitudes has been calculated with an excel formula (Eq. D-8) that considers 

the radius of the earth. 

Eq. D-8  𝐴𝐶𝑂𝑆(𝐶𝑂𝑆(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝐿𝑎𝑡1))  ∗ 𝐶𝑂𝑆(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝐿𝑎𝑡2))  +

𝑆𝐼𝑁(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝐿𝑎𝑡1)) ∗ 𝑆𝐼𝑁(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(90 − 𝐿𝑎𝑡2))  ∗ 𝐶𝑂𝑆(𝑅𝐴𝐷𝐼𝐴𝑁𝑆(𝐿𝑜𝑛𝑔1 −

𝐿𝑜𝑛𝑔2)))  ∗ 6371  

Similar to powerplant capacities, baseline transmission capacities are retrieved from the 

PLEXOS-World dataset [231,287]. Expansion candidates in PLEXOS-World exist for all land-

based adjacent nodes, for interfaces with existing subsea transmission capacity as well as for 

interfaces with potential for subsea transmission capacity following an earlier review on the 

concept of a globally interconnected power grid [227]. An overview of the techno-economic 

parameters as used for the transmission capacity expansion can be seen in Table D-1.  

Table D-1 Assumed techno-economic parameters for transmission infrastructure capacity expansion. All 

parameters are based on [17] with the exception of CAPEX line costs for land-based HVDC which is based on 

[458]. 

 

For bulk power flow, high voltage transmission lines with voltages of 110 kV and above are 

generally used with HVAC lines for shorter transmission distances and HVDC lines for longer 

distances. HVDC becomes only efficient at longer distances due to its initially high base costs 

for AC/DC converters compensated by significantly lower transmission losses and costs. The 

so-called break-even distance is the transmission distance after which HVDC becomes the 

more efficient solution, with values in the literature ranging between 200-800 km depending 

on the project specifics [77,463–465]. This break-even distance not only includes CAPEX 

investment costs but also indirect costs due to conversion and transmission losses of 

transmitted electricity. Yet, because the exact utilization (and hence the transmission losses) 

of potential transmission lines are not known before model simulation we calculate the break-

even distance solely based on CAPEX costs and fixed operation and maintenance costs. Based 

on the parameters in Table D-1, the break-even distance is calculated to be 370 km, well 

within the range as identified within the literature. Within PLEXOS-World, depending on the 

Parameter HVAC HVDC HVDC Subsea 

CAPEX Line ($2010/MW/KM) 639 187 242 

CAPEX Substations/Converter pair ($2010/MW)  78542 244042 244042 

Fixed Operation & Maintenance cost (% of 

CAPEX/year) 

3.5 3.5 3.5 

Line losses (%/1000 km) 6.75 3.5 3.5 

AC/DC Converter pair losses (%) 0 1.3 1.3 
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absolute distance between demand centers in neighbouring nodes compared to the break-

even distance, a land-based transmission pathway is deemed to be suitable either for HVAC 

or HVDC. Pathways are restricted to a single technology to limit the amount of expansion 

candidates and hence the overall computational intensity of model simulations. Subsea 

transmission pathways are assumed to use solely HVDC subsea power cables in line with 

current real world standards [227]. Following this approach, every transmission pathway has 

personalized associated costs and transmission losses. A full overview of characteristics, costs 

and losses per transmission pathway as included in the PLEXOS-World modelling can be found 

in Table D-2. 

For the downscaling of renewable powerplant capacities from regional to nodal level limits 

have been set on the resource potential per node. To retain uniformity, resource potential is 

based on the same sources as used in MESSAGEix-GLOBIOM. Country-level resource potential 

for Solar-PV and CSP is based on a study by Pietzcker et al. [466] and country-level potential 

for onshore- and offshore wind based on a global assessment by Eurek and colleagues [280]. 

Where necessary, further downscaling from country- to nodal level has been done by taking 

the relative area and shoreline size of sub-country nodes as proxy as a best estimate without 

applying detailed GIS based assessments. Nodal potential for new hydro-based capacity is 

based on a study by Gernaat et al. that identifies 60,000 potential locations for new 

economically viable projects [242]. In addition, in cases where the identified potential by 

Gernaat et al., is not sufficient compared to the regional powerplant capacities following the 

simulation output from the specific IAM scenario, additional theoretical potential following 

[467] is used as limit for the capacity downscaling. For geothermal and biomass no nodal level 

restrictions are placed due to the limited influence of geothermal based electricity generation 

and the assumed unconstrained transportability of biomass within IAM regions. 

Table D-2 Transmission pathway specific techno-economic parameters as used for the modelling in PLEXOS-

World. Naming conventions as used for the Interfaces are based on ISO 3 codes for countries. Refer to 

Appendix C for details on naming conventions for the two letter codes for sub-country nodes in PLEXOS-World 

as well as for baseline 2015 capacities per pathway. 

Interface Distance Type Build Cost FOM Losses 

Wheeling 

Charge 

 KM  k$2010/MW k$2010/MW/yr % $/MW 

AFG-CHN-XI 1682 HVDC 558 33.5 7.2 4 

AFG-IRN 1664 HVDC 554 33.3 7.1 4 

AFG-PAK 1354 HVDC 497 29.8 6 4 
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AFG-TJK 223 HVAC 221 13.3 1.5 4 

AFG-TKM 1030 HVDC 436 26.2 4.9 4 

AFG-UZB 507 HVDC 339 20.3 3.1 4 

AGO-COD 551 HVDC 347 20.8 3.2 4 

AGO-COG 557 HVDC 348 20.9 3.2 4 

AGO-NAM 1581 HVDC 539 32.4 6.8 4 

AGO-ZMB 1791 HVDC 578 34.7 7.6 4 

ALB-GRC 500 HVDC 337 20.3 3.1 4 

ALB-KOS 186 HVAC 197 11.8 1.3 4 

ALB-MKD 154 HVAC 177 10.6 1 4 

ALB-MNE 132 HVAC 163 9.8 0.9 4 

ARE-IRN 1218 Subsea - HVDC 539 32.3 5.6 4 

ARE-OMN 381 HVDC 315 18.9 2.6 4 

ARE-SAU 860 HVDC 404 24.3 4.3 4 

ARG-BOL 1934 HVDC 605 36.3 8.1 4 

ARG-BRA-SO 1343 HVDC 495 29.7 6 4 

ARG-CHL 1137 HVDC 456 27.4 5.3 4 

ARG-PRY 1037 HVDC 438 26.3 4.9 4 

ARG-URY 205 HVAC 209 12.6 1.4 4 

ARM-AZE 454 HVDC 329 19.7 2.9 4 

ARM-GEO 173 HVAC 189 11.3 1.2 4 

ARM-IRN 786 HVDC 391 23.5 4.1 4 

ARM-TUR 1310 HVDC 488 29.3 5.9 4 

AUS-NT-AUS-QL 2849 HVDC 776 46.5 11.3 4 

AUS-NT-AUS-SA 2622 HVDC 733 44 10.5 4 

AUS-NT-AUS-WA 2658 HVDC 740 44.4 10.6 4 

AUS-QL-AUS-SA 1603 HVDC 543 32.6 6.9 4 

AUS-QL-AUS-SW 740 HVDC 382 22.9 3.9 4 

AUS-QL-PNG 2092 Subsea - HVDC 750 45 8.6 4 

AUS-SA-AUS-SW 1159 HVDC 460 27.6 5.4 4 

AUS-SA-AUS-VI 654 HVDC 366 22 3.6 4 

AUS-SA-AUS-WA 2133 HVDC 642 38.5 8.8 4 

AUS-SW-AUS-VI 708 HVDC 376 22.6 3.8 4 

AUS-TA-AUS-VI 593 Subsea - HVDC 388 23.3 3.4 4 

AUS-WA-IDN 3016 Subsea - HVDC 974 58.5 11.9 4 

AUS-WA-TLS 2789 Subsea - HVDC 919 55.2 11.1 4 

AUT-CHE 591 HVDC 354 21.3 3.4 4 

AUT-CZE 251 HVAC 239 14.3 1.7 4 

AUT-DEU 524 HVDC 342 20.5 3.1 4 

AUT-HUN 217 HVAC 217 13 1.5 4 

AUT-ITA 764 HVDC 387 23.2 4 4 

AUT-SVK 56 HVAC 114 6.9 0.4 4 

AUT-SVN 277 HVAC 255 15.3 1.9 4 

AZE-GEO 450 HVDC 328 19.7 2.9 4 
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AZE-IRN 543 HVDC 345 20.7 3.2 4 

AZE-RUS-SO 1113 HVDC 452 27.1 5.2 4 

AZE-TUR 1754 HVDC 571 34.3 7.4 4 

BDI-COD 1562 HVDC 535 32.1 6.8 4 

BDI-RWA 176 HVAC 191 11.5 1.2 4 

BDI-TZA 1161 HVDC 461 27.7 5.4 4 

BEL-DEU 652 HVDC 366 22 3.6 4 

BEL-FRA 261 HVAC 245 14.7 1.8 4 

BEL-GBR 319 Subsea - HVDC 321 19.3 2.4 4 

BEL-LUX 187 HVAC 198 11.9 1.3 4 

BEL-NLD 173 HVAC 189 11.3 1.2 4 

BEN-BFA 693 HVDC 373 22.4 3.7 4 

BEN-GHA 403 HVDC 319 19.2 2.7 4 

BEN-NER 704 HVDC 375 22.5 3.8 4 

BEN-NGA 176 HVAC 191 11.5 1.2 4 

BEN-TGO 145 HVAC 171 10.3 1 4 

BFA-CIV 831 HVDC 399 24 4.2 4 

BFA-GHA 632 HVDC 362 21.7 3.5 4 

BFA-MLI 704 HVDC 375 22.5 3.8 4 

BFA-NER 415 HVDC 321 19.3 2.8 4 

BFA-TGO 756 HVDC 385 23.1 3.9 4 

BGD-IND-EA 253 HVAC 240 14.4 1.7 4 

BGD-IND-NE 304 HVAC 273 16.4 2.1 4 

BGD-MMR 972 HVDC 425 25.5 4.7 4 

BGR-GRC 524 HVDC 342 20.5 3.1 4 

BGR-MKD 172 HVAC 188 11.3 1.2 4 

BGR-ROU 297 HVAC 268 16.1 2 4 

BGR-SRB 330 HVAC 289 17.4 2.2 4 

BGR-TUR 503 HVDC 338 20.3 3.1 4 

BHR-SAU 422 HVDC 323 19.4 2.8 4 

BIH-HRV 287 HVAC 262 15.7 1.9 4 

BIH-MNE 172 HVAC 188 11.3 1.2 4 

BIH-SRB 198 HVAC 205 12.3 1.3 4 

BLR-LTU 170 HVAC 187 11.2 1.1 4 

BLR-LVA 403 HVDC 319 19.2 2.7 4 

BLR-POL 475 HVDC 333 20 3 4 

BLR-RUS-CE 675 HVDC 370 22.2 3.7 4 

BLR-RUS-NW 692 HVDC 373 22.4 3.7 4 

BLR-UKR 435 HVDC 325 19.5 2.8 4 

BLZ-GTM 406 HVDC 320 19.2 2.7 4 

BLZ-MEX 1174 HVDC 463 27.8 5.4 4 

BOL-BRA-CW 1644 HVDC 551 33.1 7.1 4 

BOL-BRA-WE 1004 HVDC 431 25.9 4.8 4 

BOL-CHL 1897 HVDC 598 35.9 7.9 4 
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BOL-PER 1614 HVDC 545 32.7 6.9 4 

BOL-PRY 1018 HVDC 434 26.1 4.9 4 

BRA-CN-BRA-CW 1595 HVDC 542 32.5 6.9 4 

BRA-CN-BRA-J2 826 HVDC 398 23.9 4.2 4 

BRA-CN-BRA-J3 1126 HVDC 454 27.3 5.2 4 

BRA-CN-BRA-NE 1689 HVDC 559 33.6 7.2 4 

BRA-CN-BRA-NW 1293 HVDC 485 29.1 5.8 4 

BRA-CN-GUY 1413 HVDC 508 30.5 6.2 4 

BRA-CN-SUR 1099 HVDC 449 27 5.1 4 

BRA-CW-BRA-J2 872 HVDC 407 24.4 4.4 4 

BRA-CW-BRA-NE 1063 HVDC 442 26.6 5 4 

BRA-CW-BRA-NW 1933 HVDC 605 36.3 8.1 4 

BRA-CW-BRA-SE 872 HVDC 407 24.4 4.4 4 

BRA-CW-BRA-SO 1081 HVDC 446 26.8 5.1 4 

BRA-CW-BRA-WE 1903 HVDC 599 36 8 4 

BRA-CW-PRY 1463 HVDC 517 31 6.4 4 

BRA-J1-BRA-SE 290 HVAC 264 15.8 2 4 

BRA-J1-BRA-SO 94 HVAC 138 8.3 0.6 4 

BRA-J2-BRA-J3 1380 HVDC 501 30.1 6.1 4 

BRA-J2-BRA-NE 932 HVDC 418 25.1 4.6 4 

BRA-J3-BRA-NW 371 HVDC 313 18.8 2.6 4 

BRA-J3-BRA-SE 2326 HVDC 678 40.7 9.4 4 

BRA-NE-BRA-SE 1455 HVDC 515 30.9 6.4 4 

BRA-NW-BRA-WE 762 HVDC 386 23.2 4 4 

BRA-NW-COL 1783 HVDC 577 34.6 7.5 4 

BRA-NW-GUF 1235 HVDC 474 28.5 5.6 4 

BRA-NW-GUY 1120 HVDC 453 27.2 5.2 4 

BRA-NW-PER 2125 HVDC 640 38.4 8.7 4 

BRA-NW-SUR 1129 HVDC 455 27.3 5.3 4 

BRA-NW-VEN 1695 HVDC 560 33.6 7.2 4 

BRA-SE-BRA-SO 344 HVAC 298 17.9 2.3 4 

BRA-SO-PRY 836 HVDC 400 24 4.2 4 

BRA-SO-URY 1238 HVDC 475 28.5 5.6 4 

BRA-WE-PER 1484 HVDC 521 31.3 6.5 4 

BRN-MYS 1480 HVDC 520 31.2 6.5 4 

BTN-CHN-TI 281 HVAC 258 15.5 1.9 4 

BTN-IND-EA 569 HVDC 350 21 3.3 4 

BWA-NAM 928 HVDC 417 25 4.5 4 

BWA-ZAF 272 HVAC 252 15.1 1.8 4 

BWA-ZMB 1056 HVDC 441 26.5 5 4 

BWA-ZWE 927 HVDC 417 25 4.5 4 

CAF-CMR 783 HVDC 390 23.4 4 4 

CAF-COD 1032 HVDC 437 26.2 4.9 4 

CAF-COG 1026 HVDC 435 26.1 4.9 4 
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CAF-SDN 1973 HVDC 612 36.7 8.2 4 

CAF-TCD 944 HVDC 420 25.2 4.6 4 

CAN-AB-CAN-BC 674 HVDC 370 22.2 3.7 4 

CAN-AB-CAN-NO 1263 HVDC 480 28.8 5.7 4 

CAN-AB-CAN-SK 525 HVDC 342 20.5 3.1 4 

CAN-AB-USA-NW 710 HVDC 376 22.6 3.8 4 

CAN-AR-CAN-QC 789 HVDC 391 23.5 4.1 4 

CAN-AR-USA-NE 657 HVDC 367 22 3.6 4 

CAN-BC-CAN-NO 1559 HVDC 535 32.1 6.8 4 

CAN-BC-USA-AK 2088 HVDC 634 38 8.6 4 

CAN-BC-USA-NW 193 HVAC 202 12.1 1.3 4 

CAN-MB-CAN-NO 1746 HVDC 570 34.2 7.4 4 

CAN-MB-CAN-ON 1511 HVDC 526 31.6 6.6 4 

CAN-MB-CAN-SK 711 HVDC 377 22.6 3.8 4 

CAN-MB-USA-MW 620 HVDC 360 21.6 3.5 4 

CAN-NL-CAN-QC 1608 HVDC 544 32.7 6.9 4 

CAN-NL-GRL 1505 Subsea - HVDC 608 36.5 6.6 4 

CAN-NO-CAN-SK 1231 HVDC 474 28.4 5.6 4 

CAN-NO-USA-AK 1808 HVDC 581 34.9 7.6 4 

CAN-ON-CAN-QC 503 HVDC 338 20.3 3.1 4 

CAN-ON-USA-MW 1109 HVDC 451 27.1 5.2 4 

CAN-ON-USA-NY 562 HVDC 349 20.9 3.3 4 

CAN-ON-USA-RM 333 HVAC 291 17.5 2.2 4 

CAN-QC-USA-NE 406 HVDC 320 19.2 2.7 4 

CAN-QC-USA-NY 535 HVDC 344 20.6 3.2 4 

CAN-SK-USA-MW 1267 HVDC 480 28.8 5.7 4 

CAN-SK-USA-NW 1227 HVDC 473 28.4 5.6 4 

CHE-DEU 669 HVDC 369 22.1 3.6 4 

CHE-FRA 490 HVDC 335 20.1 3 4 

CHE-ITA 684 HVDC 372 22.3 3.7 4 

CHL-PER 2467 HVDC 704 42.3 9.9 4 

CHN-AN-CHN-HB 735 HVDC 381 22.9 3.9 4 

CHN-AN-CHN-HE 466 HVDC 331 19.9 2.9 4 

CHN-AN-CHN-HU 319 HVAC 282 16.9 2.2 4 

CHN-AN-CHN-JS 143 HVAC 170 10.2 1 4 

CHN-AN-CHN-JX 377 HVDC 314 18.9 2.6 4 

CHN-AN-CHN-SD 549 HVDC 346 20.8 3.2 4 

CHN-AN-CHN-ZH 328 HVAC 288 17.3 2.2 4 

CHN-BE-CHN-EM 337 HVAC 294 17.6 2.3 4 

CHN-BE-CHN-HB 266 HVAC 248 14.9 1.8 4 

CHN-BE-CHN-TJ 113 HVAC 151 9 0.8 4 

CHN-CH-CHN-GU 332 HVAC 291 17.4 2.2 4 

CHN-CH-CHN-HB 1191 HVDC 466 28 5.5 4 

CHN-CH-CHN-HN 639 HVDC 363 21.8 3.5 4 
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CHN-CH-CHN-HU 747 HVDC 383 23 3.9 4 

CHN-CH-CHN-SC 272 HVAC 252 15.1 1.8 4 

CHN-CH-CHN-SI 567 HVDC 350 21 3.3 4 

CHN-CH-CHN-SX 1075 HVDC 445 26.7 5.1 4 

CHN-EM-CHN-HB 604 HVDC 357 21.4 3.4 4 

CHN-EM-CHN-HJ 727 HVDC 380 22.8 3.8 4 

CHN-EM-CHN-JI 548 HVDC 346 20.8 3.2 4 

CHN-EM-CHN-LI 375 HVDC 314 18.9 2.6 4 

CHN-EM-CHN-SD 697 HVDC 374 22.5 3.7 4 

CHN-EM-CHN-TJ 379 HVDC 315 18.9 2.6 4 

CHN-EM-CHN-WM 781 HVDC 390 23.4 4 4 

CHN-EM-MNG 1132 HVDC 455 27.3 5.3 4 

CHN-FU-CHN-GD 505 HVDC 338 20.3 3.1 4 

CHN-FU-CHN-JX 519 HVDC 341 20.5 3.1 4 

CHN-FU-CHN-ZH 677 HVDC 370 22.2 3.7 4 

CHN-FU-TWN 358 Subsea - HVDC 331 19.9 2.6 4 

CHN-GA-CHN-JS 1449 HVDC 514 30.9 6.4 4 

CHN-GA-CHN-NI 347 HVAC 300 18 2.3 4 

CHN-GA-CHN-QI 192 HVAC 201 12.1 1.3 4 

CHN-GA-CHN-SC 599 HVDC 356 21.4 3.4 4 

CHN-GA-CHN-SI 504 HVDC 338 20.3 3.1 4 

CHN-GA-CHN-WM 733 HVDC 381 22.9 3.9 4 

CHN-GA-CHN-XI 1625 HVDC 547 32.8 7 4 

CHN-GA-MNG 1344 HVDC 495 29.7 6 4 

CHN-GD-CHN-GX 514 HVDC 340 20.4 3.1 4 

CHN-GD-CHN-HA 464 HVDC 331 19.8 2.9 4 

CHN-GD-CHN-HK 128 HVAC 160 9.6 0.9 4 

CHN-GD-CHN-HN 563 HVDC 349 21 3.3 4 

CHN-GD-CHN-JX 666 HVDC 368 22.1 3.6 4 

CHN-GD-CHN-MA 107 HVAC 147 8.8 0.7 4 

CHN-GD-CHN-SC 1241 HVDC 476 28.5 5.6 4 

CHN-GD-CHN-YU 1101 HVDC 449 27 5.2 4 

CHN-GU-CHN-GX 448 HVDC 328 19.7 2.9 4 

CHN-GU-CHN-HN 643 HVDC 364 21.9 3.6 4 

CHN-GU-CHN-JS 1317 HVDC 490 29.4 5.9 4 

CHN-GU-CHN-SC 523 HVDC 342 20.5 3.1 4 

CHN-GU-CHN-YU 438 HVDC 326 19.6 2.8 4 

CHN-GX-CHN-HN 759 HVDC 386 23.2 4 4 

CHN-GX-CHN-XI 3009 HVDC 805 48.3 11.8 4 

CHN-GX-CHN-YU 625 HVDC 361 21.7 3.5 4 

CHN-GX-VNM 1346 HVDC 495 29.7 6 4 

CHN-HB-CHN-HE 374 HVDC 314 18.8 2.6 4 

CHN-HB-CHN-LI 871 HVDC 407 24.4 4.3 4 

CHN-HB-CHN-SD 563 HVDC 349 21 3.3 4 



205 
  

CHN-HB-CHN-SX 171 HVAC 188 11.3 1.2 4 

CHN-HB-CHN-TJ 265 HVAC 248 14.9 1.8 4 

CHN-HB-CHN-WM 494 HVDC 336 20.2 3 4 

CHN-HE-CHN-HU 468 HVDC 331 19.9 2.9 4 

CHN-HE-CHN-JS 562 HVDC 349 20.9 3.3 4 

CHN-HE-CHN-SD 622 HVDC 360 21.6 3.5 4 

CHN-HE-CHN-SI 440 HVDC 326 19.6 2.8 4 

CHN-HE-CHN-SX 361 HVAC 309 18.6 2.4 4 

CHN-HE-CHN-XI 2447 HVDC 701 42 9.9 4 

CHN-HJ-CHN-JI 234 HVAC 228 13.7 1.6 4 

CHN-HJ-RUS-FE 509 HVDC 339 20.4 3.1 4 

CHN-HJ-RUS-SI 3204 HVDC 842 50.5 12.5 4 

CHN-HN-CHN-HU 293 HVAC 266 15.9 2 4 

CHN-HN-CHN-JX 289 HVAC 263 15.8 2 4 

CHN-HN-CHN-SC 904 HVDC 413 24.8 4.5 4 

CHN-HN-CHN-SX 1077 HVDC 445 26.7 5.1 4 

CHN-HU-CHN-JX 262 HVAC 246 14.8 1.8 4 

CHN-HU-CHN-SI 650 HVDC 365 21.9 3.6 4 

CHN-JI-CHN-LI 276 HVAC 255 15.3 1.9 4 

CHN-JI-PRK 540 HVDC 345 20.7 3.2 4 

CHN-JS-CHN-SD 471 HVDC 332 19.9 2.9 4 

CHN-JS-CHN-SH 268 HVAC 250 15 1.8 4 

CHN-JS-CHN-SI 952 HVDC 422 25.3 4.6 4 

CHN-JS-CHN-SX 861 HVDC 405 24.3 4.3 4 

CHN-JS-CHN-ZH 240 HVAC 232 13.9 1.6 4 

CHN-JX-CHN-WM 1441 HVDC 513 30.8 6.3 4 

CHN-JX-CHN-ZH 450 HVDC 328 19.7 2.9 4 

CHN-LI-PRK 366 HVAC 312 18.7 2.5 4 

CHN-NI-CHN-SD 1270 HVDC 481 28.9 5.7 4 

CHN-NI-CHN-SI 522 HVDC 341 20.5 3.1 4 

CHN-NI-CHN-WM 389 HVDC 317 19 2.7 4 

CHN-NI-CHN-ZH 1566 HVDC 536 32.2 6.8 4 

CHN-QI-CHN-SC 695 HVDC 374 22.4 3.7 4 

CHN-QI-CHN-TI 1259 HVDC 479 28.7 5.7 4 

CHN-QI-CHN-XI 1443 HVDC 513 30.8 6.4 4 

CHN-SC-CHN-SI 604 HVDC 357 21.4 3.4 4 

CHN-SC-CHN-TI 1251 HVDC 477 28.7 5.7 4 

CHN-SC-CHN-YU 637 HVDC 363 21.8 3.5 4 

CHN-SD-CHN-SX 719 HVDC 378 22.7 3.8 4 

CHN-SD-CHN-TJ 436 HVDC 325 19.5 2.8 4 

CHN-SD-KOR 616 Subsea - HVDC 393 23.6 3.5 4 

CHN-SD-PRK 578 Subsea - HVDC 384 23 3.3 4 

CHN-SH-CHN-ZH 162 HVAC 182 10.9 1.1 4 

CHN-SI-CHN-SX 517 HVDC 340 20.4 3.1 4 
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CHN-SI-CHN-WM 714 HVDC 377 22.6 3.8 4 

CHN-SX-CHN-WM 388 HVDC 316 19 2.7 4 

CHN-TI-CHN-XI 1605 HVDC 543 32.6 6.9 4 

CHN-TI-CHN-YU 1251 HVDC 477 28.7 5.7 4 

CHN-TI-IND-NE 393 HVDC 317 19.1 2.7 4 

CHN-TI-IND-NO 1350 HVDC 496 29.8 6 4 

CHN-TI-MMR 1512 HVDC 526 31.6 6.6 4 

CHN-TI-NPL 603 HVDC 357 21.4 3.4 4 

CHN-TI-PAK 2437 HVDC 699 41.9 9.8 4 

CHN-WM-MNG 840 HVDC 401 24.1 4.2 4 

CHN-WM-RUS-SI 2537 HVDC 717 43.1 10.2 4 

CHN-XI-IND-NO 1918 HVDC 602 36.1 8 4 

CHN-XI-KAZ 860 HVDC 404 24.3 4.3 4 

CHN-XI-KGZ 1055 HVDC 441 26.5 5 4 

CHN-XI-MNG 1561 HVDC 535 32.1 6.8 4 

CHN-XI-PAK 2813 HVDC 769 46.1 11.1 4 

CHN-XI-RUS-SI 1291 HVDC 485 29.1 5.8 4 

CHN-XI-TJK 1673 HVDC 556 33.4 7.2 4 

CHN-YU-CHN-ZH 1814 HVDC 582 35 7.6 4 

CHN-YU-LAO 790 HVDC 391 23.5 4.1 4 

CHN-YU-MMR 1133 HVDC 455 27.3 5.3 4 

CHN-YU-VNM 1641 HVDC 550 33 7 4 

CIV-GHA 307 HVAC 275 16.5 2.1 4 

CIV-GIN 1161 HVDC 461 27.7 5.4 4 

CIV-LBR 756 HVDC 385 23.1 3.9 4 

CIV-MLI 924 HVDC 416 25 4.5 4 

CMR-COG 996 HVDC 430 25.8 4.8 4 

CMR-GAB 450 HVDC 328 19.7 2.9 4 

CMR-GNQ 295 HVAC 267 16 2 4 

CMR-NGA 944 HVDC 420 25.2 4.6 4 

CMR-TCD 996 HVDC 430 25.8 4.8 4 

COD-COG 9 HVAC 84 5.1 0.1 4 

COD-RWA 1658 HVDC 553 33.2 7.1 4 

COD-TZA 2665 HVDC 741 44.5 10.6 4 

COD-UGA 1987 HVDC 615 36.9 8.3 4 

COD-ZMB 1879 HVDC 595 35.7 7.9 4 

COG-GAB 828 HVDC 399 23.9 4.2 4 

COG-RWA 1660 HVDC 554 33.2 7.1 4 

COG-TZA 2669 HVDC 742 44.5 10.6 4 

COL-ECU 998 HVDC 430 25.8 4.8 4 

COL-PAN 773 HVDC 388 23.3 4 4 

COL-PER 1880 HVDC 595 35.7 7.9 4 

COL-VEN 1027 HVDC 436 26.2 4.9 4 

CRI-NIC 343 HVAC 298 17.9 2.3 4 
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CRI-PAN 511 HVDC 339 20.4 3.1 4 

CYP-EGY 602 Subsea - HVDC 390 23.4 3.4 4 

CYP-GRC 915 Subsea - HVDC 465 27.9 4.5 4 

CYP-ISR 367 Subsea - HVDC 333 20 2.6 4 

CYP-LBN 243 Subsea - HVDC 303 18.2 2.2 4 

CYP-SYR 327 Subsea - HVDC 323 19.4 2.4 4 

CYP-TUR 762 Subsea - HVDC 428 25.7 4 4 

CZE-DEU 281 HVAC 258 15.5 1.9 4 

CZE-POL 515 HVDC 340 20.4 3.1 4 

CZE-SVK 289 HVAC 263 15.8 2 4 

DEU-DNK 355 HVAC 305 18.3 2.4 4 

DEU-FRA 878 HVDC 408 24.5 4.4 4 

DEU-LUX 602 HVDC 356 21.4 3.4 4 

DEU-NLD 575 HVDC 351 21.1 3.3 4 

DEU-NOR 838 Subsea - HVDC 447 26.8 4.2 4 

DEU-POL 516 HVDC 340 20.4 3.1 4 

DEU-SWE 813 Subsea - HVDC 441 26.5 4.1 4 

DJI-ERI 617 HVDC 359 21.6 3.5 4 

DJI-ETH 452 HVDC 328 19.7 2.9 4 

DJI-SOM 1087 HVDC 447 26.8 5.1 4 

DJI-YEM 433 Subsea - HVDC 349 20.9 2.8 4 

DNK-GBR 955 Subsea - HVDC 475 28.5 4.6 4 

DNK-NLD 621 Subsea - HVDC 394 23.7 3.5 4 

DNK-NOR 483 Subsea - HVDC 361 21.7 3 4 

DNK-SWE 525 Subsea - HVDC 371 22.3 3.1 4 

DOM-HTI 257 HVAC 243 14.6 1.7 4 

DZA-ESH 1865 HVDC 592 35.5 7.8 4 

DZA-ESP 711 Subsea - HVDC 416 25 3.8 4 

DZA-FRA 1347 Subsea - HVDC 570 34.2 6 4 

DZA-ITA 991 Subsea - HVDC 484 29 4.8 4 

DZA-LBY 1019 HVDC 434 26.1 4.9 4 

DZA-MAR 1031 HVDC 436 26.2 4.9 4 

DZA-MLI 2899 HVDC 785 47.1 11.4 4 

DZA-MRT 2788 HVDC 764 45.9 11.1 4 

DZA-NER 2587 HVDC 727 43.6 10.4 4 

DZA-TUN 635 HVDC 363 21.8 3.5 4 

ECU-PER 1138 HVDC 456 27.4 5.3 4 

EGY-ISR 404 HVDC 319 19.2 2.7 4 

EGY-JOR 494 Subsea - HVDC 364 21.8 3 4 

EGY-LBY 1740 HVDC 569 34.1 7.4 4 

EGY-SAU 1645 Subsea - HVDC 642 38.5 7.1 4 

EGY-SDN 1613 HVDC 545 32.7 6.9 4 

ERI-ETH 212 HVAC 214 12.8 1.4 4 

ERI-SAU 1319 Subsea - HVDC 563 33.8 5.9 4 
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ERI-SDN 686 HVDC 372 22.3 3.7 4 

ERI-SOM 1635 HVDC 549 33 7 4 

ERI-YEM 565 Subsea - HVDC 381 22.9 3.3 4 

ESH-MAR 895 HVDC 411 24.7 4.4 4 

ESH-MRT 1047 HVDC 439 26.4 5 4 

ESP-FRA 1054 HVDC 441 26.5 5 4 

ESP-MAR 833 Subsea - HVDC 446 26.8 4.2 4 

ESP-PRT 504 HVDC 338 20.3 3.1 4 

EST-FIN 83 Subsea - HVDC 264 15.9 1.6 4 

EST-LVA 279 HVAC 257 15.4 1.9 4 

EST-RUS-NW 317 HVAC 281 16.9 2.1 4 

ETH-KEN 1670 HVDC 556 33.3 7.1 4 

ETH-SDN 782 HVDC 390 23.4 4 4 

FIN-NOR 787 HVDC 391 23.5 4.1 4 

FIN-RUS-NW 300 HVAC 270 16.2 2 4 

FIN-SWE 393 HVDC 317 19.1 2.7 4 

FRA-GBR 341 Subsea - HVDC 327 19.6 2.5 4 

FRA-IRL 777 Subsea - HVDC 432 25.9 4 4 

FRA-ITA 1107 HVDC 451 27 5.2 4 

FRA-LUX 288 HVAC 262 15.8 1.9 4 

GAB-GNQ 169 HVAC 186 11.2 1.1 4 

GBR-IRL 463 HVDC 330 19.8 2.9 4 

GBR-ISL 1891 Subsea - HVDC 702 42.1 7.9 4 

GBR-NLD 358 Subsea - HVDC 331 19.9 2.6 4 

GBR-NOR 1154 Subsea - HVDC 523 31.4 5.3 4 

GEO-RUS-SO 733 HVDC 381 22.9 3.9 4 

GEO-TUR 1316 HVDC 490 29.4 5.9 4 

GHA-TGO 321 HVAC 283 17 2.2 4 

GIN-GNB 334 HVAC 292 17.5 2.3 4 

GIN-LBR 478 HVDC 333 20 3 4 

GIN-MLI 710 HVDC 376 22.6 3.8 4 

GIN-SEN 709 HVDC 376 22.6 3.8 4 

GIN-SLE 128 HVAC 160 9.6 0.9 4 

GMB-SEN 165 HVAC 184 11 1.1 4 

GNB-SEN 376 HVDC 314 18.9 2.6 4 

GRC-ITA 1052 Subsea - HVDC 499 29.9 5 4 

GRC-LBY 1110 Subsea - HVDC 513 30.8 5.2 4 

GRC-MKD 488 HVDC 335 20.1 3 4 

GRC-TUR 570 HVDC 350 21 3.3 4 

GRL-ISL 1249 Subsea - HVDC 546 32.8 5.7 4 

GTM-HND 361 HVAC 309 18.6 2.4 4 

GTM-MEX 1060 HVDC 442 26.5 5 4 

GTM-SLV 175 HVAC 190 11.4 1.2 4 

GUY-SUR 349 HVAC 301 18.1 2.4 4 
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GUY-VEN 1046 HVDC 439 26.4 5 4 

HND-NIC 240 HVAC 232 13.9 1.6 4 

HND-SLV 219 HVAC 218 13.1 1.5 4 

HRV-HUN 302 HVAC 271 16.3 2 4 

HRV-MNE 455 HVDC 329 19.7 2.9 4 

HRV-SRB 366 HVAC 312 18.7 2.5 4 

HRV-SVN 118 HVAC 154 9.2 0.8 4 

HUN-ROU 640 HVDC 363 21.8 3.5 4 

HUN-SRB 317 HVAC 281 16.9 2.1 4 

HUN-SVK 164 HVAC 183 11 1.1 4 

HUN-SVN 383 HVDC 315 18.9 2.6 4 

HUN-UKR 896 HVDC 411 24.7 4.4 4 

IDN-MYS 1185 Subsea - HVDC 531 31.9 5.4 4 

IDN-PHL 2788 Subsea - HVDC 919 55.1 11.1 4 

IDN-PNG 4459 HVDC 1076 64.6 16.9 4 

IDN-SGP 894 Subsea - HVDC 460 27.6 4.4 4 

IDN-TLS 2084 HVDC 633 38 8.6 4 

IND-EA-IND-NE 537 HVDC 344 20.7 3.2 4 

IND-EA-IND-NO 1306 HVDC 488 29.3 5.9 4 

IND-EA-IND-SO 1553 HVDC 534 32 6.7 4 

IND-EA-IND-WE 1653 HVDC 552 33.2 7.1 4 

IND-EA-NPL 655 HVDC 366 22 3.6 4 

IND-NE-MMR 1130 HVDC 455 27.3 5.3 4 

IND-NO-IND-WE 1162 HVDC 461 27.7 5.4 4 

IND-NO-NPL 799 HVDC 393 23.6 4.1 4 

IND-NO-PAK 1100 HVDC 449 27 5.2 4 

IND-SO-IND-WE 840 HVDC 401 24.1 4.2 4 

IND-SO-LKA 716 Subsea - HVDC 417 25.1 3.8 4 

IND-WE-PAK 888 HVDC 410 24.6 4.4 4 

IRN-IRQ 694 HVDC 374 22.4 3.7 4 

IRN-PAK 1913 HVDC 601 36.1 8 4 

IRN-TKM 669 HVDC 369 22.1 3.6 4 

IRN-TUR 2038 HVDC 624 37.5 8.4 4 

IRQ-JOR 807 HVDC 395 23.7 4.1 4 

IRQ-KWT 557 HVDC 348 20.9 3.2 4 

IRQ-SAU 994 HVDC 429 25.8 4.8 4 

IRQ-SYR 751 HVDC 384 23.1 3.9 4 

IRQ-TUR 1609 HVDC 544 32.7 6.9 4 

ISR-JOR 111 HVAC 149 9 0.7 4 

ISR-LBN 211 HVAC 213 12.8 1.4 4 

ISR-SYR 213 HVAC 214 12.9 1.4 4 

ITA-MLT 689 HVDC 373 22.4 3.7 4 

ITA-SVN 490 HVDC 335 20.1 3 4 

ITA-TUN 600 Subsea - HVDC 389 23.4 3.4 4 
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JOR-SAU 1335 HVDC 493 29.6 6 4 

JOR-SYR 176 HVAC 191 11.5 1.2 4 

JPN-CE-JPN-KY 482 HVDC 334 20.1 3 4 

JPN-CE-JPN-SH 267 HVAC 249 15 1.8 4 

JPN-CE-JPN-TO 403 HVDC 319 19.2 2.7 4 

JPN-CE-KOR 821 Subsea - HVDC 443 26.6 4.2 4 

JPN-HO-JPN-TO 833 HVDC 399 24 4.2 4 

JPN-HO-RUS-FE 765 Subsea - HVDC 429 25.8 4 4 

JPN-KY-KOR 539 Subsea - HVDC 374 22.5 3.2 4 

KAZ-KGZ 196 HVAC 204 12.2 1.3 4 

KAZ-RUS-CE 3099 HVDC 822 49.3 12.1 4 

KAZ-RUS-MV 2409 HVDC 693 41.6 9.7 4 

KAZ-RUS-SI 1372 HVDC 500 30 6.1 4 

KAZ-RUS-UR 1892 HVDC 597 35.8 7.9 4 

KAZ-TKM 1670 HVDC 556 33.3 7.1 4 

KAZ-UZB 665 HVDC 368 22.1 3.6 4 

KEN-SOM 1021 HVDC 435 26.1 4.9 4 

KEN-TZA 671 HVDC 369 22.2 3.6 4 

KEN-UGA 503 HVDC 338 20.3 3.1 4 

KGZ-TJK 685 HVDC 372 22.3 3.7 4 

KGZ-UZB 470 HVDC 332 19.9 2.9 4 

KHM-LAO 756 HVDC 385 23.1 3.9 4 

KHM-THA 536 HVDC 344 20.7 3.2 4 

KHM-VNM 212 HVAC 214 12.8 1.4 4 

KOR-PRK 195 HVAC 203 12.2 1.3 4 

KOS-MKD 77 HVAC 127 7.7 0.5 4 

KOS-MNE 157 HVAC 179 10.7 1.1 4 

KOS-SRB 246 HVAC 236 14.1 1.7 4 

KWT-SAU 539 HVDC 345 20.7 3.2 4 

LAO-MMR 690 HVDC 373 22.4 3.7 4 

LAO-THA 519 HVDC 341 20.5 3.1 4 

LAO-VNM 910 HVDC 414 24.8 4.5 4 

LBN-SYR 84 HVAC 132 7.9 0.6 4 

LBR-SLE 360 HVAC 308 18.5 2.4 4 

LBY-MLT 356 Subsea - HVDC 330 19.8 2.5 4 

LBY-NER 2429 HVDC 697 41.8 9.8 4 

LBY-SDN 2739 HVDC 755 45.3 10.9 4 

LBY-TCD 2318 HVDC 676 40.6 9.4 4 

LBY-TUN 514 HVDC 340 20.4 3.1 4 

LSO-ZAF 354 HVAC 305 18.3 2.4 4 

LTU-LVA 263 HVAC 246 14.8 1.8 4 

LTU-POL 393 HVDC 317 19.1 2.7 4 

LTU-RUS-NW 657 HVDC 367 22 3.6 4 

LTU-SWE 678 Subsea - HVDC 408 24.5 3.7 4 
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LVA-RUS-NW 491 HVDC 336 20.2 3 4 

MAR-PRT 586 Subsea - HVDC 386 23.2 3.4 4 

MDA-ROU 357 HVAC 307 18.4 2.4 4 

MDA-UKR 400 HVDC 319 19.1 2.7 4 

MEX-USA-AZ 2029 HVDC 623 37.4 8.4 4 

MEX-USA-CA 2506 HVDC 712 42.7 10.1 4 

MEX-USA-ER 1211 HVDC 470 28.2 5.5 4 

MKD-SRB 323 HVAC 285 17.1 2.2 4 

MLI-MRT 1047 HVDC 439 26.4 5 4 

MLI-NER 1100 HVDC 449 27 5.2 4 

MLI-SEN 1049 HVDC 440 26.4 5 4 

MLT-TUN 401 Subsea - HVDC 341 20.5 2.7 4 

MMR-THA 579 HVDC 352 21.1 3.3 4 

MNE-SRB 281 HVAC 258 15.5 1.9 4 

MNG-RUS-SI 1826 HVDC 585 35.1 7.7 4 

MOZ-MWI 1340 HVDC 494 29.7 6 4 

MOZ-SWZ 122 HVAC 156 9.4 0.8 4 

MOZ-TZA 2251 HVDC 664 39.9 9.2 4 

MOZ-ZAF 443 HVDC 327 19.6 2.9 4 

MOZ-ZMB 1251 HVDC 477 28.7 5.7 4 

MOZ-ZWE 918 HVDC 415 24.9 4.5 4 

MRT-SEN 407 HVDC 320 19.2 2.7 4 

MWI-TZA 999 HVDC 430 25.8 4.8 4 

MWI-ZMB 613 HVDC 358 21.5 3.4 4 

MYS-PHL 2467 Subsea - HVDC 841 50.5 9.9 4 

MYS-THA 1184 HVDC 465 27.9 5.4 4 

NAM-ZAF 1178 HVDC 464 27.8 5.4 4 

NAM-ZMB 1420 HVDC 509 30.5 6.3 4 

NER-NGA 799 HVDC 393 23.6 4.1 4 

NER-TCD 1411 HVDC 507 30.4 6.2 4 

NGA-TCD 1426 HVDC 510 30.6 6.3 4 

NGA-TGO 242 HVAC 233 14 1.6 4 

NLD-NOR 915 Subsea - HVDC 465 27.9 4.5 4 

NOR-RUS-NW 1086 HVDC 447 26.8 5.1 4 

NOR-SWE 418 HVDC 322 19.3 2.8 4 

OMN-IND-WE 1562 Subsea - HVDC 622 37.3 6.8 4 

OMN-IRN 1508 Subsea - HVDC 609 36.6 6.6 4 

OMN-PAK 863 Subsea - HVDC 453 27.2 4.3 4 

OMN-SAU 1205 HVDC 469 28.1 5.5 4 

OMN-YEM 1764 HVDC 573 34.4 7.5 4 

POL-SVK 533 HVDC 343 20.6 3.2 4 

POL-SWE 810 Subsea - HVDC 440 26.4 4.1 4 

POL-UKR 691 HVDC 373 22.4 3.7 4 

PRK-RUS-FE 689 HVDC 373 22.4 3.7 4 



212 
  

QAT-SAU 474 HVDC 332 20 3 4 

ROU-SRB 448 HVDC 328 19.7 2.9 4 

ROU-UKR 745 HVDC 383 23 3.9 4 

RUS-CE-RUS-MV 720 HVDC 378 22.7 3.8 4 

RUS-CE-RUS-NW 634 HVDC 362 21.8 3.5 4 

RUS-CE-RUS-SO 958 HVDC 423 25.4 4.7 4 

RUS-CE-UKR 757 HVDC 385 23.1 3.9 4 

RUS-FE-RUS-SI 3713 HVDC 937 56.2 14.3 4 

RUS-MV-RUS-UR 717 HVDC 378 22.7 3.8 4 

RUS-NW-RUS-UR 1781 HVDC 576 34.6 7.5 4 

RUS-SI-RUS-UR 1401 HVDC 505 30.3 6.2 4 

RUS-SO-UKR 760 HVDC 386 23.2 4 4 

RWA-TZA 1154 HVDC 459 27.6 5.3 4 

RWA-UGA 377 HVDC 314 18.9 2.6 4 

SAU-YEM 1067 HVDC 443 26.6 5 4 

SDN-SAU 1793 Subsea - HVDC 678 40.7 7.6 4 

SDN-TCD 1926 HVDC 603 36.2 8 4 

SOM-YEM 1483 Subsea - HVDC 603 36.2 6.5 4 

SVK-UKR 1000 HVDC 431 25.8 4.8 4 

SWZ-ZAF 337 HVAC 294 17.6 2.3 4 

SYR-TUR 1063 HVDC 442 26.6 5 4 

TJK-UZB 309 HVAC 276 16.6 2.1 4 

TKM-UZB 1006 HVDC 432 25.9 4.8 4 

TZA-UGA 1085 HVDC 446 26.8 5.1 4 

TZA-ZMB 1533 HVDC 530 31.8 6.7 4 

USA-AZ-USA-CA 586 HVDC 353 21.2 3.4 4 

USA-AZ-USA-ER 1633 HVDC 549 32.9 7 4 

USA-AZ-USA-NW 1782 HVDC 576 34.6 7.5 4 

USA-AZ-USA-RA 941 HVDC 420 25.2 4.6 4 

USA-AZ-USA-SS 1351 HVDC 496 29.8 6 4 

USA-CA-USA-NW 1537 HVDC 531 31.9 6.7 4 

USA-ER-USA-SA 527 HVDC 342 20.6 3.1 4 

USA-ER-USA-SS 662 HVDC 368 22.1 3.6 4 

USA-FR-USA-SE 461 HVDC 330 19.8 2.9 4 

USA-ME-USA-MW 473 HVDC 332 19.9 3 4 

USA-ME-USA-RW 538 HVDC 344 20.7 3.2 4 

USA-MW-USA-NW 2239 HVDC 662 39.7 9.1 4 

USA-MW-USA-RA 1114 HVDC 452 27.1 5.2 4 

USA-MW-USA-RW 1008 HVDC 432 25.9 4.8 4 

USA-MW-USA-SN 658 HVDC 367 22 3.6 4 

USA-MW-USA-SW 747 HVDC 383 23 3.9 4 

USA-NE-USA-NY 298 HVAC 269 16.1 2 4 

USA-NW-USA-RA 1647 HVDC 551 33.1 7.1 4 

USA-NY-USA-RE 128 HVAC 160 9.6 0.9 4 
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USA-RA-USA-SN 889 HVDC 410 24.6 4.4 4 

USA-RA-USA-SS 805 HVDC 394 23.7 4.1 4 

USA-RE-USA-RW 669 HVDC 369 22.1 3.6 4 

USA-RE-USA-SV 732 HVDC 381 22.8 3.9 4 

USA-RM-USA-RW 267 HVAC 249 15 1.8 4 

USA-RW-USA-SC 539 HVDC 345 20.7 3.2 4 

USA-RW-USA-SV 564 HVDC 349 21 3.3 4 

USA-RW-USA-SW 642 HVDC 364 21.8 3.5 4 

USA-SA-USA-SC 739 HVDC 382 22.9 3.9 4 

USA-SA-USA-SE 662 HVDC 368 22.1 3.6 4 

USA-SA-USA-SN 1092 HVDC 448 26.9 5.1 4 

USA-SA-USA-SS 929 HVDC 417 25.1 4.6 4 

USA-SA-USA-SW 953 HVDC 422 25.3 4.6 4 

USA-SC-USA-SE 344 HVAC 298 17.9 2.3 4 

USA-SC-USA-SV 548 HVDC 346 20.8 3.2 4 

USA-SC-USA-SW 410 HVDC 321 19.2 2.7 4 

USA-SE-USA-SV 366 HVAC 312 18.7 2.5 4 

USA-SN-USA-SS 483 HVDC 334 20.1 3 4 

USA-SN-USA-SW 377 HVDC 314 18.9 2.6 4 

ZAF-ZWE 979 HVDC 427 25.6 4.7 4 

ZMB-ZWE 397 HVDC 318 19.1 2.7 4 

 

D.3.2 PLEXOS Unit Commitment and Economic Dispatch 
The UCED simulations in PLEXOS-World use the results from the long-term capacity expansion 

exercise in an automated fashion after the long-term simulation finishes. Yet, before this 

occurs two separate modelling phases are applied as preparation for the UCED. First, a 

medium term schedule decomposes constraints with time horizons longer than the intended 

UCED horizon. For example, within PLEXOS-World we use monthly CF profiles for hydropower 

plants based on the seasonal availability of water resources specified per node. The medium 

term schedule decomposes these constraints to a horizon that is computationally 

manageable for the UCED, for example to daily constraints. Furthermore, a Projected 

Assessment of System Adequacy (PASA) phase is applied that among others optimizes 

scheduled maintenance events while retaining system reliability. The PASA also provides 

reliability indicators as output that can be used to assess the feasibility of reserve assumptions 

following the MESSAGEix-GLOBIOM scenario. After the medium term schedule and PASA the 

UCED simulation can be applied. The detailed objective function of the UCED simulations in 

PLEXOS-World can be found in Appendix A. For the UCED we use MIP at hourly resolution. 

Optimization steps for the full year occur based on a daily horizon starting at 12 AM with a 
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six-hour look-ahead providing the most efficient starting state of generators for the 

simulation step of the next day. Powerplants in the PLEXOS-World model are disaggregated 

per turbine unit to be able to incorporate technological generator characteristics relevant for 

(sub-)hourly power system modelling. This is done by utilizing a standard unit size 

methodology per fuel type as applied in previous studies [47,195,237]. Table D-3 shows an 

overview of some of the generator characteristics per technology as applied in PLEXOS-World 

for this study. 

Table D-3 Sample of standardized generator characteristics and variables as applied for this study. 

D.3.3 MESSAGEix-GLOBIOM integration of inter-regional trade 

In previous versions of MESSAGEix-GLOBIOM, inter-regional trade of electricity occurred as 

any other commodity based on a global market. In essence this meant that regions had the 

ability to either supply to- or import electricity from the global market, without consideration 

of the spatial feasibility of exchange between regions. However, as part of the modelling 

effort in parallel to this study, the representation in MESSAGEix-GLOBIOM has been adapted 

Fuel Type Standard 

Unit Size  

Minimum 

Stable 

Factor1 

Start 

Cost 

Maintenance 

Rate2 

Forced 

Outage Rate3 

Mean Time 

to Repair4 

 MW % $ % % hours 

Biomass 200 30 10,000 8 3 24 

Coal 300 30 80,000 8 3 24 

Gas - CCGT 450 40 80,000 8 3 24 

Gas - OCGT 100 20 10,000 8 3 24 

Geothermal 70 40 0 8 3 24 

Hydro (non-PSH) 200 10 0 3 1.5 24 

Nuclear 1200 60 120,000 8 8 24 

Oil 400 40 10,000 8 3 24 

Other 150 - 0 8 3 24 

Solar – CSP 100 - - - - - 

Solar – PV 100 - - - - - 

Wind – Offshore 100 - - - - - 

Wind – Onshore 100 - - - - - 

1 Fraction of the maximum generator output below which a generator cannot safely operate. 
2 Fraction of the simulation horizon during which scheduled maintenance events occur per unit optimized by 

PLEXOS. 
3 Fraction of the simulation horizon during which unplanned stochastic forced outages occur per unit. 
4 Average time it takes for a unit to be able to become operational again. 
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to only allow for inter-regional exchange bilaterally by means of investments in transmission 

grid infrastructure. Input variable values for the initial setup of bilateral trade as applied in 

MESSAGEix-GLOBIOM can be seen in Table D-4 in the ‘First Iteration’ columns. The input 

variables for this initial setup are mostly generically applied for all inter-regional transmission 

pathways and without baseline transmission capacities. This has limitations from two 

perspectives. First, as argued in Section 5.4.6, the costs and losses for electricity transmission 

are dependent among others on the transmission distance which is not taken into account 

for inter-regional trade in the initial setup within MESSAGEix-GLOBIOM. Second, to date 

cross-border transmission capacities between countries in adjacent MESSAGEix regions – for 

example between Western Europe (WEU) and Eastern Europe (EEU) – are significant and need 

to be taken into account as baseline values. 

The results from the ‘No Storage Constraints’ PLEXOS-World simulation regarding 

interconnector CFs for the year 2050 are used as input for a second iteration in MESSAGEix-

GLOBIOM to optimize its representation of inter-regional electricity trade. Furthermore, 

interconnector CFs for the year 2015 as well as reference 2015 inter-regional import and 

export capacities are extracted from the 2015 PLEXOS-World model [231,287] and integrated 

as baseline for MESSAGEix-GLOBIOM. Interconnector CFs in 2050 are significantly higher 

compared to 2015 mostly due to its important role of balancing demand and supply in power 

systems with high VRES integration. Region specific investment costs and efficiencies are 

based on input data from the PLEXOS-World model. Per inter-regional transmission pathway, 

average values for costs and efficiencies are calculated based on Table D-2 weighted by the 

existing 2015 capacities for cross-border transmission interfaces existing between two 

adjacent regions (refer to Appendix C for the full global dataset of 2015 cross-border 

transmission capacities). If no capacity exists as of 2015 for a specific inter-regional 

transmission pathway, a normal average is taken based on all identified potential cross-

border transmission interfaces per inter-regional transmission pathway. Operational costs are 

standardized based on values as used in the PLEXOS-World model. 
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Table D-4 Inter-regional transmission pathway specific input variables for both iterations of MESSAGEix-

GLOBIOM as applied for the modelling in this study. Values for the second iteration of MESSAGEix-GLOBIOM 

are based on PLEXOS-World data.  

Pathway Variable Unit 2015 2015 2050 2050 

   

First 

Itera-

tion 

Second 

Itera-

tion  

First 

Itera-

tion 

Second 

Itera-

tion 

AFR-MEA Capacity Factor|Electricity|Transmission % 55 14.4 55 62.6 

CPA-FSU Capacity Factor|Electricity|Transmission % 55 13.8 55 61.8 

CPA-PAS Capacity Factor|Electricity|Transmission % 55 13.8 55 51.8 

CPA-SAS Capacity Factor|Electricity|Transmission % 55 0 55 67.5 

EEU-FSU Capacity Factor|Electricity|Transmission % 55 14.1 55 59.1 

EEU-WEU Capacity Factor|Electricity|Transmission % 55 12.6 55 58.5 

FSU-MEA Capacity Factor|Electricity|Transmission % 55 14.9 55 55.4 

FSU-PAO Capacity Factor|Electricity|Transmission % 0 0 0 61.6 

FSU-SAS Capacity Factor|Electricity|Transmission % 55 13.2 55 56.8 

FSU-WEU Capacity Factor|Electricity|Transmission % 55 13.9 55 61.9 

LAM-NAM Capacity Factor|Electricity|Transmission % 55 0 55 47.6 

MEA-SAS Capacity Factor|Electricity|Transmission % 55 15.2 55 59.2 

MEA-WEU Capacity Factor|Electricity|Transmission % 55 12.9 55 56.8 

NAM-WEU Capacity Factor|Electricity|Transmission % 0 0 0 0 

PAO-PAS Capacity Factor|Electricity|Transmission % 0 0 0 61.6 

PAS-SAS Capacity Factor|Electricity|Transmission % 55 15.8 55 60.1 

AFR-MEA Capacity|Electricity|Transmission|Export MW 0 200 - - 

CPA-FSU Capacity|Electricity|Transmission|Export MW 0 1100 - - 

CPA-PAS Capacity|Electricity|Transmission|Export MW 0 2816 - - 

CPA-SAS Capacity|Electricity|Transmission|Export MW 0 0 - - 

EEU-FSU Capacity|Electricity|Transmission|Export MW 0 6215 - - 

EEU-WEU Capacity|Electricity|Transmission|Export MW 0 9558 - - 

FSU-MEA Capacity|Electricity|Transmission|Export MW 0 1450 - - 

FSU-PAO Capacity|Electricity|Transmission|Export MW 0 0 - - 

FSU-SAS Capacity|Electricity|Transmission|Export MW 0 900 - - 

FSU-WEU Capacity|Electricity|Transmission|Export MW 0 1320 - - 

LAM-NAM Capacity|Electricity|Transmission|Export MW 0 839 - - 

MEA-SAS Capacity|Electricity|Transmission|Export MW 0 130 - - 

MEA-WEU Capacity|Electricity|Transmission|Export MW 0 950 - - 

NAM-WEU Capacity|Electricity|Transmission|Export MW 0 0 - - 

PAO-PAS Capacity|Electricity|Transmission|Export MW 0 0 - - 

PAS-SAS Capacity|Electricity|Transmission|Export MW 0 3 - - 

AFR-MEA Capacity|Electricity|Transmission|Import MW 0 200 - - 

CPA-FSU Capacity|Electricity|Transmission|Import MW 0 1100 - - 

CPA-PAS Capacity|Electricity|Transmission|Import MW 0 2816 - - 

CPA-SAS Capacity|Electricity|Transmission|Import MW 0 0 - - 



217 
  

EEU-FSU Capacity|Electricity|Transmission|Import MW 0 6635 - - 

EEU-WEU Capacity|Electricity|Transmission|Import MW 0 9762 - - 

FSU-MEA Capacity|Electricity|Transmission|Import MW 0 1450 - - 

FSU-PAO Capacity|Electricity|Transmission|Import MW 0 0 - - 

FSU-SAS Capacity|Electricity|Transmission|Import MW 0 900 - - 

FSU-WEU Capacity|Electricity|Transmission|Import MW 0 2300 - - 

LAM-NAM Capacity|Electricity|Transmission|Import MW 0 839 - - 

MEA-SAS Capacity|Electricity|Transmission|Import MW 0 130 - - 

MEA-WEU Capacity|Electricity|Transmission|Import MW 0 950 - - 

NAM-WEU Capacity|Electricity|Transmission|Import MW 0 0 - - 

PAO-PAS Capacity|Electricity|Transmission|Import MW 0 0 - - 

PAS-SAS Capacity|Electricity|Transmission|Import MW 0 3 - - 

AFR-MEA Capital Cost|Electricity|Transmission US$2010/kW 1120 390 1120 390 

CPA-FSU Capital Cost|Electricity|Transmission US$2010/kW 1120 361 1120 361 

CPA-PAS Capital Cost|Electricity|Transmission US$2010/kW 1120 365 1120 365 

CPA-SAS Capital Cost|Electricity|Transmission US$2010/kW 1120 507 1120 507 

EEU-FSU Capital Cost|Electricity|Transmission US$2010/kW 1120 324 1120 324 

EEU-WEU Capital Cost|Electricity|Transmission US$2010/kW 1120 307 1120 307 

FSU-MEA Capital Cost|Electricity|Transmission US$2010/kW 1120 360 1120 360 

FSU-PAO Capital Cost|Electricity|Transmission US$2010/kW 0 429 0 429 

FSU-SAS Capital Cost|Electricity|Transmission US$2010/kW 1120 332 1120 332 

FSU-WEU Capital Cost|Electricity|Transmission US$2010/kW 1120 395 1120 395 

LAM-NAM Capital Cost|Electricity|Transmission US$2010/kW 1120 587 1120 587 

MEA-SAS Capital Cost|Electricity|Transmission US$2010/kW 1120 581 1120 581 

MEA-WEU Capital Cost|Electricity|Transmission US$2010/kW 1120 445 1120 445 

NAM-WEU Capital Cost|Electricity|Transmission US$2010/kW 0 1368 0 1368 

PAO-PAS Capital Cost|Electricity|Transmission US$2010/kW 0 737 0 737 

PAS-SAS Capital Cost|Electricity|Transmission US$2010/kW 1120 455 1120 455 

AFR-MEA Efficiency|Electricity|Transmisssion % 86.0 96.0 89.0 96.0 

CPA-FSU Efficiency|Electricity|Transmisssion % 87.0 96.5 90.1 96.5 

CPA-PAS Efficiency|Electricity|Transmisssion % 87.0 96.4 90.1 96.4 

CPA-SAS Efficiency|Electricity|Transmisssion % 87.0 93.7 90.1 93.7 

EEU-FSU Efficiency|Electricity|Transmisssion % 85.0 97.0 90.1 97.0 

EEU-WEU Efficiency|Electricity|Transmisssion % 85.0 97.5 90.1 97.5 

FSU-MEA Efficiency|Electricity|Transmisssion % 80.0 96.5 90.1 96.5 

FSU-PAO Efficiency|Electricity|Transmisssion % 0.0 96.0 0.0 96.0 

FSU-SAS Efficiency|Electricity|Transmisssion % 80.0 96.8 90.1 96.8 

FSU-WEU Efficiency|Electricity|Transmisssion % 80.0 95.8 90.1 95.8 

LAM-NAM Efficiency|Electricity|Transmisssion % 85.5 92.3 90.1 92.3 

MEA-SAS Efficiency|Electricity|Transmisssion % 83.0 92.4 88.3 92.4 

MEA-WEU Efficiency|Electricity|Transmisssion % 83.0 95.6 88.3 95.6 

NAM-WEU Efficiency|Electricity|Transmisssion % 0.0 82.4 0.0 82.4 
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PAO-PAS Efficiency|Electricity|Transmisssion % 0.0 91.5 0.0 91.5 

PAS-SAS Efficiency|Electricity|Transmisssion % 90.0 94.7 90.1 94.7 

AFR-MEA OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

CPA-FSU OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

CPA-PAS OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

CPA-SAS OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

EEU-FSU OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

EEU-WEU OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

FSU-MEA OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

FSU-PAO OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0 2.1 0 2.1 

FSU-SAS OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

FSU-WEU OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

LAM-NAM OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

MEA-SAS OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

MEA-WEU OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

NAM-WEU OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0 2.1 0 2.1 

PAO-PAS OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0 2.1 0 2.1 

PAS-SAS OM Cost|Fixed|Electricity|Transmission US$2010/kW/yr 0.7 2.1 0.7 2.1 

AFR-MEA OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

CPA-FSU OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

CPA-PAS OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

CPA-SAS OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

EEU-FSU OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

EEU-WEU OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

FSU-MEA OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

FSU-PAO OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00000 0.004 0.00000 0.004 

FSU-SAS OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

FSU-WEU OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

LAM-NAM OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00000 0.004 0.00000 0.004 

MEA-SAS OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00000 0.004 0.00000 0.004 

MEA-WEU OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

NAM-WEU OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

PAO-PAS OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

PAS-SAS OM Cost|Variable|Electricity|Transmission US$2010/kWh 0.00286 0.004 0.00286 0.004 

  

 

 


