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Abstract 
The trillions of microbial organisms residing in the gut, microbiota, are now recognized as major 

modulators of physiology and health, quickly becoming one of the most exciting emerging areas 

in neuroscience. Preclinical and clinical research alike suggests that the metabolites produced by 

these gut microbes modulate brain, behavior and disease. Short-chain fatty acids, tryptophan 

metabolites and bile acids are promising targets for new microbiome-based therapies. But, little 

is known about their mechanisms. To this end, the second chapter of the thesis collates 278 

studies relating to the human microbiota-gut brain axis, identifying trends and 

technical/bioinformatics limitations. These studies across different disorders of the brain as well 

as healthy human behavioral functions. Then a 35 of these studies was reanalyzed with an up-to-

date bioinformatics pipeline. New tools, mainly the gut-brain modules provide a predictive 

framework for identifying whether these gut microbial metabolic pathways are dysregulated in 

brain diseases and disorders. We uncovered evidence of disease-related alterations in microbial 

metabolic pathways in Alzheimer’s Disease, schizophrenia, anxiety and depression. Previous 

human studies suggest that astrocyte immunity and metabolism is affected by short-chain fatty 

acids. Thus we grew primary male and female mouse astrocyte cultures, treating them with 

acetate, butyrate and propionate. Butyrate treatment (0 – 25µM) increased gene expression of 

Bdnf and Pgc1-α expression, implicating histone-deacetylase inhibitor pathways only in female 

cells. Acetate (0 – 1500 µM) positively correlated with Ahr and Gfap expression in males, 

suggesting an immune modulatory role. These findings show a novel sex-dependent impact of 

acetate and butyrate, but not propionate on astrocyte gene expression. These studies increase 

understanding of microbial metabolites and how they might impact the brain. It also provides 

guidance to improve and direct future investigations aimed at identifying the mechanisms of 

other metabolites. 

  



Chapter 1: Introduction 

“I then most always saw, with great wonder, that in the said matter there were many very 

little living animalcules, very prettily a-moving.” — Antonie van Leeuwenhoek. 

In the 17th century, Leeuwenhoek first described live bacterial cells, isolated from his own 

mouth (Leidy, 1853). Since then, advances in germ-theory lead to a better understanding of 

the microbial world existing around us. It was even more recently that humans began 

exploiting the metabolic properties of these microbes for medicinal purposes. For almost a 

century, humans have exploited microbial cells for improving our own health. Since the 

discovery of penicillin almost a century ago (Fleming, 1946b), we have discovered many 

other microbial properties that confer humans with medical and functional benefits. Studies 

throughout the 1950s and 1960s emphasized the importance of these symbiotic microbes 

through germ-free animal models (Spichak et al., 2019). 

In recent years, research into these microbial cells has re-emerged, cementing their status as 

important mediators of brain health and function (Cryan et al., 2019). Much of these studies 

have focused on the gut microbes, often measured from faecal samples or caecal biopsies. It 

is now recognized that human cells are outnumbered by bacterial cells (Sender et al., 2016b, 

Sender et al., 2016a), further supporting the importance of these microbes in physiology 

(Cryan et al., 2019). Important recent work even associates the metabolic pathways capable 

of generating neuroactive molecules with depression and quality of life scores (Valles-

Colomer et al., 2019). The emergence of improved bioinformatics tools (Callahan et al., 

2016, Callahan et al., 2017, McIver et al., 2018) allows scientists to dissect large swathes of 

16S and shotgun sequencing. These insights are combined with neurophysiological measures 

across in vitro, in vivo and human models of diseases and disorders. Now it’s becoming 

evident that the microbiota-gut brain axis influences host physiology via bidirectional 

signaling through the vagal nerve, inflammatory molecules, endocrine molecules, and 



microbial metabolites (de Weerth, 2017, Erny et al., 2015, Bravo et al., 2011, König et al., 

2016, Blanke et al., 2021, Kong et al., 2020, Marcondes Avila et al., 2020, Wang et al., 

2020c, Chen et al., 2019a, Cryan et al., 2019, Gheorghe et al., 2019, Clarke et al., 2019). See 

Figure 1 for an overview of the microbiota-gut-brain axis. 

Additionally, many data sets are available for download from online repositories. Insight 

collected from open data informs our mechanistic experimental designs, providing important 

value to the field beyond the initial publication it was used for. 

The Microbiota 

The mammalian gastrointestinal (GI) tract is home to trillions of microbial organisms that 

colonize the gut during the birthing process (Benson et al., 2010, Gaulke et al., 2018). The 

collection of microorganisms serves important core functions including the modification of 

host, xenobiotic and dietary-derived molecules into bioactive metabolites that can impact host 

health and disease (Clarke et al., 2019, Sharon et al., 2014, Spanogiannopoulos et al., 2016, 

Morris et al., 2017, Sun et al., 2017). Many different factors influence microbiome 

composition and microbiota-gut-brain axis function (see Figure 2). 

As a microcosm of the complexity within this field, there are different monikers for these 

microbes depending on genetic, ecological and host paradigms (Berg et al., 2020). Within 

this thesis however, the collective individuals within the gut ecosystem will be referred to as 

the microbiota while the collection of genetic information contained within the community 

will be referred to as the microbiome (Lederberg and McCray, 2001).   

Collectively, there are millions more genes contained within the microbiome (>40 million) 

than within the human genome (~22 000) microbial cells in the GI tract are defined the gut 

microbiota (Tierney et al., 2019). We are only beginning to understand the functionality, 

diversity and interactions within these many members. New methods even allow researchers 



to track the transmission of bacterial strains from mother to child (Segata, 2018, Yassour et 

al., 2018). For the Human Microbiome Project, it was estimated that 500 to 1000 unique 

species of microbes reside in our guts (Human Microbiome Jumpstart Reference Strains et 

al., 2010, Human Microbiome Project, 2012). As our bioinformatics tools improve, we may 

reorganize different genera. This was the case with the Lactobacillus genera was recently 

reclassified as 23 related genera (Zheng et al., 2020a).  

Although the individuals within the gut microbiota be long to different kingdoms of life 

including archaebacteria, bacteria, viruses, protists and fungi, a majority of research has 

focused on the bacterial components of the gut microbiota (Cryan et al., 2019). In recent 

years, both the viral phage components and the fungal components of the gut microbiota have 

been recognized for their potential importance in physiology, brain health and function in 

both preclinical models and humans (Chin et al., 2020, Jiang et al., 2020, Zhang et al., 2019b, 

Seth et al., 2019). 

It’s also clear across converging evidence in the mammalian kingdom that microbiota 

differences associate with many different brain disorders. In this thesis, my chapters aim to 

provide insight specifically into neuropsychiatric, neurodevelopmental and neurodegenerative 

disorders. Differences in microbiome composition/diversity and production of microbial-

derived metabolites such as short-chain fatty acids are seen across multiple human studies of 

depression (Valles-Colomer et al., 2019, Bharwani et al., 2020, Dinan and Cryan, 2019, Jiang 

et al., 2015, Lai et al., 2019, Liskiewicz et al., 2019, Zheng et al., 2020b), anxiety-related 

disorders (Jiang et al., 2018a, Slykerman et al., 2017, Stevens et al., 2018), anorexia nervosa 

(Borgo et al., 2017, Dominique et al., 2019, Hata et al., 2019, Kleiman et al., 2017b, Kleiman 

et al., 2015), autism (Ahmed et al., 2020, Carissimi et al., 2019, Grimaldi et al., 2018, Iovene 

et al., 2017, Kang et al., 2017, Kang et al., 2018a, Kong et al., 2019, Kong et al., 2020, Li et 

al., 2019d, Liu et al., 2019d, Luna et al., 2017), attention-deficit hyperactivity disorder (Aarts 



et al., 2017, Jiang et al., 2018b, Prehn-Kristensen et al., 2018, Stevens et al., 2019, Wan et al., 

2020, Wang et al., 2020b), schizophrenia (Schwarz et al., 2018, Severance et al., 2017, Shen 

et al., 2018, Xu et al., 2019, Yuan et al., 2019, Zhang et al., 2020d, Zheng et al., 2019, Zhu et 

al., 2019, Zhu et al., 2020), Alzheimer’s disease (Haran et al., 2019, Liu et al., 2019b, 

MahmoudianDehkordi et al., 2019, Ticinesi et al., 2018, Vogt et al., 2017, Zhuang et al., 

2018) and Parkinson’s disease (Barichella et al., 2019, Bedarf et al., 2017, Heintz-Buschart et 

al., 2018, Heinzel et al., 2020, Hill-Burns et al., 2017, Keshavarzian et al., 2015, Li et al., 

2019b, Li et al., 2017, Lin et al., 2018, Lin et al., 2019, Petrov et al., 2017, Unger et al., 

2016). These studies are more closely analysed in Chapter 2.     

 

Figure 1. The various communication pathways involved in the microbiota-gut-brain axis. Individual microbes generate 
neurotransmitters and neuroactive metabolites that enter the peripheral circulation. Dietary fibres are fermented by colonic 
bacteria, producing a by-product of short-chain fatty acids (SCFAs) which signal with the gut epithelium, the enteric nervous 



system, enteric immune cells and also reach peripheral circulation. By breaking down dietary tryptophan, bacteria can 
generate tryptophan metabolites which also impact the local gut environment or reach peripheral circulation. These 
microbes play an important role in regulating tryptophan metabolites within the host. In the periphery, these molecules 
may reach the brain impacting it directly. They may impact the brain indirectly through peripheral interactions with 
immune cells and other cells. Many other enteric immune cells release pro- or anti-inflammatory cytokines into peripheral 
circulation, impacting neuroimmunity. Bidirectional signalling through the vagus nerve is also a major carrier of information 
between gut microbes and the brain. At the enteric nerve interface, bioactive molecules produced by microbes may initiate 
signalling with vagal afferents. This  figure is adapted from (Cryan et al., 2019).  

Modes of Communication between the Microbiota and the Brain 

Several mechanistic papers describe the connectivity between the microbiota, the enteric 

nervous system and the brain. Experiments involving microbiota perturbation and vagotomy 

in preclinical models show the importance of microbial-vagal signalling in neurogenesis 

(O'Leary et al., 2018, Cawthon and de La Serre, 2018, McVey Neufeld et al., 2019a, Zhang et 

al., 2020b, Lee et al., 2020b, Marcondes Avila et al., 2020). Intestinal microbiota interactions 

with the enteric or peripheral immune system, brain and microbiome are well-characterized 

in both preclinical models and humans (Xu et al., 2020, Sadler et al., 2020, Kong et al., 2020, 

Barra et al., 2020, Fulling et al., 2020, Dworsky-Fried et al., 2020, van de Wouw et al., 2020, 

Boehme et al., 2020, Gururajan et al., 2019, Murray et al., 2019, Xu et al., 2019). The gut 

microbiota also interacts with the cells of the enteric nervous system (Uhlig et al., 2020, 

Onyszkiewicz et al., 2019, Hyland and Cryan, 2016, McVey Neufeld et al., 2015) and the 

neuroendocrine system/hypothalamic-pituitary adrenal axis (Donoso et al., 2020, O'Mahony 

et al., 2020, Tian et al., 2019, Vodička et al., 2018, Golubeva et al., 2015, Perez-Burgos et al., 

2013, Gur et al., 2015, Sudo et al., 2004). Additionally, microbial-derived metabolites 

including quorum signalling and other bacterial proteins (Uhlig et al., 2020, Breton et al., 

2016, Dominique et al., 2019, Tennoune et al., 2014), various neurotransmitters (Strandwitz, 

2018, Strandwitz et al., 2019, Yunes et al., 2016), tryptophan-associated metabolites 

(Golubeva et al., 2017, Israelyan et al., 2019, Jaglin et al., 2018, Lai et al., 2019, Reigstad et 

al., 2015, Rothhammer et al., 2016, Zhu et al., 2020), bile-acid metabolism (Enright et al., 

2017, Golubeva et al., 2017) and short-chain fatty acids (Dalile et al., 2019, de Theije et al., 

2014, Liu et al., 2019d, Matt et al., 2018, Priyadarshini et al., 2014, Provensi et al., 2019, 



Reigstad et al., 2015, Sadler et al., 2020, Unger et al., 2016, van de Wouw et al., 2018, Zhao 

et al., 2018).  

Major Microbial-Derived Metabolites 

Dietary fibres that cannot be digested through host metabolism are fermented by colonic 

bacteria, forming short-chain fatty acids (SCFAs) (Stilling et al., 2016, Gill et al., 2020). 

While SCFAs enter peripheral circulation, it is unclear exactly how much enters the brain 

(Dalile et al., 2019). Nonetheless, recent studies underlie their importance in microbiota-gut-

brain axis communication. One study found that SCFA supplementation attenuates the 

cortisol stress response in a psychosocial stress setting in a dose-dependent manner (Dalile et 

al., 2020). Another study suggests that acetate reaches the hypothalamus, impacting satiety 

signalling in the host (Frost et al., 2014). Across many preclinical studies, SCFAs modulate 

immunity, brain health and behaviour (Chen et al., 2019b, Erny et al., 2015, Matt et al., 2018, 

Hoffman et al., 2019, Lee et al., 2020a, Wang et al., 2020e, van de Wouw et al., 2018). 

Tryptophan metabolites are produced from breaking down dietary proteins, playing important 

roles locally in the gut and throughout the host (Gheorghe et al., 2019, Kennedy et al., 2017, 

O'Mahony et al., 2015). Tryptophan metabolism is perturbed in psychiatric disorders like 

depression (Lai et al., 2019, Maes et al., 2011a, Rudzki et al., 2019, Maes et al., 2011b). This 

is further explored in animal models where perturbations in this metabolic pathway are 

associated with social impairments and anxiety-like or depressive-like behaviours (Golubeva 

et al., 2017, Clarke et al., 2013, Desbonnet et al., 2015, Hiroi et al., 2016, Jaglin et al., 2018, 

Tian et al., 2020).  

Bile-acids form another intriguing class of metabolites, which undergo biotransformation by 

the gut bacteria and are also altered in some human brain disorders (Kiriyama and Nochi, 

2019, MahmoudianDehkordi et al., 2019). Emerging preclinical studies suggest that bile-acid 

modulating bacteria are important for regulating brain health and behaviour (Golubeva et al., 



2017, Hoffman et al., 2019, Jena et al., 2018, McMillin et al., 2015, Nizamutdinov et al., 

2017, Yanguas-Casas et al., 2017, Quinn et al., 2020).  

These metabolites are discussed in more detail in Chapter 2. See Figure 2 for an overview of 

these metabolites within the microbiota-gut-brain axis. 

 



 

Figure 2. Potential pathways for microbiota-gut-brain axis communication. While it’s is unclear exactly how microbial-
derived metabolites impact the brain, there are several potential pathways. Non-digestible fibres are broken down into 
SCFAs which act as histone deacetylase inhibitors on FOXP3+ TReg cells in the gut, leading to clonal expansion. SCFAs many 
also influence the enteric dendritic and marcrophage cell population by increasing acetylation at specific gene targets 
impacting cytokine expression. SCFAs may also affect enterochromaffin cells in the gut, stimulating the release of serotonin 
into the lumen. Travelling through the blood, the SCFA butyrate may increase occludin expression at the blood-brain barrier 
as well as decrease its permeability to different molecules. If present in a sufficient concentration, SCFAs may impact 
microglial maturation through free-fatty acid receptor-mediated mechanisms. Bile acids used to aid in lipid digestion are 
deconjugated and biotransformed into secondary bile acids. These act on myenteric neurons to inhibit gut motility. In the 



brain, there is evidence that the secondary bile acid, deoxycholic acid (DCA) is associated with cognition. Tryptophan 
derived from dietary protein sources impacts both the enteric and central nervous system environments. Briefly, bacteria 
may generate indole molecules which can act on myenteric neurons to increase gut motility. Tryptophan (TRP) or 5-
Hydroxytryptophan (5-HTP) are also generated from dietary protein sources. TRP and 5-HTP can be converted into 5-HT in 
enterochromaffin cells. In the brain, indoles impact immunity through activation of the Aryl-Hydrocarbon receptor in 
astrocytes. Alternatively, TRP or 5-HTP can be transported across the blood-brain barrier and converted into the 
neurotransmitters 5-HT, quinolinic acid or kynurenic acid. It is unclear what role the vagal nerve pathway plays in mediating 
microbial-derived metabolite signalling.    

Early Life Factors: Delivery Mode, Breastfeeding, Antibiotics  

There are now a large number of studies showing a marked effect of mode of delivery on the 

gut microbiome (Jakobsson et al., 2014, Dominguez-Bello et al., 2010, Mueller et al., 2015, 

Biasucci et al., 2008, Bäckhed et al., 2015, Madan et al., 2016, Biasucci et al., 2010, Azad et 

al., 2013b, Salminen et al., 2004, Brumbaugh et al., 2016, Dogra et al., 2015, Grześkowiak et 

al., 2015, Martin et al., 2016, Hill et al., 2017, Tun et al., 2018, Reyman et al., 2019, Shao et 

al., 2019, Begum et al., 2019), although some studies have found less of an influence than 

others (Chu et al., 2017).  Infants born via Caesarean-section (C-section) had a gut microbiota 

more similar to the maternal skin microbiota than the vagina (Jakobsson et al., 2014, 

Dominguez-Bello et al., 2010, Mueller et al., 2015, Biasucci et al., 2008), delayed 

Bacteroides colonization (Mueller et al., 2015, Biasucci et al., 2008), delayed Lactobacillus 

colonization (Dominguez-Bello et al., 2010),  lower circulating chemokines (Jakobsson et al., 

2014) and a higher risk of vertical obesity transmission from their mother (Tun et al., 2018).  

Thus, the immune changes during the birthing process are key determinants of the early 

microbiota and later neurodevelopment (Gur and Bailey, 2016) 

Similar to humans, C-section mice initially had a significantly different gut microbiota from 

their mother (Hansen et al., 2014). In addition, they had significant differences in the 

abundance of bacteria in the orders Clostrodiales and Bacteroidales as well as lower systemic 

interleukin-10 expression (Hansen et al., 2014). (Morais et al., 2020) showed altered 

Bifidobacterium spp. abundance in C-section born mice as well as social, cognitive and 

anxiety deficits throughout life. These alterations were rescued by co-housing with vaginally-



born mice or via B. breve administration, further strengthening the connection between C-

section, Bifidobacterium spp. and the brain (Morais et al., 2020). 

Although the restoration of the microbiota in Caesarean born infants using a vaginal swab has 

been piloted, the long term consequences of such an intervention have yet to be studied 

(Dominguez-Bello et al., 2016). Alterations in the microbiota induced by C-section may play 

a functional role in predisposing such infants to a greater relative risk of allergy, asthma, 

obesity and Type 1 Diabetes (Bager et al., 2008, Tun et al., 2018, Cardwell et al., 2008, 

Stokholm et al., 2020). The relative contribution of such disturbances to brain health is less 

clear although epidemiology and animal studies are beginning to unlock some clear links 

(O'Neill et al., 2016, Fond et al., 2016, Moya-Perez et al., 2017, Martinez et al., 2017, Curran 

et al., 2017, Calatayud et al., 2019, Butler et al., 2020). 

In addition to delivery mode, breastfeeding and early antibiotic use also shape the early 

microbiome and may impact later host behavior (Azad et al., 2014, Azad et al., 2013b, Hill et 

al., 2017, Slykerman et al., 2019). While it remains somewhat controversial, there is potential 

for mode of delivery, antibiotic use and breastfeeding in early life, to shape 

neurodevelopmental and neuropsychiatric trajectories. 

Host Genetics and the Microbiota 

There is some conflicting evidence regarding the role of host genetics in human and mouse 

gut microbiota colonization and composition (Goodrich et al., 2017, Rothschild et al., 2018, 

Chung et al., 2012, Zmora et al., 2018). Recently, a study using mice found that differences 

in host background amongst mouse strains, as well as gut microbiota composition impacted 

fructose metabolism (Ahn et al., 2020). Baseline difference in Akkermansia, shown to be a 

putative mediator of fructose metabolism, may be related to the differences in host genetics 

between strains (Ahn et al., 2020). Another study identified deleterious genetic variants in 

families with a genetic predisposition of Irritable Bowel Disease (Park et al., 2020). They 



found 22 disease-associated microbial taxa that associated with 17 deleterious host genetic 

variants (Park et al., 2020). Interestingly, there is evidence of the ability of certain microbiota 

traits to predict phenotypic traits across large populations (Rothschild et al., 2020).   

Drugs and the Microbiota 

Over a quarter of pharmaceutical drugs have been shown to impact the composition of the 

microbiota (Le Bastard et al., 2018, Degroote et al., 2016, de Theije et al., 2014, Davey et al., 

2013, Cussotto et al., 2018b, Panee et al., 2018, Flowers et al., 2019, Clarke et al., 2019, 

Zimmermann et al., 2019, Ma et al., 2020, Vidal-Martinez et al., 2020, Vich Vila et al., 

2020), which has been implicated in both the efficacy and side effects of these drugs (Maier 

et al., 2018). Researchers hope that screening individuals for specific microbiota 

characteristics would help predict pharmaceutical treatment outcomes. 

Different classes of antidepressant drugs including tricyclic antidepressants (Csiszar and 

Molnar, 1992) and selective serotonin inhibitors (Munoz-Bellido et al., 2000), as well as 

ketamine (Yang et al., 2017) which may be used in the future as a new treatment, impact the 

growth of bacteria. It is unclear if their bacteriocidal/bacteriostatic actions impact their 

efficacy. Prenatal exposure to selective serotonin reuptake inhibitors induces anxiety-like and 

depressive-like behavior in adulthood (Homberg et al., 2010) in rodents, though the 

implications of these results for humans are still being discussed (Gur et al., 2013). In 

addition, evidence suggests that these drugs  may impact birth weight and motor development 

in humans, as well as in animal models (Hutchison et al., 2018); however  potential 

mechanisms are unknown.  

Antidepressants, including fluoxetine, are known to alter the microbiota and behavior in 

rodents (Yu et al., 2019, Yang et al., 2017, Sun et al., 2019b, Ramsteijn et al., 2020, Cussotto 

et al., 2019). In humans, antidepressants have been shown to transfer through breast milk and 

some can reach a clinically significant concentration in the infant’s serum (Sachs and Drugs, 



2013), though their effects on the infant have not yet been established (Glover and Clinton, 

2016). While there are many other patient factors to consider, antidepressants do alter the 

microbiota of patients themselves (Zhang et al., 2019a, Valles-Colomer et al., 2019, 

Bharwani et al., 2020). (Bharwani et al., 2020) shows promise that the microbiota can even 

distinguish antidepressant-responders from non-responders.  

Antipsychotics have been shown to impact the microbiota in rats and adolescent children, 

leading to weight gain (Davey et al., 2013, Morgan et al., 2014, Bahr et al., 2015). There is 

also evidence that microbiota profiles are influenced by antipsychotics in adult humans (Ma 

et al., 2020, Gorbovskaya et al., 2019, Flowers et al., 2019). It’s unclear if there are 

similarities in the metabolic changes in adults and adolescents prescribed these medications.  

Several recent human studies show the impact of nicotine, marijuana, alcohol and other 

recreational drugs on the human microbiome (Panee et al., 2018, Bjorkhaug et al., 2020, Seo 

et al., 2020, Hefner et al., 2019, Bajaj et al., 2019, Stadlbauer et al., 2019, Barengolts et al., 

2018, Fulcher et al., 2018). Considering the different chemical and orexigenic properties of 

these drugs, its unsurprising that they impact the gut microbiota in distinct ways. In rodents, 

ethanol (Yan et al., 2011, Mutlu et al., 2009, Peterson et al., 2017, Frost et al., 2019, Jadhav 

et al., 2018) and cocaine exposure (Kiraly et al., 2016) have shown effects on the gut 

microbiota composition.  

Exposure to antibiotics within the first three years of life in humans decreased microbiome 

stability and diversity while it transiently increased transcription of antibiotic resistant genes 

(Yassour et al., 2016) and increased adiposity in males during childhood (Azad et al., 2014). 

Moreover, neonatal exposure in rodents to antibiotics have been shown to alter the 

microbiota, brain inflammation and behavior (Leclercq et al., 2017), contribute to obesity 



(Cho et al., 2012), increase visceral pain receptors and sensitivity (O'Mahony et al., 2014) 

and even alter the editing of a serotonin receptor 2C isoform (van de Wouw et al., 2019). 

Diet 

Unhealthy diet in humans leads to obesity and poor cardiovascular health but recent research 

has also shown its impact on neurocognitive development in both humans and rodents (Monk 

et al., 2013). Common rodent models of unhealthy diet include high-fat diet (36-60 % kcal 

from fat), Western diet (high fat and high sugar) as well as diets focusing on specific types of 

fats. Some of these studies have been criticized because improper controls are often selected 

and may introduce confounds that complicate the interpretation of admittedly intriguing 

results (Almeida-Suhett et al., 2017, Pellizzon and Ricci, 2018, Morrison et al., 2020).  

Recent research indicates that fiber plays a more important role than fat in determining 

microbiome composition in these dietary paradigms (Morrison et al., 2020). In addition, both 

prenatal and adolescent exposure to a high fat diet changed the gut metabolome and 

microbiota composition in mouse, rat and macaques (Gohir et al., 2015, Oberbach et al., 

2017, Buffington et al., 2016, Ma et al., 2014). Unhealthy prenatal diets lead to sex-specific 

differences in gene expression (Edlow et al., 2016, Graf et al., 2016), social deficits 

(Buffington et al., 2016, Graf et al., 2016), altered hypothalamic stress response (Grissom et 

al., 2017) and inflammation (Grissom et al., 2017, Du et al., 2012) in the offspring (see Table 

2). This suggests that a greater emphasis should be placed on nutrition during pregnancy, 

though it is unclear if these changes in maternal microbiota directly impact the stress 

response in human infants. 

Several nutrients may play a positive role in neurodevelopment and microbiota maturation. A 

high-fat diet supplemented with omega-3 polyunsaturated fatty acids increased the diversity 

of microbiota and enriched Bifidobacterium at a species level (Patterson et al., 2014). Omega-

3 intake during pregnancy regulated the hypothalamic-pituitary-adrenal (HPA) axis activity, 



shifted the maternal stress-induced gut microbiota composition to be more similar to an 

unstressed composition and conferred resilience to stress later in life; in contrast, a deficit in 

omega-3 polyunsaturated fatty acids affected the metabolome, impaired communication and 

social behavior, worsened immune function, while increasing depressive-like behavior 

(Robertson et al., 2017a, Weiser et al., 2015, Robertson et al., 2017b, Pusceddu et al., 2015, 

Leyrolle et al., 2020).  

Prebiotics promote the growth of beneficial bacteria and include indigestible fibers that are 

fermented by colonic bacteria to produce short-chain fatty acids and provide a health benefit, 

though their effects on neurodevelopment have not been well studied (Gibson et al., 2017). 

Administration of the prebiotics galactooligosaccharide and inulin in mice reduced immune 

activation and intestinal permeability in offspring through gut microbiota modulation 

(Bouchaud et al., 2016). The prenatal administration of caprine milk oligosaccharide in mice 

has been shown to increase Bifidobacteria and butyric acid in the offspring colon (Thum et 

al., 2016). Interestingly, the addition of inulin to a mouse maternal high-fat diet abrogated the 

negative metabolic effects of the high-fat diet on offspring (Zou et al., 2018).  

Probiotics are beneficial strains of bacteria that confer a health benefit to the host. 

Administration during pregnancy in humans can reduce the risk of atopy but not other 

immunity-related diseases like asthma (Elazab et al., 2013, Azad et al., 2013a), however, 

many current supplements lack proof of effectiveness (Reid and Kirjaivanen, 2005). More 

recent work shows promise for prenatal administration of L. reuteri LR92 DSM 2686 in the 

last four weeks of pregnancy to reduce the incidence and severity of colic, consistent with 

evidence from previous trials (Pourmirzaiee et al., 2020, Chau et al., 2015). It is unclear if 

prenatal probiotic intervention may also reduce the incidence of mental health and brain 

disorders later in the offspring. 



 

An unhealthy diet commencing in early postnatal life also alters the microbiota composition 

(Turnbaugh et al., 2008) and results in different behavioral and inflammatory phenotypes 

across rodents and humans. High-fat diet after weaning and during adolescence altered the 

HPA-axis in female rats and impaired hippocampal memory and increased hippocampal 

lipopolysaccharide-induced cytokine response in the males (Boukouvalas et al., 2008, Boitard 

et al., 2014). Meanwhile high-fat diet bingeing during adolescence in mice increased anxiety 

and cocaine self-administration in adulthood (Blanco-Gandía et al., 2017). Meanwhile 

cafeteria diet during adolescence alters systemic inflammation in rats, and neuroinflammation 

in male mice (Fulling et al., 2020, Nicolas et al., 2020).  

Studies in humans indicate the presence of acute effects in response to daily dietary intake 

(Johnson et al., 2019). Meanwhile, another study unveiled individual level differences in 

dietary responses to the exact same meal, attributed to host genetics and microbiome (Berry 

et al., 2020).  

In rodents, Lactobacillus administration had similar effects to inulin, reducing anxiety 

through the HPA axis (Barrera-Bugueño et al., 2017). Interestingly, when combined with 

inulin, it did not affect the corticosterone levels and increased 5-HT1A receptor mRNA in the 

hippocampus, a receptor associated with anxiety and depression (Barrera-Bugueño et al., 

2017). Notably, Lactobacillus rhamnosus and L. helveticus administration in stressed infant 

rats (postnatal day 2 to 14) had a protective effect on fear conditioning memory and relapse 

after extinction in early life (Cowan et al., 2016). Some strains, such as Bifidobacteria 

longum and Bifidobacteria breve, can mediate anti-anxiety and anti-depressive behaviors in 

preclinical rodent models (Savignac et al., 2014). In mice, Bifidobacterium breve combined 

with prebiotics in early life exerted protection from the negative metabolic effects of a 



Western diet (Mischke et al., 2018), showing promise for co-administration of prebiotics and 

probiotics.  

A combination of Lactobacillus rhamnosus GG on its own or along with polydextrose and 

galactooligosaccharide protected maternally-separated (MS) male rats from MS-induced 

anxiety, while also rescuing hippocampal mRNA gene expression (McVey Neufeld et al., 

2019b). Administration of the prebiotic inulin in young mice reduced the immunological 

changes associated with ageing while also reducing the infiltration of Ly-6hi monocytes into 

the brain (Boehme et al., 2019). Taken together, these studies suggest targeting the 

gastrointestinal microbiota with prebiotics and probiotics is a promising strategy for 

attenuating the immune and behavioral effects of stress and ageing. 

In humans, probiotics may reduce the risk of depression (Huang et al., 2016) and autism 

(Pärtty et al., 2015, Gilbert et al., 2013). While many studies have been conducted, their 

results thus far are confounded by differences in strains used and a lack of metadata. Thus far, 

various strains of Lactobacillus and Bifidobacterium were tested in student-stress conditions 

providing evidence that these probiotics may modulate stress or sleep  (Nishida et al., 2017, 

Nishida et al., 2019, Kato-Kataoka et al., 2016, Rao et al., 2009, Takada et al., 2017, Takada 

et al., 2016, Tanida et al., 2016, Moloney et al., 2020). Lactobacillus gasseri CP2305 

administration exerted protective effects against chronic stress on the microbiota, while also 

improving self-reported measures of anxiety and sleep disturbances (Nishida et al., 2019). 

While some probiotic strains characterized in rodents translated some neurophysiological 

effects in humans (Allen et al., 2016) many other strains do not (Kelly et al., 2017). 

These findings further generate interest for psychobiotic research, looking to identify live 

bacterial strains that confer mental health benefits (Bambury et al., 2018, Butler et al., 2019, 

Dinan and Cryan, 2019). Nonetheless, there have been few randomized clinical trials 



conducted in depressed or anxious populations, and even fewer studies finding strong 

benefits for these psychobiotics (Smith et al., 2019a). Even fewer studies have looked at the 

impact of administering prebiotics as an adjuvant treatment for depression or anxiety (Smith 

et al., 2019a). Another meta-analysis of randomized clinical trials did not find strong support 

for the administration of fermented food, prebiotics or probiotics for enhancing cognitive 

outcomes (Marx et al., 2020b). Looking across seven studies, a meta-analysis reported 

significant mood improvements for those taking pre or probiotics, noting that they may 

especially benefit individuals with irritable bowel syndrome co-morbidity (Noonan et al., 

2020). 

Maternal Stress 

Maternal stress is modulated by the HPA axis and has been shown to impact this axis in the 

offspring. In offspring, maternal stress has increased serum levels of corticosterone, increased 

anxiety, social impairment and altered the resilience of different strains of rodents (Lee et al., 

2016, Rana et al., 2015, Bale, 2015, Hiroi et al., 2016, Golubeva et al., 2015, Egerton et al., 

2020, Donoso et al., 2020, Strzelewicz et al., 2019, Rincel et al., 2019). Maternal stress can 

also alter the gut and vaginal microbiota during pregnancy, decreasing diversity of maternal 

gut microbiota as well as dysregulating glucose metabolism in mice (Jašarević et al., 2017). 

(Golubeva et al., 2017) reported that specific gut microbes (Bifidobacterium and Blautia) in a 

strain of mice with social deficits, BTBR T+Itpr3tf/J, were associated with bile acid and 

tryptophan metabolism. Reductions in bile acid and alterations in tryptophan metabolism also 

associated with gastrointestinal dysfunction and social deficits in these mice (Golubeva et al., 

2017). Varied prenatal stress interrupted normal pregnancy-related compositional changes in 

the mouse vaginal microbiota and also altered the protein content in the vaginal mucosa, 

which may have contributed to altered abundance of Firmicutes and Bacteroidetes in their 

offspring’s gut microbiota (Jasarevic et al., 2015). After pregnant mice experienced restraint 



stress specifically, female offspring showed more anxiety-like behaviors as well as decreases 

in brain-derived neurotrophic factor in the placenta concurrent with later decreases of its 

expression in the adult amygdala (Gur et al., 2017).  Further investigation found MS-induced 

microbiome alterations (decreases in Bacteroides and Parabacteroides) persisting into 

adulthood, resulting in a decrease in sociability and serotonin metabolism.  

In humans, ongoing maternal stress (inclusive of prenatal and postnatal stress) has been 

associated with altered microbiota mental health problems in adult offspring (Betts et al., 

2015), as well as with influencing the development of the offspring microbiota over the first 

110 days after birth (Zijlmans et al., 2015). Stress-induced alterations within the microbiome 

could contribute to neurodevelopment and impact future offspring behavior (Gur et al., 2015, 

Codagnone et al., 2019a). However, the mechanism by which the negative impact of maternal 

stress is transmitted to the offspring’s microbiota is unknown, though IgA mediated 

immunity could be implicated (Kang et al., 2018b). Interestingly, exposure to intimate partner 

violence in pregnant women altered the infant microbiota, increasing Weisella and 

Citrobacter abundance (Naude et al., 2020). It’s likely that these stressors also hold long-term 

consequences on brain development in humans, as they do in animals. It’s unclear however, 

whether these microbiota alterations induced by the stress also play an important function. 

Maternal Immune Activation 

The maternal immune activation model is based around the controversial idea that maternal 

infections during pregnancy can impact psychiatric outcomes in the children (Estes and 

McAllister, 2016). A rodent model of maternal immune activation commonly administers 

viral mimetic poly(I:C) or bacterial lipopolysaccharide to produce psychiatric 

endophenotypes in offspring. Specifically, the viral mimetic poly(I:C) administered at E12.5 

in mice altered the gut microbiota composition and increased gut leakiness by decreasing 

claudin expression, while also elevating intestinal cytokine levels, including interleukin-6 in 



offspring (Hsiao et al., 2013). This model also elevated the bacterial production of, 4-

ethylphenylsulfate, which induced anxiety-like symptoms in wild-type mice (Hsiao et al., 

2013).  However, there is heterogeneity in the time of administration of the viral mimetic 

poly(I:C) which can lead to the development of different biomarkers or behaviors common to 

different disorders including schizophrenia (Juckel et al., 2011, Li et al., 2009) or autism-

spectrum disorder-like behaviors in mice (Malkova et al., 2012), and inconsistent depression-

like endophenotypes in rats and mice (Ronovsky et al., 2016).  

Though there exists no current research of its impact on the microbiota, the bacterial mimetic 

lipopolysaccharide can also induce behavioral phenotypes for anxiety, depression, or autism 

spectrum disorder in offspring (Depino, 2015, Oskvig et al., 2012); impairments in 

hippocampal development and neurogenesis (Escobar et al., 2011, Romero et al., 2007); and 

increased postnatal inflammation (Oskvig et al., 2012). In mice, lipopolysaccharide-induced 

maternal inflammation caused placental damage and fetal intestinal injuries that persisted in 

adulthood (Fricke et al., 2018).  

Intriguingly, researchers discovered that this phenotype requires the influence of the gut 

microbiota in initiating the immune cascade (Kim et al., 2017). Segmented filamentous or 

human-microbiome commensal bacteria were required to initiate the intestinal found that 

segmented filamentous bacteria or human-microbiome commensals were required to initiate 

the TH17 response (Kim et al., 2017). This cascade initiates a neuroinflammatory response 

which is required for developing MIA-induced behavioural abnormalities (Kim et al., 2017). 

While there are few studies in humans, maternal immune activation could potentially impact 

the offspring, associated with brain connectivity, function and even retrospectively with 

schizophrenia (Guma et al., 2019).  



Postnatal Stress and the Microbiota 

Early postnatal stress impacts the HPA-axis and contributes to the programming of brain 

health in later life (Heim and Nemeroff, 2001). Different types of early postnatal stress 

(social isolation, maternal separation) alter the gut microbiota composition and metabolism in 

rats (Farshim et al., 2016, Doherty et al., 2018, O'Mahony et al., 2009, Vodička et al., 2018, 

van de Wouw et al., 2018) and their inflammatory profiles (Doherty et al., 2018, O'Mahony 

et al., 2009). Social isolation also impaired memory and learning in rats (Doherty et al., 

2018).  Finally, germ free mice were more vulnerable to restraint stress – resulting in higher 

adrenocorticotropic hormone and corticosterone in plasma (Sudo et al., 2004, Clarke et al., 

2013), a reduction in glucocorticoid receptor mRNA and an increased stress response (Sudo 

et al., 2004). Remarkably, these effects were rescued with microbiota transplantation during 

adolescence but not adulthood (Sudo et al., 2004).  

While few studies focused on the microbiota and stress in the early postnatal period, it’s clear 

that many stress-related psychiatric disorders have marked alterations in the gut microbiome 

and metabolome (Cryan et al., 2019, Bastiaanssen et al., 2020, Bastiaanssen et al., 2019). 

Figure 3. Factors affecting the microbiota-gut-brain axis. Many dietary, pharmacological, stress and infection-

related factors influence the microbiota-gut-brain axis. These disruptions impact microbiota composition, the 

hypothalamic-pituitary-adrenal axis and microglial inflammation. Adapted from (Codagnone et al., 2019b). 



 

Sex-Specific Programming of Psychiatric Disorders Later in Life 

Many psychiatric disorders differ among the sexes in terms of prevalence or onset – including 

autism (Yeargin-Allsopp et al., 2003), mood disorders (Merikangas et al., 2010), anxiety 

disorders (Merikangas et al., 2010) and schizophrenia (Aleman et al., 2003). The underlying 

biological basis of these sex differences is still unknown. Since microbiota-related alterations 

have shown sex-specific effects after exposure to prenatal or postnatal environmental stimuli 

(Steegenga et al., 2017, Bahr et al., 2015, de Theije et al., 2014, Gur et al., 2017), they may 

play a role in the sex-specific programming of health later in life (Jaggar et al., 2020). See 

Figure 3 for the overlap between sex hormone levels, microbiota and brain dimorphism over 

time. 

Figure 3 Factors affecting the microbiota-gut-brain axis. Many dietary, pharmacological, stress and infection-related factors influence the 

microbiota-gut-brain axis. These disruptions impact microbiota composition, the hypothalamic-pituitary-adrenal axis and microglial 

inflammation. Adapted from Codagnone & Spichak et al., (2019).  

 



The gut microbiota and its metabolites influence the development of the microglia, and in its 

absence, development is disrupted in a sex-specific manner (Erny et al., 2015, Desbonnet et 

al., 2014, Thion et al., 2018). Abnormal microglial phenotypes were rescued with short-chain 

fatty acids, produced by certain members of the microbiota (Erny et al., 2015). The microglia 

are involved in synaptic pruning and maturation during neurodevelopment (see review by 

Salter (Salter and Beggs, 2014)).   

 
Figure 4 Variations between sex hormones, microbiota and brain dimorphism over the lifespan. Early sex 

differences in synaptic pruning correspond with sex differences in the gut microbiota of infants. Later in 

adulthood, females show increased alpha-diversity differences in gut microbiota and vast differences across 

neuropsychiatric disease and disorders. It is suggested that changes in microbiota may correspond to microbial 

androgen metabolism as well as brain function and disease.  (Jaggar et al., 2020). 

Importance of the Microbiota: Observations from the Germ-Free Model  

The idea that microbes are essential for proper host development and function is not new. In 

1885, Louis Pasteur posited the necessity of microbes for the existence of life (Pasteur, 

1885). The first GF animal was the guinea pig, which followed only 10 years after Pasteur’s 

publication (Nuttall and Thierfelder, 1895, Williams, 2014). Only decades later was the 

importance of this model truly recognized (Gordon and Pesti, 1971) and the concept of GF 

became more popular in the media. Interestingly, David Vetter, known as “the boy in the 

bubble” was also born in the year Gordon and Pesti published their seminal article. Vetter 



suffered from a disorder known as severe compromised immune deficiency and had to live in 

a sterile environment.  

Over the last few decades, several vertebrate models (rodent, bird, fish, pig) and invertebrate 

models (Drospohila) have provided insights on the impact and necessity of the gut 

microbiota for gut, immune and brain development (Rawls et al., 2004, Bates et al., 2006, 

Gordon et al., 1966, Savage et al., 1981, Erny et al., 2015, Hoban et al., 2016); anxiety, 

depression mood and social behavior (Hoban et al., 2017, Kraimi et al., 2018, Davis et al., 

2016b, Neufeld et al., 2011, Desbonnet et al., 2014, Buffington et al., 2016); locomotion and 

feeding (Leitao-Goncalves et al., 2017, Davis et al., 2016a, Diaz Heijtz et al., 2011, Schretter 

et al., 2018); learning, memory and transcriptional/molecular changes (Clarke et al., 2013, 

Hoban et al., 2018, Stilling et al., 2018, Rawls et al., 2004, Gareau et al., 2011). The scope of 

this review will primarily include the GF rodent model and its contributions to our 

understanding of host microbiome-neuroimmune interactions.  

Generation of the GF Rodent 

The first GF rodent models involved the aseptic Caesarean section of pups from the mother, 

who were then hand-reared in a sterile isolator or cross-fostered by a germ-free mother. In the 

late 1950s (Gustafsson, 1959, Reyniers and Sacksteder, 1958), a technique for generating 

successive generations of GF rodents was developed, and similar techniques and equipment 

are still most frequently used today (Williams, 2014). Alternatively, embryos at the 2-cell 

stage can be implanted into pseudopregnant GF mothers, thus ensuring a sterile vaginal birth 

(Inzunza et al., 2005, Okamoto and Matsumoto, 1999).  

Physiological and Anatomical Differences in the GF Rodent 

GF animals show marked alterations in their gross anatomy, indicating the essential role that 

microbes have in host development. When compared to conventionally raised counterparts, 

GF rodents have alterations in bone health (Sjogren et al., 2012, Quach et al., 2018), 



decreased weight of spleen, submandibular lymph nodes, liver as well as significantly larger 

colon (Reveley et al., 1983, Jeppsson et al., 1979, Gordon et al., 1966), liver metabolism (Li 

et al., 2018, Dempsey et al., 2018, Kindt et al., 2018) white blood cell count and distribution 

(Gordon et al., 1966), and even eye lipids (Oresic et al., 2009), in addition to various reported 

alterations in intestinal and brain measures (see (Spichak et al., 2019) for a thorough review). 

Their immune system is  also profoundly immature (see Fig. 5). 

 
Figure 5. Profound immaturity in peripheral and CNS immunity in the GF rodent. Immune cell immaturity, transcription and 
distribution of these cells is altered. The blood-brain barrier is more permeable while microglia in the brain are immature. 
Adapted from (Spichak et al., 2019). 

The behaviour, brain and immunity of the GF rodent is  also markedly affected by the lack of 

a microbiota (see Fig. 6). 



 
Figure 6 Phenotype of the GF rodent. This figure summarizes the most common findings across species and strain of GF 
rodent. GF rodents typically weigh less, have a significantly larger cecum and more cecal contents, possess altered liver 
metabolism, reduced gut motility, differences in bone density as well as striking changes to the structure of the gut. These 
GF rodents have learning and memory impairments, social impairments, altered anxiety-like behavior as well as an increase 
in self-grooming. Gut and peripheral immunity is severely compromised from the GF status of these rodents. As such, the 
lymphocyte immunoglobulin repertoire is attenuated, there is altered methylation in natural killer cells, and these rodents 
also possess resistance to some autoimmune diseases. In addition, their blood-brain barrier possesses increased 
permeability while the microglia in the brain have an immature phenotype. This microglia phenotype confers resistance 
against neurodegenerative disease. Finally, these GF rodents have many transcriptional changes in the amygdala and 
hippocampus contributing to an immature neuronal morphology, prefrontal cortex hypermyelination, and a hyperactive 
hypothalamic-pituitary adrenal axis. 

Microbiota-Gut Brain Axis Metabolite-Mediated Modulation of Glia 

Astrocytes 

In the 1850s, Rudolf Virchow coined the term neuroglia referring to the glue-like substance 

that holds neurons in place (Parpura and Verkhratsky, 2012, Barres, 2008). Further research 

found different types of neuroglia, with much of it focused on describing the supporting cells 

of the brain, called the astrocytes (Barres, 2008). While widely recognized as modulators of 



brain metabolism and immunity, recent work suggests these cells are genetically 

heterogenous and may even be involved in cognition, memory and behaviour (Khakh and 

Sofroniew, 2015, Khakh and Deneen, 2019, Alberini et al., 2018, Cao et al., 2013, Martin-

Fernandez et al., 2017). It’s also evident that astrocytes are involved in synaptic pruning 

during neurodevelopment (Chung et al., 2015).  Until very recently, astrocytes were used as 

proxy-measurements of CNS inflammation during microbiota-gut-brain axis studies. 

However, striking evidence suggests that they directly interact with microbial metabolites to 

regulate aspects of the brain’s immune response (Rothhammer et al., 2016).  

Dietary-derived tryptophan-indole metabolites were shown to reduce inflammation in the 

experimental autoimmune encephalitis model of multiple sclerosis (Rothhammer et al., 

2016). Indole metabolites activated the aryl-hydrocarbon receptor in astrocytes, leading to a 

downstream cascade activating the Interferon-I transcriptional pathway that reduced 

inflammation (Rothhammer et al., 2016). The indole metabolite indoxyl-3-sulfate is not 

produced in germ-free mice and is indeed shown to cross the blood-brain barrier to activate 

the aryl hydrocarbon receptor in astrocytes (Rothhammer et al., 2016). Humans with multiple 

sclerosis also showed a reduction in circulating indole metabolites that could act as agonists 

of the aryl-hydrocarbon receptor (Rothhammer et al., 2016). In adult mice, this pathway 

attenuates inflammation after stroke and reduces neurogenesis, perhaps preserving the 

neurogenic niche for more favourable conditions (Chen et al., 2019c) 

Another study found sex differences in responses to a high-fat, high sucrose diet in both the 

microbiome and astrocytes (Daly et al., 2020). Interestingly, while female mice showed an 

increase in the GFAP+ hypothalamic expression in the high fat, high sucrose condition 

compared to controls, this difference was absent in males (Daly et al., 2020). This suggested 

a reduction in astrogliosis only in females (Daly et al., 2020). 



Even fewer studies focused on these interactions in humans. In autistic children, the astrocyte 

inflammation mark S100β is found increased in the bloodstream (Tomova et al., 2019). 

S100β is often used as a marker for brain inflammation or injury (Michetti et al., 2019), and 

in study negatively correlated with the abundance of gut Bilophila and Carboxydothermus 

(Tomova et al., 2019). Another study indicates that the gut-derived SCFA acetate reaches 

astrocytes in the hypothalamus, modulating satiety and appetite (Frost et al., 2014).  

Microglia 

Microglia, the brain’s resident macrophages, mediate both immunity and synaptic pruning in 

the brain (Tremblay et al., 2011). Due to their importance in disease and neurodevelopment, 

impairments may contribute to different neurodevelopmental and neuropsychiatric disorders. 

In accordance with observations of peripheral immunity, microglia in GF animals are 

immature and cannot properly react to harmful stimuli (Erny et al., 2015, Castillo-Ruiz et al., 

2018). In addition to global transcriptional differences with conventional mice (Erny et al., 

2015), the microglia of GF rodents even have a different pattern of regional infiltration into 

the brain during development (Castillo-Ruiz et al., 2018). Further, altered cytokine and 

chemokine pathways in GF animals prevent the development of appropriate innate immune 

responses (Erny et al., 2015), which could impact synaptic pruning. 

Another study found temporal and sex-dependent differences in microglia gene expression 

and function. RNA sequencing of microglia revealed differentially expressed genes during 

embryonic development, with more differences in between GF males and their conventional 

counterparts, than in GF females and their conventional controls (Thion et al., 2018). 

Interestingly, the magnitude of these differences is reversed in adulthood, with more 

differentially expressed genes between GF and conventional females, than between the males 

(Thion et al., 2018). In addition, while conventional mice had an increase in differentially 

accessible regions in their genetic material as the embryo matured, but not in the GF mice 



(Thion et al., 2018). These results were shown to be translatable to humans, as there were 

transcriptomic similarities between microglia in both organisms during mid-gestation (Thion 

et al., 2018)). 

Using an antibiotic depletion model, evidence for the necessity of the microbiota for proper 

microglia development has been strengthened (Erny et al., 2015, Thion et al., 2018). 

Impairments in the GF model were rescued with the introduction of a complex microbiota or 

through short-chain fatty acid-mediated activation of the Free Fatty Acid Receptor 2 (Erny et 

al., 2015). Short-chain fatty acids can be produced by the human and rodent gut microbiota 

through the fermentation of indigestible fibres (Stilling et al., 2016). The immature GF 

microglia also show impaired responses to ischemia (Singh et al., 2018) and bacterial 

lipopolysaccharide (Campos et al., 2016). 

In mouse models of Alzheimer’s disease, the microbiota is often targeted to influence 

microglial inflammation. One study supplemented the diet of a transgenic model of 

Alzheimer’s disease, with a prebiotic soybean finding that it reduced microglial inflammation 

in the brain, attenuated the cognitive decline of the mice, reduced fecal lipopolysaccharide 

and increased the populations of Lactobacilli and Bifidobacteria in the gut (Lee et al., 2018). 

In other rodent models of Alzheimer’s disease, antibiotic administration reduced microglial-

related inflammation only in males (Mezo et al., 2020, Dodiya et al., 2019), mediated by 

changes in the levels of the ‘M0’ homeostatic microglial state (Dodiya et al., 2019). 

Additionally, administration of the butyrate producing probiotic Clostridium butyricum 

attenuated microglial inflammation and cognitive impairment in this transgenic model (Sun et 

al., 2020). Using the Amyloid-β induced BV2 microglial cell line, (Sun et al., 2020) found 

that butyrate administration reduced the expression of CD11b, COX-2 and reduced the 

phosphorylation of the transcription factor  NF-κβ p65. There is a plethora of evidence 



showing the functional involvement of short-chain fatty acids in the microglial pathogenesis 

across different mouse models of Alzheimer’s disease. 

These anti-inflammatory mechanisms may act in other disease states. The gut microbiota was 

necessary for activation of the neuroprotective microglial TLR4 response against viral-

induced neurologic signalling  (Brown et al., 2019). Other work indicates that microglia 

derived TGFα and VEGF-B mediated the astrocytic aryl-hydrocarbon receptor response in 

experimental autoimmune encephalitis; it was found that microglial activation was also 

dependent on dietary tryptophan metabolites (Rothhammer et al., 2018). 

Interestingly the microbiota and microglia may also mediate behaviour. The tetracycline 

antibiotic minocycline inhibited microglial activation, attenuating anxiety and depressive-like 

behaviours in a high-anxiety breed of rats (Schmidtner et al., 2019). Minocycline treatment 

also reduced the caecal abundances of butyrate-producing families of bacteria 

Lachnospiraceae and Clostridiales Family XIII (Schmidtner et al., 2019). The abundance of 

these families, as well as the amount of 3-OH-butyrate in the serum were positively 

correlated with reductions in anxiety behaviours (Schmidtner et al., 2019).   

Oligodendrocytes  

The myelinating cells of the CNS, oligodendrocytes, also require a gut microbiota for proper 

maturation and function. Converging lines of evidence implicate the microbiota and its 

metabolites in oligodendrocyte function and gene expression.  

Sex specific differences in myelination have been found in the prefrontal cortex GF mice 

(Gacias et al., 2016, Hoban et al., 2016, Radulescu et al., 2019, Lu et al., 2018). One study 

which used diffusion tensor imaging, showed that male C57BL/6 mice had hypomyelination 

in the corpus callosum, at 4 weeks of age, and internal capsule at 12 weeks of age, while 

females did not (Lu et al., 2018). In addition, differences in myelination between males and 



females were significant in each investigated region (Lu et al., 2018).  In contrast, Swiss 

Webster GF males displayed an upregulation in myelination genes in the prefrontal cortex, 

suggestive of  hypermyelination – which was absent in females (Hoban et al., 2016). This 

was verified with electron microscopy and Western blot (Hoban et al., 2016).  

 

One study administered a probiotic consisting of Lactobacillus acidophilus and 

Bifidobacterium infantis to pregnant C57BL/6 dams during pregnancy and weaning (Lu et al., 

2020). Compared to controls, offspring from these dams showed increased protein expression 

of neuroglia-2, a marker of oligodendrocyte progenitor cells (Lu et al., 2020). In a model of 

maternal stress in rats, coadministration of a prebiotic with the milk-fat globule membrane 

prebiotic attenuated the negative impact of maternal stress-mediated increases on the 

expression of myelin-associated glycoprotein in the prefrontal cortex (O'Mahony et al., 

2020). 

 

The role of microbiota-mediated myelination was investigated in a genetic FVB mouse model 

of Huntington’s disease. A reduction in myelin-related proteins was measured in the 

prefrontal cortex of these mice, suggesting hypomyelination (Radulescu et al., 2019). Much 

like the immature microglial phenotype, profound oligodendrocyte immaturity in the 

prefrontal cortex was also observed and measured using immunohistochemistry in the GF 

mice (Radulescu et al., 2019). In the corpus callosum of GF Huntington’s mice, 

immunohistochemistry and electron microscopy uncovered hypermyelination (Radulescu et 

al., 2019). Interestingly, GF mice with genetically-induced Huntington’s disease also had an 

increase in the proportion of small diameter axons as well as a decreased proportion of 

medium diameter axons (Radulescu et al., 2019). However, the results of this study were not 

stratified by sex. 



A model of cuprizone-induced demyelination found that administration of the SCFA butyrate 

attenuated demyelination and enhanced remyelination, via its direct impact on 

oligodendrocytes (Chen et al., 2019b). Butyrate exerted its effects on remyelination by 

modulating the differentiation of immature oligodendrocytes (Chen et al., 2019b).  

Research of multiple sclerosis in humans and corresponding rodent models finds that the 

microbiota mediates the autoantigen peripheral immune response during disease progression 

(Berer et al., 2017, Berer et al., 2011, Zeraati et al., 2019, McMurran et al., 2019, Miller et 

al., 2015) but little impact on subsequent remyelination (McMurran et al., 2019). Indeed, 

modulating the gut microbiota through diet in rodents modified disease severity in 

experimental autoimmune encephalitis (Libbey et al., 2018, Escribano et al., 2017). Microbial 

taxa reduced during the pathogenesis of multiple sclerosis produce SCFAs; accordingly, 

administration of SCFAs also attenuated the severity of disease in a rodent model of 

experimental autoimmune encephalitis indirectly via T-cell mediated effects (Mizuno et al., 

2017a). Faecal microbiota transplants from healthy naïve mice, reduced the severity of 

experimental autoimmune encephalitis (Li et al., 2020a).  

It’s clear that there is both direct and indirect influences of the gut microbiota and its 

metabolites on oligodendrocytes maturation, myelination and function.  

 

Sequencing the Gut Microbiota 

Reductions in the cost of RNA-sequencing as well as the innovations and improvements 

across these platforms enables the study of the gut microbiota (Claesson et al., 2017). 

Commonly, faecal samples are collected and stores at -80° C until the RNA is extracted and 

cDNA is synthesized (Bastiaanssen et al., 2019, Chen et al., 2020a, Cardona et al., 2012). 

This genetic material is amplified using the PCR reaction, either targeting multiple microbial 



genes for whole-genome shotgun sequencing or only the hypervariable 16S rRNA gene for 

16S sequencing (Bastiaanssen et al., 2019, Fouhy et al., 2016, Clooney et al., 2016). While 

16S sequencing is less cost-intensive, it does not provide as much strain-level resolution as 

whole-genome sequencing (Bastiaanssen et al., 2019, Fouhy et al., 2016, Clooney et al., 

2016). Next-generation sequencing platforms then provide readouts of RNA sequences 

(Bastiaanssen et al., 2019). These readouts are pre-processed and assigned to microbial taxa, 

functional pathways or potential neuroactive modules (Bastiaanssen et al., 2019, Valles-

Colomer et al., 2019, Iwai et al., 2016, McIver et al., 2018). A recent study identified the 

importance of neuroactive gut-brain modules in mood disorders (Valles-Colomer et al., 

2019). These gut-brain modules are inferred from microbiome composition and are validated 

on a large human dataset (Valles-Colomer et al., 2019). This tool is important for further 

investigations of the microbiome, adding on more functional input and insight. 

The data analysis approach must account for the compositional nature of the microbiota to 

reduce spurious findings (Gloor et al., 2017, Quinn et al., 2018). Most microbiome studies 

measure the α-diversity of samples to determine the amount, evenness and distribution of 

difference species within each sample (Bastiaanssen et al., 2019). β-diversity metrics quantify 

the differences between two different groups, often displayed using Principal Component 

Analysis (or Principal Coordinate Analysis, when compositional methods are not used) 

(Gloor et al., 2017). Identifying differentially-abundant taxa is a common method for 

explaining the potential relationship between certain elements of the microbiota and host 

physiology (Gloor et al., 2017).  



 

Figure 7. Pipeline of microbiota analysis, from faecal sample to final output. After fecal samples are collected, microbial 
genetic material is extracted. Microbial genes are amplified through PCR and the microbial genes are sequenced. Following 
this step, the microbiome information is digitized. Various bioinformatics tools are then used to identify the individual taxa 
within the sample. After generating a table containing the amount of different microbes found in each sample, 
bioinformatics analysis can determine whether one group expresses more of a specific taxa. Additionally, the amount of 
different bacteria and their distribution is compared between groups to assess different types of alpha diversity. The counts 
table can also be used to predict functional characteristics of the microbiota. Finally, a principal component analysis allows 
for the visualization of all samples, to determine whether groups cluster away from each other. This provides a measure of 
beta-diversity. Adapted from (Cryan et al., 2019). 

  



  

Overall goal and Specific Aims 

Given the importance of both the microbiota metabolites and glia in health and disease, my 

overall goal is to use two approaches to increase our knowledge of microbial metabolites and 

in particular SCFAs in brain health and disease  

Aims Addressed in Chapter 2 

While many studies analyse the microbiota in association with disorders or other aspects of 

the brain, they often find different results. Additionally, identifying differentially expressed 

microbes does not provide any functional information. A few studies also measure fecal 

short-chain fatty acids but other key metabolites, notably bile acids and tryptophan 

metabolites are rarely assessed. Since the development and validation of bioinformatics tools 

to identify neuroactive microbial pathways, these studies can be reanalyzed (Valles-Colomer 

et al., 2019). This chapter looks for differences or similarities in gut-brain module abundance 

across >200 human microbiome studies can be assessed. To our knowledge, this is the first 

such attempt at comparing and reconciling differences within these studies. With the addition 

of updated bioinformatics pipelines and taxonomic classifiers, a consistent pipeline is applied 

to analyse the data. 

1. Although there is many studies on the microbiome in psychiatric disorders there is a 

lack of knowledge on the functionality of such changes in disease. Thus one of the 

major goals of this thesis is to synthesize,  summarize and reanalysis of all existing 

human-microbiome-brain studies to probe for evidence of predicted microbial-

metabolites associating with brain function, behaviour or disease in humans. 

2. Use a standardized bioinformatics pipeline to determine if common microbiota-gut 

brain axis trends persist across existing human studies. 



Aims Addressed in Chapter 3 

A plethora of supporting studies suggest that SCFAs, especially butyrate, impact the glial 

components of the brain. While much of the focus has been on microglia, it is important to 

assess the specific roles of astrocytes within a homeostatic setting. (Frost et al., 2014) found 

that acetate impacts the glutamate-glutamine cycle in hypothalamic astrocytes, regulating 

appetite. SCFAs are also involved in the Krebs’ cycle and thus may play a regulatory role in 

the brain. However, studies have not assessed whether there are sex-specific differences in 

cortical astrocyte function at physiologically-relevant levels of SCFAs.  Thus the effects of 

SCFAs on gene expression of astrocytes may underpin some of the changes seen at a 

population level. 

3. Determine whether physiologically relevant concentrations of microbially-derived 

SCFAs alter gene expression in vitro using primary cortical murine astrocyte cultures. 

4. Determine if these effects in vitro are dependent upon sex. 
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Abstract 

There is increasing knowledge regarding the role of the microbiome in modulating brain and 

behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain 

communication in humans. Among these metabolites short-chain fatty acids, tryptophan, and 

bile acid metabolites/pathways show strong preclinical evidence for involvement in various 

aspects of brain function and behaviour. With the identification of neuroactive gut-brain 

modules, new predictive tools can potentially be applied to existing datasets.  

We identified 278 studies relating to the human microbiota-gut-brain axis which included 

sequencing data. This spanned across psychiatric and neurological disorders with a small 

number also focused on normal behavioural development. With a consistent bioinformatics 

pipeline, thirty-five of these datasets were reanalyzed from publicly available raw sequencing 

files and the remainder summarized and collated. Among the reanalyzed studies, we 

uncovered evidence of disease-related alterations in microbial metabolic pathways in 

Alzheimer’s Disease, schizophrenia, anxiety and depression. Amongst studies that could not 

be reanalyzed, many sequencing and technical limitations hindered the discovery of specific 

biomarkers of microbes or metabolites conserved across studies. Future studies are warranted 

to confirm our findings. We also propose guidelines for future human microbiome analysis to 

increase reproducibility and consistency within the field.  

Keywords: Microbiota; brain; enteric-nervous system; short-chain fatty acids; bile acid; 

tryptophan; indole; psychiatry; neurodegenerative disease; diet 

  



Highlights 

• Microbially-derived metabolites are implicated in human brain health and disease 

• Evidence is lacking for consistent microbial changes across studies  

• Evidence suggests metabolites are involved in schizophrenia, anxiety/depression and 

Alzheimer’s disease 

• Technical sequencing and bioinformatics limitations hinder cross-study comparison 

• Improved methods and data reporting are key to find robust associations  



Introduction  

1.1 Role of Metabolites in the Microbiota-Gut-Brain Axis 

Since the serendipitous discovery of the antibacterial properties of penicillin in 1928, 

microbial metabolites have been harnessed for their various antimicrobial properties and are 

emerging as mediators of mammalian health and behaviour (Fleming, 1946b, Fleming, 

1946a, O'Mahony et al., 2015, Blacher et al., 2017, Levy et al., 2017, McCarville et al., 

2020). The mammalian gastrointestinal tract is colonized at birth by a diverse collection of 

microorganisms, collectively called the microbiota (Codagnone et al., 2019a, Theis et al., 

2019). One of the core functions of the gut microbiota is the modification of host, xenobiotic 

and dietary-derived molecules into bioactive metabolites that can impact host health and 

disease (Clarke et al., 2019, Sharon et al., 2014, Spanogiannopoulos et al., 2016, Morris et al., 

2017, Sun et al., 2017).  The ecological community coexisting within a shared space is 

defined as the microbiome (Lederberg and McCray, 2001). One of the most surprising 

findings over the past decades is the cornucopia of genes within the microbiome that enable 

the production and modification of neuroactive metabolites which may modify gut-brain axis 

function (Zimmermann et al., 2019, Strandwitz et al., 2019, Lyte, 2014, Clarke et al., 2014, 

Tennoune et al., 2014, Lee et al., 2015). Most studies in this field characterize the 

predominant bacterial and archaeal components of the gut microbiota.  

Microbial metabolites communicate through dynamic bi-directional pathways within the 

microbiota-gut-brain axis to mediate host brain immunity and physiology (Spichak et al., 

2019, Erny et al., 2017, Pott and Hornef, 2012, Blacher et al., 2017, Levy et al., 2017, 

McCarville et al., 2020). They exert effects directly after being transported across the blood-

brain barrier or indirectly through immune, neuroendocrine or vagal mechanisms (Alenghat, 

2015, McCarville et al., 2020, Roager and Licht, 2018, Stilling et al., 2016, Fulling et al., 

2019). Advances in sequencing technologies over the past decade enable the relatively rapid 



and comprehensive illumination of the composition of the microbiome in the gut (Song et al., 

2018, Bailey et al., 2019, Shakya et al., 2019). For the most part, sequencing of faecal 

samples is used as a surrogate of the gut microbiota composition of individuals. However, 

since most studies differ in methods, developing a consensus from this data is difficult 

(Pollock et al., 2018).  Nonetheless, these studies are invaluable for assessing the role of the 

bacterial metabolites within the human host’s central nervous system (CNS).  

Three of the most-studied metabolic pathways within the gut microbiota are the short chain 

fatty acids (SCFAs), tryptophan metabolism and bile acid metabolism and will form the focus 

of our paper. 

1.2 Aims and Scope  

Knowledge on the role of the main microbial metabolic pathways influencing brain and 

behaviour is emerging. It is important to collate all the currently available datasets in order to 

identify gaps and point to novel areas of discovery. Thus, the aim of this paper is to assess 

metabolic signatures of different human brain health and disease states. All publicly available 

datasets will be reanalyzed and all existing data from the remaining studies will be collated. 

This study focuses on SCFAs, tryptophan pathway metabolites and bile acids.  To the best of 

our knowledge, this is the first extensive analysis of the MGBA involving all publicly available 

data to determine whether any clear microbial composition and metabolic signatures emerge 

for psychological and psychiatric diseases. Briefly this will involve the following steps: 

1. An extensive literature review (PubMed) on all studies involving sequencing the 

faecal microbiota in humans to compare with a functional or clinical brain measure, or 

disease status. Significant findings at the genera level related to the metabolites 

involved in the scope of this study will be recorded, along with significance and effect 

size, if available. Differentially abundant microbes known to be involved in metabolic 



pathways (tryptophan, SCFA and bile acid) will be identified from the existing 

literature (Molinero et al., 2019, Roager and Licht, 2018, Valles-Colomer et al., 2019, 

O'Mahony et al., 2015).  

2. A reanalysis of all publicly available datasets with a common, updated pipeline to 

identify differentially abundant microbes and gut-brain modules (GBMs). Recently 

the concept of GBMs has emerged, providing an additional predictive index for 

bacterial 16S rRNA gene sequencing studies (Valles-Colomer et al., 2019). Briefly, 

the authors performed an extensive literature review to inform the assembly of 

pathways with neuroactive potential in bacteria. Existing databases don't curate all 

these pathways or predict their ability to bypass the blood-brain barrier (Valles-

Colomer et al., 2019). After construction and validation from genomes of human-

associated microbes, GBMs were validated on a large cohort of human 16S rRNA 

gene sequencing data (Valles-Colomer et al., 2019). This revealed novel insight into 

the gut metabolic signatures of depression (Valles-Colomer et al., 2019). To fulfil a 

GBM, the microbe must possess each enzyme within the pathway (Valles-Colomer et 

al., 2019). Though this method does not directly measure the abundance of these 

metabolites, it provides stringent associations validated on large independent cohorts.   

In addition to changes in microbial composition and GBMs, effect sizes and 95% 

confidence intervals will also be reported.  

3. Assess if common disease signatures exist across studies. If there is a specific host-

microbe-metabolite interaction within a disease, we would expect a common unique 

signature of differentially-abundant taxa and GBMs across all studies of that disease.  

2.0 Methods 

2.1 Study Selection 



PubMed database searches were conducted by searching for disease or health-related terms 

along with ‘microbiome’. These terms were: obesity brain, anorexia, ADHD, ASD, 

PANDAS, schizophrenia, Alzheimer’s Disease, amyotrophic lateral sclerosis, neurovascular, 

ischemia, temperament, personality trait, multiple sclerosis, IBS anxiety depression, 

fibromyalgia, migraine, stress AND human, posttraumatic, anxiety OR depression human 

faecal, alcohol-dependence, bipolar disorder, epilepsy, opioid use, smoking human faecal, 

human drug addiction faecal, sleep human faecal, human ‘psychological stress’, Rett 

syndrome. An example of one search would be: microbiome AND obesity brain. This search 

yielded a total of 3552 results on June 10th, 2020. The abstracts were manually searched and 

any studies not involving humans, the colonic microbiota or any brain or behaviour-related 

measures were excluded leaving 249 studies. 35 of these datasets were reanalyzed. 39 more 

studies published after June 10th 2020 were also included. 

In the studies where the raw microbiome data was not reanalyzed the sequencing strategy, 

relevant results relating to differential abundance of microbes involved in neuroactive 

pathways and limitations were summarized.  

2.2 Downloading datasets 

Raw sequencing files (.fastq or .fastq.gz format) were downloaded from the European 

Nucletotide Archive or the Sequence Research Archive by generating a bash script to 

download the dataset (https://sra-explorer.info). For data deposited on the China National 

GeneBank Database Sequence Archive or Qiita sequencing files were downloaded by writing 

bash scripts to download each individual dataset (Gonzalez et al., 2018). Some data was also 

downloaded from the Metagenomic Rapid Annotations using Subsystems Technology (MG-

RAST) using scripts from https://github.com/MG-RAST/MG-RAST-Tools (Meyer et al., 

2008, Wilke et al., 2015).  Two studies were excluded from reanalysis because one could not 

https://sra-explorer.info/


be demultiplexed and another was sequenced using the SOLiD platform and could not be 

processed through the same pipeline.  

2.3 Generating counts tables for 16S rRNA gene sequencing platforms 

Raw sequencing files for each dataset were processed through the DADA2 pipeline (Callahan 

et al., 2016). Briefly, files were first filtered and trimmed to 200 base pairs (where possible 

with the following settings: trimLeft = 37, truncLen=237, maxEE=2, truncQ=2, maxN=0, 

rm.phix=TRUE) (Callahan et al., 2016). Next, sequence quality reports were generated using 

FastQC, using a threshold score of 28 (Andrews, 2010). If necessary, samples were filtered 

again and trimmed. Forward and reverse error rates (settings: nbases=1e8) were generated for 

each dataset, followed by merging of individual files into a sequence table and the removal of 

de novo bimeras (Callahan et al., 2016). The SILVA v132 training set was input into the RDP 

classifier in DADA2 to assign taxonomy to the sequence table (Glockner et al., 2017, Pruesse 

et al., 2019, Quast et al., 2013, Yilmaz et al., 2013, Wang et al., 2007).  

Scripts used for bioinformatics analysis are found here: https://github.com/simon-sp/Mining-

Metabolites. 

2.4 Bioinformatics Analysis: Differentially Abundant Microbes  

R version 3.6.3 was used in R Studio v1.2.5 for Ubuntu 18.04. Any amplicon-sequence 

variants (ASVs) with fewer than 2 raw counts were filtered out, and data was transformed 

using the centred-log-ratio (CLR) in ALDEx2 with 1000 Monte-Carlo sampling permutations 

(Fernandes et al., 2014, Quinn et al., 2018). Three studies were excluded where the majority 

of ASVs were filtered out, leaving a counts table with only 2-10 microbial taxa.  

An overall PCA was generated by principal component analysis for visualisation and quality 

check purposes using the ggplot2 package (Wickham, 2016). 



A list of differentially abundant microbes was generated with the Tjazi 

pairwise_DA_wrapper by incorporating the Wilcoxon Rank-Sum test for comparing the 

abundance of each individual microbe across groups, followed by a Benjamini-Hochberg 

post-hoc test (Bastiaanssen, 2019, Pounds and Cheng, 2004) . Microbes were reported if they 

had a Padj < 0.1 and an effect size > 0.65 to increase the robustness of these findings. The 

95% confidence intervals are also reported.  

2.5 Bioinformatics Analysis: Differentially Abundant Gut Brain Modules 

Raw sequencing data was transformed to be input into Piphillin for predicted functional 

analysis of the sequencing data (Iwai et al., 2016). The output of Piphillin produced a counts 

table of the Kyoto Encyclopdia of Genes and Genomes (KEGG) orthologs, which could then 

be used to assess the abundance of GBMs via omixerRpm, using the GBM_v1.0 dataset  

(Kanehisa et al., 2019, Kanehisa and Goto, 2000, Kanehisa, 2019, Valles-Colomer et al., 

2019). Differential abundance of GBMs was determined using the Tjazi pairwise_DA-

wrapper. GBMs were reported if they had a Padj < 0.1 and an effect size > 0.4 to increase the 

robustness of these findings. The 95% confidence intervals are also reported. 

2.6 Generating Counts Tables for WGS Shotgun Analysis  

First, adapter sequences were trimmed using bbduk (ktrim=r, mink=6, hdist=1, qtrim=rl, 

trimq=20, minlength=70, tpe, tbo, rcomp = T) followed by decontamination using bbmap     

(-Xmx16g, minid=0.95, qtrim=rl, trimq=10, untrim) against the masked human genome 

(Hg38) and merging using bbmerge (bbmerge-auto.sh, -Xmx24g, rem, k = 62, extend2=50, 

ecct) (Bushnell, 2020, Bushnell et al., 2017). The fastq.gz files were then processed through 

‘biobakery_workflows wmgx’ run within a separate Miniconda environment (Python v2.7) 

with the following parameters: --bypass-strain-profiling --bypass-quality-control using the 

UniRef default databases for MetaPhlAn2 and HUMAnN2 (Truong et al., 2015, McIver et 



al., 2018, Franzosa et al., 2018). The rest of bioinformatics analysis of the count tables for 

genes and gene pathways is described in Section 2.3 with two differences. Piphillin is not 

used because HUMAnN2 provides counts tables of gene pathways/proteins as outputs and 

thus do not need to be inferred. Counts tables for bacterial genes as well as gene 

pathways/proteins were first run through the guess_counts function within the Tjazi R library, 

before CLR transformation (Bastiaanssen, 2019). Two whole genome shotgun (WGS) studies 

were excluded from re-analysis because the publicly available dataset did not contain all 

sequenced samples or the fastq.gz files were not labelled. 



3.0 Results and Discussion 

3.1 Short-Chain Fatty Acids (SCFAs) in Brain Health and Disease 

3.1.1 Biochemistry and Function 

SCFAs are molecules consisting of a 1-6 carbon chain with a carboxylic acid group (Dalile et 

al., 2019). Colonic bacterial fermentation of non-digestible, non-absorbable fibres (inulin, 

cellulose, wheat bran and resistant starches) produces SCFAs as a by-product (Cummings, 

1981). The following genera commonly found in the gut are known to produce SCFAs: 

Akkermansia, Bifidobacterium, Lactobacillus, Lactocaseibacillus, Ligilactobacillus, 

Ruminococcus, Ruminoclustridium, Blautia, Bacteroides, Roseburia, Prevotella, 

Eubacterium, Fusicatenibacter, Faecalibacterium, Enterococcus, Clostridium and 

Coprococcus (Takada et al., 2013, Dalile et al., 2019, Joseph et al., 2017, Valles-Colomer et 

al., 2019, Basson et al., 2016, Zheng et al., 2020a). It is unclear how these genera impact the 

absorption of SCFAs in the colon (Ruppin et al., 1980) nor how GI absorption may differ 

between individuals independent of these microbes (Dalile et al., 2019). Other factors that 

may impact differences in SCFA circulating concentrations include host genetics, dietary 

intake and colonic absorption of SCFAs (Dalile et al., 2019). 

SCFA production involves overlap with pyruvate metabolism and other molecules involved 

in the Krebs Cycle (see Figure 1). The most abundant SCFAs in humans are acetate, butyrate 

and propionate (Dalile et al., 2019). They differ in their aliphatic tail length and the position 

of their carboxylic acid group (Dalile et al., 2019). These minor differences affect affinity and 

specificity to G-protein coupled receptors (GPCRs; (FFAR1, FFAR2, FFAR3, GPR109A, 

GPR164 and OR51E2)) (Dalile et al., 2019). SCFAs also act as histone deacetylase inhibitors 

in enteric neurons, enterochromaffin cells, and microglial cells (Stilling et al., 2016, Erny et 

al., 2015, Dalile et al., 2019, Woo and Alenghat, 2017, Yang et al., 2019). Through these 



mechanisms, SCFAs impact host physiology by driving the expansion of FOXP3+ Treg cells 

(Woo and Alenghat, 2017),  or mediating the release of IL-6, IL-10 and IL-12, dendritic cells 

and macrophages, in turn driving T cell maturation (Woo and Alenghat, 2017).   

Many SCFA-sensing GPCRs are located on enteric immune and neuronal cells  (Nohr et al., 

2013, De Vadder et al., 2014). In the millimolar concentration range butyrate depolarizes 

enteric neurons (Neunlist et al., 1999), and reduces monocyte activation and mast cell 

degranulation (Digby et al., 2012, Diakos et al., 2006). Though a growing body of pre-

clinical evidence suggests SCFAs are neuroactive metabolites influencing the brain and 

behaviour (Liu et al., 2020b, Sadler et al., 2020, van de Wouw et al., 2018, Lee et al., 2020a), 

few clinical studies thus far have reported on these effects in humans. Some promising 

evidence shows that SCFA production correlates with health outcomes in humans. For 

example, increasing dietary-fibre intake from an average of 12.12g  daily to 37.10g  over the 

course of 84 days modulated clinically-relevant host outcomes in Type 2 Diabetes, including 

reducing the levels of haemoglobin A1C (Zhao et al., 2018).   

3.1.2 Potential of SCFAs to Cross the Blood-Brain Barrier 

To reach the brain, SCFAs must cross the intestinal epithelium through passive diffusion 

or via monocarboxylate transporters (MCT1, SMCT1) (Bergersen, 2015, Chiry et al., 2006), 

before  passing through the hepatic circulation without being completely depleted by hepatic 

enzymes (Stilling et al., 2016). In recently-deceased or fasting individuals, researchers found 

SCFAs in peripheral circulation were depleted to ~20% after passing through hepatic 

circulation (Stilling et al., 2016, Cummings and Macfarlane, 1997, Peters et al., 1992, Hamer 

et al., 2008).  

SCFAs are transported across the blood-brain barrier by MCT1 or SMCT1, but it is unclear if 

they reach a relevant physiological concentration in the brain (Bergersen, 2015, Chiry et al., 



2006). One human study used PET in vivo imaging to microbially-produced acetate from the 

colon reached the hypothalamus to regulate satiety signalling (Frost et al., 2014). In addition, 

butyrate is involved in mediating the integrity and permeability of the blood-brain barrier by 

increasing occludin expression in preclinical models (Braniste et al., 2014, Li et al., 2016, 

Sun et al., 2016a, Sun et al., 2016b). Meanwhile, in vitro studies show that propionate can act 

on GPCR receptors at 1µM  to promote neuroprotective pathways (Hoyles et al., 2018).  The 

human metabolomic database assessed concentrations of SCFAs in the cerebrospinal fluid, 

finding ranges of 0-171µM  for acetate, 0-6µM  for propionate and 0-2.8µM  for butyrate 

(Wishart et al., 2018). An older study performed gas chromatography on human brains, 

finding higher SCFA concentrations than the metabolomics study found in the cerebrospinal 

fluid (Bachmann et al., 1979). These studies are not conclusive but suggest that SCFAs do 

enter the brain. It is unknown if these SCFA levels induce effects on circumventricular 

organs such as the hypothalamus.   

3.2 Tryptophan Pathway Metabolites 

3.2.1 Biochemistry and Function of Bacterially-Produced Indoles 

The gut microbiota can generate and modify neurotransmitters as well as their precursors, 

including serotonin and tryptophan (see Gheorghe et al. (2019), (Lee et al., 2015) for review).  

The potential for gastrointestinal microbes to metabolize tryptophan and its various 

metabolites was first characterized in the 1970s (Allison et al., 1974, Whitt and Demoss, 

1975). In the decades since, metabolites exclusively produced by microbial enzymes yet 

communicate with the host, called indoles were functionally characterized (Lee et al., 2015, 

O'Mahony et al., 2015). While indoles are commonly produced by pathogenic strains of 

bacteria to improve their survival, they are also present in a symbiotic ecosystem (Lee et al., 

2015). While the neurotransmitter serotonin is produced from the dietary-derived essential 



amino acid tryptophan (Reigstad et al., 2015), indoles are produced by the breakdown of 

tryptophan using the bacterial enzyme tryptophanase (Lee et al., 2015). 

Many of the bacterial strains capable of expressing tryptophanase are also involved in the 

other tryptophan metabolic pathways described below. These genera include Bacteroides, 

Butyrivibrio, Clostridium, Enterococcus, Escherichia, Eubacterium, Haemophilus, 

Fusobacterium, Peptostreptococcus, Bifidobacterium, Parabacteroides, Megamonas, 

Anaerostipes, Ruminococcus (Roager and Licht, 2018, Valles-Colomer et al., 2019, 

O'Mahony et al., 2015).    

Indoles are present in the high nanomolar to low millimolar range in the colon (Bansal et al., 

2010, Karlin et al., 1985). These metabolites, produced by the enzyme tryptophanase, signal 

with human intestinal epithelial cells in the millimolar concentration range, increasing tight 

junction resistance and mucin production (Bansal et al., 2010, Karlin et al., 1985). Indole 

metabolites also regulate enteric neuronal signalling and motility in the myenteric plexus 

through the aryl-hydrocarbon receptor (Obata et al., 2020). In the brain, indoles act on this 

same receptor in the central nervous system (CNS) astrocytes to regulate inflammation and 

immunity (Rothhammer et al., 2016, Rothhammer et al., 2018).  

3.2.2 Biochemistry and Function of Serotonin 

Microbial tryptophan metabolism regulates bioavailability of precursors required for host 

serotonin (5-HT) production (Kennedy et al., 2017, Yano et al., 2015).  To produce 5-HT, 

tryptophan hydroxylase converts tryptophan into 5-hydroxytryptophan, which then requires 

an enzymatic decarboxylation reaction to form 5-HT (Gheorghe et al., 2019, Kennedy et al., 

2017). 5-HT is important for gastrointestinal motility, absorption and secretion tract 

(Kennedy et al., 2017). ~95% of 5-HT is produced by the enterochromaffin cells in the gut 

and secreted into the lumen in response to different stimuli (Kuo et al., 2002, Gershon and 



Tack, 2007). The enterochromaffin cells can uptake tryptophan or 5-hydroxytryptophan and 

generate serotonin via tryptophan hydroxylase (Kuo et al., 2002, Gershon and Tack, 2007). In 

disorders such as ulcerative colitis or irritable bowel syndrome, tryptophan hydroxylase 1 

mRNA, serotonin transporter mRNA and serotonin transporter expression were markedly 

reduced (Coates et al., 2004). There is also cross-talk with SCFAs which modulate the 

expression of serotonin production within enterochromaffin cells by promoting tryptophan 

hydroxylase 1 gene expression (Reigstad et al., 2015).   

The serotonergic system within the brain is involved in regulating cognition, mood and 

behaviour, and is dysfunctional in depression, anxiety and other neuropsychiatric disorders 

(Jacobs and Azmitia, 1992, Gheorghe et al., 2019). 

3.2.3 Biochemistry and Function of Other Tryptophan Catabolites 

Tryptophan is degraded in the colon and throughout the rest of the body by the ubiquitously 

expressed indoleamine-2,3-dioxygenase (IDO1) or tryptophan-2,3-dioxygenase in the liver 

(TDO2)  (Seifert, 1993, Ruddick et al., 2006). The expression of these enzymes is increased 

past homeostatic levels by stress-released cytokines and elevated levels of glucocorticoids, 

toll-like-receptor activation or aryl hydrocarbon receptor activation (Morris et al., 2017, Maes 

et al., 2011b, Schrocksnadel et al., 2006, Kennedy et al., 2017). This increases the presence of 

downstream catabolites including quinolinic acid and kynurenic acid which act within the 

CNS or the enteric nervous system (ENS) (Morris et al., 2017, Maes et al., 2011b, 

Schrocksnadel et al., 2006, Kennedy et al., 2017).  

Kynurenic acid is a GPR35 agonist in the gastrointestinal tract and in mononuclear immune 

cells in the ENS (Wang et al., 2006) and provides neuroprotection in the CNS as an 

antagonist of the N-methyl-D-aspartate (NMDA) receptor and the α-7-nicotinic receptor 

(Foster et al., 1984, Hilmas et al., 2001). Quinolinic acid on the other hand exerts agonistic 



excitotoxic activity in the CNS through activation of the NMDA receptor  (Foster et al., 

1984). 

Interestingly, in a recent a double-blind randomized placebo-controlled trial in humans it was 

found that probiotic supplementation with L. plantarum 299v altered kynurenine metabolites 

and improved cognition measures in individuals with major depressive disorder. However, 

the microbiota compositional changes were not characterized in this trial (Rudzki et al., 

2019). It could be hypothesized that the changes introduced into the gut microbial ecosystem 

sufficiently altered the expression of hepatic TDO2, indirectly influencing peripheral 

tryptophan metabolism.  

3.2.4 Transport into the Brain 

Tryptophan is absorbed in the small intestine and transported into peripheral circulation and 

can be catabolized by IDO1 throughout the body or TDO2 in the liver (Seifert, 1993, 

Kennedy et al., 2017). Remaining tryptophan is transported across the blood-brain barrier via 

the large neutral amino acid transporter, where it can be converted to 5-HT or kynurenine 

catabolites (Ruddick et al., 2006). Kynurenic acid and quinolinic acid cannot cross the blood-

brain barrier but other catabolites such as indoles and kynurenine have been detected in the 

brain (Morris et al., 2017, Maes et al., 2011b, Schrocksnadel et al., 2006, Kennedy et al., 

2017, Gheorghe et al., 2019). Serotonin transporters in the brain can mediate the reuptake of 

excess 5-HT at the synaptic cleft, and is a common target of pharmaceutical interventions for 

depression and anxiety (Schwarcz et al., 2012).   

3.3.1 Bile Acids and the Brain 

Bile acids are molecules synthesized from cholesterol in the liver, characterized by 

amphipathic steroidal functional groups (Mertens et al., 2017, Kiriyama and Nochi, 2019). 

They play crucial roles facilitating the digestion and absorption of dietary lipids and fat-



soluble vitamins (Mertens et al., 2017, Kiriyama and Nochi, 2019, Enright et al., 2018). Most 

bile acids are generated through the hydroxylation reaction by CYP7A1, while the rest are 

synthesized via the alternative pathway involving the liver enzymes CYP271 and CYPB1 

(Enright et al., 2018). In the mouse, the expression of these three enzymes is mediated by the 

host microbiota (Sayin et al., 2013). Shortly after they are generated in the liver, the bile acids 

are conjugated with taurine or glycine before being transported for storage in the gall bladder 

(Dawson and Karpen, 2015, Long et al., 2017). Once released to aid in the digestion and 

absorption of lipids, they travel through the gastrointestinal tract and can be deconjugated and 

bio transformed by gut microbes where they can be absorbed into peripheral circulation 

(Enright et al., 2017). These bile acids are also involved in cellular signalling, particularly as 

ligands for nuclear receptors and various transmembrane surface receptors (Mertens et al., 

2017, Kiriyama and Nochi, 2019).  

Bile salt hydrolases, enzymes produced by members of the mammalian gut microbiota, 

deconjugate bile acids  (Long et al., 2017) (Fig. 1). Currently, these genera are known to 

produce this enzyme: Bacteroides, Clostridium cluster VIA, Lactobacillus, Bifidobacterium, 

Eubacterium (Molinero et al., 2019).  In the gut, the primary bile acid deoxycholic acid, can 

inhibit colonic motility through the GpBAR1 (TGR5) receptor on enteric neurons (Sun et al., 

2004a, Sun et al., 2004b, Poole et al., 2010). Disruptions and alterations in the gut microbiota 

contribute to bile acid dysregulation in the BTBR mouse model of autism-like behaviour 

(Golubeva et al., 2017). It is unclear how these gut microbial and bile acid changes relate to 

the behaviour in this model.  

Conjugated and unconjugated bile acids, as well as taurine or glycine alone are potential 

neuroactive ligands in humans (Mertens et al., 2017, MahmoudianDehkordi et al., 2019). 

Taurine is thought to be neuroprotective as it functions as an agonist of glycine, GABAA and 

GABAB receptors in the brain (Albrecht and Schousboe, 2005, Boldyrev et al., 1999, Choe et 



al., 2012, Hilgier et al., 2005, El Idrissi and Trenkner, 1999, Beetsch and Olson, 1998). It is 

unknown how much taurine is transported into the brain and if it is sufficient for signalling 

(Albrecht and Schousboe, 2005). Recently (Sharon et al., 2019a) showed that offspring of 

mice colonized with a human autism faecal microbiota produced less taurine than offspring 

of controls colonized with a neurotypical faecal microbiota. These mice were impaired in 

their social behaviours, suggesting a gut-brain connection is involved in these behaviours 

(Sharon et al., 2019a). Indeed, when they supplemented BTBR mice with taurine, 

characterized as socially-impaired, researchers could rescue these deficits (Sharon et al., 

2019b)  

Recently, a large multicentre metabolomics study of 1464 total participants found that the 

bacterially produced deoxycholic acid, as well as its glycine and taurine conjugated forms 

were increased in the serum metabolome of individuals with Alzheimer’s Disease 

(MahmoudianDehkordi et al., 2019), suggesting increased 7α-dehydroxylation of cholic acid 

by the gut microbiota, as these metabolites cannot be produced by the host. Importantly, 

deoxycholic acid was also associated with cognitive decline, providing human evidence of a 

link between microbial bile acid metabolism and mental health (MahmoudianDehkordi et al., 

2019).   

3.4 Sequencing and Software 

3.4.1 Sample Preparation and Sequencing Technology 

There is great heterogeneity in sequencing preparation, sequencing strategy and downstream 

bioinformatics analysis despite multiple studies identifying a clear need and multiple efforts 

for standardization of these protocols (Fouhy et al., 2016, Clooney et al., 2016, Pollock et al., 

2018, Aigrain et al., 2016, McLaren et al., 2019, Hogue et al., 2019, Santiago et al., 2014, 

Cardona et al., 2012).  



Even before a sample is sequenced many factors influence the microbial community within it. 

Many studies reported a bias in different DNA extraction protocols biasing towards gram-

positive or gram-negative bacteria (Watson et al., 2019), delivery-conditions and speed of the 

faecal sample and library preparation (Yeoh et al., 2019), fractional subsampling of faecal 

material (Yeoh et al., 2019), and storage (Panek et al., 2018, Chen et al., 2020a, Neuberger-

Castillo et al., 2020, Carruthers et al., 2019).   

Early microbiome studies used real time quantitative PCR (RT-qPCR) based techniques to 

amplify bacterial specific sequences from stool samples for species and genera-level 

identification. Other techniques hybridized fluorescent primers to these sequences for 

quantification or used terminal-restriction fragment length polymorphism analysis. These 

preliminary methods did not produce high-throughput, high coverage outputs and only 

describe the abundance of a few specific genera. There are indeed considerations in terms of 

bacterial load that could not have been addressed in these studies, making it difficult to draw 

robust conclusions about overall abundance without a clear picture of the entire microbiome 

(Vandeputte et al., 2017). With the decline in cost of sequencing, most high-throughput 

microarray-based technologies were replaced with next-generation sequencing, also known 

as high-throughput sequencing (NGS). NGS emerged as a method that provided untargeted 

information about the community as well as more reads and coverage (Bonk et al., 2018). 

One method of sequencing the faecal microbiota involves the amplification of the 

hypervariable regions of bacterial 16S rRNA gene, found within the DNA of all bacteria. 

However, there is no universal consensus for selecting a hypervariable region to amplify 

despite substantial evidence showing its impact on the abundances of different detected taxa 

within a sample (Clooney et al., 2016, Kumar et al., 2011). The metagenomic GC content 

also biases the amplification process resulting in a decreased abundance of microbial taxa 

with higher GC content (Laursen et al., 2017). In addition, there is no consensus for 



determining when single-end sequencing preparation is adequate and when paired-end 

sequencing methods must be used. While single-end reads often provide more coverage, 

paired-end reads provide more phylogenetic resolution (Werner et al., 2012, Chen et al., 

2018). 

When using a 16S rRNA gene based sequencing platform, there is great variation between 

different technological platforms such as 454 Roche Pyrosequencing, Illumina HiSeq and 

Illumina MiSeq (Clooney et al., 2016, Fouhy et al., 2016, Degnan and Ochman, 2012). 

Newer Illumina-based platforms improve coverage while reducing costs, predominantly 

replacing the use of 454 Roche Pyrosequencing (Degnan and Ochman, 2012). While 16S 

rRNA gene-base sequencing methods can accurately-identify taxa with genus-level 

resolution, WGS is required for quality species, strain and substrain identification in faecal 

samples. In addition, they identify previously uncultured bacteria and their genes. Since WGS 

amplifies all metagenomic information within a sample, it provides a more accurate view of 

the community composition and diversity while also providing functional information; 

however preferably amplified fragments however lead to overestimation in abundance of 

certain microbes (Clooney et al., 2016, Ranjan et al., 2016, Tessler et al., 2017). The 

currently most commonly-used platforms involve the use of Illumina sequencers however 

studies have not compared different WGS methods with each other. 

3.4.2 Taxonomic Databases and Classifiers 

Differences in taxonomic classification databases and taxonomic assignment likely 

contributed to inconsistent classification of microbial sequences across studies. In addition, 

researchers which conducted studies >3 years ago did not have access to more extensive 

taxonomic databases  (Glockner et al., 2017, Pruesse et al., 2019, Quast et al., 2013, Yilmaz 

et al., 2013). Many existing studies have used the Greengenes database for assigning 



microbial taxonomy, but this database is problematic because it has not been curated/updated 

since 2013 and thus cannot identify novel sequences (DeSantis et al., 2006).  Greengenes has 

a significant overrepresentation of certain taxa; for example, at the species level ~15% of all 

sequences are assigned to Faecalibacterium prausnitzii (Allard et al., 2015). This is in 

contrast to other databases such as SILVA, which do not have a single species level 

assignment allocated to even 5% of all sequences within the database (Allard et al., 2015). 

This means that studies which used Greengenes to assign taxonomy were also a lot more 

likely to find an enrichment in Faecalibacterium prausnitzii and an underrepresentation of 

other taxa. In studies using untransformed relative abundance metrics, a non-specific 

assignment of Faecalibacteirum prausnitzii would affect the relative abundance of other 

identified genera.  

One reason that different databases would assign a different classification to the same 

sequence is the size of the database (Balvociute and Huson, 2017). Having a larger taxonomic 

database can improve the specificity of these classifications since there will be more 

sequences with similarity to the read (Balvociute and Huson, 2017). Since taxonomic classes 

above the genus-level are very diverse, these differences were not reported in this analysis 

because they do not provide adequate resolution to infer the production of bacterial 

metabolites. Even bacterial members within the same family can differ in their enzymatic and 

metabolic capabilities. 

In addition, the use of amplicon sequencing variants (ASVs) rather than operational 

taxonomic units (OTUs) provide more replicable and meaningful identification of taxa across 

studies (Callahan et al., 2017). However, many past studies have used and many still use 

OTUs, hindering comparison across datasets. Often, studies may even identify some OTUs 

belonging to one microbial genus increased in one group while also finding other OTUs 



belonging to the same genus reduced in that same group. This confounds interpretation and 

replicability. 

The gut microbiota functions as an ecological community with keystone species and genera 

necessary for its function. Identifying individual ASVs that are altered in a disease could help 

identify these keystone members. Thus, if an important keystone genus is disrupted, the 

metabolic output of the community is altered which may impact host health (Chng et al., 

2020, Banerjee et al., 2018, Berg et al., 2020, Fisher and Mehta, 2014).  

3.4.3 Compositional Data Analysis 

Widely used relative abundance and general logarithmic transformations are inappropriate for 

microbiome data. Microbiome data is, by definition, compositional and thus using relative 

abundance, or rarefaction during processing is inappropriate and would skew study results 

(Gloor et al., 2017). In addition, issues within correlational analysis of compositional data 

have long been noted and are another challenge when analysing microbiome data (Gloor et 

al., 2017, Lovell et al., 2015, Friedman and Alm, 2012, Kurtz et al., 2015, Pearson, 1897). 

There is a known bias for spurious and negative correlations within microbiome datasets 

(Gloor et al., 2017). Additionally, we found many studies where rarefaction is used when 

processing reads. This involves subsampling of each sample’s read counts to a common 

sequencing depth but results in a loss of information and precision (McMurdie and Holmes, 

2014). Finally, it is also possible to mathematically model the bias within metagenomic 

experiments (McLaren et al., 2019). This would allow for reference calibration to correct 

these biases, but only if the data has already been compositionally transformed (McLaren et 

al., 2019). 

3.4.4 Use of Outdated Tools and Software 



Additionally, we also found that bioinformatics tools are often used after they are deprecated; 

a few studies described in Table 1 used Quantitative Insights into Microbial Ecology 

(QIIME) Version 1 past the date that it was still supported by its developers, while many 

studies did not specify the version used.   

3.5 Healthy Humans 

3.5.1 Infant Temperament and Behaviour 

3.5.1.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

The only WGS study found multiple associations between Bifidobacterium, Clostridium and 

Bacteroides species associated with brain connectivity and temperament. However, four 16S 

sequencing studies did not find any genus-level associations between infant temperament and 

microbiota composition (Carlson et al., 2018, Gao et al., 2019, Christian et al., 2015, Rosin et 

al., 2020). Two studies showed positive associations of increased Bifidobacterium abundance 

in infants with positive behaviours (soothability and emotional regulation) (Wang et al., 

2020d, Aatsinki et al., 2019). Though Loughman et al. (2020) did not find associations with 

Bifidobacterium, Prevotella abundance was associated with behavioural problems. These 

studies rely on correlational analysis but since the microbiota is compositional by nature, 

these datasets are prone towards spurious correlations (see 3.4.3) (Gloor et al., 2017). Though 

Bifidobacterium and Prevotella participate in tryptophan and SCFA metabolic pathways 

(Valles-Colomer et al., 2019), it is still unclear whether these specific pathways are 

implicated in these behaviours. See Table 1 for more detail. 

3.5.2 Adult Personality and Behaviour 

3.5.2.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 



Many descriptive studies have associated individual genera of bacteria with personality traits. 

In healthy participants, Taylor et al. (2019) found a negative correlation of Blautia abundance 

with anxiety. Tillisch et al. (2017) did not assess anxiety but found a negative correlation of 

Prevotella abundance with negative affect. Interestingly, Kim et al. (2018) found associations 

between increased Roseburia abundance and conscientiousness while Johnson (2020) instead 

found Oscillispira associated positively with sociability. There were no consistent findings at 

the genus-level within these studies, resultant from limitations described in Table 1. Without 

additional metadata and strain level resolution, it is difficult to associate personality traits 

with microbial genera. While many studies identified associations with bacteria involved in 

SCFA and tryptophan metabolic pathways, the current state of the evidence for robust 

microbial associations with personality traits is weak.  

3.5.2 Sleep Characteristics and Quality 

3.5.2.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Liu et al. (2019a) collected faecal samples from ten individuals who reported insomnia and 

another ten who served as healthy controls. Though no GBMs were differentially abundant, 

Alloprevotella abundance was significantly reduced in individuals with insomnia (padj < 0.1, 

effect = -1.16; 95% CI: [-14.97; 0.17]).  No other microbes or GBMs relating to SCFA, 

tryptophan or bile acid pathways were differentially abundant within this dataset.  

3.5.2.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Few studies focused on associating sleep-quality and microbiota composition (see Table 1). 

Among these, two showed no genera-level associations between microbes and sleep (Liu et 

al., 2020c, Anderson et al., 2017). One 16S sequencing study found disruptions in across 

different sleep stages in individuals with a Prevotella enterotype (Ko et al., 2019). Smith et 

al. (2019) collected extensive metadata, allowing for the correlation of specific microbes to 



sleep parameters. While Holdemania and Corynebacterium abundance negatively associated 

with number of awakenings, Coprococcus and Neisseria were associated with increased 

awakenings (Smith et al., 2019b). Blautia also negatively associated with sleep efficiency and 

total sleep time (Smith et al., 2019b). Though these findings are interesting, participants used 

faecal swabs to collect microbiota samples (Smith et al., 2019).  

An additional three studies compared the gut microbiome of individuals with sleep disorders 

such as insomnia and narcolepsy type 1 to controls (Lecomte et al., 2020, Li et al., 2020c, 

Valentini et al., 2020). These compelling pilot studies point to possible associations of 

different microbial genera and healthy sleep. 

While the interactions between circadian rhythm, sleep and the microbiome are compelling 

and gaining more traction (Godinho-Silva et al., 2019, Govindarajan et al., 2016, Li and Cui, 

2018, Weger et al., 2018, Teichman et al., 2020), more human studies are necessary to 

investigate this interaction.   

3.5.3 Ageing and Cognition 

3.5.3.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

No common genus-level differences associated with healthy cognitive ageing across existing 

studies (see Table 1). However, these studies all compared different subsets of unhealthy 

cognitive aging. One study compared healthy ageing to mild-cognitive impairment, another 

with Cirrhotic individuals, another with dementia and finally one was a 12 week crossover-

double blind trial (Nagpal et al., 2019, Kim et al., 2020, Bajaj et al., 2016, Saji et al., 2019). 

While compelling large-cohort studies associated microbial populations with frailty and diet 

in aging (Ghosh et al., 2020, Meehan et al., 2015, O'Toole and Jeffery, 2018, Ticinesi et al., 

2017, Verdi et al., 2018) they do not overtly focus on the cognitive aspects of ageing per se. 

3.6 Neurodevelopmental Disorders 



3.6.1 Attention-Deficit Hyperactivity Disorder  

3.6.1.1 Studies Where Raw Microbiome Data Was Reanalyzed 

One 16S sequencing study was reanalyzed, involving 19 individuals with Attention-Deficit 

Hyperactivity Disorder (ADHD) and 77 control participants, including a wide age-range for 

their participants (Aarts et al., 2017). Upon reanalysis, no significant differences within the 

microbial composition or GBM abundance were found (Aarts et al., 2017) (see Table 2). 

The study is notable because 28 of these participants underwent a further fMRI analysis and 

found associations between microbial compositions with responses to reward anticipation 

(Aarts et al., 2017). Since fMRI data was not provided, this aspect of the study was not 

reanalyzed. 

3.6.1.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Wan et al. (2020) used a WGS strategy to identify a reduction in KEGG Orthologs for 

dopaminergic pathways in individuals with ADHD. Consistent with Jiang et al. (2018b), 

ADHD individuals showed a reduction in the abundance of Faecalibacterium (Wan et al., 

2020). In fact, Faecalibacterium abundance negatively associated with the total Conners 

Parent Rating Scales score, which assesses children’s behavioural difficulties, as well as the 

hyperactivity index (Jiang et al., 2018b). No other common differences in microbial genera 

between ADHD and controls were reported across a set of five other studies (Stevens et al., 

2019, Prehn-Kristensen et al., 2018, Szopinska-Tokov et al., 2020, Pärtty et al., 2015, Wang 

et al., 2020b). However, one of these studies used a compositional approach for their data 

analysis (Szopinska-Tokov et al., 2020). They found an increased relative abundance of 

Ruminoclostridium 9 and Ruminococcus 2 in ADHD individuals, and were able to correlate 

Ruminococcus 2 with inattention scores (B = 1.525, p = 0.001) (Szopinska-Tokov et al., 



2020). Nonetheless, there is weak evidence for specific SCFA or tryptophan associated 

microbial pathway alterations in ADHD (see Table 2). 

3.6.2 Autism Spectrum Disorder (ASD) 

3.6.2.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Across seven reanalyzed studies (see Table 2), only two showed a robust effect of Autism 

Spectrum Disorder (ASD) on microbiota composition (Averina et al., 2020, Son et al., 2015, 

Pulikkan et al., 2018, Kang et al., 2019, Kong et al., 2019, Liu et al., 2019d, Strati et al., 

2017). In the data collected by (Pulikkan et al., 2018), Roseburia abundance was increased in 

ASD (padj < 0.001, effect = 0.9; 95% CI: [-1.9, 10.38]). When stratifying individuals with 

ASD by the median Autism Treatment Evaluation Checklist score, those below the median of 

62 showed a reduction in Ruminoclostridium 9 (padj < 0.1, effect = -0.78; 95% CI: [-7.28, 

1.80]) (Kong et al., 2019). However, none of these studies found any differentially abundant 

GBM pathways. Interestingly, in the dataset collected by Son et al. (2015), twins discordant 

for ASD showed no overall differences in microbiota composition. This may indicate that 

environmental factors such as diet as well as other factors are largely responsible for 

microbiota changes in these studies. 

3.6.2.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Over 30 other studies assessed differences between the ASD microbiota and controls, or 

differences within ASD subgroups (see Table 2). Across the WGS studies, only one found 

changes in GBM abundance (Wang et al., 2019a). They reported decreased gut 

glutamate/glutamine metabolism in ASD individuals (Wang et al., 2019a).  

Bacteroides abundance was increased in ASD groups amongst four datasets (Zhai et al., 

2019b, Zurita et al., 2019, Coretti et al., 2018, Ahmed et al., 2020) and reduced in four (Dan 

et al., 2020, Niu et al., 2019, Ding et al., 2020, Zhang et al., 2020c). Similarly the relative 



abundance of Bifidobacterium was increased in two datasets (Dan et al., 2020, Plaza-Diaz et 

al., 2019), and decreased in three others (Niu et al., 2019, Wang et al., 2020b, Zhang et al., 

2020c). Another compelling argument from the use of ASVs over OTUs is identifying 

whether a specific genus is increased or decreased. For example, in Zurita et al, (2019), one 

Ruminoccocus OTU is increased in ASD while another is reduced. Until recently, the 

important Lactobacillus genera encompassed many distinct strains; with updated 

nomenclature it might be possible to differentiate amongst the genera and find other potential 

signatures (Zheng et al., 2020a). Overall, there is great heterogeneity in the methods, 

reporting and results.  

Though they did not find correlations between ASD symptoms and faecal SCFAs, Berding 

and Donovan (2019) found that the SCFAs correlated strongly with diet. A separate study 

reported increased valerate and decreased butyrate in ASD faecal samples (Liu et al., 2019d).    

 As many as 90% of individuals with ASD display picky and repetitive eating behaviours, 

which can further impact their nutrient intake and microbiota (Kral et al., 2013). It’s unclear 

whether SCFA dysregulation is a result of the microbial production or dysregulation in gut 

absorption. Along with host genetics, this is an important consideration for future studies. 

3.6.3 Schizophrenia 

3.6.3.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Four studies were reanalyzed (see Table 2), but we found differentially abundant genera in 

only two of these studies (Xu et al., 2020, Shen et al., 2018, Flowers et al., 2019, Nguyen et 

al., 2019). In these two studies, individuals with schizophrenia had higher abundances of the 

acetate-producing Fusicatenibacter (padj < 0.001, effect: 0.67; 95% CI:[-1.48; 7.56]; padj < 

0.001 and effect =1.06; 95% CI: [-1.05; 7.60]) (Shen et al., 2018, Xu et al., 2020). In the 

samples collected by Xu et al. 2020, individuals with schizophrenia also showed an increase 



in the following GBMs: Butyrate synthesis II (padj < 0.001, effect: 0.61; 95% CI:[-1.83; 

5.41]), Kynurenine synthesis (padj < 0.001, effect: 0.68; 95% CI:[-2.10; 6.12]), and Inositol 

degradation (padj < 0.001, effect: 0.83; 95% CI:[-1.58; 6.96]). In addition, Lactobacillus 

abundance was reduced (padj < 0.001, effect: - 1.28; 95% CI:[-12.85; 0.11]) (Xu et al., 2020).     

Perhaps Fusicatenibacter was only differentially abundant in the Chinese cohorts, compared 

to the North American cohorts due to dietary and environmental differences. 

3.6.2.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Across three WGS studies, various Lactobacillus OTUs are increased in schizophrenia 

compared to controls (Zhu et al., 2020, Xu et al., 2020, Schwarz et al., 2018), however some 

OTUs were also reduced in one of the studies (Zhu et al., 2020). In two studies, 

Bifidobacterium adolescentis was increased in patients, while Clostridium perfingens was 

increased in one dataset (Xu et al., 2020) but reduced in the other (Zhu et al., 2020). 

Interestingly, this contrasts with the reduction found when reanalyzing the 16S dataset from 

(Xu et al., 2020). This discrepancy is resultant from the different sequencing and 

bioinformatics pipelines used. The majority of 16S sequencing studies assessed different 

subpopulations of schizophrenia and thus are difficult to compare with each other. Combined 

with reanalyzed results, there is evidence supporting Lactobacillus and Bifidobacterium 

dysregulation in schizophrenia, as well as potential changes in tryptophan and SCFA-related 

GBMs (see Table 2).   

3.6.4 Pediatric Acute-onset Neuropsychiatric Syndrome and Pediatric 

Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection 

3.6.4.1 Studies Where Raw Microbiome Data Was Reanalyzed 

One 16S sequencing study was reanalyzed but no relevant bacterial genera or differences in 

GBMs were found (Quagliariello et al., 2018). 



3.6.5 Rett’s Syndrome 

3.6.5.1 Studies Where Raw Microbiome Data Was Reanalyzed 

A small descriptive study was reanalyzed (Borghi and Vignoli, 2019) but no genus-level 

differences were found between Rett’s Syndrome and age-matched controls. However, both 

faecal isobutyrate and isovalerate were increased in Rett’s syndrome (see Table 2). 

3.6.5.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Strati et al. (2016) found an increased abundance in faecal isobutyrate, isovalerate and 

propionate (see Table 2). However, after controlling for constipation and disease severity, no 

bacteria were differentially abundant within the disease group. There may be host-genotype 

microbiota associations involved in influencing SCFA production or absorption. 

3.7 Epilepsy 

3.7.1 Studies Where Raw Microbiome Data Was Reanalyzed 

In the dataset from Lindefeldt et al. (2019), twelve children with epilepsy provided two faecal 

samples, one before commencing the ketogenic diet and three months afterwards (see Table 

3). While no age-matched controls were included within the study, the children’s parents 

served as a healthy control (Lindefeldt et al., 2019). The dataset was reanalyzed through the 

WGS pipeline described in Section 2.6. We found that the ketogenic diet increased 

abundance in L-Tryptophan biosynthesis pathways (padj < 0.1, effect = 0.9; 95% CI: [-1.07; 

10.67]) and S-Adenosyl Methionine biosynthesis (padj < 0.1, effect = 0.63; 95% CI: [-1.89; 

8.86]) (Lindefeldt et al., 2019). Though the study’s authors found a reduction in relative 

abundance of Bifidobacterium their data was not treated compositionally (see 3.4.3 for 

limitations of non-compositional data approaches) (Lindefeldt et al., 2019).  



Another reanalyzed study looked at individuals co-morbid with cerebral palsy and epilepsy 

(Huang et al., 2019a). While over 20 differentially abundant bacteria had an absolute effect 

size >0.65, there were no differences across GBM abundance (Huang et al., 2019a). From a 

bioinformatics perspective, this indicates that large genus-level differences do not always 

change the overall abundance of GBMs. 

3.7.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Four 16S studies used different types of cohorts and comparisons (see Table 3). (Xie et al., 

2017) assessed microbiome differences between epileptic infants and healthy controls. Two 

studies compared individuals with drug-responsive epilepsy, to drug-resistant epilepsy and 

controls from the same family (Peng et al., 2018, Zhang et al., 2018b). Peng et al. (2018) 

looked at the efficacy of dietary intervention while Safak et al. (2020) focused on idiopathic 

focal epilepsy. Another study compared same-family controls to epileptic individuals finding 

many genera-level differences (Liu et al., 2020a). As a result, we cannot make any definitive 

conclusions about GBM-related bacteria or signatures within epilepsy and epilepsy-responses 

to dietary or pharmacologic treatment. Interactions between diet, epilepsy, epileptic 

medication and the microbiome remain unclear. 

3.8 Neurodegenerative Disease 

3.8.1 Alzheimer’s Disease 

3.8.1.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Most of the raw sequences from one 16S study could not be aligned to ASVs (Liu et al., 

2019b). In the other 16S sequencing study (Li et al., 2019a), a reduction was detected in the 

SCFA-producing Ruminoclostridium 5 (padj< 0.01, effect = -0.67; 95% CI: [-8.52, 1.59] 

while the following SCFA-specific GBMs were upregulated when comparing Alzheimer’s 



Disease (AD) to healthy controls: isovaleric acid synthesis II ( padj < 0.1, effect = 0.42; 95% 

CI: [-2.11; 5.62]),  butyrate synthesis I ( padj < 0.1, effect = 0.44; 95% CI: [-2.33; 6.25]), 

butyrate synthesis II ( padj < 0.1, effect = 0.52; 95% CI: [-3.60; 4.79]), and acetate synthesis 

III ( padj < 0.1, effect = 0.50; 95% CI: [-2.04; 5.92]) (Li et al., 2019a). 

Though no differentially abundant microbes were identified when comparing individuals with 

mild cognitive impairment (MCI) to healthy controls, several SCFA and tryptophan related 

GBMs were increased: isovaleric acid synthesis II ( padj < 0.01, effect = 0.43; 95% CI: [-2.48; 

5.98]),  butyrate synthesis I ( padj < 0.1, effect = 0.44; 95% CI: [-2.33; 6.25]), acetate 

synthesis I ( padj < 0.01, effect = 0.58; 95% CI: [-1.93; 5.86]), acetate synthesis II ( padj < 0.1, 

effect = 0.47; 95% CI: [-1.81; 5.33]), acetate synthesis III (padj < 0.01, effect = 0.64; 95% CI: 

[-1.52; 6.26]), tryptophan synthesis ( padj < 0.1, effect = 0.48; 95% CI: [-1.94; 6.71]), 

quinolinic acid synthesis ( padj < 0.01, effect = 0.49; 95% CI: [-1.93; 6.43]), quinolinic acid 

degradation (padj < 0.01, effect = 0.56; 95% CI: [-1.93; 6.43]) (Li et al., 2019a). 

Additionally, several other GBMs were differentially abundant in the MCI and AD groups 

compared to the controls, indicating an increase in overall pathways promoting excitatory 

neuronal signalling (Li et al., 2019a) (see Table 4). 

3.8.1.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Bacteroides is found differentially abundant across the two 16S and one WGS study 

comparing AD to controls. However, it is found to be increased in two of these studies – one 

of which involves WGS (Haran et al., 2019, Vogt et al., 2017), and decreased in the third 

study (Zhuang et al., 2018). Additionally, Alistipes abundance was increased in the AD 

individuals in two of these studies (Haran et al., 2019, Vogt et al., 2017). Though findings 

from one reanalyzed dataset are strong (Li et al., 2019a), additional measures of metadata are 



needed to disentangle GBM differences in AD or mild-cognitive impairment from sex, diet 

and age. 

3.8.2 Multiple Systems Atrophy 

3.8.2.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Three studies analyzing the gut microbial composition of individuals with Multiple Systems 

Atrophy (MSA) have been conducted (see Table 4), with two of these studies finding genus-

level differences in bacterial abundance (Du et al., 2019, Engen et al., 2017, Tan et al., 2018). 

However, none of the genera are found differentially abundant across these two studies (Tan 

et al., 2018, Du et al., 2019). Interestingly, Tan et al. (2018) also found a reduction in faecal 

acetate, propionate and butyrate in their disease cohort. This data together suggests that MSA 

may alter the production or absorption of SCFAs, though it is unclear if individual microbial 

genera are involved. 

3.8.3 Amyotrophic Lateral Sclerosis 

3.8.3.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

There were no consistent findings across three studies (Zhai et al., 2019a, Brenner et al., 

2018, Mazzini et al., 2018, Zeng et al., 2020, Nicholson et al., 2020, Ngo et al., 2020) (see 

Table 4). (Blacher et al., 2019) did not find any significant microbes using a WGS approach 

but found an overall reduction in tryptophan metabolism-related genes in ALS compared with 

controls. Two other WGS studies did however find differentially abundant microbes, 

involved in SCFA and tryptophan metabolism (2020, Zeng et al., 2020). Indeed, there were 

alterations in serum tryptophan and nicotinamide metabolites suggesting the serum 

metabolome may have been altered by the gut microbiota (Blacher et al., 2019). 

3.8.4 Parkinson’s Disease 



3.8.4.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Surprisingly, across six studies (one WGS, five 16S) only 1 ASV was found differentially 

abundant (Bedarf et al., 2017, Heintz-Buschart et al., 2018, Aho et al., 2019, Pietrucci et al., 

2019, Qian et al., 2018, Weis et al., 2019) (see Table 4). When stratifying 16S sequencing 

data from Weis et al. (2019) by gastrointestinal symptoms and L-DOPA dosage, there was 

one differentially abundant genus. Parkinson’s disease (PD) individuals taking a L-DOPA 

dose of <300mg/day had a lower abundance of Lactobacillus than controls (effect = 0.83; 

95% CI: [-2.10, 8.07]) (Weis et al., 2019). No GBMs related to SCFAs, tryptophan or bile-

acid modifying bacteria were identified.  

3.8.4.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Hill-Burns et al. (2017) found significant differences in bacterial abundance between PD and 

controls after controlling for covariates. They reported an increased abundance of 

Bifidobacterium, Lactobacillus, Akkermansia and Roseburia (Hill-Burns et al., 2017). Ren et 

al. (2020) used a generalized linear model to control for sex, age, body mass index and 

education and did not find any changes in these four genera in their cohort. Instead, they 

reported a reduction in Ruminococcus and Blautia in their PD group which had not 

experienced MCI (Ren et al., 2020). However, three other studies did find an increased 

abundance of Lactobacillus in PD (Petrov et al., 2017, Barichella et al., 2019, Cirstea et al., 

2020). Additionally, three other 16S studies reported a reduction in Roseburia compared to 

their control cohorts (Barichella et al., 2019, Keshavarzian et al., 2015, Cristea et al., 2020). 

Four other 16S studies also found an increased abundance of Akkermansia (Keshavarzian et 

al., 2015, Vidal-Martinez et al., 2020, Li et al., 2019b, Zhang et al., 2020a) and 

Bifidobacterium (Petrov et al., 2017, Cirstea et al., 2020, Barichella et al., 2019, Tan et al., 

2020). Interestingly, Lin et al. (2019) found Akkermansia was increased in the tremor PD 



subtype when accounting for age, sex and diet. Finally, Unger et al. (2016) reported 

reductions in faecal acetate, butyrate and propionate. However, many of these studies used 

Greengenes, rarefaction and relative abundance. It is nonetheless fascinating that differences 

in microbial abundance at the genus-level were found in almost every PD study, especially 

those comparing different subtypes. It is unclear if the effect sizes in these studies are robust 

when data is analyzed in a compositional manner (see Table 4). If effect sizes are small, there 

is a higher probability that the effect sizes will not replicate in other studies. This may either 

obscure real differences in the PD microbiota or provide false positives.   

3.9 Addiction and Substance Use 

3.9.1 Alcohol 

3.9.1.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Stadlbauer et al. (2019) collected faecal samples from participants before an acute 2mL  

alcohol binge, and one day afterwards in 15 healthy participants. We did not find any 

significant effects on the microbiota composition or GBMs in this dataset (Stadlbauer et al., 

2019).  The alcohol binge was likely too mild to exert any robust effects. 

Another dataset focused on the long-term effects of alcohol-dependence on the gut 

microbiota (Bjorkhaug et al., 2019). Bacteria involved in SCFA and tryptophan metabolism 

were altered in the alcohol-dependent cohort (Bjorkhaug et al., 2019). Specifically, 

Ruminococcus 2 abundance was increased (padj < 0.1, effect = 0.72, 95% CI: [-2.91; 6.75]) 

and a reduction in Ruminoclostridium 9 (padj < 0.001, effect = - 0.99, 95% CI: [-7.99; 1.00]) 

(Bjorkhaug et al., 2019). Though SCFA-related GBMs were not altered, the tryptophan 

degradation module was reduced in alcohol-dependent subjects (padj < 0.1, effect = - 0.46, 

95% CI: [-5.78; 2.47]) (Bjorkhaug et al., 2019). In addition, other GBMs suggested increased 



GABA synthesis as well as a reduction in g-hydroxybutyrate and dopamine degradation 

(Bjorkhaug et al., 2019). 

3.9.1.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Due to differences in cohorts, it is challenging to draw conclusions from other alcohol-related 

studies (see Table 5). Briefly, a WGS investigation using the SOLiD sequencing platform 

compared the microbiota of individuals with alcoholic dependence syndrome, alcoholic liver 

cirrhosis and control (Dubinkina et al., 2017). Dubinkina et al. (2017) reported an increased 

abundance of Lactobacillus salivarius in alcohol-dependent subjects. These results are not 

easily reconciled, with findings from Leclercq et al. 2014, where a three-week detoxification 

increased Lactobacillus spp. in alcohol-dependent subjects. Two other studies involving 

alcohol-dependence and alcohol overconsumption did not find any changes in Lactobacillus 

abundance (Tsuruya et al., 2016, Bjorkhaug et al., 2020). Meanwhile, a study of the 

microbiota and drinking habits of 212 twin pairs only found a reduction in Roseburia 

abundance associated with alcohol consumption, after correcting for heritability (Seo et al., 

2020). Interestingly, one study found that Haemophilia abundance was associated with 

drinking only (Lin et al., 2020) while other genera associated with both drinking and smoking 

(Bacteroides, Phascolarctobacteirum, Ruminococcus UCG-002, Ruminococcus UCG-003, 

Ruminoclostridium-9). Many of these genera are associated with SCFA/tryptophan 

metabolism. 

Future studies must account for factors such as diet, heritability and drinking frequency to 

demystify the effects of alcohol on gut microbiota composition and metabolism. 

3.9.2 Smoking and Tobacco Use 

3.9.2.1 Studies Where Raw Microbiome Data Was Reanalyzed 



Stewart et al. (2018) collected faecal samples from tobacco smokers, electronic cigarette 

users and controls (see Table 5). Though we did not uncover genus-level differences in 

microbial abundance, we found an increase in the tryptophan degradation module (padj < 0.1, 

effect = 0.84,, 95% CI: [-0.97; 8.52]) and the propionate synthesis III module (padj < 0.1, 

effect = - 0.80, 95% CI: [-9.86; 1.45])(Stewart et al., 2018). 

3.9.2.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Among other studies assessing the microbiota composition of smokers, only a qPCR study 

identified microbial changes (Ishaq et al., 2017). Combined with results in 3.5.1.1, tobacco 

smoking may alter the overall metabolism of the gut microbiota. 

3.9.3 Addiction and Recreational Drug Use 

3.9.3.1 Studies Where Raw Microbiome Data Was Reanalyzed 

There were no differentially abundant microbial or GBM-related associations within the 

(Barengolts et al., 2018) dataset of men characterized with a high-disease burden and opioid 

use. 

3.9.3.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

While Fulcher et al. (2018) reported specific changes in microbial abundance with many 

recreational drugs, Xu et al. (2017) did not find any differences between users and non-users 

when controlling for age and sex (see Table 5). Panee et al. (2018) recently found that 

Prevotella abundance in marijuana users was positively associated with cognitive functions. 

More studies investigating recreational drug use, controlling for age, sex and type of drug, 

must be conducted to deconvolute any potential changes. 

3.10 Multiple Sclerosis and Demyelinating Diseases 



3.10.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Across two 16S sequencing datasets, no differences in microbial abundance or GBMs related 

to SCFA, tryptophan or bile acid metabolism were identified (Miyake et al., 2015, Jangi et 

al., 2016) (see Table 6). When comparing individuals with neuromyelitis optica spectrum 

disorder (NMOSD) to control samples in the (Gong et al., 2019) dataset, there was a reduced 

abundance of Streptococcus in diseased individuals (padj < 0.001, effect = - 0.74, 95% CI: [ - 

6.40; 1.53]). The researchers also reported an overall reduction of faecal SCFAs and 

associations between acetate, butyrate and disease severity (Gong et al., 2019). 

3.10.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

There were no consistent effects across Multiple Sclerosis (MS) studies. Using WGS Ventura 

et al. (2019) found Clostridium increased across individuals with MS with Caucasian, 

Hispanic and African American ethnicities. Interestingly, (2017) compared faecal samples 

from 34 discordant twin pairs and did not find-any genus-level compositional changes when 

accounting for heritability. Other recent studies found a few dysregulated genera but did not 

take ethnicity into account (Ling et al., 2020b, Kishikawa et al., 2020).   

A recent investigation by Reynders et al. (2020) found associations between multiple 

bacterial genera and clinical subtypes of MS. Another study also found differences in SCFA-

producing genera between different subtypes of multiple sclerosis and controls (Saresella et 

al., 2020). Zeng et al. (2019) compared microbial and faecal SCFA abundance between MS, 

NMOSD and controls finding a reduction in acetate, butyrate and propionate when 

comparing either MS or NMOSD to controls. Interestingly, they also reported that faecal 

acetate and propionate are reduced in NMOSD individuals compared to those with MS (Zeng 

et al., 2019).  



 Together, these results suggest that measurements of faecal SCFAs and stratification by 

clinical subtype are crucial for uncovering any potential robust changes in bacterial 

abundance or GBMs.  

3.11 Pain-Related Disorders 

3.11.1 Fibromyalgia 

3.11.1.1 Studies Where Raw Microbiome Data Was Reanalyzed 

In the 16S dataset collected by Minerbi et al. (2019), only one bacterial genus was associated 

with the disease state (see Table 7). The abundance of Sutterella was increased in 

fibromylagia compared to controls living in the same address as the patient (padj <0.1, effect = 

0.66; 95% CI: [-0.43; 0.92]) (Minerbi et al., 2019). However, no differences were found when 

comparing to overall controls in both this 16S dataset as well as in the samples from (Clos-

Garcia et al., 2019). 

3.11.1.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

One study found several SCFA-associated bacteria differentially abundant between 

individuals with fibromyalgia and unrelated controls, corresponding to changes in serum 

SCFA concentrations (Minerbi et al., 2019). Compared to the 16S data produced from this 

cohort (discussed in 3.7.1.1), WGS provides species level resolution and identifies many 

more differentially abundant microbes (Minerbi et al., 2019).   

3.11.2 Irritable-Bowel Syndromes 

3.11.2.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Ten 16S sequencing studies to date, investigated the associations between psychological well-

being, IBS and the microbiota (see Table 7). While one study found Bacteroides abundance 



positively associated with perceived stress (Peter et al., 2018b), while Jeffery et al. (2012) 

reported that it was reduced in Irritable-Bowel Syndromes (IBS) individuals compared with 

controls. Since no controls were included in the study by (Peter et al., 2018b), these results 

are not necessarily contradictory. Since many of these studies involved different probiotic, 

prebiotic and faecal microbiota transplant interventions and a lack of controls, the results of 

these studies could not be compared. Several studies do report changes in SCFA and 

tryptophan associated bacteria, with Labus et al. (2019) finding that Clostridium XIVa and 

Coprococcus associated with differences in brain connectivity between IBS and controls. 

While the overall changes in microbiota composition are unclear, there is some evidence that 

manipulating its composition may improve various psychological aspects of IBS pathology. 

3.11.3 Other Pain-Related Disorders 

3.11.3.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

A recent WGS study (see Table 7) reported the increased abundance of the kynurenine 

synthesis GBM and a reduction in quinolinic acid degradation in elderly women with 

migraines compared to healthy age-matched control (Chen et al., 2019). In addition, 

Faecalibacterium prausnitzii and Bifidobacterium adolescentis were reduced in the women 

who experienced migraines (Chen et al., 2019). However, this was the only microbiota study 

assessing migraines to date. Another conducted on a cohort with myalgic 

encephalomyelitis/chronic fatigue syndrome found negative correlations between 

Faecalibacterium and total sleep awakening (Kitami et al., 2020). Meanwhile, a study of 

chronic widespread pain patients found a decrease in Coprococcus comes abundance (Freidin 

et al., 2020) 

3.12 Eating Disorders 



3.12.1 Obesity 

3.12.1.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Across studies of obesity where psychological or other brain measures were recorded, no 

genus-level associations were reported (see Table 8). However, one study used a 

commercially available dysbiosis test (GA-Map Dysbiosis) to compare the morbidly obese 

microbiomes to controls (Farup and Valeur, 2018). Bacteroides, Prevotella and faecal SCFAs 

were negatively associated with the WHO-5 Wellbeing Index Score within the obese group 

(Farup and Valeur, 2018). In addition, other SCFA and tryptophan modulating microbes, 

Faecalibacterium prausnitzii and Dorea were positively associated with this measure (Farup 

and Valeur, 2018). Recent studies associate microbiome, brain connectivity and structure as 

well as food craving (Dong et al., 2020b, Dong et al., 2020a). Another study finds alterations 

in aromatic amino acid metabolism in obesity impairing short-term memory (Arnoriaga-

Rodríguez et al., 2020). There is insufficient evidence to conclude microbial-derived 

metabolites associate with psychological measures in obesity. 

3.12.2 Anorexia Nervosa 

3.12.2.1 Studies Where Raw Microbiome Data Was Reanalyzed 

Using the raw dataset from (Borgo et al., 2017), we were unable to find any significant 

differences in microbial abundance or GBMs between anorexic individuals and controls. 

Another dataset (see Table 8) with a higher sample size however, found increased abundance 

in isovaleric acid synthesis I (padj < 0.1; effect = 0.44, 95% CI: [-2.80, 5.07]), quinolinic acid 

synthesis (padj < 0.1; effect = 0.48, 95% CI: [-2.13, 5.35]), and quinolinic acid degradation 

(padj < 0.01; effect = 0.42, 95% CI: [-2.33, 4.80]) (Mack et al., 2016). After gaining weight 

and subsequent release from the hospital, individuals with anorexia had a reduction in 

butyrate synthesis II compared to controls (padj < 0.01; effect = -0.43, 95% CI: [-4.88, 2.55]) 



(Mack et al., 2016).  Importantly, ClpB was also elevated at baseline admission, compared to 

controls (padj < 0.1; effect = 0.43, 95% CI: [-2.30, 4.98]) (Mack et al., 2016). This 

Escherichia coli produced protein is an alpha-melanocortinin stimulating hormone mimetic, 

known to reduce appetite in mice (Tennoune et al., 2014). 

3.12.2.2 Studies Where Raw Microbiome Data Was Not Reanalyzed 

There were no consistent findings across microbial genera in six other studies (Morkl et al., 

2017, Morita et al., 2015, Kleiman et al., 2015, Armougom et al., 2009, Schulz et al., 2020, 

Monteleone et al., 2020) (see Table 8). With the release of new tools interrogating GBM 

abundance may be important for identifying potential changes within the anorexic 

microbiota, especially ClpB production. All evidence considered, there is strong evidence for 

the involvement of microbially-derived ClpB but it’s unclear if the microbes involved in its 

production also impact SCFA, tryptophan and bile-acid metabolism. 

3.13 Neurovascular Disease 

3.13.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Many preclinical studies identified butyrate as a potential neuroprotective agent for ischemia 

(Akhoundzadeh et al., 2018, Lee et al., 2020a, Sadler et al., 2020, Singh et al., 2018, Sun et 

al., 2016a). There are fewer studies assessing changes in the gut microbial composition 

responses to stroke in humans. One study compared the gut microbiota of infants who 

received hypothermia treatment for hypoxic ischemic encephalopathy (Watkins et al., 2017). 

Indeed compared to control infants, those undergoing treatment for ischemia showed a 

reduction of Bacteroides abundance (Watkins et al., 2017). Wang et al. (2018) assessed gut 

microbial composition in individuals after cerebral infarction but did not find any genus-level 

abundance changes compared to controls. The butyrate and tryptophan metabolism associated 

bacterial genera Bacteroides, Parabacteroides, Akkermansia, Prevotella and 



Faecalibacterium were reduced after cerebral infarction when compared to controls (Ji et al., 

2017). 

Studies where participants were stratified by type of stroke and stroke severity uncovered 

more compositional differences that may impact SCFA, bile acid and tryptophan metabolism. 

Liu et al. (2020a) found many such genera which were altered when comparing participants 

who suffered post-stroke cognitive impairment with controls. Another study compared 

individuals post-stroke with no cognitive impairment along with those co-morbid with 

depression and cognitive impairment, finding few differences (Ling et al., 2020a).  Another 

study stratified individuals with ischemic stroke by severity and found Enterobacter was 

reduced in severe ischemic stroke compared to mild stroke. Across two different studies 

comparing ischemic stroke to controls, Akkermansia was differentially abundant (Ji et al., 

2017, Li et al., 2019c). However, in one study it was more abundant in the ischemic stroke 

(Li et al., 2019c) while it was reduced in the other study, though it only two individuals in the 

ischemic stroke cohort (Ji et al., 2017). 

Polster at al. (2020) found robust differences and correlations within a large sample (N = 122) 

of individuals with cavernous angioma using a combination of 16S and WGS techniques. 

Compared with controls from the human microbiome project, individuals in the disease group 

showed an increased abundance of Bacteroides thetaomicron and Odoribacter sphlancus 

along with a reduction in Bifidobacterium adolescentis and Faecalibacterium prausnitzii 

(Polster et al., 2020). They found evidence that these changes in abundance promoted gut 

inflammation and increased lipopolysaccharide (LPS) synthesis pathways (Polster, 2020). 

Indeed, this robust methodology even identified differentially abundant species by cavernous 

angioma subtype and severity (Polster et al., 2020).  

Exciting findings from (Polster et al., 2020) warrant more investigation into gut-brain 

communication after other neurovascular insults such as stroke. See Table 9 for more detail. 



3.14 Stress and Psychiatric Disorders 

3.14.1 Stress  

3.14.1.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

The effect of stress on the human microbiota is difficult to study, often involving associating 

lifetime stress metrics with microbiota composition (see Table 10). One 16S sequencing study 

identified that pregnant women that experienced more than 2 adverse childhood events had 

an increased abundance of Prevotella (Hantsoo et al., 2019).  Another study of 75 women 

with pregnancy-related anxiety was unable to find genus-level associations between maternal 

anxiety and the infant meconium (Hu et al., 2019a). Interestingly, Naude et al. (2020) found 

infants born to mothers exposed to intimate partner violence has an increased abundance of 

Citrobacter and Weisella. (Carson et al., 2018) showed that Fusobacterium abundance was 

increased with stress in participants that identified as Black but not amongst other 

demographics, indicating host-mediated contributions to the microbiome stress responses. 

Even though there are clear links between stress and the microbiome (see for reviews 

(Cussotto et al., 2018a, Dinan and Cryan, 2012, Foster and McVey Neufeld, 2013, Liu, 2017) 

for extensive reviews of the subject), these studies indicate how much metadata is needed to 

properly stratify participants and identify some of these changes. 

Another strategy focused on providing probiotic interventions, later comparing microbiome 

and stress metrics between individuals receiving controls or a placebo. Of three such 

randomized control trials, two found genus-level associations with psychological stress 

measures (Nishida et al., 2017, Nishida et al., 2019, Soldi et al., 2019). One study 

administered Lactobacillus gasseri CP2305 which reduced the magnitude of Bifidobacterial 

reduction after the stressor and increased faecal valerate concentrations (Nishida et al., 2019). 

Another study using the same probiotic intervention found different magnitudes of changes in 



the abundances of Corynebacterium in addition to improved sleep quality and a reduction in 

stress symptoms in female participants (Nishida et al., 2017). 

3.14.2 Posttraumatic Stress Disorder  

3.14.2.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Two studies have assessed the impact of post-traumatic stress disorder on the gut microbiota. 

(Hemmings et al., 2017) did not find any differentially abundant genera when using a trauma-

exposed comparison group (does not meet threshold for posttraumatic stress disorder). Bajaj 

et al. (2019) used a conventional control cohort, finding differences even after accounting for 

hepatic encephalopathy. In individuals without hepatic encephalopthay, the posttraumatic 

stress disorder individuals showed an increased abundance of Streptococcus and a reduction 

in Acidaminococcus, Ruminococcus, Roseburia, Anaerostipes, Clostridium XIVAa and 

Pseudoflavonicbacter compared to controls (Bajaj et al., 2019). In the subset of individuals 

with hepatic encephalopathy, posttraumatic stress disorder individuals only showed a 

reduction in Subdoligranulum (Bajaj et al., 2019). 

3.14.3 Bipolar Disorder 

3.14.3.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

There were no consistent microbial changes observed across eleven 16S and WGS studies of 

bipolar disorder (see Table 10). In the two WGS studies, the SCFAs and tryptophan 

associated genera Streptococcus, Clostridium, Oscillibacter and Bifidobacterum were 

increased in bipolar individuals compared with controls (Rong et al., 2019, Lai et al., 2021). 

Due to differences in methodology and data analysis, other studies did not see these same 

differences in abundance. Evans et al. (2017) only reported reductions in Facealibacterium in 

bipolar individuals but did associate its abundance with sleep and depressive symptoms. 



Contrary to these findings, Painold et al. (2019) reported increased Faecalibacterium 

abundance in bipolar disorder. Two other studies noted increased abundance of Bacteroides in 

bipolar disorder but their other findings differed (Hu et al., 2019b, Zheng et al., 2020b). 

Interestingly some of the studies did not find any genus-level differences in microbial 

composition (Coello et al., 2019, Vinberg et al., 2019, McIntyre et al., 2019). Coello et al. 

(2019) found that all the differences in abundance that they observed were explained by sex 

effects, heritability and smoking. 

3.14.4 Depression and Anxiety  

3.14.4.1 Studies Where Raw Microbiome Data Was Not Reanalyzed 

Multiple studies have investigated the explanatory power of the gut microbiota in anxiety and 

depression (see Table 10). Only three 16S or WGS sequencing studies did not find any 

significant  differences in major depressive disorder (MDD) compared to controls at the 

genus-level (Paulsen et al., 2017, Bharwani et al., 2020, Naseribafrouei et al., 2014). (Jiang et 

al., 2020) compared the gut microbiota of individuals currently undergoing a depressive 

episode to controls, finding increased abundance of Akkermansia, Veillonella, Ruminococcus 

gnavus and reductions in Fusicatenibacter, Sutterella, Dialister. A previous study (Jiang et 

al., 2015), reported a reduction in Dialister during active MDD. Other studies did not find 

any similarities with Jiang et al. (2020), thus it is unclear if the gut microbiota changes 

throughout depression or if these differences are a result of different methodologies.  

Few other similarities in gut microbial signatures were reported across other studies. Two 

studies did report an increased abundance of the SCFA and tryptophan metabolism-

associated microbe Collinsella in their respective depressed cohorts (Stevens et al., 2018, 

Zheng et al., 2016). Three studies also reported an increased abundance of Blautia in MDD 

(Huang et al., 2018, Jiang et al., 2015, Yang et al., 2020). When predicting clinical outcomes 



from baseline microbiome data, researchers did not find that the microbiota in MDD 

predicted clinical response (Liśkiewicz et al., 2021). Nonetheless, they did find 

Paraprevotella strongly correlated with the Hamilton Depression Rating Scale-24 Item 

metric (Liśkiewicz et al., 2021) 

Madan et al. (2020) compared rates of remission in psychiatric inpatients and aimed to 

identify microbial genera that predicted readmission or remission from severe depression or 

anxiety. Coprococcus catus was associated with moderate anxiety at admission and was 

reduced in individuals that had lower rates of remission from anxiety or depression (Madan et 

al., 2020). Interestingly, the Coprococcus genera was found increased in the depressed cohort 

by Huang et al. (2018).  Other studies did report however, a reduction in Coprococcus 

abundance in depression (Valles-Colomer et al., 2019, Liu et al., 2016). 

Valles-Colomer et al. (2019) used compositional data methods as well as large cohorts in 

their study, where they found Coprococcus as well as Faecalibacterium associated with a 

higher quality of life and that Dialister and Coprococcus were depleted in depression.  

Interestingly, the Dialister finding is consistent with other studies (Jiang et al., 2015, Jiang et 

al., 2020). Indeed, other studies also found negative correlations between Facalibacterium 

and anxiety or depression (Jiang et al., 2015, Jiang et al., 2018a, Stevens et al., 2018). The 

findings involving Dialister and Faecalibacterium are striking because they persisted despite 

non-compositional data analysis in other studies. A recent systematic-review also found a 

reduction in short-chain fatty acid producing bacteria such as Faecalibacterium across studies 

of anxiety and depression (Simpson et al., 2020).  

3.15 Limitations of Existing Studies 

There are many challenges that prevent researchers from drawing causal conclusions from 

their datasets beyond the technical and bioinformatics limitations discussed in Section 3.4, 



especially in observational human studies (Ma et al., 2019c, Lynch et al., 2020, Koh and 

Bäckhed, 2020, Walter et al., 2020, Ma, 2020). See Table 11 for a description of these 

common limitations and available tools to address them. In addition to those limitations, even 

functional analysis of WGS data does not provide direct information about the proteomics or 

metabolomics within the gut community.  

3.15.1 Sources of Inter-Individual Variance 

One of the greatest challenges with human microbiota studies is making inferences about the 

composition of the colonic microbiota from faeces. There are known differences between the 

faecal and caecal microbiota composition in humans along with spatial variation across the 

gastrointestinal tract (Gevers et al., 2014, Lavelle et al., 2015). Finding healthy volunteers 

willing to provide one or multiple biopsies for a microbiota study is challenging. In addition, 

it’s difficult to determine whether certain microbes are overrepresented in the faeces 

compared to others. The overall microbial load, though seldom measured, is an important 

determinant of microbiota composition (Vandeputte et al., 2017).  It is also recognized that 

microbiota composition changes day-to-day in response to diet, circadian rhythms and sex 

hormones among other confounds (Jaggar et al., 2020, Johnson et al., 2019, Nobs et al., 2019, 

Markle et al., 2013).  

In addition to long-term dietary patterns (Wu et al., 2011), food alters the microbiota on a 

smaller timescale as well. (Johnson et al., 2019) assessed day-to-day variations within 

microbiota composition by collecting detailed daily food diaries and daily faecal samples for 

seventeen days. While the microbiota composition was correlated with food preferences, it 

was not associated with individual nutrients (Johnson et al., 2019). Subject had different 

responses to the same types of foods, which could affect the microbiome for up to two days 

after consumption (Johnson et al., 2019). Meanwhile (Berry et al., 2020) reported that even 



twins had different metabolic responses. Interestingly, the microbial composition of 

individuals explained more variation in postprandial lipemia than meal macronutrients (Berry 

et al., 2020).  Metabolic disease and obesity is common amongst sufferers of anxiety and 

depression (Rajan and Menon, 2017) while food pickiness is common in ASD (Kral et al., 

2013). In addition, microbiota correlates with both the diet and other peripheral health 

measures in elderly individuals (Claesson et al., 2012). Many neuropsychiatric disorders 

involve alterations in food preference (Greenwood et al., 2005, Yau and Potenza, 2013, 

Folley and Park, 2010).  To detangle interindividual differences in dietary responses from 

microbial-brain-disease associations, multi-timepoint sampling and dietary records must be 

incorporated. Other considerations when collecting dietary-related data or integrating dietary 

interventions include study design, control selection, measuring subject compliance, diet-

measurement error, participant bias and method of collecting dietary information (Swann et 

al., 2020, Willett, 2012). 

Another large confound in many of these studies is the medication that individuals may take 

for their disease or disorder, as well as recreational alcohol and drug use (Maier et al., 2018, 

Fulcher et al., 2018, Cussotto et al., 2018b, Vich Vila et al., 2020, Forslund et al., 2015, 

Vieira-Silva et al., 2020, Barengolts et al., 2018, Peterfreund et al., 2012, Zhernakova et al., 

2016, Falony et al., 2016, Panee et al., 2018, Bjorkhaug et al., 2019, Dubinkina et al., 2017, 

Seo et al., 2020, Tsuruya et al., 2016, Coello et al., 2019, Ishaq et al., 2017, Stewart et al., 

2018). 

In addition to diet, and drugs, sex hormones plays an important component in many of these 

neuropsychiatric disorders, the microbiota is also able to participate in 17-β-estradiol 

degradation (Valles-Colomer et al., 2019), and potentially other pathways (Fuhrman et al., 

2014, Shin et al., 2019). (Shin et al., 2019) reported that the faecal abundance of multiple 

bacterial genera was associated with serum levels of testosterone and oestrogen in humans.  



There are also limitations in diagnosing and subtyping different types of diseases and 

disorders. There are a wide spectrum of symptoms and conditions associated with the 

disorders mentioned within the study. The heterogenous nature of many disorders and 

conditions such as ASD, anxiety, depression and stress serve as large confounders (Feczko et 

al., 2019). Much of the metadata does not detail specific symptoms or subtypes of a diagnosis 

or a disorder. Having this information would allow for a higher resolution analysis of gut-

brain interactions. 

Even when accounting for host-genotype effects with larger cohorts, accounting for sex, body 

mass index and genotype, it is difficult to interpret microbiome-host associations without 

identifying the driving influence in such an interaction (Hughes et al., 2020). A preprint by 

(Rothschild et al., 2020) suggests that large cohort studies may require thousands of 

participants on order to reach 20% explanatory power for a certain host-trait with specific 

microbiota-associated metrics (Shannon diversity, relative microbial abundance). The 

collection of metadata is important to allow for a better comparison between studies and to 

identify differentially abundant microbes arising from confounding variables. 

3.15.2 Reporting of Effect Sizes and Confidence Intervals  

The magnitude of the effect size is also important to consider, as the microbiome is a 

dynamic system, and effect size measurements prove more informative than p-values alone 

though they are seldom reported (Sullivan and Feinn, 2012). In addition, tools involving 

linear discriminant analysis for identifying differentially expressed microbes and their effect 

sizes do not consider the compositional nature of microbiome data. Unfortunately, most 

studies did not report effect sizes.  



4.0 Conclusion 

Though the evidence for the involvement of individual microbial genera or GBMs related to 

SCFA, tryptophan or bile acid metabolism within humans is weak, we found several salient 

findings and features within these datasets. GBMs allow us to search metagenomic data for 

specific neuroactive metabolic pathways leading to mechanistic insights. Within a very short 

time after their release, several human (Butler et al., 2020; Chen et al., 2019; Tomizawa et al., 

2019; Zhu et al., 2020) and preclinical studies have taken advantage of their descriptive 

properties (O’Connor et al., 2020; Van de Wuow et al. 2020).    

Many studies involving healthy humans are currently investigating associations between 

temperament, cognition and personality across the lifespan. While these studies may continue 

to find various associations, without proper compositional data analysis these associations are 

likely spurious and biased towards negative correlations (Gloor et al., 2017). Even with 

compositional data methods, finding explanatory genera or ASVs may require thousands of 

participants to power the study (Hughes et al., 2020). 

Neurodevelopmental disorders accounted for many of the human-microbiome-brain studies. 

While a WGS study suggests reductions in the KO abundance of dopamine pathways in 

ADHD (Wang et al., 2020b), it is hindered by a lack of compositional analysis. Other studies 

suggested correlations between Faecalibacterium, Ruminococcus and Ruminoclostridium 9 

with symptoms of ADHD (Jiang et al., 2018b, Szopinska-Tokov et al., 2020). These 

microbial genera may alter SCFA or tryptophan related pathways but must be further 

validated through metabolomic methods. Across dozens of ASD studies, very few 

consistencies were found across these studies. When reanalyzing raw microbiome data, very 

few differentially regulated microbes or GBMs reached the significance and effect size 

thresholds. In the dataset from Son et al. (2015), there were no differences in microbial 

composition within a sample of twins discordant for ASD. However, some of these studies 



suggested the important interplay between diet and faecal SCFAs within ASD (Berding and 

Donovan, 2019, Liu et al., 2019d, Wang et al., 2020e). Meanwhile there is moderate level of 

evidence that Lactobacillus and Bifidobacteria are dysregulated amongst multiple 

schizophrenia studies, as well as dysregulation within SCFA and tryptophan-related GBMs 

(Zhu et al., 2020, Xu et al., 2020, Schwarz et al., 2018, Shen et al., 2018). While there are 

difficulties in determining strong associations because of the diversity and new nomenclature 

of Lactobacillus genera (Zheng et al., 2020a), we found evidence of broad dysregulation 

across most existing schizophrenia studies.  

In one longitudinal study assessing the impact of ketogenic diet on the microbiota of young 

epileptic children, we found increased abundance of the Tryptophan Biosynthesis and S-

Adenosyl Methionine Biosynthesis GBMs (Lindefeldt et al., 2019). This would imply 

different mechanisms for the efficacy ketogenic diet on epilepsy than seen in mice (Olson et 

al., 2018). In studies assessing the overall microbial differences found in epilepsy, we found 

that most studies assessed different cohorts making them difficult to compare with each other. 

These results are not consistent with the findings in mice by Olson et al. (2018). In mice, the 

gut microbiota is required for mediating the anti-epileptic effects of the ketogenic diet; 

specifically, Akkermansia and Parabacteroides were implicated as mediators (Olson et al., 

2018). In healthy adult humans, there is evidence that the ketogenic diet alters the gut 

microbiota and intestinal immunity, but more studies are needed to determine the 

mechanisms of anti-epileptic effects in humans (Ang et al., 2020).  

Across neurodegenerative disorders, there is evidence of changes in SCFA and tryptophan-

related GBM abundance in AD and MCI (Li et al., 2019a). However, most of this evidence is 

emergent from one reanalyzed study. Though the microbiota is an intriguing target for 

amytotrophic lateral sclerosis and multiple systems atrophy, we did not find enough studies 



investigating this link to warrant a consensus. Preclinical evidence suggests PD pathogenesis 

can be initiated through α-Synuclein overexpression in the myenteric plexus, reaching the 

brain through the vagus nerve (O'Donovan et al., 2019, Holmqvist et al., 2014, Ulusoy et al., 

2013, Uemura et al., 2018, Manfredsson et al., 2018). However, when reanalyzing raw data 

and accounting for recorded metadata we did not find evidence of consistent gut microbiota 

alterations. While PD is progressive and features many different subtypes, it may be 

necessary to stratify participants by medication and subtype. Nonetheless, this was a 

somewhat surprising finding. 

A lack of dietary metadata may have hindered cross-comparison across alcohol-dependence 

studies. Though various genera involved in SCFA and tryptophan metabolism were identified 

across many of these datasets (Bjorkhaug et al., 2019, Seo et al., 2020, Dubinkina et al., 

2017, Leclercq et al., 2014). Even with a small sample size consisting of 10 tobacco smokers 

and 10 controls, we found an increased abundance of the tryptophan degradation module and 

a reduction of the propionate synthesis III (Stewart et al., 2018). In addition, studies 

investigating the impact of recreational drug-use also reported differences in tryptophan and 

SCFA-associated genera (Fulcher et al., 2018, Panee et al., 2018). This must be taken into 

consideration when collecting metadata, as some of the strong microbiota-related changes 

between two groups may be explained by alcohol and drug use. 

Reductions in faecal SCFA concentrations were reported in two studies investigating 

demyelinating diseases (Gong et al., 2019, Zeng et al., 2019). It is unclear if this is a result of 

subtle microbiota changes or gastrointestinal physiology within the disease group. 

There are too few fibromyalgia and migraine microbiome-related studies to make definitive 

conclusions. However, one fibromyalgia study found altered microbial species associated 

with SCFA and tryptophan metabolism, as well as changes in serum levels of SCFAs 



(Minerbi et al., 2019). Similarly the sole migraine-microbiota study reported an increased 

abundance of the kynurenine synthesis GBM (Chen et al., 2019). While few taxa were 

consistently associated with psychological metrics within IBS, interventions involving faecal 

matter transplantation of material high in Bifidobacterium (Mizuno et al., 2017b) or probiotic 

Bifidobacterium strains (Ma et al., 2019b, Pinto-Sanchez et al., 2017a) may improve the 

psychological dimensions of this disease. 

Across studies of obesity involving 16S and WGS methods, we did not find differentially 

abundant microbes and microbial metabolic pathways consistently associated with 

psychological aspects of obesity. When reanalyzing studies of anorexia, we found an 

increased abundance in isovaleric acid synthesis I, quinolinic acid synthesis, quinolinic acid 

degradation when comparing anorexia to control individuals (Mack et al., 2016).  While the 

ClpB GBM, produced by Escherichia coli (Tennoune et al., 2014), was elevated at admission 

compared to controls, after weight gain it was ameliorated (Mack et al., 2016). It is unclear 

whether microbial-host pathways involving ClpB and hunger also interact with SCFA and 

tryptophan metabolism.  

Due to the heterogeneity of stroke and vascular disease conditions, it is difficult to make 

substantial comparisons between studies. However, (Polster et al., 2020) report convincing 

evidence for the involvement of specific microbial genera/species and a neurovascular 

condition in humans. However, rather these taxa were linked to LPS biosynthesis rather than 

SCFA production (Polster et al., 2020). 

Several studies suggest lasting microbial changes in response to prenatal or postnatal stress 

(Naude et al., 2019, Hantsoo et al., 2019, Carlson et al., 2018) though these do not provide 

evidence for the involvement of SCFA, tryptophan or bile-acid modifying bacteria. Similar to 

stress, there are very few studies assessing the impact of posttraumatic stress disorder on the 



microbiota. Though multiple studies have assessed the microbiota composition in bipolar 

disorder, there were no consistent signatures across studies. In fact, one study found sex 

effect, heritability and smoking explained all observed changes in the gut microbiota between 

bipolar disorder and controls (Coello et al., 2019). Meanwhile, across studies of anxiety and 

depression there is moderate evidence for Dialister and Faecalibacterium reductions in 

depression and anxiety (Valles-Colomer et al., 2019, Jiang et al., 2015, Jiang et al., 2020, 

Jiang et al., 2018a, Stevens et al., 2018). It is unclear if the metabolic pathways that these 

microbes contribute to, mainly SCFA and tryptophan-related pathways, impact the host 

phenotype. 

5.0 Future Directions 

In part due to the many limitations of existing 16S and WGS studies as well as their collected 

metadata, we did not find many consistent changes in the gut microbiota or their associated 

metabolic pathways. Despite the limitations outlined in Section 3.15, there is still potential 

for rigorous, well-designed human studies to uncover the potential roles of these metabolites. 

Figure 2 briefly outlines the potential pathways and known interactions of SCFAs, 

tryptophan metabolism and deconjugated bile acids in brain function and health. Although 

none of these pathways have been directly linked to changes in the gut microbiota, we are 

hopeful that consensus guidelines for sequencing and downstream analysis of the human 

microbiota will contribute to uncover these changes. It is also difficult to compare studies 

within a human disease without the multiple publicly available datasets, detailed dietary 

information and medical information, effect sizes, confidence intervals or detailed 

bioinformatics procedures. The widespread use of relative abundance as opposed to methods 

incorporating the compositional nature of the microbiota (i.e. using the CLR transformation) 

is problematic within the microbiome field (Gloor et al., 2017, Gloor et al., 2016, Fernandes 

et al., 2014, Fernandes et al., 2013). Reporting effect sizes along with 95% confidence 



intervals when finding differentially abundant microbes or metabolites would increase the 

interpretability of these results. For example, if a differentially abundant microbe is increased 

in one group, but its effect size has a very small lower bound (i.e. a large negative value), this 

is indicative of a spurious finding. 

We provide some guidelines for scientists analyzing their microbiome data when building 

their pipeline and selecting their methodology (see Box 1).  

In conjunction with metabolomic and proteomic studies, consistent well-designed 

bioinformatics pipeline can identify the involvement of microbially-associated SCFA, 

tryptophan and bile acid metabolites. There are still important questions that must be 

addressed or considered when designing these studies (see Box 2).  

While we may  standardize protocols and adapt to new sequencing platforms in the future, 

some researchers suggest the development of microbiome standards to better quantify 

microbial abundance within a sample (Ji et al., 2019, Venkataraman et al., 2018, Tourlousse 

et al., 2018, Vandeputte et al., 2017, Stämmler et al., 2016, Tkacz et al., 2018). In addition, a 

biobank of standardized references could be shared as controls across multiple studies (see 

Box 3). 

This analysis provides a novel approach for understanding the mechanisms behind 

metabolite-mediated communication within the MGBA and reiterates many technical and 

bioinformatics considerations that must be acknowledged when interpreting results. Despite 

that, we found novel links between gut microbial metabolic pathways in schizophrenia, AD, 

and anxiety/depression. 
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 Figure Captions 

Graphical Abstract. Dietary fibres, proteins and fats that are ingested by the host contain 

components which are metabolized by the host microbiota. Short-chain fatty acids (SCFAs) 

are produced from the fermentation of fibres and tryptophan-kynurenine (TRP-KYN) 

metabolites from dietary proteins. Primary bile acids derived from liver metabolism of aid in 

lipid digestion but can be deconjugated and bio-transformed into secondary bile acids. 

Though it’s is unclear how these metabolites impact brain health and disease, we can look 

towards existing studies of faecal microbiota composition in humans for evidence. Inter-

individual physiological variance as well as many technical and bioinformatics limitations 

hindered the replication of results across studies. However, by reanalyzing 35 studies with a 

consistent pipeline and comparing these results to other existing studies we found mild-to-

moderate evidence of the involvement of these metabolic pathways in Alzheimer’s disease, 

schizophrenia and anxiety/depression.  

Figure 1. Microbial metabolic pathways. A summary of pathways used by different 

microbes to generate SCFA, tryptophan-kynurenine or bile acid related metabolites. Due to 

the amount of different microbial genera known to generate these metabolites, only a subset 

of these microbes is referred to in this figure. Many different genera use multiple metabolic 

pathways; it is yet unclear if all human enzymes in the kynurenine/tryptophan pathway are 

found in the microbiome. 5-HTP: 5-hydroxytryptophan; 5-HT: serotonin; AADC: aromatic 

amino acid decarboxylase; IDO1: indoleamine-2,3-dioxygenase; TDO1: tryptophan-2,3-

dioxygenase; TH: tryptophan hydroxylase; K3H: kynurenine-3-hydroxylase; KAT: 

kynurenine amino-transferase; BSH: bile salt hydroxylase. 

Figure 2. Potential pathways for microbiota-gut-brain axis communication. While it’s is 

unclear exactly how microbial-derived metabolites impact the brain, there are several 

potential pathways. Non-digestible fibres are broken down into SCFAs which act as histone 



deacetylase inhibitors on FOXP3+ TReg cells in the gut, leading to clonal expansion. SCFAs 

many also influence the enteric dendritic and marcrophage cell population by increasing 

acetylation at specific gene targets. This leads to a decreased release of interleukin-6, 

interleukin-10 and interleukin-12. SCFAs may also affect enterochromaffin cells in the gut, 

stimulating the release of serotonin into the lumen. Travelling through the blood, the SCFA 

butyrate may increase occludin expression at the blood-brain barrier as well as decrease its 

permeability to different molecules. If present in a sufficient concentration, SCFAs may 

impact microglial maturation through free-fatty acid receptor-mediated mechanisms. Bile 

acids used to aid in lipid digestion are deconjugated and biotransformed into secondary bile 

acids. These act on myenteric neurons to inhibit gut motility. In the brain, there is evidence 

that the secondary bile acid, deoxycholic acid (DCA) is associated with cognition. 

Tryptophan derived from dietary protein sources impacts both the enteric and central nervous 

system environments. Briefly, bacteria may generate indole molecules which can act on 

myenteric neurons to increase gut motility. Tryptophan (TRP) or 5-Hydroxytryptophan (5-

HTP) are also generated from dietary protein sources. TRP and 5-HTP can be converted into 

5-HT in enterochromaffin cells. In the brain, indoles impact immunity through activation of 

the Aryl-Hydrocarbon receptor in astrocytes. Alternatively, TRP or 5-HTP can be transported 

across the blood-brain barrier and converted into the neurotransmitters 5-HT, quinolinic acid 

or kynurenic acid. It is unclear what role the vagal nerve pathway plays in mediating 

microbial-derived metabolite signalling.    

 

 

 

 



 

Boxes 

Box 1: Guidelines for metadata and bioinformatics analysis of human-microbiome-

brain studies 

1. If at all possible, ensure that extensive metadata is collected, including dietary intake, 

medication, supplement use, etc. 

2. Make sure all software is up-to-date. 

3. Use SILVA or other curated taxonomy databases instead of Greengenes. 

4. Use compositional data method to transform the counts tables (ex. CLR). 

5. Use compositional analysis methods to check for significance and employ a strict 

effect size cut-off. 

6. Use compositional alternatives to standard correlational statistics. 

7. Report effect sizes and confidence intervals along with p-values and p-adjusted 

values. 

8. When possible, provide open access to datasets, scripts and pipelines to reproduce the 

results. 

 

Box 2: Questions crucial for understanding the interactions between microbial 

metabolic pathways and the brain 

1. How ubiquitous is the expression of any specific GBM across the same 

genera/species? 

2. How explanatory are GBMs compared to metabolomic and proteomic faecal analysis? 

3. Can we accurately develop a GBM framework for bile-acid metabolism? 



4. How do we address causality when many microbes possess enzymes for multiple gut-

brain modules? 

5. How do we design studies to avoid the pitfalls of interindividual variation within the 

microbiome, metabolism and disease subtype/severity? 

Box 3: Methods to improve cross-study replicability and provide more accurate 

microbial quantification 

1. Decomposition of Variance Using Replicate Sampling: A combination of using 

technical replicates and spike-in controls to estimate absolute abundance. 

2. Spike-In: Adding a known amount of synthetic 16S rRNA sequences to samples for  

estimation of absolute abundance. 

3. Reference Materials and Biobank: Collecting and storing faecal samples from  

different cohorts of healthy individuals. This material would provide controls for 

multiple studies. It would allow for accurate quantification of variability between 

populations, labs and pipelines. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2. 

 



  



Table 1. Microbiome-brain studies of healthy human cohorts.  

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; *: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are highlighted; 95% CI reported between square brackets [lower 

95% CI; upper 95% CI] 

 

Cohort Details Sequencing 

(reanalysed) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metaboli

tes/ 

GBMs 

Specific 

Limitations 

Ref 

Infant 

Temperament 

and Stress 

WGS (no) N = 63 Infants Negative Emotionality (High vs 

Low Scoring Group) 

↑ Bifidobacterium 

pseudocatenulatum (LFC: 4.085) 

↓ Streptococcus vestibularis (LFC – 

3.12) 

Regulation/Orienting (High vs Low 

Scoring Group) 

↑ Bifidobacterium 

pseudocatenulatum (LFC: 4.085) 

↑ Bifidobacterium catenulatum (LFC: 

4.177) 

Functional Connectivity: Left 

Default Network  (High vs Low 

Scoring Group) 

↓ Clostridium perfingens (LFC: 

3.559) 

Functional Connectivity: Left 

Fronto-Parietal Network (High vs 

Low Scoring Group) 

↑ Enterococcus fragilis (LFC: 3.765) 

↑ Collinsella  (LFC: 3.665) 

↑ Clostridium disporicum (LFC: 

3.415) 

↑ Prevotella copri(LFC: 3.415) 

Negative 

Emotionality (High 

vs Low Scoring 

Group) 

↑ Bifidobacterium 

pseudocatenulatum 

(LFC: 4.085) 

Regulation/Orientin

g (High vs Low 

Scoring Group) 

↑ Bifidobacterium 

pseudocatenulatum 

(LFC: 4.085) 

↑ Bifidobacterium 

catenulatum (LFC: 

4.177) 

Functional 

Connectivity: Left 

Default Network  

(High vs Low 

Scoring Group) 

↓ Clostridium 

perfingens (LFC: 

3.559) 

Functional 

Connectivity: Left 

None  (Kelsey et 

al., 2021) 



↑ Clostridium perfingens (LFC: 

3.415) 

↑ Clostridium tertium (LFC: 3.367) 

↑ Clostridium (LFC: 3.167) 

↑ Bacteroides caccae (LFC: 3.164) 

↓ Streptococcus salivarius (LFC : 

3.397) 

↓ Enterococcus (LFC = 3.042) 

Functional Connectivity: 

Homologous Interhemispheric 

Network 

↑ Eschericia coli (LFC: 4.357) 

↓ Bifidobacteirum dentae (LFC: 

4.012) 

 

 

 

 

 

 

 

Fronto-Parietal 

Network (High vs 

Low Scoring Group) 

↑ Clostridium 

disporicum (LFC: 

3.415) 

↑ Clostridium 

perfingens (LFC: 

3.415) 

↑ Clostridium tertium 

(LFC: 3.367) 

↑ Clostridium (LFC: 

3.167) 

↑ Bacteroides caccae 

(LFC: 3.164) 

Functional 

Connectivity: 

Homologous 

Interhemispheric 

Network 

↓ Bifidobacteirum 

dentae (LFC: 4.012) 

 

 

 

 

 

 

 

16S (no) N = 34 Infants None None None  (Rosin 

et al., 

2020) 

16S (no) N = 89 Infants None   None None Genera level 

findings not 

reported; 

clustered 

microbiomes and 

associated these 

(Carlson 

et al., 

2018) 



clusters with 

infant cognition 

16S (no) N = 201 Infants ↓ Prevotella*** associated with a 

decrease in behavioural problems 

 

 

 

 

None None Potential bias in 

parent reported 

measures; DeSeq2 

is inappropriate 

for microbiome 

analysis 

(Lough

man et 

al., 

2020) 

16S (no) N = 51 Infants 

(42 taking 

probiotics) 

Bifidobacterium** associated with 

soothability 

 

   (Wang 

et al., 

2020b) 

16S (no) N = 301 Infants ↑ Bifidobacterium and Streptococcus 

associated with postive emotional 

regulation 

↑ Bifidobacterium 

with positive 

emotional regulation 

 Greengenes, 

QIIME 1.9 

(Aatsink

i et al., 

2019) 

16S (no) N = 39 None None None No genus-level 

associations with 

functional 

connectivity   

(Gao et 

al., 

2019) 

16S via 454 

Pyrosequenc

ing (no) 

N = 77 Infants None None None  (Christi

an et al., 

2015) 

Adult Emotion 

and 

Personality 

16S (no) N = 91 Healthy 

♀ 

 

Focus on 

psychiatric 

measures 

None None None  (Kleim

an et 

al., 

2017a) 

16S (no) N = 15 

Probiotics 

N = 15 Placebo 

Probiotics vs Placebo 

↑ Bacteroides sp.; 

associated with response accuracy neutral stimuli scores*, 

general depression scale*  

 

Probiotics vs Placebo 

↑ Bacteroides sp.; 

associated with response accuracy neutral stimuli scores*, 

general depression scale*  

None Rarefaction (Bagga 

et al., 

2018) 



16S (no) N = 135 Healthy 

Individuals 

When accounting for fibre intake 

In males, DASS-42 anxiety scores 

negatively correlated with Blautia 

abundance 

None None Greengenes, 

rarefaction 

(Taylor 

et al., 

2019) 

16S (no) N = 672 ↑ Roseburia**  in high 

Conscientiousness group 

 

None Valine, 

leucine, 

isoleucin

e 

degradati

on 

pathways 

enriched 

in high 

neurotici

sm 

group*** 

Greengenes (Kim et 

al., 

2018) 

16S (no) N = 655 Sociability (combination of 

extraversion, social skill and 

communication) as microbiome a 

predictor 

+ Oscillospira*** 

 

None None Sample collection 

in buffer to 

stabilize at room 

temperature 

(Johnso

n, 2020) 

16S via 454 

Pyrosequenc

ing (no) 

N = 40 Healthy 

Women 

(N = 33 in 

Prevotella 

cluster, N = 7 in 

Bacteroides 

cluster) 

High Prevotella abundance 

associated with negative affect after 

negative valence picture block  

None None Rarefaction (Tillisch 

et al., 

2017) 

16S gene 

array (no) 

N = 60 No genus-levelenus-level 

associations reported 

None None  (Kim 

and 

Park, 

2017) 

FISH (no) N = 40 

Focus on self-

judgment and 

empathy 

measures 

Negative Associations: 

Lactobacillus: 

 cognitive depression*  

 affective empathy** 

Positive Associations: 

None  (Heym 

et al., 

2019) 



Lactobacillus: 

 self-judgment*** 

 over identification* 

Sleep 16S (yes) N = 10 

Insomnia 

N = 10 Control 

None None Insomni

a vs 

Control 

↓ 

Alloprev

otella 

(effect = 

-1.16 [-

14.97; 

0.17]) * 

 (Liu et 

al., 

2019a) 

16S (no) N = 113  

Focus on sleep 

Disruptions in sleep across stages in 

Prevotella enterotype 

None None  (Ko et 

al., 

2019) 

16S (no) N = 22 None None None  (Liu et 

al., 

2020c) 

16S (no) N = 8 Control 

N = 7 

Obstructive 

Sleep Apnoea 

Apnea-Hypopnea Index 

Correlations 

Eubacterium* (rho = 0.785) 

Wake After Sleep Onset 

Escherichia** (rho = 0.915) 

Klebsiella* (rho = 0.768) 

Arousals Index 

Clostridium* (rho = 0.852) 

Ruminococcus* (rho = 0.738) 

Oscillospira* (rho = 0.842) 

None None  (Valenti

ni et al., 

2020) 

16S (no) N = 20 Acute 

Insomnia 

Disorder (AID) 

N = 38 Chronic 

Insomnia 

Disorder (CID) 

N = 38 Control 

 

AID vs Control 

↑ Bacteroides* 

↓ Lachnospira* 

CID vs Control 

↑ Blautia*** 

↓ Faecalibacterium*** 

↓ Prevotella** 

↓ Roseburia** 

CID vs Control 

↑ Bacteroides* 

 

  (Li et 

al., 

2020c) 



16S (no) N = 37 None None None Genus-level 

changes not 

reported 

(Anders

on et al., 

2017) 

16S (no) N = 35 

Narcolepsy 

Type 1 (NT1) 

N = 41 Control 

NT1 vs Control 

↓ Bacteroides*** 

↑ Flavonifactor** 

 

NT1 vs Control 

↓ Bacteroides*** 

 

  (Lecomt

e et al., 

2020) 

16S (no) N = 24 Negative Associations 

Sleep efficiency and total sleep time: 

Blautia 

Number of awakenings: Holdemania, 

Corynebacterium,  

 

Positive Associations 

Number of awakenings: 

Coprococcus, Neisseria 

None None Faecal swab; no 

post-hoc testing 

for correlation 

coefficients 

(Smith 

et al., 

2019b) 

Healthy 

Aging and 

Cognition 

16S (no) N = 11 MCI 

with Risk of AD 

N = 6 Aged-

Control 

 

Randomized 

double-

crossover 

intervention 

Ketogenic 

Mediterranean 

diet vs 

American heart 

association diet 

MCI vs Control at Baseline 

↑ Phascolarctobacterium 

↓ Dialister 

 

↑ Bifidobacterium after 

Mediterranean Ketogenic Diet in 

MCI but not in Controls 

↑ Bifidobacterium 

after Mediterranean 

Ketogenic Diet in 

MCI but not in 

Controls 

 

 QIIME 1.9.1, 

Greengenes, 

rarefaction, 

Unbalanced 

groups 

(Nagpal 

et al., 

2019) 

16S (no) N = 26 PBO 

N = 27 

Probiotic 

 
12 weeks 

Bifidobacterium 
bifidum BGN4 and 

Bifidobacterium 

Probiotic vs PBO 

↓ Eubacterium 

 

In probiotic group 

Eubacterium negatively correlated 

with serum BDNF 

None None  (Kim et 

al., 

2020) 



longum BORI (1 × 
109 CFU/d)  

 

2 week washout 

16S via 454 

Pyrosequenc

ing (no) 

N = 37 Aged N 

= 39 Aged with 

Cirrhosis 

Amnesia vs No Unimpaired 

↑ Paraprevotella 

↓ Faecalibacterium 

↓ Coprobacillus 

 

None None  (Bajaj et 

al., 

2016) 

T-RFLP (no) N = 34 

Dementia 

N = 94 Controls 

Dementia vs Control  

↓ Bacteroides 

 

None  (Saji et 

al., 

2019) 

 

 

 

Table 2. Microbiome-brain studies involving neurodevelopmental disorders. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; *: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are highlighted; 95% CI reported 

between square brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

ADHD 
 

16S (yes) N = 19 ADHD 

N = 77 Control 

None None None Wide age 

range 

(Aarts 

et al., 

2017) 

WGS (no) N = 17 ADHD 

N = 17 HC 

ADHD vs Control 

↓ Faecalibacterium*  

↓ Ruminococcus gnavus*  

ADHD vs Control 

↑ Bacteroides caccae* 

 

ADHD vs 

Control:  

 (Wan 

et al., 

2020) 



↑ Bacteroides caccae* 

 ↑ Odoribacter* 

 ↑ Enterococcus* 

 

↓ in KO terms 

for dopamine 

pathways** 

16S (no) N = 10 ADHD + 

nutrient 

intervention 

N = 7 ADHD 

(placebo) 

ADHD Associations with Symptomology 

↑ Bifidobacterium associated with lower ADHD-IV-RS score 

(t = −2.3, df = 15, p = 0.04); possibly due to 3 outliers 

 

 

None Pilot study 

on 

intervention 

so no 

comparisons 

with controls 

(Steve

ns et 

al., 

2019) 

16S (no) N = 14 ADHD 

N = 17 Control 

ADHD vs Control 

↓ Prevotella 

↓ Parabacteroides 

↑ Neisseria 

 

 

None None Incomplete 

methods 

section, 

males only 

(Preh

n-

Kriste

nsen 

et al., 

2018) 
16S (no) N = 42 ADHD 

N = 15 

Subthreshold 

ADHD 

N = 50 HC 

ADHD vs Control 

↑ Ruminoclostridium 9*, 

Ruminococcus 2*  

 

ADHD Medicated vs ADHD 

Unmedicated 

Ruminococcus 2 (B = 1.525, P = 

0.001) associated with inattention 

score 

None None  (Szopi

nska-

Tokov 

et al., 

2020) 

16S (no) N = 30 ADHD 

N = 30 Control 

ADHD vs Control (Genus-

levelenus-level) 

↓ Lactobacillus 

↑ Fusobacterium 

 

 

ADHD vs Control (Species-Level) 

↑ Bacteroides uniformis 

↑ Bacteroides ovatus 

↑ Sutterella stercoricanis 

↓ Bacteroides coprocola 

 

ADHD vs Control 

(Genus-levelenus-

level) 

↓ Lactobacillus 

 

ADHD vs Control 

(Species-Level) 

↑ Bacteroides 

uniformis 

↑ Bacteroides ovatus 

↓ Bacteroides 

coprocola 

 

None Rarefaction (Wang 

et al., 

2020b

) 



16S via 

454 

Pyroseque

ncing (no) 

N = 51 ADHD N 

= 32 Controls 

ADHD vs Control 

↓ Faecalibacterium 

↓ Dialister 

 

 

↓ Faecalibacterium; 

associated with total CPRS Score 

(Pearson Correlation: p < 0.001, R2 = 

-0.564) and hyperactivity index score 

(Pearson Correlation: p < 0.037, R2 = 

-0.294)  

 

None  Rarefaction (Jiang 

et al., 

2018b

) 

qPCR (no) N = 35 Placebo 

N = 40 Probiotic 

↓ Bifidobacterium spp. at 6 weeks of life in children that 

developed ASD/ADHD 

None  (Pärtty 

et al., 

2015) 

ASD WGS (yes, 

from 

species 

counts 

table) 

N = 36 ASD 

N = 21 Control 

None None None  (Averi

na et 

al., 

2020) 

16S (yes) N = 51 ASD 

N = 40 Control 

None None None  (Son 

et al., 

2015) 

16S (yes) N = 20 ASD 

N = 20 Control 

ASD vs Control 

↑ Roseburia*** (effect = 0.9 [-1.9; 

10.38] 

 

None None  (Pulik

kan et 

al., 

2018) 

16S (yes) N = 20 ASD 

N = 19 Control 

None 
 

None None  (Kang 

et al., 

2019) 

16S (yes) N = 20 ASD 

N = 19 Control 

ASD with ATEC score below 

median (62) vs ASD with score 

above median 

↓ Ruminoclostridium 9* (effect = 

-0.78 [-7.28, 1.80]) 

 

None 

 

None  (Kong 

et al., 

2019) 



16S (yes) N = 20 ASD 

Faecal samples 

taken before and 

after Vitamin A 

supplementation 

None None None  (Liu et 

al., 

2017) 

16S via 

454 

Pyroseque

ncing (yes 

– unable to 

identify 

bacterial 

sequences) 

N = 40 ASD 

N = 40 Controls 

None None None  (Strati 

et al., 

2017) 

WGS (no) N = 43 ASD (19 

with GI 

symptoms, 24 

without) 

N = 31 Controls 

None 

 

None 

 

None Focus on 

immune 

epitopes 

(Wang 

et al., 

2019b

) 

WGS (no) N = 39 ASD 

N = 40 Control 

ASD vs Control 

↑ Veillonella parvula 

↑ Butyrivibrio unclassified 

↑ Streptococcus pasteurianus 

↑ Lactobacillus rhamnosus 

↑ Megasphera micronuciformis 

↑ Lachnospiraceae bacterium 

6163FAA 

↑ Haemophilus haemolyticus 

↓ Bifidobacterium longum 

↓ Prevotella copri 

↓ Bacteroides stercoris 

↓ Dorea unclassified 

↓ Lachnospiraceae bacterium 

1456FAA 

↓ Eubacterium limosum 

 

ASD vs Control 

↑ Lactobacillus 

rhamnosus 

↓ Bifidobacterium 

longum 

↓ Bacteroides 

stercoris 

 

None  (Zhan

g et 

al., 

2020c

) 

WGS (no) N = 30 ASD 

N = 14 Controls 

None None None  (Caris

simi et 



al., 

2019) 

WGS (no) N = 166 Infants 

aged 6 weeks 

N = 158 Infants 

aged 1 year 

N = 129 Infants 

aged 2 years 

N = 140 Infants 

aged 3 years 

Assessing ASD-

related social 

behaviors with 

Social 

Responsiveness 

Scale (SRS-2) T-

scores  

At One Year 

Blautia producta + association with 

SRS-2 

At Two Years 

Coprococcus + association with SRS-

2  

Ruminococcus gnavus + association 

with SRS-2  

Bifidobacterium + association with 

SRS-2 

Sutterella + association with SRS-2 

At Three Years  

Bytyricoccus pulliacaerum  

– association with SRS-2 

  

 

At Two Years 

Bifidobacterium + 

association with SRS-

2 

 

None  (Laue 

et al., 

2020) 

WGS (no – 

ASD and 

controls 

not 

specified 

in 

metadata) 

N = 92 ASD 

N = 42 Control 

ASD vs Control 

↑ Eggerthella lenta*  

↑ Eggerthella lenta DSM2243* 

↑ Clostridium botulinum A3 and 

Ba4* 

↓Bacteroides vulgaris** 

 

 

ASD vs Control 

↓Bacteroides 

vulgaris** 

 

ASD vs 

Control 

↓ 

Glutamate/Glut

amine 

metabolism 

 

 (Wang 

et al., 

2019a

) 

16S and 

WGS (no) 

N = 143 ASD 

N = 143 Controls 

WGS: 

N = 30 ASD with 

Constipation (C-

ASD) 

N = 30 Non-

Constipated ASD 

(NC-ASD) 

N = 30 Controls 

ASD vs Control 

↑ Dialister 

↑ Escherichia-Shigella 

↑ Bifidobacterium 

↓ Prevotella 9 

↓ Megamonas 

↓ Ruminococcus 2 

 

C-ASD vs NC-ASD 

↑ Alistipes** 

↑ Anaerotruncus** 

↑ Ruminoclostridium 6** 

↑ Ruminococcus 2** 

ASD vs Control  

↑ Bifidobacterium 

 

C-ASD vs NC-ASD 

 

↓ Bacteroides** 

 

None QIIME 1.9, 

No post-hoc 

correction,  

rarefaction 

(Dan 

et al., 

2020) 



↑ Subdolingranlum* 

↑ Coprococcus 1* 

↑ Blautia* 

↑ Roseburia* 

↑ Butyricoccus* 

↑ Ruminococcus 1* 

↑ Coprobacter* 

↓ Veillonella** 

↓ Collinsella** 

↓ Megasphera** 

↓ Bacteroides** 

 

 

16S (no) N = 77 ASD 

N = 50 Control 

ASD vs Control 

↓ Bacteroides* 

↓ Faecalibacterium* 

Negative association between 

Faecalibacterium and ASD severity 

Multiple other genera associated with 

ASD severity 

ASD vs Control 

↓ Bacteroides* 

None  (Ding 

et al., 

2020) 

16S (no) N = 60 ASD + 

Sleep disorder 

(ASD-S) 

N = 60 ASD 

without Sleep 

disorder 

ASD-S vs ASD 

↓ Faecalibacterium (also correlated 

to 3-hydroxybutyric acid abundance 

in feces) 

None None Rarefaction (Hua 

et al., 

2020) 

16S (no) N = 78 ASD 

N = 58 Controls 

ASD vs Controls 

↑ Bacillus** 

↑ Bacteroides** 

↑ Bilophila** 

↑ Parabacteroides** 

↑ Sutterella** 

 

 

ASD vs Controls 

↑ Bacteroides** 

 

None Qiime v1.9.1 

(outdated 

since Jan 1, 

2018) 

(Zhai 

et al., 

2019b

) 

16S (no) N = 30 ASD 

N = 20 Control 

ASD vs Controls 

↑ Megamonas 

↓ Eubacterium 

↑ Faecal valerate 

ASD vs Controls 

↓ Eubacterium 

 

None  (Liu et 

al., 

2019d

) 



↓ Faecal butyrate 

16S (no) N = 21 ASD  
N = 23 Control    

ASD vs Control  
↓ Faecalibacterium***  
↓ Heamophilus***   

None 

 

None 

 

 (Kang 

et al., 

2018a

) 

 

16S (no) N = 9 ASD 

N = 6 Control 

None None None Greengenes (Sun 

et al., 

2019a

) 

16S (no) N = 37 ASD + 

Probiotic (4 

weeks) 

N = 77 ASD (no 

Probiotic) 

N = 40 Control 

 

Faecal samples 

not analysed after 

intervention  

ASD vs Controls (Baseline) 

↓ Bacteroides*** 

↓ Bifidobacterium*** 

↓ Ruminococcus** 

↓ Lachnospira*** 

↓ Roseburia*** 

↓ Blautia*** 

 

ASD vs Controls 

(Baseline) 

↓ Bacteroides*** 

↓ Bifidobacterium*** 

 

None  (Niu 

et al., 

2019) 

16S (no) N = 25 ASD 

N = 35 Control 

ASD vs Controls 

↓ Lactobacillus 

↓ Ruminococcus 

↑ Bacteroides 

↑ Akkermansia 

↑ Coproccous 

↑ Ruminococcus (different OTU 

assigned to the same genera) 

ASD vs Controls 

↓ Lactobacillus 

↑ Bacteroides 

 

None Greengenes (Zurit

a et 

al., 

2019) 

16S (no) N = 24 ASD 

N = 24 Control 

 

FOS+Probiotics 

Interverntion 

ASD vs Controls at Baseline 

↓ Bifidobacterium 

↓ Veillonella 

↓ Acidaminococcus 

↓ Enterococcus 

↑ Odoribacter 

↑ Oscillispira 

↑ Ruminococcus 

 

Day 80 vs Baseline ASD 

ASD vs Controls at 

Baseline 

↓ Bifidobacterium 

 

Day 80 vs Baseline 

ASD 

↑ Bifidobacteriun 

longum to control 

levels 

 

↑ L-histidine 

and L-

histamine over 

course of 

intervention 

Rarefaction (Wang 

et al., 

2020e

) 



↓ Acetate, butyrate, propionate; 

increases over 80 days of intervention 

↑ B. longum to control levels 

↓ Clostridium 

 

Most short term measures were not 

sustained after the end of the study 

16S (no) N = 63 ASD 

N = 27 Control 

ASD vs Control 

↑ Aenerococcus 

↑ Burkholderia,  

↑ Desulfovibrio 

↑ Oxalobacter  

↓ Bilophila 

  Lack of 

clarity in 

methods 

section, no 

post-hoc 

(Tomo

va et 

al., 

2019) 

16S (no) N = 46 ASD 

N = 16 Control 

None None None Lack of 

clarity in 

methods 

section, no 

post-hoc 

(Tomo

va et 

al., 

2020) 

16S (no) N = 76 ASD 

N = 47 Control 

ASD vs Control 

Focus on co-abundance groups 

finding correlations with co-abundant 

Bacteroides ASVs and various ASD 

behaviours 

None None  (Chen 

et al., 

2020b

) 

16S (no) N = 14 

Unrestricted Diet 

ASD (split into 

PBO and B-GOS) 

N = 12 exclusion 

diet (split into 

PBO and B-GOS) 

None None None Rarefaction, 

reporting on 

genus-

levelenus-

level 

differences 

within 

groups is 

unclear 

(Grim

aldi et 

al., 

2018) 

16S (no) N = 48 ASD 

30 with no mental 

regression 

(ANMR) 

18 with mental 

regression (AMR) 

ASD vs Controls 

↑ Bacillus 

↑ Bifidobacterium 

↑ Butyrivibrio 

↑ Enterococcus 

↑ Prevotella 

ASD vs Controls 

↑ Bifidobacterium 

 

None  (Plaza

-Diaz 

et al., 

2019) 



N = 57 Controls ↑ Clostridium boltae 

↑ Clostridium difficile 

AMR vs ANMR 

↑ Enterococcus 

 

 

 

 

 

 

16S (no – 

unable to 

demultiple

x) 

N = 59 ASD 

N = 30 Control 

ASD vs Control 

↑ Clostridium 

↑ Pseudomonas 

↑ Streptococcus 

↓ Prevotella 

 

None None Greengenes, 

Qiime v1.9.1 

(outdated 

since Jan 1, 

2018), 

rarefaction 

(Li et 

al., 

2019d

) 

16S (no) N = 11 ASD 

N = 14 Control 

ASD vs Control 

↑ Faecal butyrate 

↓ Streptococcus** 

↓ Coprocccus** 

↓ Blautia** 

↓ Eggerthella** 

↓ Corynebacteirum** 

↑Parabacteroides* 

↑ Bacteroides** 

↑ Faecalibacterium prausnitzii** 

↑ Roseburia** 

↑ Ruminococcus** 

 

 

ASD vs Control 

↑ Bacteroides** 

 

 Greengenes, 

QIIME 1.9, 

rarefaction 

(Coret

ti et 

al., 

2018) 

16S (no) N = 45 ASD 

N = 45 Control 

ASD vs Control 

↓ Flavonifractor** 

 

None None  (Ma et 

al., 

2019a

) 

16S (no) N = 26 ASD 

N = 32 Control  

 

Faecal butyrate associated with diet 

quality within ASD 

No butyrate producing bacteria 

reported to correlate with butyrate 

None None Greengenes (Berdi

ng and 

Donov

an, 



2019, 

Berdin

g and 

Donov

an, 

2018)  

16S (no) N = 26 ASD 

N = 32 Control 

ASD + Temporally Unstable 

Microbiome vs ASD + Temporally 

Stable Microbiome 

↓ Turcibacter* 

↓ Dorea* 

↓ Phascolarctobacterium* 

None None  Greengenes (Berdi

ng and 

Donov

an, 

2019) 

16S (no) N = 6 ASD 

N = 6 Control 

ASD vs Control 

↓ Blautia 

↓ Faecalibacterium 

None None  (Inoue 

et al., 

2016) 

16S (no) N = 6 ASD 

Probiotic then 

PBO 

N = 4 ASD 

PBO then 

Probiotic 

 

VISBIOME 

crossover pilot 

trial 

None None None  (Arnol

d et 

al., 

2019) 

16S (no) N = 35 ASD 

N = 6 Control 

ASD vs Control 

↓ Streptococcus* 

↓ Vaillonella* 

↓ Escherichia* 

None None  (Zhan

g et 

al., 

2018a

) 

16S (no) N = 21 

ASD+GI 

problems (ASDGI) 

N = 29 

ASDnoGI 

N = 34 

ControlnoGI 

N = 7 ControlGI 

None 

 

None None  (Luna 

et al., 

2017) 



 

16S via 

454 

Pyroseque

ncing (no) 

N = 51 ASD 

N = 53 

Neurotypical 

Siblings 

 

Controlled for GI 

Dysfunction 

None None None  (Gond

alia et 

al., 

2012) 

16S via 

454 

Pyroseque

ncing (no) 

N = 10 ASD 

N = 10 Other 

Neurodevelopmen

tal Disorder 

(OND) 

N = 10 Control 

Bacteria assessed at species-level; 

impossible to do reliably with 16S 

None None Rarefaction, 

no post-hoc 

testing 

(De 

Angeli

s et 

al., 

2013) 

16S via 

454 

Pyroseque

ncing (no) 

N =23 ASD 

without GI 

dysfunction 

N = 28 ASD with 

GI dysfunction 

N = 53 

neurotypical 

siblings 

No significant microbiome 

differences found 

None None  (Gond

alia et 

al., 

2012) 

qPCR (no) N = 41 ASD 

N = 45 Non-ASD 

Siblings 

N = 45 Control  

ASD vs Control 

↑ Bacteroides* 

↑ Ruminococcus** 

↓ Prevotella* 

Non-ASD Siblings vs Control 

↑ Bacteroides** 

↑ Ruminococcus** 

 

ASD vs Control 

↑ Bacteroides* 

 

Non-ASD Siblings vs 

Control 

↑ Bacteroides** 

 

  (Ahm

ed et 

al., 

2020) 

qPCR (no) N = 30 ASD 

 

Received 

probiotics (L. 

acidophilus, L. 

rhamnosus, 

B. longum) 

After 3 Mo. Probiotics vs Baseline 

↑ Lactobacillus*** 

↑ Bifidobacterium*** 

 

 

None None No 

control/PBO 

(Shaa

ban et 

al., 

2018) 



qPCR (no) N = 30 ASD 

N = 30 Control 

ASD vs Control 

↑ Clostridium difficile*** 

↑ C. paraputrificum* 

↑ C. clostridioforme*** 

↑ C. bolteae*** 

↑ C. clostridioforme*** 

None None  (Kand

eel et 

al., 

2020) 

qPCR (no) N = 23 ASD 

N = 22 Non-ASD 

Siblings 

N = 9 Control 

ASD vs Control 

↑ Sutterella spp.* 

 

Non-ASD Siblings vs Control 

↑ Sutterella spp.* 

None None  (Wang 

et al., 

2013) 

qPCR (no) N = 10 ASD 

N = 10 Control 

Siblings 

N = 9 Unrelated 

Controls 

Desulfvibrio correlated to autism 

intensity with ADI RRB 

 

ASD vs Unrelated Control Baseline 

↑ Lactobacillus spp.*** ( no 

difference with siblings) 

 

ASD After Probiotic vs Before 

Probiotic 

↓ Bifidobacterium spp.*** 

↓ Desulfvibrio spp.*** 

ASD vs Unrelated 

Control Baseline 

↑ Lactobacillus 

spp.*** ( no 

difference with 

siblings) 

 

ASD After Probiotic 

vs Before Probiotic 

↓ Bifidobacterium 

spp.*** 

 

None  (Tomo

va et 

al., 

2015) 

Schizophrenia 16S (yes) N = 64 SZ 

N= 53 Control 

SZ vs Control 

↑ Fusicatenibacter*** (effect = 

0.67[-1.48; 7.56]) 

None None  (Shen 

et al., 

2018) 

16S (yes) N = 40 SZ 

N = 40 Control 

SZ vs Control 

↓ Lactobacillus*** (effect = -1.28 [-

12.85; 0.11]) 

↑Fusicatenibacter*** (effect =1.06 [-

1.05; 7.60]) 

↑ Ruminococcus 1***(effect = 0.80 [-

2.23; 7.33] 

Butyrate Synthesis II*** (effect = 

0.61 [-1.83; 5.41]) 

↑ Kynurenine synthesis*** (effect = 

0.68 [-2.10; 6.12]), Inositol 

Degradation*** 

SZ vs Control 

↓ Lactobacillus*** 

(effect = -1.28 [-12.85; 

0.11]) 

 

SZ vs Control: 

↓ Histamine 

Synthesis* 

(effect = -0.48 

[-5.41; 1.89]) 

 (Xu et 

al., 

2019) 



(effect = 0.83 [-1.58; 6.96]), 

 

 

16S (yes) N = 21 taking 

atypical 

antipsychotics 

N = 16 taking 

Lithium or 

Lamotragine 

None None None  (Flow

ers et 

al., 

2019) 

16S (yes) N = 25 SZ 

N = 25 Controls 

None None None Faecal swabs 

used 

(Nguy

en et 

al., 

2019) 

WGS (no) N = 84 SZ 

N = 84 Control 

SZ vs Control: 

↑ Bifidobacterium adolescentis***  

↑ Clostridium perfringens*** 

↑ Lactobacillus gasseri*** 

 

SZ vs Control: 

↑ Bifidobacterium 

adolescentis***  

↑ Lactobacillus 

gasseri*** 

 

None  (Xu et 

al., 

2019) 

WGS (no) N = 90 drug-naïve 

SZ 

N = 81 Control 

SZ vs Control 

↑ Eubacterium siraeum*  

↑Bacteroides plebius*  

↑ Bifidobacterium adolescentis* 

↑ Bifidobacteriun bifidum* 

↑ Bifidobacteriun dentium* 

↑ Bifidobacteriun longum* 

↑ Clostridium bolteae* 

↑ Clostridium ramosum* 

↑ Clostridium symbiosum* 

↑ Enterococcus faecium* 

↑ Lactobacillus crispatus*, 

↑ Limosilactobacillus fermentum* 

 

 

↓ Clostridium perfogens* 

↓ Bacteroides intestinales* 

↓ Bacteroides finegoldii* 

↓ Lactococcus lactis* 

SZ vs Control 

↑ Eubacterium 

siraeum*  

↑Bacteroides plebius* 

 ↑ Bifidobacterium 

adolescentis* 

↑ Bifidobacteriun 

bifidum* 

↑ Bifidobacteriun 

dentium* 

↑ Bifidobacteriun 

longum* 

↑ Enterococcus 

faecium* 

↑ Lactobacillus 

crispatus*, 

↑ Limosilactobacillus 

fermentum* 

 

None Metadata is 

unlabelled 

 

(Zhu 

et al., 

2020) 

 



↓ Lactobacillus acidophilus* 

↓ Lactobacillus johnsonii* 

↓ Bacteroides 

intestinales* 

↓ Bacteroides 

finegoldii* 

↓ Lactobacillus 

acidophilus* 

↓ Lactobacillus 

johnsonii 

WGS (no) N = 28 First 

Episode Psychosis 

(FEP) 

N = 16 Matched 

Controls 

FEP vs Controls 

↑ Lactobacillus 

 

FEP vs Controls 

↑ Lactobacillus 

 

None  (Schw

arz et 

al., 

2018) 

16S (no) N = 40 Drug 

Naive SZ (DSZ) 

N= 85 Treated SZ 

(TSZ) 

N = 69 Control 

TSZ vs DSZ 

↑ Escherichia (LFC = 1.65)*** 

↑ Fusobacterium (LFC = 2.43)** 

↑ Megasphaera (LFC = 5.76)*** 

↑ Enterococcus (LFC = 3.69)*** 

↑ Lactobacillus (LFC = 5.02)*** 

↑ Streptococcus (LFC = 2.67)*** 

↑ Shigellia (LFC = 1.18)** 

↑ Veillonella (LFC = 2.81)*** 

↑ Clostridium (LFC = 1.26)** 

↑ Enterobacter (LFC = 1.93)** 

↑ Ruminococcus (LFC = 0.95)*** 

↑ Sutterella (LFC = 1.06) 

 

DSZ vs Control 

↑ Escherichia (LFC = 1.86)*** 

↓ Fusobacterium (LFC = -2.99)*** 

↓ Megasphaera (LFC = -4.60)*** 

 

TSZ vs Control 

↓ Bacteroides (LFC = -0.73)** 

↑ Enterococcus (LFC = 2.82)*** 

↑ Lactobacillus (LFC = 3,74)*** 

↑ Parabacteroides (LFC = -0.76)** 

↑ Shigella (LFC = 1.66)*** 

↑ Streptococcus (LFC = 1.29) 

TSZ vs Control 

↑ Enterococcus (LFC 

= 3.69)*** 

↑ Lactobacillus (LFC 

= 5.02)***5.02)*** 

 

TSZ vs Control 

↓ Bacteroides (LFC = 

-0.73)** 

↑ Enterococcus (LFC 

= 2.82)*** 

↑ Lactobacillus (LFC 

= 3,74)***74)*** 

 

None Greengenes, 

rarefaction 

(Ma et 

al., 

2020) 



↓ Turcibacter (LFC = -2.04)*** 

↑ Veilonella (LFC = 2.31)*** 

↑ Clostridium (LFC = 1.67)** 

16S (no) N = 82 SZ 

N = 80 Control 

SZ vs Control 

↑ Collinsella 

↑ Prevotella 

↑ Lactobacillus 

↑ Eubacterium 

↑ Corynebacterium (negatively 

assocaited with negative SZ 

symptoms) 

↑ Succinovibrio(correlated to severity 

of SZ symptoms) 

↓ Anaerostipes 

↓ Faecalibacterium 

↓ Aldercreutzia 

↓ Butyricimonas 

SZ vs Control 

↑ Lactobacillus 

 

None  (Li et 

al., 

2020

b) 

16S (no) N = 48 SZ 

N = 48 Control 

SZ vs Control 

No genera-level differences identified 

None None  (Ngu

yen et 

al., 

2021) 
16S (no) N = 26 SZ with 

no history of 

violence 

N = 16 SZ with 

violent behaviours 

(SZV) 

SZV vs SZ 

↓ Delftia  

↓ Allobaculum 

 

None None  (Chen 

et al., 

2021) 

16S (no) N = 29 SZ in 

remission 

N = 29 SZ in 

disease onset 

Used controls 

from Human 

Microbiome 

project 

Remission vs Acute SZ 

↑ Clostridium sensu stricto 

None None  (Pan 

et al., 

2020) 

16S (no) N = 81 High Risk 

of Psychosis 

N = 69 Control 

Ultra High Risk vs High Risk 

↑ Lactobacillus 

↑ Prevotella 

None None Rarefaction (He et 

al., 

2018) 



N = 19 Ultra High 

Risk of Psychosis 

 

16S (no) N = 30 patients 

B. breve A1 

probiotic given 

daily for 4 weeks, 

washout for 4 

weeks 

1*1011 CFU daily 

Responders vs Non-Responders (4 

weeks vs Baseline) 

↑ Parabacteroides*  

Improved HADS and PANSS 

None None Used QIIME 

1.8, 

Greengenes, 

Pilot study 

(Okub

o et 

al., 

2019) 

16S (no) N = 20 

Sampled before 

olanzapine and 

after 7 day 

washout 6 weeks 

later 

None None None Greengenes, 

Did not 

report 

differences 

between 6 

weeks and 

baseline; 

generated 

heirarchical 

cluster for 

stratification 

(Pelka

-

Wysie

cka et 

al., 

2019) 

16S (no) N = 16 Controls 

N = 10 First 

Episode Drug 

Naive 

Schizophrenia 

 

Schizophrenia vs Control 

↓ Faecalibacterium 

↓ Fusicatenobacter 

↓ Coprococcus 1 

↓ Coprococcus 2 

↓ Butyricoccus 

↑ Actinomyces 

↑ Eggerthella  

↑ Anaerotruncus 

↑ Flavonifactor 

↑ Holdemania 

↑ Eisenbergiella 

↑ Prevotella 

↑ Ruminoccocus gnavus 

↑ Ruminoclostridium 5 

↑ Dorea 

↑ Hungatella 

↑ Bilophila 

↑ Oscillibacter 

None None  (Zhan

g et 

al., 

2019b

) 



↑ Prevotella 

↑ Blautia 

16S (no) N = 63 

Schizophrenia 

N = 69 Controls 

None None None Genus-

levelenus-

level 

differences 

not reporter 

(Zhen

g et 

al., 

2019) 

T-RFLP 

(no) 

N = 16 

Schizophrenia 

Inpatients 

 

Sampled before 

and after 

intervention (6 

months) 

 

Prebiotic: 3g/day 

4G-β-D-

galactosylsucrose 

Post- vs Pre- Prebiotic Intake 

↑ Bifidobacteirum** 

↓ Clostridium XIVa* 

 

Post- vs Pre- 

Prebiotic Intake 

↑ Bifidobacteirum** 

 

  (Naga

mine 

et al., 

2018) 

qPCR (no) N = 41 SZ 

N = 41 Control 

 

SZ vs Control 

↑ Clostridium coccoides*** 

↓ Bifidobacterium spp.*** 

↓ Escherichia coli*** 

↓ Lactobacillus spp.*** 

 

Ameliorated after 24 weeks of 

risperidone 

SZ vs Control 

↓ Bifidobacterium 

spp.*** 

↓ Lactobacillus 

spp.*** 

 

None No 

control/PBO 

(Yuan 

et al., 

2018) 

PANS/PANDA

S 

16S (yes) N = 30 with 

PANS/PANDAS 

N = 70 Controls 

None None None  (Quag

liariell

o et 

al., 

2018) 

Rett’s 

Syndrome  

16S (yes) N = 8 RTT 

N = 10 Control 
RTT vs Control 
↑ Faecal iso-butyrate** 

↑ Faecal iso-valerate** 

 

None None  (Borg

hi et 

al., 

2017) 



16S via 

454 

Pyroseque

ncing (yes) 

N = 50 RTT 

N = 29 Control 
RTT vs Control 
↑ Faecal propionate* 

↑ Faecal iso-butyrate*** 

↑ Faecal iso-valerate** 

No differences even when 
accounting for constipation and 
severity 

None None  (Strati 

et al., 

2016) 

 

Table 3. Microbiome-brain studies involving epilepsy. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; *: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are highlighted; 95% CI reported 

between square brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencing 

(reanalysed) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

Epilepsy WGS N = 12 Patients 

with epilepsy – 

before and after 

ketogenic diet 

After diet vs Before 

↑ L-tryptophan biosynthesis* (effect 

= 0.9 [-1.07; 10.67]) 

 

None After diet vs 

Before 

↑ SAM 

Biosynthesis* 

(effect = 0.63 

[-1.89, 8.86] 

↓ L-tyrosine 

biosynthesis* 

(effect = -0.60 

[-12.29; 0.96] 

 

Low sample 

size, no age-

matched 

control 

(Linde
feldt 
et al., 
2019) 

16S (yes) N = 25 Cerebral 

Palsy with 

Epilepsy (CPE) 

N = 21 Control 

CPE vs Control 

↓ Acidaminococcus (effect = -1.14 [-

9.60; 1.17])*** 

↓ Akkermansia (effect = -1.52 [-

11.32; 0.40])*** 

↓ Alistipes (effect = -1.33 [-10.13; 

0.48]) 

CPE vs Control 

↓ Bacteroides (effect = 

-0.72 [-7.75; 2.23])*** 

↓ Bifidobacterium 

(effect = -2.97 [-24.09; 

0.35]) *** 

 

None  (Huan
g et 
al., 
2019a
) 



↓ Bacteroides (effect = -0.72 [-7.75; 

2.23])*** 

↓ Bifidobacterium (effect = -2.97 [-

24.09; 0.35]) *** 

↓ Blautia (effect = -1.83 [-14.30; 

0.41]) 

↓ Catenibacterium (effect = -1.67 [-

11.67; 0.60]) *** 

↓ Clostridium sensu stricto 1 (effect 

= -0.96 [-11.22, 0.81]) *** 

↓ Collinsella (effect = -1.88 [-12.63; 

0.41]) *** 

↓ Desulfovibrio (effect = -1.40 [-

11.91; 0.53]) *** 

↓ Enterococcus (effect = -1.56 [-

13.23; 0.46]) *** 

↓ Escherichia/Shigella (effect = -1.73 

[-14.91; 0.43]) *** 

↓ Eubacterium (effect = 1-.09 [-

10.91; 0.61]) *** 

↓ Faecalibacterium (effect = -1.70 [-

12.12; 0.37])*** 

↓ Flavonifractor (effect = -0.98 [-

9.93; 1.26])*** 

↓ Gemella (effect = -0.97 [-9.03; 

1.85])*** 

↓ Haemophilus (effect = -0.95 [-8.94; 

1.39])*** 

↓ Klebsiella (effect = -1.27 (-10.67; 

0.93])*** 

↓ Lactobacillus (effect = -0.70 [-8.59; 

2.31])** 

↓ Methanobrevibacter (effect = -0.89 

[-8.59; 0.78])*** 

↓ Neisseria (effect = -0.70 [-8.07; 

2.44])** 

↓ Oscillibacter (effect = -1.10 [-

10.04; 1.18])*** 

↓ Eubacterium (effect 

= 1-.09 [-10.91; 0.61]) 

*** 

↓ Lactobacillus (effect 

= -0.70 [-8.59; 

2.31])** 

 

 



↓ Parabacteroides (effect = -1.95 [-

13.85; 0.39])*** 

↓ Prevotella_2 (effect = -0.67 [-8.09; 

2.23])** 

↓ Prevotella_9 (effect = -1.08 [-9.34; 

0.90])*** 

↓ Ruminiclostridium_5 (effect = -1.06 

[-9.16; 1.20])*** 

↓ Ruminiclostridium_9 (effect = -0.79 

[-9.80; 1.25])*** 

↓ Streptococcus (effect = -2.20 [-

19.31; 0.38])*** 

↓ Sutterella (effect = -0.79 [-12.31; 

0.56])*** 

↓ Veillonella (effect = -1.32 [-10.60; 

0.45])*** 

16S (no) N = 30 

Idiopathic Focal 

Epilepsy 

N = 10 Control 

None None None  (Safak 

et al., 

2020) 

16S (no) N = 55 Epilepsy 

N = 46 Control 

For validation 

cohort: 

N = 13 Epilepsy 

N = 10 Control 

Epilepsy vs Control 

↓ Stutterella 

↓ Klebsiella 

↓ Lachnospiraceae NK4A613 

↓ Escherichia shigella 

↓ Lachnoclostridium 

↑ Prevotella 

↑ Blautia 

↑ Bifidobacterium 

↑ Ruminococcaceae UCG 014 

↑ Ruminococcus gnavus 

↑ Megamonas 

↑ Akkermansia 

↑ Eubacteirum hallili 

Drug-Resistant vs Responsive 

Epilepsy 

↑ Blautia 

↑ Bifidobacteirum 

Epilepsy vs Control 

↑ Bifidobacterium 

↑ Eubacteirum hallili 

Drug-Resistant vs 

Responsive Epilepsy 

↑ Bifidobacterium 

 

  (Gong 
et al., 
2020) 



↑ Dialister 

↑ Anaerostipes 

↑ Subdoligranulum 

 

 

 

 

 

 

 

 

 

 

 

 

16S (no) N = 20  

Samples 

collected from 

children with 

refractory 

epilepsy before 

and 6 mo. after 

diet 

After Diet vs Before 

↓ Faecalibacterium 

↓ Leucabacter 

↓ Actinobacter 

↓ Coprobacter 

↓ Lachnospiracea incertae sedis 

↑ Bacteroides  

 

Non-Responders vs Responders 

↑ Alistipes 

↑ Clostridium i 

↑ Oscillibacter 

↑ Gordonibacter 

↑ Lachnospiracea incertae sedis 

↑ Helicobacter 

↑ Blautia 

↑ Dorea 

↑ Ruminococcus2  

↑ Fusicatenibacter 

↑ Eggerthella 

↑ Anaerotruncus 

↑ Streptococcus 

After Diet vs Before 

↑ Bacteroides 

 

None Unclear if 

comparisons 

were done in 

a paired 

manner; no 

age-matched 

controls 

(Zhan
g et 
al., 
2018b
) 



16S (no) N = 42 drug-

responsive 

N = 49 drug-

resistant 

N = 65 controls 

(from same 

families as 

patients) 

Drug-Resistant vs Responsive 

↑ Bacteroides 

↑ Barnesiell 

↓ Roseburia 

↓ Phoscolarctobacterium 

a↓ Methanobrevibacter 

↓ Fusobacterium 

↓ Coprococcus 

↓ Neisseria 

↓ Akkermansia 

↓ Gemmiger 

↓ Ruminoccoccus2  

↓ Paraprevotella 

↓ Coprobacillus 

↓ Delftia 

↓ Saccharibacteria incertae sedis 

↓ Dorea 

↓ Holdemania 

↓ Atopobium 

↓ Clostridium XVIII 

Drug-Resistant vs 

Responsive 

↑ Bacteroides 

 

None No 

comparisons 

reported for 

controls; 

statistical 

methods 

unclear 

(Peng 
et al., 
2018) 

16S (no) N = 30 healthy 

infants 

N = 14 epileptic 

infants 

Difficult to interpret  

 

 

None  Greengenes, 

No pair-wise 

group 

comparisons 

(Xie 

et al., 

2017) 

 

Table 4. Microbiome-brain studies involving neurodegenerative disorders. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; AD: Alzheimer’s Disease, PD: Parkinson’s Disease; MCI: mild-cognitive impairment; MSA: multiple-

systems atrophy; ALS: amyotrophic lateral sclerosis*: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are highlighted; 95% CI reported between square 

brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 



AD and MCI 

 

16S (yes – 

extreme 

proportion 

of 

unmapped 

reads) 

N = 33 AD 

N = 32 Mild 

Cognitive 

Impairment 

(MCI), 

N  = 32 Controls 

None 

 

None 

 

None Too many 

unmapped 

reads 

(Liu et 

al., 

2019b

) 

16S (yes) N = 30 AD 

N = 30 MCI 

N = 30 Controls 

AD vs Control 

↓ Ruminoclostridium 5** (effect = -

0.67[-8.52; 1.59]) 

↑ Isovaleric-Acid Synthesis II* 

(effect = 0.42 [-2.11, 5.62]) 

↑ Acetate Synthesis III* (effect = 

0.50 [-2.04, 5.92]) 

↑ Butyrate Synthesis I* (effect = 0.44 

[-2.33, 6.25]) 

↑ Butyrate Synthesis II* (effect = 

0.52 [-3.60, 4.79] ) 

 

MCI vs Control 

↑ Isovaleric-Acid Synthesis II** 

(effect = 0.43 [-2.48; 5.98]) 

↑ Acetate Synthesis I** (effect = 0.58 

[-1.93; 5.86]) 

↑ Acetate Synthesis II* (effect = 0.47 

[-1.81; 5.33]) 

↑ Acetate Synthesis III** (effect = 

0.64 [-1.52; 6.26]) 

↑ Tryptophan synthesis* (effect = 

0.48 [-1.94, 6.71] 

↑Quinolinic Acid Synthesis** (effect 

= 0.49 [-2.02; 6.43]) 

↑Quinolinic Acid Degradation ** 

(effect = 0.56 [-1.93; 6.43]) 

 

None MCI vs Control 

↑ Glutamate 

synthesis I** 

(effect = 0.50 [-

1.94; 5.90]) 

↑ Glutamate 

synthesis II** 

(effect = 0.71 [-

1.4; 6.25]) 

↑ Histamine 

degradation* 

(effect = 0.46 [-

2.36, 5.46]) 

↑ p-Cresol 

Synthesis** effect 

= 0.64 [-1.61; 

7.26]) 

↑ClpB** (effect = 

0.55 [-1.99; 6.30]) 

↑17-Beta-

Estradiol 

Degradation** 

(effect = 0.65 [-

1.46; 6.58]) 

↑ SAM 

Synthesis* (effect 

= 0.58 [-2.01; 

5.92]) 

↓ Glutamate 

Degradation II** 

(effect = -0.50 [-

7.02, 2.42] ) 

 (Li et 

al., 

2019a

) 



↓ Vitamin K2 

Pathway 

Synthesis II** 

(effect = -0.42 [-

1.52; 6.3]) 

 

AD vs Control 

↑ Glutamate 

Synthesis II* 

(effect = 0.45 [-

2.03; 5.63])  

↑ Histamine 

Degradation* 

(effect = 0.46 [-

2.51; 5.64]) 

↑ p-Cresol 

Synthesis* (effect 

= 0.54 [-2.26, 

5.82]) 

 

↓ Vitamin K2 

Pathway 

Synthesis II* 

(effect = -0.44 [-

5.73, 2.83]) 

↓ Glutamate 

Degradation II* 

(effect = -0.50 [-

7.02, 2.42]) 

↓ GABA 

Synthesis III* 

(effect = -0.48 [-

5.90, 1.57]) 

↓ Vitamin K2 

Pathway 

Synthesis I (effect 

= -0.46 [-5.79, 

2.03]) 



WGS (no) N = 24 AD 

N = 33 Other 

Dementia  

N = 51 Controls 

AD vs Control 

↑ Bacteroides*  

↑ Alistipes***  

↑ Odoribacter***  

AD vs Other Dementia 

↑ Odoribacter* 

↓ Eubacterium***  

↓ Roseburia*  

AD vs Control 

↑ Bacteroides* 

 

None  (Hara

n et 

al., 

2019) 

16S (no) N = 43 AD 

N = 43 age and 

gender-matched 

controls 

AD vs Control 

↑ Subdoligranulum** 

↓ Bacteroides** 

 

AD vs Control 

↓ Bacteroides** 

 

None  (Zhua

ng et 

al., 

2018) 

16S (no) N = 25 AD 

N = 25 Control 

AD vs Control 

↑ Blautia* 

↑ Bacteroides*** 

↑ Alistipes* 

↑ Phascolarctobacterium* 

↓ Bifidobacterium* 

↓ Dialister*** 

↓ Clostridium* 

↓ Turcibacter*** 

 

AD vs Control 

↑ Bacteroides*** 

↓ Bifidobacterium* 

 

None Greengenes (Vogt 

et al., 

2017) 

qPCR (no) N = 40 

Cognitively 

Impaired with 

Amyloidosis 

(AMY+) 

N = Cognitively 

Impaired No 

Amyloidosis 

(AMY-) 

N = 10 Control 

(Age and sex-

matched) 

AMY+ vs AMY- 

↑ Escherichia/Shigella*** 

↓ Eubacterium rectale*** 

 

AMY+ vs Control 

↑ Escherichia/Shigella*** 

↓ Bacteroides fragilis* 

↓ Eubacterium rectale*** 

 

AMY- vs Control 

↑ Escherichia/Shigella** 

↓ Eubacterium rectale** 

 

AMY+ vs AMY- 

↓ Eubacterium 

rectale*** 

 

AMY+ vs Control 

↓ Bacteroides 

fragilis* 

↓ Eubacterium 

rectale*** 

 

AMY- vs Control 

↓ Eubacterium 

rectale** 

 

None 

 

 (Catta

neo et 

al., 

2017) 



qPCR (no) N = 20 AD 

Outpatients 

 

Prospective trial 

of probiotic 

treatment (28 

days) 

AD after Probiotic vs Baseline 

↑ Faecalibacterium prausnitzii*** 

None None Faeces 

stored at -

18C 

(Leblh

uber 

et al., 

2018) 

MSA 16S (no) N = 40 MSA 

N = 40 Control 

(spouses) 

 

MSA vs Control 
↑ Lactobacillus 
↑ Gordonibacter 
↑ Phascolarctobacterium 
↓ Haemophilus 

MSA vs Control 
↑ Lactobacillus 
 

None 

 

Rarefaction (Du et 

al., 

2019) 

16S (no) N = 6 MSA 

N = 11 Control  
None None None  (Enge

n et 

al., 

2017) 

16S (no) N = 17 MSA 

N = 17 Control 
MSA vs Control 
↑ Bacteroides** 

↓ Prevotella clara* 

↓ Paraprevotella*** 

↓ Faecal acetate, propionate and 

butyrate 

 

MSA vs Control 
↑ Bacteroides** 

 

None 

 

 (Tan 

et al., 

2018) 

ALS WGS  (no) N = 37 ALS 

 

N = 29 age and 

BMI-matched 

controls 

ALS vs Control 
↓ Tryptophan metabolism genes 

 

 

   (Blach

er et 

al., 

2019) 

WGS and 

16S (no) 

16S 

N = 20 ALS  

N = 20 Control 

WGS 

N = 10 ALS 

N = 10 Control 

ALS vs Control 

↑ Enterococcus columbae 
None None  (Zeng 

et al., 

2020) 

WGS & 

16S (no) 

N = 66 ALS 

N = 12 

Neurodegenerativ

e Control (ND) 

ALS vs Control 
↑ Prevotella copri 

ALS vs Control 
↑ Bacteroides 

clarus 

None  (Nich

olson 

et al., 

2020) 



N = 61 Healthy 

Control 

↑ Phascolarctobacterium 

succinatutens 

↑ Bacteroides clarus 

↑ Dorea 

↑ Escherichia 

↓ Aldercreutzia equolifaciens 

↓ Lachnospiraceae bacterium 5 1 

63FAA 

↓ Coprobacter fastidious 

↓ Ruminococcus lactaris 

↓ Eubacterium eligens 

↓ Ruminococcus sp 5 1 39BFAA 

↓ Bifidobacterium longum 

↓ Roseburia intestinalis 

↓ Eubacterium rectale 

Decrease in butyrate producers 

ALS vs ND 

↑ Ruminoccous gnavus 

↑ Veillonella parvula 

↓ Lachnospiraceae bacterium 3 1 

57FAA CT1 

↓ Lachnospiraceae bacterium 1 1 

57FAA  

↓ Lachnospiraceae bacterium 5 1 

63FAA 

↓ Parasutterella excrementihominis 

↓ Roseburia hominis 

↓ Burkholderiales bacterium 1 1 47 

↓ Oscillibacter 

 

↓ Bifidobacterium 

longum 

 

 

16S (no) N = 8 ALS 

N = 8 Control 

None None None No 

differential 

abundance 

testing 

(Zhai 

et al., 

2019a

) 

16S (no) N = 49 Motor 

Neuron Disease 

N = 51 Control 

None None None  (Ngo 

et al., 

2020) 



16S via 

454 

Pyroseque

ncing (no) 

N = 25 ALS 

N = 32 Control 

No differences in known microbes None None  (Bren

ner et 

al., 

2018) 

qPCR (no) N = 50 ALS 

N = 50 Control 

ALS vs Control 

↑ Enterobacter 

↑ Escherichia coli 

↓ Clostridium 

None None  (Mazz

ini et 

al., 

2018) 

Parkinson’s 

Disease 

WGS (yes) N = 31 PD 

N = 28 Controls 

None None None  (Bedar

f et 

al., 

2017) 

16S (yes – 

extreme 

proportion 

of 

unmapped 

reads) 

N = 76 PD  

N = 21 idiopathic 

rapid eye 

movement sleep 

behaviour 

disorder  

N =78 Controls 

None None None Extreme 

proportion of 

unmapped 

reads 

(Heint

z-

Busch

art et 

al., 

2018) 

16S (yes) N = 64 PD 

N = 64 Controls 

None None PD vs Control at 

Follow-up 

↑ p-Cresol 

**synthesis 

(effect = 0.45 [-

2.03; 5.18])  

 

 (Aho 

et al., 

2019) 

16S (yes) N = 80 PD 

N = 72 Controls 

None None None  (Pietru

cci et 

al., 

2019) 

16S (yes) N = 34 PD 

N = 25 Control 
PD with Low L-DOPA (<300mg/day) dose vs Control 
↓ Lactobacillus (effect = 0.83 [-2.10; 8.07] 

None  (Weis 

et al., 

2019) 

16S (yes, 

large 

proportion 

of 

N = 45 PD 

N = 45 Controls 

(spouses) 

None None None  (Qian 

et al., 

2018) 



sequences 

could not 

be 

classified) 

WGS (no) N = 40 PD 

N = 40 Controls 

(spouses) 

PD vs Control 

↑ Alistipes 

↑ Holdemania 

↑ Streptococcus 

↑ Gordonibacter 

↑ Lactobacillus 

↑ Enterobacter 

Streptococcus salivarius negatively 

correlated to L-DOPA dose 

equivalency 

Enterobacter cloacae positively 

correlated with unified Parkinson’s 

Disease rating scale 

 

 

 

 

 

 

PD vs Control 

↑ Lactobacillus 

 

None  (Qian 

et al., 

2020) 

16S (no) N = 197 PD 

N = 130 Controls 

PD vs Control (significant via 

Kruskal-Wallis and ANCOM after 

adjusting for covariates and 

COMT/AC) 

↑ Bifidobacterium*** (Abundance: 

0.0089 vs 0.0076) 

↑ Lactobacillus*** (Abundance: 

0.0017 vs 0.0004) 

↑ Akkermansia*** (Abundance: 

0.0476 vs 0.0185)  

↓ Roseburia (OTU1)* (Abundance: 

0.0073 vs 0.0125)  

 

PD vs Control 

(significant via 

Kruskal-Wallis 

and ANCOM after 

adjusting for 

covariates and 

COMT/AC) 

↑ 

Bifidobacterium*** 

(Abundance: 

0.0089 vs 0.0076) 

↑ Lactobacillus*** 

(Abundance: 

0.0017 vs 0.0004) 

 

None Greengenes, 

Rarefaction, 

No direct 

comparison 

between 

individuals 

taking 

COMT/AC 

to those that 

aren’t 

(Hill-

Burns 

et al., 

2017) 



16S (no)  
     
  
     

N = 13 PD-MCI  
  
N = 13 PD with 

no MCI (PD-NC) 

  
N = 13 Control 

Spouses 
 

GLMs incorporated sex, age, bMI, 

education 

 

PD-MCI vs Control 

↓ Alistipes*** 

↓ Odoribacter*** 

↓ Barnesiella*** 

↓ Butyricomonasi*** 

 

PD-MCI vs PD-NC 

↓ Alistipes*** 

↓ Odoribacter*** 

↓ Barnesiella*** 

↓ Butyricomonasi*** 

↑ Ruminococcus*** 

↑ Blautia*** 

 

 

PD-NC vs Control 

↓ Ruminococcus*** 

↓ Blautia*** 

 

    

(Ren 

et al., 

2020) 
 

16S (no) N = 666 Aged 

individuals 

Motor deficits indicating 

subthreshold parkinsonism associated 

with   

↓ Odoribacter 

  Associative 

study 

looking to 

identify 

prodromal 

markers for 

Parkinsonis

m 

(Heinz

el et 

al., 

2020) 

16S (no) N = 80 PD 

N = 77 Controls 

PD vs Control after accounting for 

age, sex, diet 

↑ Parabcteroides 

↓ Prevotella (reduced by 46.6%) 

 

PD Tremor-Subtype vs PD Non-

Tremor Subtype accounting for 

age, sex, diet 

  Greengenes (Lin et 

al., 

2019) 



↑ Clostridium 

↑ Akkermansia 

↓ Propionibacterium 

↓ Sutterella 

↓ Desulfvibrioo 

 

Positive Correlations: 

Bacteroides abundance and TNFα 

16S (no) N = 89 PD 

N = 66 Control 

PD vs Control 

↑ Lactobacillus*** 

↑ Bifidobacterium* 

↓ Faecalibacterium* 

↓ Prevotella* 

↓ Dorea*** 

PD vs Control 

↑ Lactobacillus*** 

↑ Bifidobacterium* 

 

  (Petro

v et 

al., 

2017) 

16S (no) N = 29 PD 

N = 29 Controls 

None None None No genus 

information 

reported 

(Hopf

ner et 

al., 

2017) 

16S (no) N = 104 PD 

N = 96 Control 

PD vs Control 

↑ Bacteroides fragilis 

↑ Lactobacillus acidophilus 

↑ Megasphaera 

↑ Veillonella 

↑ Coriobacteria 

↑ Akkermansia muciniphilia 

↑ Bifidobacterium bifidum BGN4 

↑ Bacteroides fragilis NCTC 9343 

↑ Clostridium saccharolyticum WM1 

Reduction in all fecal acetate, 

butyrate and propionate in low 

cognitive scoring patients 

PD vs Control 

↑ Bacteroides 

fragilis 

↑ Lactobacillus 

acidophilus 

↑ Bifidobacterium 

bifidum BGN4 

↑ Bacteroides 

fragilis NCTC 9343 

↓ Bile acid 

degradation 

pathways 

  (Tan 

et al., 

2020) 

16S (no) N = 25 PD 

Sequenced at 

baseline, 1 year, 2 

year and 3 year 

follow-up 

↓ Roseburia linked to development of 

non-motor, severity of mnesic-

attention disorders 

↓ Roseburia and Faecalibacterium at 

baseline linked to faster cognitive 

decline 

  Greengenes, 

collection at 

-20C 

(Cilia 

et al., 

2020) 



↑ Oscillospira at baseline linked to 

faster cognitive decline 

Results not significant after post-hoc 

correction 

16S (no) N = 63 PD 

N = 63 Healthy 

spouses (HS) 

N = 74 Control 

PD vs Control 

↑ Oscillospira*** 

↑ Akkermansia*** 

↓ Fusobacterium** 

PD vs HS 

↑ Oscillospira*** 

↑ Akkermansia*** 

↓ Fusobacterium** 

Genera positively associated with 

disease stage and duration: 

Parabacteroides, Akkermansia, 

Coprococcus, Bilophila, Collinsella, 

Methanobrevibacter, Eggerthella, 

Adlercreutzia 

 

None None  (Zhan

g et 

al., 

2020a

) 

16S (no) N = 64 PD 

N = 51 Control 

PD vs Control 

↑ Veillonella*** (mean difference = 

1.556) 

↓ Blautia* (mean difference =             

-0.596) 

↓ Butyrivibrio** (mean difference =    

-0.951) 

↓ Coprococcus* (mean difference =    

-0.873) 

None None Greengenes (Vasc

ellari 

et al., 

2020) 

16S (no) N = 24 PD 

N = 14 Controls 

PD vs Controls 

↑ Enterococcus** 

↑ Escherichia-Shigella* 

↑ Streptococcus**  

↑ Proteus* 

↓ Blautia*  

↓ Faecalibacterium*  

↓ Ruminococcus* 

PD vs Controls 

↑ Escherichia-

Shigella**, ↑ 

Enterococcus** 

 

None Rarefaction, 

80% 

confidence 

level for 

SILVA 

alignment 

(Li et 

al., 

2017) 



16S (no) N = 75 PD 

N = 45 Controls 

None None None Greengenes, 

rarefaction 

(Lin et 

al., 

2018) 
16S (no) N = 10 PD 

N = 10 Controls 

PD vs Controls 

↑ Akkermansia,*  

↑ Parasutterella *  

↑ Subdoligranulum*  

↑ Butyricimonas*  

↓ Clostridium*  

↓ Collinsella*  

↓ Bacteroides* 

PD vs Controls 

↓ Bacteroides* 

None QIIME v1.8 

(outdated 

since Jan 1, 

2018), 

Greengenes 

(Li et 

al., 

2019b

) 

16S (no) N = 193 PD 

(de novo – 39, 

early – 57, mid-

stage – 53, 

advanced – 44) 

N = 113 Controls 

 

PD vs Control 

↑ Bifidobacterium* 

↓ Roseburia* 

↓ Ruminococcus**  

Mid-Stage and Advanced PD vs 

Control 

↑ Lactobacillus*** 

 

PD vs Control 

↑ Bifidobacterium* 

 

Mid-Stage and 

Advanced PD vs 

Control 

↑ Lactobacillus*** 

 

PD vs Control 

↑ 

Bifidobacterium*: 

GABA pathway 

 

Mid-Stage and 

Advanced PD vs 

Control 

↑ 

Lactobacillus***: 

GABA pathway 

 

Greengenes (Baric

hella 

et al., 

2019) 

16S (no) N = 197 PD 

N = 103 Controls 

PD vs Control 

↑ Bifidobacterium*** (4.02 fold 

change) 

↓ Roseburia*** (0.71 fold change) 

↓ Faecalibacterium prasunitzii*** 

(0.75 fold change) 

 

PD vs Control 

↑ 

Bifidobacterium*** 

(4.02 fold change) 

 

 

PD vs Control 

↑ p-Cresol 

synthesis 

Greengenes (Cirste

a et 

al., 

2020) 

16S (no) N = 9 PD 

N = 13 Controls 

PD vs Control 

↑ Akkermansia* 

None 

 

None 

 

Qiime 1.8 (Vidal

-

Martin

ez et 

al., 

2020) 

16S (no) N = 34 PD 

N = 31 Controls 

PD vs Control 

↑ Bacteroides* 

PD vs Control 

↑ Bacteroides* 

None Rarefaction, 

compared 

(Kesh

avarzi



↑ Oscillospira* 

↑ Akkermansia* 

↓ Blautia* 

↓ Coprococcus* 

↓ Dorea* 

↓ Roseburia* 

 

 raw # of 

sequences 

compared 

raw # of 

sequences 

an et 

al., 

2015) 

16S (no) N = 54 PD 

N = 34 Controls 

 

Enema and 

nutrition 

intervention 

None 

 

None 

 

None 

 

No genus 

information 

reported 

(Hegel

maier 

et al., 

2020) 

16S via 

454 

Pyroseque

ncing (no) 

N = 74 PD 

N = 75 Controls 

PD (IBS+) vs PD (IBS-) 

↓ Bacteroides (LFC = -4.929) * 

↓ Prevotella (LFC = -5.675) *** 

PD (IBS+) vs PD 

(IBS-) 

↓ Bacteroides (LFC 

= -4.929) * 

 

None  (Merts

almi 

et al., 

2017) 

16S via 

454 

Pyroseque

ncing (no) 

N = 72 PD 

N = 72 Controls 

None None None No genus 

information 

reported 

(Sche

perjan

s et 

al., 

2015) 

qPCR (no) N = 45 PD 

N = 35 Controls 

PD vs Control 

↑ Lactobacillus 

↓ Clostridium coccoides** 

↓ Clostridium leptum* 

↓ Bacteroides fragilis* 

 

 

 

PD vs Control 

↑ Lactobacillus 

↓ Bacteroides 

fragilis* 

 

None 

 

 (Hase

gawa 

et al., 

2015) 

qPCR (no) N = 28 PD  

 

N = 17 Stable 

N=11 

Deteriorated  

Follow-up vs Baseline (All PD) 

↓ Bifidobacterium 

↓ Clostridium leptum subgroup  

↓ Bacteroides fragilis group  

↓ Atopobium cluster  

↓ Enterococcus 

↓ L. gasseri subgroup 

Follow-up vs 

Baseline (All PD) 

↓ Bifidobacterium 

↓ Bacteroides 

fragilis group 

↓ Lactobacillus 

gasseri subgroup 

None 

 

 (Minat

o et 

al., 

2017) 



↓ Lactobacillus reuteri subgroup 

↓ Prevotella 

 

Follow-up vs Baseline (Stable) 

↓ Bifidobacterium 

↓ Clostridium leptum subgroup  

↓ Bacteroides fragilis group  

↓ Atopobium cluster  

↓ Enterococcus 

↓ Lactobacillus. gasseri subgroup 

↓ Lactobacillus reuteri subgroup 

Follow-up vs Baseline 

(Deteriorated) 

↓ Lactobacillus gasseri subgroup 

 

↓ Lactobacillus 

reuteri subgroup 

 

Follow-up vs 

Baseline (Stable) 

↓ Bifidobacterium 

↓ Bacteroides 

fragilis group 

↓ Lactobacillus 

gasseri subgroup 

↓ Lactobacillus 

reuteri subgroup 

 

Follow-up vs 

Baseline 

(Deteriorated) 

↓ Lactobacillus 

gasseri subgroup 

 

qPCR (no) N = 19 PD with 

COMT inhibitor 

N = 14 PD 

without COMT 

inhibitor 

 

COMT inhibitor (Entacapone) vs 

No COMT Inhibitor 

↓ Faecalibacterium prausnitzii 

 

COMT inhibitor (Entacapone) vs 

Other COMT Inhibitors 

↓ Faecalibacterium prausnitzii 

 

None 

 

None 

 

 (Grun 

et al., 

2020) 

16S qPCR 

(no) 

N = 34 PD 

N = 34 Control 

PD vs Age-Matched Control 

↑ Bifidobacterium*** 

↓ Faecalibacterium prausnitzii 

↓ Lactobacilli/Enterococci*** 

↓ Acetate** 

↓ Butyrate** 

↓ Propionate** 

PD vs Age-

Matched Control 

↑ 

Bifidobacterium*** 

↓ 

Lactobacilli/Entero

cocci*** 

 

None 

 

 (Unge

r et 

al., 

2016) 

 

Table 5. Microbiome-brain studies involving alcohol, nicotine and recreational drug use/addiction. 



Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; AD: Alzheimer’s Disease, PD: Parkinson’s Disease; MCI: mild-cognitive impairment; MSA: multiple-

systems atrophy; ALS: amyotrophic lateral sclerosis*: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are highlighted; 95% CI reported between square 

brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

Alcohol Use 

and 

Dependence 

16S (yes) N = 15 Healthy 

participants, 

compared before 

and after acute 

binge 

None None None Binge is 

only 2mL of 

vodka 

(Stadl

bauer 

et al., 

2019) 

16S (yes) N = 15 Alcohol-

Dependent 

N = 15 Control 

Alcohol-Dependent vs Control 

↑ Ruminoccocus 2* (effect = 0.72 [-

2.91; 6.75]) 

↓ Ruminoclostridium 9*** (effect =  -

0.99 [-7.99; 1.00]) 

 

↓ Tryptophan degradation* (effect = -

0.46 [-5.78; 2.47]) 

 

None Alcohol-

Dependent vs 

Control 

↑ GABA 

synthesis III* 

(effect = 0.52 

[-1.99; 5.66]) 

↓ g-

Hydroxybutyri

c acid (GHB) 

degradation** 

(effect = -0.77 

[-6.99; 1.27]) 

↓ Dopamine 

degradation* 

(effect = -0.56 

[-7.71; 1.95]) 

 

 (Bjork

haug 

et al., 

2019) 

Shotgun 

(no - 

SOLiD 

platform) 

N = 72 Alcohol 

dependence 

syndrome (ADS) 

ADS vs Control 

↑ Lactococcus 

↑ Lactobacillus salivarius  

↑ Lactococcus lactis subsp. Cremoris 

↓ Prevotella 

ADS vs Control 

↑ Lactobacillus 

salivarius  

ALC vs Control 

None  (Dubi

nkina 

et al., 

2017) 



N = 27 Alcoholic 

liver cirrhosis 

(ALC) 

N = 60 Controls 

ALC vs Control 

↑ Bifidobacterium (B. longum, 

dentium, and breve)  

↑ Streptococcus (S. thermophilus and 

mutans)  

↑ Lactobacillus species (L. salivarius, 

antri, and crispatus)  

↓ Coprococcus 

↑ Bifidobacterium (B. 

longum, dentium, and 

breve)  

↑ Lactobacillus 

species (L. salivarius, 

antri, and crispatus)  

 

16S (no) N = 14 Non-

Smoking, Non-

Drinking 

N = 31 Smoking 

only 

N = 28 Drinking 

only 

N = 43 Smoking 

and drinking 

Associations with Smoking and 

Drinking 

Bacteroides** 

Phascolarctobacterium* 

Ruminococcus UCG-002** 

Ruminococcus UCG-003** 

Ruminoclostridium 9*** 

Associations with Drinking Only 

Haemophilus*  

Associations with 

Smoking and 

Drinking 

Bacteroides** 

 

None  (Lin et 

al., 

2020) 

16S (no) N = 212 twins 

pairs 

AUDIT score III (high alcohol 

consumption) vs Medium and Low 

Alcohol Consumption Groups 

↑ Prevotella copri* 

↑ Megamonas*** (4 OTUS) 

↓ Blautia obeum* 

↓ Roseburia* 

 

Roseburia survived correction for 

heritability 

None 

 

None 

 

Greengenes (Seo 

et al., 

2020) 

16S via 

454 

Pyroseque

ncing & 

qPCR (no) 

N = 13 Alcohol 

Dependent  

(6 with high 

intestinal 

permeability (IP), 

7 without) 

N = 15 Controls 

High IP vs Low IP 

↓ Ruminococcus  

↓ Faecalibacterium 

↓ Clostridium  

↓ Bifidobacterium spp.  

 

Bifidobacterium spp. and Blautia 

negatively correlated to IP 

After 3 Weeks of Detoxification 

High IP vs Low IP 

↓ Bifidobacterium  

After 3 Weeks of 

Detoxification 

↑ Bifidobacteria spp. 

↑ Lactobacillus spp 

None 

 

 (Lecle

rcq et 

al., 

2014) 



↑ Bifidobacteria spp., ↑ Lactobacillus 

spp. 

16S via 

454 

Pyroseque

ncings (no) 

N = 16 Alcohol 

Dependent 

N = 48 Control 

Alcoholic vs Control 

↑ Streptococcus   

↓ Bacteroides 

↓ Eubacterium 

↓ Anaerostipes 

Alcoholic+Smoker vs Control Non-

Smoker 

↑ Streptococcus   

↓ Bacteroides 

↓ Eubacterium 

↓ Anaerostipes 

↓ Ruminococcus 

Alcohol+Non-Smoker vs Non-

Smoker Control 

↓ Bifidobacterium 

↓ Anaerostipes 

Control Smoker vs Control Non-

Smoker 

↓ Faecalibacterium 

 

 

Alcoholic vs Control  

↓ Bacteroides 

↓ Eubacterium 

 

Alcoholic+Smoker vs 

Control Non-Smoker  

↓ Bacteroides 

↓ Eubacterium 

 

Alcohol+Non-

Smoker vs Non-

Smoker Control 

↓ Bifidobacterium 

 

None 

 

 (Tsuru

ya et 

al., 

2016) 

16S rRNA 

for 

Proteobact

eria and 

Faecalibac

terium (no) 

N = 28 Alcohol 

Overconsumption 

N = 25 Control 

None 

 

None None 

 

No 

associations 

found 

(Bjork

haug 

et al., 

2020) 

Opioids 16S (yes) N = 99 High-

disease 

burden/opioid use 

men 

None None None  (Baren

golts 

et al., 

2018) 

Nictoine/Tobac

co/Smoking 

16S (yes) N = 10 Electronic 

Cigarette 

N = 10 Tobacco 

N = 10 Control 

Tobbacco Smoker vs Non-Smoker  

↑ Tryptophan Degradation* (effect = 

0.84 [-0.97; 8.52])   
↑ Propionate Synthesis III* (effect =  

0.94 [-0.90; 7.52])   

None Tobbacco 

Smoker vs 

Non-Smoker  

  

 (Stew

art et 

al., 

2018) 



↓ Propionate Synthesis II* (effect = - 

0.80 [9.86; 1.45]) 
↓17-beta-

Estradiol 

degradation* 

(effect = - 0.74 

[9.90; 1.19]) 
 

Shotgun 

(no) 

N = 21 Smokers 

with Crohn’s 

Disease 

N = 21 Smoker’s 

without Crohn’s 

Disease 

None None None No non-

smoking 

controls 

(Opste

lten et 

al., 

2016)  

454 

Pyroseque

ncing (no) 

N = 5 Continuing 

Smokers 

N = 5 Non-

Smokers 

N = 10 

Undergoing 

smoking cessation 

None 

 

 

 

 

 

 

None None Lack of 

genus-

levelenus-

level 

resolution 

(Biede

rmann 

et al., 

2013) 

qPCR (no) N = 14 Smokers 

N = 6 Non-

Smokers 

Smokers vs Non-Smokers 

↓ Bifidobacterium* 

 

   (Ishaq 

et al., 

2017) 

Fluorescen

ce in-situ 

hybridizati

on (no) 

N = 101 with 

Crohn’s (29 

smokers) 

N = 58 Controls 

(8 smokers) 

None None None Lack of 

genera level 

resolution 

(Benja

min et 

al., 

2011) 

Recreational 

Drug Use 

16S (no) N = 37 at two 

timepoints (HIV+ 

cohort) 

↓ Ruminococcus2  with 

methamphetamines, prescription drug 

use 

↑ Ruminoccus2  with synthetic drugs, 

‘poppers’ use 

 

None None Rarefaction (Fulch

er et 

al., 

2018) 



16S (no) N = 48 Users 

N = 45 Controls 

No significance after controlling for 

sex and age 

   (Xu 

et al., 

2017) 
16S (no) N = 20 Marijuana 

users 

N = 19 Controls 

Prevotella abundance associated 

positively with cognitive function in 

users 

   (Pane

e et 

al., 

2018) 

 

Table 6. Microbiome-brain studies involving demyelinating disease. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; AD: Alzheimer’s Disease, PD: Parkinson’s Disease; MCI: mild-cognitive impairment; MSA: multiple-

systems atrophy; ALS: amyotrophic lateral sclerosis; NMOSD: neuromyelitis optica spectrum disorder*: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are 

highlighted; 95% CI reported between square brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

Multiple 

Sclerosis and 

Other 

Demyelinating 

Conditions 

16S (yes) N = 60 MS 

N = 43 Control 

None None None  (Jangi 

et al., 

2016) 

16S (yes) N = 84 NMOSD 

N = 54 Control 

NMOSD vs Control 

↑ Streptococcus (effect = -0.74 [-

6.40; 1.63])*** 

↓ Faecal SCFAs 

Acetate and butyrate negatively 

associated with severity 

   (Gong 

et al., 

2019) 

16S via 

454 

Pyrosecue

ncing (yes) 

N = 40 Controls 

N = 40 MS 

None None MS vs Control 

↓ GABA 

Degradation* 

(effect = -0.61 

[-2.24, 8.46]) 

↑ p-Cresol 

Synthesis* 

 (Miya

ke et 

al., 

2015) 



(effect = -0.54 

[-2.07, 8.10]) 

WGS (no) N = 26 MS 

N = 77 Control 

MS vs Control 

↑ Sutterella sp.** (effect = 2.73) 

↓ Gemella morbillorum** (effect =  

-0.95) 

 

None None  (Kishi

kawa 

et al., 

2020) 

WGS and 

16S (no) 

 

N = 34 

Discordant twin 

pairs 

None None None  (Berer 

et al., 

2017) 

WGS and 

16S (no) 

Caucasion 

N = 15 MS 

N = 15 Control 

 

Hispanic 

N = 16 MS 

N = 15 Control 

 

African American 

N = 14 MS 

N = 14 Control 

Caucasian: MS vs Control 

↑ Akkermansia 

↑ Clostridium 

 

Hispanic: MS vs Control 

↑ Blautia 

↑ Clostridium 

↑ Dorea 

↑ Holdemania 

↓ Dialister 

↓ Prevotella 

 

African American: MS vs Control 

↑ Clostridium 

   (Vent

ura et 

al., 

2019) 

16S (no) N = 22 MS 

N = 33 Control 

MS vs Control 

↑ Blautia 

↑ Flavonifractor 

↓ Faecalibacterium  
↓ Roseburia 
↓ Haemophilus 
↓ Bilophila 
↓ Dorea 
↓ Butyricicoccus 
↓ Gemella 
↓ Clostridium XIVb 

  Greengenes (Ling 

et al., 

2020b

) 



16S (no) N = 26 Relapse-

Remitting MS 

(RRMS) 

N = 12 Secondary 

Progressive MS 

(SPMS) 

N = 38 Control 

MS vs Control 

↑ Akkermansia 

↑ Collinsella 

↑ Eubacterium 

↓ Parabacteroides 

↓ Roseburia 

↓ Coprococcus 

↓ Blautia 

SPMS vs Control 

↑ Akkermansia 

↑ Collinsella 

↓ Roseburia 

↓ Coprococcus 

↓ Blautia 

↓ Dorea 

RRMS vs Control 

↑ Streptococcus 

↓ Roseburia 

↓ Coprococcus 

↓ Blautia 

↓ Lachnospira 

↓ Ruminococcus 

↓ Parabacteroides 

 

MS vs Control  

Increased serum 

intestinal-fatty acid 

binding protein 

correlated with 

Parabacteroides 

  (Sares

ella et 

al., 

2020) 

16S (no) N = 98 MS 

N = 120 Control 

MS vs Control 

↓ Alistipes (Effect = -0.18)* 

↓ Anaerotruncus (Effect = -0.16)* 

↓ Butyricoccus (Effect = -0.24)** 

↓ Clostridium cluster IV (Effect = -

0.35)*** 

↓ Gemmiger (Effect = -0.30)*** 

↓ Lactobacillus cluster IV (Effect = -

0.18)* 

↓ Methanobrevibacter (Effect = -

0.20)* 

↓ Olsonella (Effect = -0.19)* 

↓ Parabacteroides (Effect = -0.15)* 

↓ Roseburia (Effect = -0.17)* 

↓ Ruminococcus (Effect = -0.17)* 

MS vs Control 

↓ Lactobacillus cluster 

IV (Effect = -0.18)* 

 

  (Reyn

ders et 

al., 

2020) 



↓ Sporobacter (Effect = -0.39)*** 

 

Many differences within clinical 

subtypes : 

Butyricoccus, Clostridium cluster IV 

and XCIII, Gemmiger, 

Methanobrevibacter, 

Parabacteroides, Sporobacter 

 

16S (no) N = 17 paediatric 

MS 

None None None Greengenes, 

no genus-

levelenus-

level 

associations 

reported 

(Trem

lett et 

al., 

2016a

) 

16S (no) N = 18 

Pediatric MS  

N = 17 Control 

MS vs Control 

↑ Bilophila*** (FC = 3 [2.9; 3.2]) 

↑ Bifidobacterium*** (FC = 4.2 [3.9; 

4.5]) 

↑ Desulfovibrio***(FC = 5.1 [4.7; 

5.7]) 

↑ Prevotella copri***(FC = 5 [4.4; 

5.6]) 

None None  (Trem

lett et 

al., 

2016c

) 

16S (no) N = 15 Pediatric 

Relapse-

Remitting MS 

N = 9 Control 

None None None No genus-

levelenus-

level 

changes 

reported 

(Trem

lett et 

al., 

2016b

) 

16S (no) N = 15 Primary 

Progressive MS 

N = 15 Control 

MS vs Control 

↑ Gemmiger 

None None  (Kozh

ieva et 

al., 

2019) 

16S (no) N = 17 Pediatric 

MS 

None None None No genus-

levelenus-

level 

differences 

reported 

(Nour

bakhs

h et 

al., 

2018) 



16S (no) N = 9 relapsing-

remitting MS 

N = 13 Controls 

 

Given VSL-3 

probioticcs 

VSL3 Administration associated with ↑ Lactobacillus, 

Streptococcus, Bifidobacterium 

 Greengenes (Tank

ou et 

al., 

2018) 

16S (no) N = 8 MS no 

fasting 

N = 8 MS with 

fasting 

 

Intermittent 

fasting (IF) pilot  

None None None  (Cigna

rella 

et al., 

2018) 

16S (no) N = 34 relapsing-

remitting MS 

N = 33 

Neuromyelitis 

optica 

spectrumdisorder 

(NMOSD) 

N = 34 Control 

MS vs Control 

↑ Streptococcus 

↓ Faecalibacterium 

↓ Prevotella 9 

↓ Faecal acetate*** 

↓ Faecal butyrate* 

↓ Faecal propionate*** 

 

 

NMOSD vs MS 

↑ Prevotella 9 

↓ Faecal acetate*** 

↓ Faecal butyrate*** 

 

NMOSD vs Control 

↓ Faecal acetate*** 

↓ Faecal propionate*** 

↓ Faecal butyrate*** 

 

None None  (Zeng 

et al., 

2019) 



16S (no) N = 27 MS 

treated with 

dimethyl fumarate 

N = 9 MS treated 

with other therapy 

 

12 week treatment 

 

None None None No genus-

levelenus-

level 

differences 

reported 

(Stor

m-

Larsen 

et al., 

2019) 

16S (no) N = 10 MS on 

high-

vegetable/low 

protein diet 

(HV/LP) 

N = 10 MS on 

Western Diet 

(WD) 

 

Faecal samples 

collected at 

baseline and after 

12 months 

None None None Greengenes, 

genus-

levelenus-

level 

differences 

not reporter 

(Sares

ella et 

al., 

2017) 

16S via 

Pyroseque

ncing (no) 

N = 13 MS 

N = 13 neuro-

Behçet Disease 

(NBD) 

N = 14 Control 

MS vs Control 

↑ Coproccocus*** (LFC = 9.3) 

↑ Ruminococcus 2** 

(LFC = 11.79) 

↑ Butyricoccus** (LFC = 8.41) 

↑ Clostridium XVIII** (LFC = 

12.07) 

↑ Dorea* (LFC = 3.60) 

↑ Escherichia/Shigella* (LFC = 5.85) 

↑ Parabacteroides* (LFC = 7.05) 

↑ Gemmiger* (LFC = 4.43) 

↓ Succinivibrio* (LFC = 0.03) 

↓ Prevotella* (LFC = 0.12) 

 

None None  (Oezg

uen et 

al., 

2019) 



NBD vs HC 

↑ Parabacteroides** (LFC = 11.4) 

↓ Vampirovibrio* (LFC = 0.03) 

 

NBD vs MS 

↑ Butyricomonasi** (LFC = 32.29) 

↓ Erysipelotichaceae incertae sedis* 

(LFC = 0.09) 

Phylochip 

(no) 

N = 8 Controls 

N = 7 MS (2 

untreated) 

 

Measured change 

in RA after 

Vitamin D 

supplementation 

MS Untreated vs Control 

↑ Akkermansia  

↑ Faecalibacterium 

↑ Coproccus 

None None Exploratory 

study 

(Canta

rel et 

al., 

2015) 

Phylochip 

(no) 

N = 16 NMOSD 

N = 16 MS 

N = 16 Control 

NMOSD vs Control 

↑ Clostridium perfingensr*** 

↑ Coprococcus*** 

↑ Corynebacterium*** 

↑ Ruminoococcus*** 

↑ Trepenomaoe*** 

↑ Bacteroides*** 

↑ Blautia producta*** 

↓ Prevotella*** 

 

NMOSD vs Control 

↑ Bacteroides*** 

 

None  (Cree 

et al., 

2016) 

FISH (no) N = 25 MS (10 on 

ketogenic diet for 

6 months) 

N = 14 Control 

None None None  (Swid

sinski 

et al., 

2017) 

 

Table 7. Microbiome-brain studies involving pain-related disorders. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; AD: Alzheimer’s Disease, PD: Parkinson’s Disease; MCI: mild-cognitive impairment; MSA: multiple-



systems atrophy; ALS: amyotrophic lateral sclerosis; NMOSD: neuromyelitis optica spectrum disorder*: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are 

highlighted; 95% CI reported between square brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 
BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

Fibromyalgia 16S (yes) N = 77 

Fibromyalgia 
N = 79 Total 

Controls 
N = 11 first-

degree relatives 

(controls) 
N = 20 household 

members of 

participating 

patients (controls) 
N = 48 unrelated 

controls 

Fibromyalgia vs Same Household 
Address as Patient  
↑Sutterella (effect = 0.66 [-0.43; 

0.92])* 

Fibromyalgia vs Unrelated 
Control 
↑ Serum butyrate 

↓ Serum propionate 

↓ Serum isobutyrate 

 

   (Mine

rbi et 

al., 

2019) 

16S (yes) N = 105 

Fibromyalgia 

N = 54 Controls 

 

None None None  (Clos-

Garcia 

et al., 

2019) 



WGS (no) N = 77 

Fibromyalgia 
N = 79 Total 

Controls 
N = 11 first-

degree relatives 

(controls) 
N = 20 household 

members of 

participating 

patients (controls) 
N = 48 unrelated 

controls 

Fibromyalgia vs Unrelated 
Control 
↑ Parabacteroides merdae 

↑ Clostridium scindens 

↑ Blautia hydrogentrophica 

↑ Eisenbergella massiliensis 

↑ Hungatella hathewayi 

↑ Alistipes oderdonkii 

↑ Blautia massilensis 

↑ Butyricoccus desmolans 

↑ Flavonifractor plautii 

↓ Faecalibacterium prausnitzii 

↓ Blautia faecis 

↓ Haemophilus parainfluenzae 

↓ Prevotella copri 

↓ Bacteroides uniformis 

↑ Serum butyrate 

↓ Serum propionate 

↓ Serum isobutyrate 

 

 

   (Mine

rbi et 

al., 

2019) 

Irritable Bowel 

Syndrome 

(IBS) 

16S (no) N = 48 with IBS ↑ Bacteroides with higher perceived stress 

None 

None No control 

group, 

rarefaction 

(Peter 

et al., 

2018a

) 

16S (no) N = 38 IBS;  

Samples taken 

before and after 

gut-directed 

hypnotherapy 

None None None No 

hypnotherap

y control, 

rarefaction 

(Peter 

et al., 

2018b

) 

16S (no) N = 11 

Abdominal pain 

after flood 

disaster; received 

B. infantis M-63 

 

N = 20 Control 

Probiotic vs Control 

Improved anxiety score, mental 

component of QoL  

  Greengenes; 

genus-

levelenus-

level 

differences 

not reported 

(Ma et 

al., 

2019b

) 



16S (no) N = 211 Flood 

Survivors  

(80 with 

abdominal pain, 

131 without) 

 

Subset of 72 

consented to 

faecal samples 

Abdominal Pain vs No Pain 

↑ Staphylococcus 

↑ Megamonas 

↑ Fusobacterium 

 

IBS vs No IBS 

↑ Paraprevotella 

 

No genus-levelenus-level differences 

for anxiety found 

 

   (Yuso

f et 

al., 

2017) 

16S (no) N = 10 IBS, 

sampled at 0, 4, 

12 weeks after 

FMT 

Donor for Responder vs Non-Responder 

↑ Bifidobacterium 

No community change detected in responders or non-

responders  

 

Reduction in HAM-A anxiety after 12 weeks in responders 

 Prospective 

trial 

(Mizu

no et 

al., 

2017b

) 

16S (no) N = 37 IBS 

N = 20 age and 

sex matched 

controls 

IBS vs Control 

↑ Bifidobacterium adolescentis*** 

↑ Dialister*** 

↑ Papilibacter*** 

↑ Dorea*** 

↑ Blautia*** 

↑ Sporobacter*** 

↑ Escherichia*** 

↓ Odoribacter*** 

↓ Alistipes*** 

↓ Bacteroides*** 

  

No genera level associations with 

anxiety or depression 

IBS vs Control 

↑ Bifidobacterium 

adolescentis*** 

↓ Bacteroides*** 

 

  (Jeffer

y et 

al., 

2012) 

16S (no) N = 17 IBS, 

sampled at 0, 1, 2, 

4 weeks after 

FMT 

Baseline: HAM-D >=8 vs HAM-D 

<8 

↓ Eubacterium  

Week 4 vs Baseline HAM-D >=8 

↑  Eubacterium  

HAM-D Responders vs Non-

Responders : 

↑  Streptococcus 

Baseline: HAM-D 

>=8 vs HAM-D <8 

↓ Eubacterium  

Week 4 vs Baseline 

HAM-D >=8 

↑  Eubacterium 

 

None Prospective 

pilot 

(Kuro

kawa 

et al., 

2018) 



 

16S (no) 

 

 

N = 44 IBS with 

moderate anxiety 

and/or depression 

N = 22 PBO 

N = 22 B. longum 

NCC3001 

Improvement in HAD-D subscale for 

B. longum  group 

None None  (Pinto

-

Sanch

ez et 

al., 

2017b

) 

16S (no) N = 30 with 

refractory IBS; 

sequenced stool 

before FMT and 1 

mo. after 

1 Month vs Baseline in Responders 

↑ Methanobrevibacter 

↑ Akkermansia 

 ↑ Quality of 

life 1 mo. and 3 

mo. after FMT 

but not after 6 

mo. 

Prospective 

pilot 

(Huan

g et 

al., 

2019b

) 

16S via 

454 

Pyroseque

ncing (no) 

N = 65 IBS 

N = 21 Control 

Clostridium XIVa, Coprococcus 

associated with differences in 

connectivity of cortical and 

subcortical networks between IBS 

and Control 

None None  (Labu

s et 

al., 

2019) 

16S array 

(no) 

N = 13 post-

infectious IBS 

N = 19 general 

IBS 

N = 16 Control 

No genus-level information None None  (Sundi

n et 

al., 

2015) 

Fluorescen

ce In-Situ 

Hybridizati

on (no) 

N = 44 IBS 

Receiving trans-

GOS 

suppplementation 

or PBO (0g, 3.5g, 

7g daily) 

PBO vs trans-GOS 3.5g 

↑ Bifidobacterium spp.* 

↑ E. rectale/C. coccoides***  

  

PBO vs trans-GOS 7g 

↑ Bifidobacterium spp.***  

↓ Clostridium perfingensr* 

↓ Bacteroides/Prevotella*** 

↓ HADS-A Score* 

↑ QOL Score* 

PBO vs trans-GOS 

3.5g 

↑ Bifidobacterium 

spp.* 

↑ E. rectale/C. 

coccoides***  

  

PBO vs trans-GOS 

7g 

↑ Bifidobacterium 

spp.*** 

↓ 

Bacteroides/Prevotella

*** 

 

None 

 

 (Silk 

et al., 

2009) 



Primers 

from GA-

map 

Dysbiosis 

Test (no) 

N = 16 IBS, 

Sampled at 0, 1, 

3, 12, 20/28 

weeks after FMT 

Responders vs Non-Responders 

↑ Bacteroides*** before FMT  

↑ Megasphera/Dialister* at week 1, 

12,  20/28 

 

 

None No strong 

association 

with HADS-A 

or HADS-D 

(only 

significant at 

Week 3 vs 

baseline but 

becomes 

insignificant by 

week 20/28) 

Prospective 

pilot 

(Mazz

awi et 

al., 

2018) 

qPCR (no) N = 40 IBS 

receiving short-

chain FOS 

(scFOS) 

N = 37 PBO 

 

4 week trial 

scFOS vs PBO 

↓ HAD-D score 

 

scFOS at D28 vs Baseline 

↑ Bifidobacterium* 

 

PBO at D28 vs Baseline 

↑ Roseburia/Eubacterium rectale 

 

  (Azpir

oz et 

al., 

2017) 

Other Pain 

Disorders 

Shotgun 

(no) 

N = 54 older 

women with 

migraines 

N = 54 Controls 

Migraine vs Control 

↓ Faecalibacterium prausnitzii** 

↓ Bifidobacteirum adolescentis*  

↑ Kynurenine synthesis* GBMs 

↓ Quinolinic Acid Degradation* 

 

Migraine vs Control 

↓ B. adolescentis* 

 

Migraine vs 

Control 

↑ GABA 

Synthesis III* 

↓ SAM 

Synthesis* 

↓ Glutamate 

Degradation* 

 (Chen 

et al., 

2019)  

 

16S (no) N = 48 Myalgic 

encephalomyelitis

/chronic fatigue 

syndrome 

(ME/CFS) 

N = 48 Control 

ME-CFS vs Control 

↑ Blautia* 

↑ Coprobacillus** 

↑ Eggerthella** 

↓ Faecalibacteirum* 

↓ Lachnospira 

↓ Collinsella 

Negative correlation between 

Faecalinacterium and total sleep 

awakenings 

 

None None  (Kita

mi et 

al., 

2020) 



16S (no) N = 113 Chronic 

Widespread Pain 

(CWP) 

N = 1623 Control 

CWP vs Control 

↓ Coprococcus comes *** 

 

None None  (Freidi

n et 

al., 

2020) 

 

 

 

Table 8. Microbiome-brain studies involving eating-related disorders. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; AD: Alzheimer’s Disease, PD: Parkinson’s Disease; MCI: mild-cognitive impairment; MSA: multiple-

systems atrophy; ALS: amyotrophic lateral sclerosis; NMOSD: neuromyelitis optica spectrum disorder*: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are 

highlighted; 95% CI reported between square brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

Obesity  WGS (no) N = 14 Obese 

N = 13 Non-obese 

None None None  (Blasc

o et 

al., 

2017)  

WGS (no) N = 35 Obese 

N = 35 Non-obese 

No genus-level differences or 

associations identified 

None None  (Palo

mo-

Buitra

go et 

al., 

2019) 

WGS (no) N = 65 Obese 

N = 51 Control 

Bacterial genera positively associated 

with memory: 

Bacteroides, Citrobacter, 

Enterobacter, Salmonella, Klebsiella 

Specifically associated with verbal 

learning: Ruminococcus CAG353, 

Bacterial genera 

positively associated 

with memory: 

Bacteroides 

  (Arnor

iaga-

Rodrí

guez 

et al., 

2020) 



Roseburia CAG357, Veillonella 

magna 

Negatively associated with memory 

scores: Eubacterium, Clostridium, 

Proteobacteria 

Roseburia and Bacteroidetes 

associated with volume in left 

hippocampus 

Altered tryptophan metabolism in 

obesity associated with reductions in 

short term and working memory, as 

well as volume of frontal interior 

orbital right gyrus and left 

hippocampus  

16S (no) N = 86 Women 

with no food 

addiction (FA) 

N = 19 Women 

with FA 

OTUs enriched in FA: 

Megamonas 

OTUs depleted in FA: 

Bacteroides, Akkermansia, 

Eubacterium biforme. 

Reduction is associated with 

decreased plasma indolepropionate in 

the brain reward system 

OTUs depleted in FA: 

Bacteroides 

  (Dong 

et al., 

2020b

) 

16S (no) N = 8 Obese with 

bariatric surgery 

None 

 

None 

 

None Greengenes (Sanm

iguel 

et al., 

2017) 

16S (no) N = 18 Obese 

undergoing 

bariatric surgery 

Precueneus-Putamen connectivity 

and food addiction symptoms 

negatively associated with 

Bacteroides, Ruminococcus, 

Holdemanella 

Precueneus-Putamen 

connectivity and food 

addiction symptoms 

negatively associated 

with Bacteroides 

None  (Dong 

et al., 

2020a

) 

16S (no) N =57 obese, N = 

54 control 

None 

 

None 

 

None  (Kreut

zer et 

al., 

2017) 

16S via 

454 

N = 20 Obese 

N = 19 Non-obese 

None None None No genera 

level 

(Ferna

ndez-

Real 



Pyroseque

ncing (no) 

differences 

reported 

et al., 

2015) 

GA-Map 

Dysbiosis 

Test 

N = 102 Morbid 

Obesity 

N = 15 Control 

Associations in Obese Group: 

WHO-5 Wellbeing Index 

Negatively associated with 

Bacteroides spp. and Prevotella 

Negatively associated with faecal 

acetate, butyrate and propionate 

Positively associated with 

Faecalibacterium prausnitzii, Dorea 

spp. 

Associations in Obese Group: 

Hopkin Symptom Checklist 10 

Negatively associated with 

Faecalibacterium prausnitzii 

Positively associated with 

Bacteroides stercoris 

None None  (Farup 

and 

Valeur

, 

2018) 

Anorexia 

 

16S (yes) N = 15 Anorexia 

N = 15 Controls 

None None None None (Borg

o et 

al., 

2017) 

16S (yes) N = 55 Anorexia 

baseline (AN-1) 

N = 44 Anorexia 

after weight gain 

(AN-2) 

N = 55 Control 

AN-1 vs Control 

↑ Isovaleric acid synthesis I   (effect 

= 0.44 [-2.80, 5.07])* 

↑ Quinolinic acid synthesis (effect = 

0.48[-2.13; 5.35])* 

↑ Quinolinic acid degradation (effect 

= 0.42 [-2.33; 4.80])** 

 

AN-2 vs Control 

↓ Butyrate Synthesis II (effect = -0.43 

[-4.88; 2.55])** 

 

 

None AN-1 vs 

Control 

↑ p-Cresol 

synthesis 

(effect = 0.49 

[-2.37; 

5.20])** 

↑ S-

Adenosylmethi

onine (SAM) 

synthesis 

(effect = 0.40 

[-2.12; 5.05])* 

↑ Glutamate 

synthesis II 

(effect = 0.46 

 (Mac

k et 

al., 

2016) 



[-2.32; 

5.03])** 

↑ ClpB (ATP-

dependent 

chaperone 

protein) (effect 

= 0.43 [-2.30; 

4.98])* 

 

AN-2 vs 

Control 

↓ Inositol 

degradation 

(effect = -0.43 

[-5.09; 2.32]) * 

 

16S (no) N = 18 Anorexia 

N = 20 Athletes 

N = 26 Normal 

Weight 

N = 22 

Overweight 

N = 20 Obese 

 

All women 

None None None Storage at -

20C 

(Mork

l et al., 

2017) 



16S (no) N = 21 Anorexia 

at enrollment 

N = 16 Anorexia 

at discharge 

N = 29 Healthy 

women 

Anorexia at Admission vs Control 

↑ Weissella* 

↑ Coprococcus* 

↓ Parabacteroides* 

Anorexia at Discharge vs Control 

↑ Collinsella* 

↑ Actinobacteria* 

↑ Parabacteroides* 

 

None None  (Mont

eleone 

et al., 

2020) 

16S (no) N = 19 Anorexia 

N = 20 Healthy 

Control 

Anorexia at Admission vs Control 

↑ Anaerostipes* 

Anorexia at Discharge vs Control 

↑ Unclassified Lachnospiraceae** 

↑ Fusicatenibacter* 

Anorexia at Admission vs 

Discharge 

↓ Bacteroides* 

↑ Unclassified Ruminococcaceae* 

↑ Unclassified Lachnospiraceae** 

↑ Faecalibacterium* 

↑ Fusicatenibacter* 

 

 

None None  (Schul

z et 

al., 

2020) 

16S via 

454 

Pyroseque

ncing (no) 

N = 16 at 

timepoint 1 

(admission to 

hospital) 

N = 10 at 

timepoint 2 

(discharge after 

nourishment) 

↑  Ruminococcus* after nourishment 

 

None 

 

None Greengenes (Klei

man et 

al., 

2015) 



qPCR (no) N = 25 Anorexia 

(11 binge eating, 

14 restrictive) 

N = 21 Control 

Anorexia vs Control 

↓ Total bacteria*** 

↓ Clostridium coccoides*** 

↓ Clostridium leptum*** 

↓ Bacteroides fragilis*** 

↓ Streptococcus*** 

 

 

Anorexia vs Control 

↓ Bacteroides 

fragilis*** 

 

None 

 

 (Morit

a et 

al., 

2015) 

qPCR (no) N = 20 Obese 

N = 9 Anorexia 

N = 20 Control 

Obese vs Control 

↑ Lactobacillus* 

 

Obese vs Anorexia 

↑ Lactobacillus* 

 

Anorexia vs Control 

↑  Methanobrevibacter smithii* 

Obese vs Control 

↑ Lactobacillus* 

 

Obese vs Anorexia 

↑ Lactobacillus* 

 

None 

 

 (Armo

ugom 

et al., 

2009) 

 

 

 

 

 

 

 

 

 

 



 

 

Table 9. Microbiome-brain studies involving neurovascular disease. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; AD: Alzheimer’s Disease, PD: Parkinson’s Disease; MCI: mild-cognitive impairment; MSA: multiple-

systems atrophy; ALS: amyotrophic lateral sclerosis; NMOSD: neuromyelitis optica spectrum disorder*: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are 

highlighted; 95% CI reported between square brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

Neurovascular 

Disease 

16S and 

WGS (no) 

N = 122 

Neruovascular 

Cavernous 

Angioma (CA) 

 

Controls from 

Human 

Microbiome 

Project 

CA vs Control 

↑ Bacteroides thetaomicron*** 

↑ Odoribacter sphlancus***  

↓ Bifidobacterium adolescentis***  

↓ Faecalibacterium prausntzii*** 

 

Aggressive vs Non-Aggressive CA  

↑ Bifidobacterium adolescentis*** 

↓ Bacteroides eggerthii* 

 

CA with Symptomatic Hemmorhage 

vs CA No Hemmorhage 

↑ Faecalibacterium prausnitzii 

↑ Oscillobacter 

CA vs Control 

↑ Bacteroides 

thetaomicron*** 

↓ Bifidobacterium 

adolescentis***  

 

Aggressive vs Non-

Aggressive CA  

↑ B. adolescentis*** 

↓ Bacteroides 

eggerthii* 

 

None  (Polst

er et 

al., 

2020) 

16S (no) N = 8 Cerebral 

Infarction (CI) 

N = 2 Ischemic 

Stroke (IS) 

N = 10 Controls 

CI vs Control 

↓ Bacteroides  

↓ Parabacteroides  

↓ Akkermansia  

↓ Prevotella  

↓ Faecalibacterium 

IS vs Control 

↑ Escherichia  

CI vs Control 

↓ Bacteroides 

 

IS vs Control 

↓ Bacteroides 

 

CI vs IS 

↑ Bacteroides 

None N = 2 for 

Ischemic 

Stroke 

(Ji et 

al., 

2017) 



↑ Dialister  

↑ Bifidobacterium 

↓ Bacteroides  

↓ Megamonas  

↓ Parabacteroides  

↓ Akkermansia  

↓ Prevotella  

↓ Faecalibacterium  

↓ Ruminococcus 

CI vs IS 

↑ Escherichia  

↑ Bacteroides 

↑ Megamonas 

↑ Prevotella  

↑ Ruminococcus 

↓ Parabacteroides  

↓ Akkermansia 

↓ Faecalibacterium 

↓ Dialister  

↓ Bifidobacterium 

↓ Bifidobacterium 

 

16S (no) N = 30 Ischemic 

Stroke 

N = 30 Control 

Ischemic Stroke vs Control 

↑ Odoribacter 

↑ Akkermansia 

↑ Victivallis 

↓ Anaerostipes 

↓ Ruminoclostridium 5 

Severe vs Mild Stroke 

↓ Enterobacter 

 

None 

 

None 

 

Rarefaction (Li et 

al., 

2019c

) 

16S (no) N = 30 Post-

Stroke Cognitive 

Impairment 

(PSCI) 

N = 35 non-PSCI 

 

PSCI vs non-PSCI 

↑ Fusobacterium 

↑ Bacteroides 

↑ Colstridium XIVa 

↑ Gemella 

↑ Flavonifractor 

↓ Prevotella 

↓ Gemminger 

↓ Alistipes 

PSCI vs non-PSCI 

↑ Bacteroides 

 

None 

 

 (Liu 

et al., 

2020a

) 



↓ Ruminococcus 

↓ Akkermansia 

↓ Coprococcus 

↓ Barnesiella 

↓ Clostridium IV 

↓ Odoribacter 

↓ Methanobrevibacter 

↓ Oxolobacter 

↓ Hydrogenanaerobacterium 

16S (no) N = 41 Post-

Stroke Cognitive 

Impairment 

(PSCI) and 

Depression 

N = 25 non-PSCI 

 

PSCI vs non PSCI 

↓ Fusicatenibacter 

↑ Veilonella 

None None  (Ling 

et al., 

2020a

) 

16S (no) N = 10 Cerebral 

Infarction patients 

N = 10 Control 

None None None Not properly 

filtered, 

chloroplasts 

included in 

results 

(Wan

g et 

al., 

2018

b) 
16S (no) N = 10 infants 

with hypoxic 

ischemic 

encephalopathy  

treated with  

hypothermia  

N = 9 Control 

Hypoxic Ischemic Encephalopathy vs Control 

↓ Bacteroides** 

None 

None  (Watk

ins et 

al., 

2017) 

 

 

 

 

 



 

 

 

 

 

 

 

Table 10. Microbiome-brain studies involving stress-related and psychiatric disorders. 

Legend: LFC: log-2 fold change; LC: log change; RA: relative abundance; DASS-42: Depression Anxiety Stress Scales; ADHD: Attention-Deficit Hyperactivity Disorder; 

HE: hepatic encephalopathy; FOS: Fructo-oligosaccharide; HADS-A: Hamilton Anxiety and Depression Scales – Anxiety Subscale; HADS-A: Hamilton Anxiety and 

Depression Scales – Depression Subscale; RTT: Rett’s Syndrome; AD: Alzheimer’s Disease, PD: Parkinson’s Disease; MCI: mild-cognitive impairment; MSA: multiple-

systems atrophy; ALS: amyotrophic lateral sclerosis; NMOSD: neuromyelitis optica spectrum disorder*: padj < 0.1; **: padj < 0.01; ***: padj < 0.001; Reanalyzed studies are 

highlighted; 95% CI reported between square brackets [lower 95% CI; upper 95% CI] 

Cohort Details Sequencin

g 

(reanalyse

d) 

Groups and 

Sample Size 

SCFA/Tryptophan-Modifying 

Bacteria 

BA-Modifying 

Bacteria 

Other 

Metabolites/ 

GBMs 

Specific 

Limitations 

Ref 

Stress 16S (no) N = 50 Healthy 

subject in double-

blind PBO RCT 

None None None  (Soldi 

et al., 

2019) 

16S (no) N = 47 Black ♀ 

N = 33 white ♀ 

↑ Fusobacterium* with stress in 

Black participants, but not in white 

participants 

None None Greengenes (Carso

n et 

al., 

2018) 

16S (no) N = 25 Low 

Adverse 

Childhood Events 

(ACE) (<2) 

High ACE vs Low ACE Score 

↑ Prevotella*** 

 

None None  (Hants

oo et 

al., 

2019)  



N = 23 High ACE 

(>= 2) 

 

All participants 

pregnant at time 

of study 

16S (no) N = 75 

Pregnancy-related 

anxiety associated 

to meconium of 

newborn 

None 

 

None 

 

None 

 

QIIME 1.9, 

Greengenes, 

No genus-

level 

associations 

of identified 

microbes 

reported 

(Hu et 

al., 

2019a

) 

16S (no) N = 84 mothers 

(psychological 

stress collected) 

 

Infant faecal 

samples collected 

at birth, 4-12 

weeks and 20-28 

weeks 

Mothers with Exposure to Intimate 

Partner Violence vs Control 

↑ Weisella*** at 4-12 weeks 

↑ Citrobacter** at all timepoints 

None 

 

None 

 

QIIME 1.7 (Naud

e et 

al., 

2020) 

16S (no) N = 31 Probiotic 

(Lactobacillus 

gasseri CP2305) 

N = 29 Placebo 

Probiotic vs Placebo after stressor 

Smaller decrease in Bifidobacteria 

after stressor 

Increased faecal Valeric acid with 

probiotic 

 

None None  (Nishi

da et 

al., 

2019) 

16S via 

454 

Pyroseque

ncing (no) 

N = 16 PBO 

N = 16 Probiotic 

 

L. gasseri CP2305 

Probiotic 

administration 

Probiotic vs PBO after Stressor 

Differences in Corynebacterium  

 

Improved sleep quality 

Reduced stress symptoms in females 

None 

 

None 

 

No post-hoc 

Identificatio

n of species-

level 

differences 

with 16S 

(Nishi

da et 

al., 

2017) 

HITChip 

(no) 

N = 28 high 

prenatal stress 

None 

 

None 

 

None 

 

Results 

difficult to 

interpret; 

(Zijlm

ans et 



N = 28 low 

prenatal stress 

 

Measured 

composition at 5 

points in first 110 

days 

table of p-

values or 

statistics not 

provided; 

unclear if 

post-hoc 

used 

al., 

2015) 

Post-

Traumatic 

Stress Disorder 

(PTSD) 

16S (no) N = 29 PTSD 

N = 64 Controls 

PTSD without Hepatic 

Encephalopathy (HE) vs Control 

(no HE) 

↑ Streptococcus 

↑ Acidaminococcus 

↓ Ruminococcus 

↓ Roseburia 

↓ Anaerostipes 

↓ Colstridium XIVAa 

↓ Pseudoflavonibacter 

 

PTSD with HE vs Control with HE  

↓ Subdoligranulum 

 

 

None 

 

None 

 

 (Bajaj 

et al., 

2019) 

16S (no) N = 18 PTSD 

N = 12 Trauma-

exposed controls 

None None None Greengenes (Hem

mings 

et al., 

2017) 

Bipolar 

Disorder 

(BD) 

WGS (no) N = 31 BD 

N = 31 MDD 

N = 31 Control 

BD vs Control 

↑ Streptococcus 

↑ Clostridium 

↑ Oscillibacter 

↑ Bifidobacterium 

↑ Bacteroides 

MDD vs Control 

↑ Streptococcus 

↑ Clostridium 

↑ Oscillibacter 

↑ Bifidobacterium 

 

BD vs Control 

↑ Bifidobacterium 

↑ Bacteroides 

 

MDD vs Control 

↑ Bifidobacterium 

 

 

Bifidobacterium 

species and strains 

differed between BD 

and Control 

  (Rong 

et al., 

2019) 



Various Prevotella and 

Bifidobacterium species and strains 

differed between BD and Control 

WGS (no) N = 25 BD 

N = 28 Controls 

BD vs Control 

↑ Escherichia 

↑ Bifidobacterium 

↑ Lachnoclostridium 

↑ Megasphera 

↑ Clostridium 

↑ Oscillibacter 

↑ Acidaminococcus 

↑ Streptococcus 

↓ Bacteroides 

Dysregulation in tryptophan 

metabolism pathway in BD 

BD vs Control 

↑ Bifidobacterium 

↓ Bacteroides 

 

  (Lai et 

al., 

2021) 

16S (no) N = 115 BD 

N = 64 Control 

BD vs Control 

↓ Faecalibacterium 

 

Associations 

Faecalibacterium associated with 

higher PCS, lower PSQI and PHQ9  

Anaerostipes associated with 

increased PCS  

None 

 

None 

 

 (Evan

s et 

al., 

2017) 

16S (no) N = 23 BD 

N = 23 Control 

None None None Greengenes (McIn

tyre et 

al., 

2019) 

16S (no) N = 217 BD 

N = 165 MDD 

N = 217 Control 

BD vs Control (From top 5 LDA) 

↑ Ruminococcus gnavus (2 OTUs) 

↑ Clostridium sensu stricto 

↑ Bacteroides 

↑ Pseudomonas (2 OTUs) 

↓ Prevotella 9 (2 OTUs) 

↓ Bacteroides  

↓ Ruminococcus 2 

↓ Klebsiella 

 

MDD vs Control (From top 5 LDA) 

BD vs Control (From 

top 5 LDA) 

↑ Bacteroides (OTU) 

↓ Bacteroides (OTU) 

 

MDD vs Control 

(From top 5 LDA) 

↑ Bacteroides 

↓ Bacteroides (5 

OTUs) 

 

None 

 

 (Zhen

g et 

al., 

2020b

) 



↑ Citrobacter 

↑ Fusobacterium 

↑ Ruminococcus gnavus 

↑ Bacteroides  

↑ Ruminococcus 2 

↓ Bacteroides (5 OTUs) 

 

BD vs MDD (From top 5 LDA) 

↑ Blautia 

↑ Bacteroides 

↑ Lachnoclostridium 

↑ Dialister 

↓ Eubacterium rectale 

↓ Eubacterium hallii 

↓ Eggerthella 

↓ Blautia 

↓ Bacteroides 

BD vs MDD (From 

top 5 LDA) 

↑ Bacteroides 

↓ Eubacterium rectale 

↓ Eubacterium hallii 

↓ Bacteroides 

 

16S (no) N = 32 BD None None None  (Beng

esser 

et al., 

2019) 
16S (no) N = 113 BD 

N = 113 Control 

(37 unaffected 

relatives) 

None None None *Note all 

differences 

were 

explained by 

sex, family 

and smoking 

(Coell

o et 

al., 

2019) 

16S (no) N = 52 BD 

(N = 12 BD-1 

N = 38 BD-II) 

 

N = 20 After 

treatment with 

quietiapene 

N = 45 Control 

BD vs Controls 

↑ Parabacteroides 

↑ Bacteroides 

↓ Roseburia 

↓ Faecalibacterium 

↓ Coprococcus 

 

BD-I (Baseline) vs BD-II (Baseline) 

↑ Streptococcus 

↑ Bacillus 

↑ Veillonella 

↓ Ruminococcus 

BD vs Controls 

↑ Bacteroides 

 

BD (treated) vs BD 

(untreated)  

↑ Lactobacillus 

 

  (Hu et 

al., 

2019b

) 



 

BD (treated) vs BD (untreated)  

↑ Klebsiella 

↑ Lactobacillus 

↑ Collinsella 

↑ Paraprevotella 

↑ Veillonella 

↓ Alistipes 

16S (no) N = 32 Bipolar 

disorder (BD) 

N = 10 Control 

BD vs Controls 

↑ Faecalabacterium* 

 

Within BD 

↑ Lactobacillus** associated with 

high IL-6 

↑ Prevotella* with low LDL 

cholesterol 

↑ Roseburia** with less depressive 

symptoms 

↑ Lactobacillus** associated with 

high serum tryptophan 

↑ Prevotella* with low LDL 

cholesterol 

↑ Roseburia** with less depressive 

symptoms 

 

None None Greengenes (Paino

ld et 

al., 

2019) 

 

16S (no) N = 117 BD 

49 treated with 

atypical 

antipsychotics 

(AAP) 

68 non-AAP 

AAP vs Non-AAP 

↓ Akkermansia  

↓ Sutterella 

None 

 

None 

 

 (Flow

ers et 

al., 

2017) 

16S (no) N = 128 

Monozygotic 

twins discordant 

for BD 

None 

 

None 

 

None 

 

 (Vinb

erg et 

al., 

2019) 

qPCR (no) N = 36 BD 

(before treatment) 

N = 27 Control 

BD vs Control 

↑ Faecalibacterium prausnitzii* 

↑ Atopobium*** 

BD vs Control 

↓ Bifidobacteria* 

 

None  (Lu et 

al., 

2019) 



↑ Enterobacter*** 

↑ Clostridium cluster IV*** 

↓ Bifidobacteria* 

 

qPCR (no) N = 13 BD I 

N = 26 BD II 

N = 58 Control 

None None None  (Aiza

wa et 

al., 

2018) 

Depression and 

Anxiety 

 

16S and 

WGS (no) 

N = 111 

Psychiatric 

inpatients 

Coprococcus catus and Clostridium 

symbiosum associated with moderate 

anxiety at admission 

↓ Coprococcus catus associated with 

lower remission from anxiety and 

depression 

None None  (Mada

n et 

al., 

2020) 

 

16S and 

WGS (no) 

N = 1054 Faecalibacterium, Coprococcus 

associated with higher quality of life 

indicators  

Dialister, Coprococcus spp. depleted 

in depression  

 

None Synthesis of 

dopamine 

metabolite 3,4-

dihydroxyphen

ylacetic acid 

positively 

correlated with 

quality of life 

 (Valle

s-

Colom

er et 

al., 

2019) 

WGS (no) N = 156 MDD 

N = 155 Control 

MDD vs Control 

↑ Multiple Bacteroides ASVs 

↓ Multiple Blautia ASVs 

Many upregulated and downregulated 

ASVs assigned to Eubacterium 

 

MDD vs Control 

↑ Multiple Bacteroides 

ASVs 

 

None  (Yang 

et al., 

2020) 

16S (no) N = 37 MDD 

N = 18 Control 

None 

 

None 

 

None 

 

 (Naser

ibafro

uei et 

al., 

2014) 

16S (no) N = 15 MDD, 11 

Responders and 4 

Non-Responders 

None None None Methods not 

clearly 

described 

(Bhar

wani 

et al., 

2020) 



16S (no) N = 22 

Depression/Anxie

ty 

N = 28 Control 

Depression/Anxiety vs Control 

↑ Eubacterium 

↑ Enterococcus 

↑ Collinsella 

↓ Faecalibacterium 

 

Depression/Anxiety 

vs Control 

↑ Eubacterium 

 

None  (Steve

ns et 

al., 

2018) 

16S (no) N = 23 MDD Functional connectivity in lDLPFC inversely correlated with 

relative abundance of Bacteroides 

None Controls not 

in the scope 

of the study; 

focused on 

GABA 

(Stran

dwitz 

et al., 

2019) 

16S (no) N = 24 Current 

depressive 

episode (CDE) 

N = 16 Control 

CDE vs Control 

↑ Akkermansia 

↑ Veillonella 

↑ Ruminococcus gnavus 

↓ Fusicatenibacter 

↓ Sutterella 

↓ Dialister 

 

None None  (Jiang 

et al., 

2020) 

16S (no) N = 12 breast 

cancer survivors 

sampled at 

baseline and after 

3mo 

 

Focus on 

psychosocial 

metrics 

No significant microbiota differences 

after FDR adjustment  

None None  (Pauls

en et 

al., 

2017) 

16S (no) N = 27 Control 

N = 27 MDD 

MDD vs Control 

↑ Coprococcus*  

↑ Pseudomonas* 

↑ Blautia* 

  Greengenes (Huan

g et 

al., 

2018) 

16S (no) N = 34 depressed 

+ probiotic 

N = 37 + PBO 

N = 20 Non-

depressed 

No differences between groups 

Ruminococcus gnavus associated 

with DASS depression score* 

(Correlation = 0.37) 

None 

 

None 

 

QIIME 

1.9.1, 

Greengenes, 

rarefaction 

(Chah

wan et 

al., 

2019) 



16S (no) N = 17 MDD 

inpatients 

 

Samples collected 

at baseline and 

after 6wks 

treatment with 

Escitalopram 

None None None No genus 

level 

differences 

reported, no 

control arm 

(Liski

ewicz 

et al., 

2019) 

16S (no)  N = 16 Inpatients 

at admission and 

6 weeks later 

Paraprevotella positively associated 

with Hamilton Depression Scale-24 

Item score* (r=0.8) 

None None Greengenes, 

rarefaction 

(Liśki

ewicz 

et al., 

2021) 

16S (no) N = 40 MDD 

taking 

psychotropics at 

three different 

timepoints 

No genera-level associations with 

specific psychotropic medication 

within the cohort 

None None Greengenes (Tomi

zawa 

et al., 

2020) 

16S (no) N = 10 MDD 

N = 10 Control 

MDD vs Control 

↑ Prevotella* (D1, D10 and D29) 

↑ Streptococcus* (D1, D10) 

↑ Clostridium XI* (D29) 

 

 

None None  (Lin et 

al., 

2017) 

16S via 

454 

Pyroseque

ncing (no) 

N = 58 MDD 

N = 63 Control 

MDD vs Control 

↑ Collinsella (RA = 4.2% vs 1.7%)* 

↑ Olsenella (RA = 0.003% vs 0%)* 

↑ Blautia (2 OTUs)** 

↑ Anaerostipes (RA = 1.491% vs 

0.303%)*** 

↓ Alistipes (RA = 0.249% vs 

0.761%)* 

None None  (Zhen

g et 

al., 

2016) 

16S via 

454 

Pyroseque

ncing (no) 

N = 38 Co-

morbid anxiety 

and depression 

N = 8 Anxiety 

N = 14 

Depression 

N = 10 Control 

↑ Bacteroides in anhedonia None None  (Maso

n et 

al., 

2020) 



 

16S via 

454 

Pyroseque

ncing (no) 

N = 29 MDD 

responded 

N = 17 MDD 

active 

N = 30 Control 

Active MDD vs Control 

↑ Blautia 

↑ Oscillibacter  

↑ Roseburia  

↓ Bacteroides  

↓ Dialister 

↓ Faecalibacterium 

↓ Prevotella  

↓ Ruminococcus  

Responded MDD vs Control 

↑ Bacteroides 

↑ Roseburia 

↓ Oscillibacter  

↓ Prevotella  

↓ Ruminococcus  

↓ Faecalibacterium 

 

Negative correlation between 

Faecalibacterium and depressive 

symptoms 

Active MDD vs 

Control 

↓ Bacteroides 

Responded MDD vs 

Control 

↑ Bacteroides 

 

Responded 

MDD vs 

Control 

↓ 

Escherichia/Sh

igella (ClpB) 

 (Jiang 

et al., 

2015) 

16S via 

454 

Pyroseque

ncing (no) 

N = 40 

Generalized 

Anxiety Disorder 

(GAD) 

N = 36 Controls 

N = 12 anti-

depressant naïve 

patients 

N = 22 Control 

GAD vs Control 

↓ Faecalibacterium* 

↓ Eubacterium rectale* 

↓ Sutterella* 

↓ Butyricoccus  

↑ Bacteroides* 

↑ Ruminococcus gnavus* 

↑ Fusobacterium* 

Treatment Naïve vs Control 

↑ Lactobacillus* 

↑ Ruminococcus gnavus* 

↑ Fusobacterium* 

↑ Escherichia-Shigella* 

↑ Bacteroides* 

↓ Faecalibacterium* 

↓ Eubacteirum recetale 

↓ Roseburia 

↓ Subdoligranulum 

GAD vs Control 

↑ Bacteroides* 

Treatment Naïve vs 

Control 

↑ Lactobacillus* 

↑ Bacteroides* 

↓ Eubacteirum 

recetale 

 

  (Jiang 

et al., 

2018a

) 



16S via 

454 

Pyroseque

ncing (no) 

N = 40 with 

diarrhea-

predominant IBS 

(IBS-D) N = 15 

with Depression, 

N = 25 with 

comorbid patients 

(CM) 

N=20 Controls 

All Depression vs Control 

↑ Bacteroides***  

↑ Prevotella*** 

↓ Coprococcus*** 

All Depression vs 

Control 

↑ Bacteroides***  

 

None  (Liu et 

al., 

2016) 

16S via 

454 

Pyroseque

ncing (no) 

N = 15 (co-

morbid depression 

and diarrhoea 

predominant IBS) 

Treatments: 

Bifico probiotic 

(n = 8), 

duloxetine (n=6) 

Post vs Pre Bifico 

↓ Bifidobacterium 

Post vs Pre Duloxetine 

↑  Faecalibacterium 

Post vs Pre Bifico 

↓ Bifidobacterium 

Post vs Pre 

Bifico 

↓ 

Bifidobacteriu

m 

Post vs Pre 

Duloxetine 

↑ 

Escherichia/Sh

igella (ClpB)  

 (Zhan

g et 

al., 

2019a

) 

16S 

(qPCR) 

N = 43 MDD 

N = 57 Control 

MDD vs Control 

↓ Bifidobacterium 

↓ Lactobacillus 

None 

 

 (Aiza

wa et 

al., 

2016) 

RFLP (no) N = 56 OI 

N = 9 Control 

OI vs Control 

↑ Clostridium subcluster XIVa* 

OI Depressed vs OI Non-Depressed 

↓ Bifidobacterium 

OI Depressed vs OI 

Non-Depressed 

↓ Bifidobacterium 

 

None  (Ishii 

et al., 

2019) 
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Table 11. Common limitations of human microbiome studies 
 

Problem Description Solutions 

Assigning 
taxonomy to 
sequences 

Many studies use operational 
taxonomic units which are less 
precise and more prone to error. 

ASVs are a more precise 
alternative which can be 
implemented through DADA2 

Non-compositional 
data analysis 

Counts data must be properly 
transformed to account for its 
relational data structure 

• Normalization with rarefaction or 
DESeq2 

• Measuring distance between 
groups using Bray-Curtis, 
UniFrac, Jenson-Shannon; often 
used with Principal Co-ordinate 
Analysis 

• Pearson or Spearman 
Correlations (compositional data 
is prone to spurious correlation) 

• Differential abundance with 
LEfSe, DESeq, metagenomSeq 

 

• Compositional normalization 
with ALDEx2 (i.e. CLR, IQR, 
ALR) 

• Measure distance between 
groups with the Aitchison 
metric in conjunction with 
Principal Component Analysis 

• SparCC, SpiecEasi, Φ for 
Correlations 

• Differential abundance with 
ALDEx2 

Metadata 
collection 

Often confounding variables are not 
measured or included in studies. 
There are several confounds that 
must be accounted for during 
analysis. 

Participant data: 

• Food-frequency questionnaire 

• Alcohol-use 

• Smoking status 

• Prescription and recreational 
drug-use 

• Symptom frequency and 
severity 

 

Bioinformatics 
Analysis 

While adjusted p-values are often 
reported, studies seldom mention 
effect sizes or confidence intervals. 

Report effect sizes and 95% 
confidence intervals. Sparse 
microbiome datasets are prone to 
uncertainty. If the confidence 
interval does not overlap with 0, 
then there is more certainty in the 
direction of the effect. 
 
Use gut-brain module analysis to 
provide more insight into your 
data. 
 
Deposit your data and code 
publicly if possible. 

Updating tools for 
data analysis 

Occasionally, studies use databases 
or tools that are no longer updated or 
supported i.e. QIIME version 1 or 
Greengenes database from 2013 

Ensure that your bioinformatics 
tools and packages are regularly 
updated 
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Recent investigations in neuroscience implicate the role of microbial-derived 

metabolites in brain health and disease. Short-chain fatty acids are neuroactive 

metabolites produced by the gut microbiota. Short-chain fatty acid metabolites like 

acetate, propionate and butyrate have pleiotropic effects within the immune and 

enteric systems. They are crucial for the maturation of the brain’s innate immune 

cells, the microglia and modulate other glial cells through the aryl-hydrocarbon 

receptor. In vivo these metabolites show neuroprotective and antidepressant 

properties. In humans, they even modulate the acute stress response and satiety. 

Together, these findings present a potential role for SCFA-astrocyte interactions. Our 

novel investigation tested the impact of physiologically relevant doses of SCFAs on 

male and female primary cortical astrocytes. We find that butyrate (0 – 25µM) 

positively correlates with Bdnf and Pgc1-α expression, implicating histone-

deacetylase inhibitor pathways. Intriguingly, this effect is only seen in females. We 

also find that acetate (0 – 1500 µM) dosage positively correlates with Ahr and Gfap 

expression in males only, suggesting immune modulatory pathways. These findings 

show a novel sex-dependent impact of acetate and butyrate, but not propionate on 

astrocyte gene expression. 

Keywords: 

Short-chain fatty acid, Astrocyte, Microbiome, Neuro-immunity, Glia 
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Introduction 

The microbiota-gut-brain axis emerged in recent years as a contributor or mediator 

of many neurophysiological and behavioural processes. The trillions of 

microorganisms within the mammalian gut, collectively called the microbiota, 

communicate with the brain through neuroendocrine, immune or vagal signalling 

(Cryan et al., 2019). In addition, they generate a cornucopia of neuroactive 

metabolites, absorbed into peripheral circulation, however it is still unclear if these 

metabolites act on brain cells directly. Recent work brought these metabolites into 

the spotlight, showing they were associated with host quality of life and depression 

in humans (Valles-Colomer et al., 2019).  

Among the most promising candidates for modulating brain function are the short-

chain fatty acids (SCFAs). SCFAs are fermented by-products, produced by specific 

colonic bacterial genera from dietary fibre. They consist of an aliphatic chain of 

carbon molecules with a carboxylic acid group. The most common types of SCFAs 

produced within the gut are acetate, butyrate and propionate, typically found in a 

60:20:20 molar ratio (Dalile et al., 2019). SCFAs are also substrates easily used by 

colonocytes and other cell types to generate energy within the Krebs cycle.  

SCFAs exert their action by acting as histone-deacetylase inhibitor (HDACi) 

intracellularly or by binding to G-coupled protein receptors (Dalile et al., 2019). In 

rodents, SCFA administration has shown to be neuroprotective against stroke (Sadler 

et al., 2020, Lee et al., 2020a), stress (van de Wouw et al., 2018), oligodendrocyte 

function (Chen et al., 2019b), and depressive-like behaviour (Yamawaki et al., 

2018). These results are confounded by the broad influence of SCFAs on peripheral 

immune cells involved in both innate and adaptive immunity (Correa-Oliveira et al., 

2016). However, SCFAs modulate blood-brain barrier permeability in vitro (Hoyles 
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et al., 2018) and are shown to cross the blood-brain barrier in rodent and primate 

studies (Dalile et al., 2019).  

In humans, 13C radiolabelled carbohydrate substrates are converted to acetate within 

the gut, reaching the hypothalamus through peripheral circulation leading to appetite 

suppression (Frost et al., 2014). Additionally, researchers observed elevations in the 

glutamate-glutamine cycle substrates within the hypothalamus (Frost et al., 2014). 

Another study provided healthy men with different doses of dietary-fibre that is 

converted into SCFAs or a placebo (Dalile et al., 2020). In a psychosocial stress 

paradigm, colon-derived SCFAs reduced the cortisol response with peripheral SCFA 

levels covarying with cortisol levels (Dalile et al., 2020). Interestingly, it did not 

alter the subjective response to the acute stressor, fear learning or extinction (Dalile 

et al., 2020).   

The combination of preclinical and clinical data suggests that SCFAs exert both 

immune and metabolic effects within the central nervous system. Astrocytes within 

the brain are responsible for both metabolic regulation (Belanger et al., 2011) within 

the brain as well as neuroimmune functioning (Jensen et al., 2013).  Recent work 

also implicates the metabolic functioning of cortical and subcortical astrocytes in 

learning and memory (Alberini et al., 2018). Additionally, dietary-derived 

tryptophan metabolites influence astrocytic immunity through the intracellular 

activation of the aryl-hydrocarbon receptor pathway (Rothhammer et al., 2016). To 

address whether SCFAs interact with cortical astrocytes, we used an enriched 

primary astrocyte culture. 

Previous cell culture studies characterized the effects of supraphysiological levels on 

neuroimmune inflammation. While this provides insight into potential 
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neuroprotective functions, which could be induced by increasing the dietary-fibre 

intake, the question of what role SCFAs play in the homeostatic environment remain 

(Chen et al., 2007, Suh et al., 2010, Soliman et al., 2012, Singh et al., 2014, Wang et 

al., 2018a). These studies did not focus on identifying sex or region-specific effects 

as they were out of the scope of those respective studies. However, it’s clear that sex 

may play a role in determining the physiological effects of SCFAs (Jaggar et al., 

2020). Additionally, we aim to characterize the impact on primary astrocyte cultures, 

which have been seldom used in such studies. We also explored the potential of 

SCFAs to impact glutamate/glutamine metabolism, the aryl-hydrocarbon receptor 

pathway as well as genes related to HDACi. 

Experimental Procedures 

Animals 

Experiments are authorised under a Euthanasia Only Project (2019-009). 

Experiments were conducted in accordance with guidelines established by 

University College Cork’s Animal Welfare Body. 

Seeding Primary Glial Culture 

Litters of C57BL/6 mice were sexed and euthanized at postnatal day 1-3 (PND1-3). 

The mouse brains were removed from the skulls and the cortices were dissected out. 

The meninges and hippocampus were also removed. Cortices were pooled by sex 

into collection tubes, filled with DMEM-F12 (Gibco: 11320033), stored on ice. 

Pooled brains were washed with PBS 10mM, then incubated with 1.5mL of 

Trypsin/EDTA (0.25%) (Thermofisher: 25200072) at 37°C, 5% CO2 for 20 minutes. 

Trypsin/EDTA (0.25%) was inactivated with 9mL of DMEM/F12 with 10% heat 

inactivated Fetal Bovine Serum (Thermofisher: 16140071). This mixture was 
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mechanically dissociated, transferred to a 15mL Falcon Tube and centrifuged at 

200g, 21°C for 10 minutes. Supernatant was removed and resuspended in media. 

Media was composed of DMEM (Gibco: 16219961) with 10% heat inactivated Fetal 

Bovine Serum, 1% Penicillin/Streptomycin (Gibco: 15070063) and 2mM L-

Glutamine (Thermofisher: 25030149) Cells were then seeded into T75 flasks with 

filtered caps, coated overnight with Poly-D-Lysine (Sigma-Aldrich: P6407-5MG). 

Half of the cell media was removed every 3-4 days and replenished with new media. 

Cells were grown at 37°C, 5% CO2.  

Primary Astrocyte Enrichment 

After 14 days, cells were placed on an orbital shaker for 24 hours at 150rpm, 37°C, 

5% CO2. This process removed contaminating microglia from the culture. Media 

was aspirated, cells were washed with PBS 10mM and media was replenished. Cells 

were than shaken for 24 hours at 230rpm, 37°C, 5% CO2 to remove oligodendrocyte 

precursor cells. Cells were washed with PBS 10mM and left for 1-2 days. 

Afterwards, astrocytes were dissociated using 3.0 mL Trypsin/EDTA (0.25%) before 

being seeded at a density of ~150 000 cells into a 6-well cell culture plate. Each well 

contained 1.5mL of media and 150 000 cells.  

Primary Astrocyte Purity 

To confirm enrichment, cells from three different litters were grown of coverslips 

and fixed with 4% PFA (Sigma-Aldrich: 158127) in triplicate. Briefly cells were first 

blocked for an hour with a solution of PBS 10mM with 0.1% Triton-X (Sigma-

Aldrich X100) and 5% Donkey Serum (Sigma-Aldrich D9663). The primary 

antibodies, Rat anti-GFAP (1:250) (Thermofisher:13-0300) and Rabbit-anti IBA1 

(1:1000) (Wako: 019-19741).  was added in a PBS/0.1% Triton-X/2% Donkey 



193 
 

Serum solution and left at 4°C for 12 hours. After three washes, a secondary 

antibody, anti-Rat AlexaFluor 488 (Thermofisher: A-21028) and anti-Rabbit 

AlexaFluor  594 (Thermofisher: A-11012) were both  added  in a 1:500 dilution of 

PBS/0.1% Triton-X/2% Donkey Serum for two hours in a humid chamber. Cells 

were washed three times and DAPI (Thermofisher: D1306) was added at a 

concentration of 1:1000 in a PBS solution with 2% Donkey Serum. Finally, cells 

were mounted onto slides and GFAP/DAPI double positive cells were counted as 

astrocytes while DAPI positive cells or IBA1/DAPI double positive cells were 

counted as non-astrocytes. We found our enriched culture was >95% pure. In 

addition, T75 flasks were viewed under a microscope to ensure no microglia (small 

rounded cells adherent to the surface layer of attached cells) were present before 

further experiments.  

Cell Culture Treatments 

Once the cells adhered (after ~5 days), 150mL of media was removed, and new 

media with different concentrations of the short-chain fatty acids acetate (Sigma‐

Aldrich: S7545), propionate (Sigma-Aldrich: P1880) or butyrate (Sigma‐Aldrich, 

303410) diluted in culture media were added. Physiologically relevant 

concentrations were estimated based on the study by (Guardia-Escote et al., 2019). 

For acetate we tested concentrations at 0µM, 150 µM, 750 µM and 1500µM. For 

propionate we tested concentrations at 0µM, 3.5 µM, 17.5 µM and 35µM. For 

butyrate we tested concentrations at 0µM, 2.5 µM, 12.5 µM and 25µM.  

Quantitative PCR 

24 hours after treatment, cells were lysed and isolated according to the TRIzol 

protocol (Thermofisher: 15596026). RNA concentrations were then measured using 
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a Nanodrop-1000 (Thermofisher) followed by the generation of cDNA using the 

High-Capacity cDNA Reverse Transcription Kit (Thermofisher: 4368814). Using the 

primers listed in Table 1 (Eurofins) along with the SYBR™ Green PCR Master Mix 

kit (Thermofisher: 4309155), we conducted a quantitative PCR.  

Table 1. PCR Primers 

Pathway Gene Sequence 

Forward (5’ -> 

3’) 

Sequence Reverse 

(5’ -> 3’) 

Referenc

e 

Astrocyte 

Marker 

GFAP GCTCCAAGATGAAACC

A 
ACC 

TTCAACCTTTCTCTCCA

A 
ATCC 

(Zeisel et al., 

2018, Ramos-
Garcia et al., 

2020) 

Aryl-

Hydrocarbo

n Receptor 

Pathway 

Aryl-

hydrocarbo

n receptor 

ACGGATGAAGAAGGAC
G 

AG 

AAGGAGGACACAGATA
G 

ATGG 

(Ramos-
Garcia et al., 

2020, 

Rothhammer 
et al., 2016) 

S100β TCTGTCTACACTCCTGT

T 

ACTC 

TCTCCATCACTTTGTCC

A 

CC 

(Tomova et 

al., 2019) 

IL-22 TGACGACCAGAACATC

C 

AG 

TAGAAGGCAGGAAGGA

G 

CAG 

(Monteleone 

et al., 2011) 

IFNAR1 TCTCAAAAACACATTCT
C 

CCTC 

CCATCCTTCTCCATGCT
T 

ATC 

(Rothhammer 
et al., 2016) 

CYP1B1 AAGGAAGGGGAGTGCG 

ATAG 

AATAGATGGGGGAGAT

A 

GGAGG 

(Rothhammer 

et al., 2016) 

Glutamate-

Glutamine 

Cycle 

GLUL TCTCTACACACCAACCC 
TTTC 

ACCAACCTTCAACTCCT 
CAC 

(Schousboe et 
al., 2014) 

GAD67 TGTGAGCCAAAGAGAA

A 

AGATG 

TGAGGGGGGAAAGAGA 

AGAG 

(Schousboe et 

al., 2014) 

GLUD1 CTTCTTTACCACCTCTT

C 

ACC 

ACCTAAAAGCAAACCA

C 

CTAAC 

(Schousboe et 

al., 2014) 

HDAC 

Inhibition 

Pathway 

GDNF TTCAACTCTTTTTCCCC
C 

TTC 

TTCCCCTATGTTCTCCT
G 

TC 

(Bourassa et 
al., 2016) 

BDNF TTCCCCTATGTTCTCCT
G 

TC 

TACCATTCCCCACCTCC 
ATC 

(Bourassa et 
al., 2016) 

NGF1 AGCAAAGCCAAGCAAA

C 
C 

CAAAACCCAACCAAAC

A 
AACC 

(Bourassa et 

al., 2016) 

SP1 ATGCTGCTCAACTCTCC 

TC 

GCTATTCTCTCCTTCTC

C 
ACC 

(Bourassa et 

al., 2016) 

PGC1-α AACTCCTCCCACAACTC 

CTC 

GCCGTTTAGTCTTCCTT

T 

CC 

(Bourassa et 

al., 2016) 

Analysis 

Each sample was analysed in duplicate for both target gene and reference gene (β-

actin), and the relative mRNA expressions were calculated using the 2−ΔΔCt method 

Linear regression was used to test for SCFA-dose responses (Livak and Schmittgen, 
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2001). Results in bar plots are presented as mean ± SEM. For presentation in heat 

maps, the means for gene expression were scaled. For linear regression, the SCFA 

dose was treated as a continuous independent variable while gene expression was 

treated as a continuous dependent variable. Graphs were made using ggplot2 in R 

4.0.0. Linear regression was performed using the lm function in R 4.0.0. The code 

used for analysis and plotting is available here. 

 

 

Results 

Butyrate 

Low levels of butyrate (2.5 - 25µM) did not significantly impact gene expression in 

males (see Fig 1). However, in females Bdnf expression positively associated with 

butyrate dose (df = 10, residual standard error = 0.9446, R2= 0.4419, Adjusted R2= 

0.3861, F-Statistic = 7.918, p = 0.01835). Similarly, the expression of Pgc1-α was 

positively associated with butyrate dose in female astrocytes (df = 10, residual 

standard error = 0.9229, R2= 0.3447, Adjusted R2= 0.2792, F-Statistic = 5.26, p = 

0.04475) but not in males (see Table 2-3). 

https://github.com/simon-sp/scfa-astrocytes
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Fig 1. Impact of butyrate on cortical astrocyte gene expression. A-C. The impact of different 

concentrations of butyrate on immune-related, glutamine/GABA metabolism and histone deacetylase 

inhibitory pathways in male and female cortical astrocytes (N = 3 litters). Raw data was analyzed 

using the 2-∆∆CT method. Plots show the means within each group normalized to the vehicle (0µM) 

with bars representing the standard error of the mean.  D. A heatmap visualizing mean changes in 

gene expression across different genes.  E. Using linear regression, there is a significant association 

between butyrate dose and Bdnf expression in female cortical astrocytes (df = 10, residual standard 

error = 0.9446, R2= 0.4419, Adjusted R2= 0.3861, F-Statistic = 7.918, p = 0.01835) but not in males 

(df = 10, residual standard error = 1.386, R2= 0.01261, Adjusted R2= -0.08612, F-Statistic = 0.1278, p 

= 0.7282). There is a significant association between butyrate dose and Pgc1-α in female cortical 

astrocytes (df = 10, residual standard error = 0.9229, R2= 0.3447, Adjusted R2= 0.2792, F-Statistic = 

5.26, p = 0.04475) but not in males (df = 10, residual standard error = 0.6803, R2= 0.1897, Adjusted 

R2= -0.07913, F-Statistic = 0.1934, p = 0.6995).  

Table 2. Linear regression results in male cultures treated with butyrate. 
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Table 3. Linear regression results in female cultures treated with butyrate. 

 

 

 

 

 

 

 

Acetate 

Low levels of acetate (2.5 - 25µM) did not significantly impact gene expression in 

females (see Fig 2). However, in males Ahr expression positively associated with 

acetate dose (df = 10, residual standard error = 0.5271, R2= 0.5457, Adjusted R2= 

0.5003, F-Statistic = 12.01, p = 0.00606). The expression of Gfap was positively 

associated with acetate dose in male astrocytes (df = 10, residual standard error = 

0.8891, R2= 0.4414, Adjusted R2= 0.3855, F-Statistic = 7.902, p = 0.01844) but not 

in females (see Table 4-5). 
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Fig 2. Impact of acetate on cortical astrocyte gene expression. A-C. The impact of different 

concentrations of butyrate on immune-related, glutamine/GABA metabolism and histone deacetylase 

inhibitory pathways in male and female cortical astrocytes (N = 3 litters). Raw data was analyzed 

using the 2-∆∆CT method. Plots show the means within each group normalized to the vehicle (0µM) 

with bars representing the standard error of the mean.  D. A heatmap visualizing mean changes in 

gene expression across different genes.  E. Using linear regression, there is a significant association 

between acetate dose and Ahr expression in male cortical astrocytes (df = 10, residual standard error = 

0.5271, R2= 0.5457, Adjusted R2= 0.5003, F-Statistic = 12.01, p = 0.00606) but not in females (df = 

10, residual standard error = 0.6358, R2= 0.0243, Adjusted R2= -0.07327, F-Statistic = 0.2491, p = 

0.6285). There is a significant association between butyrate dose and Gfap in male cortical astrocytes 

(df = 10, residual standard error = 0.8891, R2= 0.4414, Adjusted R2= 0.3855, F-Statistic = 7.902, p = 

0.01844) but not in females (df = 10, residual standard error = 0.5173, R2= 0.008557, Adjusted R2= -

0.09059, F-Statistic = 0.0863, p = 0.7749).  

  

 

Table 4. Linear regression results in male cultures treated with acetate. 
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Table 5. Linear regression results in female cultures treated with acetate 

 

 

 

 

 

 

 

 

Propionate 

Propionate treatment (3.5 – 35µM) did not impact gene expression significantly (see 

Fig. 3 and Table 6-7). 

 

Fig 3. Impact of acetate on cortical astrocyte gene expression. A-C. The impact of different concentrations of 

butyrate on immune-related, glutamine/GABA metabolism and histone deacetylase inhibitory pathways in male 

and female cortical astrocytes (N = 3 litters). Raw data was analyzed using the 2-∆∆CT method. Plots show the 

means within each group normalized to the vehicle (0µM) with bars representing the standard error of the 

mean.  D. A heatmap visualizing mean changes in gene expression across different genes.  
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Table 6. Linear regression results in male cultures treated with propionate. 

 

 

 

 

 

 

 

 

 

 

Table 7. Linear regression results in female cultures treated with propionate. 

 

 

 

 

 

 

 

Discussion 

To our knowledge, this is the first in vitro study which assessed a physiologically 

relevant gradient of SCFAs in cortical astrocytes. Most in vitro studies of SCFA 

function pre-treated neuroimmune cells to induce inflammation before the addition 

of SCFAs and did not assess sex-differences (Yang et al., 2019, Yamawaki et al., 

2018, Wang et al., 2018a, Singh et al., 2014, Chen et al., 2007, Hoyles et al., 2018). 

Thus, we used primary enriched male and female cortical astrocyte culture to 

investigate the potential impacts of butyrate, acetate and propionate on gene 

expression. We investigated the impact of SCFAs in aryl-hydrocarbon 
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receptor/immune signalling, glutamate/glutamine metabolism and histone-

deacetylase inhibitor (HDACi) pathways. 

When treating cells with butyrate, we did not see any impact on immune-related or 

glutamate-glutamine metabolism genes. However, in females we found that butyrate 

concentrations positively correlated with Bdnf and Pgc1-α expression. These genes 

may be activated downstream of HDACi activity. Intriguingly, these effects were 

only found in female cortical astrocytes.  

Surprisingly, acetate treatment did not alter glutamate-glutamine related gene 

expression in the astrocytes. A previous human study found 13C radiolabelled 

carbohydrate substrates are converted to acetate within the gut, reaching the 

hypothalamus through peripheral circulation leading to appetite suppression as well 

as changes to hypothalamic glutamate-glutamine metabolism (Frost et al., 2014). 

Acetate treatment did not impact any HDACi pathway-related genes but did alter 

immune gene expression in male cortical astrocytes. In male, but not female cortical 

astrocytes, acetate treatment positively correlated with Ahr and Gfap expression. 

Previous studies identified dietary-derived tryptophan metabolites as mediators of 

astrocytic immunity through the intracellular activation of the aryl-hydrocarbon 

receptor pathway (Rothhammer et al., 2016). Additional studies suggested that this 

receptor is also activated by SCFAs (Marinelli et al., 2019, Jin et al., 2017). These 

results suggest that acetate may also play a role in this astrocytic immune pathway. 

Meanwhile, propionate did not induce any dose-dependent or sex-specific responses 

in astrocyte gene expression.  

There are practical limitations within the study. Prior to this investigation, there was 

a lack of insight into which pathways would be impacted by small concentrations of 
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SCFAs. There may be other pathways with larger undetected effects. Additionally, 

our study did not investigate the supernatants or metabolic responses within cell 

culture to these stimuli. Nonetheless, it is valuable insight for future mechanistic 

studies.  

These results add to a growing collection of studies suggesting the importance of 

SCFAs for neuroprotection and behavior. In rodents, SCFA administration has 

shown to be neuroprotective against stroke (Sadler et al., 2020, Lee et al., 2020a), 

stress (van de Wouw et al., 2018), oligodendrocyte function (Chen et al., 2019b), and 

depressive-like behaviour (Yamawaki et al., 2018). SCFAs modulate blood-brain 

barrier permeability in vitro (Hoyles et al., 2018) and are shown to cross the blood-

brain barrier in rodent and primate studies (Dalile et al., 2019). Now, we present 

evidence that mammalian astrocytes may mediate some of these effects in a sex-

specific manner. 
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Chapter 4: Discussion 

4.1 Overview of Findings in Chapter 2 

In Chapter 2, I reanalyzed 249 studies involving some measures of human brain 

health, psychiatric disorders, mood/behaviour and which sequenced the gut 

microbiome of participants. Where data was publicly accessible, studies were 

reanalyzing used a consistent pipeline which included assessing the abundance of 

neuroactive gut-brain modules. 

Very few datasets involving healthy humans had publicly accessible data. Across six 

studies of infant temperament and microbiome, (Carlson et al., 2018, Gao et al., 2019, 

Christian et al., 2015, Wang et al., 2020d, Aatsinki et al., 2019, Loughman et al., 2020), only 

two found the same genus-level association of Bifidoacterium with positive behaviors 

(Wang et al., 2020d, Aatsinki et al., 2019). Four studies looked to correlate the abundance of 

gut microbes with aspects of personality and emotion (Tillisch et al., 2017, Taylor et al., 

2019, Kim et al., 2018, Johnson, 2020). While each study found specific genus level 

associations with personality, emotion or anxiety, these were not consistent across studies. 

Next, the (Liu et al., 2019a) dataset was reanalysed finding that Alloprevotella abundance 

was significantly reduced in individuals with insomnia, compared to controls. However, 

there were no differences in gut-brain module abundance. Across four other studies that 

were not reanalyzed, two did not find any genera-level associations with sleep metrics (Liu 

et al., 2020c, Anderson et al., 2017). A 16S sequencing study associated sleep disturbance 

with the Prevotella enterotype (Ko et al., 2019). Another intriguing study found associations 

between multiple aspects of sleep quality with bacterial genera (Smith et al., 2019b). 

However, this study may be limited by its use of fecal swabs for sample collection. Five 

studies of healthy ageing and cognition all compared different subsets of unhealthy cognitive 

aging thus, no genus-level differences were found in common amongst them (Nagpal et al., 

2019, Kim et al., 2020, Bajaj et al., 2016, Saji et al., 2019). 
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Many studies assessed the microbiome composition of people with 

neurodevelopmental disorders. Several of these datasets were reanalyzed. In 

attention-deficit hyperactivity disorder (ADHD), one reanalyzed study did not find 

any differences in microbial composition or GBMs (Aarts et al., 2017). Wan et al. 

(2020) used a WGS approach, finding a reduction in dopaminergic pathways in the 

ADHD microbiome, as well as a reduction in Faecalibacterium. Jiang et al. (2018b) 

also observed this reduction, correlating it to scores assessing behavioural difficulties 

and hyperactivity. Five other studies did not report similar findings (Stevens et al., 

2019, Prehn-Kristensen et al., 2018, Szopinska-Tokov et al., 2020, Pärtty et al., 

2015, Wang et al., 2020b).  

Seven studies assessing the microbiome of children with autism spectrum disorders 

(Averina et al., 2020, Son et al., 2015, Pulikkan et al., 2018, Kang et al., 2019, Kong 

et al., 2019, Liu et al., 2019d, Strati et al., 2017). Only two studies showed 

significant differences in microbial abundance but none showed any changes in gut-

brain modules. Thirty other studies were summarized and compared (see Table 1), 

finding very few consistent microbiome changes across the studies. One of the four 

studies which used a WGS approach reported a reduction in glutamate/glutamine 

metabolism in ASD (Wang et al., 2019a). A study by (Liu et al., 2019d). reported 

increased valerate and decreased butyrate in ASD faecal samples. Berding and 

Donovan (2019) reported that fecal SCFAs correlated strongly with diet. These 

results suggest that dietary preferences play a strong role in shaping the ASD 

microbiome.   

Four studies assessing the schizophrenia microbiome were reanalyzed (Xu et al., 

2020, Shen et al., 2018, Flowers et al., 2019, Nguyen et al., 2019). Across two of 

these studies, the schizophrenia microbiome was enriched with the acetate-producing 
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Fusicatenibacter (Shen et al., 2018, Xu et al., 2020). When looking for gut-brain 

modules, one of the datasets also found an increased abundance of butyrate 

synthesis, kynurenine synthesis and inositol degradation in the schizophrenia 

microbiome (Xu et al., 2020). Additionally, this dataset showed a reduction in 

Lactobacillus (Xu et al., 2020).  However, across three WGS studies which were not 

reanalyzed (Zhu et al., 2020, Xu et al., 2020, Schwarz et al., 2018), the reported 

findings were not consistent.  

A few studies analysed the microbiome in other neurodevelopmental disorders but 

were too few in number to draw any conclusions or comparisons (Borghi and 

Vignoli, 2019, Strati et al., 2016, Quagliariello et al., 2018). 

One WGS epilepsy study was reanalyzed finding that the ketogenic diet increased 

the L-Tryptophan biosynthesis pathway in children with epilepsy (Lindefeldt et al., 

2019). Another reanalyzed study compared children with cerebral palsy co-morbid 

with epilepsy to controls, finding over 20 differentially abundant microbes but no 

changes in gut-brain module abundance (Huang et al., 2019a). There were four 16S 

studies that could not be reanalyzed, however they each used different subsets of 

patients for comparisons (Zhang et al., 2018b, Peng et al., 2018, Xie et al., 2017, 

Safak et al., 2020). 

Analyzing a dataset comparing Alzheimer’s disease, mild-cognitive impairment and 

controls, we found multiple changes across microbial composition and gut-brain 

modules (Li et al., 2019a). In individuals with Alzheimer’s disease, the microbiome showed 

a reduction in Ruminoclostridium-5 and an enrichment in gut-brain modules involved in 

isovaleric acid synthesis, butyrate synthesis and acetate synthesis. Intriguingly, more gut-

brain modules were found dysregulated when comparing the mild-cognitive impairment 

group to controls. This includes enrichment in isovaleric acid synthesis, butyrate synthesis, 
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acetate synthesis, tryptophan synthesis, quinolinic acid synthesis, quinolinic acid 

degradation. Three other studies (two 16S and one WGS) could not be reanalyzed; 

Bacteroides abundance was found increased in two of these studies (Haran et al., 2019, Vogt 

et al., 2017), but decreased in the third (Zhuang et al., 2018). Two of these studies also found 

Alistipes enrichment in individuals with AD (Haran et al., 2019, Vogt et al., 2017). 

However, none of these studies inferred the abundance of gut-brain modules nor did they 

measure fecal SCFAs. These findings provide moderate evidence for an increased SCFA 

production in Alzheimer’s disease and mild cognitive impairment. This warrants further 

studies with more extensive metadata collection to untangle these interactions. 

Three studies analysed the gut microbiome of individuals with Multiple Systems 

Atrophy, however the studies did not show consistent differences in the abundance 

of bacterial genera (Du et al., 2019, Engen et al., 2017, Tan et al., 2018). None of 

these studies were publicly accessible and thus were not reanalyzed. (Tan et al., 

2018) found reductions in fecal SCFAs, suggesting they may be dysregulated in this 

disorder.  

Three studies assessed the microbiome in Amyotrophic Lateral Sclerosis, however 

they all reported different results (Zhai et al., 2019a, Brenner et al., 2018, Mazzini et 

al., 2018). Using a WGS approach, (Blacher et al., 2019) found a reduction in 

tryptophan metabolism-related genes in ALS corresponding to alterations in serum 

tryptophan and nicotinamide metabolites.  

Although Parkinson’s Disease is among the most studied disorders in the context of 

the microbiota-gut-brain axis, our reanalysis did not find many differences in 

publicly accessible datasets (Bedarf et al., 2017, Heintz-Buschart et al., 2018, Aho et al., 

2019, Pietrucci et al., 2019, Qian et al., 2018, Weis et al., 2019). However, after stratifying 

individuals by L-DOPA dose, we found one differentially abundant ASV of Lactobacillus 
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which was reduced compared to controls (Weis et al., 2019). Across ten studies that could 

not be reanalyzed, all of them found significant microbial community changes in 

Parkinson’s disease even after accounting for covariates (Petrov et al., 2017, Barichella et 

al., 2019, Cirstea et al., 2020, Hill-Burns et al., 2017) (Keshavarzian et al., 2015, Vidal-

Martinez et al., 2020, Li et al., 2019b, Unger et al., 2016, Ren et al., 2020, Lin et al., 2019). 

Perhaps information about pharmacological treatments, diet and lifestyle are required to 

uncover more consistent microbiome differences. 

Two studies involving alcohol were reanalyzed (Stadlbauer et al., 2019, Bjorkhaug et 

al., 2019). In one study, the alcohol dependent cohort had an increased abundance of 

Ruminococcus 2 and a reduction in Ruminoclostridium 9, as well as reduction in the 

tryptophan degradation gut-brain module (Bjorkhaug et al., 2019). Other studies that could 

not be reanalyzed all used different sequencing methods, cohorts and comparisons making it 

difficult to assess similarities across these studies (Dubinkina et al., 2017, Seo et al., 2020, 

Tsuruya et al., 2016). 

One study involving smokers found that tobacco but not electronic cigarette users 

had a reduction in tryptophan degradation and propionate synthesis (Stewart et al., 

2018). No other smoking studies which used next-generations sequencing were 

found. One datasets of recreational drug-use was reanalysed but no differentially 

abundant microbes or gut-brain modules were found (Barengolts et al., 2018). An 

additional three studies could not be reanalyzed. Among them, Fulcher et al. (2018) 

reported specific changes in microbial abundance associated with recreational drugs. 

(Xu et al., 2017) controlled for age and sex, finding no microbial changes associated 

with drug use. Finally, (Panee et al., 2018) reported a positive association between 

Prevotella abundance in recreational marijuana users and cognition.  

Across two multiple sclerosis datasets, we did not find any differences in gut-brain 

modules or microbial abundance (Miyake et al., 2015, Jangi et al., 2016).. However, 
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when reanalyzing a dataset comparing individuals with neuromyelitis optica spectrum 

disorder to controls, we found reductions in Streptococcus in the disease group (Gong et al., 

2019). The researchers also reported an overall reduction in fecal SCFAs also associating 

acetate and butyrate with disease severity (Gong et al., 2019). Across four studies that could 

not be reanalyzed, no differences were consistently reported (Ventura et al., 2019, Berer et 

al., 2017, Reynders et al., 2020, Zeng et al., 2019). (Zeng et al., 2019) reported reductions in 

fecal SCFAs when comparing either the multiple sclerosis or the neuromyelitis optic 

spectrum disorder to controls. The involvement of SCFAs in multiple sclerosis warrants 

further investigation.  

While few studies looked specifically at the associations between pain-related 

disorders, the brain and the microbiome, there is nonetheless some evidence that 

warrants further investigations. There is some evidence from a WGS study that the 

gut microbiome influences fibromyalgia and serum SCFAs (Minerbi et al., 2019). 

Meanwhile, across several different irritable-bowel syndrome studies different 

microbes are associated with pain (Peter et al., 2018b, Peter et al., 2018a, Labus et 

al., 2019, Jeffery et al., 2012). These studies provide some evidence that the 

microbiome may be involved with the psychological aspects of irritable bowel 

syndrome. Meanwhile, a recent study found enrichment of the kynurening synthesis 

and quinolinic acid degradation gut-brain modules in elderly women with migraines 

(Chen et al., 2019). 

Two anorexia nervosa datasets were reanalyzed (Borgo et al., 2017, Mack et al., 

2016). We found significant differences only in the latter dataset which had a larger 

sample size. We saw enrichment in isovaleric acid synthesis, quinolinic acid 

synthesis, quinolinic acid degradation pathways in patients with anorexia (Mack et 

al., 2016). Notably, the alpha-melanocortinin stimulating hormone mimetic, known 
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to reduce appetite in mice (Tennoune et al., 2014) is restored to control level after 

weight gain and renourishment (Mack et al., 2016). While these changes were not 

reported in four other studies (Morkl et al., 2017, Morita et al., 2015, Kleiman et al., 

2015, Armougom et al., 2009), authors did not measure the abundance of gut-brain modules. 

Future studies focusing on SCFAs and ClpB in anorexia nervosa are needed to better 

understand its role in satiety signalling. 

While butyrate has been characterized as a neuroprotective agent for ischemia in 

preclinical studies (Akhoundzadeh et al., 2018, Lee et al., 2020a, Sadler et al., 2020, Singh 

et al., 2018, Sun et al., 2016a), few human studies have been conducted. None of these 

datasets were publicly accessible. (Wang et al., 2018b) did not find any changes in the gut 

microbiota after a cerebral infarction. In contrast, another study found that bacteria involved 

in butyrate and tryptophan metabolism (Bacteroides, Parabacteroides, Akkermansia, 

Prevotella and Faecalibacterium) were reduced following the cerebral infarction (Ji et al., 

2017). When stratifying patients by type of stroke and severity, other researchers uncovered 

more microbial perturbations. For example, Liu et al. (2020a) found many genera associated 

with individuals showing post-stroke cognitive impairment. Two other studies reported 

conflicting differences in the abundance of Akkermansia in patients with ischemic stroke, 

with one study reporting an increased abundance while another reporting a reduction (Ji et 

al., 2017, Li et al., 2019c). (Polster et al., 2020) found robust differences and correlations 

within a large sample (N = 122) of cavernous angioma using 16S and WGS techniques.  The 

abundance of several species was enriched in the cavernous angioma group including 

Bacteroides thetaomicron and Odoribacter sphlancus while the abundance of other species 

was reduced Bifidobacterium adolescentis and Faecalibacterium prausnitzii (Polster et al., 

2020). They even reported differentially abundant species by cavernous angioma subtype 

and severity (Polster et al., 2020). However, they did not assess differentially abundant gut-

brain modules. Nonetheless, similar large scale studies are crucial for understanding whether 

a certain microbiome composition is protective against stroke or neurovascular disease. 
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None of the studies involving stress or psychiatric disorders had publicly accessible 

datasets. Thus, none of this data could be reanalyzed. Across three studies of 

different types of stressors, the microbiome appears to play a role. One study found 

that adverse childhood events increased the abundance of Prevotella during 

pregnancy  (Hantsoo et al., 2019). Other studies found that maternal stress influenced infant 

microbial composition (Hu et al., 2019a, Naude et al., 2020, Carson et al., 2018). These 

results suggest that stress should be closely monitored during pregnancy and that early-life 

insults may influence the microbiome composition in later life.  

Two further studies analysed the impact of post-traumatic stress disorder on the gut 

microbial composition (Hemmings et al., 2017, Bajaj et al., 2019). While (Bajaj et al., 

2019) reported many differences in microbial abundance in veterans suffering from this 

disorder, more studies are needed to confirm these findings in a broader population. Across 

ten studies of bipolar disorder, no consistent microbial changes were reported across studies 

(Rong et al., 2019, Vinberg et al., 2019, Schwarz et al., 2018, Painold et al., 2019, McIntyre 

et al., 2019, Evans et al., 2017, Coello et al., 2019, Hu et al., 2019b, Zheng et al., 2020b). 

A total of 18 studies of depression and anxiety were reanalyzed and summarized. 

Across multiple studies of depression, Faecalibacterium shows a positive impact on 

quality of life/anxiety/depression (Jiang et al., 2015, Jiang et al., 2018a, Stevens et 

al., 2018, Valles-Colomer et al., 2019). Similarly, Dialister is depleted in depression 

across several other studies (Jiang et al., 2015, Jiang et al., 2020, Valles-Colomer et 

al., 2019). Indeed, other studies also found negative correlations between 

Faecalibacterium and anxiety or depression (Jiang et al., 2015, Jiang et al., 2018a, 

Stevens et al., 2018). These findings are especially interesting since they replicated 

in non-compositionally analysed data sets. 
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Together this data provides strong evidence that SCFA and tryptophan metabolism may be 

altered in Alzheimer’s disease, depression, anxiety and schizophrenia.  

4.2 Overview of Findings in Chapter 3 

In Chapter 2, SCFAs were identified as important neuroactive metabolites. Despite 

these findings, the mechanisms behind these effects are unclear. Human studies 

suggested that SCFAs reach the brain and impact glutamate metabolism, stress, and 

satiety (Frost et al., 2014, Dalile et al., 2020). Preclinical and in vitro studies 

identified several potential pathways by which they impact neuroimmune cells: 

histone-deacetylase inhibition, glutamate-glutamine metabolism and aryl-

hydrocarbon receptor/immune pathways (Erny et al., 2015, Yang et al., 2019, 

Yamawaki et al., 2018, Wang et al., 2018a, Singh et al., 2014, Chen et al., 2019b, 

Marinelli et al., 2019, Jin et al., 2017). These experiments often pre-treated cells to 

induce inflammation. Then supraphysiological levels of SCFAs, mainly butyrate, to 

observe any of its effects.  

Recent investigations identified the important roles of astrocytes in brain and 

behavior, as well as in mediating the impact of microbial metabolites (Rothhammer 

et al., 2016, De Luca et al., 2020, Tomova et al., 2019, Khakh and Deneen, 2019, 

Alberini et al., 2018, Jensen et al., 2013, Cao et al., 2013). To address the potential 

role of SCFAs on naïve astrocytes, we generated enriched primary cultures and 

treated the cells with low, physiological doses of SCFAs. Addressing sex-differences 

across brain disorders and the microbiota-gut brain axis (Jaggar et al., 2020), we 

tested three different concentrations of butyrate, acetate and propionate on male and 

female murine cortical astrocytes separately. Using qPCR, the expression of a panel 

of genes was assessed after treatment. 
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When treated with butyrate, genes implicated in neuroimmune and glutamate 

metabolic pathways were not affected in males or females. However, in females but 

not in males, two genes (Bdnf and Pgc1- involved in the histone deacetylase 

inhibition pathway increased in a dose-dependent manner in response to butyrate. 

Meanwhile, only the neuroimmune pathway was altered by acetate treatment. We 

noticed a dose-dependent increase of Ahr and Gfap expression only in males in 

response to acetate. Finally, we did not find any dose-dependent or sex-specific 

effects of propionate on astrocyte gene expression. 

4.3 Limitations of Human Data 

Despite advances in sequencing and bioinformatics, it is still difficult to replicate 

findings across multiple studies. This is in part due to confounders emerging from 

the collection of metadata (medications, food-frequency questionnaires, 

symptoms/pathology), sequencing methods and the nature of the microbiome itself. 

When attempting to reanalyse studies with an up-to date bioinformatic pipeline, we 

demonstrated the wide confidence intervals of many differentially expressed 

microbes. Further, we found similar statistical uncertainties when inferring 

metabolites with neuroactive potential.  

However, it remains clear even with these limitations that there are striking 

similarities across many microbiome cohorts involving schizophrenia, anxiety, 

depression and Alzheimer’s disease. While we can infer metabolism from 16S or 

WGS sequencing, it does not provide more exact information about the metabolites, 

proteins, lipids and signals produced by gut microbes. While we used inferred 

neuroactive gut-brain modules, this database will likely be expanded in future studies 

as some neuroactive pathways, like bile metabolism, remain unannotated (Valles-

Colomer et al., 2019).  It will be important  to further identify the metabolites 
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involved in these altered pathways to confirm these findings. Perhaps it might help 

us better understand the pathophysiology of these diseases or their symptoms. 

4.4 Glia and the Microbiome: Where to Next? 

As more researchers focus in on the gut microbiome, the glial cells of the brain have 

become an intriguing target. In the last decade, the importance of astrocytes and 

microglia in synaptic pruning and neurodevelopment has started to become 

unravelled (Paolicelli et al., 2011, Bilimoria and Stevens, 2015, Tremblay et al., 

2011, Stephan et al., 2012, Sheridan and Murphy, 2013). Recent research looks to 

expand the role of microglia, oligodendrocytes and astrocytes beyond 

neurodevelopment and neuroinflammation including neuronal activity through 

negative feedback (Badimon et al., 2020), motor function and social interaction 

(Kana et al., 2019) and memory (De Luca et al., 2020, Drulis-Fajdasz et al., 2018, 

Alberini et al., 2018) amongst other functions. More microbiome studies are 

beginning to recognize the importance of glia within the brain (van der Lugt et al., 

2018, Tse, 2017, Thion et al., 2018, Singh et al., 2018, Schmidtner et al., 2019, 

Sampson et al., 2016, Sadler et al., 2020, Rothhammer et al., 2016, Radulescu et al., 

2019, Minter et al., 2016, McMurran et al., 2019, Matt et al., 2018, Leyrolle et al., 

2019). Combined with new insights from single-cell RNA-sequencing technology 

(Zeisel et al., 2018, Van Hove et al., 2019, Sankowski et al., 2019, Prinz et al., 2019, 

Masuda et al., 2019), we may soon discover how specific microbial metabolites 

influence the brain, behavior and development. 

4.5 SCFAs and the Microbiome: A Therapeutic Target Emerges 

Several studies are already beginning to unravel the impacts of SCFAs on the brain 

and behaviour. SCFA supplementation attenuates the cortisol response in adult men 

after an acute psychosocial stressor in a dose-dependent manner (Dalile et al., 2020). 
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Another human study finds that acetate is able to reach the brain to influence satiety 

and glutamate/glutamine cycling in the hypothalamus (Frost et al., 2014). Recent 

advances in our understanding of prebiotic fibres pave the way for new personalized 

interventions to boost the levels of circulating SCFAs as an adjuvant for stress and 

eating disorders (Gill et al., 2020, Dalile et al., 2019, Fatahi et al., 2020, Deehan et 

al., 2020, Berding and Donovan, 2018). While one systematic review did not find 

that prebiotic intake impacted anxiety or depression measures (Liu et al., 2019c) 

while another found it associated with a lower odds-ratio for depression (Fatahi et 

al., 2020).  Future studies are poised to identify specific effects of SCFAs on our 

cortisol response as well as determine whether they alleviate anxiety or depression. 

Since different fibres impact the microbiome in different ways (Gill et al., 2020, 

Deehan et al., 2020),  this must be considered when suggesting appropriate prebiotic 

interventions. 

4.6 Tryptophan Metabolism and Microbiota: Diet to 

Neuroimmunity 

Tryptophan and indole metabolites are a source of intrigue, as more and more 

research focused on neuroinflammation and psychiatry suggest they play key roles. 

Dietary tryptophan metabolites were found to active the astrocyte aryl-hydrocarbon 

receptor (Rothhammer et al., 2018, Rothhammer et al., 2016). A systematic review 

of tryptophan/kynurenine metabolites suggests that perturbation of this delicate 

balance may contribute to schizophrenia, however more large-scale studies are 

needed (Pedraz-Petrozzi et al., 2020). Another meta-analysis finds that metabolism 

shifts towards the kynurenine pathway, away from serotonin production across many 

psychiatric disorders (Marx et al., 2020a).  In schizophrenia, kynurenine metabolism 

then shifts towards the production of kynurenic acid while in mood disorders it shifts 

towards the production of excitotoxic quinolinic acid (Marx et al., 2020a). Future 
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studies may look to use diet as a means of influencing tryptophan or indole 

metabolism.  

4.7 Bile Acids and the Brain: More than a Gut Feeling? 

Several studies suggest that bile acids play intriguing roles beyond digestion, 

signalling through the microbiota-gut-brain axis. Several studies of neuronal and 

glial cells have identified the presence of bile acid receptors (Cani et al., 2013, 

Dempsey et al., 2018, Keitel et al., 2010, Mertens et al., 2017, Poole et al., 2010, 

Silva et al., 2012, Yanguas-Casás et al., 2017). Bile acid metabolism by the 

microbiota is implicated in social behaviour, gastrointestinal distress, 

neuroinflammation, depressive-like behaviors and the HPA axis across preclinical 

and in vitro models (Choudhuri et al., 2003, Golubeva et al., 2017, Hoffman et al., 

2019, Jena et al., 2018, Klaassen and Aleksunes, 2010, McMillin et al., 2015, 

Mertens et al., 2017, Nizamutdinov et al., 2017, Yanguas-Casás et al., 2017, 

Yanguas-Casas et al., 2017, Wang et al., 2020a). A recent study found alterations in 

bile acid profiles in individuals with Alzheimer’s and mild-cognitive impairments 

(MahmoudianDehkordi et al., 2019). A double-blind randomized clinical trial found 

that supplementation with the bile acid taurursodiol combined with sodium 

phenylbutyrate slowed motor decline in individuals with amyotrophic lateral 

sclerosis while another study found it increased survival (Paganoni et al., 2020a, 

Paganoni et al., 2020b). It is clear that bile acids may play important neuroprotective 

and anti-inflammatory roles in brain health, however more studies are needed to 

assess their effects across different brain disorders. 

4.8 Future Directions 

Many current human microbiome studies now focus on identifying gut-microbial 

metabolites derived from aromatic amino acids in the faeces and serum, to 
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understand their role in brain health (Arnoriaga-Rodríguez et al., 2020, Molinaro et 

al., 2020, Bar et al., 2020). There remain a multitude of unidentified microbial by-

products that subtly impact our metabolism, serum metabolites and brain-signalling. 

Future bioinformatics studies will focus on identifying the range of metabolites and 

functional molecules produced by different genera or species of bacteria. In addition, 

different bacterial proteins might also contribute to cross-kingdom signalling. No 

example is as striking as ClpB, a bacterial protein was a mimetic of alpha-

Melanacortonin Stimulating Hormone (Breton et al., 2016, Dominique et al., 2019, 

Tennoune et al., 2014). Moreover, quorum signalling molecules released by 

Staphylococcus aureus act as excitatory or inhibitory modulators of enteric nerves 

(Uhlig et al., 2020). Screening the supernatant proteins and secreted metabolites 

from a host of potential gut-bacteria could help identify new neuroactive molecules. 

Additionally, open metabolomic, proteomic and lipidomic datasets could also be 

reanalysed. This could potentially identify new candidate signalling molecules 

altered due to gut microbiome disruptions. 

However, we still don’t know which metabolites may cross the blood-brain barrier 

and in what amount. Additionally, we do not understand the flux of these metabolites 

over the course of the day. Studies are only able to provide a snapshot of one 

moment in time. Studying the levels of these metabolites in the faeces and serum in 

conjunction with functional brain-imaging is the next step in understanding the 

impact of microbial metabolism on the brain. These studies would lead into the 

development of postbiotics or biologics mimicking beneficial microbial signals. 

Candidates could then be tested in preclinical disease models and later translated into 

humans. Microbial-derived metabolites will be key for understanding the 

mechanisms underlying the microbiota-gut-brain axis. 
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The next step would involve determining their potential mechanism of action. In  

vitro high-throughput studies could identify potentially neuroactive metabolites in 

Caenorhabditis elegans or Danio rerio. Alternatively, primary cultures or co-

cultures of neurons and glia may be used to identify which cell types can respond to 

these metabolites. Metabolites with potential impacts on early neurodevelopment or 

neurobehavioral pathways would continue into in vivo rodent studies. Different 

doses are assessed on their microbiome modulatory properties as well as their impact 

on the brain. Once validated within a rodent model, these metabolites may be 

regulated either through dietary interventions or through oral supplementation. 

Potentially, some of these metabolites could even be delivered at supraphysiological 

levels to modulate brain-health in the coming decades.  
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