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Abstract

The genus Lactobacillus includes over 200 species that are widely used in fermented food preservation,
biotechnology or that are explored for beneficial effects on health. Naming, classifying and comparing
lactobacilli has been challenging due to the high level of phenotypic and genotypic diversity they display,
and because of the uncertain degree of relatedness between them and associated genera. The aim of this
study was to investigate the feasibility of dividing the genus Lactobacillus into more homogeneous
genera/clusters, exploiting genome-based data. The relatedness of 269 species belonging primarily to the
families Lactobacillaceae and Leuconostocaceae was investigated through phylogenetic analysis
(ribosomal proteins and housekeeping genes) and the assessement of the Average Amino acid Identity
(AAI) and, the Percentage of Conserved Proteins (POCP). For each sub-generic group that emerged,
conserved signature genes were identified. Both distance-based and sequence-based metrics showed that
the Lactobacillus genus was paraphyletic and revealed the presence of 10 methodologically consistent
subclades, which were also characterized by distinct distribution of conserved signature orthologues. We
present two ways to reclassify lactobacilli - a conservative division into two subgeneric groups based on
presence/absence of a key carbohydrate utilization gene, or a more radical subdivision into 10 groups that
satisfy more stringent criteria for genomic relatedness.

Importance

Lactobacilli have significant scientific and economic value but their extraordinary diversity means they
are not robustly classified. The 10 homogeneous genera/subgeneric entitites we identify here are
characterised by uniform patterns of the presence/absence of specific sets of genes which offer potential
as discovery tools for understanding differential biological features. Reclassification/sub-division of the
genus Lactobacillus into more uniform taxonomic nuclei will also provide accurate molecular markers
that will be enabling for regulatory approval applications. Re-classification will facilitate scientific
communication related to lactobacilli and prevent mis-identification issues, which are still the major cause
of mislabelling of probiotic and food products reported worldwide.

Keywords: Lactobacillus, taxonomy, phylogeny, comparative genomics, reclassification.
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INTRODUCTION

The genus Lactobacillus includes 232 species (as reported in http://www.bacterio.net/lactobacillus.html),

a number which is rising continuously as novel species are described every year. Lactobacilli are Gram-
positive bacteria, mostly non-motile, catalase-negative, non-spore-forming and rod-shaped (although
coccobacilli are observed). They populate nutrient-rich habitats associated with food, feed, soil, plants,
animals (both vertebrates and invertebrates) and humans (1) and are mainly characterized by a
fermentative metabolism but some evidence of respiration (2), with lactic acid as the main product.
Lactobacilli are key players in industry, food, and human and animal health-related fields: they contribute
to fermented food production, to food texture and its preservation, they deliver pure lactic acid from raw
carbohydrates for onward conversion to bioplastics, and some strains are marketed as probiotics, meaning
they exhibit health benefits beyond the basic nutritional value. In addition, lactobacilli are also being
explored as therapeutics and delivery systems for vaccines (1, 3, 4, 5).

From a food regulatory viewpoint, 84 Lactobacillus species are certified for safe, technological and
beneficial use by the European Food and Feed Cultures Association (6), 36 species have Qualified
Presumption of Safety (QPS) status according to the European Food Safety Authority (EFSA) (7) and 12
species are Generally Recognised as Safe (GRAS) according to the U.S. Food and Drug Administration
(FDA) (http://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices) (8).

The economic value of lactobacilli is substantial: the probiotics and direct-fed microbials markets, in
which lactobacilli play an essential role, are projected to reach a value of USD 64 and 1.4 billion by 2022,
respectively (www.marketsandmarkets.com, 2017). Continued or indeed enhanced levels of economic
exploitation of lactobacilli will benefit from a rigorous comparative genomics framework, such as the
documentation of endogenous or transmissible antibiotic resistance elements across the genus
(Campedelli et al., this issue [submitted]).

From a taxonomic perspective, the primary distinction between members of the genus Lactobacillus has
historically been based on physiological characteristics until the first proposal of introducing 16S rRNA
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gene sequence analysis in 1991 (9). Thus far, analysis of 16S rRNA gene similarity is combined with the
analysis of carbohydrate fermentation profile, according to which lactobacilli are divided into
homofermentative (use of hexose and production of lactic acid), facultatively heterofermentative (use of
pentose/hexose and production of lactic acid and other products) and obligately heterofermentative (use
of pentose/hexoses and production of lactic acid, side products and CO,) (10). However, the expansion of
the Lactobacillus genus since its first description, the presence of overlapping characteristics, together
with the threshhold ambiguity associated with 16S rRNA sequence comparison, has led to frequent
taxonomic changes, mis-identification issues for strains and species at short phylogenetic range, and for
clade distinction at long phylogenetic range (11-14). Further, the comparative analysis of the genome
sequences of almost all Lactobacillus type strains and historically related genera (3, 4) revealed an overall
level of genomic diversity associated with that between members of a bacterial order, and the currently
defined genus Lactobacillus sensu lato encompasses members of genera Pediococcus (Lactobacillaceae
family), Convivina, Fructobacillus, Leuconostoc, Weissella, and Oenococcus (family Leuconostocaceae).
The extreme diversity of the genus Lactobacillus and its polyphyletic structure strongly suggest that this
taxonomic arrangement should be formally re-evaluated. Hence, the aim of the present study was to
understand the evolutionary relationships within the families Lactobacillaceae and Leuconostocaeae and
to provide a robust genome-based framework for a novel taxonomic scheme for the genus Lactobacillus.
Genomics provides bacterial taxonomists with powerful evolutionary information which has been
successfully employed for the identification and classification of prokaryotic species as well as
elucidating diagnostic components in different taxonomic groups (15, 16). Here we interrogated the
genome sequences of 222 strains of Lactobacillus and associated genera through the application of
distance-based metrics, viz. the Average Nucleotide Identity (ANI), the Average Amino acid Identity
(AAI) (17) and the Percentage of Conserved Proteins (POCP) (18), and sequence-based methods, namely
phylogenetic and network analyses based on 29 ribosomal proteins and 12 established phylogenetic
markers. With respect to previous observations, which were based essentially on maximum likelihood of
73 core genes (3), here we i) integrated information derived from distance-based methods to obtain a
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consensus on delineated clades; ii) reduced the number of genes for multilocus sequence analysis, and
deeply investigated the phylogenetic signal by means of split decomposition; iii) revealed the presence of
clade-specific genes. The data obtained illustrate the feasibility and advisability of dividing the current
genus Lactobacillus into a number of more homogeneous genera, and provide the basis for the

development of future taxonomic procedures which should be robust and straitghtforward.

RESULTS

Multilocus sequence analysis (r/MLSA) defines 10 discrete clades within the lactobacilli

We constructed phylogenetic trees for selected strains belonging to the genus Lactobacillus and related
genera based on multilocus sequence analysis of 29 ribosomal proteins (rMLSA) and 12 phylogenetic
markers (MLSA) as shown in Figure 1 (panels A and B, respectively). Both trees are characterized by
high bootstrap values, which indicate that the proteins selected are reflective of robust evolutionary
relatedness between taxa and clades. The trees showed that lactobacilli branch in several clades (defined
by colors in both trees) and are intermixed with genera Pediococcus, Fructobacillus, Leuconostoc,
Oenococcus and Weissella. This supports previous observations on the paraphyly of the genus
Lactobacillus which is taxonomically non-cohesive.

At long phylogenetic range, the individual Lactobacillus species are split into Cluster | (46% of all
lactobacilli, bootstrap value: 100% in both trees) and Cluster 11 (54% of lactobacilli, bootstrap value: 98%
in rIMLSA and 100% in MLSA trees; Figure 1A and 1B) which are consistent in branching order and
composition across the two trees. Cluster | includes six highly supported phylogroups, whose
nomenclature we assigned based on their description in previous studies (3, 4, 11, 12) and are the
following: i) Lactobacillus delbrueckii group (orange), ii) Lactobacillus alimentarius group (red), iii)
Lactobacillus perolens group (green), iv) Lactobacillus casei group (grey), v) Lactobacillus sakei group
(dark pink) and vi) Lactobacillus coryniformis group (light pink). Cluster 1l comprises four phylogroups,

namely, i) Lactobacillus salivarius group (violet), ii) Lactobacillus reuteri and Lactobacillus
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vaccinostercus groups, which can be collapsed in a single phylogroup (brown), iii) Lactobacillus
fructivorans, Lactobacillus brevis, Lactobacillus buchneri and Lactobacillus collinoides groups, which
form a unique phylogroup that we designate L. buchneri (the first species described within this group)
(light grey), and iv) Lactobacillus plantarum-group (light blue). Remarkably, Cluster Il also includes the
Leuconostocaceae family and the genus Pediococcus, which is a sister branch of the expanded L.
buchneri group in both trees.

For those species not clustered in phylogroups, two couples emerged: Lactobacillus concavus-
Lactobacillus dextrinicus, which are peripheral in Cluster I, and Lactobacillus rossiae-Lactobacillus
siliginis, which are associated to Leuconostocaceae in Cluster Il, in both trees. Lactobacillus
selangorensis represents a single line of descent and it is the sole inconsistency between the two trees: it
belongs to Cluster I in both trees, but it is associated to the L. casei phylogroup in the ribosomal protein
tree (Figure 1A), and to the L. sakei group in the other phylogenetic tree (Figure 1B).

The paraphyletic nature of the Lactobacillus genus was also corroborated by the split decomposition
analysis (Supplementary Figure S1A and S1B): the 10 phylogroups were recapitulated in both the
phylogenetic structures, in which pediococci and leuconostocs were interspersed. Interconnecting
networks were also revealed, indicating the occurrence of events more complicated than speciation in the
evolution of the genus Lactobacillus and, more generally, of the families Lactobacillaceae and

Leuconostocaceae.

Selection of distance-based methods to assess genetic relatedness

ANI, AAI and POCP values were calculated across the 222 genome sequences to assess their genetic
relatedness. The majority of ANI values obtained were below the 75-80% range (Figure S2), meaning that
the genomes are distantly related, and indicating that ANI calculation was not appropriate for the current
dataset (16, 19). Thus only AAI and POCP were considered in the present study since they provide much

more robust resolution.
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AAI and POCP metrics support the phylogenetic analysis

AAI and POCP clusterings are shown in Figure 2. Their statistical robustness is supported by the high
bootstrap values at the nodes. The dendrograms substantiate the conclusions from the phylogenetic
analysis: the genus Pediococcus and the family Leuconostocaceae are clustered within the genus
Lactobacillus; further, lactobacilli are branched in almost the same phylogroups observed in the
phylogenetic trees. In detail, Lactobacillus species are split in two clusters in both the dendrograms:
Cluster | comprises just the L. delbrueckii phylogroup, while Cluster Il contains all the other species,
including Leuconostocaceae (which is peripheral in Cluster Il in both the graphics) and pediococci. In the
dendrogram based on AAI values, L. perolens, L. casei, L sakei and L. coryniformis phylogroups form a
single subclade in Cluster Il, while the L. salivarius phylogroup is associated with L. reuteri-
vaccinostercus, L. buchneri and L. plantarum phylogroups and the Pediococcus genus (Figure 2A). In the
POCP dendrogram, L. perolens, L. casei, and L. sakei phylogroups form a single clade together with the
Pediococcus genus, while L. coryniformis is associated with the L. reuteri-vaccinostercus, L. buchneri
and L. plantarum phylogroups (Figure 2B).

In contrast to the phylogenetic analysis, the L. reuteri-vaccinostercus and L. buchneri groups are split
into their original group composition and intermixed. L. concavus-L. dextrinicus and L. selangorensis are
associated to L. sakei phylogroup, while L. rossiae-L. siliginis are clustered with L. vaccinostercus group

in both dendrograms.

Identification of conserved signature genes within Lactobacillus phylogroups

To investigate the functional differences in phylogroups established with distance-based (AAI, POCP)
and sequence-based methods (MLSA), a large-scale orthology analysis was performed. This led to the
identification of 15 orthologs which were selected as putative clade specific-genes based on their pattern
of presence/absence among the phylogroups (Table 1, Table 2, Table S3). One of the key genes was the

glycolytic phosphopfructokinase (pfk, QTS_863) which is present in all the members of L. delbrueckii, L.

alimentarius, L. perolens, L. casei, L. sakei, L. salivarius, L. plantarum, L. coryniformis phylogroups, in L.
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concavus-dextrinicus and in the Pediococcus genus, while it is lacking in all the members of L. reuteri, L.
vaccinostercus, the expanded L. buchneri group, L. rossiae-L. siliginis and all the Leuconostocaceae. The
presence-absence pattern of Pfk seems to have an impact on the carbohydrate metabolism of these species.
In fact, members within the Pfk-lacking group (Table 2) were classified as obligately heterofermentative
(3, 12), with the rest being facultatively heterofermentative or homofermentative. Taking the presence-
absence pattern of Pfk as a reference, the distribution of nine other signature genes is distinct in species
belonging to different phylogroups in the Pfk-positive group (Table 1). Four of them have been associated
to a function and they belong to different Clusters of Orthologous Genes (COGs, Table 1) while five of
these genes are annotated as hypothetical proteins and lack conserved domains. Interestingly, QTS_569, a
Zinc-dependent peptidase, is present in all the Pfk-positive species, except members of L. delbrueckii
group, which, on the other hand, are the only species within the Pfk-positive group with QTS_2524, a
hypothetical protein (profile A, Table 1). Furthermore, QTS_4707, another hypothetical protein, seems to
be specific to the L. alimentarius group (profile B). Presence-absence profiles of these nine genes
(reported in Table 1) are almost unique for each Pfk-positive phylogroup, the Pediococcus genus included;
the only exception is the couple L. concavus-L. dextrinicus which has the same profile as the L. sakei
phylogroup (profile E), characterized by the presence of QTS_569, the Zinc-dependent peptidase, and
QTS_898, a protein annotated as a cell division inhibitor, and the absence of the rest of the genes.

Regarding the Pfk-negative group, the differential distribution of seven genes uniquely describes the
members of most of the groups (Table 2). Six genes out of seven have been annotated and were found to
belong to six COGs (Table 2), while only one gene is annotated as encoding a hypothetical protein.
Species belonging to L. reuteri and L. vaccinostercus clades have the same pattern, one displayed also by
L. rossiae-L. siliginis (profile A), which is characterized by the absence of QTS_898, the cell division
inhibitor, and QTS_2490, a hypothetical protein. Members of the L. fructivorans, L. buchneri and L.
collinoides groups display all the genes except QTS_2490 (profile B), which is, instead, present in L.

brevis group members (profile C). Interestingly, the species belonging to the Leuconostocaceae family
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have a completely different profile compared to other Pfk-negative groups as they lack all the genes under

consideration (profile D).

DISCUSSION

One of the overall aims of this study was to stop the never-ending expansion of Lactobacillus as a
heterogeneous clade (1, 3, 4, 11, 12, 20). We used two methods with a phylogenetic component (MLSA
of ribosomal proteins and a set of housekeeping genes) and two which were phylogeny-independent (AAl
and POCP). MLSA affords higher resolution of the phylogenetic relationships of species within a genus
and genera within a family (16, 21), and successfully resolved the complex taxonomic structure of genera
Escherichia and Shigella and the family Enterobacteriaceae (22-24). Housekeeping protein-coding genes
used for MLSA are believed to evolve at a slow but constant rate and have a better resolution power
compared to the 16S rRNA gene; ribosomal proteins are usually syntenic and co-located in the same
genomic area, thus avoiding binning errors which could perturb the geometry of the tree (19, 21, 25). The
phylogenetic trees we generated confirmed the paraphyletic nature of the genus Lactobacillus (first
observed with a 16S rRNA gene-based phylogeny and a smaller dataset of genome sequences, (11, 12,
13)), where Leuconostocaceae and pediococci branched from the lactobacilli as subgroups. The
topologies of the trees obtained here confirmed the phylogenomic topology inferred from 73 core proteins
(3) and from 172 core genes shared by 174 genomes of lactobacilli and pediococci (1, 4). Each
phylogenomic reconstruction revealed the association of obligately heterofermentative lactobacilli with
Leuconostocaceae (displaying the same metabolism) and their separation from the homofermentative and
facultatively heterofermentative Lactobacillus species (4). Ten historically recognized Lactobacillus
subgroups could also be identified from our analysis (1, 3, 4, 11, 12, 26, 27), which updates the
phylogroupings which we described with Sun and colleagues (3).

Only five Lactobacillus species remained outside the phylogroups: two couples, namely L. rossiae-L.
siliginis and L. concavus-L. dextrinicus, and L. selangorensis. These species were not clustered within
any other Lactobacillus phylogroups using other datasets ranging from 16S rRNA gene to core genes (1,

9
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3, 4, 12). Interestingly, L. dextrinicus was first described as Pediococcus dextrinicus (28) while L.
selangorensis constituted the sole species of the genus Paralactobacillus (29). Both species were later
reclassified as Lactobacillus species based on MLSA of the 16S rRNA gene and other housekeeping
genes (30, 31).

Furthermore, 10 consistent subgroups were defined, namely i) L. delbrueckii (named after the type
species of Lactobacillus) which comprises also the peripheral species L. amylophilus, L. amylotrophicus
and L. floricola; ii) L. alimentarius; iii) L. perolens: iv) L. casei; v) L. sakei (without L. selangorensis); vi)
L. coryniformis; vii) L. salivarius; viii) L. plantarum; ix) L. reuteri, which includes also L.
vaccinostercus-related species; and x) L. buchneri, which encompasses members of L. brevis, L.
fructivorans and L. collinoides groups (the group was given the name L. buchneri since it was the first
species described within the phylogroup).

The inferred subgroups were largely corroborated by AAI and POCP analysis, which were rigorously
applied to lactobacilli in the present project. AAI analysis has shown excellent potential to improve the
classification of higher taxa (e.g. the Enterobacteriaceae family, (32)); POCP was proposed by Qin and
colleagues (18) as a complementary approach to AAl, and it is calculated using all the proteins of the
genomes to be compared. The ANI was also applied to the dataset since it has been officially
recommended as a substitute for DNA-DNA hybridization and has been used in more than 30
classifications (19), but most of ANI values fell below the 75-80% range (as also observed by Zheng and
colleagues (4)), showing the extremely wide genetic diversity of strains under study and making this
method unreliable for the present dataset. This method gives robust resolution to genomes that have 80 —
100% ANI and/or share at least 30% of their gene content, a scenario which typically occurs within
species belonging to the same genus (but it is clearly not applicable to lactobacilli); if two strains have a
distant genetic relationship, only a small proportion of the whole-genome DNA sequence is considered
for ANI calculation and the majority of DNA information is discarded due to the lack of homology (18,
33). In fact, such strains could then be ascribed to different genera as the low values render comparison as
essentially impossible.

10
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Despite relatively high intra-group AAI and POCP values, some inconsistencies in the phylogenetic trees
among the obligately heterofermentative groups emerged. Specifically, the L. vaccinostercus-related
species were separated from the L. reuteri group and the L. buchneri group was split into its original
subclades (L. fructivorans, L. brevis, L. collinoides and L. buchneri groups). In the light of this
incongruence, genome sequences were further explored to identify signature genes which could assist in
the definition of supported Lactobacillus subgroups. A set of 15 genes was thus identified, whose
presence/absence pattern was specific for the 10 phylogroups. The most discriminative gene was the
phosphofructokinase (pfk) which was present in all the homofermentative and facultatively
heterofermentative lactobacilli and absent in the obligately heterofermentative lactobacilli (and
Leuconostocaceae). Production of CO, differentiates obligately from facultatively heterofermentative
metabolism (13). The pfk gene distribution represents the first element in Lactobacillus taxonomy in
which phylogenetic clustering, genome-based analysis and phenotypic (metabolic) analysis come to an
agreement. The other retrieved genes could not be attributed to specific functions nor to unambiguous
phenotypic traits. Nevertheless they represent a biological signature, which, together with robust
phylogenetic groupings, can be used for the definition of cohesive taxonomic entities within the genus
Lactobacillus and thus used as diagnostic tools. Furthermore, given their crucial position at the branch
points that occurred during the evolution of lactobacilli, they provide a resource to be functionally
explored from which new important information on these bacteria may be uncovered (32, 34).

A summary of the data from sequence-based and distance-based methods (Table 3) combining the
analysis of orthologous gene presence/absence crystallizes two scenarios for the formal reclassification of
the Lactobacillus genus. The first scenario consists of splitting the genus into two groups, based on the
presence/absence of pfk, groups that are relatively consistent with pylogenetic trees based on ribosomal
proteins, housekeeping genes and core genes and congruent with carbohydrate fermentation profiles.
However these two subgeneric groups are still characterized by POCP and AAI values that would not
meet the criteria for genus delineation (species should share at least 55-60% AAI and 50% POCP to be
considered within the same genus; (18, 33)). A second scenario envisages the proposal of the ten
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subgroups that emerged from the phylogenetic analysis as nuclei of novel genera within lactobacilli: the
subgroups are consistent in the different trees, they were mainly recapitulated by 16S rRNA-based
sequence analysis (including also species for which a genome sequence is not available, Supplementary
Figure S3), most of them share values of POCP and AAI higher than 50% and 55-60%, respectively, and
they are also characterized by distinct gene distributions (Table 3). In this scenario, some questions
remain unanswered: the first challenge regards the L. delbrueckii, L. alimentarius and L. perolens groups,
whose intragroup diversity changes when peripheral species are considered. For instance, the exclusion of
L. floricola, L. amylophilus and L. amylotrophicus from the L. delbrueckii group increases intragroup
AAI and POCP values from 52.1 and 46.4%, to 59.3 and 52.9%, respectively, thus allowing this group to
meet the criteria suggested for genus delineation based on distance-based metrics (the same situation
applies for the L. perolens and L. alimentarius groups). For the clade composed by members of the
expanded L. buchneri group (L. fructivorans, L. brevis, L. buchneri and L. collinoides members), a
consistent phylogenetic inference faces unmet criteria in distance-based methods (particularly POCP,
which is 45.9%) and a differential distribution of “clade-specific” genes (i.e. members of L. brevis have a
different gene presence/absence pattern compared to the other species).

Those challenges suggest that, besides the improvements that genome analyses deliver, genomics-derived
thresholds should not be used in isolation or be applied agnostically. Indeed, formal reclassifications
should be proposed on the basis of the results of polyphasic study (10) to ensure that diversity of taxa is
coherently described by names at the different taxonomic ranks. De facto, thresholds (i.e. AAl and POCP)
are useful to uniformally delineate taxonomic ranks among phylogenetic lineages, but they should be
applied flexibly and other factors such as other genomic markers (e. g. clade specific proteins, or
conserved amino acids within essential protein sequences (Zhang et al. 2018)), the phenotype, (e.g.
carbohydrate fermentation pattern, or chemotaxonomic markers (35)), the ecology and the niche-
adaptation should be included in the analysis of all taxonomic ranks, including species (1, 36). A valuable

case towards this perspective is given by Zhang and colleagues which showed a clear link between the
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Lactobacillus phylogenetic clusterings, their vancomycin sensitive/resistant phenotype and the sequence
composition of Ddl dipeptide ligase enzyme (Zhang et al., 2018).

Notwithstanding these caveats, data reported here represent a significant further step towards the splitting
of the genus Lactobacillus into more homogeneous genera: they demonstrate a very robust evolutionary
backbone at the basis of a possible renovated classification scheme, and this is of utmost importance to
guarantee stability of names of future taxa, once they are delineated, as this is one of essential points in
nomenclature (37). Indeed, until a complete revaluation of phenotypic coherency of groups proposed here
is performed, no reclassification is advisable; Principle 1 of the Bacteriological Code (37) suggests
avoiding the useless creation of names, a condition that could occur if genomic thresholds are strictly
applied (for instance, if all the peripheral species of groups in Table 3 were unhelpfully proposed as novel
genera) and without considering the broad effect this reclassification could have for the scientific
community and Lactobacillus users such as legislative bodies, regulatory agencies, microbial safety
assessors (Campedelli et al., in preparation), probiotic and fermented food manufacturers.

The pragmatic genome-based approach applied here to the genus Lactobacillus sheds light on the
feasibility of creating a renovated taxonomic scheme in which at least ten homogenous genera/clusters
could accommodate the existing species and those still to be discovered. An open discussion among other
experts, such as the Lactic Acid Bacteria scientific and industrial community and members of the
Subcommittee of Taxonomy of genus Lactobacillus (35) is now advocated in order to proceed towards

the formal proposal of the reclassification of the genus Lactobacillus.

MATERIALS AND METHODS

Dataset

The list of 222 genome sequences belonging to the genus Lactobacillus and related genera that were used
in the present study are shown in Table S1. A further 47 strains for which the genome sequences were not
available were included based on their 16S rRNA gene sequences (Table S1).
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Multilocus sequence analysis based on 29 ribosomal proteins and 12 phylogenetic markers and
phylogenetic tree construction.

A Maximum Likelihood phylogeny was built from 29 ribosomal proteins and 12 housekeeping markers
which were chosen based on their use in published multilocus sequence typing schemes and their
presence in the 222 genomes (Table S2) (38).

Amino-acid sequences were aligned, concatenated and the phylogeny was inferred using the
PROTCATWAG model in RAXML v8.0.22 and rooted using Atopobium minutum DSM 20584,
Atopobium rimae DSM 70907, Kandleria vitulina DSM 20405" and Olsenella uli DSM 7084,
Bootstrapping was carried out using 100 replicates.

SplitsTree4 (39) was applied to detect conflicting signals (possible horizontal gene transfer events), which

are then displayed as networks instead of bifurcating trees.

16S rRNA gene-based phylogeny

16S rRNA phylogenetic analysis for each subgroup were carried out with the MEGA v7.0.26 (40)
software package using Jukes-Cantor as the distance model. The neighbor-joining (41) and minimum-
evolution (42) methods were used for tree reconstruction. The statistical reliability of the phylogenetic

tree topology was evaluated using bootstrapping with 1000 replicates (43).

Distance-based methods: ANI, AAI, POCP.

The ANI, AAI and POCP values across the genomes were calculated according to methods proposed by
Konstantinidis et al., (17, 44), and Qin et al. (18). In detail, the ANI between two genomes was calculated
as the mean identity of all BLASTN (v. 2.2.26+) matches based on 1kb fragments which showed more
than 30% overall sequence identity over an alignable region of at least 70% of total length (45). We used

a command line version of the AAI software (http://enve-omics.ce.gatech.edu/aai/) that takes two FASTA

files of predicted genes as input, identifies reciprocal best BLAST hits and calculates the AAI score based
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on these orthologs(17). For POCP, an in-house script was written following the formula of Qin et al. 2014,
which uses two-way BLAST to calculate a POCP score: (C1 + C2)/(T1 + T2) * 100 where C = number of
conserved proteins (identity >= 40% and aligned length of query >= 50%) and T = total number of
proteins; 1 and 2 refer to input files 1 and 2, respectively(18). The in-house script has been deposited on

figshare with the following digital object identifier: https://doi.org/10.6084/m9.figshare.4577953.v1.

Amino acid sequences used in AAI and POCP were predicted using a combination of three software —
Glimmer3 (v3.02) (46), GeneMark. HMM (v1.1) (47) and MetaGene (48) — where a gene sequence
predicted by at least one software was included in the dataset. Statistics and visualization were carried out

in R v3.1.1 (https://www.r-project.org/) using ‘pvclust’ (49).

Ortholog prediction and identification of clade-specific genes

Orthologs were predicted using QuartetS where two sequences from separate genomes were considered to
be orthologs if they were bi-directional best hits (BBH) of each other, had >=30% identity and >=25%
alignment length. QuartetS also differentiates paralogs from orthologs by building quartet gene trees that
include two sequences from a third genome. The output from QuartetS was a table with 222 genomes as
columns and 34,257 clusters of orthologs as rows where the presence of a sequence for a particular
ortholog was represented as 1 and its absence as 0. This table therefore provided a sequence
presence/absence distribution for each ortholog that was used to predict clade-specific genes. The random
forest algorithm (50) was used to predict clade-specific genes from the R package randomForest. The
software was run in an iterative manner using default parameters where all orthologs having a Gini index
of zero at each iteration were removed. The remaining 90 genes gave an out-of-bag error rate of zero,
which is random forest’s internal method of cross-validation. This suggested that the subset of orthologs
contained potential clade-specific genes. These clade-specific genes were identified in R and further
manual assessment was carried out to exclude potential false positives, including the alignment of

sequences back to genomes using TBLASTN.
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Figure legends

Figure 1.

Phylogenetic trees based on the amino acid sequences of 29 ribosomal protein (1A) and 12 phylogenetic
markers (1B). Clusters I and Il are indicated in the tree. Leu: Leuconostocaceae; Ped: Pediococcus. The
phylogeny was inferred using the PROTCATWAG model in RAXML v8.0.22 and rooted using
Atopobium minutum DSM 205847, Atopobium rimae DSM 7090", Kandleria vitulina DSM 20405 and
Olsenella uli DSM 7084". Bootstrapping was carried out using 100 replicates and values are indicated on

the nodes.

Figure 2.

Dendrograms depicting the genome relatedness based on the Average Amino acid Identity (AAI, 2A) and
the Percentage of Conserved Proteins (POCP, 2B) calculations. Colours refer to the same phylogroups
indicated in Figure 1. L_delb: L. delbrueckii group; L_alim: L. alimentarius group; L_per: L. perolens
group; L_cas: L. casei group; L_sak: L. sakei group; L_coryn: L. coryniformis group; L_saliv: L.
salivarius group; L_reut: L. reuteri group; L_buch: L. buchneri group; L_plan: L. plantarum group. Leu:
Leuconostocaceae; Ped: Pediococcus. Statistics and visualization were carried out in R v3.1.1

(https://www.r-project.org/) using ‘pvclust’ (50-Suzuki and Shimodaira, 2006).
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Table 1: Details of signature proteins for species with Pfk (6-phosphofructokinase)

5 t .. %
= B S k< =
2 % . g F 5 sg§ % os
S 3 5 S § ¥ §§ &% ¢
R = o~ - = N S
$§ 18§ s §ofosg ¢
= S % S S S = S S 3 '§
Genes NCBI tation Locus tag CcoG e e e e e e e e
QTS_863 & . Ip_1898* COGO205G  + + + + + + o+ o+ 4 o+ 4
phosphofructokinase
QTS_569 Zn-dependent 1p_2306° COGOSIZR -  + + + + + 4+ 4+ o+ o+ 4+
peptidase
QTS_898 Cell division Ip2316°  COGOSSOD - + + + + o+ o+ 4+ o+ 4 -
inhibitor
QTS_1754 Transcription
termination factor Ip_0511° COG1158K - - - - - + + + - - +
Rho
QTS_2490 Hypothetical protein LBA0167" n.d. 4% F Kl - - - - - - + -
QTS_2524 Hypothetical protein LBA0844° n.d. +* - - - - - - - - - -
QTS_2525 Sl Family RNA- LBA0276" COGI098R  + + +% . . . 4 . - -
binding protein
QTS_3870 Hypothetical protein LSEI_1730° n.d. - - + + - - - + - + -
QTS_4397 Hypothetical protein LSEI_0696°¢ n.d. - - - + - - - + - + -
QTS_4707 Hypothetical protein  FC67_GL001143° n.d. - + - - - - - - - - -
Profile A B C D E F G H E 1 L
Locus tags: “Lactobacillus plantarum WCFS1; "Lactobacillus acidophilus NCFM; “Lactobacillus paracasei

ATCC 334, Lactobacillus alimentarius DSM 20249. COGs: D. Cell cycle control, cell division, chromosome
partitioning; G. carbohydrate transport and metabolism; K. Transcription; R. General function prediction only.
n.d.: not determined. *absent in L. floricola; tpresent in L. mellifer and L. mellis; §present in L. composti;
§§absent in L. composti; §: present in P. claussenii.

Table 2: Details of signature proteins for species without Pfk (6-phosphofructokinase)

<
2 3
3 @ 3
1 = @ S
g £ - 3
T £ & o £ § g% %
£ 5 % § s £ £§ 3
§ § & 2 § 3 8% 8
N = & S < 3 22 N
Genes NCBI Locus tag CoG e e R B B B ~
QTS_863 6-phosphofructokinase Ip_1898* COG0205G - - - - - - -
QTS_494 %zi‘m‘“e biosynthesis protein LVIS_RS17650° COGO301HI + + + + + + + -
QTS_497 tRNA methyltransferase LVIS_RS18530° COG0482) + + + + + + + -
QTS_502 Transcriptional regulator NrdR LVIS_RS16605°  COG1327K + + + + + + + -
tRNA uridine 5-
QTS_509 carboxymethylaminomethyl LVIS_RS22810° COG0445] + + + + + + + -
modification protein
Qrs_514  DNA replication intiation LVIS_RS14505° COG4467TL + + + + + +  + ;
control protein YabA
QTS_898 Cell division inhibitor LVIS_RS17610°  COG0850D - - + + + + - -
QTS_2490  Hypothetical protein LVIS_RS11970° n.d. - - - + - - - B
Profile A A B C B B A D

Locus tags: “Lactobacillus plantarum WCFS1; ®Lactobacillus brevis ATCC 367; COGs: D. Cell cycle control,
cell division, chromosome partitioning; G. carbohydrate transport and metabolism; H. Coenzyme transport and
metabolism; J. Translation, ribosomal structure and biogenesis; K. Transcription; L: Replication, recombination
and repair. R. General function prediction only. n.d.: not determined.
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Table 3: Combination of distance-based and sequence-based data with the analysis of signature
proteins for each phylogroup

+ o w w S o D
a ® wm & a a B a o
Z & © ¥ =T 1 »®» &6 £
ok T T T A S T
17 B> S 7 N7 S 7 NN B N B 7

oot §8855888¢8¢8
Phylogroups species AAI%* POCP %* pfk

L. delbrueckii 35 52.1 59.3" | 464 | 52.9* | + - - - + + + - - -

L. alimentarius 21 52.8 68.4" | 44.6 | 62.4" + + + - - + - - +

L. perolens 4 559 72.9° | 48 67.8° + + + - - - + - - +

L. casei 16 59.3 55.2 + + + - - - - + + -

L. sakei 4 76.7 75.2 + + + - - - - R - -

L. plantarum 9 76.5 76 + + + + - - - R -

L. coryniformis 5 62.5 61.1 + + + + - - - + +

L. salivarius 27 561 [611°[535[593" [ + [ + [ + [+ | - | - [ - -T-1-

L. concavus-

L. dextrinicus 2 72.7 70.9 + + + - - - - - -

L. selangorensis 1 + + + - + - - + + -
= a | = =
gls|2lz|zlg|8
BN
n|lw|lwn|lw|n|l»nw|n
Ele|l2|lB|2|&2|&
o|lo|Qo|Qo|C| Q| O

L. reuteri 63.2 . | 62 e - + + + + + - -

L. vaccinostercus 2 68.9 57.6 69 51 - + + + + + B N

L. fructivorans 58.3 58.3 - + + + + + + -

L. brevis 74.6 ¢ L70.8 ¢ - + + + + + + +

L. buchneri 48 633 561 55.6 4.9 - + |+ |+ |+ |+ ]+ -

L. collinoides 62.07 62.2 - + + + + + + -

L. rossiae- 2 73.7 67.3 e I I

L. siliginis

Numbers in bold are values > 55-60% ANI and >50% POCP which are the thresholds empirically taken as
genus delineation. *lower percentages within a single phylogroup; *: AAI and POCP values for L. delbrueckii
group without considering peripheral species (L. amylophilus; L. amylotrophicus, L. floricola); ®: AAI and
POCP values for L. alimentarius group without considering peripheral species (L. mellifer, L. mellis); ©: AAl
and POCP values for L. perolens group without considering peripheral species (L. composti); *: AAT and POCP
values for L. salivarius group without considering peripheral species (L. algidus): ©: AAI and POCP values
considering members of L. reuteri and L. vaccinostercus groups; : AAI and POCP values considering members
of L. fructivorans, L. brevis, L. buchneri, L. collinoides groups.
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