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Abstract 

 

Bacteriocins are ribosomally synthesised antimicrobial peptides, produced by many 

bacterial genera that display potent activity against closely (narrow spectrum) or 

distantly related (broad-spectrum) bacteria. Bacteriocins, produced by Lactic Acid 

Bacteria (LAB) that are natural constituents of fermented foods, are ideal natural 

preservatives to control food spoilage/pathogenic bacteria in minimally processed 

foods. In addition to their role as food preservatives, bacteriocins have potent activity 

against medically significant pathogens and are considered attractive alternatives or 

adjuncts to antibiotics, due to their inherent heat stability, potency at nanomolar scale, 

resistance to proteases and low levels of acquired resistance in commercial 

applications. Overall, bacteriocins are versatile antimicrobials with huge potential for 

use as biopreservatives, antibiotic alternatives, health promoting gut modulators and 

animal growth promotors. The aim of this thesis was to identify, purify and 

characterise novel bacteriocins from microorganisms isolated from a wide range of 

niches, with a view to expanding the number of bacteriocins currently available and 

exploring novel structures and activities. 

In this respect, Chapter 2.1 describes the discovery a novel nisin A variant, nisin H, 

produced by a porcine gut isolate Streptococcus hyointestinalis DPC6484. Nisin H 

differs from nisin A at five amino acid positions and is an intermediate between 

naturally occurring nisins of lactococcal and streptococcal origin. The operon 

encoding nisin H is noteworthy by virtue of the absence of an equivalent of nisI that 

encodes an immunity protein that protects the cell from its own bacteriocin. This is 

the first report of natural nisin variant production by an intestinal isolate of 

streptococcal origin and may confer an advantage to the strain by allowing it to 
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dominate its environment, fight infection or signal the immune system of the host. In 

a subsequent chapter another natural variant is characterised in the form of nisin J, 

produced by a human skin isolate Staphylococcus capitis APC2923. Nisin J is more 

dissimilar to nisin A than nisin H with nine amino acid changes, six of which are 

unique, and an extra amino acid making it the first nisin variant to contain 35 amino 

acids. Interestingly, the operon lacks both nisI (immunity) and nisRK (regulatory) 

equivalents. Nisin J, like nisin A and H, displays activity against a wide number of 

genera and represents the first natural nisin variant from staphylococci and the first 

nisin producer from human skin, suggesting a role in competitive colonization for 

producing organisms.  

The natural nisin variants described above (nisin H and J), in addition to nisin P 

produced by Streptococcus agalactiae DPC7040, are all produced by non GRAS 

strains and are therefore limited in their potential industrial applications. The recent 

increase in the prevalence of antibiotic resistant pathogens makes it important that all 

bacteriocins regardless of the producing organism are explored as antibiotic 

alternatives. As these lantibiotics are gene encoded, bioengineering (Chapter 3.1) was 

used to enable recombinant expression of peptides naturally expressed by non-GRAS 

organisms in a host derived from safe origins. Specifically, the Nisin A promotor and 

nisin A leader sequence were fused to nisin H, J or P structural genes and successfully 

expressed in the GRAS strain L. lactis NZ9700, demonstrating that the L. lactis 

production, transport and modification machinery can produce fully functional nisin 

variants from significantly different genetic backgrounds.  

In Chapter 4, Bactofencin A produced by Streptococcus salivarius DPC6502 was 

discovered following a porcine gut mining study. It is a 22 amino acid, class IId 

bacteriocin that displays activity against Staphylococcus aureus and Listeria 
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monocytogenes. Structurally, it consists of a positively charged N terminus that we 

propose could bind to the negatively charged cell surface. The small bacteriocin cluster 

also encodes a DltB homologue that may well be responsible for immunity through 

D-alanylation of teichoic acids. In order to probe structure/function relationships in 

bactofencin A, a library of synthetic bactofencin A peptide variants were synthesized. 

Substituting cysteine residues significantly reduced activity confirming the 

importance of the disulphide while sequential removal of the positively charged N 

terminal resulted in a decreasingly active peptide. Substituting each amino acid for 

alanine revealed that residues 9-17 within the loop were more affected by substitution, 

suggesting this region contributes significantly to the potency of the bacteriocin.  

In Chapter 5, bactofencin A was shown to enhance nisin bactericidal activity and 

reduce the overall frequency of resistance. Interestingly, these studies highlighted the 

relatively slow or delayed mode of action of bactofencin A.  

The last two chapters (Chapters 6.1 and 6.2) again focus on the discovery of two 

novel bacteriocins, namely formicin and actifensin. The first of these, formicin, is a 

novel bacteriocin that extends the class of two peptide lantibiotics. It was purified from 

Bacillus paralicheniformis APC1576, a mackerel intestine isolate. Compared with 

other two component lantibiotics, formicin is most similar to haloduracin and consists 

of a very hydrophilic Alpha peptide with a charge of +2 whereas the Beta peptide is 

negatively charged. Formicin displays activity against a broad range of Gram-positive 

bacteria including clinically relevant pathogens. The second bacteriocin is actifensin 

a 4091 Da, broad spectrum, Class IId bacteriocin containing three disulphide bridges 

with more than 50% similarity to eukaryotic defensins that we propose represents a 

new subclass of bacteriocins. It is produced by Actinomyces ruminicola, isolated from 

sheep feces. A pangenomic screen of available Actinomyces spp. revealed the presence 
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of very diverse actifensin homologues in 29% of genomes examined, suggesting that 

production of actifensin like bacteriocins is a common trait. This new class of 

bacteriocins may provide a template to design new broad-spectrum antimicrobials for 

treatment of human and animal infections.  

The developments described in this thesis can be used to contribute to increased 

commercialisation of bacteriocins in both food systems and human and animal 

medical treatments.   
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and decreasing concentrations of bactofencin A (0.5-0.05 μM) in 

the presence of 0.04 μM nisin A on OD600 (B) on growth of S. 

aureus DPC5246 in BHI broth at 37°C. 
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Figure 8 Inhibitory effect of bactofencin A (0.02-0.0025µM) and nisin A 

(0.02-0.0025µM) combined at 1:1 ratio on growth of S. aureus 

DPC5246 in BHI broth at 37°C. 
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Figure 9 Growth (OD600) of S. aureus DPC5246 in bactofencin A 1x, 0.5x 

and 0.25x in relation to nisin A 0.02µM and nisin A 1x, 0.5x and 

0.25x in relation to bactofencin A 0.02µM in BHI broth at 37°C. 
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Chapter 6.1 

Figure 1 Formicin identification and activity. (A) Deferred antagonism 

assay against Lb. delbrueckii subsp. bulgaricus LMG 6901 

identified B. licheniformis APC 1576 as an antimicrobial producer. 

(B) Antibacterial activity of the B. licheniformis APC 1576 CFS 

against Lb. delbrueckii subsp. bulgaricus LMG 6901 in a well 

diffusion assay. (C) Colony MALDI-TOF MS displaying the 

masses of the peptides produced by B. licheniformis APC 1576, 

allowing identification of the antimicrobials produced (3255.92 

Da=Frcα (formicin); Frcβ is not seen using colony MALDI-TOF 
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MS; 1423.94 Da=bacitracin) 

Figure 2 Formicin operon and visualization of the formicin, lichenicidin and 

haloduracin bacteriocin gene clusters. 
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Figure 3 Lantibiotic structure prediction. The structures of the formicin α 

and β peptides were predicted using the Halα and Licβ peptides, 

respectively, as templates. 
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Figure 4 Sequence alignment of formicin structural peptides.   245 

   

Chapter 6.2 

Figure 1 Antimicrobial activity of Actinomyces ruminicola DPC 7226 

from colonies overlaid with L. delbrueckii subsp. bulgaricus 

LMG 6901 in sloppy MRS (a) and in well diffusion with 

neutralized CFS (b). 
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Figure 2 Detection of actifensin 4,091 Da ± 1 Da (indicated by arrows) by 

MALDI-TOF MS from cell-free supernatant (a), cell extract (b), 

and colonies on a plate (c). (d) The 4,091 (±1)-Da compound 

when purified was active to <1 µg ml-1: indicator, L. bulgaricus 

LMG 6901. 
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Figure 3 Inhibition of actifensin against a broad-spectrum of indicator 

species. Weak inhibition, 0.5- to 3-mm zone; strong inhibition, 3- 

to 5-mm zone; very strong inhibition, >5-mm zone. VRE, 

vancomycin-resistant Enterococcus; MRSA, methicillin-resistant 

Staphylococcus aureus. 
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Figure 4 Phylogram of Actinomyces genomes using 16S sequences 

overlaid with BAGEL4 predictions, strain source, and presence 

of actifensin or predicted homolog operon. 
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Figure 5 (a) Sixty-nine-residue propeptide identified following genome 

analysis using the 15-amino-acid sequence (underlined) 

determined by N-terminal amino acid sequencing. RBS, 

putative ribosome binding site highlighted 8 bp upstream of the 

start codon. (b) Genetic vicinity of structural gene containing 

nearby genes for transport, hypothetical and proteolytic 

proteins, and a transcription factor. 
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Figure 6 (a) Mature peptide sequence alignment of AfnA with 

characterized defensin family peptides from different phyla. (b) 

Available 3D structures of sequences in panel (a). 
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Figure 7 (a) Sequence alignment of actifensin propeptide sequence 

(boxed) with structural genes predicted for Actinomyces sp. 

peptides. 
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Figure 8 Conserved structures of the defensin peptide superfamily and 

defensin-like bacteriocins, laterosporulin and actifensin. 
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Figure S1 Minimum inhibitory concentration of actifensin peptide against 

Gram-positive pathogens determined by well diffusion assay. 
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1.1.1 Abstract 

Efforts are continuing to find novel bacteriocins with enhanced specificity and 

potency. Traditional plating techniques are still being used for bacteriocin screening 

studies; however, the availability of ever more bacterial genome sequences and the use 

of in silico gene mining tools have revealed novel bacteriocin gene clusters that would 

otherwise have been overlooked. Furthermore, synthetic biology and bioengineering-

based approaches are allowing scientists to harness existing and novel bacteriocin gene 

clusters through expression in different hosts and by enhancing functionalities. The 

same principles apply to bacteriocin-producing probiotic cultures and their application 

to control pathogens in the gut. We can expect that the recent developments on 

bacteriocins from Lactic Acid Bacteria (LAB) described here will contribute greatly 

to increased commercialisation of bacteriocins in food systems.  

 

1.1.2 Introduction 

Consumer awareness of the effect of diet on health has led to a demand for minimally 

processed foods in which chemical preservatives are replaced by more natural 

alternatives. Traditionally foods were preserved by LAB, natural constituents of 

fermented foods, which confer their preservative effects by the production of lactic 

acid, hydrogen peroxide and small peptides known as bacteriocins. Bacteriocins are 

active against a number of genera (broad spectrum) or particular species (narrow 

spectrum) (1-3) and are very diverse, varying in size, structure and specificity. The 

fact that many bacteriocins are produced by food-grade LAB and possess potent 

antimicrobial activity means that they are ideally suited to controlling food spoilage 

and pathogenic bacteria (4-6).  

Bacteriocins can be broadly divided into two classes: class I, of which the lantibiotics 
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(post-translationally modified peptides containing unusual amino acids) are the best-

known example and class II, containing unmodified peptides (7). Their mode of action 

is likely driven by the primary structure of the bacteriocin with membrane 

permeabilisation being a very common theme. The producing culture is protected by 

the production of specific immunity proteins and the low levels of resistance detected 

so far makes them desirable alternatives to antibiotics (6). Their main advantage over 

chemical preservatives is their ability to preserve without affecting the sensory 

qualities of the food while adhering to the demand for natural preservatives. The ideal 

bacteriocin should be potent at low concentrations, active against a range of spoilage 

and pathogenic organisms, innocuous to the host and economical to produce (8). These 

antimicrobials can be introduced into a food through incorporation of the bacteriocin-

producing strain into the food product (most commonly in fermented foods), the 

generation and use of a bacteriocin-containing fermentate or as a more concentrated 

bacteriocin-containing food preservative. Currently only two bacteriocins are being 

used commercially as food preservatives: nisin produced by Lactococcus lactis, 

(marketed as Nisaplin and under other brand names), has been used commercially for 

50 years (9) and carnocyclin A (marketed as Micocin) a circular bacteriocin produced 

by Carnobacterium maltaromaticum UAL307 is an approved biopreservative in the 

US and Canada developed to inhibit Listeria monocytogenes in ready-to-eat (RTE) 

meat products (10). This review focuses predominantly on bacteriocins as 

antimicrobial antagonists and efforts to develop them as viable food biopreservatives. 

(See Figure 1) 

 

1.1.3 The continuing search for novel bacteriocins  

A primary focus of bacteriocin research is identifying novel bacteriocins and 
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bacteriocin-producing strains for specific applications. The general consensus is that 

the bacteriocin/bacteriocin-producer that is best suited to controlling a problematic 

spoilage/pathogenic microorganism will often be one that is found in the same 

environmental niche. This is based on the expectation that bacteriocins provide an 

advantage to competitors fighting for scarce resources in a particular environment. A 

prime example relates to Weissella hellenica QU 13, isolated from a barrel in which 

Japanese pickles were fermented, which was found to produce two leaderless 

bacteriocins, weissellicin Y, homologous to the class IId Enterocin L50A and L50B, 

and weisselicin M. In the latter case, it is notable that this novel broad-spectrum class 

IId antimicrobial is effective against Bacillus coagulans, a known contaminant of 

pickle fermentations. Thus, strain QU 13 is a good example of a fermentation-

associated isolate which has the potential to be employed to control an undesirable 

microbial contaminant (11). Lactococcus garvieae is a pathogen affecting farmed and 

fresh fish from marine and freshwaters and is also considered an emerging zoonotic 

pathogen. Garvicin A, a novel class IIb bacteriocin produced by the human isolate L. 

garvieae 21881, inhibits other L. garvieae stains and has potential to treat or prevent 

L. garvieae infections. More specifically, it is suggested that the purified bacteriocin 

in combination with probiotic LAB would be useful in the fight against L. garvieae 

infections (12). Another L. garvieae strain, a fermented pork sausage isolate L. 

garvieae BCC 43578, produces garvieacin Q, a novel class IId bacteriocin active 

against other L. garvieae and L. monocytogenes (13). The ability to control L. 

monocytogenes is a particularly highly sought-after trait and it is thus notable that 

enterocin W, a two component lantibiotic produced by Enterococcus faecalis NKR-4-

1 isolated from pla-ra Thai fermented fish (14), exhibits activity against this pathogen. 

Given that Staphylococcus aureus is also a major concern for the food industry, it is 
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interesting that bactofencin A, a cationic disulphide bond-containing bacteriocin 

similar to eukaryotic defensins, is active against S. aureus. In addition to the unusual 

nature of this bacteriocin, it is notable that its producer, the porcine isolate 

Lactobacillus salivarius DPC6502, does not contain a classical immunity-like gene, 

but instead encodes a dltB homologue that confers resistance (15). While the examples 

provided above relate to strains that produce a single bacteriocin, it should be noted 

that the production of multiple bacteriocins by a single strain can be advantageous as 

the various bacteriocins are likely to have different modes of action, thereby extending 

the spectrum of inhibition and reducing the likelihood of development of resistance. 

The genome of Enterococcus faecium NKR-5-3, isolated from pla-ra Thai fermented 

fish, encodes 5 enterocins, NKR-5-3 –A, B, C, D and Z and produces at least four of 

them, that is NKR-5-3 –A, B, C and D. Enterocin NKR-5-3C was confirmed to be a 

class IIa bacteriocin which exhibits potent antilisterial activity. The other bacteriocins 

are proposed to represent different classes but further investigations are required to 

establish this definitively (16, 17).  

 

1.1.4 The particular expansion in numbers of circular bacteriocins 

Although previously regarded as being rare, the discovery of circular bacteriocins has 

become more common in recent years. This is notable as these bacteriocins are thought 

by some to have the potential to form the next generation of biopreservatives as a 

consequence of their stability and activity. Indeed, gassericin A, garvicin ML, 

lactocyclin Q and leucocyclin Q produced by LAB inhibit a range of Gram-positive 

bacteria including food spoilage bacteria and food pathogens (18). The remarkable 

stability and activity of these bacteriocins is attributed to their head to tail cyclisation 

which confers the bacteriocins with increased protease and heat resistance (19, 20). 
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Garvicin ML is a recently discovered circular bacteriocin produced by L. garvieae 

DCC43 isolated from a Mallard duck which inhibits L. garvieae (21). Leucocyclin Q, 

produced by a Japanese pickle isolate Leuconostoc mesenteroides TK41401, is 

particularly active against B. coagulans which, as noted above, is a major pickle food 

spoilage organism (22). Studies relating to the mode of action of these, and indeed 

other, bacteriocins continue to also attract attention. Notably, in this regard, Liu et al 

(23) recently noted that sublethal doses of carnocyclin A induced an adaptation 

response in L. monocytogenes 08-5923 by affecting genes responsible for cell wall 

biosynthesis and metabolic function maintenance. 

 

1.1.5 New studies relating to the use of bacteriocins as part of a hurdle approach 

to preservation  

Bacteriocins can become more effective biopreservatives when used in combination 

with other antimicrobial hurdles such as organic acids, chelating agents or essential 

oils. These additive or synergistic phenomena act by reducing the levels of bacteriocin 

required for target inhibition and, in some instances, can even extend the spectrum of 

inhibition of bacteriocins to include Gram-negative microorganisms (2). Cronobacter 

sakazakii DPC6445 is an opportunistic Gram-negative pathogen associated with 

powdered infant formula (PIF) milk which has been associated with meningitis, 

septicaemia and necrotizing enterocolitis in premature and immunocompromised 

babies. Producing PIF that could be reconstituted at 40-50°C without risk of C. 

sakazakii infection is of interest to the food industry. Significantly, it has recently been 

established that nisin or lacticin 3147 when combined with the lactoperoxidase system 

inhibited C. sakazakii outgrowth for 8 hours, thereby providing an excellent example 

of a combinatory approach to improving the safety of PIF (24).  
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It has also been frequently demonstrated that using bacteriocins in combination with 

chelators such as ethylenediaminetetraacetic acid (EDTA) can expand the 

antimicrobial spectrum of a bacteriocin. Indeed, although carnocyclin A is not 

effective against Escherichia coli, Pseudomonas aeroginosa or Salmonella 

Typhimurium when tested alone, it can inhibit E. coli and P. aeruginosa when 

combined with 40 mM EDTA. Anti-E. coli and S. Typhimurium activity could be 

improved even further when nisin, rather than carnocyclin A, was combined with 40 

mM EDTA (10).  

Bacteriocins can also be utilised by applying them to a food surface. Due to lower 

concentrations being sufficient for efficacy in these circumstances, production costs 

are reduced. The use of immobilised bacteriocins, such as nisin, as components of 

antimicrobial packaging has been the focus of increasing levels of research, though it 

is important to appreciate that understanding the mode of action of specific 

bacteriocins is important to ensuring further progress in the area. In one instance, nisin 

was absorbed on both hydrophobic and hydrophilic food films and the effectiveness 

of the active surface against L. monocytogenes, Bacillus cereus and S. aureus was 

compared. It was established that the hydrophilic surfaces were more bioactive and 

absorbed higher quantities of nisin than the hydrophobic surfaces and that S. aureus 

was most sensitive to the nisin functionalised films (25). Class IIb lactocin 705 and the 

pediocin-like class IIa lactocin CL705 also possess potential in this regard. These 

Lactobacillus curvatus CRL705-produced bacteriocins are active against spoilage 

LAB and Listeria and have been incorporated into wheat gluten films to assess their 

ability to inhibit L. monocytogenes in meat products. The bacteriocin-containing gluten 

film, made at pilot scale, retained antimicrobial activity for 50 days which, 

importantly, is the shelf life of RTE meat products such as cooked sausages (26). More 
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specifically, the film reduced L. monocytogenes levels in Wiener sausages at day 45 

by 2.5 log cycles relative to controls (27). In addition to food surfaces, the surfaces of 

equipment can also serve as a site for the contamination of food by food spoilers and 

pathogens such as L. monocytogenes. Many such bacteria can colonise surfaces such 

as stainless steel and form biofilms. Biocides are routinely used to clean processing 

equipment but biofilms can be particularly difficult to remove. It has recently been 

established that combining sub-inhibitory concentrations of the class IIc enterocin AS-

48 with concentrations of biocides 4-10 fold lower than their MICs inhibited the 

growth of planktonic (non-biofilm) L. monocytogenes. Unsurprisingly, higher 

concentrations of both bacteriocin and biocide were required to inhibit sessile cells 

though synergy was still observed (28). Proteomic analysis of the exposure of L. 

monocytogenes to enterocin AS-48 revealed that planktonic and sessile cells respond 

differently upon exposure to the bacteriocin. Planktonic cells may compensate for 

changes in cytoplasmic permeability by reinforcing carbohydrate transport and 

metabolism while sessile cells shift carbohydrate metabolism and reinforce protein 

synthesis. Both cells states also exhibit a differing response to stress (29).  

  

1.1.6 Bacteriocin engineering 

Bacteriocins are ribosomally synthesised and therefore are amenable to genetic 

manipulation through engineering, which is defined as modifying the amino acid 

sequence of a protein to change its structure and function (30). Bioengineering 

(engineering inside the cell) and the use of synthetic biology-based (in vitro 

engineering) approaches have contributed significantly to our understanding of the 

roles specific amino acids play in structure and activity and resulted in the production 

of bacteriocins which have extended bioactivity against selected pathogens (31). The 
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structure-activity relationship of nisin has been extensively studied through 

bioengineering and this has enabled researchers to design variants with enhanced 

activity against specific targets. Nisin S29G, with enhanced activity against S. aureus 

SA113, was found by screening a bank of nisin A variants following site-directed 

mutagenesis specifically targeted against this residue. This resulted in the generation 

of a number of variants with improved activity against both Gram-positive and Gram-

negative pathogens. Indeed, this is the first instance upon which bioengineering of a 

bacteriocin has led to enhanced activity of this kind (32). Saturation mutagenesis at 

another location in nisin, lysine 12, resulted in the finding that a K12A derivative 

displays increased specific activity against food pathogens such as B. cereus, S. aureus 

and S. agalactieae but not against L. monocytogenes (33). Another region of the nisin 

peptide, the three amino acid ‘hinge’ region, is particularly amenable to change and 

bioengineering of this region has had beneficial consequences (34). Indeed, Rouse et 

al. (35) created a bank of hinge mutants and found that nisin peptides containing hinges 

consisting of SVA or NAK (rather than the original NMK) displayed an enhanced 

ability to diffuse through complex polymers, a trait which enabled the variants to 

outcompete nisin A controlling L. monocytogenes in commercially produced chocolate 

milk containing the stabiliser carrageenan. Furthermore, Healy et al. (36) used site-

directed mutagenesis of the hinge region to create a novel bank of nisin derivatives 

and found that AAK, NAI and SLS had enhanced activity towards some 

microorganisms. On the basis of the observation that the incorporation of small, chiral 

amino acids at this location generally has positive consequences, AAA-containing and 

SAA-containing ‘hinge’ derivatives were designed, created and ultimately became the 

first example of enhanced nisin derivatives to be generated through rational design.  

In the case of another lantibiotic, actagardine A, saturation mutagenesis was employed 
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to engineer each amino acid, with the exception of those involved in bridge formation, 

in turn through using saturation mutagenesis. Through this approach it was established 

that the V15F variant demonstrates enhanced activity against Clostridium difficile, E. 

faecium and E. faecalis (37). The ribosomal nature of bacteriocins also allows for more 

dramatic changes. To highlight this point, the anti-Gram-negative microcin V was 

combined, through asymmetrical PCR, with the anti-Gram-positive enterocin 35 to 

generate the chimeric bacteriocin Ent35-MccV which is active against both Gram-

positive and Gram-negative pathogens and thus could be of value to the food or 

pharmaceutical industries (38). Finally, it is now possible to bioengineer circular 

peptides by introducing a covalent bond between the N and C termini using advances 

in molecular biology and protein engineering techniques (30). Theoretically these 

techniques could allow the generation of more stable bacteriocins with extended 

applications that could be employed by the food industry. Synthetic biology, 

considered complementary to bioengineering, is another promising area that provides 

insights into structure-stability relationships and the mechanism of action of 

bacteriocins (39, 40). In one instance, Solid Phase Peptide Synthesis (SPPS) has been 

used to synthesise and modify lantibiotics such as lacticin 481. Using this approach, 

the role of lanthionine and methyllanthionine residues was investigated by replacing 

them with diastereoisomers. In this case it was established that activity was lost, 

suggesting that the 3D structures were modified (41). Synthetic biology also inspired 

Kong et al (42) to clone the nisin biosynthesis pathway from Lactococcus lactis K9 

into a plasmid and express it in a nisin-deficient strain. They also overexpressed nisin 

A using constitutive promoters and further optimised yield by integrating the structural 

peptide determinant nisA, overexpression cassettes and the recombinant pathway into 

a single circuit enabling the strain to produce 6 fold higher levels of nisin. This could 
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potentially reduce the cost of nisin production for the food industry and also provides 

a means via which novel bacteriocin clusters identified through genome mining (see 

below) could be harnessed. Further efforts to increase bacteriocin yield have led to the 

use of synthetic genes encoding bacteriocins being cloned into and expressed in yeasts. 

A synthetic gene designed using adapted codon usage from the amino acid sequence 

of enterocin A from E. faecium T136 was cloned into Pichia pastoris X-33EAS and 

production levels increased 21.4 fold and antimicrobial activity against a number of 

listeria strains increased 4-603 fold when compared to the natural producer (43). 

 

1.1.7 Genome mining 

In the past, bacteriocin-producing strains have been identified primarily on the basis 

of culture-based approaches. However, traditional plating techniques will reveal 

bacteriocin-producing cultures only if the culture produces the bacteriocin under the 

conditions used for laboratory growth and only if it is effective against the target 

organism chosen for the overlay. Recently there has been a move to supplement 

traditional mining techniques with exploring the genomes of microorganisms from 

under-exploited environments which could be a reservoir of novel bacteriocins. The 

number of genome sequences being deposited in public databases is continually 

increasing as a consequence of significant developments in next generation sequencing 

technologies. This information is often freely available through online databases and 

provides an opportunity for screening a wide number of microorganisms to identify 

those which have the potential to produce bacteriocins (44, 45). This is seen as the 

dawn of a new era in which in silico and bioengineering based approaches can 

complement, and potentially supersede, culture based methods (45). Despite this 

potential, finding bacteriocin genomes can be a challenge due to the small size of the 
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structural peptides and diversity of their operons. BAGEL 3 is a fast genome mining 

tool that can identify putative bacteriocins based on conserved domains in structural, 

biosynthetic, transport and immunity genes (46). In addition the BACTIBASE 

database is a manually curated repository of bacteriocin sequences that can also be 

helpful. (47). Mass spectrometry is also being used more often in the quest for novel 

bacteriocins. Natural Product Peptidogenomics is a mass spectrometry based genome 

mining approach that connects chemotypes with biosynthetic gene clusters, the 

objective being to match a series of mass shifts from MSn spectrum of a putative 

bacteriocin to the genes responsible for production (48). Zendo and co-workers (49, 

50) developed a rapid screening method using electrospray ionisation liquid 

chromatography/mass spectrometry (ESI/LC/MS) coupled with statistical analysis of 

antimicrobial spectra to accelerate the discovery of novel bacteriocins isolated from 

various sources. An example of a novel lantibiotic that has recently been discovered 

using a genome mining and PCR approach is the broad-spectrum cerecidin A1 and 

cerecidin A7 from B. cereus strain As 1.1846 isolated from spoiled soya milk. The cer 

locus differs from other class II lantibiotics in that it contains seven tandem precursor 

cerA genes and the cerecidins are notably active against multidrug resistant S. aureus 

(MDRSA) and vancomycin resistant E. faecalis (VRE) (51).  

 

1.1.8 Probiotics 

Finally, over the last few years there has been growing evidence that bacteriocin 

production confers a number of advantages on probiotic strains. It is proposed that the 

ability to produce bacteriocins may help a strain to establish itself in a new niche, 

inhibit competitors and pathogens, alter the composition of the microbiota and even 

modulate the host immune system (52). A recent study of the gut microbiota of elderly 
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Irish subjects revealed Enterococcus strains with anti-listerial activity, which merit 

closer attention with a view to investigating their use as probiotic strains. In addition, 

a Lactobacillus gasseri strain producing gassericin T was isolated during the same 

screening programme (53). Notably, Lb. gasseri bacteriocins are very active against 

Gram-positive pathogens and have potential as food preservatives due to their heat 

stability and pH stability. Lb. gasseri have been evaluated as probiotics and these 

investigations have also highlighted its tolerance of low pH environments, resistance 

to bile salts, ability to adhere to the host epithelium and modulate the innate and 

adaptive immune system (54). There have also been a number of recent studies that 

have highlighted the impact of the Abp118 bacteriocin by Lactobacillus salivarius 

UCC118 on the overall composition of the gut microbiota and on the host epithelium 

(55-57). Finally, a study of LAB associated with fish for human consumption showed 

that bacteriocin activity against fish pathogens is a widespread probiotic property. 

Indeed LAB active against lactococcosis were common among LAB isolated from 

edible fish, further supporting the theory that the best place to find antimicrobials 

against a specific pathogen is in the niche the pathogen proliferates (58). 

 

1.1.9   Conclusion  

In conclusion, there is a continued drive to find novel bacteriocins that can control 

food pathogens more effectively. Novel LAB bacteriocins continue to be discovered 

and the use of LAB that produce multiple bacteriocins is receiving renewed attention. 

These screening programmes are being aided by the use of genome mining and mass 

spectrometry to find and characterise new bacteriocins while new engineering-based 

approaches are being used in parallel to improve previously identified bacteriocins for 

particular applications /targets. There is great potential to carry out investigations that 



 

14  

would assess the impact of bacteriocins on entire food microbial consortia as has been 

done previously to assess the impact of bacteriocins on gut microbial populations (56, 

59). 
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Figure 1 Enhancement of bacteriocin functionality using genome mining and 

molecular engineering techniques. 
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1.2.1 Abstract 

Bacteriocins are natural antimicrobials that have been consumed via fermented foods 

for millennia and have been the focus of renewed efforts to identify novel bacteriocins, 

and their producing microorganisms, for use as food biopreservatives and other 

applications. Bioengineering bacteriocins or combining bacteriocins with multiple 

modes of action (hurdle approach) can enhance their preservative effect and reduce the 

incidence of antimicrobial resistance. In addition to their role as food biopreservatives, 

bacteriocins are gaining credibility as health modulators, due to their ability to regulate 

the gut microbiota, which is strongly associated with human wellbeing. Indeed the 

strengthening link between the gut microbiota and obesity make bacteriocins ideal 

alternatives to Antibiotic Growth Promoters (AGP) in animal feed also. Here we 

review recent advances in bacteriocin research that will contribute to the development 

of functional foods and feeds as a consequence of their roles in food biopreservation 

and human/animal health.  

 

1.2.2 Introduction 

Fermented foods have been part of the human diet for thousands of years and evolved 

through the need to extend shelf life and improve food safety via the inhibition of food 

spoilage/pathogenic microorganisms (1, 2). Lactic acid bacteria (LAB) are natural 

constituents of many fermented foods and contribute greatly to food biopreservation. 

LAB exert their preservative effects through the production of antimicrobial 

metabolites including organic acids, diacetyl, ethanol, hydrogen peroxide and 

bacteriocins. Bacteriocins are a heterogeneous group of ribosomally-synthesised 

antimicrobial peptides with the ability to kill closely-related (narrow spectrum) or a 

diverse range of (broad spectrum) microorganisms (3). Bacteriocins are frequently 
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very potent, being active at nanomolar concentrations, and exert their killing effect 

predominantly through membrane permeabilisation. They are broadly divided into two 

classes with Class I containing Ribosomally synthesised and Post-translationally 

modified Peptides (RiPPs) and Class II containing predominantly unmodified peptides 

(4). Bacteriocins are produced by Generally Regarded as Safe (GRAS) or Qualitative 

Presumption of Safety (QPS) organisms and are often sensitive to human proteases. 

Bacteriocins are now the focus of increased attention i) due to consumer requirements 

for minimally processed foods free from chemical additives (5) ii) due to their potential 

as natural alternatives to antibiotics due to increasing concerns about the emerging 

problem of antimicrobial resistance (4, 6) iii) as modulators of the human microbiome 

and, therefore, potential to address complex metabolic conditions such as diabetes and 

inflammatory bowel disease (7), and iv) as bacteriocin-producing probiotic cultures 

for inclusion in animal feed to promote growth, improve animal health and/or reduce 

infection (8) (Figure 1). 

 

1.2.3 Bacteriocins as food biopreservatives 

Bacteriocins with optimal potential as biopreservatives are safe for human 

consumption, have minimal effects on the human microbiota and are effective against 

food pathogens/spoilage microorganisms. They are also stable in the food matrix in 

which they are employed, which may require resistance to heat, pH and food associated 

enzymes (9). Bacteriocins can be added to foods in three ways; i) as a pure bacteriocin 

preparation ii) as bacteriocin-containing fermentates or iii) as bacteriocin-producing 

cultures (4, 10).  

Nisin A is a broad-spectrum Class I lantibiotic, produced by Lactococcus lactis, 

characterized by five intermolecular lanthionine rings that confer inherent heat and 
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protease stability. It is the most studied bacteriocin and it is the only commercially 

produced bacteriocin approved as a food additive by regulatory agencies including the 

World Health Organization (WHO)/Food and Drug Administration (FDA) in the USA 

and the European Food Safety Authority (EFSA) in Europe (11). It was first produced 

in England in the 1950s (1) and is now available as, for example, Nisaplin (2.5% nisin) 

(www.dupontnutritionandsciences.com)(11). Nisin Z, a His27Asn variant of nisin A, 

with greater solubility at higher pH thereby extending its usefulness for food 

applications, is also commercially available as, for example, Nisin Z®P ultrapure nisin 

(>95% nisin) (www.handary.com). The ability to bioengineer nisin has led to a number 

of nisin variants with improved capabilities, perhaps the most notable of these being 

nisin V, a Met21Val variant, which has improved activity against a variety of 

foodborne pathogens, including Listeria monocytogenes and Bacillus cereus (12). 

Nisin variants can be bioengineered through food-grade techniques involving double 

crossover mutagenesis which do not introduce exogenous DNA or antibiotic resistance 

markers. When made in this way, the producing strains are not regarded as genetically 

modified microorganisms by the EFSA under contained use legislation. This opens the 

possibility to custom design nisin for specific applications by increasing yield, 

increasing potency against specific targets or expanding its spectrum of inhibition 

thereby increasing its commercial potential as food biopreservatives (13).  

Bacteriocin containing food-grade fermentates are also commercially available and 

widely used in the food industry. These include the FDA approved MicroGARDTM 

range from Danisco and ALTA 2431 from Quest International and both contain 

pediocin PA-1 produced by Pediococcus acidilactici (5).  

Bacteriocin-producing cultures used as starter cultures or as adjunct cultures serve a 

dual purpose as they can contribute to both flavour and food safety, providing 

http://www.dupontnutritionandsciences.com/
http://www.handary.com/
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fermentation and preservation simultaneously. This is more cost effective than using 

pure peptide and is subject to less regulatory control (9). Examples include the 

BactofermTM range (www.chr-hansen.com), containing pediocin and sakacin 

producing strains, used to make fermented sausages and dry cured meat and 

HOLDBAC® protective cultures (www.dupontnutritionandsciences.com) containing a 

mix of bacteriocin-producing strains used to protect seafood, meat and dairy products 

from Listeria, yeasts and moulds (9). Micocin® is a specifically designed protective 

culture with potent activity against food spoilage and pathogenic microorganisms in 

ready to eat meat products and approved for use in the US and Canada (14). It contains 

Carnobacterium maltoaromaticum which produces piscicolin 126 and carnobacterium 

BM1 and the circular bacteriocin, carnocyclin A, that is particularly potent against L. 

monocytogenes (15). Including Micocin® as a feed additive in the diet of Grimaud 

rabbits resulted in reduced levels of L. monocytogenes in ground meat during storage 

indicating that including a protective culture in animal diets resulted in safer food 

products (16).  

Recently discovered novel bacteriocins with potential as food preservatives include 

plantaricyclin A, a circular bacteriocin produced by the olive isolate Lactobacillus 

plantarum NI326, with activity against the beverage spoilage bacterium 

Alicyclobacillus acidoterrestris, which causes significant economic losses to the food 

industry every year (17). Enterococcus mundtii CRL35, a non-virulent, non-antibiotic 

resistant strain, also shows promise as an adjunct culture. It reduces L. monocytogenes 

during meat fermentation, both in vitro and in a beaker sausage model in the presence 

of curing agents, due to production of enterocin CRL35, a class IIa bacteriocin. 

Bacteriocin-producing strains are adversely affected by the presence of curing salts so 

the ability of E. mundtii to grow and exert a higher protective effect in fermented meats 

http://www.chr-hansen.com/
http://www.dupontnutritionandsciences.com/
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is particularly advantageous (18). Gómez-Sala et al (2016) found that the use of the 

multibacteriocinogenic strain Lactobacillus curvatus BCS35 as a protective culture, 

and of its cell free supernatant used as a food ingredient during refrigerated storage, 

significantly reduced bacterial counts on fresh fish, thereby increasing the both the 

quality and commercial value of the product (19). Another exciting development in 

recent years is the use of antimicrobial-containing edible films and coatings, composed 

of layers of biopolymers that protect the food from the environment, to improve food 

safety by inhibiting food pathogens during handling, transportation and storage of food 

products (5, 20). 

 

1.2.4 Antimicrobial resistance  

A recent WHO report highlights concerns about the lack of progress in the search for 

new antimicrobial classes and calls for increased investment in drug discovery to 

combat the threat of antimicrobial resistance (6, 21). Bacteriocins are considered 

promising alternatives due to their stability (especially in the case of modified peptides 

such as the lantibiotics), low toxicity, frequently excellent potency and potential for 

target specificity. Many bacteriocins interact electrostatically with the cell membrane 

and introduce permeabilisation through interaction with receptor or docking 

molecules. Resistance can occur due to innate mechanisms, including the ability to 

produce degradation enzymes or the presence of immunity proteins, while acquired 

resistance occurs due to horizontal gene transfer or gene mutations that alter the cell 

membrane, binding receptors or transport systems (22, 23). Previously described 

resistance mechanisms include specific adaptations such as the loss of a receptor, as 

seen in resistance to class IIa bacteriocins like pediocin, or non-specific adaptations 

that alter the cell envelope, as seen in the case of resistance to Class I lantibiotics such 



 

32  

as nisin (10, 22, 24, 25). Radical adaptations requiring high energy costs that reduce 

the fitness of the cell may limit the ability of resistant mutants to compete in established 

niches, possibly explaining why bacteriocin resistance is rarer than antibiotic 

resistance (24, 26, 27). Knowledge of a bacteriocin’s mode of action (4) and how it 

acquires resistance facilitates the development of methodologies to minimise 

resistance occurrence (27). Strategies successfully used to reduce resistance include 

combining bacteriocins with other bacteriocins with different modes of action (23, 28, 

29), other antimicrobials (21, 25), or phages or, generating peptides with increased 

antimicrobial resistance through bioengineering (30). These hurdle (combinatorial) 

approaches have the added advantages of broadening the antimicrobial spectra while 

reducing costs and toxicity (25). Indeed, Perales et al (2018) found that a combination 

of enterocin AS-48 and nisin A acted synergistically to kill antibiotic resistant 

staphylococci, a common contaminant in processed food, in fresh goat milk cheese 

potentially improving its shelf life and safety. Using multiple bacteriocins reduces the 

bacteriocin dose and prevents the regrowth of bacteriocin resistant/adapted cells (21). 

Mills et al (2017) also used a multibacteriocin approach to develop a cheese starter 

system producing both nisin A and lacticin 3147. The use of these, in combination 

with a Lactobacillus plantarum Class II plantaricin producer, reduced Listeria 

numbers in lab scale cheese more effectively than when individual bacteriocin 

producers were used singly. The concurrent production of nisin A and lacticin 3147 

reduces the likelihood of incidence of bacteriocin resistance and this approach shows 

great potential for food safety applications (31).  

A bioengineering approach was used to overcome the efficacy of nisin resistance 

protein (NSR), expressed by some microorganisms, that cleaves nisin between residue 

28, involved in ring E formation, and serine 29, resulting in a truncated nisin 1-28 with 
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significantly reduced activity (30). A screening study located a nisin Ser29Pro variant 

with 20 fold increased activity against a NSR+ strain and a similarly resistant nisin PV 

variant that was less affected by oxidation (30). Recently, a survey of 182 

Lactobacillus strains revealed a high level of intrinsic antimicrobial resistance genes, 

with resistance to kanamycin, vancomycin and trimethoprim being most prevalent 

(32). Eighty eight per cent of the strains surveyed would fail EFSA regulatory 

guidelines, despite them being species widely used in foods for human and animal 

consumption, as the presence of antimicrobial resistance genes impacts on their use in 

food applications. These findings led the authors to call for revision of EFSA 

regulatory guidelines for lactobacilli entering the food chain and highlight that a more 

thorough understanding of antimicrobial resistance and its spread within 

microorganisms is required (32). Overall, the general consensus is that bacteriocins, 

like antibiotics, should be used exiguously to avoid selection of resistant phenotypes 

that may compromise their potential role as biopreservatives (22,24,25).  

 

1.2.5 Bacteriocin-producing probiotic strains as gut microbiome modulators 

The role of the gut microbiota in human health is of increasing interest as the links 

between a balanced, healthy gut microbiota and disease prevention become more 

apparent (23, 33). Broad-spectrum antibiotics indiscriminately affect the entire 

microbiota, leading to imbalances that could potentially predispose to conditions such 

as obesity, diabetes, immune disorders and neurodegenerative disease (29, 34, 35). 

Bacteriocin-producing LAB are antibiotic alternatives that have the potential to 

enhance gut health through their ability to survive the gut environment, inhibit 

pathogens and competitors, modulate the immune system and prevent inflammation 

and oxidative stress (33, 34, 36, 37). Considerable efforts are being made to understand 
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the contribution of bacteriocins produced by LAB to gut modulation, pathogen 

inhibition and their role in the maintenance of host health. To this end, an in vitro 

faecal fermentation system that mimics the anaerobicity of the colon was used to assess 

the effect of bactofencin A, a class IId bacteriocin produced by the porcine gut isolate 

Lactobacillus salivarius, on the human faecal microbiota. The study found subtle but 

positive differences in taxonomic profiles between the bactofencin A+ producing 

culture and its bactofencin A- mutant, while more drastic effects in taxonomy were 

detected in the presence of pure peptide (38). Similarly, in vivo studies using mice fed 

with a L. salivarius UCC118 bacteriocin producer, Bac+, or its bacteriocin-negative, 

Bac-, derivative over 8 weeks resulted in slight changes in the gut microbiota at the 

Phylum level. Whereas at the genus level, the Bac+ treatment resulted in a significant 

increase in Bacteroides spp. and decrease in Bifidobacterium spp. in comparison with 

the Bac- group (39). Efforts to assess if bacteriocin production in vivo inhibits gut 

pathogens without negatively impacting beneficial populations require rigorous 

experimental methods to provide meaningful results (40). Bauer et al (2017) describe 

a generic method, using compositional 16S rDNA combined with bioinformatics, to 

compare the effect of bacteriocin producers to their isogenic non-producing 

equivalents on microbiota composition in a mouse model allowing impacts on the gut 

microbiota to be measured in a live animal model (36). This model was used in a mouse 

feeding trial, where five Class II bacteriocin-producing LAB were compared with 

isogenic non-producing equivalents. The trial showed that while the overall diversity 

was unchanged, advantageous changes relating to pathogen inhibition and increased 

LAB levels were seen briefly, suggesting that bacteriocin production facilitated 

favourable changes without collateral damage to the gut microbiota (41). These studies 

provide further evidence that bacteriocin production provides subtle positive changes 
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at lower taxonomic levels that maintain a desirable gut microbiota and are beneficial 

to the host (7).  

Bacteriocins, unlike antibiotics, are often very specific and can kill pathogens without 

causing detrimental imbalances to the host microbiota. Vancomycin resistant 

enterococci (VRE) are gut inhabitants that can cause fatal infections, particularly in a 

hospital environment. A recent report by Kim et al (2019) describes the ability of gut 

commensals to increase the resistance of the host to vancomycin resistant 

Enterococcus faecium (VREf). They found that one constituent of a four strain 

cocktail, Blautia producta BPSCSK, a nisin A variant producer, was responsible for 

reduced colonisation by VRE. A direct correlation was found between the amount of 

the lantibiotic gene and VRE reduction in germ free mice containing patient feces, thus 

demonstrating the potential of bacteriocins as antibiotic alternatives (42).  

The gut microbiota also enables the gastrointestinal tract and the brain to communicate 

through the gut brain axis, which is described as a neuroendocrine signalling system 

that transmits information through endocrine signals, neurons and the immune system 

(34). A recent microbiota-gut-brain–axis study demonstrated that nisin increased 

duodenal levels of the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) and 

dopamine (DA) in a bacterial diarrhoea mouse model induced by pathogenic E. coli 

O1. In addition, nisin increased the bacterial diversity in the mouse cecum samples by 

increasing beneficial Lactobacillus, Bacteroides and Bifidobacterium species while 

inhibiting pathogenic E. coli and Enterococcus spp. Taken together, the results show 

a positive correlation between nisin, the gut microbiota and stress reduction triggered 

by E. coli induced diarrhoea in mice, suggesting that probiotics can both regulate the 

gut microbiota and affect the expression of neurotransmitters in the brain (43).  
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1.2.6 Genome mining studies reveal that the gut microbiota is a rich source of 

bacteriocin genes 

In silico genome mining techniques are routinely used to identify bacteriocin gene 

clusters in bacteria from numerous sources including the commensal mammalian 

microbiota. An in-depth look at human commensal metagenomic sequences found that 

the number of putative bacteriocin genes varied according to body site, with a higher 

proportion found in the mouth, airway and vagina and lowest in the gut (44). However, 

analysis of genomes specifically from the human gut revealed that almost half, 

predominantly from LAB, encoded putative bacteriocins and are proposed to aid 

diversity through establishment of commensal relationships with the host and aid host 

defence by inhibiting pathogens (45). In silico analysis of genomes from rumen 

bacteria found numerous novel sactipeptide and lanthipeptide bacteriocin gene clusters 

suggesting that the rumen is a rich source of novel antimicrobial peptides with 

potential as food preservatives and use in animal production (46). A more recent 

metagenomic functional screening of the rumen metagenome identified 181 previously 

unidentified antimicrobial peptides, three of which (Lynronne-1, 2 and 3) were shown 

to have activity against methicillin resistant Staphylococcus aureus (MRSA) and other 

pathogens. Interestingly, MRSA did not produce resistant mutants when subcultured 

in sub MIC levels of these peptides over 25 days (47).  

Shotgun sequencing of the gut microbiome allows identification of microorganisms to 

species or strain level and even detects genes related to antibiotic resistance, vitamin 

production or short chain fatty acid production. However, advances in sequencing-

based microbiome profiling methods, such as metatranscriptomics, can go further to 

assess gene expression, thus providing an accurate method to determine which genes 

are expressed by the microbiome. This technique is capable of generating large-scale 
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profiles of complex microbiomes and is expected to improve our understanding of the 

role that bacteriocins play in gut ecology (48).  

 

1.2.7 Bacteriocin-producing probiotic cultures as antimicrobials in animal feed  

Since the 1930s, antibiotics have been used in animal husbandry to treat infections, 

prevent disease and improve feed efficiency (49). Antibiotic use in global food 

production is increasing worldwide to meet the growing demand for animal protein 

and now surpasses human consumption. Indeed, in some countries, it has been reported 

that 80% of antibiotics important for human medicine are consumed by healthy 

animals to promote growth (50, 51). Concerns about increases in drug resistance in 

animal pathogens and its potential transfer from livestock to humans, leading to 

untreatable infections, has led to the WHO introducing a Global Action Plan on 

Antimicrobial Resistance highlighting the need for a concerted international approach 

from consumers, environmentalists, agriculture, human and veterinary medicine to 

combat this growing crisis (51-53). In 2006, the European Union banned the use of 

animal growth promoters (AGP) in animal feed, creating a need for a new 

antimicrobial strategy. A pioneering study by Corr et al (2007) found that production 

of Abp118 by L. salivarius UCC118 protected mice in vivo from the food pathogen L. 

monocytogenes, thus confirming the antimicrobial potential of bacteriocin-producing 

probiotic cultures (54). Since then, there have been numerous studies, predominantly 

in vitro, providing evidence that bacteriocins are potential alternatives to antibiotics in 

animal production (53). Recently, Hu et al (2018) showed that a faecal microbiota 

transplantation (FMT) from diarrhoea resistant to diarrhoea susceptible pigs protected 

against early weaning diarrhoea induced by stress, a huge problem in the swine 

industry. Further investigation revealed that the protective effect was attributable to 



 

38  

the presence of Lactobacillus gasseri and Lactobacillus frumenti. More specifically, 

this effect was due to their ability to produce the circular bacteriocin, gassericin A, 

which binds to the pig’s intestinal epithelial membrane, thus preventing diarrhoea 

onset and providing further evidence that probiotic cultures have potential as antibiotic 

alternatives for diarrhoea prevention in mammals (55).  

The ability of AGP to improve growth and body weight gain of animals is tentatively 

attributed to modulation of the gut microbiota as it plays an important role in obesity 

(33). Direct Fed Microbials (DFM) such as probiotic LAB are associated with weight 

gain in animals (8) and tentative links are being established between feed efficiency in 

pigs and the intestinal microbiota (56). This makes it tempting to suggest that 

bacteriocin-producing LAB can be used to modulate the gut microbiota in a way that 

improves feed efficiency. Nisin has been proposed as a feed supplement for broiler 

chickens as preliminary experiments suggest that it improves body weight gain in a 

dose-related manner, an effect that may be due to gut microbiota modulation (57).  

One of the challenges for bacteriocins in feed applications is the ability to pass through 

the gastrointestinal tract without digestion by proteolytic enzymes. This can be 

achieved through encapsulation, a protective technique that ensures successful 

delivery to the target site without loss of bioactivity where they can be released in a 

controlled fashion (20). Both nisin A and bactofencin A were recently successfully 

encapsulated in mesoporous matrices, with nisin A being protected from degradation 

by pepsin and bactofencin A by trypsin (58, 59). Bioactive intact nisin and nisin 

fractions were detected in the feces of mice pellets following feeding with nisin 

encapsulated in starch-based matrices, therefore achieving the aim of delivering intact 

nisin to the gut by oral means (60). The amount of nisin detected in the feces varied 

with starch matrix, highlighting that optimum delivery requires examination of a range 
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of substrates and conditions. These preliminary studies show that bacteriocins are 

effective in a gut environment.  

 

1.2.8 Conclusions 

Current research is strengthening the view of bacteriocins as being versatile 

antimicrobials with considerable potential for use as biopreservatives, antibiotic 

alternatives, health-promoting gut modulators and animal growth promoters. 

Excessive use of antibiotics, and especially of broad-spectrum antibiotics, in medicine 

and food production has been recognised as a cause of microbiome disruption and 

select for accumulation and transfer of resistance genes within the microbial 

population of the human gut (35). Overall, though bacteriocins are likely expressed at 

low levels in the gut, it is considered that their production by gut commensals enables 

a healthy and stable microbiome by preventing invasion by undesirable species (44) 

and the establishment of desirable microbes.  

The use of DFM as alternatives to AGP is a relatively new area of research that shows 

promise for bacteriocin-producing LAB as initial studies show that bacteriocins are 

also effective in the animal gut. While obtaining approval from FDA and EFSA or 

other agencies to utilise bacteriocins within feed additives for animal nutrition is a 

lengthy process (61), their potential to play a role beyond that of biopreservative is 

notable, with a number of studies describing them as versatile health promoter 

molecules (11, 26).  

The incorporation of bacteriocin-producing probiotics into foods and feeds as well as 

assuring their activity during processing and subsequent passage through the host’s 

gastrointestinal tract are challenges that are being addressed through the discovery and 

development of new bacteriocin-producing strains and novel encapsulation techniques 
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(58-60, 62). Commercial scale bacteriocin production is still hampered by high costs 

and low peptide yield but cost efficiency is being improved through optimisation of 

fermentation processes and bioengineering strains for maximum bacteriocin 

production (63). It should also be noted that further studies are also required to 

establish dosage levels and to further improve effective delivery to target sites. 

Overall, the expanding potential role of bacteriocins in food preservation, gut 

modulation, antimicrobial resistance reduction and animal feed suggest that, if the 

hurdles described are overcome, there are considerable opportunities for widespread 

bacteriocin-based applications in the food and feed industries.   
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Figure 1 Potential applications of i) bacteriocin-producing cultures, ii) bacteriocin-

containing fermentates, iii) purified bacteriocins and iv) encapsulated bacteriocins as 

food preservatives, gut modulators, feed additives and therapeutics.  

Created with BioRender.com.PDB ID 2A2B (10.2210/pdb2a2b/pdb), PDB ID 1OG7 

(10.2210/pdb1OG7/pdb), PDB ID 5UKZ (10.2210/pdb5UKZ/pdb).  
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Chapter 2.1 

 

Nisin H is a new nisin variant produced by the gut-derived strain 

Streptococcus hyointestinalis DPC6484 
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2.1.1 Abstract 

Accumulating evidence suggests that bacteriocin production represents a probiotic trait 

for intestinal strains to promote dominance, fight infection, and even signal the immune 

system. In this respect, in a previous study, we isolated from the porcine intestine a 

strain of Streptococcus hyointestinalis DPC6484 that displays antimicrobial activity 

against a wide range of Gram-positive bacteria and produces a bacteriocin with a mass 

of 3,453 Da. Interestingly, the strain was also found to be immune to a nisin-producing 

strain. Genome sequencing revealed the genetic determinants responsible for a novel 

version of nisin, designated nisin H, consisting of the nshABTCPRKGEF genes, with 

transposases encoded between nshP and nshR and between nshK and nshG. A similar 

gene cluster is also found in S. hyointestinalis LMG14581. Notably, the cluster lacks an 

equivalent of the nisin immunity gene, nisI. Nisin H is proposed to have the same 

structure as the prototypical nisin A but differs at 5 amino acid positions Ile1Phe (i.e., at 

position 1, nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb (threonine 

dehydrated to dehydrobutyrine), Met21Tyr, and His31Lys and appears to represent an 

intermediate between the lactococcal nisin A and the streptococcal nisin U variant of 

nisin. Purified nisin H inhibits a wide range of Gram-positive bacteria, including 

staphylococci, streptococci, Listeria spp., bacilli, and enterococci. It represents the first 

example of a natural nisin variant produced by an intestinal isolate of streptococcal 

origin. 

 

2.1.2  Introduction 

Bacteriocins of lactic acid bacteria have received extensive attention in recent years 

given their structural diversity and activity and their potential as biopreservatives and 

anti-infectives. Indeed, the production of bacteriocins by intestinal bacteria is 
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considered a probiotic trait and has been shown to be associated with strain 

dominance, infection control, and host cell signaling (1). One of the oldest and 

undoubtedly the most extensively characterized bacteriocins is nisin A, which was 

discovered by Rogers in 1928 (2). Nisin A is produced by many strains of Lactococcus 

lactis, a species widely used for cheese manufacture. It has a broad antimicrobial 

spectrum against a wide range of Gram-positive genera, including staphylococci, 

streptococci, Listeria spp., bacilli, and enterococci (3). Nisin A has been used in the 

food industry as a biopreservative for more than 50 years without inducing widespread 

microbial resistance (4, 5). The bacteriocin has multiple antimicrobial actions; it 

binds to the precursor of peptidoglycan, lipid II, to inhibit cell wall biosynthesis and 

then forms pores in the cell membrane, leading to the release of essential ions and, 

ultimately, cell death (6–8). 

The nisin gene cluster in L. lactis is associated with a conjugative transposon and 

consists of nisABTCIPRKFEG, where nisA encodes the nisin prepropeptide. Immunity 

to nisin is provided by a specific immunity protein, NisI, and a specialized ABC 

transporter, NisFEG (9). The lipoprotein, NisI, most probably orients to the outside of 

the cytoplasmic membrane and binds nisin, preventing it from binding to lipid II and 

forming pores in the cell membrane (10, 11). NisFEG are thought to transport nisin 

from the cytoplasmic membrane to the external environment, thus preventing the 

accumulation of the high number of nisin molecules necessary for pore formation (12, 

13). The extent to which nisin is produced is affected by the level of immunity of the 

producing microorganism. For maximal nisin immunity, both the lipoprotein and the 

nisin transporters are required (12, 14–16). 

To date, eight natural nisin variants have been discovered (Figure. 1). These include nisins 

Z, F, and Q, which have been isolated from lactococci, nisins U and U2, from 
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Streptococcus uberis, and nisin P, which is encoded on nisin operons present in both 

Streptococcus gallolyticus subsp. pasteurianus (17) and Streptococcus suis (18). Nisin 

Z producers are very common, and the amino acid sequence differs from that of nisin 

A at a single position (His27Asn) (19, 20), a change that improves the solubility of 

the peptide at a neutral pH (21). The operon encoding nisin F was found on a plasmid 

in L. lactis F10, isolated from the intestinal tract of a freshwater catfish in South Africa. 

Nisin F differs from nisin A at 2 amino acid positions: His27Asn, as seen in nisin Z, and 

Ile30Val (22). Nisin Q is produced by L. lactis 61-14, isolated from a river in Japan, 

and differs from nisin A at 4 amino acid positions, i.e., those observed in nisin F as well 

as Ala15Val and Met21Leu (23). The Streptococcus-associated variants differ more 

considerably from nisin A. The S. uberis producers of nisin U and U2 were isolated 

in cases of bovine mastitis in the United States. Nisin U differs from nisin A at 9 

positions—Ile4Lys, Ala15Ile, Gly18Thr, Asn20Pro, Met21Leu, His27Gly, Ser29His, 

Ile30Phe, and His31Gly—and also lacks the three C-terminal amino acids of nisin A. 

In addition to these changes, nisin U2 contains a further Ile1Val change (24). Finally, 

and most recently, a phylogenetic study of lanthipeptide synthetases by Zhang et al. 

(2012) (17) revealed an S. gallolyticus subsp. pasteurianus strain that encodes a 

structural gene with the potential to produce a new nisin analogue, nisin P. Nisin P is 

closely related to nisin U2, differing with respect to just 2 amino acids: Phe20 and 

Leu21 in nisin U2 are changed to Ala20 and Ile21 in nisin P. The more distantly related 

nisin-like lantibiotic salivaricin D, isolated from Streptococcus salivarius 5M6c, a 

human isolate, differs from nisin A at 17 positions, with most differences seen at the 

C-terminal end of the molecule (25). 

In this study, we have identified a new nisin variant, designated nisin H, produced by a 

strain of Streptococcus hyointestinalis isolated from the porcine intestine. The name S. 
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hyointestinalis was first employed in 1988 to reassign a number of strains that had 

previously been classified as Streptococcus salivarius (26) and was derived from the 

Greek noun hyos, meaning pig, and the Latin adjective intestinalis, which reflects the 

association of the strains with the porcine intestine. Previously an S. hyointestinalis 

isolate producing a broad-spectrum antimicrobial that inhibits bifidobacteria, 

lactobacilli, Leuconostoc spp., Listeria spp., Staphylococcus aureus, and Streptococcus 

agalactiae was isolated as part of a mammalian-gut-mining study by O’Shea et al. 

(2009) (27). Since this represented the first report of an S. hyointestinalis strain that 

produces an antimicrobial, we sequenced and analyzed the genome of this strain. 

Ultimately, this led to the isolation, characterization, and identification of a novel nisin 

variant, which we designate nisin H, produced by a gut-derived strain. 

 

2.1.3 Materials and Methods 

Bacterial strains and culture conditions 

The bacterial strains used in this study are listed in Table 1. Anaerobic conditions were 

generated through the use of anaerobic jars containing Anaerocult A gas packs (Merck, 

Darmstadt, Germany). Agar (Oxoid Ltd., Basingstoke, Hampshire, United Kingdom) was 

added (1%, wt/vol) to broth media when agar plates were required.  

 

Isolation of DNA for PCR analysis 

DNA was extracted from culture cell pellets for PCR analysis with a GenElute bacterial 

genomic DNA kit (Sigma-Aldrich, Co. Wicklow, Ireland) and molecular manipulation 

techniques from the work of Sambrook and Russell (2001) (28) were used when 

required. Oligonucleotide primers were synthesized by Sigma-Genosys (Poole, 

Dorset, United Kingdom), and purified PCR amplicons were sequenced by Beckman 
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Coulter Genomics (Essex, United Kingdom).  

DNA was amplified with MyTaq DNA polymerase (Bioline, London, United 

Kingdom) according to the manufacturer’s instructions. PCRs were carried out in a 

Techne TC-512 thermal cycler (Bibby Scientific, Staffordshire, United Kingdom). 

 

Genome sequencing and analysis of the nisin H gene cluster.  

The sequence of the genomic DNA extracted from S. hyointestinalis DPC6484 was 

determined by 454 pyrosequencing (Beckman Coulter Genomics, USA). The resulting 

sequence reads were assembled into contigs using the Newbler package. Coding 

regions in the draft genome assembly were predicted using GLIMMER, version 2.0 

(29), and annotation was subsequently determined using the GAMOLA software 

package (30). Sequence similarity analyses were performed using the gapped BLASTp 

algorithm and the nonredundant database provided by the NCBI (ftp://ftp.ncbi.nih 

.gov/blast/db) (31). By using the ARTEMIS genome viewer (32), components of the 

nisin H gene cluster were identified on two distinct contigs. PCR with the primer pair 

comprising 5’ GTTGACTTATTGAGCGAGG 3’ and 5’ GCCAACTTATTACGTT 

CTTCAC 3’, designed to be specific to the sequences flanking the 3 and 5 termini of 

the respective contigs, confirmed the contiguous nature of this gene cluster. The 

annotation of the gene cluster was then verified manually. The sequence data were 

aligned and analyzed by using LASERGENE software (DNAStar Inc., Madison, WI).  

The genome was searched for the presence of a nisI immunity gene equivalent with 

primers designed to be specific to the nisI immunity gene of L. lactis NZ9700 and the 

nsuI immunity gene of S. uberis 42 (Table 2).  

 

Purification of the antimicrobial produced by S. hyointestinalis DPC6484.  

ftp://ftp.ncbi.nih.gov/blast/db
ftp://ftp.ncbi.nih.gov/blast/db
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The antimicrobial was purified from the cell-free supernatant (CFS) of a 2-liter culture 

of S. hyointestinalis DPC6484 grown in tryptic soy broth (TSB) at 37°C overnight. The 

culture supernatant was applied to a 90-ml SP Sepharose column (GE Healthcare, 

Uppsala, Sweden) pre-equilibrated with 50 mM sodium acetate buffer, pH 4.4 (buffer 

A). The column was washed with 300 ml of buffer A, and the antimicrobial activity was 

eluted in 300 ml of buffer A containing 1 M NaCl. This eluent was then applied to a 

5-g, 20-ml Strata C18-E solid-phase extraction (SPE) column (Phenomenex, Cheshire, 

United Kingdom) preequilibrated with methanol and water. The column was washed 

with 20 ml of 25% ethanol, and the antimicrobial activity was eluted with 20 ml of 70% 

2-propanol 0.1% trifluoroacetic acid (TFA). The antimicrobial activities of cell-free 

supernatants and eluents from purification protocols were determined via the agar well 

diffusion assay described by Ryan et al. (1996) (33). Lactobacillus delbrueckii subsp. 

bulgaricus LMG6901 was used as the indicator strain, and bioactivity was assessed 

following aerobic incubation of plates overnight at 37°C. The 2-propanol was removed 

by rotary evaporation, and the sample was applied to a Jupiter Proteo reversed-phase 

high-performance liquid chromatography (RP-HPLC, Phenomenex, Cheshire, UK) 

column (length, 10 mm; inside diameter, 250 mm; particle size, 4 µm, pore size, 90 

Å) running a 25-to-45% acetonitrile– 0.1% TFA gradient over 35 min at 2.5 ml/min. 

The resultant eluent was monitored at 214 nm, and fractions were collected at 1-min 

intervals. Fractions were assayed for antimicrobial activity by a well diffusion assay with 

L. delbrueckii subsp. bulgaricus LMG6901 as the indicator strain, and those containing 

antimicrobial activity were analyzed via matrix-assisted laser desorption ionization–

time of flight mass spectrometry (MALDI-TOF MS) to determine the molecular mass 

of the antimicrobial peptide and to assess peptide purity. HPLC fractions deemed pure 

by MALDI-TOF MS were combined and were lyophilized in a Genevac (Suffolk, 
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United Kingdom) lyophilizer. MALDI-TOF mass spectrometry was performed with 

an Axima TOF2 MALDI-TOF mass spectrometer in positive-ion reflectron mode 

(Shimadzu Biotech, Manchester, United Kingdom). N-terminal sequencing (Edman 

degradation) of purified nisin H was performed by Abingdon Health Laboratory 

Services (Birmingham, United Kingdom). 

Pure nisin A peptide was prepared from L. lactis NZ9700 as described for nisin H. 

 

Cross immunity of S. hyointestinalis DPC6484 to other nisin-producing cultures  

The cross immunity of S. hyointestinalis DPC6484 to the bacteriocins produced by L. 

lactis NZ9700 (nisin A), S. uberis strain 42 (nisin U), L. lactis DPC3251 (lacticin 

3147) and to L. delbrueckii subsp. bulgaricus LMG6901, a non-bacteriocin producer 

used as a bacteriocin-sensitive strain, was determined by spotting 50-µl aliquots of cell 

free culture supernatants onto indicator plates seeded with 1% (vol/vol) of each of 

these strains. L. delbrueckii subsp. bulgaricus LMG6901, known to be sensitive to each 

of these nisin variants and to lacticin 3147, was used as an indicator strain to confirm 

the production of nisins A, H, and U and lacticin 3147 by the respective strains. 

 

Comparison of the inhibitory activities of pure nisin A and nisin H peptides 

Purified nisin A and H peptides were resuspended at 0.22 mg/ml in 35% 2-propanol for 

optimum solubility. Aliquots (50 µl) of each peptide were tested for antimicrobial 

activity by well diffusion using the indicator strains listed in Table 4. The culture 

media and incubation conditions are outlined in Table 1. A 50-µl aliquot of 35% 2-

propanol was assayed against each strain to ensure that it did not inhibit any of the test 

strains. 
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Genomic profiles of S. hyointestinalis strains 

Molecular fingerprinting of S. hyointestinalis isolates was performed by pulsed-field gel 

electrophoresis (PFGE) as described by Simpson et al. (2002) (34) using SmaI 

restriction endonucleases and DNA molecular weight markers (9.42 to 242.50 kb; 

New England BioLabs, Beverly, MA). DNA fragments were resolved with a CHEF 

(contour-clamped homogeneous electric field) DRIII pulsed-field system (Bio-Rad 

Laboratories) at 6 V/cm for 18 h with a 1- to 30-s linear ramp time to resolve bands. 

 

Assessment of the distributions of nshA, nshF, nshR, and nshT in S. hyointestinalis 

strains 

The presence of the nshA, nshF, nshR, and nshT genes in S. hyointestinalis DPC6484 

and S. hyointestinalis strains obtained from the BCCM/LMG culture collection were 

checked using gene-specific primer pairs. The primer pairs and the sizes of the expected 

gene products are given in Table 2. 

 

Nucleotide sequence accession number 

The sequence of the nisin H gene cluster of Streptococcus hyointestinalis DPC6484 is 

available from GenBank/EMBL under accession number KP793707. 

 

2.1.4  Results 

Genome sequencing of S. hyointestinalis DPC6484 reveals a nisin-like gene cluster 

In a previous study, which involved the screening of mammalian samples from the 

gastrointestinal tracts of humans, pigs, and cows, we identified S. hyointestinalis 

DPC6484, a strain that inhibits bifidobacteria, lactobacilli, Leuconostoc spp., Listeria 

spp., S. aureus, and S. agalactiae (27). Given that antimicrobial production has not been 

http://www.ncbi.nlm.nih.gov/nuccore?term=KP793707
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attributed to an S. hyointestinalis strain previously, the genome of DPC6484 was 

sequenced with a view to the identification of the gene cluster responsible for this 

phenotype. Analysis of the draft genome revealed the presence of a nisin homologue and 

of associated biosynthesis genes on two contiguous sequence regions. The assembled 

gene cluster, of ~15.8 kb (Figure. 2), was found to contain a putative nisin variant-

encoding structural gene designated nshA (nsh for nisin from S. hyointestinalis, or nisin 

H) followed by homologues of nisBTCP (designated nshBTCP), a region encoding a 

streptococcal transposase, the equivalents of nisRK (designated nshRK), another region 

encoding a streptococcal transposase, and nisFEG-like genes (designated nshFEG). A 

notable feature was the absence of an equivalent of the nisI immunity gene. Further 

investigation of the S. hyointestinalis strain via a BLAST analysis on the draft genome 

sequence and PCR-based approaches suggested the absence of an obvious NisI 

homologue (data not shown). 

The protein sequences ranged from 54% identity with the lactococcal equivalent for 

NshG to 82% identity for NshA. The predicted product of nshA is a 57-amino-acid 

peptide that, on the basis of comparison with other nisin peptides, is likely to consist of 

a 23-amino acid leader and a 34-amino acid propeptide. The putative propeptide differs 

from the corresponding nisin A peptide at five positions: Ile1Phe, Leu6Met, Gly18Thr, 

Met21Tyr, and His31Lys (Figure. 1). 

 

Purification and predicted structure of nisin H 

The nisin H peptide was purified using SP Sepharose cation-exchange SPE, C18 SPE, 

and reversed-phase HPLC. The HPLC chromatogram (Figure. 3) shows a dominant 

peak corresponding to a fraction that inhibited the indicator strain, L. delbrueckii 

subsp. bulgaricus LMG6901. This purification strategy typically yielded 0.15 mg/ 
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liter, which is lower than the 0.50 mg/liter of nisin A recovered from a corresponding 

starting volume by using the nisin A producer L. lactis NZ9700.  

The first 10 amino acids of the predicted NshA propeptide are FTSISMCTPG (Figure. 

2). Lantibiotics can be difficult to sequence using Edman degradation, because the 

dehydrated amino acids and ring structures are not compatible with this technique. 

Nonetheless, Edman sequencing of the newly purified antimicrobial revealed a 

sequence consisting of F-X-X-X-X-M-X-X-P-G. This sequence conforms to the gene 

predictions of the identifiable residues at positions 1, 6, 9, and 10 and is consistent with 

the predicted presence of modified residues at positions 2, 3, 5, 7, and 8. MALDI-TOF 

MS analysis revealed a molecular mass of 3,453 Da, which is consistent with a modified 

form of the NshA peptide. MALDI-TOF MS also showed a difference of 101 Da 

between the molecular mass of nisin A (3,352 Da) and that of the antimicrobial 

produced by DPC6484 (3,453 Da) (data not shown). This difference precisely matches 

the molecular mass differences expected from the predicted amino acid changes and 

the likely dehydration of the additional threonine residue. Converting Ile to Phe, Leu 

to Met, Gly to Thr, and Met to Tyr results in 34-, 18-, 44-, and 32-Da increases, 

respectively, and results in a total peptide mass of 3,480 Da. In addition, the alteration 

of His to Lys results in a 9-Da loss, giving a mass of 3,471 Da, 18 Da higher than the 

3,453-Da mass for nisin H. However, in nisin molecules, threonine is always 

dehydrated to dehydrobutyrine (Dhb), thus accounting for this 18 Da. It is thus 

apparent that the purified antimicrobial, referred to below as nisin H, represents a 

modified form of the NshA peptide with 5 substitutions. The proposed structure of 

nisin H, modeled on known structures of nisin variants, is shown in Figure. 4. 

Nisin A- and nisin H-producing strains are cross immune 

The nisin H producer was tested to assess its cross immunity to CFSs from producers 
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of nisins A and U. CFSs from nisin A-, H-, and U-producing cultures inhibited the 

growth of the indicator strain L. delbrueckii subsp. bulgaricus LMG6901, as expected 

(Table 3). Nisin A- and U-containing CFSs did not inhibit S. hyointestinalis DPC6484 

or L. lactis NZ9700. However, CFSs from the nisin A and H producers inhibited the 

nisin U-producing S. uberis strain 42, suggesting that S. uberis is not cross immune to 

nisin A or nisin H. Further analysis with purified nisins revealed that at the 

concentrations used (0.22 mg ml—1), the immunity mechanisms are overwhelmed, in 

that purified nisin A and nisin H generate zones of inhibition with areas of 0.32 cm2 

against the strains that produce these peptides and zones that are twice as large (0.69 

cm2) against the opposing producer. Notably, however, these peptides produce 

significantly larger zones, with areas of 3.39 and 2.38 cm2, respectively, against S. 

uberis strain 42 (Table 4). 

The activities of purified nisin A and nisin H peptides against Escherichia coli 

DPC6912, Bacillus cereus 9139, L. delbrueckii subsp. bulgaricus LMG6901, 

Lactococcus lactis subsp. cremoris HP, Enterococcus faecalis 6307, S. agalactiae ATCC 

13813, S. agalactiae DPC5338, Streptococcus bovis DPC6491, S. gallolyticus DPC6501, 

Listeria innocua DPC3572, Listeria monocytogenes 1042, S. aureus ATCC 25923, S. 

aureus DPC5245, S. hyointestinalis DPC6484, and S. uberis strain 42 were assessed 

(Table 4). In the majority of instances, nisin A was more inhibitory than nisin H. 

However, nisin H was more effective than nisin A against one of the S. aureus strains 

tested, DPC5245, and the two peptides were equally effective against L. innocua 

DPC3572. 

 

Not all S. hyointestinalis strains produce nisin H 

PFGE of S. hyointestinalis DPC6484 and seven S. hyointestinalis strains from the 
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BCCM/LMG culture collection confirm different banding patterns; thus, these strains 

are not clonal (Figure. 5A). Efforts to amplify each of the genes nshA, nshF, nshR, and 

nshT by PCR using specific primers (Table 2) resulted in the generation of amplicons 

of the appropriate sizes (Figure. 5Bi) for the nisin H producer S. hyointestinalis 

DPC6484 (positive control) and S. hyointestinalis LMG14581 but not for the other S. 

hyointestinalis strains. DNA sequencing of the S. hyointestinalis LMG14581 

amplicons confirmed the presence of nsh equivalents in this strain. Although S. 

hyointestinalis LMG14581 contains nsh gene equivalents, this strain did not produce 

a zone of inhibition against L. delbrueckii subsp. bulgaricus LMG6901 (Figure. 5Bii). 

 

2.1.5  Discussion 
 

Nisin H is of interest for several reasons. First, it is notable by virtue of being a nisin-

like bacteriocin that is produced by an intestinal strain. As such, production of the 

bacteriocin has the potential to give the strain a competitive advantage in the gut 

environment, either by directly inhibiting competitor bacteria or by facilitating 

communication with other strains or even the host. In addition, nisin H may also have 

a role in signaling to the host, since bacteriocin production has been associated with 

immunomodulatory effects often mediated through cytokine responses (35–37). 

Second, nisin H seems to represent an evolutionary link between lactococcal and 

streptococcal nisins in that, while it is quite different from nisin A by virtue of having 

five separate substitutions, it retains key features of the lactococcal peptides, including 

the three C-terminal amino acids, which are absent from the Streptococcus-associated 

nisin U. Third, the nisin H gene cluster is the only nisin gene cluster to lack an equivalent 

of the nisI immunity gene. 

The lactococcal nisin A gene cluster (Figure. 2) encodes nisin production genes in the 

order nisABTCIPRKFEG, and this gene order is conserved in the corresponding nisin 



 

65  

Z and nisin Q clusters (38). The gene order is different in streptococcal nisin gene 

clusters. In the nisin U gene cluster, nsuPRKFEG are at the start of the gene cluster, i.e., 

before the nsuABTCI genes, suggesting a rearrangement of nsuABTCI and 

nsuPRKFEG in S. uberis (24). Gene clusters containing structural genes for nisin 

analogues have also been identified in S. gallolyticus subsp. pasteurianus (17, 39), S. 

agalactiae (40), and, most recently, S. suis (18). The gene order in these gene clusters 

is identical to that for nisin U. It would seem most likely that nisin-like clusters have 

moved between streptococci by horizontal gene transfer, as proposed by Richards et 

al. (2011) (40). Interestingly, the nisin H gene cluster differs from the Lactococcus and 

Streptococcus nisin clusters identified previously. Although the order of nshABTCP is 

the same as that for lactococci, the absence of a nisI gene between nshC and nshP is 

notable. Attempts to amplify a nisI gene equivalent using primers designed to be 

specific to the nisI gene of L. lactis and the nsuI gene of S. uberis were unsuccessful. The 

absence of an obvious nisI gene in the remainder of the draft genome was confirmed 

by a comprehensive BLAST search; however, the presence of a novel immunity-like 

gene elsewhere in the genome cannot be ruled out. In addition, the nisin H gene cluster 

exhibits a number of other significant differences from previously described nisin 

clusters in gene order and orientation, most likely due to gene rearrangements brought 

about by the action of transposases. 

The lack of an equivalent to the immunity protein, NisI, can have negative implications 

for bacteriocin production by the producing cell (41, 42). The yield of nisin H from the 

culture supernatant is low relative to that of nisin A, a finding initially attributed to the 

lack of a nisI immunity gene. However, further investigations revealed that poor 

bacteriocin production is most likely due to low cell numbers following 16 h of growth 

in TSB, typically 6 × 107 cfu/ml for S. hyointestinalis DPC6484 compared to 4 × 108 
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cfu/ml for L. lactis NZ9700. S. hyointestinalis strain LMG14587, which does not contain 

the nisin H gene cluster, grew to levels similar to those of DPC6484, suggesting that 

the absence of nisI was not responsible for a growth defect in DPC6484. In addition, 

previous nisI knockout studies have shown that a specific immunity gene is not 

necessary to confer full immunity (10), and Stein et al. (2003) reported that either nisI 

or nisFEG were able to confer immunity on nisin-sensitive Bacillus subtilis host cells 

(12). In this study, it would appear that the ABC transporter genes nisFEG are sufficient 

for self-protection in S. hyointestinalis DPC6484. Of note, other lantibiotic gene 

clusters, such as those of mersacidin and lacticin 481, also lack a specific immunity 

protein but possess NisFEG equivalents (13, 43). 

The molecular mass difference of 101 Da between nisin A and nisin H can be accounted 

for by the amino acid differences. Given the highly conserved nature of nisin structures, 

we propose that nisin H has the same ring structure as nisins A, Z, F, and Q. It is more 

similar in structure to the lactococcal nisins in that it contains the three terminal amino 

acids that are missing from the streptococcal nisins U, U2, and P. 

Natural lantibiotic variants are likely to arise from point mutations in structural genes; 

by definition, they should have few amino acid differences and the same ring pattern, 

and the associated producers should exhibit cross immunity to other variants (44). 

Nisin H fits this definition in that it differs from nisin A with respect to five amino acids, 

is likely to have an identical ring pattern and is immune to nisin A. 

The lower antimicrobial activity of the CFS of DPC6484 than that of the control nisin 

A producer used in this study is not related exclusively to poor peptide production 

levels, since, at equal concentrations and purity, nisin A is more effective than nisin H 

against many of the target microorganisms investigated. Nisin has been extensively 

bioengineered in a quest to generate more active peptides and this strategy has provided 
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information on the effects of specific amino acid changes (45). It has been stated that 

an unusual feature of nisin is the absence of aromatic residues and that, to date, any 

bioengineered nisins containing aromatic residues display reduced activity (46–49). 

Indeed, Field et al. (2008) have shown that the bioactivity of a derivative of nisin A with 

Met21Tyr, a change that occurs naturally in nisin H, is reduced to 70% of that of the 

parental strain against S. aureus strains ST528 and DPC5245, and to 65% against S. 

agalactiae ATCC 13813. In addition, nisin H also contains a second aromatic residue, 

Phe1; thus, this is the first report of the presence of such aromatic amino acids in a 

natural nisin variant. Interestingly, salivaricin D also contains a phenylalanine at 

position 1. The presence of two aromatic residues may contribute to the potency of 

nisin H being lower than that of nisin A. It is also notable that the introduction of 

positively charged amino acids into nisin Z has had a beneficial impact on activity, in 

that the bioengineered Asn20Lys and Met21Lys variants were more active against the 

Gram-negative genera Shigella, Pseudomonas, and Salmonella (48). Although nisin H 

has a histidine-to-lysine change at position 32, this did not confer enhanced 

antimicrobial activity against Escherichia coli. However, since histidine is positively 

charged at low pHs, the addition of a lysine at this location does not constitute a 

significant change from a charge perspective. The Leu6Met amino acid change seen 

in nisin H is the first amino acid change at this position reported for a natural variant. 

However, the specific impact of this change on activity will require further 

investigation. 

Notably, nisin H appears as an intermediate between nisins of lactococcal and 

streptococcal origins, in that it retains the three terminal amino acids found in nisins A, 

F, Q, and Z while possessing other features, such as a Dhb at position 18, that are 

associated with nisins U, U2, and P. Alignment of the amino acid sequences of nisins 
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A, Z, F, Q, H, U, U2, and P in Figure 1 shows an increasing number of amino acid 

changes from the prototypical nisin A through to nisin P. Overall, nisin H aligns more 

closely with lactococcal than with streptococcal nisins, a fact that is reflected by amino 

acid identity.  

Very few S. hyointestinalis strains have been deposited in culture collections. Since S. 

hyointestinalis was designated a new species in 1988, it is possible that isolates were 

previously catalogued as S. salivarius. PFGE analysis revealed that the seven strains 

of S. hyointestinalis obtained from the BCCM/LMG culture collection differ in their 

PFGE patterns (Figure 5A). S. hyointestinalis LMG14581 conclusively contained the 

nshA, nshF, nshR, and nshT genes (Figure 5Bii), but this strain did not display a 

bacteriocin- producing phenotype (Figure 5Bi). A thorough analysis of the nisin H 

gene cluster in this strain would have to be carried out in order to determine the basis 

for this phenomenon. 

In conclusion, we describe nisin H, a novel natural nisin variant produced by an S. 

hyointestinalis strain of porcine origin. The production of nisin H by a gut strain lends 

further support to accumulating observations suggesting that bacteriocin production 

may represent a potential probiotic trait for intestinal strains. 
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Table 1 Bacterial strains and culture conditions. 

 

Strain  Growth 
Media 

Incubation 
Temperature/Atmosphere 

Streptococcus hyointestinalis DPC6484 GM17*/TSB** 37°C      Anaerobic 
Streptococcus hyointestinalis LMG14579 GM17/TSB 37°C      Anaerobic 
Streptococcus hyointestinalis LMG14581 GM17/TSB 37°C      Anaerobic 
Streptococcus hyointestinalis LMG14582 GM17/TSB 37°C      Anaerobic 
Streptococcus hyointestinalis LMG14583 GM17/TSB 37°C      Anaerobic 
Streptococcus hyointestinalis LMG14585 GM17/TSB 37°C      Anaerobic 
Streptococcus hyointestinalis LMG14586 GM17/TSB 37°C      Anaerobic 
Streptococcus hyointestinalis LMG14587 GM17/TSB 37°C      Anaerobic 
Lactococcus lactis NZ9700 GM17 30°C      Aerobic 
Streptococcus uberis strain 42 GM17 37°C      Anaerobic 
Lactococcus lactis DPC3251 GM17 30°C      Aerobic 
Escherichia coli DPC6912  LB~     37°C      Aerobic 
Bacillus cereus 9139                                                         BHI***                     37°C      Aerobic 
Lactococcus lactis subsp. cremoris HP                                                      GM17    30°C      Aerobic 
Enterococcus faecalis 6307                                           LB                    37°C      Aerobic 
Streptococcus agalactiae ATCC13813                    BHI       37°C      Anaerobic 
Streptococcus agalactiae DPC5338                            BHI       37°C      Anaerobic 
Streptococcus bovis DPC6491                                        BHI       37°C      Anaerobic 
Streptococcus gallolyticus DPC6501                             BHI       37°C      Anaerobic 
Listeria innocua DPC3572                                                 BHI 37°C      Aerobic 
Listeria monocytogenes 1042                                       BHI 37°C      Aerobic 
Staphylococcus aureus ATCC 25923                                BHI 37°C      Aerobic 
Staphylococcus aureus DPC5245                                    BHI 37°C      Aerobic 
Lactobacillus delbrueckii subsp. bulgaricus 
LMG6901 

MRS~~               37°C      Aerobic 

 

*M17 with 5 g/L Glucose added (Difco Laboratories, Detroit, MI), **Tryptic Soy 

Broth (Difco Laboratories, Detroit, MI), ***Brain Heart Infusion (Merck, Darmstadt, 

Germany), ~ Luria-Bertani or Lysogeny Broth (Merck, Darmstadt, Germany), ~~ 

deMan, Rogosa, Sharp (Difco Laboratories, Detroit, MI). 
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Table 2 List of primers used in this study. 
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Table 3 Cross immunity of Streptococcus hyointestinalis DPC6484 to other nisin 

producing strains. 

 

 

 
Area of zone of inhibition (cm2) calculated as (πR1

2)-(π R2
2) where R1 is the radius of 

zone and R2 is the radius of well in centimetres. 
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Table 4 Spectrum of inhibition of purified nisin A and nisin H peptides against a 

range of strains. 

 
 Target microorganisms Nisin A  Nisin H 

Escherichia coli DPC6912 0.00 ± 0.00 0.00 ± 0.00 

Bacillus cereus 9139 1.42 ± 0.14 1.03 ± 0.12 

Lactobacillus delbruckii subsp. bulgaricus LMG6901 23.83 ± 0.89 16.64 ± 0.38 

Lactococcus lactis subsp. cremoris HP 9.47 ± 0.51 6.52 ± 0.25 

Enterococcus faecalis 6307 6.24 ± 0.00 3.94 ± 0.00 

Streptococcus agalactiae ATCC13813 6.10 ± 0.25 2.66 ± 0.17 

Streptococcus agalactiae DPC5338 4.06 ± 0.21 2.56 ± 0.17 

Streptococcus bovis DPC6491 3.50 ± 0.38 1.75 ± 0.29 

Streptococcus gallolyticus DPC6501 5.82 ± 0.00 3.94 ± 0.00 

Listeria innocua DPC3572 1.50 ± 0.14 1.50 ± 0.14 

Listeria monocytogenes 1042 2.10 ± 0.00 1.58 ± 0.00 

Staphylococcus aureus ATCC25923 3.28 ± 0.00 2.76 ± 0.17 

Staphylococcus aureus DPC5245 3.39 ± 0.19 4.78 ± 0.21 

Lactococcus lactis NZ9700 0.32 ± 0.00 0.69 ± 0.00 

Streptococcus hyointestinalis DPC6484 0.69 ± 0.00 0.32 ± 0.00 

Streptococcus uberis strain 42 3.39 ± 0.19 2.38 ± 0.28 

 

Area of zone of inhibition (cm2) calculated as (πR1
2)-(π R2

2) where R1 = radius of zone 

and R2 = radius of well in centimetres. Purified nisin A and nisin H were assayed at a 

concentration of 0.22 mg/ml. 
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Figure 1 Alignment of natural nisin variants, with amino acid changes in bold face. 

Asterisks mark conserved amino acid residues. 

 

A  ITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK  3352 Da 

Z  ITSISLCTPGCKTGALMGCNMKTATCNCSIHVSK  3331 Da 

F  ITSISLCTPGCKTGALMGCNMKTATCNCSVHVSK  3315 Da 

Q  ITSISLCTPGCKTGVLMGCNLKTATCNCSVHVSK  3327 Da 

H  FTSISMCTPGCKTGALMTCNYKTATCHCSIKVSK  3453 Da 

U  ITSKSLCTPGCKTGILMTCPLKTATCGCHFG  3029 Da 

U2  VTSKSLCTPGCKTGILMTCPLKTATCGCHFG  3015 Da 

P  VTSKSLCTPGCKTGILMTCAIKTATCGCHFG  2989 Da  

SalD  FTSHSLCTPGCITGVLMGCHIQSIGCNVHIHISK  3468 Da 

   ** * ***** ** ** *  ***** *  

 

 

  



 

74  

Figure 2 Representation of the bacteriocin-encoding nshA gene cluster as revealed 

by genome sequencing (center), compared with the nisA (top) and nsuA (bottom) gene 

clusters. The nshA gene cluster contains the nisin production genes nshABTCP, a gap 

region encoding a transposase, nshRK, a region encoding a second transposase, and 

nshFEG. For each gene, the percentage of amino acid identity to the protein encoded 

by the corresponding nisin A-associated gene is presented. The amino acid sequence 

of the unmodified NshA peptide is shown below the gene cluster. Residues predicted 

to be within the leader peptide are shown in gray, and those thought to correspond to 

the structural peptide are shown in black. 
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Figure 3 Purification of nisin H from Streptococcus hyointestinalis DPC6484 grown in 

TSB broth. (A) RP-HPLC chromatogram; (B) MALDI-TOF MS of the active fraction; 

(C) zone of inhibition of an aliquot of the HPLC fraction on a Lactobacillus delbrueckii 

subsp. bulgaricus LMG6901 indicator plate. 
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Figure 4 Proposed structure of the new natural nisin variant nisin H. 

 

 
 

 

  



 

77  

Figure 5 (A) PFGE macrorestriction patterns of Streptococcus hyointestinalis strains 

restricted with SmaI. Lane 1, S. hyointestinalis DPC6484; lane 2, S. hyointestinalis 

LMG14579; lane 3, S. hyointestinalis LMG14581; lane 4, S. hyointestinalis 

LMG14582; lane 5, S. hyointestinalis LMG14583; lane 6, S. hyointestinalis 

LMG14585; lane 7, S. hyointestinalis LMG14586; lane 8, S. hyointestinalis LMG14587. 

(B) (i) PCR amplification of strains of S. hyointestinalis template DNA with nshT-, nshH-

, nshF-, and nshR-specific primers. Lanes correspond to those in panel A. (ii) 

Comparison of antimicrobial activities of S. hyointesinalis strains DPC6484 (H), 

LMG14579, LMG14581, LMG14582, LMG14583, LMG14585, LMG14586, and 

LMG14587 against the indicator strain, L. delbrueckii subsp. bulgaricus LMG6901. 

Wells are labeled with H (for nisin H) and with the last two digits of the strain 

designation for the other strains. 
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2.2.1 Abstract 

The skin microbiota is thought to play a key role in host protection from infection. Nisin 

J is a novel nisin variant produced by Staphylococcus capitis APC 2923, a strain isolated 

from the toe web space area in a screening study performed on the human skin microbiota. 

Whole-genome sequencing and MALDI TOF mass spectrometry of the purified peptide 

confirmed that S. capitis APC 2923 produces a 3,458-Da bacteriocin, designated nisin J, 

which exhibited antimicrobial activity against a range of Gram-positive pathogens, 

including methicillin-resistant Staphylococcus aureus (MRSA) and Cutibacterium 

acnes. The gene order in the nisin J gene cluster (nsjFEGBTCJP) differs from that of 

other nisin variants in that it is lacking the nisin regulatory genes, nisRK, as well as the 

nisin immunity gene nisI. Nisin J has nine amino acid changes compared to 

prototypical nisin A, with eight amino acid substitutions, six of which are not present 

in other nisin variants (Ile4Lys, Met17Gln, Gly18Thr, Asn20Phe, Met21Ala, 

Ile30Gly, Val33His, and Lys34Thr), and an extra amino acid close to the C terminus, 

rendering nisin J the only nisin variant to contain thrity five amino acids. This is the 

first report of a nisin variant produced by a Staphylococcus species and the first nisin 

producer isolated from human skin. 

 

2.2.2 Importance  

This study describes the characterization of nisin J, the first example of a natural nisin 

variant, produced by a human skin isolate of staphylococcal origin. Nisin J displays 

inhibitory activity against a wide range of bacterial targets, including MRSA. This 

work demonstrates the potential of human commensals as a source for novel 

antimicrobials that could form part of the solution to antibiotic resistance across a 

broad range of bacterial pathogens. 
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2.2.3 Introduction  

The human skin microbiome is home to ~1012 bacteria (1), and interest in the 

potential of skin bacteria to produce antimicrobials is growing, given the spread of 

antibiotic resistance (AR). Staphylococcus capitis is a member of the resident skin 

microbiota. First isolated from human skin in 1975, it has since been regarded as an 

opportunistic pathogen and has been associated with sepsis in neonates, meningitis, 

and endocarditis (2). Little is known about the inhibitory nature or antimicrobial 

activity of S. capitis, with only one report of S. capitis EPK-1 producing the 

glycylglycine endopeptidase ALE-1, an enzyme that targets the cell wall of 

Staphylococcus aureus (3). More recently, genomic analysis of an S. capitis strain 

isolated from the skin of a human toe revealed the presence of gene clusters capable of 

encoding gallidermin, epidermin, and phenol soluble modulins, highlighting its 

potential to produce antimicrobial peptides (AMPs) (4). 

In a recent study, our group detected antimicrobial activity by a number of S. capitis 

strains isolated from different areas of the human skin (5) and highlighted the potential 

for S. capitis species to produce bacteriocins (small ribosomally synthesized peptides 

produced by a range of bacteria which kill other bacteria). Interestingly, bacteriocin 

production is considered to be a probiotic trait in that bacteriocins function in helping 

the producer strain to become established in a niche, by killing off competitors and 

interacting with the immune system. Although the impact of nisin on immune systems 

has not yet been completely elucidated, this peptide stimulates a wide array of effects, 

and it influences various populations of cells involved in immunity (6–12). 

One of the oldest known and most intensively studied bacteriocins is nisin, which was 

first described in this journal by Rogers and Whittier in 1928 (13). Nisin has been used 
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in food preservation since 1953 (14) and was granted Generally Regarded As Safe 

(GRAS) status in 1988 by the Food and Drug Administration (FDA). It is also 

approved by the World Health Organization (WHO) as a food additive and has been 

assigned the E number E234. Since the discovery of nisin, interest in bacteriocins has 

grown rapidly. Nisin A, composed of 34 amino acids, is produced by several strains of 

Lactococcus lactis (15). Nisin is a lantibiotic and thus a member of the class I 

bacteriocins (16). Lantibiotics are small peptides (<5 kDa) and are produced by many 

Gram-positive bacteria to inhibit or kill other Gram-positive bacteria (17). Production 

of other lantibiotics is common among commensal coagulase-negative staphylococci. 

For example, Staphylococcus gallinarum, Staphylococcus epidermidis, and 

Staphylococcus hominis produce the lantibiotics gallidermin, epidermin, and 

hominicin, respectively (18–20). Class I bacteriocins consist of post-translationally 

modified bacteriocins which are subdivided into 4 classes, as follows: class Ia, 

lanthipeptides (of which nisin is the most prominent member); class Ib, head-to-tail 

cyclized peptides; class Ic, sactibiotics; and class Id, linearazol(in)e-containing 

peptides (8, 21). Lantibiotics are characterized by the presence of lanthionine/þ-

methyllanthionine residues and are produced through the dehydration of serine and 

threonine residues to form dehydroalanines and dehydrobutyrines respectively. These 

dehydrated residues in turn react with cysteine thiols, forming lanthionine bridges (22, 

23). The lantibiotics are subdivided based on the enzymes catalyzing the formation of 

lanthionines. Subclass I requires two distinct enzymes, LanB and LanC, whereas 

subclass II is modified by a single enzyme, LanM. Subclass III has no associated 

antimicrobial activity and is modified by a single enzyme, LanKC, while subclass IV 

is modified by LanL (24). Studies have revealed that nisin and other structurally 

related lantibiotics use the membrane-bound peptidoglycan precursor lipid II as a 
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docking molecule, which consequently promotes two bactericidal activities, pore 

formation and inhibition of peptidoglycan biosynthesis (25). Significantly, lantibiotics 

have been shown to possess activity against antibiotic-resistant targets such as 

vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus 

aureus (MRSA) and may have the potential to mitigate the looming global AR crisis 

(26). 

A number of nisin variants have been discovered since the original nisin A was 

characterized (Figure 1A). Nisin variants of lactococcal origin are more similar to 

each other than to variants from other genera such as Streptococcus (Figure 1B). 

Nisin Z is the most closely related nisin variant to nisin A, with only a single amino 

acid substitution, His27Asn. Nisin U, U2 and P each contain 31 amino acids, nisins 

O1–3 contain 33 amino acids, and nisin O4 contains 32 amino acids, making them 

shorter than other previously described nisin variants. Here, we describe nisin J, 

produced by the S. capitis strain APC 2923, isolated in a screening study of the 

human skin microbiota. At 35 amino acids, nisin J is the longest nisin variant 

identified to date and has antimicrobial activity against significant human 

pathogens, including staphylococci, streptococci, and Cutibacterium acnes. 

 

2.2.4 Materials and Methods 

The antimicrobial-producing strain S. capitis APC 2923 was isolated in a previous 

screening study of the human skin microbiota by our group (5). 

 

Bacterial strains and culture conditions  

The growth conditions of the bacterial strains used in this study are listed in Table 4. 

Anaerobic conditions, where appropriate, were attained using anaerobic jars and 
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Anaerocult A gas packs (Merck, Darmstadt, Germany). 

 

Draft genome sequence of S. capitis APC 2923 and in silico analysis of the nisin 

J gene cluster 

Bacterial DNA was extracted using the GenElute kit, as described by the 

manufacturer (Sigma-Aldrich Ireland Limited, Co. Wicklow, Ireland), and was 

prepared for sequencing following the Nextera XT DNA library prep reference 

guide (Illumina, Inc.). A Qubit 3.0 fluorometer (Thermo Fisher Scientific, MA) 

was used for DNA quantification. Sequencing was performed at the Teagasc/APC 

Microbiome Ireland Sequencing facility, Teagasc Food Research Centre, 

Moorepark, Fermoy, Co. Cork, Ireland. In total, 94 contigs, including 16 large 

contigs, were revealed by de novo assembly using SPAdes (version 3.10.0). A total 

of 2,453 open reading frames (ORFs) and 60 tRNAs were detected and 

subsequently annotated using Prokka (version 1.11). The online tools BActeriocin 

GEnome mining tooL (BAGEL4) and antiSMASH 3.0 were employed to identify 

bacteriocin operons/gene clusters in the genomes of interest, and by combining 

these software programs with the ARTEMIS genome viewer, the presence of the 

nisin J gene cluster was confirmed. 

 

Evolutionary links between natural nisin variants  

The European Bioinformatics Institute toolkit (https://www.ebi.ac.uk/services) was 

used to investigate the evolutionary relationships between the nisin structural variants. 

A multiple-sequence alignment was generated using MUSCLE (version 3.8) and 

visualized on a neighbor-joining tree without distance corrections. This tree was 

visualized using the ggtree package (version 1.10.5) in R (version 3.4.4). 

https://www.ebi.ac.uk/services


 

91  

 

Purification of the antimicrobial produced by S. capitis APC 2923  

To purify the antimicrobial produced by S. capitis APC 2923, the culture was 

grown in a shaking 37°C incubator overnight in 1,800 ml of brain heart infusion 

(BHI) which had been passed through a column containing Amberlite XAD 16N 

to remove hydrophobic peptides before autoclaving (XAD-BHI). The culture 

supernatant was applied to an Econo-Column containing 60 g Amberlite XAD-16N 

beads (Sigma Aldrich, Co. Wicklow, Ireland). The column was then washed with 

350 ml of 30% ethanol, and the antimicrobial activity was eluted with 70% propan-

2-ol (IPA) containing 0.1% trifluoroacetic acid (TFA) (Sigma Aldrich). The IPA 

was removed from the active column eluent and the pH adjusted to 4.4 with 7.5 N 

NaOH. The sample was then applied to an Econo-Column containing 90 ml SP 

Sepharose beads preequilibrated with 20 mM sodium acetate buffer (pH 4.4) 

(buffer A). The column was washed with 50 ml of buffer A and the antimicrobial 

activity eluted in 250 ml buffer A containing 1 M NaCl. The salt-containing eluent 

was applied to a 60 ml, 10-g C18 solid-phase extraction (SPE) column 

(Phenomenex, Cheshire, United Kingdom) preequilibrated with methanol and 

water. The column was washed with 60 ml of 25% ethanol, and nisin was eluted 

in 60 ml IPA (0.1% TFA), which was subjected to reversed-phase high-

performance liquid chromatography (RP-HPLC). The sample was applied to a 

semi-preparative Jupiter Proteo (250 mm [length] by 10 mm [inside diameter], 90 

Å [pore size], 4 µm [particle size]) RP-HPLC column (Phenomenex, Cheshire, 

UK) running a gradient of 25 to 40% acetonitrile and 0.1% TFA, where buffer A 

was 0.1% TFA and buffer B was 90% acetonitrile and 0.1% TFA. The resulting 

eluent was monitored at 214 nm, and fractions were collected at 1-min intervals. 
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Column eluents and HPLC fractions were assayed for antimicrobial activity by 

well diffusion assays (WDAs), according to the method of Parente and Hill (41), 

using L. delbrueckii subsp. bulgaricus LMG 6901 as the target organism. Column 

eluents and HPLC fractions displaying antimicrobial activity were assayed for the 

nisin J molecular mass by matrix-assisted laser desorption ionization–time of flight 

mass spectrometry (MALDI-TOF MS) on an Axima TOF2 MALDI-TOF MS in 

positive-ion reflectron mode (Shimadzu Biotech, Manchester, United Kingdom). 

Fractions containing pure nisin J were pooled and lyophilized in a Genevac 

lyophilizer (Suffolk, United Kingdom). Pure nisin A peptide was prepared from L. 

lactis NZ9700 as described for nisin J but excluding the SP Sepharose step. Nisin 

Z pure peptide was sourced from Handary (Fleurus, Belgium). 

 

Comparison of the inhibitory spectra of nisins A, Z, and J 

Pure nisins A, Z, and J were resuspended in RNase-free water to a final concentration 

of 1 mg/ml and subsequently assayed by WDA against a range of target indicator 

strains (Table 2). Zone diameters were measured in millimeters using Vernier 

calipers (DML-Digital Micrometers Ltd., Sheffield, United Kingdom) and recorded in 

Table 2 as area of the zone (Πr2) minus the area of the well (Πr2) in millimeters. 

 

MIC determinations  

MICs were determined in triplicate from pure nisins A, Z, and J against approximately 

1 × 105 cfu/ml of the target indicator strain Lactococcus lactis subsp. cremoris HP 

using 96-well microtiter plates (Sarstedt, Co. Wexford, Ireland) and using a Libra S2 

colorimeter (Biochrom Ltd., Cambridge, United Kingdom) to measure the optical 

density at 600 nm (OD600) of the indicator strains. Peptide concentrations of 4x the 
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test concentration (2,048 nM) were prepared in 400 µl RNase-free and DNase-free 

water. One hundred microliters of growth medium was added to all wells of the 96-

well plate. One hundred microliters of 4x concentration was added to the first well, and 

subsequently, 2-fold serial dilutions were carried out. MIC readings were taken after 

16 h at 30°C. The MIC was recorded as the lowest concentration of lantipeptide where 

no growth of the indicator was observed (42). 

 

Cross-immunity of nisin J-producing S. capitis APC 2923 to other nisin-

producing strains 

To investigate if the nisin J-producing S. capitis APC 2923 strain was immune to 

other nisin-producing cultures (L. lactis NZ9700 producing nisin A, Streptococcus 

hyointestinalis DPC 6484 producing nisin H, and S. uberis strain 42 producing 

nisin U), cross-immunity assays were performed based on the WDA method, 

whereby each strain was tested as an indicator and a producer (43). 

 

Determining if the nisin J structural gene is unique to S. capitis APC 2923  

To determine if the nisin J structural gene was present in other S. capitis strains 

isolated from the study by O’Sullivan et al. (5), oligonucleotide primers designed 

to specifically amplify the nisin J structural gene (nisJ F, 5’-ACTT 

TATAACTAAGATTAGC-3’, and nisJ R, 5’-TCGCTTTATTATTTAGTAT 

GCACG-3’) were used in a PCR under the following conditions: initial 

denaturation, 94°C for 5 min; 35 cycles of 94°C for 40 s, 52°C for 30 s, and 72°C 

for 1 min; and a final extension 72°C for 10 min. Sequencing was conducted by 

Genewiz (Essex, United Kingdom). Sequencing data were analyzed employing the 

Lasergene 8 software (DNAStar, Inc., Madison, WI) and subsequently input into 
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the ExPASy online translate tool (https://web.expasy.org/translate/) to translate the 

nucleotides into amino acid sequences. 

 

Sequence analysis of the nisin J plasmid pJOS01  

To confirm that the nisin J  gene cluster was plasmid associated, the plasmid DNA of 

S. capitis APC 2923 was extracted using the Plasmid maxi kit (Qiagen, Hilden, 

Germany), according to the manufacturer’s instructions following an adapted user-

developed protocol specific to staphylococcal species (https://www.qiagen.com 

/ie/resources/resourcedetail ?id=82ddd661-fbab-4d35819c-defd6269fc64&lang=en), 

using lysostaphin (Sigma-Aldrich Ireland Limited, Co. Wicklow, Ireland). The 

resulting DNA extract was sequenced by Illumina MiSeq technology (2 x 250-bp 

paired-end reads; GenProbio, Parma, Italy). De novo sequence assemblies and 

automated gene calling were performed using the MEGAnnotator pipeline (44) and 

assessed for predicted tRNA genes via transcend-SE version 1.2.1 (45). Predicted open 

reading frames (ORFs) were determined via Prodigal version 2.6 and Genemark.hmm 

(46). A BLASTP (47) analysis was performed to assign functional annotations to the 

predicted ORFs (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Table 1). PlasmidFinder 

(version 2.0) was employed to confirm that the generated assembled contigs were 

plasmid sequences based on the identification of Rep proteins. SnapGene version 

2.3.2 was employed to generate a map of the plasmid harboring the nisJ gene 

cluster (designated pJOS01 here). In addition to the sequence data analysis to 

confirm the plasmid association of the nisin J cluster, PCR-based analysis was 

undertaken using the plasmid DNA extract as the template. Oligonucleotide 

primers designed to specifically amplify the nisin J structural gene (nisJ F, 5’-

ACTTTATAACTAAGATTAGC-3’, and nisJ R, 5’-TCGCTTTATTATT 

https://web.expasy.org/translate/
https://www.qiagen.com/ie/resources/resourcedetail?id=82ddd661-fbab-4d35-819c-defd6269fc64&lang=en
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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TAGTATGCACG-3’) were used in a PCR using Phusion Green Hot Start II high-

fidelity PCR master mix with the following conditions: initial denaturation, 98°C 

for 5 min; 30 cycles of 98°C for 10 s, 52°C for 30 s, and 72°C for 15 s; and a final 

extension of 72°C for 10 min. Validation of the amplicon was performed by Sanger 

sequencing of the generated product (Source BioScience, Waterford, Ireland). 

Furthermore, restriction digestion of the plasmid DNA was carried out using EcoRI 

in 10x CutSmart buffer (New England BioLabs, Herts, United Kingdom). 

 

Investigation for the presence of nisin-resistant determinants in S. capitis 

APC 2923  

To determine if the gene encoding the nisin resistance protein (NSR) was present in 

S. capitis APC 2923 and the 7 other S. capitis isolates previously identified from the 

O’Sullivan et al. study (5), PCR was employed using the primers and reaction 

conditions described by Simões et al. (38). To determine if the nisin J-producing S. 

capitis strain APC 2923 was cross-immune or sensitive to NSR-producing strains, 

bioassays were carried out by spotting 10 µl of the nisin J overnight culture onto 1.5% 

BHI agar (Merck, Darmstadt, Germany). Following overnight incubation at 37°C, the 

plates were then overlaid with soft (0.75%) GM17 agar (BD Difco Trafalgar Scientific 

Ltd., Leicester, United Kingdom) seeded with 0.25% of an overnight culture of the 

NSR-positive strain L. lactis subsp. diacetylactis DRC3. To directly compare the 

resistance levels of nisin A and nisin J to NSR, WDAs were carried out as previously 

described (43), employing L. lactis MG1614/pNP40 (NSR-positive strain) and L. lactis 

MG1614 (NSR-negative strain) as target indicators. All lactococcal NSR indicator 

strains were grown aerobically overnight at 30°C. Agarose assays were subsequently 

performed as outlined in reference 42. Data obtained from the agarose assays were 



 

96  

subjected to normality tests prior to statistical analysis using the GraphPad Prism 

software (version 8.2.1).  P values were calculated using an unpaired t test. 

 

Data availability  

The plasmid map of pJOS01 has been deposited in GenBank under accession 

number MN602039. This whole-genome shotgun project has been deposited at 

DDBJ/ENA/GenBank under the accession number WHVU00000000. The version 

described in this paper is version WHVU01000000.1. 

 

2.2.5 Results 

A nisin-like gene cluster exists within the S. capitis APC 2923 genome  

S. capitis APC 2923 was previously isolated from the toe web space area in a 

screening study of the human skin microbiota that sought to identify novel 

antimicrobial-producing strains (5). This strain was of particular interest due to 

its potent activity against the indicator strain Lactobacillus delbrueckii subsp. 

bulgaricus LMG 6901 and its broad inhibitory spectrum against a panel of 

Staphylococcus, Streptococcus, and Corynebacterium species and against 

Cutibacterium acnes. Whole-genome sequencing of this strain revealed a nisin 

gene cluster of ~9.78 kb compared to ~13.3 kb for nisin A. The structural gene 

nisJ encodes a peptide with the following eight amino acid variations compared 

to nisin A: Ile4Lys, Met17Gln, Gly18Thr, Asn20Phe, Met21Ala, Ile30Gly, 

Val33His, and Lys34Thr. Nisin J also contains an extra amino acid at the C 

terminus, making nisin J the longest nisin variant identified to date (Figure 1A). A 

dendrogram of the natural nisin variants (Figure 1B) demonstrates that peptides 

which have a closer common ancestor are more similar than are peptides that have 

https://www.ncbi.nlm.nih.gov/nuccore/MN602039
https://www.ncbi.nlm.nih.gov/nuccore/WHVU00000000
https://www.ncbi.nlm.nih.gov/nuccore/WHVU00000000.1
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more distant branching points. Lactococcal nisin variants are structurally distinct 

from all other nisin variants. Staphylococcal nisin J groups in the middle of the 

tree and appears to be more similar to streptococcal nisin than to lactococcal 

nisins. Nisins of Blautia origin appear to be more phylogenetically distinct due to 

longer branching. Streptococcal nisins H and J are more closely related to 

lactococcal nisins than to other streptococcal nisins, U, U2 and P. The gene order 

of the nisin J cluster (FEGBTCJP) also differs from that of the nisin A in that it 

contains eight as opposed to the 11 genes within the cluster (Figure 2). The BAGEL4 

bacteriocin genome mining tool predicted that the nisin J prepeptide is composed of 

61 amino acids with a leader sequence consisting of 26 amino acids. Overall, the nisin 

J mature peptide has 62.5% identity to the nisin H structural peptide produced by 

Streptococcus hyointestinalis (27). The identity and function of features of the nisin 

J operon are listed in Table 1. 

 

Other genes contained in the S. capitis APC 2923 draft genome  

In addition to the nisin J cluster, BAGEL4 and antiSMASH3.0 also highlighted a 

small gene cluster containing the lanB and lanC genes and a gene encoding a peptide 

with 93% identity to the gallidermin family in S. capitis APC 2923. These were 

located on a different contig from that of the nisin J gene cluster, and this mass was 

not detected from either the colony or purified cell free supernatants. 

 

Purification and predicted structure of nisin J  

Nisin J was purified in four steps using Amberlite XAD-16N solid-phase 

extraction (SPE), SP Sepharose cation exchange, C18 SPE, and reversed-phase 

high-performance liquid chromatography (HPLC). Antimicrobial activity 
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correlated with the most dominant peak eluting at 24.5 min in the HPLC 

chromatogram, and matrix-assisted laser desorption ionization–time of flight 

mass spectrometry (MALDI-TOF MS) revealed that the corresponding fractions 

had a mass of 3,458 Da (Figure 3). This correlates with the predicted mass of the 

putative nisin J bacteriocin (following subsequent dehydration and ring formation 

reactions) as calculated from the draft genome sequence. Fractions deemed pure 

by MALDI-TOF MS were combined and lyophilized to give a yield of 3.00 mg 

liter-1. Given that nisin J is a natural nisin variant with demonstrable conservation 

between key structural amino acids common to all natural nisin variants, it is 

predicted that the structure will be in line with those of other lactococcal nisins, 

as shown in Figure 4. 

 

Comparing the activities of purified nisins A, Z, and J  

The spectrum of activity of pure nisin A, nisin Z, and nisin J, by means of a well 

diffusion assay (WDA), was performed on several target indicator strains. Nisin J was 

more active than nisin A against 12 of the 13 strains tested, while nisin J was more 

active than nisin Z for 7 of the target strains tested, including Corynebacterium 

xerosis, MRSA, Streptococcus uberis, and S. aureus (Table 2). However, in an MIC 

assay using L. lactis HP as the indicator, no difference was observed between nisins 

A, Z, and J, with all exhibiting MICs of 32 nM.  

 

The nisin J-producing strain is cross-immune to nisin A and H but not to nisin U 

producers  

Cross-immunity assays were performed to investigate whether the nisin J-, A-, H- 

and U-producing strains were cross-immune to one another (Table 3). No zones were 
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observed between nisins A, H and J, indicating that these producing strains are all 

cross-immune. However, a zone was observed from the nisin J-producing strain against 

the nisin U producer (S. uberis strain 42), demonstrating that the strain is sensitive to 

nisin J. 

 

Not all S. capitis strains contain a nisin-like gene cluster  

The nisJ structural gene was amplified from nine antimicrobial-producing S. capitis 

strains isolated from human skin in a previous study by our group (5). Two of the 

nine S. capitis strains (APC 2918 and APC 2934) did not contain the nisJ structural 

gene. The other seven S. capitis strains tested positive for the nisJ structural gene, 

correlating with findings from our earlier study which found these strains to be 

cross-immune and to possess the same pulsotype, indicating that they were the 

same strain or very closely related strains and were therefore most likely producing 

the same bacteriocin (5). These 7 strains were isolated from 4 different subjects, 

indicating that the same pulsotype is shared across a number of individuals, 

implying that the ability to produce nisin J may be a dominant feature and thus an 

ecological advantage for this S. capitis strain. 

 

The nisin J gene cluster resides on a plasmid  

Analysis of the S. capitis APC 2923 contig harboring the nisin J gene cluster 

identified the presence of a plasmid replication protein A (RepA) and other plasmid 

replication-associated proteins, suggesting that it was of plasmid origin. Plasmid 

DNA was readily obtained from S. capitis APC 2923 using a commercially 

available plasmid maxi kit (data not shown). Short-read sequencing was performed 

on the plasmid DNA using the Illumina MiSeq platform to approximately 200-fold 
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coverage. De novo assembly resulted in four contigs (Figure 5), with a combined 

size of 49,951 bp. A plasmid map of pJOS01 (GenBank accession number 

MN602039) shows all of the genes encoding immunity and the biosynthetic 

machinery for nisin J (nsjFEG, nsjB, nsjT, nsjC, nisJ, and nsjP) reside on one of the 

contigs, supporting the plasmid association of the nisin J gene cluster (Figure 5). 

Furthermore, three genes encoding plasmid replication functions (RepA and RepB) 

as well as genes encoding other nonessential plasmid-associated roles were present 

on the other contigs (Figure 5 and Table 1). Restriction digestion with EcoRI 

yielded a profile comparable to the virtual digestion of the generated plasmid 

sequence, supporting the predicted size of ~50 kb (data not shown). Subsequent 

analysis revealed a GC content of ~28%, which is considerably lower than that of 

S. capitis chromosomal DNA (32 to 33%), a characteristic that has been observed 

for plasmids of many Gram-positive species (28). 

 

Nisin J exhibits resistance to NSR  

Deferred antagonism assays using L. lactis subsp. diacetylactis DRC3 (nisin resistance 

protein positive [NSR+]) as a target indicator strain revealed that nisin J is partially 

resistant to NSR (result not shown). To establish if nisin J had increased inhibitory 

activity against NSR compared to that of nisin A, further WDAs were conducted using 

the NSR
+ and NSR

- strains L. lactis MG1614/pNP40 and L. lactis MG1614, 

respectively. While the inhibition zone of the nisin J producer is slightly decreased 

against the NSR-positive strain compared to the NSR- negative strain, it appears that 

nisin J is more active than nisin A and may be less susceptible to the proteolytic effects 

of NSR (Figure 6A), which was also demonstrated in agarose assays (Figure 6B). The 

analysis revealed a significant difference in the zones of inhibition between nisin A 

https://www.ncbi.nlm.nih.gov/nuccore/MN602039
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and nisin J against an NSR+ strain (MG1614/pNP40), with a P value of 0.0001 

compared to zone sizes against an NSR
- strain (MG1614), where no statistical 

difference (P = 0.1701) was observed (these data support Figure 6). 

 

2.2.6 Discussion 

As the burden of antibiotic resistance increases globally, there is an urgent need for 

novel therapeutic options. In addition to the well-established use of nisin as a food 

preservative, many studies have focused on using nisin against drug–resistant 

pathogens in clinical or veterinary settings due to its high potency and multiple 

mechanisms of action (10 –12). Nisin J is a novel nisin variant and the first such 

variant reported from a Staphylococcus species. A combination of whole-genome 

sequencing of S. capitis APC 2923 and peptide purification resulted in the 

identification of this broad-spectrum lantibiotic. The nisin J-producing S. capitis 

strain was isolated from the toe web space, an area associated with high microbial 

load. This suggests that the production of a broad-spectrum bacteriocin confers an 

advantage on this strain over competing commensal skin flora, as was also 

observed by O’Sullivan and colleagues (5) when four of the twenty subjects 

screened in the study exhibited the same pulsotype. The residence of the nisin J 

gene cluster on a plasmid is significant in that it may facilitate its dissemination to 

other skin microbes.  

As mentioned previously, nisin J has eight amino acid changes and one extra amino 

acid near the C-terminal end compared to nisin A. Interestingly, six of the eight 

changes are unique compared to natural nisin variants. Natural nisin variants are 

tolerant to some amino acid changes at the N terminus, with Ile4 being the most 

commonly substituted amino acid. Nisin J contains an Ile4Lys substitution which 
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is also seen in nisins P, U, U2, and O1–3 but remains unchanged in lactococcal nisins 

(A, Z, F, and Q) and nisin H. Nisin J differs most from other natural nisin variants 

in the center and at the C terminus of the peptide, which could be key to nisin J’s 

enhanced activity. At the center of nisin J, amino acid positions 17 to 21, there are 

4 amino acids that differ compared to nisin A. It contains a Met17Gln substitution 

which is unique, as all other natural nisin variants that demonstrate antimicrobial 

activity have Met at this position. The Gly18Thr change is also interesting, as it is 

observed in nisins H, U, U2, P, and O1–3 and is proposed to be modified to 

dehydrobutyrine (Dhb), in light of the dehydration observed in a M17Q-G18T 

derivative of nisin Z (29). At position 20, nisin J has a highly hydrophobic residue, 

phenylalanine, compared to the polar asparagine in nisin A. Li et al. (30) found that 

extending the C terminus of nisin improves both its ability to permeate membranes 

and its inhibitory potential against Gram-negative bacteria. Therefore, nisin J’s 

longer C terminus (compared to other nisin variants) could be more attracted to 

negatively charged cell membranes resulting in enhanced membrane insertion, 

which may be responsible for its broader host range. The skin origin of this nisin J 

producer suggests that its exposure to many competitors from the external 

environment may be responsible for the greater variation in the structure of nisin 

J. 

Analysis of the nisin J gene cluster identified several key features associated with 

bacteriocin operons. These include a structural gene (nisJ), 2 genes associated with 

enzymatic modification (nsjB and nsjC), a gene involved in transport (nsjT), and 

immunity genes (nsjFEG) (Table 1 lists the identity and functions of features of 

the nisin J gene cluster). The arrangement of genes in the nisin J gene cluster differs 

from that of other nisin operons. Interestingly, the only conservation of gene order 
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throughout all operons of natural nisin variants is lanBTC. Similarities in the 

structural peptides of different nisin variants from different origins indicate the 

possibility that an evolutionary link exists between lactococcal, streptococcal, 

Blautia, and now, staphylococcal species, a link previously mentioned by 

O’Connor et al. (27) with reference to streptococcal and lactococcal species. A 

dendrogram based on the primary structures of all known natural variants 

highlights the genetic relatedness between the nisin-producing species and further 

suggests the likelihood of this evolutionary link. The FEG locus is present in 

lantibiotic systems other than nisin, including subtilin (31) and epidermin (32), and 

has been linked to transport, immunity, and defense (33). Inactivation of these genes 

in the nisin A gene cluster decreased nisin production and immunity, confirming their 

role in immunity (34). Although the nsjFEG genes are present in the nisin J gene 

cluster, the absence of a specific immunity gene, nsjI, as well as the absence of an 

expression regulatory system, nsjRK, could explain why nisin J immunity mechanisms 

appear to be less able to protect the cell. It also further supports the finding that the 

producing strain was more sensitive to its own purified nisin J peptide than was a nisin 

A producer with a specific nisin immunity determinant. 

The production of lantibiotics such as gallidermin and epidermin is associated with 

increased release of lipids and ATP and protein excretion, which are indicators of 

cell membrane damage (35). Thus, the production of these lantibiotics has been 

deemed a “burden” to staphylococci that produce them; therefore, the incomplete 

lantibiotic gene cluster, having only the lanB and lanC genes present, may be either 

an evolutionary feature of S. capitis genomes or may be an incomplete cluster of 

lantibiotic biosynthetic genes previously shown to occur in many microbes (35). 

As previously discussed, the nisin J gene cluster resides on a plasmid, inviting the 
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speculation that S. capitis acquired its antimicrobial ability through horizontal gene 

transfer. Indeed, residence on mobile genetic elements is a feature of natural nisin 

variants, as observed with nisins A and H, and may explain their presence in many 

different species. 

Purification of nisin J resulted in a peptide with a mass of 3,458 Da. The mass of 

nisin J was predicted to be 3,622 Da, where the difference between predicted and 

observed masses can be accounted for by 9 dehydration reactions (-18 Da per loss 

of water residue) involved in the formation of lanthionine and β-methyl-lanthionine 

bridges (36). The predicted peptide structure was based on the nisin A template, 

with a lanthionine bridge likely to occur between Ser3 and Cys7 and four β-methyl-

lanthionine bridges between Thr8 and Cys11, Thr13 and Cys19, Thr23 and Cys26, 

and Thr25 and Cys28. 

True to all nisin variants, nisin J is a broad-spectrum lantibiotic with inhibitory 

activity similar to that of nisins A and Z, as can be seen in Table 2, inhibiting a 

wide range of bacterial genera with greater inhibition of staphylococcal targets 

than with nisins A and Z. This suggests that the nisin J-producing S. capitis strain 

may have naturally evolved to produce a nisin peptide with enhanced activity 

against other staphylococci in the skin microbiota (Table 2). Nisin J-, A- and H-

producing strains are immune to nisin peptides J, A, H, and U; however, the nisin 

U-producing strain is not immune to nisin J (Table 3). This may be due to the lack 

of the nsjI immunity gene in the nisin J cluster. 

The nisin resistance protein (NSR) is a protease which cleaves nisin A at Ser29, 

significantly reducing the activity of the peptide. Employing a bioengineering strategy, 

Field et al. (37) demonstrated that the substitution of residues 29 and 30 with proline 

and valine respectively (derivative designated S29PV), rendered the peptide resistant 
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to proteolytic digestion by NSR. In this study, we found that the nisin J producer 

displays a higher resistance to NSR proteolytic enzymes than does nisin A, which is 

possibly due to a glycine residue at position 30 instead of the isoleucine as found in 

nisin A. Interestingly, a study carried out by Simões et al. (38) involving a multidrug- 

resistant S. capitis clone, NRCS-A, a major pathogen involved in sepsis in preterm 

neonates, demonstrated the presence of an NSR-encoding gene. PCR analysis failed to 

detect the presence of any nsr gene in any nisin J-producing S. capitis strain from our 

previous study (5). 

Nisin J may have evolved to be more potent against specific competing organisms 

in a particular niche environment such as the skin. Employing a bioengineering 

strategy, Rink et al. (39) demonstrated that the replacement of residues I, S, and L 

at positions 4, 5, and 6 in nisin A with the residues K, S, and I, respectively resulted 

in enhanced bioactivity. Notably, the residues K-S-L are naturally present in nisin 

J at the same positions. In a separate bioengineering study, Kuipers et al. (29) 

generated a novel nisin variant (M17Q/G18T) exhibiting enhanced bioactivity. It is 

interesting that both of these mutations are naturally present in nisin J. Furthermore, 

Field et al. (40) reported that a nisin A derivative, M21A, demonstrated enhanced 

bioactivity. Remarkably, alanine is naturally present at position 21 in nisin J. 

In conclusion, we have identified a new natural nisin variant, nisin J, produced by S. 

capitis APC 2923, which was isolated from the human skin microbiota. Nisin J 

represents the first nisin variant isolated from Staphylococcus species and the first to 

demonstrate partial recalcitrance to NSR. Indeed, the enhanced activity of nisin J 

compared to that of nisin A and Z as observed against all staphylococcal strains utilized 

in this study is notable. The production of bacteriocins such as nisin J from skin bacteria 

highlights the potential of bacterial strains of skin origin to be used as live 
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biotherapeutics. 
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Table 1 Identity and function of features of the draft pJOS01 plasmid sequencea. 

 

 Position of:      

Feature  
name 

Start 
codon 

Stop 
Codon 

Size  
(aa) 

E value Putative function (conserved 
domain) 

% identity to best match 

J1 3 518 172 3E—124 DDE_Tnp_IS240 superfamily; Rve 
transposase 

100 to IS6 family transposase of S. 
epidermidis 

J2 562 1221 220 6E—149 ABC2_membrane superfamily; 
NosY ABC-type transport system 
involved in multicopper enzyme 
maturation, permease component 

100 to ABC transporter permease 
subunit of S. capitis 

J3 1749 1874 125 3E—17 DUF2648 superfamily; unknown 
function 

100 to multiple species; DUF2648 
domain- containing protein 

J4 1886 3385 500 0 NADB_Rossmann superfamily; MqO 
malate: quinone oxidoreductase 

100 to multiple species; malate 
dehydrogenase (quinone) 
(Staphylococcus) 

J5 3446 5050 535 0 L-Lactate permease superfamily 
(energy production and 
conversion) 

100 to L. lactate permease 
(Staphylococcus) 

J6 5085 5789 235 6E—171 Alpha-acetolactate decarboxylase 
superfamily (secondary metabolite 
biosynthesis, transport, and 
catabolism) 

100 to alpha-acetolactate 
decarboxylase 

J7 5823 7487 555 0 Acetolactate synthase superfamily 
(P RK08617) (amino acid transport 
and metabolism, coenzyme 
transport, and metabolism) 

100 to acetolactate synthase 

J8 8213 8413 67 8E—39 CspA family (transcription) DNA 
binding domain 

100 to cold shock protein 
(Staphylococcus) 

CdR 8807 9424 206 1E—139 Cadmium resistance transporter 
superfamily; CadD protein, 
predicted permease (inorganic ion 
transport and metabolism) 

100 to cadmium resistance 
transporter (Mycobacteroides 
abscessus subsp. massiliense) 

J10 9442 9789 116 4E—74 Arsenical resistance operon 
repressor family; DNA-binding 
transcriptional regulator 
(transcription) 

100 to HTH transcriptional 
regulator (Staphylococcus) 

J11 10002 10610 203 2E—144 Serine recombinase family 100 to recombinase family protein 
(Staphylococcus) 

J12 10716 11276 187 1E—124 None detected 100 to hypothetical protein 
(Staphylococcus) 

J13 11884 12369 162 2E—112 None detected 100 to hypothetical protein 
(Staphylococcus) 

J14 12632 13309 226 5E—166 NlpC/P60 family; the function of this 
domain is unknown; it is found in 
several lipoproteins 

100 to hypothetical protein 
(Staphylococcus) 

PSM 13578 13712 45 1E—22 Staphylococcus hemolytic protein 100 to beta class phenol-soluble 
modulin 

J16 13944 14054 37 4E—17 DUF2648 superfamily; protein of 
unknown function 

100 to multiple species; DUF2648 
domain- containing protein 
(Staphylococcus) 
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 Position of:      

Feature  
name 

Start 
codon 

Stop 
Codon 

Size  
(aa) 

E value Putative function (conserved 
domain) 

% identity to best match 

J17 14064 15560 499 0 NADB_Rossmann superfamily; MqO 
malate: quinone oxidoreductase 

100 to malate dehydrogenase: 
quinone (S. capitis) 

J18 15780 16118 113 6E—75 DNA binding transcription 
regulator 

100 to transcriptional regulator 
HXIR family (Staphylococcus 
caprae) 

RepA 17825 18760 312 0 Replication initiator protein A 
(RepA) N terminus family; DNA 
replication initiator in plasmids 

100 to replication initiator 
protein A (Staphylococcus) 

J20 19190 19957 256 1E—178 Polar chromosomal segregation 
protein 

100 to DUF536 binding domain 
(Staphylococcus) 

J21 20132 20734 201 2E—140 NADB Rossmann superfamily; 
PRK07578 short-chain 
dehydrogenase 

100 to short-chain dehydrogenase 
(bacteria) 

J22 21220 21894 225 7E—165 DDE_Tnp_IS240 superfamily; Rve 
transposase 

100 to IS6-like element IS257 
family transposase 

nsjF 22148 22855 236 6.0E—119 ABC-type multidrug transport 
system, ATPase component 
(defense mechanisms) 

75 to Lan protection ABC 
transporter ATP binding subunit 
in Staphylococcus succinus 

nsjE 22857 23603 249 4E—85 Lantibiotic protection ABC 
transporter permease subunit, 
MutE/EpiE family; ABC-2 membrane 
superfamily 

61.29 to hypothetical protein 
BU069_09230 in S. succinus 

nsjG 23600 24337 246 1E—73 Lantibiotic protection ABC 
transporter permease subunit, 
MutG family; ABC-2 membrane 
superfamily 

52.92 to hypothetical protein in S. 
succinus 

nsjB 24362 27277 972 8E—90 Lantibiotic dehydratase C-
terminal, thiopeptide-type 
bacteriocin biosynthesis domain 

30.11 to lantibiotic dehydratase 
Lactobacillus bombicola 

nsjT 27450 29000 517 2E—120 MdIB: ABC-type multidrug transport 
system, ATPase and permease 
component (defense mechanisms) 

40.95 to ABC transporter ATP-
binding protein L. bombicola 

nsjC 28993 30222 410 2E—40 LanC is the cyclase enzyme of 
lanthionine synthetase; LanC-like 
superfamily 

29.31 to lanthionine synthetase 
family protein (Bacillus 
nakamurai) 

nisJ 30263 30445 61 1E—09 Structural gene; lantibiotic 
precursor in gallidermin/nisin 
family 

62.5 to nisin H structural protein 
(Streptococcus hyointestinalis) 

nsjP 30565 31905 447 2E—58 Peptidase S8 family domain in 
lantibiotic-specific proteases 

32.58 to peptidase S8 (Bacillus 
endophyticus) 

J31 31962 32357 132 7E—88 None detected 99.24 to hypothetical protein (S. 
epidermidis) 

J32 32449 33057 203 4E—144 Serine recombinase revolvase 
invertase superfamily; PinE 

100 to multiple species; 
recombinase family protein 
(Staphylococcus) 

J33 33277 33477 67 1E—39 Predicted transcriptional regulator; 
COG3905 superfamily 

100 to plasmid replication-
associated protein (S. 
epidermidis) 

ParA 33483 34277 265 0 ParA family chromosomal 
segregation and plasmid partition: 
cellulose biosynthesis protein BcsQ 

99.62 to ParA family protein (S. 
epidermidis)   

J35 34343 34882 180   No significant similarity found 
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 Position of:      

Feature  
name 

Start 
codon 

Stop 
Codon 

Size  
(aa) 

E value Putative function (conserved 
domain) 

% identity to best match 

RepA 35097 36089 331 0 DNA replication initiator of 
plasmids; HTH superfamily 

99.7 to replication initiator protein 
A (S. capitis) 

J37 36119 36820 234 1E—173 Putative transposase (InsQ) DNA-
binding domain; OrfB_Zn_ribbon 
superfamily 

100 to transposase (S. capitis) 

J38 36827 37102 92 8E—60 None detected 100 to hypothetical protein 
EQ811_12225 (S. capitis) 

J39 37705 37857 51 1E—27 None detected 100 to transposase (S. aureus) 
RepB 380 

 
75 

38932 286 0 COG5527 superfamily 99.65 to RepB family plasmid 
initiator protein (Staphylococcus) 

J41 39215 39664 150 2E—99 None detected 100 to hypothetical protein 
(Staphylococcus) 

J42 39867 40565 233 3E—169 None detected 98.28 to hypothetical protein 
(Staphylococcus) 

J43 40667 41023 119 5E—80 None detected 100 to hypothetical protein 
(Staphylococcus 

J44 41124 41618 165 1E—107 Asp_carb_tr superfamily; pyrimidine 
biosynthesis 

99.38 to aspartate 
carbamoyltransferase (S. 
epidermidis) 

J45 41674 41847 58 2E—22 None detected 93.48 to molybdopterin 
biosynthesis protein MoaB 

HTH 41985 42665 227 3E—161 HTH superfamily 99.12 to “winged” HTH 
transcription regulator (S. 
epidermidis) 

J47 42777 44150 458 0 Multidrug resistance MFS family 
permease; transport and 
metabolism 

99.78 to MFS transporter (S. 
epidermidis) 

J48 44846 45340 165 3E—109 None detected 98.78 to hypothetical protein (S. 
epidermidis) 

J49 45337 46101 255 6E—176 None detected 100 to hypothetical protein (S. 
epidermidis) 

HTH 46186 46455 90 2E—58 HTH XRE superfamily 100 to HTH transcription regulator 
(Auricoccus indicus) 

J51 47042 47155 38 1E—15 None detected 100 to hypothetical protein 
UF66_0802 (Staphylococcus cohnii 
subsp. cohnii) 

J52 48210 48476 89 8E—57 None detected 98.86 to multispecies hypothetical 
protein (Staphylococcus) 

J53 48623 49843 407 0 None detected 100 to hypothetical protein (S. 
capitis) 

 

aa, amino acid. HTH, helix-turn-helix; XRE, xenobiotic response element; MFS, 

major facilitator superfamily. 
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Table 2 Inhibition spectra of purified peptides of nisins A, Z, and J against 

indicator strains using well diffusion assays and expressed as the area of the zone 

of inhibition 

 

*Calculated as the area of zone of inhibition (Πr2) — area of well (Πr2) in  

millimeters. Assays were carried out in duplicate; mean zone areas shown. 
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Table 3 Cross-immunity of nisin A-, U-, H and J-producing strains using well 

diffusion assays and expressed as the area of the zone of inhibition. 

 
 

 
Target organism 

 

 
Strain 

 

Nisin 

produced 

Area of zone of inhibitiona 

(mm2) against nisin: 

A U H J 

Lactococcus lactis NZ9700 A 0 0 0 0 

Streptococcus uberis 42 U 0 0 0 85 

Streptococcus hyointestinalis DPC 6484 H 0 0 0 0 

Staphylococcus capitis APC 2923 J 0 0 0 0 

 

aCalculated as the area of zone of inhibition (Πr2) area of well (Πr2) in millimeters. 

Values are the means from triplicate assays. 0, no zone observed. 
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Table 4 Growth conditions of the bacterial strains used in this study. 

 

 

aATCC, American Type Culture Collection; APC, APC Microbiome Ireland 

Culture Collection; DPC, Teagasc Culture Collection; WSLC, Weihenstephan 

Listeria Collection; LMG, Laboratorium voor Microbiologie. 

bAnaerobic conditions, where appropriate, were achieved through the use of anaerobic 

jars and Anaerocult A gas packs (Merck, Darmstadt, Germany). 

cMRS, de Man-Rogosa-Sharpe; mRCM, modified reinforced Clostridium medium 

(made following the ATCC medium: 2107 modified reinforced clostridial agar/broth 

[prereduced] protocol); RCA, reinforced Clostridium agar; BHI, brain heart 

infusion; GM17, 0.5% glucose added to M17 agar. 

dMRSA, methicillin-resistant S. aureus.  
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Figure 1 (A) Visualization of the multiple-sequence alignment from MUSCLE 

(plotted using http://msa.biojs.net/app/) of all natural nisin (nis) variants aligned with 

strain origin. The total height of the sequence logo at each position reflects the degree 

of conservation at that position in the alignment, while the height of each letter in that 

position is proportional to the observed frequency of the corresponding amino acid at 

that position. Nisin A (13), nisin Z (48), nisin F (49), nisin Q (50), nisin H (27), nisin 

J (5), nisins U and U2 (51), nisin P (52, 53), and nisins O1 to O4 (54) are shown. L., 

Lactococcus; S., Staphylococcus; B., Blautia; St., Streptococcus. (B) Dendrogram 

showing phylogenetic relatedness in primary structures of all known natural nisin 

variants, suggesting the possible existence of an evolutionary link between the nisin-

producing species. The order in which they branch shows the relatedness between them 

and the branch length represents phylogenetic distance (0.05 represents a scale for the 

phylogenetic distance). 

 

 
 

  

http://msa.biojs.net/app/
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Figure 2 Comparison of bacteriocin gene clusters of different nisin variants. 
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Figure 3 Purification of nisin J from S. capitis APC 2923 grown in XAD-BHI. (A) 

Original overlay plate where antimicrobial activity of the S. capitis APC 2923 strain 

was detected. (B) The RP-HPLC profile shows a peak at HPLC-active fraction of 

24.5 minutes, which correlates with where pure nisin J elutes. (C) MALDI-TOF MS 

of active fraction. mAu, milli-arbitrary units. 
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Figure 4 Proposed structure of the novel nisin variant nisin J. Residues are 

represented by the single-letter code. Post-translational modifications are 

indicated as follows: Dha, dehydroalanine; Dhb, dehydrobutyrine; Abu, 2-

aminobutyric acid; Abu-S-Ala, 3-methyllanthionine. 
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Figure 5 Plasmid map of pJOS01 draft sequence created on SnapGene version 

2.3.2 (GenBank accession number MN602039). 

 

 
 

 

  

https://www.ncbi.nlm.nih.gov/nuccore/MN602039.1/
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Figure 6 Activity of cell-free supernatant of nisin J- and A-producing strains as 

observed in WDA against MG1614 (NSR
-
) (A) and MG1614/pNP40 (NSR+) (B). The 

assay results are representative of triplicate experiments. The results reveal no 

significant differences in zones of inhibition against NSR
- (P value of 0.1701) (bar 

graph in panel A) but show a significant difference (***) against NSR+ (P value of 

0.0001) (bar graph in panel B). 
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3.1.1 Abstract 

Nisin A and its natural variants, like other lantibiotics, are Class I bacteriocins encoded 

by gene clusters which typically include a structural peptide, modification enzymes, a 

protease, regulatory, immunity and transporter proteins. Many of the more recently 

discovered nisin variants, such as nisin H, nisin J and nisin P, are produced by non-

GRAS strains. Growing concerns regarding the increases in antimicrobial resistance 

(AMR) has meant that the antimicrobial potential of lantibiotics is now being 

investigated irrespective of the nature of the producing organism. Bioengineering and 

synthetic biology approaches may offer a solution by permitting the recombinant 

expression of peptides naturally expressed by non-GRAS organisms in well 

characterized hosts derived from safe strain lineages.  

This study involved cloning the nisin promoter and nisin A leader sequence fused to 

either nisin H, nisin J or nisin P structural gene sequences originally produced by 

Streptococcus hyointestinalis DPC 6484, Staphylococcus capitis APC 2923, and 

Streptococcus agalactiae DPC 7040 respectively. This resulted in their expression in 

Lactococcus lactis NZ9800, a genetically modified strain that does not produce nisin 

A. Antimicrobial activity of nisin H, nisin J and nisin P was observed following 

induction of the nisin-controlled gene expression system demonstrating that these 3 

nisin variants could be acted on by Nisin A machinery provided by the host strain. This 

study describes the first successful heterologous production of natural nisin variants 

by a GRAS strain, and demonstrates how such systems could be harnessed not only 

for lantibiotic production, but also in the expansion of their structural diversity and 

development for use as future biotherapeutics. 

 

3.1.2 Introduction 
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Resistance to antibiotics has increased the risks associated with many infectious 

bacterial strains, resulting in higher mortality and increased costs on health care 

services (1). A combination of overuse and/or misuse of antibiotics has played a 

detrimental role in the spread of antimicrobial resistance (2). Proliferation in the 

number of multidrug resistant (MDR) bacteria combined with an alarming paucity of 

new antibiotics means the discovery and development of novel antimicrobial therapies 

is vital (3, 4). Antimicrobial peptides (AMPs) are produced by a wide array of 

organisms, forming part of the innate response in plants, animals, bacteria and fungi 

(5). Due to an enhanced understanding of their properties and functions, many AMPs, 

and especially bacteriocins, are now under consideration as suitable alternatives to 

antibiotics with potential applications in both animal and human health (6, 7). 

Bacteriocins are small ribosomally-synthesised heat stable peptides produced by 

bacteria and can have either a broad or narrow antimicrobial inhibition spectrum. As 

such, they are increasingly attractive alternatives to antibiotics for some applications 

(8-11). Lantibiotics (lanthionine containing antibiotics) make up the largest class (class 

I) of  bacteriocins and are generally associated with low levels of resistance (9,12). 

The presence of lanthionine (Lan) and/or B-methyllanthionine (MeLan) residues are 

characteristic features of lantibiotics and are the result of the dehydration of serine and 

threonine to form 2,3 dehydroalanine (Dha) and 2,3 dehydrobutyrine (Dhb), 

respectively. These dehydrated residues subsequently react with the thiols of cysteine 

molecules forming Lan/MeLan bridges (13-16). 

Discovered by Rogers in 1928 (17), nisin A, a 34 amino acid peptide produced by 

Lactococcus lactis (L. lactis), is the oldest and most extensively characterised 

lantibiotic. It is synthesised by a typical nisin gene cluster that encodes the 

modification enzymes NisB and NisC responsible for catalysing dehydration and 
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cyclisation reactions respectively, a transporter (NisT), a regulatory system (NisRK), 

a protease involved in cleaving the pre-peptide (NisP)  and immunity proteins NisI and 

NisFEG (18, 19). Structurally, nisin A consists of one Lan and four MeLan rings and 

three dehydrated residues, two Dha and one Dhb (20). Nisin A binds to Lipid II, a 

bactoprenol-bound peptidoglycan precursor, essential for peptidoglycan synthesis. 

The N-terminal of nisin A sequesters the pyrophosphate moiety of Lipid II resulting 

in the formation of a pyrophosphate cage complex. This complex induces a 

conformational change at the C-terminal of nisin enabling it to translocate into the cell 

membrane thus interfering with membrane integrity causing pore formation and cell 

death (21). While nisin has been widely used as a safe food preservative for decades 

(22), the increased incidence of  multidrug-resistant bacterial infections has resulted in 

a revival in interest surrounding its potential use in life-threatening infections. Many 

studies have highlighted the in vitro potency of nisin against human pathogens (the 

reader is directed to comprehensive reviews (23, 24)). 

While nisin A is Food and Drug Administration (FDA) approved as a food ingredient 

due to its production by Generally Recognised as Safe (GRAS) strains of L. lactis, 

several recently characterised nisin variants have been identified in rare and/or 

emerging pathogenic bacteria. It is becoming apparent that nisin production has a 

broader distribution than first thought and variants have been found in a number of 

genera including lactococci, streptococci, staphylococci and Blautia species. In 

addition, the nisin variants, such as the three used here, have many amino acid 

substitutions compared to nisin A. For example, Nisin H is produced by St. 

hyointestinalis, a member of the viridans streptococci group (VGS) that have the 

pathogenic potential to cause a variety of infections. The nisin H peptide has 5 amino 

acid substitutions in comparison to nisin A specifically, Ile1Phe (i.e., at position 1, 
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nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb, Met21Tyr, and His31Lys 

(25). Nisin J, produced by Staphylococcus capitis (S. capitis) (also an emerging 

opportunistic pathogen), has 9 alterations with respect to nisin A, comprising 8 amino 

acid changes (Ile4Lys, Met17Gln, Gly18Thr, Asn20Phe, Met21Ala, Ile30Gly, 

Val33His and Lys34Thr) and an extra amino acid (Lys35) at the C- terminus, making 

it the longest natural nisin variant (26). Nisin P, produced by Streptococcus agalactiae 

(St. agalactiae) (group B Streptococcus) (27) is the shortest natural nisin variant, 

consisting of just 31 amino acids, and has 10 amino acid differences with respect to 

prototypical nisin A (Ile1Val, Ile4Lys, Ala15Ile, Gly18Thr, Asn20Ala, Met21Ile, 

His27Gly, Ser29His, Ile30Phe, His31Gly) (28,29) (Figure 1). All nisin variants are 

predicted to have a similar structure and mode of action to nisin A. 

Nisin has been the subject of extensive bioengineering strategies in a bid to improve 

and enhance its antimicrobial activity, heat stability, solubility, diffusion, and protease 

sensitivity (30–34). To that end, the development of novel expression systems has been 

necessary. As multiple genes are required for nisin synthesis and immunity, it is often 

effective to produce bioengineered nisin variants against the background of the 

original producer (31, 35–37). Moreover, it has been demonstrated that a L. lactis 

strain expressing nisABTC is sufficient for the production and export of not only fully 

modified nisin but also a non-lantibiotic fusion of leader peptide with dehydrated 

angiotensin (38). This broad substrate specificity of the nisin dehydrating and transport 

machinery suggests that lantibiotic enzymes could be utilized for the synthesis of a 

wide range of novel dehydro residue-containing peptides or novel lantibiotic structures 

(39–41). 

The development or utilization of heterologous bacteriocin expression systems offers 

advantages over natural producers including: i) the potential to improve yield as 
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production levels in their original hosts can be very low (42) ii) improved efficiency 

of purification protocols as many producing cultures require complex broth for growth, 

making purification time consuming and expensive and iii) production in a GRAS 

organism in instances where the original producer may be pathogenic with limited 

industrial application (43). The looming antimicrobial resistance crisis makes it 

inevitable that the creation of such heterologous systems will become more important 

to produce novel alternative antimicrobials at industrial scale for both food safety and 

healthcare applications.  

The aim of this study was to develop a heterologous expression system for the 

production of the natural nisin variants nisin H, nisin J and nisin P, in a GRAS host, 

namely L. lactis NZ9800, by adopting a synthetic biology approach. 

 

3.1.3 Materials and Methods  

Bacterial strains, culture conditions and plasmids  

Bacterial strains, their growth conditions and plasmids used in this study are listed in 

Table 1. Anaerobic conditions for bacterial strains, where applicable, were achieved 

using anaerobic jars and Anaerocult A gas packs (Merck, Darmstadt, Germany). L. 

lactis strains were grown in M17 broth or agar (Sigma-Aldrich, (Merck, Darmstadt, 

Germany), supplemented with 0.5% glucose (GM17) at 30°C. E. coli was grown in 

Luria-Bertani (LB) agar or broth with vigorous shaking at 37°C. Antibiotics were used, 

where indicated, at the following concentrations: Chloramphenicol (Cm) at 5 and 10 

μg mL–1 respectively for L. lactis and E. coli (31). 

 

Synthetic gene hybrid design  
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To express nisin H, nisin J and nisin P into a lactococcal background, synthetic gene 

hybrids containing the full NisA leader sequence (nisAL), followed by each of the nisin 

H, nisin J and nisin P structural gene sequences were designed (Table 2). Hybrid genes 

containing the NisA promoter, the full NisA leader sequence (nisAL), followed by each 

of the structural sequences, nisin H, nisin J and nisin P, were synthesised by IDT (1710 

Commercial Park, Coralville, Iowa, 52241, USA). 

 

Molecular cloning procedures  

The E. coli/L. lactis shuttle vector pCI372 (64) was extracted from E. coli HB101 cells 

using a NucleoSpin plasmid kit (Macherey-Nagel, Duren, Germany). The nisAL–

nisH/nisJ/nisP gene strands (100 ng) were amplified by polymerase chain reaction 

(PCR) set up as follows: templates (100 ng) pUCIDT-KAN-nisJ,  pUCIDT-KAN-nisH 

and pUCIDT-KAN-nisP; Forward and Reverse oligos (0.3 µM) (including EcoRI and 

XbaI (NEB) restriction sites), (see Table 3, (Sigma-Aldrich, Merck, Darmstadt, 

Germany); 0.2 mM dNTPs; 1.5 mM Mg2+ and 2 units of KOD polymerase (Novagen) 

in a final volume of 50 µL. PCR reactions were carried out in a MJ Research PTC-200 

thermocycler using the following conditions: initial denaturation at 98°C x 2 minutes, 

cycling conditions: 30 cycles of 95°C x 20 seconds, 50°C x 10 seconds, 72°C x 10 

seconds each, followed by a final extension at 72°C x 10 minutes. PCR products were 

purified using NucleoSpin Gel and PCR clean-up (Macherey-Nagel, Duren, Germany) 

and (~3000 ng) digested with EcoRI and XbaI restriction enzymes (20 U) in CutSmart 

10X buffer (New England Biolabs, Ipswich, UK) in a 40 µL reaction. The plasmid 

pCI372 (14.76 µg) was also digested in a 70 µL reaction, with EcoRI and XbaI (40 U).  

The digested plasmid and insert were purified using the Thermo Scientific GeneJET 

PCR purification kit and the products ligated in a reaction set up as follows: T4 ligase 
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(800 U) (New England Biolabs, Ipswich, UK); final volume of nisJ and nisP ligation 

reactions = 20 µL, final volume of nisH ligation reaction = 30 µL; insert concentration 

= 1 µg; plasmid concentration = 60 ng/µL. The ligation reactions were transformed 

into E. coli Top10 competent cells (Invitrogen, Dublin, Ireland) as per manufacturer’s 

instructions. Plasmid DNA was extracted and the nisH/nisJ/nisP genes were amplified, 

and products sequenced (Source BioScience, Waterford, Ireland) to ensure integrity 

and subsequently introduced by electroporation into L. lactis NZ9800, a non-

producing derivative of the nisin A producer L. lactis NZ9700, as previously described 

(65). 

 

Nisin induction experiments  

Production of nisin H, nisin J and nisin P was achieved through induction via the 

addition of 1 µL of nisin A cell-free supernatant (CFS) per mL to each culture broth, 

corresponding to approximately 10 ng/mL nisin A. Single colonies from each nisin 

producer were inoculated into 5 mL GM17 broth (Difco laboratories Inc, Omagh, UK) 

with and without 5 µL of nisin A CFS. Cultures were incubated at 30°C overnight and 

the presence of antimicrobial activity in CFS assessed by deferred antagonism assays, 

as outlined by Parente and Hill (1992), using L. delbrueckii subspecies (ssp) bulgaricus 

LMG 6901 as the target organism (66). 

 

Purification of nisin A, nisin H, nisin J and nisin P  

NZ9800 transformants containing pCI-nisH, pCI-nisJ and pCI-nisP plasmids were 

streaked on GM17 agar plates (Difco Laboratories Inc., Omagh, UK) containing 10 

µg/ mL chloramphenicol (Cm10). Colonies of each culture were subsequently grown 

in liquid media supplemented with Cm10 and 1 µL of nisin A per ml of broth. 
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Specifically, a single colony was inoculated into 5 ml GM17 (0.5% glucose) broth and 

grown aerobically overnight at 30°C. This was then used to inoculate 25 mL GM17 

which, in turn, was used to inoculate 2 Litres of TY broth. The nisin A producer was 

grown as described above but without the addition of Cm10 or nisin A supernatant. 

Cultures were centrifuged (8000 rpm, 20 mins, 10°C), and cell free supernatant (CFS) 

retained for purification of nisin variants.  

The Activity Units per ml (AU/mL) of each CFS was determined as follows: 100 µL 

aliquots of nisin A, nisin H, nisin J and nisin P CFS were 2 fold serially diluted in Milli 

Q water and 50 µL aliquots of each dilution assayed by well diffusion assays (WDA) 

against L. delbrueckii ssp. bulgaricus LMG 6901. AU/mL is taken as the reciprocal of 

the highest dilution showing activity against the indicator strain corrected per mL of 

culture.  

Two Litres of culture supernatant were passed through an Econo column containing 

60 g Amberlite XAD16N beads (Sigma Aldrich, Co. Wicklow, Ireland), prewashed 

with Milli Q water. The column was washed with 400 mL of 35% ethanol (30% 

ethanol for nisin J as it is more hydrophilic) and antimicrobial peptide eluted in 400 

mL of 70% 2 propanol 0.1% TFA (IPA). To allow interaction with a C18 SPE column, 

the IPA was removed from the XAD IPA eluent by rotary evaporation (Buchi, Flawil, 

Switzerland) and sample concentrated to approximately 80 mL. The concentrated 

sample was then applied to a 5 g, 20 mL Strata-E C18 SPE column (Phenomenex, 

Cheshire, UK) pre-equilibrated with methanol and water. The column was washed 

with 30 mL 25% ethanol (20% ethanol for nisin J) and antimicrobial activity eluted 

with 30 mL IPA. 

IPA was removed from the previously eluted C18 SPE IPA eluent and the resulting 

sample (2 ml) applied to a semi-preparative Jupiter Proteo (10 x 250 mm, 90Å, 4 µm) 
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RP-HPLC column (Phenomenex, Cheshire, UK) running a 25-50% acetonitrile 

gradient 0.1% TFA where buffer A is 0.1% TFA and B is 90% acetonitrile 0.1% TFA. 

Eluent was monitored at 214 nm and fractions were collected at 1-minute intervals 

(27). Fifty μl aliquots of HPLC fractions were assayed for antimicrobial activity 

against the indicator organism, L. delbrueckii ssp. bulgaricus LMG 6901, and active 

fractions checked by MALDI TOF mass spectrometry to assess fraction purity.  

 

MALDI TOF Mass Spectrometry  

MALDI TOF Mass Spectrometry was performed with an Axima TOF2 MALDI TOF 

mass spectrometer (Shimadzu Biotech, Manchester, UK) as described by Field et al., 

2015 (67).The instrument was operated in positive ion linear mode and masses 

reported as average values. 

 

In silico comparison of nisin H/J/P biosynthetic machinery to nisin A 

Each gene sequence of each segment of the nisin H/J/P bacteriocin gene cluster was 

inputted into NCBI BLASTP suite and aligned to the corresponding section of nisin A 

gene cluster so as to obtain the percentage identity. 

 

3.1.4 Results  

Cloning nisAL- nisin H nisin J, and nisin P pre-peptides into L. lactis NZ9800 

Gene constructs containing the nisin A leader (nisAL) fused to the nisin H, nisin J and 

nisin P structural genes were amplified and subcloned from pUCIDT-KAN into the 

Escherichia coli-(E. coli)- L. lactis shuttle vector pCI372 (31, 44), to generate pcI-

nisH, pcI-nisJ and pcI-nisP plasmids. DNA sequence analysis confirmed the integrity 

of each synthetic hybrid gene. These plasmids were purified and subsequently 
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introduced into L. lactis NZ9800 following the cloning strategy outlined in Figure 2. 

L. lactis NZ9800 was chosen as it is derived from the wild type nisin A producing 

strain NZ9700. A 4bp deletion from the structural gene nisA means this strain does 

not produce nisin, and the transcription of the nisin operon is blocked. This was one of 

the early host strains of the nisin-controlled gene expression (NICE) system since it 

provides the necessary regulatory (nisK and nisR) and immunity (nisI, nisFEG) genes. 

Importantly, it contains genes for the nisin biosynthetic machinery (nisBCTP) thus 

making it a potentially suitable strain in which to express nisin H, nisin J and nisin P 

genes cloned under the control of the nisin promoter (36), see Table 1.  

 

Production of nisin H, nisin J and nisin P by L. lactis NZ9800  

Initially, transformants of pCI-nisH, pCI-nisJ and pCI-nisP failed to produce zones of 

inhibition against the indicator strain, Lactobacillus delbreuckii ssp. bulgaricus LMG 

6901, when assayed by deferred antagonism assays on solid agar (data not shown). 

Similarly, when cell free supernatant (CFS) from overnight cultures was assessed 

using well diffusion assays (WDA), no antimicrobial activity was observed when 

compared to the nisin A control (Figure 3A). However, the addition of nisin A CFS at 

1 µL/mL (approx 10 ng nisin A) resulted in bioactivity against the indicator strain L. 

delbreuckii ssp. bulgaricus LMG 6901 (Figure 3B). Addition of exogenous nisin A 

CFS to growing transformant cultures was essential for antimicrobial production, 

presumably because it was necessary to induce the system. 

 

Purification of nisin A, nisin H, nisin J and nisin P from L. lactis NZ9800 grown 

in TY broth  
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The ability of the transformants to produce fully modified and active nisin H, nisin J 

and nisin P, in comparison to the nisin A producer, was assessed by growing the 

producing strains in equal volumes of TY broth and, purifying the peptides from CFS 

using Amberlite XAD16N, C18 SPE and Reversed Phase HPLC. The cell pellet is not 

typically a good source of nisin A and so is routinely discarded. The cell pellets of the 

nisin H, J and P producers were assayed for antimicrobial activity by WDA and 

potential masses of interest by MALDI TOF MS. Both assays suggested that activity 

was low from cells as evidenced by low AU/mL in WDA of cell extract and failure to 

detect nisin H, nisin J and nisin P masses by MALDI TOF MS (data not shown). 

Determination of the AU/mL of each of the culture supernatants revealed that the nisin 

A producer, L. lactis NZ9700, produces the most activity (10,240 AU/mL) when 

compared to nisin H (80 AU/mL), J (80 AU/mL) and P (160 AU/mL). The HPLC 

chromatogram for nisin A shows that it elutes at 47 minutes, the corresponding fraction 

is active against L. delbrueckii ssp. bulgaricus LMG 6901 and a 3354 Da mass was 

detected in this fraction which agrees with the 3352 Da theoretical mass (Figure 4a). 

Nisin H and P are similarly hydrophobic and elute at 47 and 48 minutes, respectively. 

The corresponding fractions are active and masses of 3453 Da (expected mass 3453 

Da) and 2989 Da (expected mass 2989 Da) were detected for nisin H and P 

respectively. Nisin J is a more hydrophilic peptide and elutes earlier in the gradient in 

fraction 31.  

The HPLC chromatograms also show that the mV response is low for nisin H (Figure 

4b), J (Figure 4c) and P (Figure 4d) compared to nisin A (Figure 4a). This is expected 

as the initial WDA assay of TY supernatants show that the AU/mL was much lower 

for nisin H, J and P than nisin A.  
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The purification of nisin H, J and P from transformants confirms the successful 

expression of nisin H, J and P in L. lactis NZ9800, albeit with a low purification yield 

for the three nisin variants (< 0.01 mg/L for H, J and P compared to 2.5 mg/L for nisin 

A). HPLC and MALDI TOF MS confirm the functioning of the NICE system as 

peptides of the correct mass for each of the nisin variants are being produced. Low 

production levels could be the result of impaired processing, given the low percentage 

identities between the nisin A biosynthetic genes and the nisin H, J and P counterparts, 

or may result from the inability of the cell to export the unprocessed peptide due to 

incompatibility with the transporter peptide or codon usage. Production could 

potentially be improved by substituting cognate modification genes and optimising 

codon usage, but successful production of variants confirms redundancy in the nisin 

biosynthetic and/or immunity machinery.  

Of the three natural nisin variants used in this study, nisin P (structural gene plus leader 

sequence) is most similar to nisin A with a percentage identity of 90.91%, while nisin 

H and nisin J have percentage identities of 82.00% and 52.56% respectively. It is 

interesting to note that nisin P (160 AU/mL) CFS has higher activity as measured in 

AU/mL in TY broth compared to nisin H (80 AU/mL) and nisin J (80 AU/mL). The 

percentage identity of the nisin J biosynthetic machinery compared to nisin A is 

considerably lower than that of nisin H and P, see Figure 5. Overall, the successful 

production of nisin H, J and P demonstrates the promiscuity of the nisin A 

biosynthetic/modification machinery. 

These results demonstrate the potential of heterologous expression and suggest that, 

with further optimisation, this system could be utilised to express and harness nisin 

variants produced by non-GRAS approved strains. 
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3.1.5 Discussion 

Bacteriocins have major potential for applications in food preservation, food safety 

and both animal and human healthcare (45–47). Although many novel lantibiotics, 

(Class I RiPPs), have been discovered, production of these peptides at high levels from 

their original hosts can be challenging and costly due to the natural producer not being 

a GRAS approved strain or difficulties growing the host strain. The increasing threat 

of an AMR crisis means that potentially potent lantibiotics should not be overlooked 

and attempts should be made to harness them through heterologous expression in 

alternative hosts. Their gene encoded nature allows for easier modification resulting 

in the development of novel lantibiotics with improved properties, giving them an 

advantage over other antimicrobial classes (48). Previous studies have heterologously 

expressed bacteriocins for applications in food or medicine (49–51). The aim of this 

study was to express the natural nisin variants H, J and P in a GRAS strain, L. lactis 

NZ9800, under the control of the nisin A promoter. The main advantage of this 

approach is that it does not require potentially pathogenic host strains for the 

production of antimicrobial peptides that possess potent activity against food spoilage 

and pathogenic strains.  

Nisin is the prototypical lantibiotic that exhibits potent broad-spectrum antimicrobial 

activity against a wide array of pathogens. Several bioengineering studies of wild type 

nisin A have been carried out to improve its antimicrobial properties and functions 

(52–55). Numerous elegant studies have established that the nisin A 

biosynthetic/modification machinery demonstrates tolerance to a broad range of 

substrates (40, 53, 56). Majchrzykiewicz et al., (2010) effectively used the nisin 

modification proteins to produce, modify and secrete entirely unrelated putative 

lantibiotics, identified from in silico screening, via the nisin expression system (40). 
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Specifically, novel two component lantibiotic pneumococcin, from Streptococcus 

pneumoniae R6, was selected as the substrate for the nisin enzymes. Introduction of a 

fusion peptide, consisting of nisin leader and mature peptide, into an L. lactis host that 

overproduces NisBTC, resulted in modification of the peptides and inhibition of 

Micrococcus flavus. 

Another noteworthy example involved using the nisin expression/modification system 

to effectively dehydrate, secrete and, in a few cases, form ring structures, in derivatives 

of a variety of different peptide hormones that mediate a myriad of physiological 

functions including enkephalin, luteinizing hormone, angiotensin and erythropoietin 

(56, 57). Moreover, the modified angiotensin derivatives exhibited increased 

resistance to proteases and enhanced biological activity relative to their linear 

counterparts (57, 58). Fusion of the wild type nisin leader sequence to 54 genes 

encoding novel lantibiotics resulted in the successful expression of 30 peptides using 

the prototypical nisin A machinery system, five of which exhibited good antimicrobial 

activity (41).   

Induction of the transformants with nisin A supernatant was required for production 

of antimicrobial activity in the nisAL-nisH/J/P supernatants demonstrating that the 

expression of these natural nisin variants in L. lactis is dependent on induction of the 

NisRK system. Induction by the antimicrobial of interest is a requirement for 

production that switches on the NICE system in clones, thereby stimulating the nisin 

A biosynthetic machinery to produce peptides of interest (31, 59). 

Purification of nisin H, nisin J and nisin P from the L. lactis host was performed 

following detection of antimicrobial activity from the clones though yields were low 

compared to nisin A. The low production yield may be attributed to the low percentage 

identity between the biosynthetic machinery (LanB and LanC) of nisin H, nisin J, nisin 
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P to nisin A, with lanB and lanC of nisin H/ J / P~58% , ~25%, ~ 90% similar to that 

of nisin A. Also, the transporters of nisin H, J, P are ~76%, ~33% and ~59% similar 

to the nisin A LanT, while the nisin A protease is ~54%, ~31%, ~30% similar to those 

of nisin H, J and P respectively. Thus, the nisin A biosynthetic machinery, transporters 

and protease may not cleave and export the nisin H, nisin J and nisin P variants 

efficiently. Indeed, in the study by Lagedroste and co-workers (60) a systematic 

characterization of position one variants of nisin A expressed in the nisin A 

background revealed an extensive variation in the ability of the protease NisP to cleave 

the leader peptide and release the active nisin derivative. The greatest impact was 

observed when charged (His, Arg, Lys, Asp, Glu) and aromatic amino acids (Trp, Phe, 

Tyr) were substituted in place of the normally present valine. Notably, I1F which 

corresponds to the first amino acid in nisin H displayed approximately 13% cleavage 

compared to the wild type peptide. While this highlights one of the reasons for the 

relatively poor production of nisin H in our study, nisin P contains valine at position 

one and so should not impact on NisP activity. Furthermore, a study by Piper and 

colleagues (44), demonstrated that, although the heterologous expression of the natural 

nisin variants NisF, NisZ and NisQ facilitated the production of sufficient peptides for 

direct specific activity comparisons with NisA, no Nisin U and U2 production was 

observed in the nisin A background.  

MALDI TOF mass spectrometry of active fractions revealed the presence of the 

expected masses for nisin H, nisin J and nisin P confirming that the correct fully 

processed nisin variants are being produced in the GRAS strain. Codon usage may also 

be a factor in the poor expression levels as this was not considered in the design of the 

nisAL-nisH/J/P genes. However, the use of L. lactis codon utilization preferences when 

nisU and nisU2 genes incorporated with the nisin A leader by Piper et al., (2011) did 
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not result in successful production of these peptides even though nisin A was added 

exogenously to ensure that induction of the Pnis promoter was not a concern (44). This 

suggests that, although heterologous peptide production was successful using this 

system, poor efficiency is possibly due to the low similarity of the transporters and 

machinery of the nisin variants to wild type nisin A. Low percentage identity leading 

to the failure of one or more of the biosynthetic (NisBC), leader removal (NisP) or 

export (NisT) proteins to recognize the encoding peptides was also suggested by Piper 

et al. (2011) (44). 

Further optimisation of this system is required for increased production of nisin 

variants and their further characterisation. Indeed, a recent study involving synthetic 

biology approaches describes the development of a genetic system whereby cloning 

an entire nisin biosynthesis pathway from a nisin-producing strain facilitates 

significant overproduction of nisin (61). Furthermore, extra copies of nisFEG, nisRK 

and nisI cloned under strong constitutive promoters has been shown to improve 

production levels and is an approach that may be employed in future studies to improve 

the heterologous production of nisin H, nisin J and nisin P (62, 63).  

 

3.1.6 Conclusion 

This is the first description of the heterologous production of different naturally-

occurring nisins in L. lactis. From this, it is apparent that there is considerable 

redundancy in the nisin modification and transport machinery which can be employed 

to process different nisin structures. Furthermore, the system represents a powerful 

tool that could facilitate the production of novel nisin derivatives as well as aid in the 

understanding of structure-activity relationships in nisin A and its variants.  
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Table 1 Bacterial strains, their growth conditions and plasmids used in this study. 

 

 

 

LMG Laboratorium voor Microbiologie, Universteit Gent, Belgium; NZ= NIZO                  

* Vigorous shaking required             

** Anaerobic conditions were achieved through the use of anaerobic jars and Anaerocult 

A gas packs (Merck, Darmstadt, Germany). 
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Table 2 Gene hybrid synthesis design. 

 

Blue = nisin A promoter, Red = nisin A leader sequence, yellow highlight= nisin J 

structural gene, blue highlight= nisin H structural gene, green highlight= nisin P 

structural gene, pink highlighted ‘taa’= stop codon. 

 

Nisin J Tagtcttataactatactgacaatagaaacattaacaaatctaaaacagtcttaattctatcttgagaaagtattggtaataatattattgtcgat 

aacgcgagcataataaacggctctgattaaattctgaagtttgttagatacaatgatttcgttcgaaggaactacaaaataaattataaggag 

gcactcaaaatgagtacaaaagattttaacttggatttggtatctgtttcgaagaaagattcaggtgcatcaccacgcatta 
ctagtaaatcactttgtacaccaggatgtaaaactggagcactacaaacatgctttgctaaaactgcaacttgccactgttctgg 
acacgtgcatactaaataa 

Nisin H tagtcttataactatactgacaatagaaacattaacaaatctaaaacagtcttaattctatcttgagaaagtattggtaataatattattgtcgat 
aacgcgagcataataaacggctctgattaaattctgaagtttgttagatacaatgatttcgttcgaaggaactacaaaataaattataaggag 
gcactcaaaatgagtacaaaagattttaacttggatttggtatctgtttcgaagaaagattcaggtgcatcaccacgctttacaagt 
atttcgatgtgtacaccgggatgtaagactggtgcattaatgacgtgtaattataaaactgctacatgtcactgtagtatcaaggtt 
tcaaaataa 

Nisin P tagtcttataactatactgacaatagaaacattaacaaatctaaaacagtcttaattctatcttgagaaagtattggtaataatattattgtcgat 

aacgcgagcataataaacggctctgattaaattctgaagtttgttagatacaatgatttcgttcgaaggaactacaaaataaattataaggag 

gcactcaaaatgagtacaaaagattttaacttggatttggtatctgtttcgaagaaagattcaggtgcatcaccacgcgtaactagt 

aaatcattatgtactcctggatgtaagacgggtattttgatgacctgtgcaatcaaaactgcaacttgtggttgccattttggataa 
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Figure 1 Graphical representation (A) of nisin A with nisin H, nisin J and nisin P 

amino acid substitutions highlighted; and sequence alignment (B) of nisin A with 

nisin H, nisin J and nisin P variants used in this study. 

 

A) 
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Figure 2 Description of cloning strategy adapted for this study. Synthetic genes 

consisting of nisA promoter and leader fused to nisH/J/P were separately amplified by 

PCR from pUCIDT-KAN-nisJ, pUCIDT-KAN-nisH and pUCIDT-KAN-nisP, 

digested with EcoRI and XbaI, and subsequently ligated with pCI372 of each 

construct. The constructs were transformed into L. lactis NZ9800 following 

sequencing to confirm integrity. 
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Figure 3 Well diffusion assays of nisin A, nisin H, nisin J and nisin P WDA of cell 

free supernatants (CFS) of uninduced (top row) and induced (bottom row), overnight, 

cultures of nisin A (A), H (H), J (J) and P (P) with L. delbrueckii ssp. bulgaricus LMG 

6901 as the target indicator. GM17 media (M) and GM17 containing 1 µL/ mL nisin 

A CFS (Mi) were included as controls.  
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Figure 4 Purification of nisin A, nisin H, nisin J, and nisin P from their respective 

producing strains. HPLC chromatogram (mAU vs time in minutes) acquired at 214 

nm, MALDI TOF mass spectra (% intensity of mass to charge ratio (m/z)) and zone 

of inhibition for active fractions are shown for nisin A (4a) nisin H (4b), nisin J (4c) 

and nisin P (4d).  
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Figure 5 Percentage identity comparison of the nisin H/J/P to nisin A biosynthetic 

machinery. 
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Chapter 4.1 

 

The potency of the broad-spectrum bacteriocin, bactofencin A, 

against staphylococci is highly dependent on primary structure, N-

terminal charge and disulphide formation 
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4.1.1 Abstract 

Bactofencin A is a novel class IId bacteriocin, produced by the intestinal isolate 

Lactobacillus salivarius DPC6502, which has potent activity against medically 

significant pathogens including Staphylococcus aureus. This bacteriocin is unusual in 

that it has a highly cationic N terminus and a single disulfide bond between Cys7 and 

Cys22, resulting in a large C terminal loop. In this study, a library of synthetic 

bactofencin A variants was screened against the mastitis isolate, S. aureus DPC5246, 

to identify key residues responsible for activity. It was apparent that substituting either 

cysteine of the disulfide bond with either serine or alanine significantly reduced the 

activity of the bacteriocin, confirming the importance of the C terminal loop. 

Substituting N terminal amino acids with alanine had no effect on activity, whereas 

sequential removal of the N terminal positively charged residues resulted in an 

increasingly inactive peptide. A complete (synthetic) alanine scanning analysis 

revealed that the residues between Val9 and Gly17 were most affected by substitution, 

suggesting that this area has a major influence on the potency of the bacteriocin. 

Substituting residues in the loop region between Cys7 and Cys22 for D-amino acid 

equivalents had a more detrimental effect on activity than L-alanine substitutions. 

Specifically Y10A, N11A, P15A and T16A are active at 4, 16, 1 and 16 μM 

respectively while their D equivalents were inactive at 1000 μM, the highest 

concentration tested. Ultimately, this study identifies the critical features in the primary 

structure of the bacteriocin which gives it such potent activity against pathogenic 

staphylococci. 

 

4.1.2 Introduction  

Concerns about the increased incidence of antimicrobial resistance (AMR) against 
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human pathogens have led to calls for global efforts to combat this worrying 

phenomenon. If left untackled, once treatable infections will again become incurable 

(1). The Global Antimicrobial Resistance Surveillance System (GLASS) was set up in 

2015 to standardise the collection and sharing of data on AMR at a global level and to 

promote coordinated action. In support of this initiative, the WHO recently surveyed 

the development of new antibiotics in the clinical pipeline against priority pathogens 

and found that there is particular need for new classes of antimicrobial to abate the 

threat of AMR. Specifically, they found that most antibiotics are derived from existing 

antibiotic classes and these are only considered a temporary solution to AMR as they 

will be quickly rendered ineffective by existing resistance mechanisms. Expressly, 

they state that more investment is needed in fundamental drug discovery to discover 

more innovative antimicrobials against priority pathogens including Mycobacterium 

tuberculosis, Clostridium difficile and Staphylococcus aureus (2). 

One class of antimicrobial that is receiving increased attention is the bacteriocins. 

These are stable peptides naturally produced by many bacteria and have potent 

activity against other bacteria including antimicrobial resistant pathogens (3). 

Bacteriocin production by intestinal strains is considered a desirable probiotic trait 

that could potentially mediate an effect in three different ways; it may allow the 

producing strain to compete in the crowded gut ecosystem, it could provide protection 

to the host against pathogens and could potentially signal the immune system in a 

similar fashion to host antimicrobial peptides (AMPs) (4-7). 

Recently, we described bactofencin A, a small, positively charged bacteriocin 

produced by the porcine gut isolate L. salivarius DPC6502. Structurally, it consists of 

a positively charged N terminal attached to a C terminal loop formed via a disulfide 

bond between Cys7 and Cys22. Bactofencin A is highly cationic and has been 
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compared to eukaryotic defensins which contain a high Lys/Arg molar ratio, 

considered essential for bactericidal activity (8, 9) Another unusual feature of 

bactofencin A is that immunity is mediated through a dltB homologue proposed to 

decrease the negative charge of the cell wall thereby reducing attraction between 

bacteriocin and cell, rather than a specific immunity protein. Bactofencin A displays 

activity against S. aureus and Listeria spp. and has been shown to subtly modify gut 

populations (10, 11).  

The rational design of novel antimicrobials is rapidly evolving via the use of 

bioengineering to generate novel bacteriocin variants with enhanced functionality. 

This has been realised through the recent generation of both one and two peptide 

bacteriocins with greater activity against foodborne and medically significant Gram-

positive and Gram-negative pathogens (12-17). Indeed, nisin V, a single Met21Val 

substitution variant of the well characterised commercial bacteriocin nisin A 

generated in our laboratory, has greater in vivo efficacy against Listeria 

monocytogenes when compared with the native peptide (18). In many cases, the 

identification of enhanced derivatives has been realised following initial studies in 

which saturation or scanning mutagenesis have been employed to reveal key important 

residues and structures within the peptide (12). 

The aim of this study was to determine the importance of specific residues and regions 

within bactofencin A to its anti-S. aureus activity. Bactofencin A is a relatively short 

Class IId peptide in which a disulfide bond naturally forms, making it especially 

amenable to peptide synthesis as a means of carrying out such structure-function 

investigations. Specifically, a saturation approach was undertaken as follows; firstly, 

both cysteines were substituted with serine and alanine, individually and in tandem, 

to elucidate their role in peptide structure. Secondly, deleted variants were synthesised 
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to assess the function of the positively charged N terminal. Thirdly, alanine was 

substituted for each amino acid (alanine scanning) and finally, a series of D-amino 

acid variants specific to the loop were synthesised to determine if chiral interactions 

with a receptor were likely to be involved in activity. 

 

4.1.3 Materials and methods 

Peptide synthesis 

Bactofencin A and variants were synthesised from the C terminus to the N terminus 

using microwave-assisted solid phase peptide synthesis (MW-SPPS) on a Liberty 

Blue microwave peptide synthesizer (CEM Corporation. Mathews, North Carolina, 

USA). Peptides with a C terminal cysteine were synthesized on an H-Cys(Trt)-HMBP 

pre-loaded resin, bactofencin C22A on an H-Ala-HMBP resin and bactofencin 

C22Cd on HMBP resin where the initial D-Cys was manually added to the resin 

(PCAS BioMatrix Inc., Quebec, Canada). The amino acid attached to the resin and 

the following two amino acids were deprotected conventionally at 25°C, 0 W for 900 

seconds in 5% piperizine in DMF to limit the formation of an undesirable 51 Da 

modification commonly seen in C terminal cysteine peptides. Following deprotection, 

the exposed amino group is coupled conventionally with the carbonyl group of the 

next amino-protected amino acid at 75°C, 0 W for 3600 seconds in the presence of 

the activator, 0.5 M N,N′-diisopropylcarbodiimide in DMF, and activator base, 1.1 M 

hydroxybenzotriazole in DMF. The fourth and subsequent amino acids were added 

using microwave deprotection at 75 °C, 60 W for 600 seconds and microwave coupling 

at 75 °C, 35 W for 600 seconds. Arginines were double coupled at 75 °C, 35 W, 300 

seconds and histidine and cysteine coupled at 25°C, 0 W, 300 seconds and then 50°C, 

35 W for 900 seconds. Following synthesis, the peptide was cleaved from the resin by 
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adding a cleavage mix containing 9.25 ml trifluoroacetic acid (TFA), 250 µl water, 250 

µl 2′2-(ethylenedioxy)-diethanethiol and 500 µl triisopropylsilane. This mixture was 

then heated at 37 °C for 1 hour to cleave the peptide from the resin. Resin was removed 

from the cleavage mix using an Accent Cleavage system (CEM, Corporation. 

Mathews, North Carolina, USA) and the TFA evaporated by bubbling with nitrogen. 

Peptide was precipitated from the remaining solution by adding 45 ml of diethyl ether 

pre-cooled to −20°C and centrifuging at 1000 g for 3 minutes. The precipitated peptide 

was washed free of scavengers by resuspending in a second aliquot of 45 ml ice cold 

diethyl ether and the centrifugation step repeated. 

 

Purification of synthetic peptides  

Crude peptide was purified using Reversed Phase-HPLC on a semi preparative 

Jupiter Proteo (10 × 250 mm, 4 µ, 90 Å) column (Phenomenex, Cheshire, UK) running 

an 11–45% acetonitrile 0.1% TFA gradient over 40 minutes where buffer A is Milli Q 

water containing 0.1% TFA and buffer B is 90% acetonitrile containing 0.1% TFA. 

Fractions with the desired molecular mass were identified using matrix assisted laser 

deionisation -time of flight-mass spectrometry (MALDI-TOF-MS) on an Axima 

TOF2 MALDI TOF mass spectrometer (Shimadzu Biotech, Manchester, UK) 

operating in positive ion reflectron mode and were pooled and lyophilized on a 

Genevac HT 4X lyophilizer (Genevac Ltd., Ipswich, UK). Peptides were resuspended 

in 50 mM sodium phosphate buffer pH 6.8 at approximately 1000 µM and kept at 

room temperature for 24–48 hours until the disulfide bond between Cys7 and Cys22 

fully formed as monitored by MALDI-TOF-MS. Peptides were then further purified 

by a second HPLC run as described above except the gradient used was 15–30% 

acetonitrile 0.1% TFA gradient over 30 minutes. Again fractions containing pure 
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bactofencin A were identified and lyophilised for specific activity experiments. 

 

Purification of natural bactofencin A  

Bactofencin A was purified from MRS culture media as described by O’Shea et al. (10). 

Briefly peptide was purified from an overnight culture of L. salivarius grown in 1 litre 

of MRS media using SP sepharose Cation Exchange, C18 Solid Phase Extraction 

(SPE) and Reversed Phase HPLC. 

 

Specific activity of bactofencin A variants 

Peptides were resuspended at 1000 µM in 50 mM sodium phosphate buffer pH 6.8 

and checked for purity by MALDI-TOF-MS. Peptides were serially diluted 1 in 4 to 

give a dilution series of 250, 62.50, 15.63, 3.91, 0.98 and 0.24 µM and assayed by the 

agar well diffusion assay described by Ryan et al. (19). Briefly, 50 µl aliquots of each 

peptide concentration were plated on a S. aureus DPC5246 indicator plate and the plate 

incubated at 37 °C. Peptide activity (Minimum Inhibitory Concentration (MIC)) 

was taken as the lowest concentration of peptide to give a zone of inhibition. All 

assays were performed in triplicate. The dilution series values were rounded to the 

nearest whole number to give 1000, 250, 63, 16, 4, 1 and 0.25 µM and data is colour 

coded for ease of interpretation. 

 

Bactofencin variants synthesised for specific activity studies  

Bactofencin A, KRKKHRCRVYNNGMPTGMYRWC, is a 22 amino acid bacteriocin 

with a disulfide bond between Cys7 and Cys22. Bactofencin variants are labelled 

according to the amino acid position number using the one letter code followed by 

the change it undergoes e.g. a lysine at position 1 to alanine change is labelled K1A. 
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Bactofencin Cys7 and Cys22 were substituted with serine both individually and in 

tandem to give bactofencin C7S, bactofencin C22S and bactofencin C7S-C22S. These 

amino acids were also substituted with alanine to give bactofencin C7A, bactofencin 

C22A and bactofencin C7A-C22A. 

To assess the importance of the positively charged N terminal, the following deletion 

variants were synthesised; bactofencin R2-C22, K3-C22, K4-C22, H5-C22, R6-C22 

and C7-C22. 

Each amino acid in bactofencin A was changed to alanine to give a library of alanine 

scanning variants, these are specifically; K1A, R2A, K3A, K4A, H5A, R6A, C7A, 

R8A, V9A, Y10A, N11A, N12A, G13A, M14A, P15A,T16A, G17A, M18A, Y19A, 

R20A, W21A and C22A. Bactofencin C7A and C22A were also used to assess the role 

of cysteine in activity as described above. 

Each amino acid in the loop from Cys7 to Cys22 was substituted for a D-amino acid 

equivalent to give a series of variants, namely bactofencin C7Cd, R8Rd, V9Vd, 

Y10Yd, N11Nd, N12Nd, M14Md, P15Pd, T16Td, M18Md, Y19Yd, R20Rd, W21Wd 

and C22Cd. An all D-amino acid variant for a preliminary MIC50 assay was 

synthesised by Alta Bioscience (Birmingham, UK). 

 

Comparison of bactofencin A and bactofencin R8Q  

Bactofencin R8Q and bactofencin R8K were synthesised as described above and their 

activity compared to bactofencin A against S. aureus DPC5246, Listeria innocua 

DPC3572 and L. monocytogenes ATCC 23074. 

 

4.1.4 Results 

Formation of the disulfide bond in synthetic bactofencin A  
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To investigate how specific residues and domains within bactofencin A contribute to 

its potency against staphylococci, a series of bactofencin variants were synthesized, 

purified and assayed. Natural bactofencin A is encoded on a four gene operon that 

includes an accessory protein that ensures the correct formation of the disulfide bond 

(10). Although synthetic peptides are initially synthesized without a disulfide bond, 

this bond appears to form naturally, given that we can detect it by MALDI TOF MS. 

Synthetic bactofencin A (2784 Da) in the reduced form was resuspended in sodium 

phosphate buffer pH 6.8 at 1000 µM, and bond formation (i.e. presence of peptide at 

2782 Da) monitored over time by MALDI TOF MS analysis (data not shown). For 

subsequent investigations, synthetic peptides were HPLC purified, resuspended in 

sodium phosphate buffer until disulfide bond formation occurred (where 

appropriate), as confirmed by MALDI TOF MS, and then HPLC purified for a second 

time to obtain pure peptide with an intact disulfide bond. 

 

Comparison of natural and synthetic bactofencin A  

The yield of natural bactofencin A following purification from L. salivarius DPC6502 

culture media is generally very low (<0.3 mg/L) making it difficult to generate 

sufficient peptide for structure/function experiments and making genetic approaches 

to generating peptide variants impractical. Bactofencin A, being a small 22 amino acid 

peptide with a single disulfide, is well suited to peptide synthesis and this approach 

generated milligram quantities of peptide variants for specific activity studies. 

Comparison of activity of natural bactofencin A (2782 Da) with synthetic reduced 

bactofencin A (2784 Da) and synthetic oxidised bactofencin A (2782 Da) showed that 

all peptides were equally active against S. aureus DPC5246 (Figure 1) 
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The role of cysteines in bactofencin A 

To assess the contribution of the cysteines to the activity of bactofencin A, Cys7 and 

Cys22 were replaced with serine. The results (Figure 2) show that replacing Cys7 

with serine results in a 63 fold reduction in activity and replacing Cys22 caused an 

even more detrimental 250 fold reduction in activity. Notably, replacing both Cys7 and 

Cys22 with a serine residue resulted in activity comparable to the C7S change alone. 

Replacing individual cysteine residues with alanine had less of a negative effect than 

serine substitution as a C7A change reduces activity 16 fold and C22A is reduced 63 

fold. The C7A-C22A variant is, like the serine equivalent, comparable with the single 

C7A variant being 16 fold reduced. Overall, it was apparent that substituting Cys22 

with either serine or alanine resulted in peptides with lower activity than those 

generated containing Cys7-Cys22 substitutions. 

 

The role of the N terminal positively charged tail  

Bactofencin is characterized by a cationic N terminal, KRKKHR, where 5 out of 6 

amino acids are positively charged at neutral pH. To determine how this feature 

contributes to the activity of the peptide, a series of deletion variants were synthesized 

including R2-C22, K3-C22, K4-C22, H5-C22, R6-C22 and C7-C22. The specific 

activity of each peptide against S. aureus was determined and reveals that deleting the 

first two amino acids has no effect on activity. The further exclusion of Lys3 (K4-

C22), Lys4 (H5-C22) and His5 (R6-C22) resulted in sequential 4 fold reductions in 

activity resulting in MICs of 4 µM, 16 µM and 63 µM, respectively. Deleting the entire 

positively charged N terminal region resulted in a looped peptide for which no activity 

could be detected (MIC >1000 µM; Figure 3). 
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Alanine Scanning 

A series of alanine scanning variants, where each individual amino acid was replaced 

by alanine, were synthesized and their activity assessed. The results show that 

changing individual amino acids to alanine within the N terminal region had no effect 

on activity. This was also the case for the R8A, P15A, M18A, Y19A, R20A and W21A 

containing peptides. As noted previously, the C7A and C22A variants were 16 fold and 

63 fold less active respectively. Substitutions between V9A and G17A show reduced 

activity with V9A, Y10A, N12A and G17A being 4 fold less active and N11A, G13A, 

M14A and T16A being 16 fold less active (Figure 4), thereby highlighting that this 

region is highly important for the antimicrobial activity of the peptide. 

 

D-amino acid substitution of the loop  

The generation of peptides containing D-amino acids provides an insight into the 

importance of chirality across the whole peptide or within specific regions. As 

preliminary experiments showed that an all D-variant with every amino acid changed 

was inactive (MIC50 >20 µM; data not shown), a series of D-amino acid variants 

from C7-C22 were synthesized. The D-amino acid substitutions (Figure 5) were all 

found to be detrimental to activity – even more so than the equivalent alanine 

substitutions (with the exception of C7 and N12 which are equally detrimental at 16 

and 4 μM, respectively). In the case of C22, the Ala substitution (MIC = 63 µM) is 

much less active than the C22Cd equivalent (MIC = 4 µM). As for the alanine-

containing variants, the substitution of amino acids within the R8-Y19 region of the 

peptide has a particularly deleterious impact as bactofencin R8Rd, V9Vd, M14Md and 

Y19Yd are 63 fold less active than wild type and Y10Yd, N11Nd, P15Pd and T16Td 

are inactive at 1000 µM, the highest concentration tested. 
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Comparison of bactofencin A with bactofencin R8Q (plantaricin ST31), a potential 

natural variant 

Todorov et al. (1999) previously described plantaricin ST31, a bacteriocin with an 

amino acid sequence determined to be KRKKHRXQVYNNGMPTGMYR, produced 

by a sourdough isolate Lactobacillus plantarum ST31, with a reported mass of 2755 + /− 

0.3 Da (20). Substitution of Cys for X results in a peptide with a mass of 2468 Da. 

However, if tryptophan and cysteine, the C terminal amino acids of bactofencin A are 

included, a mass of 2757 Da is obtained and subsequent oxidation of cysteines gives the 

published mass, 2755 Da. This suggests that plantaricin ST31 is likely to be a variant of 

bactofencin A with an arginine to glutamine change at position 8. Although plantaricin 

ST31 was reported as inactive against Listeria spp., bactofencin A is active against 

Listeria at high concentrations. For this reason, it was decided to directly compare the 

activity of bactofencin R8Q (i.e. plantaricin ST31) and bactofencin A against S. aureus 

DPC5246, L. innocua DPC3572 and L. monocytogenes ATCC 23074. Although 

bactofencin A and bactofencin R8Q (plantaricin ST31) were equally active at 1 µM 

against S. aureus DPC5246, it was established that bactofencin A is indeed more active 

(63 µM) than bactofencin R8Q (plantaricin ST31; 250 µM) against L. innocua DPC3572 

and L. monocytogenes ATCC 23074. The reduced activity of R8Q was not evident after 

a substitution that retained the charge at position 8, i.e. R8K (Figure 6). 

 

4.1.5  Discussion  

There is an urgent need for new antimicrobials to combat infection and bactofencin is 

a clear candidate. Although it is produced in small amounts by the producing strain, 

the lack of post-translational modifications makes it very accessible to synthesis 
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strategies. With this in mind, we generated a bank of synthetic variants which 

included a number of amino acid substitution and deletion variants. Preliminary 

experiments showed that the disulfide bond forms naturally over time and that 

synthetic bactofencin with an intact disulfide is as active as the native peptide making 

this a valid approach (Figure 1). The synthetic peptide with reduced cysteines was also 

found to be as active as natural bactofencin suggesting that the disulfide bond is not 

essential for full activity (Figure 1). 

Substituting either cysteine with serine resulted in peptide variants with lower activity 

than alanine equivalents proving that serine is not a good substitute for cysteine in 

bactofencin A (Figure 2). Cysteines and serines differ in both chemical and physical 

properties as cysteines are often found in the interior of a molecule especially when 

involved in disulfide bond formation while comparatively hydrophilic serines are 

typically exposed (21, 22). Alanine, however, is hydrophobic so it is possible that 

hydrophobic interactions between C7A and C22A are stronger than serine equivalents 

and so can better maintain structural conformation. This was seen when Cys9 and 

Cys14 residues of the Class IIa leucocin A were replaced with hydrophobic equivalents 

(23). It appears that single C22 changes to either serine or alanine have a greater 

negative impact on activity than the corresponding C7 and C7-C22 changes. The 

possibility here is that substituting C22 alone with serine or alanine may introduce 

steric hindrance, thus preventing any semblance of loop conformation resulting in a 

less active peptide. Disulfides have a very distinct role in stabilizing protein structure 

(22) and the results of this study suggest that the presence of both cysteines play a key 

role in maintaining peptide structure and are required for full activity of bactofencin 

A. 

Sequential deletion of the positively charged N terminal from Lys3 to Arg6 resulted 
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in a series of variants with decreasing activity against S. aureus DPC5246, while 

removal of the entire N terminal region prior to the loop resulted in an inactive peptide 

(Figure 3). Interestingly, the C7-C22 variant contained an intact disulfide bond as 

determined by MALDI TOF MS. The N terminal, KRKKHR, with a charge of + 5 at 

neutral pH is unique among known Class II bacteriocin sequences and invites 

conjecture as to its function. Lysine and arginine play an important role in the 

interaction with negatively charged phospholipid membranes. Indeed, arginine is 

more effective than lysine in this regard as it forms more extensive H bonding, thereby 

stabilizing arginine-phosphate clusters enabling enhanced interfacial binding leading 

to membrane disruptions (24). In addition, a high positive charge allows bacteriocins 

and AMPs to insert further into membranes (25). It may be that KRKKHR plays a role 

in binding to anionic lipids in cell membranes and that a charge of at least +3 at the N 

terminus is required for full activity, given that variants with a lower charge were 

significantly less active (Figure 3). The highly positive charge of bactofencin A may 

also have played a role in the evolution of the unique bacteriocin immunity associated 

with the producer, L. salivarius DPC6502. In this respect, immunity is mediated 

through a homologue of DltB, a protein which results in the reduction in the charge of 

teichoic acids in the cell wall. Thus the mechanism mediating immunity could be 

through reducing the affinity of the positively charged bactofencin A to the producer 

surface (10).  

Alanine scanning mutagenesis approaches have been successfully used to study the 

lantibiotic, lacticin 3147 (26) and the Class IIa bacteriocin, durancin GL (27). In 

bactofencin A, replacing the amino acids of the N terminal with alanine did not lead 

to a reduction of activity when compared to the native peptide. This correlates with the 

results from the deletion experiment as it is expected that the loss of a single positive 
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charge would not adversely affect activity. Changing Cys7 to alanine does have an 

effect but this is expected due to possible structural changes in the peptide as 

speculated earlier. Changes to Arg8 and the C terminal side of the loop were also well 

tolerated as R8A, P15A, M18A, Y19A, R20A and W21A are as active as bactofencin 

A. However, when residues between Val9 and Gly17 are changed to alanine activity is 

significantly reduced, suggesting that this part of the loop makes an important 

contribution to activity (Figure 4). 

D-amino acid substitutions were used to investigate the importance of 

stereochemistry for target interaction as introduction of D-amino acids typically 

disrupts the helicity of AMPs (28). The retention of significant levels of activity in an 

all D variant of AMPs suggests the natural peptide functions by interacting with the 

lipid membrane, rather than a specific receptor, whereas a significant reduction in 

activity among such variants suggests that a stereospecific target, such as a membrane 

receptor, is involved in activity (29). The latter proved to be the case for bactofencin 

A. Substituting the amino acids of the loop for D equivalents was detrimental to 

activity in every case but most particularly in peptides with substitutions between Arg8 

and Tyr19. Indeed, Y10Yd, N11Nd, P15Pd and T16Td were totally inactive at 1000 

µM further suggesting a chiral interaction between bactofencin A and a specific 

receptor or that the introduction of a D residue disrupted structural conformation 

within this region. The inactivity of the P15Pd peptide is particularly notable and is 

in stark contrast to the activity observed with the P15A variant, suggesting that 

kinking the molecule in the opposite direction leads to detrimental structural changes. 

Taken together, the results from the N-Terminal deletion, alanine scanning and D 

amino acid variant studies make it tempting to suggest that bactofencin A interacts 

with the cell membrane through initial electrostatic interaction with the N terminal 
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and then disrupts the cell through binding with a putative receptor to amino acids in 

the interior of the loop. 

The existence of an apparent natural variant of bactofencin A is interesting and 

provides an opportunity to compare the activities of the two peptides, especially in 

light of the absence of activity in cell free supernatants of plantaricin ST31-producing 

L plantarum ST31 against L. innocua and L. monocytogenes (20). This natural 

substitution did indeed result in reduced activity against Listeria as evidenced by our 

studies with bactofencin R8Q (plantaricin ST31). Substituting glutamine for lysine, 

the other positively charged amino acid restored activity suggesting that a positive 

charge is necessary in this position for activity against Listeria. 

None of the bactofencin A variants investigated in this study resulted in enhanced anti-

staphylococcal activity with respect to the native bactofencin suggesting that wild type 

bactofencin A has close to maximal antimicrobial activity. However, the reduction in 

activity against Listeria spp. due to an R8Q change and its restoration with an R8K 

change suggests that there is potential to change the spectrum of activity of bacteriocins. 

Ultimately, it will now be possible to build on this blueprint to further investigate the 

fundamental biology underlying the activity of bactofencin and, in turn, enhance the 

spectrum and activity of this cationic bacteriocin. 
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Figure 1 Activity (µM) of oxidized synthetic bactofencin A (BFo), reduced bactofencin 

A (BFr) and natural bactofencin A (BFn) against S. aureus DPC5246 (A) and molecular 

mass of oxidized synthetic bactofencin A (Top), reduced bactofencin A (Middle) and 

natural bactofencin A (Bottom) (B). 
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Figure 2 (A) Cys7 and Cys22 were substituted individually and in tandem with serine 

and alanine to give bactofencin variants C7S, C22S, C7S-C22S, C7A, C22A, C7A-

C22A. Activity (µM) of bactofencin A compared to bactofencin cysteine variants C7S, 

C22S, C7S-C22S, C7A, C22A and C7A-C22A is presented in (B). 
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Figure 3 (A) Activity (µM) of bactofencin A and deletion variants, R2-C22, K3-C22, 

K4-C22, H5-C22, R6-C22 and C7-C22 against S. aureus DPC5246. (B) Activity (µM) 

of bactofencin A and deletion variants against S. aureus DPC5246. Activity is colour 

coded with green being most active and red inactive. 

 

 

  



 

178  

Figure 4 (A) Serial dilutions of each alanine variant plated on S. aureus DPC5246 

indicator plates and (B) shows activity (µM) of bactofencin alanine variants against S. 

aureus DPC5246. Activity is colour coded with green being most active and red least 

active. 
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Figure 5 Activity (µM) of bactofencin D-variants C7Cd-C22Cd against S. aureus 

DPC5246. Activity is colour coded with green being most active and red inactive. 

Amino acids most affected by D-substitution are circled in (A) and activities presented 

in (B). 
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Figure 6 Activity (µM) of bactofencin A (A) bactofencin R8Q (plantaricin ST 1) and 

bactofencin R8K against S. aureus DPC5246 (A) L. innocua DPC3572 (B) and L. 

monocytogenes ATCC 23074 (C). 
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Chapter 5.1 

 

Bactofencin A displays a delayed killing effect on staphylococci 

which is greatly accelerated in the presence of nisin 
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5.1.1 Abstract 

Bacteriocins can be considered a novel source of natural alternatives to antibiotics with 

the potential to fight against antimicrobial resistance in some instances. 

Commercialized as food preservatives, they also have the potential to treat drug 

resistant clinical pathogens and recent research shows that they play a role in immune 

modulation. To achieve their full potential an understanding of their mode of action 

and resistance mechanisms is required. We report that bactofencin A displays delayed 

inhibition against the mastitis pathogen, Staphylococcus aureus DPC5246, suggesting 

that it employs an unusual mode of action. This characteristic was clearly visible on 

plate media where formation of inhibition zones against the staphylococcal strain was 

very much delayed when compared to zones resulting from the action of nisin. This 

delayed killing and injury was also evident using flow cytometry where damage was 

evident four hours after bacteriocin addition. In particular, treatment with 2 μM 

bactofencin A resulted in approximately 20 fold higher injured and 50 fold higher dead 

cells. Combining bactofencin A with the nisin A resulted in faster killing at lower 

bacteriocin concentrations. When combined in an equal ratio, the combination 

exhibited a four-fold increase in inhibition compared to nisin A alone. These results 

demonstrate that the combination may be very effective in therapeutic applications 

against pathogenic staphylococci.  

 

5.1.2 Introduction 

Antimicrobial resistance (AMR) is a worsening global public health crisis that has 

been associated with overuse and misuse of antibiotics in both human and animal 

welfare. The emergence of multidrug-resistant pathogens threatens to undo a century 

of medical advances, placing anticancer treatments and routine surgeries at risk. At 
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present, at least 700,000 people die each year from superbugs that arise due to AMR 

and it has been predicted that this could lead to 10 million deaths by 2050 unless action 

is taken (1, 2). It is also expected that health expenditure will have to increase by $300 

billion to $1 trillion per year to deal with this problem as patients are sick for longer, 

require more healthcare interventions and more expensive drugs to combat their illness 

(3, 4). The cost of AMR to the economy is also significant and, when combined with 

healthcare costs, could rise to $100-$200 trillion per year by 2050 (4, 5). In 2017, the 

WHO published a report highlighting the lack of new antimicrobials in development 

against priority pathogens and the need for new classes of antimicrobials to combat 

the crisis (6). Recently, the WHO launched an AMR Action Fund in collaboration with 

financial investors and the pharmaceutical industry to ensure a sustainable pipeline of 

new antibiotics effective against superbugs, with a specific aim of developing two to 

four new antimicrobial treatments for patients by 2030 (7). Interestingly, alternative 

therapeutic avenues using antibodies, probiotics, vaccines and antimicrobial peptides 

are now attracting increasing attention in the fight against AMR (8).  

Bacteriocins are ribosomally-synthesised antimicrobial peptides, produced by most 

genera of bacteria, and can have a broad or narrow-spectrum of inhibition (9). The 

production of bacteriocins by Generally Regarded As Safe (GRAS) strains makes them 

of particular interest to the food industry where they (mainly nisin) have been used as 

food biopreservatives (10). The increase in AMR has meant that new antimicrobials 

are required which is why bacteriocins are being increasingly looked at as an 

alternative for certain applications. In this respect their stability, low toxicity, target 

specificity or activity against a broad range of bacteria including pathogens that have 

acquired resistance are all distinct advantages (11). They are also ribosomally 

synthesised and can be bioengineered, an approach that has been effective for nisin in 
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producing variants with improved activity against certain pathogens (12). 

Antimicrobial efficacy and AMR can also be improved through combinations with 

other bacteriocins including those with different modes of action (13). In addition, 

recent studies suggest that commensal bacteriocin producers are modulators of the 

human microbiome with potential to play a role in treating intestinal infections (14, 

15). 

Bactofencin A, produced by the porcine gut isolate Lactobacillus salivarius DPC6502, 

is a Class IId bacteriocin that is particularly potent against Staphylococcus aureus. A 

DltB homologue that may increase dealanylation of teichoic acids thereby reducing 

the negative charge on the cell wall and preventing binding of cationic bactofencin A, 

is proposed to provide immunity to the producing strain. Bactofencin A is a twenty 

two amino acid bacteriocin with a positively charged N terminal containing a series of 

positively-charged amino acids (KRKKHR) and a C terminal loop formed via a 

disulphide bond between Cys7 and Cys22 (16). Charge and structure play a significant 

role in its potency and its proposed mode of action is through an initial attraction to 

the cell membrane via the cationic N terminal, with inhibition occurring through 

interaction of the loop with a putative receptor. Bactofencin A has also been shown to 

effect subtle changes in the microbiome with potential to inhibit anaerobic inhabitants 

such as Clostridium and Bacteroides (17). 

Nisin A is a Class I lantibiotic produced by strains of Lactococcus lactis that displays 

broad-spectrum activity against most Gram-positive microorganisms (18).  It has been 

used as a food preservative by the food industry since the 1950s (9) and, more recently, 

its use has been extended to biomedical applications including inhibition of drug-

resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA), 

enterococci and Clostridioides difficile (19). Nisin A is a thirty four amino acid peptide 
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containing five lanthionine rings (20) that are responsible for its intrinsic stability and 

potent activity that is often reported at nanomolar concentrations (21-22).  Nisin exerts 

its antimicrobial effect by way of multiple modes of action including, blocking of cell 

wall biosynthesis through lipid II binding, pore formation and most recently, DNA 

condensation (23-25). It is noteworthy that significant spontaneous nisin resistance 

rarely occurs in nature despite widespread use in the food industry and this is attributed 

to its multiple modes of action (19). 

Combining bacteriocins with alternative antimicrobials, referred to as antimicrobial 

combinatorial therapy, has the dual advantage of improving potency while reducing 

the incidence of AMR. Furthermore, these synergistic combinations can result in 

cheaper treatments and reduced toxicity to the host due to lower concentrations of 

antimicrobial required for effective treatment (26). Recently, this approach has been 

used to improve potential treatments against the foodborne clinical pathogen, S. 

aureus. Specifically, the lantibiotic nisin has shown promising results when assessed 

in combination with other antimicrobial compounds including citric acid (27) essential 

oils (28) antibiotics (29-31), phage endolysins (32) and other bacteriocins (33). 

The aim of this study was to assess the effectiveness of bactofencin A and nisin A, 

both alone and in combination, at killing the mastitis isolate S. aureus DPC5246.  

 

5.1.3 Materials and Methods  

Staphylococcus aureus DPC5246 culture conditions  

S. aureus DPC5246 (34), a mastitis clinical isolate, was grown aerobically in BHI broth 

at 37°C. 

 

Bactofencin A synthesis and purification 
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Bactofencin A, KRKKHRCRVYNNGMPTGMYRWC, was synthesised using 

microwave-assisted solid phase peptide synthesis (MW-SPPS) on a Liberty Blue 

microwave peptide synthesizer (CEM Corporation. Mathews, North Carolina, USA) 

and purified by Reversed Phase HPLC according to the method described by 

O’Connor et al (2018) (35).  

 

Purification of nisin A  

Nisin A was purified from nisinA®P provided by Handary SA (Brussels, Belgium) by 

Reversed Phase HPLC. Specifically, 60 mg of nisinA®P was resuspended at 10 mg ml-

1 in Milli Q water and 2 ml aliquots run on a semi preparative, Jupiter Proteo (10 x 250 

mm, 4µ, 90Å), Reversed Phase HPLC column (Phenomenex, Cheshire, UK) running 

a 25-45% acetonitrile gradient, over 40 minutes, where buffer A is 0.1% trifluoroacetic 

acid (TFA) and buffer B is 100% acetonitrile 0.1% TFA. Eluent was monitored at 214 

nm and fractions collected at 30 second intervals. Fractions containing nisin A were 

assayed to confirm the nisin A molecular mass (3352 Da) by MALDI TOF mass 

spectrometry and those deemed pure were pooled and lyophilised.  

 

Preparation of peptides for activity assays 

Bactofencin A was resuspended in 50 mM sodium phosphate buffer pH 6.8 at 1000 

µM while nisin A was resuspended in Milli Q water at 1000 µM. Resuspended peptides 

were assessed for purity before use by analytical Reversed Phase HPLC. Fifteen µl of 

bactofencin A was added to 135 µl of Milli Q water and a 100 µl aliquot run on an 

analytical Aeris Peptide (4.6 x 250 mm, 5µ, 100Å) Reversed Phase HPLC column 

(Phenomenex, Cheshire, UK) running a 10-30% gradient over 40 minutes where buffer 

A is 0.1% TFA and buffer B is 100% acetonitrile 0.1% TFA. Eluent was monitored at 
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214 nm and fractions collected at approximately 1 minute intervals. Bactofencin A 

eluted as a single peak and the bactofencin A containing fraction was assessed for the 

bactofencin A mass (2782 Da) by MALDI TOF mass spectrometry.  

Nisin A (3352 Da) was assessed as described for bactofencin A except a 20-50% 

acetonitrile 0.1% TFA gradient was used. 

 

MALDI TOF mass spectrometry  

MALDI TOF mass spectrometry was performed on HPLC fractions of interest from 

purification protocols and resuspended pure peptides using an Axima TOF2 MALDI 

TOF mass spectrometer (Shimadzu Biotech, Manchester, UK). 0.5-µl aliquot of matrix 

solution (α - cyano 4-hydroxy cinnamic acid), 10 mg/ml in 50% acetonitrile-0.1% 

TFA) was deposited onto the target and left for 20 seconds before being removed. The 

residual solution was allowed to air-dry and 0.5 µl sample solution was deposited onto 

the pre-coated sample spot. 0.5µl of matrix solution was added to the deposited sample 

and allowed to air-dry. The sample was subsequently analysed in positive-ion linear 

or reflectron mode.  

 

Effect of bactofencin A on the growth of S. aureus DPC5246 

An overnight culture of S. aureus DPC5246 was diluted 200 fold in BHI broth to give 

a 0.5% inoculum containing ~ 1 x 106 colony forming units/ml (cfu ml-1). A 100 μM 

stock solution of bactofencin A was serially diluted twofold in 100 μl aliquots of BHI 

broth and 80 μl aliquots of each dilution added to 3920 μl of inoculum to give 4 ml 

samples containing 2, 1, 0.5, 0.25, 0.125 and 0.063 μM bactofencin A. Four ml of the 

inoculum without bactofencin A was included as a control. Samples were prepared in 

duplicate and incubated in a 37°C water bath and growth measured 
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spectrophotometrically (Jenway 6300 spectrophotometer, Staffordshire, UK) via 

optical density at 600 nm (OD600) at hourly intervals. Viable cells were enumerated by 

determining cfu ml-1 at 0, 2, 4, 6, 8, 10 and 23 hours. Specifically, 100 μl aliquots of 

sample were 10 fold serially diluted in 900 µl Maximum Recovery Diluent (MRD) 

and 10 µl aliquots of each dilution spotted onto BHI agar plates and allowed to dry. 

Plates were incubated overnight at 37°C and the cfu ml-1 calculated at each time point.  

 

Assessment of cell viability via flow cytometry  

The proportion of live, injured and dead cells in S. aureus DPC5246 cultures grown in 

the presence of bactofencin A, nisin A and bactofencin A/nisin A combinations was 

assessed by flow cytometry at 4, 9 and 23 hours. Cells were stained with a BDTM Cell 

Viability Kit which uses thiazole orange (TO) and propidium iodide (PI) to distinguish 

live and dead cell populations. Cultures for assay were diluted to ~ 106 cells ml-1 in 

staining buffer which is phosphate buffered saline containing 0.01% Tween 80 and 1 

mmol/L EDTA. Two µl of each dye (TO and PI) was added to 200 µl of diluted sample 

and analysed on a BD AccuriTM C6 flow cytometer (Becton, Dickinson and Company, 

BD Biosciences, San Jose, CA 95131, USA). Gates, to distinguish between live and 

dead cells, were assigned using the BD Accuri’s associated software in line with the 

manufacturer’s guidelines. 

 

Inhibition of S. aureus DPC5246 by bactofencin A and nisin A assayed by agar 

well diffusion 

Inhibition of S. aureus DPC5246 by bactofencin A and nisin A was demonstrated 

initially by the agar well diffusion assay described by Ryan et al. (1996) (36). An 

indicator plate containing S. aureus DPC5246 was prepared by adding 225 μl of an 
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overnight culture to 45 ml of molten BHI agar (0.5% inoculum) which was allowed to 

solidify in a 120 mm square petri dish. Fifty µl aliquots of bactofencin A were placed 

close to 50 µl of nisin A in pre-bored wells and the plate incubated at 37°C. The plate 

was photographed at 6, 8, 10 and 23 hours.  

 

Inhibition studies with bactofencin A and nisin A 

Four ml samples were prepared by adding aliquots of 10 μM bactofencin A and/or 10 

µM nisin A to the S. aureus DPC5246 inoculum containing ~ 1 x 106 cfu ml-1 to give 

the required bacteriocin concentration. Four ml of the inoculum without bactofencin 

A or nisin A was included as a control. Samples were prepared in duplicate and 

incubated in a 37°C water bath. OD600 was recorded every hour. Viable cells were 

enumerated, where required, by determining cfu ml-1 at 0, 2, 4, 6, 8, 10 and 23 hours 

as described above. 

 

5.1.4  Results 

In previous studies we had shown that bactofencin A is particularly effective against 

S. aureus including MRSA strains. In this study, we tested the effectiveness of 

bactofencin A alone and when combined with nisin A against a strain that was isolated 

from the milk of a cow with mastitis (inflammation of the udder).  

 

Purification of peptides for activity assays 

The stock solutions of bactofencin A and nisin A were assessed for purity prior to use 

in activity assays by analytical HPLC and MALDI TOF Mass Spectrometry. 

Bactofencin A eluted as a single peak at 29 minutes on the HPLC chromatogram and 

MALDI TOF mass spectrometry of the bactofencin A containing fraction detected a 
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mass of 2782 Da (Figure 1A) which is within the expected mass range (2782 +/- 1 Da) 

for bactofencin A. Nisin A also eluted as a single peak at 31 minutes and MALDI TOF 

mass spectrometry detected a mass of 3353 Da in the nisin A containing fraction which 

is also within the expected range (3352 Da +/- 1 Da) (Figure 1B). 

The delayed inhibition displayed by bactofencin A and its inability to fully lyse the 

target culture required an alternative approach to the traditional 96 well assay 

procedures for assessment of inhibition, minimal inhibitory concentration (MIC) and 

fractional inhibitory concentration (FIC) measurements. Consequently, assays were 

carried out at 4 ml scale to provide a sufficient volume for cell number enumeration at 

intervals throughout the growth time period.  

 

The inhibitory effect of increasing concentrations of bactofencin A on S. aureus 

DPC5246  

Initially, the effect of a wide range of two-fold increasing concentrations of 

bactofencin A (0.063, 0.125, 0.250, 0.5, 1 and 2 µM) on the OD600 and viable cell 

numbers of a growing culture of S. aureus DPC5246 was measured. The optical 

density readings (Figure 2A) suggest that bactofencin A had little or no effect on 

growth for the first 3-4 hours regardless of concentration. After 4 hours, the growth of 

bactofencin A treated cultures slowed down compared to the control; this became more 

apparent from five hours onwards when the OD600 decreased suggesting the cells were 

starting to lyse. Following seven hours incubation, the cultures appeared to recover in 

a concentration dependent manner with samples containing lower bactofencin A 

concentrations recovering before those containing higher concentrations. Interestingly, 

after 23 hours the OD600 for higher bactofencin A concentrations (0.5, 1 and 2 μM) 
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was found to be significantly lower than the control, suggesting that bactofencin A was 

still having an effect on the culture at these concentrations.  

The viable count results (Figure 2B) showed a similar delayed response with no 

significant difference in viability after 2 hours, while at 4 hours a 0.4 log reduction in 

cell numbers for 2 μM bactofencin A, the highest concentration tested, was detected. 

At six hours, all bactofencin A concentrations showed a ten-fold reduction compared 

to the control with the exception of 0.063 μM which had a slightly less effect at 0.7 

log, while at 8 hours the maximum effect is achieved with bactofencin A 0.5-2 µM 

showing a 1.5 log reduction compared to the control. Taken together, the OD600 and 

viable plate count results suggest a delayed action of the bacteriocin on the culture 

which is first slowed down and then killed.  

 

Flow cytometry analysis of S. aureus DPC5246 grown in the presence of 0, 0.2 

and 2 μM bactofencin A  

Flow cytometry can be used to study the real time effect of bacteriocins on cell 

membranes through the use of fluorescent dyes such as thiazole orange (TO) and 

propidium iodide (PI) (37). TO can enter and label live cells whereas PI can only label 

cells with compromised membranes thereby allowing distinction between live (green), 

injured (orange) and dead (red) cells. The separation of each cell type through gating 

optimisation results in a reliable assay that can quantify the number of each cell type. 

Here, we used flow cytometry to study the effect of bactofencin A on S. aureus 

DPC5246 cells.  

S. aureus DPC5246 was grown in BHI broth in the presence of 0, 0.2 and 2 μM 

bactofencin A and growth assessed hourly by OD600 (Figure 3A). The OD600 results 
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showed that 0.2 and 2 μM bactofencin A inhibited the culture compared to untreated 

control with reductions in OD600 following a dose response behavior.  

Comparison of cell numbers by traditional plating and flow cytometry at 4, 9 and 23 

hours compared very well (Figure 3B) demonstrating that flow cytometry is a fast, 

reliable method to enumerate viable cells for this strain. The OD600 and cell 

enumeration results again suggest that bactofencin A has minimal effect on growth in 

the first 4 hours of exposure with maximum killing occurring at eight hours, followed 

by a limited recovery of the culture at 23 hours for both concentrations tested.  

In addition to enumerating live cells (green), the flow cytometry results, which were 

corrected to exclude background debris (black), show the number of dead (red) and 

injured (orange) cells (Figure 3C) at 4, 9 and 23 hours. At four hours, the untreated 

control contains 2 x 108 live cells and about 100-fold fewer injured cells (1.2 x 106) 

and dead cells (3 x 106) which is indicative of a “healthy” log phase culture (Figure 

3C 1a). In comparison, the 0.2 μM (Figure 3C 1b) and 2 μM bactofencin A (Figure 3C 

1c) treated cultures contained live cells numbers slightly lower than the untreated 

control (1.3 x 108 and 1.0 x 108) but approximately 20-fold higher levels of injured 

(2.3 x 107 and 2.6 x 107) and 50-fold higher numbers of dead cells (1.3 x 107 and 1.7 

x 107). At nine hours the effect of bactofencin A on live cells is apparent as the 

untreated control sample contained 8.8 x 108 (Figure 3C 2a) compared to a 1.3-1.6 log 

reduction (5.6 x 107 and 2.6 x 107) detected for 0.2 μM (Figure 3C 2b) and 2 μM 

(Figure 3C 2c) bactofencin A respectively. However, the number of injured (3.4 x 106, 

and 3.3 x 106) and dead cells (3.4 x 106 and 4.3 x 106) were now just three-fold higher 

than the control sample (1.0 x 106). At 23 hours, we again observed that bactofencin 

A had a slight inhibitory effect on the culture as the untreated control contained 1.1 x 

109 live cells (Figure 3C 3a) while 0.2 μM bactofencin A (Figure 3C 3b) contained 6.4 
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x 108 and 0.2 μM bactofencin A (Figure 3C 3c) contained 3.4 x 108 live cells. Notably, 

at this stage the numbers of injured and dead cells are comparable to the untreated 

control.  

In summary, flow cytometry suggests that bactofencin A is causing considerable 

damage to the cell within four hours of exposure suggesting that the antimicrobial 

effect is delayed.   

 

Antimicrobial interaction between bactofencin A and nisin A on an S. aureus 

DPC5246 indicator plate 

Inhibition of S. aureus DPC5246 by bactofencin A and nisin A was assessed by well 

diffusion assay. The indicator plate (Figure 4) showed that the zone of inhibition for 

bactofencin A appeared gradually between eight and 23 hours, reflecting the growth 

curve results (Figure 2A) again suggesting a delayed action by the bacteriocin. In 

contrast, the zone of inhibition for nisin A was already apparent after six hours, 

confirming the lytic nature and rapid killing effect of nisin. Interestingly, a small 

enhancement of activity was observed at the point where the two zones of clearing 

intersect, suggesting the possibility of synergism between bactofencin A and nisin A.  

 

Inhibitory effect of bactofencin A and nisin A alone on growth of S. aureus 

DPC5246 

The observation that bactofencin activity is enhanced by nisin prompted us to 

investigate whether this phenomenon could be observed in liquid media. The effect of 

a narrow range of concentrations of bactofencin A at 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 

µM and nisin A at 10 fold lower concentrations 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05 

µM on S. aureus DPC5246 was assessed with a view to selecting optimum bacteriocin 
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concentrations for combinatorial studies. The OD600 results (Figure 5A) for the 

bactofencin A concentration range again showed a delayed inhibition curve for all 

bactofencin concentrations tested in line with the trends seen for the wider bactofencin 

A concentration range in Figures 2A and 3A. The plate count results (Figure 5B) 

showed no significant reduction in viable cell counts compared to the control at four 

hours and optimum killing at eight hours, so again a delayed killing effect was 

observed. 

Nisin A was assayed at a ten-fold lower concentration range (0.05-0.005 µM) than 

bactofencin A given its greater potency at earlier stages of growth. One thing to note 

is that the higher nisin A concentrations inhibit the cultures immediately (Figure 5C) 

and also that the delay in recovery is concentration dependent. At 23 hours, all nisin A 

treated cultures grew to the same extent as the untreated control, regardless of nisin A 

concentration, suggesting that nisin A is no longer effective against the culture at these 

concentrations. The plate count results (Figure 5D) show a similar trend in terms of 

viability where the higher concentrations reduced the viability of the culture for the 

first four hours which then recovered in a dose response fashion.  

Given that nisin appeared to enhance the inhibitory effect of bactofencin, we then 

evaluated the effect of different bactofencin A/nisin A concentrations where nisin A 

was present in ten-fold lower concentrations. 

 

Inhibitory effect of bactofencin A/nisin A combinations  

Initially, bactofencin A concentrations (0.05-0.5 µM) were combined with ten-fold 

less nisin A concentrations (0.05-0.005 µM) to assess their effect on S. aureus 

DPC5246 growth (Figure 6). The highest bacteriocin concentrations alone 

(bactofencin A 0.4 µM and nisin A 0.04 µM) were included as controls.  
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The optical density results (Figure 6A) showed that the untreated control is fully grown 

at six hours, 0.4 µM bactofencin A showed delayed inhibition while 0.04 µM nisin 

inhibited the culture for seven hours after which it recovered to levels comparable to 

the untreated control. Interestingly, all bactofencin A/nisin A combinations suppressed 

growth for eight hours. The two lowest combinations, bactofencin A 0.05 µM/nisin A 

0.005 µM and bactofencin A 0.1 µM/nisin A 0.01 µM, inhibited S. aureus DPC5246 

for nine hours (Figure 6). This is noteworthy considering that nisin A alone at these 

concentrations has no significant effect on growth (see Figure 5C) while equivalent 

bactofencin A concentrations are recovering (Figure 5A), suggesting possible additive 

or synergistic action between the two bacteriocins. At 23 hours, the inhibitory effects 

of the bacteriocin combinations are dose dependent with the OD600 for the highest 

combination tested comparable to the OD600 at T0, suggesting complete suppression 

of culture growth.  

The plate count results (Figure 6B) confirmed that the delayed killing effect of 

bactofencin A no longer occurs at all bactofencin A/nisin A combinations including 

the lowest concentrations tested. The lower combinations are equivalent to nisin A 

0.04 µM alone while the higher combinations are significantly better with the highest 

combination resulting in complete killing of the culture. Overall, we see that both 

killing and regrowth occur in a dose response manner. 

Flow cytometry was used to assess the effect of the lower bactofencin A/nisin A 

combinations on live, dead and injured cell numbers at 4 hours. The untreated control 

at 4 hours (Figure 6C a) was similar to that shown in Figure 3C with 2 x 108 live cells, 

and 3.0 x 107 injured cells, again commensurate with a control untreated culture. The 

numbers of live, dead and injured cells are comparable for bactofencin A alone at 0.1 

(Figure 6C b) and 0.2 (Figure 6C e) µM and it is interesting to note the high proportion 
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of injured cells even at the lower bactofencin A concentration. The number of live and 

injured cells in the presence of nisin A 0.01 µM alone was similar to the control though 

more injured cells were detected (5.8 x 107 vs 3.0 x 107) while nisin 0.02 µM resulted 

in an almost 2 log reduction in live cells compared to the control in agreement with 

Figure 5D. Notably, both combinations resulted in a 3-4 log reduction in cell numbers 

demonstrating the effectiveness of the combinations compared to either bacteriocin 

alone.  

 

The effect of decreasing nisin A concentrations in combination with 0.4 µM 

bactofencin A and decreasing bactofencin A concentrations in combination with 

0.04 µM nisin A on S. aureus DPC5246  

The effect of decreasing nisin A concentrations in relation to bactofencin A (Figure 

7A) and decreasing bactofencin A in relation to nisin A (Figure 7B) was assessed to 

determine the contribution each bacteriocin makes to activity. In both experiments 

(Figure 7A and 7B) the control samples (untreated control, bactofencin A alone and 

nisin A alone) are similar to those shown in Figure 6A. Treatment of S. aureus 

DPC5462 with 0.04 µM bactofencin A and decreasing nisin A concentrations resulted 

in inhibition of culture for seven hours at all combinations tested (Figure 7A). 

Recovery was in a dose response manner as evidenced by bactofencin A 0.4 µM/nisin 

A 0.005 µM and bactofencin A 0.4 µM/nisin A 0.01 µM starting to recover at eight 

and nine hours respectively while the three higher nisin A concentrations were still 

inhibitory at eleven hours. At 23 hours there was a reduction in OD600 at all bactofencin 

A/nisin A combinations assayed compared to the untreated control while bactofencin 

A 0.4 µM/nisin A 0.04 µM was totally inhibited. Overall, the results suggest that while 
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the cultures are significantly inhibited at all combinations tested, decreasing the nisin 

A concentration results in less inhibition. 

In contrast to the constant bactofencin A and decreasing nisin A concentrations, the 

OD600 does not recover in samples with constant nisin A 0.04 µM and decreasing 

bactofencin A concentrations (Figure 7B) as inhibition is maintained for 23 hours, 

suggesting that bactofencin A levels can be reduced once sufficient nisin A is present.  

As it appeared that the bactofencin A concentration could be reduced in relation to 

nisin A and bactofencin A 0.05µM/nisin A 0.04 µM was inhibitory for up to 23 hours, 

it was decided to assess the effectiveness of the bacteriocins in a 1:1 ratio against S. 

aureus DPC5246. 

 

Assessment of a 1:1 ratio of bactofencin A and nisin A on S. aureus DPC5246   

The effect of bactofencin A (0.0025, 0.005, 0.01 and 0.02 µM) and nisin A (0.0025, 

0.005, 0.01 and 0.02 µM) both alone and in a 1:1 ratio on the OD600 of a growing 

culture of S. aureus DPC5246 was determined. Interestingly, at eight hours the culture 

was inhibited by bactofencin A 0.02 µM/nisin A 0.02µM which is particularly 

impressive as the equivalent controls were almost fully grown at this time point (Figure 

8). 

 

Assessment of the FIC of bactofencin A/nisin A combinations against S. aureus 

DPC5246 

As bactofencin A 0.02µM/nisin A 0.02 µM inhibited the culture for eight hours, it was 

decided to see if 1x, 0.5x and 0.25x combinations had an effect on efficacy at this time 

point. None of the single bacteriocin controls were inhibitory at eight hours (Figure 

9A) and bactofencin A 0.02 µM/nisin A 0.02 µM was inhibitory at eight hours as 
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expected, though reducing the nisin A concentration to 0.01 and 0.005 µM resulted in 

less inhibition (Figure 9D). Reducing the bactofencin A concentration to 0.005 µM 

reduced the effectiveness of the combinations (Figure 9B), while bactofencin A 0.01 

µM nisin A 0.02 µM was inhibitory at eight hours (Figure 9C) suggesting that there 

may be potential to reduce the bactofencin A concentration even further. In a 

subsequent experiment (not shown) we observed that nisin A 0.08 µM was as 

inhibitory as bactofencin A 0.02 µM/nisin A 0.02 µM at eight hours suggesting that 

the combination is four times more effective than nisin A alone. Bactofencin A 0.08 

µM alone resulted in a ~0.6 OD600 reduction compared to the control.  

Finally, the effect of a wide range of two-fold increasing concentrations of bactofencin 

A (0.015, 0.031, 0.063, 0.125, 0.250, 0.5, 1 and 2 µM) and nisin A (0.015, 0.031, 

0.063, 0.125, 0.250, 0.5, 1 and 2 µM) both alone and in a 1:1 ratio on the OD600 of a 

growing culture of S. aureus DPC5246 was measured every hour for 23 hours. The 

results (data not shown) showed that the MIC of nisin A was 0.125 µM compared to 

0.031 µM bactofencin A/nisin A at eight hours, a 4 fold improvement in efficacy 

compared to nisin A alone, while at 23 hours it required 2 µM nisin A to inhibit the 

culture compared to 0.25 µM bactofencin A/nisin A, an 8 fold improvement indicative 

of a synergistic effect.  

 

5.1.5  Discussion 

Bactofencin A is a novel bacteriocin with potential to fight infection as, in addition to 

its potency against S. aureus, its small size and lack of post-translational modifications 

make it amenable to peptide synthesis. Synthetic bactofencin A is as active as the 

naturally-produced peptide and the disulphide bonds form naturally over time making 

it a suitable source of peptide for characterization studies (35). Interestingly, the studies 
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presented in this chapter demonstrate that the bacteriocin has a delayed action when 

compared to nisin and probably has a very different mechanism. Initially, stock 

solutions of bactofencin A and nisin A were assessed for peptide purity by Reversed 

Phase HPLC and MALDI TOF mass spectrometry and the presence of a single HPLC 

peak containing the correct peptide mass was taken as evidence of sufficient purity for 

inhibition studies (Figure 1). 

Class II bacteriocins typically act through an initial electrostatic interaction with 

negatively charged components of the cell membrane, and in some cases (class IIa in 

particular), bind to a cell receptor, resulting in a loss of ion gradients, membrane 

integrity and cell death (38-39). It has been tentatively proposed that bactofencin A 

interacts with the cell wall via the positively charged N terminal and also binds to an 

unknown receptor by interaction with amino acids found in the C terminal half of the 

peptide given that some of these are essential for activity. 

Teichoic acids, including lipoteichoic acids attached to the cell membrane (LTA) and 

wall teichoic acids (WTA) attached to peptidoglycan, are major components of Gram-

positive cell walls that play a role in adhesion, growth, virulence and biofilm formation 

(40-42). The addition of D-alanine esters to teichoic acids via the D-alanyl lipoteichoic 

acid (DLT) pathway reduces the overall negative charge on the cell wall making the 

cell more resistant to cationic peptides (41). In S. aureus, the DLT pathway proteins 

are encoded on the dlt operon, dltABCD, with DltA catalyzing the alanylation of D-

alanine in the cytoplasm and transferring it to DltC, a D-alanyl carrier protein (41, 42). 

Activated DltC forms a tight complex with DltB, a channel/funnel forming 

acyltransferase that moves the activated D-alanine across the membrane where DltD, 

which is located outside the cell membrane, transfers it to the teichoic acids (43). 

Interestingly, the DLT pathway, and DltB in particular, have been proposed as targets 
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for drug resistant S. aureus infections (44). Indeed, numerous Gram-positive bacteria 

with mutated dlt genes have a higher negative charge on the cell wall making them 

more susceptible to cationic AMPs (45). Furthermore, wild type S. aureus strains with 

extra copies of the dlt operon result in teichoic acid with increased D alanylation 

making the cell more positively charged and consequently more resistant to cationic 

antimicrobial peptides (46). The delayed action of bactofencin A on S. aureus 

DPC5246 (Figure 2), in addition to the cell damage observed at 4 hours by flow 

cytometry (Figure 3) and the absence of significant cell lysis, suggest that bactofencin 

A executes its antimicrobial action via a mechanism that takes considerable time. Cell 

disruption by bactofencin A may simply be due to the strong interaction between the 

bacteriocin and the cell surface due to its strong positive charge (+7 at neutral pH) and 

an as yet unknown receptor; further research is required to identify this possible 

receptor.  

The ability of ten-fold less nisin A to bactofencin A (Figure 5) to completely inhibit 

the culture may be attributable to the different modes of action as pore forming 

bacteriocins often act at nanomolar concentrations while cell wall disrupters require 

higher peptide concentrations to exert an effect (47). Combining bactofencin A with 

ten-fold less nisin A resulted in increased killing compared to either bacteriocin alone 

(Figure 6), again suggesting that the two different modes of action are complementary 

to each other.  

Lowering the bactofencin A concentration in relation to nisin A resulted in greater 

inhibition compared to lowering the nisin A concentration in relation to bactofencin A 

(Figure 7); further investigation revealed that combining the bacteriocins in a 1:1 ratio 

(Figures 8 and 9) could effectively inhibit S. aureus DPC5246. 
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In summary, bactofencin A is very effective against S. aureus when combined with 

nisin A - a phenomenon that is most likely due to acting synergistically through two 

different modes of action.  
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Figure 1 Assessment of peptide purity of bactofencin A (A) and nisin A (B) stock 

solutions by Reversed Phase HPLC and MALDI TOF mass spectrometry (inset). 

(Ai) Bactofencin A  

 

 

(Aii) Bactofencin A HPLC and MALDI TOF MS  

 

(Bi) Nisin A  

 

(Bii) Nisin A HPLC and MALDI TOF MS  
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Figure 2 Inhibitory effect of 0.063, 0.125, 0.25, 0.50, 1 and 2 μM bactofencin A on S. 

aureus DPC5246 in BHI broth at 37°C as measured by OD600 (A) and viable cell 

counts (cfu ml-1) (B).  
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Figure 3 The effect of 0 (Control), 0.2 and 2 μM bactofencin A on cell viability of S. 

aureus DPC5246 at 4, 9 and 23 hours as measured by OD600 (A), cell numbers by flow 

cytometry (FC Live) and conventional plating (plating) (B) and flow cytometry (C). 
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Figure 4 Antimicrobial interaction between 10 μM bactofencin A (B) and 10 μM nisin 

A (N) against S. aureus DPC5246 at 6, 8, 10 and 23 Hours.  
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Figure 5 Inhibitory effect of 0.05-1 μM bactofencin A on OD600 (A) and cfu ml-1 (B) 

and 0.005-0.05 μM nisin A on OD600 (C) and cfu ml-1 (D) of S. aureus DPC5246 in 

BHI broth at 37°C.  
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Figure 6 The effect of bactofencin A/nisin A combinations on S. aureus DPC5246 as 

measured by OD600 (A) and cfu ml-1 (B) and flow cytometry of bactofencin A 0.1 or 

0.2 µM alone, nisin A 0.01 or 0.02 µM alone and bactofencin A/nisin A 0.1/0.01 or 

0.2/0.02 µM combinations at 4 hours (C). The flow cytometry results at 4 hours shown 

in Figure 6C were generated from a subsequent growth experiment (OD600 data not 

shown). 
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Figure 7 Inhibitory effect of decreasing concentrations of nisin A (0.05-0.005 μM) in 

the presence of 0.4 μM bactofencin A on OD600 (A) and decreasing concentrations of 

bactofencin A (0.5-0.05 μM) in the presence of 0.04 μM nisin A on OD600 (B) on 

growth of S. aureus DPC5246 in BHI broth at 37°C.  
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Figure 8 Inhibitory effect of bactofencin A (0.02-0.0025µM) and nisin A (0.02-

0.0025µM) combined at 1:1 ratio on growth of S. aureus DPC5246 in BHI broth at 

37°C.  
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Figure 9 Growth (OD600) of S. aureus DPC5246 in bactofencin A 1x, 0.5x and 0.25x 

in relation to nisin A 0.02µM and nisin A 1x, 0.5x and 0.25x in relation to bactofencin 

A 0.02µM in BHI broth at 37°C.  
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6.1.1 Abstract 

Bacteriocins represent a rather underutilized class of antimicrobials despite often 

displaying activity against many drug-resistant pathogens. Lantibiotics are a post-

translationally modified class of bacteriocins, characterized by the presence of lanthionine 

and methyllanthionine bridges. In this study, a novel two-peptide lantibiotic was isolated 

and characterized. Formicin was isolated from Bacillus paralicheniformis APC 1576, 

an antimicrobial-producing strain originally isolated from the intestine of a mackerel. 

Genome sequencing allowed for the detection of the formicin operon and, from this, the 

formicin structural genes were identified, along with those involved in lantibiotic 

modification, transport and immunity. The identified bacteriocin was subsequently 

purified from the bacterial supernatant. Despite the degree of conservation seen amongst 

the entire class of two-peptide lantibiotics, the formicin peptides are unique in many 

respects. The formicin α peptide is far less hydrophobic than any of the equivalent 

lantibiotics, and with a charge of plus two, it is one of the most positively charged α 

peptides. The β peptide is unique in that it is the only such peptide with a negative 

charge due to the presence of an aspartic acid residue in the C-terminus, possibly 

indicating a slight variation to the mode of action of the bacteriocin. Formicin also 

displays a broad-spectrum of inhibition against Gram-positive strains, inhibiting many 

clinically relevant pathogens such as Staphylococcus aureus, Clostridium difficile and 

Listeria monocytogenes. The range of inhibition displayed against many important 

pathogens indicates a potential therapeutic use against such strains where antibiotic 

resistance is such a growing concern.  

 

6.1.2  Introduction 
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With the increased prevalence of many drug-resistant bacterial strains, the 

development of new antimicrobials is becoming a growing necessity. One such 

class of antimicrobials that appear to be underrepresented in clinical applications 

are bacteriocins (Cotter et al., 2013). Unlike traditional antibiotics, bacteriocins 

are gene-encoded, ribosomally synthesized peptides, making them suitable for 

genetic manipulation, with the potential for novel and specialized drug design 

(Gillor et al., 2005). The spectrum of inhibition of bacteriocins can range from 

broad to narrow, the latter may allow for highly targeted antibacterial therapies 

that may reduce the collateral damage associated with the use of broad-

spectrum antibiotics (Rea et al., 2011). 

The lantibiotics (lanthionine-containing antibiotics) comprise a well-studied class 

of bacteriocins, the most notable of which is nisin (Rogers, 1928), which is 

commonly used as a food preservative. Lantibiotics are classified based on the 

presence of lanthionine or methyllanthionine bridges. In these peptides, serine and 

threonine residues are post-translationally modified and dehydrated to form 2,3-

didehydroalanine (Dha) and 2,3-didehydrobutyrine (Dhb) residues. The thiol 

group of a cysteine residue subsequently reacts with the Dha or Dhb residues 

resulting in the formation of lanthionine or methyllanthionine thioether crosslinks 

(Xie & van der Donk, 2004). 

The lantibiotic gene cluster encodes an array of genes required for modification, 

regulation and transport of the bacteriocin. Lantibiotics are divided into classes 

depending on the mechanism by which they are synthesized. Class I lantibiotics 

encode the enzymes LanB and LanC within the bacteriocin operon where LanB 

catalyses the dehydration of the serine and threonine residues, whilst LanC 

catalyses the cyclization of the lanthionine rings. In Class II lantibiotics, LanM 
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alone catalyses both dehydration and cyclization of the lantibiotics (Willey & van 

der Donk, 2007). LanR and LanK play key roles in the regulation of lantibiotic 

production (Lee et al., 2011). Once the mature lantibiotic is produced, its cleavage 

and transport are carried out by LanP and LanT respectively (Escano et al., 2015). 

In some cases, LanT can carry out both leader sequence cleavage and peptide 

secretion functions (Furgerson Ihnken et al., 2008). Immunity to lantibiotics can 

be afforded by immunity proteins such as the lipoprotein LanI that likely binds the 

secreted lantibiotic and the ABC transporter LanFEG that transports bacteriocin 

peptides from the membrane to the extracellular medium. Here LanF binds and 

hydrolyses ATP that provides the energy required for the transport of the 

bacteriocin through the LanEG membrane complex (Stein et al., 2005; Takala et 

al., 2004; Alkhatib et al., 2012). For a review on this class of bacteriocins, see 

Willey & van der Donk (2007). 

Within the lantibiotic class of bacteriocins exist a small subgroup of two-peptide 

lantibiotics. Such bacteriocins are produced by an array of genera, including 

Staphylococcus and Lactobacillus (Navaratna et al., 1998; Holo et al., 2001). 

Interestingly, of the few two-component lantibiotics that have been described, two 

of these bacteriocins identified prior to this study are produced by Bacillus species. 

Bacillus species are known to produce a vast range of antimicrobials, whether 

antibiotics (e.g. gramicidin, bacitracin) or bacteriocins (e.g. thuricin CD, 

mersacidin) (Katz & Demain, 1977; Rea et al., 2010; Chatterjee et al., 1992). The 

currently identified two-component lantibiotics include lacticin 3147 (Lactococcus 

lactis) (Ryan et al., 1996), lichenicidin (Bacillus licheniformis) (Begley et al., 2009; 

Dischinger et al., 2009), haloduracin (Bacillus halodurans) (McClerren et al., 

2006), enterocin W (Enterococcus faecalis) (Sawa et al., 2012), plantaricin W 
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(Lactobacillus plantarum) (Holo et al., 2001), BHT (Streptococcus rattus) (Hyink 

et al., 2005), Smb (Streptococcus mutans) (Yonezawa & Kuramitsu, 2005) and 

staphylococcin C55 (Staph. aureus) (Navaratna et al., 1998). In this subclass of 

bacteriocins, the two peptides produced tend to act synergistically and usually 

display negligible antimicrobial activity on their own. 

The mode of action of lacticin 3147 identifies a likely model for the mode of action 

of similarly structured lantibiotics. The α peptide of lacticin 3147 (Ltnα) resembles 

the globular lantibiotic mersacidin, mirroring its activity by binding to lipid II that 

acts as an important docking molecule. Binding to lipid II results in a 

conformational change of Ltnα, which presents a site to which the β peptide (Ltnβ) 

can then bind. Ltnβ resembles an elongated lantibiotic, which, once recruited by 

Ltnα, inserts itself into the target membrane inducing pore formation resulting in 

cell death. Here the cooperative activity of both peptides is necessary for optimal 

antimicrobial activity, as the stability of the total bacteriocin–lipid II complex is 

important for both pore formation and the inhibition of cell wall biosynthesis 

(Martin et al., 2004; Wiedemann et al., 2006). 

In this study, we extend the class of two-peptide lantibiotics by identifying a novel 

bacteriocin known as formicin that is produced by a marine isolate, Bacillus 

paralicheniformis APC 1576. Whilst this lantibiotic resembles the previously 

described two-peptide lantibiotics, it contains a number of features that 

differentiate it from the rest of the class. 

 

6.1.3 Methods 

Isolation of bacteria from fish samples  
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Marine fish were caught off the coast of Ireland and stored on ice prior to analysis. 

The intestinal contents of the fish and a sample of the skin and gills were 

aseptically removed. Samples were suspended in maximum recovery diluent 

(Oxoid), serial dilutions were then plated on brain–heart infusion (BHI) agar 

(Merck) and marine media 2216 (Difco Laboratories) and were incubated 

aerobically at 30°C for 3 days. Colonies were isolated from these plates and 

analysed for antimicrobial activity using deferred antagonism assays, whereby 

spots of the bacterial cultures were overlaid with 10 ml de Man, Rogosa and Sharpe 

agar (Difco Laboratories) seeded with 25 µl of a Lactobacillus delbrueckii subsp. 

bulgaricus LMG 6901 overnight culture. Colonies that displayed significant zones of 

inhibition were further characterized. 

In this study, the strain of interest, B. paralicheniformis APC 1576, was isolated from 

the intestinal tract of a mackerel (Scomber scombrus) and grown on BHI aerobically 

at 37°C. The strain was identified by 16S rRNA sequencing using the UniF (5’-

AGAGTTTGATCCTGGCTCAGG-3’) and UniR (5’-ACGGCAACCTTGTTAC 

GAGT-3’) primers to amplify the sequence. PCR products were cleaned using an 

illustra GFX PCR DNA and Gel Band Purification kit (GE Healthcare) and subsequent 

sequencing was completed by Cogenics (Essex). 

 

Colony MS 

Colony MALDI-TOF MS (Axima TOF2 MALDI-TOF mass spectrometer, 

Shimadzu Biotech) was used to determine the molecular mass of the peptides 

produced as follows: cells were first mixed with 70% 2-propanol/0.1% TFA (IPA) 

and vortexed, the sample was separated by centrifugation and the supernatant was 

subsequently used for analysis. A MALDI target plate was precoated with CHCA 
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matrix solution, 0.5 µl of the supernatant from the cell extract was then placed on 

the target and a final layer of matrix solution was added. Positive-ion reflectron 

mode was used to identify the peptide masses. The masses detected were then 

compared to those of known bacteriocins. 

 

Draft genome sequencing  

Genomic DNA was extracted using the GenElute bacterial genomic kit (Sigma-

Aldrich) and the Nextera XT DNA kit (Illumina) was used for library preparation. 

The DNA was quantified using a Qubit 2.0 fluorometer. Sequencing was 

performed using Illumina’s MiSeq platform using paired-end 2×300 base pair reads 

in the Teagasc Sequencing Centre, Teagasc Food Research Centre, Moorepark. 

Reads were assembled de novo, using SPADES (version 3.1.1), resulting in 70 

contigs. ORFs were identified and annotated using Prokka (version 1.1). Further 

manual annotation was implemented with ARTEMIS and Artemis Comparison 

Tool. Genomic data are available from GenBank/EMBL under accession no. 

LXPD00000000. 

 

Bacteriocin identification  

The bacteriocin mining tool BAGEL3 was used to identify the bacteriocin 

operons encoded in the genome (van Heel et al., 2013). BAGEL3 scans small 

ORFs to identify potential bacteriocin-encoding genes. The surrounding genes 

were then analysed for other bacteriocin-related components such as transporters 

and immunity proteins, thus allowing the entire bacteriocin operon to be identified 

(de Jong et al., 2006). The program antiSMASH was also used to identify antibiotic 

and secondary metabolite encoding genes within the genome, as these compounds 
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are often associated with the Bacillus genus (Medema et al., 2011). Sequence 

alignments of the bacteriocin were performed using the Clustal Omega software. 

 

Bacteriocin purification  

Cultures of B. paralicheniformis APC 1576 were grown statically overnight in 400 

ml volumes of BHI broth aerobically at 37°C. The cell-free supernatant (CFS) was 

passed through a column containing 30 g of Amberlite XAD-16N beads (Sigma-

Aldrich). The column was washed with 250 ml of 35% ethanol and antimicrobial 

activity eluted with 250 ml of IPA. The IPA was removed via rotary evaporation 

and the sample was then applied to a 10 g, 60 ml Strata C18-E solid-phase 

extraction (SPE) column (Phenomenex). The SPE column was washed with 90 ml 

of 35% ethanol and 90 ml of IPA. The IPA was once again removed via rotary 

evaporation from the eluent and the sample applied to a semiprep Jupiter Proteo 

HPLC column (10 x 250 mm, 90 Å, 4 µm) running a 27.5–65 % acetonitrile/0.1 % 

TFA gradient where buffer A was 0.1 % TFA and buffer B was 90% 

acetonitrile/0.1% TFA. Fractions were collected at 1 min intervals and were 

subsequently analysed with MALDI-TOF MS and agar well diffusion assays as 

described below using Lb. delbrueckii subsp. bulgaricus LMG 6901 as the target 

organism to identify active fractions containing peptides of interest. 

 

Antimicrobial assays  

The antimicrobial activity of the isolated peptides was analysed using well diffusion 

assays against a range of indicator organisms (Table 1). Briefly, this involved 

seeding 20 ml of the appropriate agar with 50 µl of an overnight indicator culture; 

the agar was allowed to cool and 7 mm wide wells were then bored in the agar. 
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The purified bacteriocin peptides were lyophilized and diluted separately in 

potassium phosphate buffer (pH 6.8) to a concentration of 50 µM. The combination 

of these peptides in a 1:1 ratio thus gave a total bacteriocin concentration of 25 µM 

for each peptide. Fifty microlitres of this solution was then placed in wells in the 

indicator plate, and these were subsequently incubated overnight under the 

appropriate growth conditions as outlined in Table 1. 

 

Peptide stability 

The stability of the bacteriocin was determined using purified peptides. To 

determine the active temperature range of the lantibiotic, we treated 25 µM aliquots 

of the bacteriocin at 60, 70, 80, 90 and 100°C for 30 min; a sample was also treated 

at 121°C for 15 min. These samples were then tested for inhibitory activity against 

Lb. delbrueckii subsp. bulgaricus LMG 6901 in well diffusion assays as previously 

described. To determine the susceptibility of the bacteriocin to proteases, we 

treated 5 µM aliquots of the α and β peptides separately with proteinase K and α-

chymotrypsin each at a concentration of 10 mg ml-1 (Sigma-Aldrich). Samples 

were incubated at 37°C for 3 h followed by treatment at 100°C for 10 min to 

inactivate these proteases. Both bacteriocin peptides were then combined post-

treatment to give a final total concentration of 2.5 µM; these were then screened 

against Lb. delbrueckii subsp. bulgaricus LMG 6901 in well diffusion assays to 

determine the antimicrobial activity. 

 

6.1.4    Results 

Isolation of B. paralicheniformis APC 1576 

B. paralicheniformis APC 1576 was isolated from the intestinal microbiota of a 
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freshly caught mackerel. In an initial screen for bacteriocin producers, the strain 

was found to inhibit Lb. delbrueckii subsp. bulgaricus LMG 6901 in an overlay 

assay (Figure 1a). In addition, CFSs also inhibited Lb. delbrueckii subsp. 

bulgaricus LMG 6901 in a well diffusion assay, indicating that the antimicrobial 

substance was secreted by the cells into the media (Figure 1b). Colony MS was 

used to determine the molecular masses of the peptides produced by the cell; 

however, the detected peptide masses (Figure 1c) failed to match any previously 

characterized bacteriocin, including lichenicidin, a bacteriocin produced by B. 

licheniformis (Begley et al., 2009). Moreover, more than one source of 

antimicrobial activity was found following purification of the antimicrobial 

peptides. MALDI-TOF MS identified a molecule with a mass of 1422.54 Da, which 

displayed activity against Lb. delbrueckii subsp. bulgaricus LMG 6901 once purified; 

this mass correlates closely with that of bacitracin, which is encoded on the 

genome. The production of more than one antimicrobial from Bacillus species is 

not unexpected. Therefore, in order to identify all potential antimicrobials with 

activity against Lb. delbrueckii subsp. bulgaricus LMG 6901, we sequenced the 

genome of B. paralicheniformis APC 1576. 

 

Identification of a novel two-peptide lantibiotic operon 

Once the draft genome was obtained, the sequence was analysed with BAGEL3 

and antiSMASH to identify the antimicrobials encoded. Gene clusters encoding 

the antibiotics bacitracin, surfactin and fengycin were found within the genome. 

The strain likely produces at least one of these antimicrobials, as antifungal 

activity was also observed against Aspergillus niger in overlay assays (data not 

shown).  
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A novel lantibiotic operon was also identified within the genome of the strain 

(Figure 2). This operon spans approximately 17 kb and was located on a single 

contig of the draft bacterial genome. Two putative lantibiotic-encoding structural 

genes were identified on this operon. ORF1 (frcA1) encodes a 66-amino-acid 

peptide and ORF3 (frcA2) encodes a 71-amino-acid peptide. Analysis of the 

prepropeptides (including the bacteriocin leader sequence) of these lantibiotics 

shows that the formicin A1 prepropeptide displayed 47.8% amino acid identity 

with that of the unmodified haloduracin A1 equivalent and 35.9% identity with 

that of the lantibiotic mersacidin. As the putative bacteriocin appears to be a two-

peptide bacteriocin, two lantibiotic modification enzymes should be present. The 

order of the genes in the operon would suggest that ORF2 (frcM1) is the 

modification enzyme associated with frcA1. Upon analysis, this ORF displayed 

38.7% identity with that of the haloduracin HalM1 modification enzyme. The 

second lantibiotic gene, ORF3 (frcA2), appears to resemble the elongated β 

peptides of the other two-peptide lantibiotics that are involved in membrane 

insertion (Wiedemann et al., 2006). Upon analysis, formicin A2 revealed 42.4% 

identity with the unmodified lichenicidin LchA2 prepropeptide. ORF4 (frcM2) 

encodes the modification enzyme, which follows this structural peptide, and 

displayed 33.6% identity with that of the lichenicidin LchM2 modification 

enzyme. 

ORF5 located downstream of LchM2 is predicted to encode a lantibiotic 

transporter, displaying 52.5% identity with that of the haloduracin transporter, 

HalT. In addition to its function in bacteriocin transport, a sequence encoding a 

C39 peptidase domain (cd02425) can also be found within the gene; this is likely 

involved in the cleavage of the leader sequence from the prebacteriocin. BLAST 
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analysis of ORF6 identified the gene as encoding a hypothetical protein; the 

sequence, however, did show 28.4% identity with that of LanY encoded within 

the lichenicidin operon (Begley et al., 2009). ORF7, ORF8 and ORF9 all encode 

ABC transporter-related peptides, as do ORF11, ORF12 and ORF13. These are 

likely to be involved in bacteriocin immunity. ORF7 and ORF11 both encode 

domains resembling that of the ABC-binding cassette domain of the bacitracin 

resistance transporter (cd03268) and displayed 44.5% identity with that of each 

other. Instead of the common Q-loop motif found in the nucleotide-binding 

domains of such transporters, both these proteins instead encode an E-loop motif 

that is indicative of lantibiotic immunity proteins (Okuda et al., 2010; Alkhatib et 

al., 2012). Each of the other components encodes ABC-2-type transporter domains 

(cl21474). The presence of these gene clusters may suggest a dual mechanism of 

bacteriocin immunity. Immunity to the lichenicidin bacteriocin is thought to 

follow a similar mechanism, with two transporters being encoded, with one 

showing homology to the bacitracin transporter (Dischinger et al., 2009). Such 

mechanisms, however, do not confer a general immunity against all two-peptide 

lantibiotics, as the producers of both lichenicidin (B. licheniformis ATCC 14580) 

and lacticin 3147 (Lc. lactis subsp. lactis DPC 3147) displayed sensitivity to 

formicin (Table 1). 

ORF10 (frcR) that splits the transporter clusters encodes a LanR-equivalent 

transcriptional regulator. This gene encodes helix–turn–helix XRE family 

domains, crucial for binding DNA and regulating gene expression. This LanRtype 

protein displayed 49.4% and 60.3% identity with those of the regulators found 

within the lichenicidin and haloduracin operons, respectively. ORF14 (frcP) 

encodes a lanthionine-specific protease displaying 29.8% identity with that of LicP 
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found in the lichenicidin operon. As in lichenicidin, the LanT-like ORF (frcT) 

likely cleaves the N-terminal glycine leader sequence from both propeptides upon 

transport, whilst the LanP-like protease (frcP) possibly cleaves the six newly 

exposed N-terminal amino acids from the β peptide to generate the mature 

bacteriocin (Tang et al., 2015). The final ORF found in the gene cluster encodes a 

DNA damage-inducible protein. 

 

Bacteriocin structure prediction and analysis 

The spectrum of activity and characteristics of the bacteriocin could not be 

determined from the crude bacteriocin supernatant alone due to the interference 

from other antimicrobials produced by the strain. Thus, it was necessary to purify 

the bacteriocin from the CFS in order to determine the activity of formicin. With 

the use of the predicted masses of the lantibiotic structural peptides identified from 

genomic data, it was possible to determine if the formicin peptides were present 

in active HPLC-derived fractions using MALDI-TOF MS. 

From the purified peptides, masses of 3254.34 and 2472.06 Da were detected for 

the α and β peptides respectively. The predicted mass of the Frcα peptide based on 

the amino acid sequence from the genome is 3310.80 Da; the difference between 

the predicted and observed masses correlates with the loss of three water residues, 

which is most likely associated with the formation of lanthionine and 

methyllanthionine bridges, as well as also the possible formation of one disulfide 

bond, resulting in a predicted mass of 3254.80 Da. Due to the similarities between 

the two, the structure of Halα was used as a basis for the prediction of the structure 

of Frcα. Based on the Halα template, the formation of a lanthionine bridge may 

occur between Ser-7 and Cys-17, whilst methyllanthionine bridges could form 
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between Thr-18 and Cys-23, as well as between Thr-20 and Cys-27, whilst 

Ser-26 remains unaltered. In addition, a disulfide bridge is also likely to form 

between Cys-1 and Cys-8 (Figure 3). 

The second mass determined by MALDI-TOF MS relates to the β peptide of the 

bacteriocin. Due to the presence of the extra LanP serine protease encoded in the 

bacteriocin operon and the similarity formicin displays to haloduracin and 

lichenicidin, it is likely that the first six amino acids following the lantibiotic 

leader sequence are also cleaved from the formicin peptide. Once these amino 

acids are discounted, the predicted mass of the peptide is 2614.95 Da, a difference 

of 142.89 Da from the mass detected by MALDI-TOF MS. This mass difference 

corresponds closely with the loss of 144 Da, which would be associated with eight 

dehydration reactions. Using the β peptides of lichenicidin and lacticin 3147 as 

templates, we predicted that the peptide is most likely to form bridges between 

Thr-1 and Cys-8, Thr13 and Cys-17, Ser-19 and Cys-22, and Thr-23 and Cys-26. 

This would result in Thr-2, Ser-4, Ser-5 and Thr-10 being dehydrated to their 

respective Dha and Dhb residues, whilst Ser-24 remains unaltered (Figure 3). 

The purified peptides were screened against a range of indicator organisms to 

determine the spectrum of inhibition (Table 1). Purified formicin inhibited 29 of 

the 35 indicator strains screened, exhibiting a broad-spectrum of activity against 

a range of bacterial genera including lactobacilli and enterococci, as well as 

notable pathogens such as Staph. aureus, Strep. mutans, Ls. monocytogenes, C. 

difficile and B. subtilis. The Frcα peptide alone at a concentration of 50 µM also 

displayed antimicrobial activity against a number of indicators, whilst Frcβ alone 

displayed no detectable antimicrobial activity. 

In terms of thermostability, the bacteriocin retained a high degree of activity after 
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treatment at 100°C for 30 min, displaying a reduction in the size of the zone of 

inhibition of approximately 28%. Activity was, however, lost after treatment for 

15 min at 121°C. The bacteriocin was also found to be susceptible to digestion by 

a-chymotrypsin and proteinase K, indicating its proteinaceous nature. 

 

Homology between bacteriocins 

The previously described two-peptide lantibiotics all display a degree of homology 

with certain conserved residues found throughout. As a result, sequence 

comparisons of these structural peptides were carried out with formicin to 

determine if this conservation extended to the new bacteriocin (Figure 4). The 

results indicate that formicin complies with the conservation that is seen amongst 

the other bacteriocins. The mersacidin-like α peptides display the greatest levels of 

conservation and this reflects the shared mode of action in specifically binding to 

lipid II. This homology, especially in the lanthionine and methyllanthionine 

bridgeforming regions, confers a structural similarity in each of the peptides. The 

broader role of the β peptides in membrane insertion is reflected in a greater degree 

of divergence in the composition of these peptides. The regions of conservation 

that are seen amongst the β peptides extend to Frcβ also, with the C-terminus of 

the peptides showing a relatively conserved pattern of lanthionine and 

methyllanthionine bridge formation. The N-terminus of the β peptides displays a 

much lower degree of conservation amongst the bacteriocins; despite this, these 

N-terminal regions are rich in hydrophobic amino acids, which likely play an 

important role in membrane insertion and pore formation. 

 

6.1.5 Discussion 
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Formicin represents a novel member of the class of two-peptide lantibiotics. This 

class of bacteriocins are themselves unusual given that the lipid II-binding and 

pore-forming activities of the bacteriocin are performed by two separate peptides, 

whilst certain lantibiotics such as nisin and subtilin have the ability to carry out 

both functions on a single peptide. It is unclear as to whether these two-component 

lantibiotics have evolved due to a divergence of a nisin-like lantibiotic into two 

separate genes due to a duplication event or whether they have come about due to 

the convergence of a mersacidin-like lipid II-binding lantibiotic and a pore-

forming lantibiotic. If the latter is the case, it is interesting as to how such different 

peptides would have evolved to depend on each other for antibacterial activity, and 

in some cases, lose the activity each would have shown on its own. 

Sequencing of B. paralicheniformis APC 1576 allowed for the elucidation of the 

formicin bacteriocin operon (Figure 2). Analysis of the bacteriocin operon 

identified two lantibiotic structural genes (frcA1 and frcA2) and two modification 

enzymes (frcM1 and frcM2) that convert the formicin structural peptides into the 

mature lantibiotics. Transport and leader cleavage are likely to be carried out by 

frcT, whilst frcP may act as a further protease, cleaving six N-terminal amino acids 

from Frcβ. ORF7, ORF8 and ORF9 and ORF11, ORF12 and ORF13 all predict to 

encode ABC transporters that are likely to comprise the strain’s immunity 

mechanism, protecting itself from attack by its own bacteriocin. Comparative 

analysis of the bacteriocin structural genes allows for the homology between 

bacteriocins to be determined (Figure 4). In the case of both Frcα and Frcβ, the 

closest homologues are the haloduracin α and β mature peptides, displaying 71% 

and 39% identity respectively. Such homology reflects the close relationship of the 

two producers, both belonging to the Bacillus genus. The differences between the 
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formicin and lichenicidin peptides are surprisingly large, given that both are 

produced from related species, with the α peptides displaying 46% identity and the 

β peptides displaying 36% identity. This would suggest that both strains may have 

acquired these operons independently. The layout of the formicin operon itself 

differs from that of the previously characterized two-peptide lantibiotics, and 

transcription of the formicin operon would appear to be unidirectional whereby the 

genes for the structural peptides are separated by those encoding the LanM 

modification enzymes, an arrangement that seems to be unique to formicin. Both 

the haloduracin and lichenicidin structural genes (Figure 2) would likely be 

transcribed in opposite directions, possibly indicating that gene inversion may 

have taken place. Such differences again display the evolutionary divergence seen 

between this class of bacteriocins. 

Analysis of the primary structure of these peptides indicates that some key 

differences exist between the formicin peptides and other members of the class 

despite such strong regions of homology found throughout. The α peptide of 

formicin, for example, contains only five hydrophobic amino acids, whilst others 

in the class contain an average of nine. Whilst hydrophobic residues are crucial for 

membrane activity in certain bacteriocins, it has been suggested that it is the 

charged residues of these lantibiotics that control binding to lipid II as opposed to 

hydrophobic interactions. This indicates that binding of formicin to lipid II is not 

compromised despite its lower hydrophobicity, a fact that is supported by the 

activity of the α peptide independent of the β peptide (Hsu et al., 2003; Fimland et 

al., 2006). As with the α peptides from enterocin W and plantaricin W, the α 

peptide of formicin contains six charged amino acids, with an overall positive 

charge of plus two, rendering them amongst the most highly charged in the class. 
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Not only do these charged residues affect the structure of the peptide but also the 

higher positive charge may lead to an increased affinity for the anionic bacterial 

membrane. The formicin β peptide differs most when compared to other lantibiotic 

β peptides with regard to charge. As is common in this class, the N-terminal tails 

of the β peptides are composed largely of hydrophobic residues, crucial for 

membrane insertion and pore formation. Whilst the previously described β 

peptides all contain a positively charged C-terminus, containing Lys and Arg 

residues, formicin is unique in that it encodes a negatively charged β peptide. The 

lone charged residue found in the peptide is the penultimate C-terminal Asp 

residue. This portion of the peptide is believed to be involved in the interaction 

between the α and β peptides (Wiedemann et al., 2006); thus, this negative residue 

may suggest an increased affinity for the positively charged α peptide, possibly 

representing a stronger complex compared to previously described pairs. 

The tertiary structure of these peptides has an important functional role in the 

antimicrobial activity of these lantibiotics. Analysis of the N-terminus of Frcα 

suggests the formation of a disulfide bridge between Cys-1 and Cys-8. Whilst this 

has been shown to be inessential for antimicrobial activity, it may reduce the 

degradation of the peptide once secreted (Cooper et al., 2008). Of the lantibiotic 

rings believed to be formed in Frcα, only the C ring is thought to be essential, with 

alterations abolishing all activity completely in both haloduracin and lacticin 3147 

(Cooper et al., 2008; Cotter et al., 2006). The B ring found in these α peptides has 

been shown to be unnecessary, which is unusual given the high degree of 

conservation amongst such bacteriocins, including mersacidin. Disruption of the 

A ring in haloduracin has been shown to reduce but not eliminate activity, thus 

showing that this region is important but not essential for the antibacterial activity 
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of the bacteriocin (Cooper et al., 2008). As per analysis of the haloduracin β 

peptide, the A ring of the peptide has been found to be dispensable, whilst loss of 

the C and D rings led to a reduction in activity but not total elimination. Disruption 

of the B ring could not be achieved without disruption of the other ring structures 

(Cooper et al., 2008). 

 

6.1.6 Conclusion 

In this study, formicin, a novel member of the class of two peptide lantibiotics has 

been identified. Key regions of homology, primarily those involved in lanthionine 

and methyllanthionine bridge formation, seen throughout this class have been 

shown to be extended to formicin. Such homology is expected to confer a similar 

mode of action to all lantibiotics in this class, with the α peptide of the bacteriocin 

binding to lipid II and subsequently recruiting the β peptide for membrane 

insertion and pore formation. Whilst formicin likely conforms to such 

mechanisms, there are certain key variations differentiating it from the rest of the 

class. The reduction of hydrophobicity of Frcα and the unusual negative charge of 

Frcβ make formicin a unique member of the two-peptide lantibiotics. Further 

studies are required to determine the effects of such changes on the activity of the 

bacteriocins, as it is recognized that charge and hydrophobicity play a central role 

in the activity of these lantibiotics and in bacteriocins in general. Formicin itself 

displays a broad range of inhibition, inhibiting several clinically relevant Gram-

positive pathogens, such as C. difficile, Staph. aureus, Strep. mutans and Ls. 

monocytogenes. With the continued progression of antibiotic resistance in 

pathogenic bacteria, the discovery of novel therapies against such agents is a 

priority and since the bacteriocin is produced by a species long associated with 
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biotechnology applications, a straightforward route towards large-scale processing 

of the readily purified peptides is anticipated. Thus, formicin represents a potential 

novel antimicrobial therapy against a range of pathogenic bacteria. 
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Table 1. Growth conditions of indicator strains and inhibition spectrum of formicin 

pure peptides following well diffusion assays. 

 

 

MRS, de Man, Rogosa and Sharpe; BHI, brain–heart infusion; RCM, reinforced 

clostridial media. -, No activity; +, 0.5–1.5 mm inhibition zone; ++, 2-3.5 mm 

inhibition zone, +++, ≥ 4 mm inhibition zone 
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Figure 1 Formicin identification and activity. (A) Deferred antagonism assay against 

Lb. delbrueckii subsp. bulgaricus LMG 6901 identified B. licheniformis APC 1576 as 

an antimicrobial producer. (B) Antibacterial activity of the B. licheniformis APC 1576 

CFS against Lb. delbrueckii subsp. bulgaricus LMG 6901 in a well diffusion assay. (C) 

Colony MALDI-TOF MS displaying the masses of the peptides produced by B. 

licheniformis APC 1576, allowing identification of the antimicrobials produced 

(3255.92 Da = Frcα (formicin); Frcβ is not seen using colony MALDI-TOF MS; 

1423.94 Da = bacitracin) 

 

(A)       (B) 

(C) 
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Figure 2 Formicin operon and visualization of the formicin, lichenicidin and 

haloduracin bacteriocin gene clusters. Clear bacteriocin homologues are identified using 

the accepted nomenclature for describing lantibiotics. For formicin, frcA1 and frcA2 

encode the putative bacteriocins, frcM1 and frcM2 encode the accompanying 

modification enzymes and frcT and frcP are involved in bacteriocin transport and leader 

cleavage. Similar nomenclature is used for lichenicidin (lic) and haloduracin (hal) 

genes. Genes are colour-coded as per BAGEL3, indicating the putative role of each 

protein. 
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Figure 3 Lantibiotic structure prediction. The structures of the formicin α and β 

peptides were predicted using the Halα and Licβ peptides, respectively, as templates. 

The conservation of key amino acids suggests a structural homology between the 

peptides. The rings formed from lanthionine and methyllanthionine bridges are labelled 

alphabetically, with the N-terminal ring of Frcα excluded as it is predicted to be formed 

via a disulfide bond. The bacteriocin prepropeptides are shown below each structure, 

with likely dehydrated serine and threonine residues indicated in red. 
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Figure 4 Sequence alignment of formicin structural peptides. Using Clustal Omega, 

the formicin peptides FrcA1 (top image) and FrcA2 (bottom image) were aligned 

against the previously described two-component bacteriocins. The percentage amino 

acid identities of each peptide with the formicin peptides are shown. The conservation 

scores between the peptides were calculated with Clustal Omega for the alignments 

containing less than 25% gaps; asterisk (*) represents a score of 10. The sequences in 

bold face represent the six amino acids cleaved from the N-terminus of these peptides 

by LanP proteases. 
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6.2.1  Abstract  

We identified a strain of Actinomyces ruminicola which produces a potent 

bacteriocin with activity against a broad range of Gram-positive bacteria, many of 

which are pathogenic to animals and humans. The bacteriocin was purified and 

found to have a mass of 4,091 ± 1 Da with a sequence of 

GFGCNLITSNPYQCSNHCKSVGYRGGYCKLRTVCTCY containing three 

disulfide bridges. Surprisingly, near relatives of actifensin were found to be a series 

of related eukaryotic defensins displaying greater than 50% identity to the 

bacteriocin. A pangenomic screen further revealed that production of actifensin-

related bacteriocins is a common trait within the genus, with 47 being encoded in 

161 genomes. Furthermore, these bacteriocins displayed a remarkable level of 

diversity with a mean amino acid identity of only 52% between strains/species. 

This level of redundancy suggests that this new class of bacteriocins may provide 

a very broad structural basis on which to deliver and design new broad-spectrum 

antimicrobials for treatment of animal and human infections. 

 

6.2.2  Importance  

Bacteriocins (ribosomally-produced antimicrobial peptides) are potential 

alternatives to current antimicrobials given the global challenge of antimicrobial 

resistance. We identified a novel bacteriocin from Actinomyces ruminicola with 

no previously characterized antimicrobial activity. Using publicly available 

genomic data, we found a highly conserved yet divergent family of previously 

unidentified homologous peptide sequences within the genus Actinomyces with 

striking similarity to eukaryotic defensins. These actifensins may provide a potent 

line of antimicrobial defense/offense, and the machinery to produce them could be 
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used for the design of new antimicrobials given the degeneracy that exists 

naturally in their structure. 

 

6.2.3  Introduction 

Novel antimicrobial compounds are increasingly important in the food, agriculture and 

medical fields due to decreasing efficacies of current antimicrobial treatments. 

Bacteriocins are ribosomally-synthesized antimicrobial peptides produced by bacteria 

which can target another bacterium of the same species (narrow spectrum) or bacteria 

of other species/genera (broad spectrum) (1). Bacteriocin producers are self-protected 

through the production of specific immunity proteins and, as bacteriocins are gene 

encoded, they can be genetically modified. Bacteriocins produced by Gram-positive 

bacteria have been grouped according to their primary structure into class I (post-

translationally modified bacteriocins) and class II (unmodified or cyclic bacteriocins) 

(2). Class II is split into several subgroups, including the class IId bacteriocins, which 

are a heterogenous group of linear, unmodified, nonpediocin-like peptides (3). 

Defensins are antimicrobial peptides ubiquitous among eukaryotes which play a 

role in innate immunity but have also been found to act as signaling peptides, toxins, 

enzyme inhibitors and abiotic stress responders, and to have anticancer properties. 

Defensins are small (<10 kDa) cysteine-rich (forming three to six disulfide bonds) 

peptides with low amino acid identity, and the two superfamilies are thought to have 

evolved convergently (4). Only two expressed defensin-like bacteriocins have been 

described; the laterosporulins were previously identified among prokaryotes and 

contain disulfide bonds in positions homologous to those in eukaryotic defensins (5, 

6). Other disulfide bond-containing bacteriocins, such as bactofencin, have been 

compared with eukaryotic defensins due to their highly cationic nature (7, 8). 
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Laterosporulin and its homolog laterosporulin10 are class IId bacteriocins produced 

by Brevibacillus spp. which have been described as broad-spectrum antimicrobials 

against both Gram-negative and Gram-positive bacteria. The two peptides are 5.6 kDa 

and 6.0 kDa and share only 57.6% amino acid sequence identity but have conserved 

cysteines, which are characteristic of eukaryotic defensins (6). 

Actinomyces spp. are a heterogenous group of high-GC-content, Gram-positive 

non-spore-forming facultative or obligate anaerobes that belong to the 

Actinomycetaceae family within the phylum Actinobacteria (9). In humans, a 

number of species are known colonizers of hard surfaces in the oral cavity, where 

they play a key role in plaque biofilm formation (10, 11). They have been identified 

as core members of the oral bacteriome, present in moderate abundance (>0.1% to 

>2.0%) among geographically diverse populations (10, 12–15). Actinomyces spp. 

have been implicated in oral health as being associated in greater abundance in 

individuals with dental caries, one of the most prevalent chronic oral diseases 

worldwide (14, 15). Most characterized strains are clinical isolates of human 

origin, while some opportunistically pathogenic species such as Actinomyces 

israelii and Actinomyces gerencseriae are known to cause the uncommon 

infectious disease actinomycosis (16). Though Actinomyces spp. are abundant in 

the oral cavity, little is known about their presence in the gut, probably due to their 

low abundance (<0.1%) (10). Many Actinomyces spp. have been isolated from 

fecal material and from the gastrointestinal tracts of different animals, indicating a 

propensity for gastric transit survival, and their presence has also been noted in the 

urogenital tract (17–24). Here, we identify a new group of bacteriocins using a 

pangenomic in silico approach paired with functional screening. Many in silico 

genome mining tools have been developed for the successful detection of novel 
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antimicrobial producing operons (25, 26). Obviously, these methods rely on 

relationships with previously known genes and therefore, functional screening is 

crucial for the identification of unrelated antimicrobials. In this study, we isolated 

a potent bacteriocin-producing strain of Actinomyces ruminicola from sheep feces; 

the bacteriocin produced resembled eukaryotic defensins, having three 

characteristic disulfide bridges. A subsequent pangenus Actinomyces analysis 

revealed that such bacteriocins are widely distributed in these bacteria, albeit with 

a highly variable structure. 

 

6.2.4 Materials and Methods 

Isolation of bacteria and identification of bacteriocin production 

Samples of raw milk, unpasteurized cheeses, sheep feces and honey were serially 

diluted in maximum recovery diluent (MRD) (Oxoid) and plated on several medium 

types for the isolation of bacteriocin-producing bacteria: Streptococcus 

thermophilus selective agar (tryptone, 10.0 g liter-1; sucrose, 10.0 g liter-1; yeast 

extract, 5.0 g liter-1; K2HPO4, 2.0 g liter-1; bromocresol purple, 0.03 g liter-1; 

agar, 15.0 g liter-1) incubated aerobically at 42°C; M17 (Merck) supplemented with 

10% (wt/vol) lactose incubated at 30°C aerobically; de Man, Rogosa, and Sharpe 

(MRS; Difco) agar supplemented with 30 µg ml-1 L-vancomycin hydrochloride 

incubated at 37°C; MRS adjusted to pH 5.4 incubated at 42°C anaerobically; 

Lactobacillus selective agar (LBS) incubated at 30°C anaerobically; and TOS 

(transgalactosylated oligosaccharide) agar supplemented with 50 µg ml-1 lithium 

mupirocin incubated at 37°C anaerobically. 

Isolates were subject to an initial bacteriocin production screen by overlaying with 

10 ml “sloppy” MRS agar (7.5 g liter-1 agar) tempered to 50°C and seeded with an 
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overnight culture of Lactobacillus delbrueckii subsp. bulgaricus LMG 6901 (0.25% 

[vol/vol]). Cultures which were found to produce distinct zones of inhibition in the 

agar overlay were cultured in broth for well diffusion assays. For well diffusion 

assays, 20 ml of sloppy MRS agar seeded with L. delbrueckii subsp.  bulgaricus 

LMG 6901, as described above, was poured and allowed to set, in which 6-mm-wide 

wells were then bored. Fifty microliters of cell-free supernatant was added to each 

well, and plates were incubated at 37°C overnight. Zones of inhibition were 

indicative of antimicrobial activity. 

 

Bacterial strains, media, reagents 

Strains used in this study and their incubation conditions are listed in Table S3 in 

the supplemental material. A. ruminicola DPC 7226 was routinely maintained in 

brain heart infusion (BHI) broth (Oxoid) anaerobically at 37°C. Medium reagents 

were sourced from Sigma Aldrich (Co. Wicklow, Ireland) unless stated otherwise.  

 

Purification of actifensin 

A. ruminicola DPC 7226 was grown anaerobically and statically at 37°C in 500-ml 

volumes of BHI broth for 48 h. Following centrifugation, cell-free supernatant was 

applied to an Econo column containing 30 g Amberlite XAD beads prewashed with 

Milli-Q water. The column was washed with 300 ml 30% ethanol and 300 ml 2-

propanol–0.1% trifluoroacetic acid (TFA) (IPA). IPA was removed by rotary 

evaporation, and the sample was applied to a 60-ml 10-g Strata-E C18 SPE column 

(Phenomenex, Cheshire, UK) preequilibrated with methanol and water. The 

column was washed with 60 ml 25% ethanol and then 60 ml IPA. 

Centrifuged cells were combined with 100 ml IPA and stirred at room temperature 
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for 3 to 4 h. The resulting suspension was centrifuged, and the cell extract and 

purified CFS were assayed by MALDI-TOF mass spectrometry to determine the 

molecular mass of antimicrobial compounds (Axima TOF2 MALDI-TOF mass 

spectrometer; Shimadzu Biotech, Manchester, UK). A MALDI target plate was 

precoated with a-cyano-4-hydroxycinnamic acid (CHCA) matrix solution, 0.5 µl of 

the supernatant from the cell extract was then placed on the target, and a final layer 

of matrix solution was added. Positive-ion linear or reflectron mode was used to 

detect peptide masses. 

 

Actifensin characterization 

Characterization was performed using purified bacteriocin. To test protease 

susceptibility, 100 µl aliquots of 50 µg ml
-1 were subjected to treatment with 20 mg ml

-

1 proteinase K (Sigma-Aldrich) and a-chymotrypsin (Sigma-Aldrich) at 37°C for 3 h, 

followed by a 10-min incubation at 100°C to denature the enzymes. Fifty-microliter 

aliquots were assayed on L. delbrueckii subsp. bulgaricus LMG 6901 indicator plates. 

Heat stability was determined by 30 min incubations at 60°C, 70°C, 80°C, 90°C, and 

100°C and by autoclaving at 121°C for 15 min.  

For spectrum of activity, a well diffusion assay was carried out as described above 

with the strains in the appropriate medium. Fifty microliters of purified bacteriocin at 

a concentration of 50 µg ml
-1 was added to a well. Following overnight incubation 

under the appropriate conditions, zones of activity were measured and categorized 

as no inhibition, weak inhibition (0.5 mm to 2 mm), strong inhibition (2.5 mm to 5 

mm), and very strong inhibition (>5 mm). MIC against selected pathogens was 

assayed as described above, starting at 100 µg ml
-1 peptide solution and serially 

diluted 1:2 to 0.78 µg ml
-1

. 
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Draft genome sequencing 

DNA was extracted using a GenElute bacterial genomic DNA kit (Sigma) and prepared 

for sequencing using a Nextera XT kit (Illumina) for library preparation. DNA was 

quantified using a Qubit 2.0 fluorometer. Sequencing was carried out using an Illumina 

MiSeq platform with paired-end 2 x 300-bp reads by the Teagasc Sequencing Centre, 

Teagasc Food Research Centre, Moorepark, Fermoy, Ireland. Assembly was performed 

using tools available on the public server at https://usegalaxy.org (30). Assembly was 

performed de novo using SPADES (version 3.0.0) and resulted in 116 contigs. Contigs 

were aligned to a reference genome using Mauve (version 20150226, build 10), 

followed by annotation with RAST (version 2.0). The annotated genome was analyzed 

for predicted bacteriocin and secondary metabolite production clusters using BAGEL4 

(37), and any further annotation was carried out using Artemis genome browser 

(version 16.0.0). 

 

BAGEL screen and phylogenetic analysis of Actinomyces species 

GenBank and FASTA assemblies of the genus Actinomyces were acquired from the 

NCBI assembly database and screened using BAGEL4 (37). Where available, 

corresponding 16S rRNA sequences were acquired from the RDP database (38) and, 

where unavailable, Actinomyces sp. genomes were subject to analysis using 

RNAmmer (32). 16S rRNA sequences were aligned using MUSCLE (33), and a 

phylogram was generated using iTOL (39). The phylogram was then overlaid with 

the BAGEL screen data.  

 

Reverse bacteriocin identification, peptide and structure prediction, and 

https://usegalaxy.org/
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homology 

Two hundred micrograms freeze-dried purified peptide was sent for N-terminal 

amino acid sequencing (AltaBioscience, UK). The resulting 15-residue sequence, 

GFGXNLITSNPYQXS, was used to search for a bacteriocin structural gene with 

Artemis genome browser. Following identification of the structural gene, other 

genomes were searched for genes homologous to the active propeptide using 

BLASTp; genes on contigs consisting of less than 5 kbp were excluded. Additional 

actifensin homologs were identified from the study by Dash et al. (27) among 147 

nonredundant bacterial CSaþ peptide sequences (27). Alignments were generated 

using Clustal Omega (40) and visualized with Jalview (41). Structural modeling 

was performed using SWISSMODEL (42) online software, and structural images 

were generated using PyMOL (43). 

 

Data availability 

Genomic data analyzed in this study were deposited in GenBank/EMBL under 

accession number SPKK00000000 and are publicly available from the NCBI database 

at https://www.ncbi.nlm.nih.gov/. 

 

6.2.5 Results 

Identification of a novel bacteriocin-producing Actinomyces sp.  

Actinomyces ruminicola DPC 7226 was isolated from sheep feces. During an initial 

screen of >10,000 colonies for bacteriocin producers, this strain was found to 

produce a large zone of inhibition when overlaid with an acid-tolerant indicator 

species, Lactobacillus delbrueckii subsp. bulgaricus LMG 6901 (Figure 1a). The 

neutralized cell-free supernatant (CFS) was also found to produce a zone of 

https://www.ncbi.nlm.nih.gov/nuccore/SPKK00000000
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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inhibition against L. delbrueckii subsp. bulgaricus LMG 6901, indicating 

production of a soluble antimicrobial molecule (Figure 1b). This activity was 

eliminated when the supernatant was treated with proteinase K, demonstrating that 

the antimicrobial is proteinaceous in nature (data not shown). 

Antimicrobial activity was purified from pelleted bacterial cells (C18 SPE; reversed 

phase high-performance liquid chromatography [HPLC]) and CFS (Amberlite 

XAD16N, C18 SPE; reversed-phase HPLC), and matrix-assisted laser desorption 

ionization–time of flight mass spectrometry (MALDI-TOF MS) of active peaks 

detected a mass of 4,091 ± 1 Da (Figure 2a and 2b). The mass was also detected 

by colony MS (Figure 2c). The activity of the HPLC-purified fraction from CFS 

was assayed against L. delbrueckii subsp. bulgaricus LMG 6901 and found to be 

active at <1 µg ml—1 (Figure 2d). The antimicrobial peptide was found to be heat 

stable, retaining almost all activity after treatment for 30 min at 100°C, but was 

completely lost after treatment at 121°C for 15 min.  

 

Spectrum of inhibition 

A range of indicator organisms was tested against the purified antimicrobial to 

determine the spectrum of inhibition. The antimicrobial was active against a broad 

range of genera, with 22 of the 27 strains screened inhibited to various degrees, 

including species of the genera Lactococcus, Enterococcus, Lactobacillus, 

Streptococcus, Pediococcus, Bacillus, Staphylococcus, other Actinomyces spp., and 

Clostridium spp. (Figure 3). No inhibition against the Gram-negative species 

Salmonella enterica or Escherichia coli was observed. Listeria spp. and Bacillus spp. 

were inhibited weakly or not at all (Figure 3). Inhibition against other Actinomyces spp. 

was found, and activity was particularly strong against Staphylococcus aureus and 
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Clostridium difficile.  

MICs were determined against Enterococcus faecium APC1031, E. faecium 

NCDO0942, S. aureus R693, Streptococcus agalactiae APC1055, and C. difficile 

DPC6534 (see Figure S1). Enterococci were inhibited at 3.05 to 6.10 µM. S. aureus 

was inhibited at 3.05 µM. S. agalactiae and C. difficile were inhibited at 0.76 µM (Figure 

S1). 

 

Distribution of genes encoding bacteriocins in the genus Actinomyces 

As the active mass could not be matched to any previously known antimicrobial 

peptide and no antimicrobial compounds were previously described within the 

species, the genome of A. ruminicola DPC 7226 was sequenced. Following genome 

annotation, the draft genome was analyzed using BAGEL4 to search for potential 

antimicrobial-encoding operons. Gene clusters were identified containing putative 

genes for thiopeptide production (data not shown), but the masses predicted, 2,195.4 

Da and 1,152.5 Da, did not correspond with the mass detected in the antimicrobial 

HPLC fraction. 

In conjunction with screening of the genome of A. ruminicola DPC 7226, we also set 

out to characterize the antimicrobial potential of the genus. One hundred and sixty one 

Actinomyces species genomes in various stages of assembly were screened using 

BAGEL4. The isolates were obtained from humans (78.2%) or other animals (16.1%) 

or were of unknown origin (4.9%), while one was an environmental isolate (0.6%). One 

hundred and six areas of interest were revealed in 76 strains, covering 18 species. 

Ninety areas of interest contained complete operons for antimicrobial production. 

Twenty-nine were predicted to encode class I bacteriocins, including 7 LanBC modified 

lantibiotics, 16 LanM modified lantibiotics, 1 single-peptide sactibiotic, 3 lasso 
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peptides, and 2 thiopeptides. Thirteen operons were predicted to encode class IId 

bacteriocins, and a further 48 operons were predicted to encode bacteriolysins. A 

phylogenetic tree was generated from the 16S rRNA sequences of 142 Actinomyces 

genomes with Bacteroides fragilis ATCC 25285 as the root and overlaid with operon 

type and strain source (Figure 4). Bacteriocin production was widely distributed across 

the Actinomyces pangenome, though bacteriolysin production was found exclusively 

among human isolates (Figure 4) 

 

Genetic and molecular characterization of the actifensin determinant 

To identify the gene encoding the 4,091 ± 1 Da peptide within the genome of A. 

ruminicola DPC 7226, pure peptide was subjected to N-terminal sequencing, which 

revealed a primary sequence consisting of Gly-Phe-Gly-X-Asn-Leu-Ile-Thr-Ser-

Asn-Pro-Tyr-Glu-XSer, with blanks at residue positions 4 and 14 denoted as 

probable cysteines (Figure 5a). This 15-amino-acid sequence was matched to a 69-

residue small open reading frame in the draft genome, capable of encoding a 37-

amino-acid mature peptide (hereafter referred to as actifensin) with a predicted mass 

of 4,097.7 Da preceded by a 32-residue leader sequence (Figure 5a). 

The genetic locus encoding actifensin is shown in Figure 5b, where afnA encodes 

actifensin. Within an approximately 6.5-kbp upstream region of afnA, genes 

encoding an ABC transporter permease (afnJ), an ATP binding ABC transporter 

(afnK), and another ABC transporter permease (afnL) were identified as being 

present. Downstream of afnA, three hypothetical genes of unknown function (afnG 

to afnI) were found, followed by genes encoding another ATP binding ABC 

transporter (afnF), a predicted α/β hydrolase superfamily protein (afnE), another 

protein of unknown function, a subtilisin-like protease, and a LuxR family 
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transcription factor (afnD, afnC, and afnB, respectively). Within afnE is a predicted 

RHO-independent transcription terminator, and upstream of the structural gene are 

four predicted promoters. A putative ribosome binding site was also identified nine 

base pairs upstream of the ATG start codon for the peptide consisting of a purine 

rich sequence, 5’-GAAAGG-3’ (Figure 5a). 

The leaderless structural peptide was found to have a predicted mass of 4,097.7 

Da. This mass was approximately 6 Da higher than detected by MALDI-TOF MS. 

The difference between predicted and observed masses most likely corresponds 

to the loss of six hydrogen atoms during the formation of disulfide bonds between 

the six cysteines. Short peptides with numerous disulfides in specific positions are 

characteristic of the defensin peptide families (4). To confirm the presence of 

disulfide bonds in actifensin, pure peptide was reduced and alkylated to break open 

the disulfide bonds and then subjected to trypsin digestion and peptide mass 

fingerprint analysis by MALDI-TOF MS. Reduction and alkylation of actifensin 

resulted in a 4,440-Da mass, which correlates with the expected increase in mass 

of 58 Da for each cysteine. MALDI-TOF MS analysis of the subsequent trypsin 

digest detected a mass of 2,257.02 Da, which corresponds to the first 19 amino 

acids of the peptide (Gly-1 to Lys-19) containing three alkylated cysteine residues. 

Three other predicted masses for Ser-20 to Arg-24, Gly-25 to Arg-31, and Thr-32 to 

Tyr-37 (predicted and alkylated masses of 581.30 Da, 584.25 Da, and 803.31 Da, 

respectively) were not detected. 

 

Discovery of actifensin homologs 

BLASTp analysis with AfnA found homologous open reading frames (ORFs) within 

the fungal genera Blastomyces, Emmonsia, and Emergomyces, Helicocarpus griseus, 
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and a defensin from the mollusk species Ruditapes philippinarum (58%, 58%, 55%, 

52%, and 61% identity, respectively) (see Figure S2). Characteristic conserved 

cysteines were noted, though low sequence identity was observed between the mature 

actifensin peptide and eukaryotic defensins. The same was found when AfnA was 

compared with known previously characterized arthropod, ascomycete, and 

mollusk defensins (Figure 6a) with conserved secondary structures (Figure 6b). 

BLASTp analysis using the 69-residue AfnA sequence identified 37 homologous 

structural genes within the genus Actinomyces and one homolog from a 

Corynebacterium sp. sequence (Figure 7a). Further analysis indicated that the 

homologs were present in 15 operons from 14 strains, in addition to conserved 

genes for transport, transcription regulation, and proteolytic activity (Figure 7b). 

Actinomyces sp. strain 2119, Actinomyces oris S64C, Actinomyces succiniciruminis 

AM4, A. oris CCUG34286, Actinomyces sp. strain F0337, Actinomyces sp. strain 

HMSC075C01, and A. oris MMRCO6-1 had at least two actifensin homologs, while 

Actinomyces sp. F0337 contained an operon with seven copies, the most observed 

within one genome (Figure 7b). The genome of A. oris MMRCO6-1 contained six 

encoded actifensin homologs detectable over two contigs, but only one (contig 50) 

contained the other conserved ORFs (afnB-I and afnJ-K) present in the actifensin 

operon. Twelve of 14 operons had a highly conserved arrangement of afnB-I, all of 

which also had ABC transporter genes directly upstream of the bacteriocin ORF. 

The mean amino acid identity between all structural genes was 52%. The highest 

identity observed between actifensin and a homolog was 77% identity with afnA in 

Actinomyces sp. strain CTC72, though higher identities were observed between 

other peptides (see Figure S3). We proceeded to characterize ten predicted cysteine-

stabilized aþ (CSaþ) peptides predicted by Dash et al. (27). The peptides are present 
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in five Actinomyces genomes bringing the total number of peptides to 47 

homologous structural genes in 19 strains. Actinomyces oris S24V, Actinomyces 

denticolens PA, Actinomyces sp. strain Chiba-101, Actinomyces johnsonii F0542, 

and Actinomyces sp. strain F0330 have genes which were not identified using 

BLASTp and the actifensin propeptide sequence (27). Strains S24V, PA, and 

Chiba-101 display the conserved afnB to afnI ORFs following afnA, which are 

absent in strains F0330 and F0542 (Figure 7b). 

The propeptide contains a conserved G-X-E motif prior to the start of the mature peptide 

(Figure. 7a). In 36 of the peptides, an alanine residue is present after the glycine, which 

may be involved in secretion and cleavage. This putative GA cleavage signal is replaced 

by a TS motif in 8 of the 49 peptides (A. oris S64C afnA5, A. oris CCUG34286 afnA7, 

A. oris MMRCO6-1 contig 75 afnA2, Actinomyces sp. F0337 afnA4, Actinomyces sp. 

HMSC075C01 afnA4, A. oris MMRCO6-1 contig 50 afnA4 and afnA3, and A. oris 

S24V afnA5). A conserved Pro residue was noted following the first conserved Cys 

in addition to a conserved G-Y-X-G-G-X-C sequence at positions 56 to 62 of the 

propeptide (22 to 28 in the active peptide) (Figure 7a). 

 

6.2.6   Discussion 

We describe a novel group of bacteriocins with broad-spectrum inhibitory activity 

within the Actinomyces genus. Actifensin is the first such bacteriocin to be 

discovered, which is produced by a strain of Actinomyces ruminicola.  

Actifensin inhibited a broad range of Gram-positive species, including notable 

pathogens such as vancomycin-resistant Enterococcus and methicillin-resistant 

Staphylococcus. Given the global challenge of the increase in antibiotic resistance, 

there is an urgent need for new classes of antimicrobials. Bacteriocins have been 
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suggested as an alternative to conventional antibiotics due to their effectiveness at 

low concentrations and their potential to be genetically modified (2). Class II 

bacteriocins are diverse in sequence and structure whose mechanism of action is 

through interaction with the cell membrane, causing permeabilization and pore 

formation and dissipating the membrane potential (3). The defensin-like bacteriocin 

laterosporulin10 has been found to act on the cell membrane of S. aureus Mtb 

H37Rv, disrupting cellular homeostasis (6). Plectasin and eurocin, fungal C6 

defensins, are known to bind lipid II, inhibiting bacterial cell wall biosynthesis (44, 

45). Actifensin possesses an N-terminal loop extension which, in other defensin 

peptides, has been implicated in membrane disruptive capability (31). The loop 

consists of nine residues between Cys-4 and Cys-14 beginning with an Asn. In most 

of the other peptide sequences identified, the N loop is six residues long, beginning 

with a Pro (except in AfnA from Actinomyces sp. strain F0588 or A. naeslundii 

S44D, which has an eight-residue N loop with a serine or arginine in the first 

position, respectively, followed by a Pro) (Figure 7a).   

Actifensin also inhibited the growth of C. difficile and Clostridium sporogenes. 

Clostridia are known colonizers of the rumen and, as A. ruminicola DPC7226 was 

isolated from the feces of a ruminant, actifensin production may provide a competitive 

advantage in the gut microbiome. Actinomyces neuii and Actinomyces radingae were 

both inhibited by actifensin; however, it would be interesting to see if cross-resistance 

between actifensin and other actifensin-like producers exists.  

A pangenus in silico screen revealed that the genus Actinomyces (Figure 4) is a rich 

source of antimicrobials and has genes for bacteriolysin and lantibiotic production 

(48/90 and 29/90 operons, respectively). Thirteen class II bacteriocins were predicted 

by BAGEL, but neither the actifensin operon nor its homologs were detected due 
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to lack of similarity with known systems. One previous study described 

odontolycin, a bacteriocin produced by an Actinomyces odontolyticus dental plaque 

isolate, though no further research on the peptide was reported (34). Interestingly, 

in our study, no operons for bacteriocin production were found among five A. 

odontolyticus genomes screened (Figure 4).  

The actifensin structural gene encodes a 37-amino-acid mature peptide preceded by a 

32-amino-acid leader sequence (Figure 5). A GA motif at positions -3 and -2 was 

identified, which is a known cleavage signal used in ABC transporter-mediated 

secretion (36). Indeed, there are a number of predicted ABC transporter genes within 

the actifensin operon. ABC transporter genes could also play a role in self-immunity to 

the actifensin peptide. Unusually, an additional glutamic acid residue is present at 

position-1 before the mature peptide. As the purified peptide was subjected to N-

terminal sequencing, we can be certain that the mature peptide begins with a glycine 

residue. Therefore, the additional glutamic acid residue at position-1 is most likely 

subject to exopeptidase cleavage prior to activity, and indeed, there are genes 

present with predicted protease activities (Figure 5).  

The GA cleavage motif is present in 36 of the homolog structural genes, with TS 

replacing the motif in eight instances, GT and GG in two cases, and GS, SA, and DA 

in one each (Figure 7a). A double glycine is the most commonly found motif for ABC 

transporter-mediated cleavage among bacteriocins, though GA and GS have also been 

observed (36). It will be interesting to see if the peptides bearing other residues at this 

location are indeed subject to ABC-mediated transport. We note that each operon 

containing a gene with a nontraditional TS/GT/SA/DA signal contains at least one more 

structural gene than those with a GG/GA sequence. This could indicate potential 

diversification of a repertoire of bacteriocins enabling improved ability to combat 
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multiple competitors. It was also surprising that an actifensin homolog was found in a 

distantly related Corynebacterium sp., though many of the conserved genes in the 

Actinomyces sp. operons were not present (Figure 7b). As such, this may be 

nonfunctional, as ABC transporter-related genes are missing upstream of the structural 

gene and the conserved afnB to afnI pattern is absent. The genera Corynebacterium and 

Actinomyces are distantly related members within the phylum Actinobacteria, and some 

species are known members of plaque biofilms, providing an opportunity for horizontal 

gene transfer (16). However, given the dissimilarity of the operons, they may have been 

acquired independently at some stage. 

As stated above, the laterosporulins produced by Brevibacillus spp. are two structurally 

defensin-like bacteriocins with broad-spectrum inhibitory activity (5, 6). Their amino 

acid sequences are 57.6% similar, which is comparable to that for actifensin and its 

predicted homologs, but share the conserved cysteine residues which form disulfide 

bridges. Conserved disulfides are characteristic of defensins and are present in 

vertebrate, invertebrate, plant, fungal defensins, and defensin-like peptides (4). 

Actifensin has a predicted mass of 4,097.7 Da, but the actual mass is 4,091 ± 1 Da by 

MALDI-TOF MS. The same discrepancy in predicted and observed masses was noted 

with laterosporulin, where six hydrogen atoms are lost in the formation of disulfide 

bonds. We hypothesize that bonds in actifensin likely form in the 1-4, 2-5, and 3-6 

formations, similar to that in ascomycete and arthropod C6 defensins (Figure 6), as the 

amino acid motifs (C-X5–12-C-X3-C-X9–10-C-X4–5-C-X-C) are conserved (5). The 

structure of laterosporulin10 has been determined to be architecturally similar to human 

a-defensin, though its disulfide connectivity is homologous to that of β-defensins 

(Figure 8) (6). The overall architecture and disulfide connectivity of actifensin are 

likely to be homologous to those of C6 defensins, consisting of an N-terminal α-
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helix followed by a two-stranded antiparallel β-sheet stabilized by disulfide bridges 

(Figure 8). Interestingly, an actifensin homolog we identify as AfnA from 

Actinomyces sp. oral taxon 171 strain F0337 has had its three-dimensional (3D) 

structure determined and is publicly available under PDB accession number 2RU0. 

The peptide labeled actinomycesin is strikingly similar to C6 fungal and arthropod 

defensins, which have also been characterized (Figure 6); however, no published 

material is available regarding its activity, antimicrobial or otherwise. Indeed, two 

antiparallel beta sheets stabilized by disulfide bonds with an interposed short turn 

region, previously described as the μ-core motif, are a ubiquitous feature of 

antimicrobial peptides (35). Actifensin exhibits the highly conserved GXC 

(positions 26 to 28 in the mature peptide) as do all of its homologs.  

CSaβ peptides comprise one of the most widespread families of defensins and defensin-

like peptides. A recent publication identified a number of CSaβ sequences in bacterial 

genomes with potential for antimicrobial, toxin, or signaling activity (27). Of 58 

peptides identified within the phylum Actinobacteria by Dash et al. (27), 34 were of the 

genus Actinomyces, 24 of which we identified using BLAST with the actifensin 

propeptide sequence (see Table S2 in the supplemental material). A further 113 

bacterial peptide sequences identified by Dash et al. (27) remain to be characterized 

from a functional perspective and may be a potent source for antimicrobials. 

Interestingly, a bacterial defensin-like peptide, AdDLP, identified in silico was 

synthesized and recombinantly expressed, and the peptide was found to have anti-

Plasmodium activity (28). The bacterial CSaþ peptides may be an untapped source of 

potential applications and have been proposed as the ancestral evolutionary origin of 

eukaryotic defensins (29).  

https://www.rcsb.org/structure/2RU0
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In the search for novel antimicrobials for application in health and food, genomic and 

pangenomic approaches are becoming increasingly common (25, 26). These 

approaches are advantageous in that large amounts of genetic data can be analyzed to 

identify novel antimicrobials/bacteriocins and can even allow one to “reincarnate” 

otherwise “dormant” genes (46). However, such analyses are dependent on the ability 

of programs to predict based on databases of previously identified sequences, and so 

peptides with novel structures and operons may not be detected. Though a number of 

bacteriocin operons were found in the Actinomyces spp. genomes using BAGEL, 

actifensin was not identified by genome sequence alone, which highlights the 

importance of functional screening for antimicrobial compounds in addition to in silico 

screening. By using BLAST, 37 structural genes with homology to actifensin were 

found in Actinomyces spp. along with a single structural gene from a Corynebacterium 

sp. As some CSaβ peptides function as toxins, future applications will require any 

potential cytotoxic effects to be assayed. We propose that actifensins and the 

laterosporulins may constitute a new subgroup of class II bacteriocins: the defensin-

like bacteriocins. These bacteriocins share only moderate identity to each other but 

contain highly conserved cysteine residues and are structurally related to eukaryotic 

defensins. 

 

6.2.7 Conclusion 

A series of novel defensin-like bacteriocins within the genus Actinomyces were 

identified using an in silico pangenomic approach coupled with a functional screen. 

The bacteriocins represent a potential new class of antimicrobial peptides, defensin-

like bacteriocins, which may have widespread applications as antimicrobials in food 

and human health. 
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Figure 1 Antimicrobial activity of Actinomyces ruminicola DPC 7226 from 

colonies overlaid with L. delbrueckii subsp. bulgaricus LMG 6901 in sloppy MRS 

(a) and in well diffusion with neutralized CFS (b). 
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Figure 2 Detection of actifensin 4,091 Da ± 1 Da (indicated by arrows) by MALDI-

TOF MS from cell-free supernatant (a), cell extract (b), and colonies on a plate (c). (d) 

The 4,091 (±1)-Da compound when purified was active to <1 µg ml-1; indicator, L. 

bulgaricus LMG 6901. 
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Figure 3 Inhibition of actifensin against a broad-spectrum of indicator species. Weak 

inhibition, 0.5- to 3-mm zone; strong inhibition, 3- to 5-mm zone; very strong 

inhibition, >5-mm zone. VRE, vancomycin-resistant Enterococcus; MRSA, 

methicillin-resistant Staphylococcus aureus. 
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Figure 4 Phylogram of Actinomyces genomes using 16S sequences overlaid with 

BAGEL4 predictions, strain source, and presence of actifensin or predicted 

homolog operon. 
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Figure 5 (a) Sixty-nine-residue propeptide identified following genome analysis 

using the 15-amino-acid sequence (underlined) determined by N-terminal amino 

acid sequencing. RBS, putative ribosome binding site highlighted 8 bp upstream 

of the start codon. (b) Genetic vicinity of structural gene containing nearby genes 

for transport, hypothetical and proteolytic proteins, and a transcription factor. 
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Figure 6 (a) Mature peptide sequence alignment of AfnA with characterized 

defensin family peptides from different phyla. Known disulfide connectivities are 

outlined above highlighted cysteine residues. (b) Available 3D structures of 

sequences in panel a. Alpha helices are colored red, and beta sheets are shown in 

blue. Protein data bank accession numbers shown below the structures (in 

parentheses).  
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Figure 7 (a) Sequence aligment of actifensin propeptide sequence (boxed) with 

structural genes predicted for Actinomyces sp. peptides. Amino acids with greater 

than 80% conservation are colored, and leader sequences and mature active peptides 

are indicated at the top. Putative disulfide connectivity between conserved cysteines 

of the mature peptide is indicated at the bottom right, and putative cleavage sites are 

indicated at the bottom center. (b) Diagrams of actifensin homolog production 

operons. Multiple bacteriocin genes within one operon are denoted afnA1 to afnA7 

where present. 
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Figure 8 Conserved structures of the defensin peptide superfamily and defensin-like 

bacteriocins, laterosporulin and actifensin. β sheets are colored blue, α helices are 

colored red, and disulfide bonds are shown in yellow. 
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Suplemental material with the exception of Table S3 and Figure S1 are available 

online at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989792/ 

Table S3 Bacterial strains and culture conditions. 

Indicator Species+B2:D23 
Growth 

Medium 
Incubation 

Conditions 
Actinomyces neuii LMG 19524t BHI 37°C,      O

2

-

 
Actinomyces radingae LMG 15960t BHI 37°C,      O

2

-

 
Bacillus cereus NCIMB700577 BHI 37°C,      O

2

+

 
Bacillus subtilus S249 BHI 37°C,      O

2

+

 
Bacillus thuringiensis DPC6431 BHI 37°C,      O

2

+

 
Clostridium difficile DPC6534 RCM 37°C,      O

2

-

 
Clostridium sporogenes LMG10143 RCM 37°C,      O

2

-

 
Enterococcus faecium APC1031 TSY 37°C,      O

2

-

 
Enterococcus faecium NCDO942 TSY 37°C,      O

2

-

 
Escherichia coli DPC6054 BHI 37°C,      O

2

+

 
Lactobacillus acidophilus DPC5377 MRS 37°C,      O

2

-

 
Lactobacillus delbrueckii ssp. bulgaricus LMG6901  MRS 37°C,      O

2

-

 
Lactobacillus delbrueckii ssp. lactis DPC5387 MRS 37°C,      O

2

-

 
Lactobacillus helveticus DPC5353 MRS 37°C,      O

2

-

 
Lactobacillus helveticus DPC5385 MRS 37°C,      O

2

-

 
Lactococcus lactis ATCC11454 GM17 30°C,      O

2

+

 
Lactococcus lactis ssp. lactis DPC3147 GM17 30°C,      O

2

+

 
Listeria innocua DPC1768 BHI 37°C,      O

2

+

 
Listeria monocytogenes DPC3572 BHI 37°C,      O

2

+

 
Listeria monocytogenes DPC6893 BHI 37°C,      O

2

+

 
Pediococcus acidilactici LMG2351 MRS 30°C,      O

2

+

 
Salmonella enterica ser. Typhimurium DPC6046 BHI 37°C,      O

2

+

 
Staphylococcus aureus DPC5645 BHI 37°C,      O

2

+

 
Staphylococcus aureus R963 BHI 37°C,      O

2

+

 
Streptococcus agalactiae APC1055 BHI 37°C,      O

2

+

 
  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989792/
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Figure S1 Minimum inhibitory concentration of actifensin peptide against Gram-

positive pathogens determined by well diffusion assay. 
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Conclusions 

 
Bacteriocin research has expanded greatly over the last decade, from an explosion in 

the number of newly discovered novel bacteriocins with potential as antimicrobial 

alternatives, to their use as gut microbiota modulators and signal molecules that play 

a role in the well-being of humans and animals. As bacteriocins are such a 

heterogeneous group of molecules with regard to size, charge, hydrophobicity, 

specificity and mode of action, they have potential for development as bespoke 

molecules to target specific microbial challenges for the food, pharma and veterinary 

industry. Indeed, it is envisaged that bacteriocins will be developed as a molecular 

arsenal produced by live bio-therapeutic strains to control food spoilage/pathogenic 

microorganisms, to reduce AMR with a particular emphasis on multidrug-resistant 

clinical pathogens and as microbiome modulators to fight disease and promote well-

being. For example, narrow-spectrum bacteriocins, such as Thuricin CD which is 

potent against Clostridioides difficle (1), have considerable potential as vancomycin 

alternatives in some instances, as they target specific pathogens without inducing 

substantial collateral damage to the microbiome (2).  

To date, bacteriocins have been discovered from every conceivable niche including 

fermented foods and beverages, animal gastrointestinal (GI) tract, human GI tract from 

all ages and states of health, human skin, soil and aquaculture. Indeed the bacteriocins 

described herein were isolated from a variety of habitats including nisin H from the 

porcine intestine (3), nisin J from human skin (4), nisin P: a human faecal isolate (5); 

bactofencin A: a porcine faecal isolate (6); formicin: a mackerel intestine isolate (7) 

and actifensin: a sheep faecal isolate (8). Interestingly, all were isolated initially from 

screening using solid media followed by DNA sequencing while peptide purification 

and MALDI TOF mass spectrometry were used to confirm the identity of the 
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bacteriocin. In contrast, novel bacteriocins produced by Lactobacillus spp. (9) and 

Actinomyces spp. were discovered using an in silico approach (8). It is generally 

accepted using that both approaches in parallel will be more successful, given that 

bacteriocin gene clusters could be “switched off” or incomplete, or that the bacteriocin 

produced may not kill any given indicator used in wetlab experiments. Specifically, 

traditional plate assays may miss bacteriocin producers due to incorrect media 

selection to support its growth or incorrect microbial target selection, while genome 

mining will detect bacteriocin gene clusters but does not establish if the bacteriocin is 

being produced.  

The prototypical bacteriocin, Nisin A (E234), produced by Lactococcus lactis, is a 

lantibiotic approved by regulatory agencies for use as a commercial food preservative 

and has been used by the food industry for over 65 years. Nisin A, is the first described 

natural nisin produced by L. lactis (10) and is now one of 15 natural nisin variants from 

a wide variety of organisms (L. lactis spp., Streptococcus spp., Staphylococcus capitis, 

Blautia spp. and Apilactibacillus) and habitats (catfish GI tract, porcine and human GI 

tract, pig GI tract, a river, human skin, bee), making nisin production a ubiquitous trait 

in many genera and many habitats.  

In addition to the diversity in the range of producing organisms and habitats, there is 

considerable heterogeneity within the structural gene in naturally-occurring nisin 

variants with 1-14 amino acid changes from the prototypical nisin A, for example: five 

for nisin H (Chapter 2.1), eight for nisin J (Chapter 2.2) and ten for nisin P (Chapter 

3.1). Furthermore, there are interesting differences within the nisin gene clusters with 

nisin A encoded by eleven genes whereas H lacks a nisI, equivalent, nisin J lacks nisI 

and nisRK equivalents (differences also common to the newest nisin variant kunkecin 

A 11) while nisin P contains the full complement of eleven genes, though in a different 
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gene order. The widespread abundance of nisin and its variants in nature suggest that 

production of the bacteriocin is a very useful trait for bacteria to have in different 

microbiome niches, either for reasons of competition or communication. Moreover, 

the fact that the nisin gene cluster can often be found on mobile gene clusters 

(transposon for nisA and plasmid for nisin J) suggests that horizontal gene transfer 

plays a significant role in dissemination of nisin genes in different environments. 

Interestingly, of the fifteen natural nisin variants reported to date, Teagasc/APC 

researchers discovered and characterised three with two more, currently unreported, 

natural nisin variants in the pipeline.  

Following discovery and identification, the emphasis turns to increasing their 

potential. Their gene-encoded nature makes bacteriocins, and lantibiotics in particular, 

amenable to bioengineering, resulting in “designer bacteriocins” possibly with 

improved physiochemical characteristics, including increased specificity and potency 

(12, 13). Indeed, using this approach the contribution that every amino acid residue 

makes to nisin A bioactivity has been examined by individually changing it to the 

nineteen other possible amino acids. In addition to increasing the understanding of the 

significance of each residue, post-translational modification and internal ring structure, 

this work has resulted in the availability of an arsenal of nisin variants for assessment 

against particular targets, thereby expanding the variety and scope of the application 

of nisin (14). Notable successes include nisin variants with increased activity against 

Gram-negative (15) and both food (16) and clinically (17, 18) significant Gram-

positive pathogens and variants that can overcome nisin resistance mechanisms (19).  

As the natural nisin variants, H, J and P, are produced by non GRAS strains, they are 

consequently of limited use for food or medical applications. Therefore, it was decided 

to improve their commercial potential (Chapter 3) by expressing the bacteriocins in a 



 

292  

Lactococcus lactis GRAS strain. This was achieved by fusing the Nisin A promotor 

and nisin A leader sequence to their respective structural genes, and using the nisin A 

biosynthetic machinery to produce the peptide. Successful production of the fully post-

translationally modified nisin variants confirmed the ability of the nisin A gene cluster, 

to produce nisin variants from genetically different backgrounds. While activity was 

low there is potential for improvement. The nisin A gene cluster (nisABTCIPRKFEG) 

is encoded on a transposon (20) and consists of four operons under the control of an 

inducible promotor in the case of nisABTC and three constitutive promotors for nisIP, 

nisRK, nisFEG (21). As the percentage identities differ so much between nisin A 

nisBTC, nisP, nisRK and nisFEG and nisin H, J and P equivalents, it would be 

interesting to clone the entire gene cluster from nisin H, J and P into L. lactis, as a first 

step, to improve production. If this was unsuccessful, it may be worth attempting to 

clone the nisin variant structural gene on nisBTC with, nisI, nisP, nisRK and nisFEG 

equivalents from the producer and assess their relevance for production as it is 

becoming apparent that the nisin encoding gene clusters differ with regard to gene 

content. It also would be interesting to mix and match the nisin biosynthetic genes 

from different backgrounds to see if improved generic gene clusters could be generated 

which are capable of producing significant quantities of peptide regardless of 

background. Reiners et al (2020) recently reported the cloning of the nisin H structural 

gene into a lactococcal background and, while their attempt was successful, they did 

find that nisP cleaves nisin H inefficiently due to the presence of a phenylalanine 

residue at position 1. They overcame this hurdle by changing this phenylalanine to 

isoleucine, the first amino acid residue of nisin A, and found that the peptide was then 

cleaved efficiently (22). Overall, bioengineering is a powerful tool used to improve 

functionality of and add value to bacteriocins.  
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Structure-Activity relationships can be used to predict the effect that chemical/physical 

structure has on biological activity. Alanine scanning, where each amino acid is 

sequentially changed to alanine, has been successfully used to identify the importance 

of particular amino acid residues to activity. This can be either achieved genetically, 

as described for lacticin 3147 (23) and durancin GL (24), or by peptide synthesis, as 

for Class II bacteriocins, and as described in Chapter 4.1 for bactofencin A. Crystal 

structure and site directed mutagenesis were used to show that cationic and aromatic 

residues were responsible for bioactivity of the broad spectrum, circular bacteriocin, 

plantacyclin B21AG (25). NMR has also been used to determine bacteriocin structure 

and provide insightful information into functionality. In the case of the Class IIb, two 

peptide plantaricin S, NMR and site directed mutagenesis, were used to show that the 

peptides formed an α helix between amino residues 7-24 and that the GxxxG motif 

was important for activity (26). Bactofencin A is structurally noteworthy due to the 

exceptionally positively charged N terminal (+7), and its C terminal loop resulting 

from the presence of a disulphide bond between Cys7 and Cys22. A series of peptide 

synthesis variants revealed that these three features are essential for full activity of this 

unusual bacteriocin.  

To achieve the full potential of any bacteriocin in practical applications, it is desirable 

to decipher their activity, spectrum of inhibition, production and mode of action. In 

Chapter 5.1, bactofencin A displayed delayed killing against S. aureus DPC5246, 

suggesting a mode of action that acts predominantly through cell wall inhibition. 

Combining bactofencin A with the pore forming nisin A resulted in faster killing at 

lower bacteriocin concentrations, most likely due to the combination of bacteriocins 

with different modes of action. This is known as a “hurdle approach” or antimicrobial 

combinatorial therapy and is commonly used to reduce the quantity of bacteriocin 
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required for efficacy, making a more cost effective treatment with lower toxicity 

potential (27). This combinatorial approach has been particularly effective in the case 

of nisin, which has been successfully combined with a range of antimicrobials 

including essential oils (28), antibiotics (29) and other bacteriocins (30). A 

combinatorial approach is also used to reduce the incidence of AMR and, in this 

instance, resistance to bactofencin A did not occur at low bactofencin A 

concentrations. Overall, the effectiveness of bactofencin A to treat S. aureus DPC5246 

was significantly improved when combined with nisin A and this interesting result 

warrants further investigation to discover the mechanisms underpinning this synergy. 

Future studies may also include assessing the effectiveness of bactofencin A/nisin A 

combinations against other S. aureus strains including MRSA and other genera such 

as Listeria monocytogenes, while the interaction between bactofencin A and other 

lantibiotics such as lacticin 3147 against different targets is also worth investigating.  

The search for new, novel bacteriocins is as relevant today as it was at the beginning 

of bacteriocin research. Mining studies from all conceivable habitats are ongoing and 

these endeavours are very successful as all bacteriocin classes have been expanded 

significantly and new subclasses discovered since the commencement of this thesis. 

Indeed, the work described herein contributes significantly to novel bacteriocin 

discovery as, in addition to the novel lantibiotics, nisin H, nisin J and nisin P described 

in Chapters 2.1, 2.2 and 3.1, Chapter 6.1 describes formicin, a novel two peptide 

lantibiotic and actifensin, a potential new subclass of antimicrobial. Since the 

discovery of formicin, the most recent addition to the two component lantibiotics is 

roseocin, discovered through in silico mining and described as the first two-component 

lantibiotic in an actinomycete, Streptomyces roseosporus NRRL 113789 (31). The 

peptides were heterologously expressed in Escherichia coli and found to act 
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synergistically when plated in close proximity. The peptides are less similar to those 

previously described, with the alpha peptide likely to contain a different ring structure.  

The actifensins (Chapter 6.2) are broad-spectrum single peptide bacteriocins, 

produced another by Actinomyces genera represent an exciting new type of bacteriocin 

due to the presence of multiple disulphide bonds potentially giving the bacteriocins 

enhanced stability. As these show a high redundancy in sequence and lack post-

translational modifications, there is potential to assess their efficacy by cloning the 

structural genes into a host capable of expressing them at high concentrations thus 

allowing selection of the most effective sequences for further development.  

The ultimate goal for bacteriocin research is the development of bacteriocins into 

viable antimicrobial products that are available for commercial use. Currently, the 

number and range of bacteriocin sequences, and our increased understanding of how 

best to use them, provide a good foundation for development of antimicrobial products 

available for uptake by industry. However, commercialisation is challenging as 

bacteriocins are often produced in low amounts, are peptide based and therefore 

susceptible to digestive enzymes and they require complex media for production 

making them expensive to produce. Another difficulty associated with 

commercialisation is the scarcity of information on safety and toxicity required for 

regulatory approval that can be a time consuming, lengthy process (32). However, 

these are issues that can be overcome once industry commits to invest in these 

fascinating molecules that have such potential as antimicrobials and microbiome 

modulators. It is hoped that the bacteriocins described in this thesis will be developed 

for commercial use one day. 
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