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1.4 Abstract 

There has been a growing acknowledgement of the involvement of the gut 

microbiome - the collection of microbes that reside in our gut - in regulating our 

mood and behaviour. This phenomenon is referred to as the microbiota-gut-brain 

axis. While our techniques to measure the presence and abundance of these 

microbes has been steadily improving, there are many factors that prevent us from 

understanding what aspects of the gut microbiome specifically influence the 

microbiota-gut-brain axis. In this thesis, we set out to identify and investigate aspects 

of the microbiome that are informative to gut-brain communication. We do this by 

investigating the state of the gut microbiome in both health and disease, as well as 

after supplementing or perturbing it.  

While all of the work presented here is based on real data from real experiments, the 

thesis has a strong bioinformatics focus, that means that while the physiological 

background and interpretation are important, my role in these projects has been to 

bioinformatically and statistically zoom in on the features of the microbiome that are 

the most informative to our questions. As such, all results will be discussed from a 

primarily bioinformatics point of view.  

Two main aspects of the gut microbiome came out as the most promising features 

to measure, namely functional capacity and volatility. Traditionally, the microbiome 

is thought of as a collection of microbes and most analysis is done on the taxonomical 

level. However, we find that by investigating microbial function - as defined by the 

genes that are found or associated in the detected microbes -  rather than taxonomy, 

we are able to perform more sensitive analysis and that our results are more easily 

interpretable. Second, microbiome studies are typically conducted using a single 

sample per subject. We find that the degree of change in the microbial ecosystem, 

called volatility, is an important feature of the microbiome and that is linked to 

severity of stress response. While volatility was coined before in the context of the 

microbiome, this was only in passing.  We were the first to investigate volatility as a 

feature of the microbiome.  



xi 
 

Our research in this thesis reconfirms the existence of the microbiota-gut-brain axis 

and demonstrates novel metrics that can be used to interrogate the microbiome. We 

utilize mathematical frameworks originally from geology and classical ecology to 

bolster our analysis. We show that considering the microbiome as an ecosystem is a 

powerful model that can help us better formulate our scientific questions and 

interpret our findings. We argue for strategies to unify bioinformatics methodology 

in the microbiome-gut-brain axis field in an effort to move towards mechanistic 

understanding.
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Chapter 1 Introduction 

Two published manuscripts and one manuscript in preparation were used for this 

chapter.  

Chapter 1.1 largely consists of the following published manuscripts: 

Making Sense of … the Microbiome in Psychiatry 

Thomaz F S Bastiaanssen, Caitlin S M Cowan, Marcus J Claesson, Timothy G Dinan, 

John F Cryan 

Published in the International Journal of Neuropsychopharmacology, 2019 

DOI: 10.1093/ijnp/pyy067 

 

Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder 

Thomaz F S Bastiaanssen, Sofia Cussotto, Marcus J Claesson, Gerard Clarke, Timothy 

G Dinan, John F Cryan 

Published in Harvard Review of Psychiatry, 2020 

DOI: 10.1097/HRP.0000000000000243 

 

Chapter 1.2 largely consists of parts of the following manuscript (in preparation, 

tentative title) 

Dealing with Bugs and Features: A field guide to the statistical analysis of host-

microbiome experiments 

Thomaz F.S. Bastiaanssen, Thomas P. Quinn, Amy Loughman, John F. Cryan 

In preparation, no DOI available. 
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1.1 Introduction to the Microbiota-Gut-Brain Axis  

1.1.1 Introduction 

When the Dutchman Antonie van Leeuwenhoek peered through his home-made 

microscope in the seventeenth century, he dubbed the kleine diertjens (tiny animals) 

he found there animalcules (Lane, 2015). The discovery that microorganisms are 

residing practically everywhere, including in and on humans, had a profound impact 

on medical knowledge. A short time later, the link between these small, bloodless 

animals and a diarrhea epidemic was suggested by Valk (Valk, 1745). In 1890, Robert 

Koch published his famous postulates in an attempt to formulate criteria that would 

establish whether a given microbe causes a given disease (Koch, 1876). Up until 

recently in medicine, we have regarded microorganisms as undesirable germs to be 

kept at bay. They were thought to range from pathogenic to harmless to humans and 

relevant to almost all areas of medicine.  

Nonetheless, the disciplines of Microbiology and Psychiatry evolved along distinct 

trajectories with only a few notable exceptions. Infamously, the psychiatrist Henry 

Cotton had the teeth of psychiatric patients in his care removed, believing microbes 

on their teeth to be the source of their illness (Anderson et al., 2017). There is also a 

report in the British Journal of Psychiatry in 1910 of the successful treatment of 

melancholia with Lactic acid bacillus in 1910 (Phillips, 1910). An early adopter of the 

idea of microorganisms as beneficial was the 1908 winner of the Nobel Prize in 

Physiology and Medicine, Metchnikoff. He was convinced of the beneficial effects of 

fermented milk for “autointoxication” (a rather broad term encompassing a range of 

negative health outcomes, including fatigue and melancholia; Bested et al., 2013), so 

much so that it has been reported that he drank fermented milk daily. Despite 

Metchnikoff’s early hypotheses regarding the potential health benefits of certain 

bacterial strains, these ideas were largely ignored for the better part of a century.  

However, in the last decade, developments in sequencing technology and 

bioinformatics have allowed in-depth investigations into the composition of complex 

microbial ecosystems as well as the metabolic and metagenomic potential of such 

systems. Ventures like MetaHIT (Qin et al., 2010), the Human Microbiome Project 
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(Methé et al., 2012), the ELDERMET study (Claesson et al., 2012), the Belgian Flemish 

Gut Flora Project (Falony et al., 2016) and The Dutch LifeLines-DEEP (Tigchelaar et al., 

2015) have shed light on the bidirectional relationship between microorganisms and 

their hosts. This marks a pivotal change in our view of microbes. Not only do we now 

view microorganisms as a cause of disease, they are also increasingly seen as a cause 

of health (Bloomfield et al., 2016).  

 

The largest population of microorganisms on the human body resides in the 

gastrointestinal tract. Known as the gut microbiota, this complex ecosystem is 

comprised of microorganisms including bacteria, fungi and archaea from over 60 

genera (Falony et al., 2016). Recent estimates put the total bacterial count on an 

average human at around 3.0 x 10¹³, which is just more than the estimates of human 

cells in the body (Sender et al., 2016). In a 70 kg individual, the human gut microbiota 

would weigh in at an impressive 0.2 kg (Sender et al., 2016). The total genetic 

material of this mass is known as the microbiome. In terms of genes we are more 

than 99% microbial, meaning the vast majority of both genes and DNA found in a 

human originates from microbes (Qin et al., 2010). Perhaps the most surprising 

development to arise from this field has been the realization that the microbiome 

plays a key role in the programming of all major body systems, including the brain 

(Round and Mazmanian, 2009; Diaz Heijtz et al., 2011; Collins et al., 2012; Cryan and 

Dinan, 2012; Foster et al., 2016; Kundu et al., 2017).  

 

1.1.2 The “Healthy” Microbiome 

It is worth reminding ourselves that we are living in a microbial world; microbes were 

here first and there has never been a time when the brain existed without microbes 

(Stilling et al., 2014). It makes sense to consider the human host in the context of its 

environment. While scientific reductionism is a powerful tool, a more holistic systems 

biology approach has enabled us to more accurately understand complex 

interactions (Sugihara et al., 2012). In this spirit, the term holobiont, describing the 

totality of the host and its microorganisms, has gained increasing traction in the field 



4 
 

(Bordenstein and Theis, 2015; Theis et al., 2016). By blurring the borders between 

otherwise clearly defined organ systems, the holobiont provides a useful concept for 

understanding the many levels of interaction between the host and its microbiome. 

 

1.1.3 Where it began... 

The composition of the microbiome is not only unique to each individual but is also 

known to differ drastically throughout the host's lifespan. For the most part, 

colonization of the human gut microbiome is thought to begin at birth, although this 

notion has become subject to debate based on recent reports of microbial DNA in 

the placenta and meconium (Stout et al., 2013; Aagaard et al., 2014). While these 

reports remain controversial (Perez-Muñoz et al., 2017), what is clear is that the 

neonate is exposed to the vaginal microbiome of the mother during delivery through 

the birth canal. In contrast, when the newborn is delivered via Caesarean section (C-

section), it is exposed to the skin microbiome rather than the vaginal microbiome 

(Chu et al., 2017). Consequently, the microbiome of children delivered via C-section 

differs significantly from that of children delivered vaginally (Dominguez-Bello et al., 

2010; Dominguez-Bello et al., 2016). Other factors, such as prematurity, 

breastfeeding, the presence of pets, parental smoking, maternal age, weight 

(especially obesity), and race are also known to impact the developing microbiome 

(Borre et al., 2014; Bokulich et al., 2016; Levin et al., 2016).  

1.1.4 The ageing microbiome  

Just as development in early life has been found to parallel gut microbiome 

development, several age-related diseases have been similarly linked to the state of 

the microbiome in both animals (Scott et al., 2017) and humans (Claesson et al., 

2012). In a study in elderly Koreans, administration of Lactobacillus helveticus 

IDCC3801 improved performance in cognitive fatigue tests (Chung et al., 2014). A 

decline in microbial diversity is associated with a concomitant increase in microglial 

activation correlated to brain mass differences in the mouse (Von Bernhardi et al., 

2015). This contributes to an age-associated inflammatory response known as 

“inflammageing”, which in turn has been associated with neurodegenerative 
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diseases such as Alzheimer’s and Parkinson’s disease (Franceschi et al., 2007). During 

ageing, the stability of the microbiome deteriorates (Claesson et al., 2011); however, 

it is worth noting that we still lack an exact characterisation of the ageing gut 

microbiome. Decreasing diversity of the gut microbiota has been linked to ageing 

(Biagi et al., 2010) and age-related impairments like frailty in humans (Claesson et al., 

2012; Jackson et al., 2016). In contrast, aged (24-month old) mice exhibit increased 

microbial diversity compared to younger adult mice (Scott et al., 2017). Intriguingly, 

the aged gut microbiota composition can also contribute to “inflammageing” 

(Thevaranjan et al., 2017), the heightened proinflammatory status and decline in 

adaptive immunity progressively observed in older age (Franceschi et al., 2000). 

Given the high prevalence of MDD in ageing (Charlton et al., 2018; Beutel et al., 

2019), it is tempting to speculate that the microbiome might be at the intersection 

of ageing and mood, however, this hypothesis needs to be further verified in targeted 

and large population-based studies (Prenderville et al., 2015). Interventions targeting 

the microbiome have been found to protect against physiological and neuroimmune 

changes due to ageing (Boehme et al 2019) and behavioural and cognitive effects of 

stress (Burokas et al 2017, O'Mahony et al 2019, Provensi et al 2019).  

 

1.1.5 They are what you eat 

As the infant develops it seems that some of these early factors become less 

influential. For example, the microbiota of infants born by C-section or natural 

delivery converges over time, becoming indistinguishable by six weeks of age (Chu et 

al., 2017; Hill et al., 2017). However, one factor that continues to have a significant 

impact on microbiota composition throughout the lifespan is the diet of the host 

(David et al., 2014; Sandhu et al., 2017). In particular, the research shows a stark 

contrast between the Western diet, with its high sugar, animal fat, and carbohydrate 

content, in comparison to a Mediterranean diet, which is characterized by increased 

variety of foods and higher fiber content. The microbiota profile of individuals with 

these different diets is drastically different (Wu et al., 2011; De Filippis et al., 2016). 

Although previous studies have segregated different mammalian gut microbiomes 
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based on their compositions, known as enterotypes, this concept has been 

challenged and is still in the process of being refined (Costea et al., 2018). While there 

is still debate over the canonical number of enterotypes in humans, there is a general 

consensus that a division can be made between an enterotype enriched at the genus 

level in Prevotella and one enriched in Bacteroides. Strikingly, this difference can be 

related to dietary intake. Specifically, fiber-rich diets are associated with the 

Prevotella enterotype, reflecting the role of Prevotella species in production of 

hydrolases specialized for plant fiber degradation (Purushe et al., 2010). Bacteroides, 

on the other hand, are associated with the Western diet (Costea et al., 2018). Specific 

dietary compounds such as polyphenols, which are known to affect brain chemistry, 

are also known to influence the microbiome (Filosa et al., 2018; Matarazzo et al., 

2018; Donoso et al., 2020).  

 

1.1.6 The microbiota-gut-brain axis  

The gut microbiota is known to interact with the brain indirectly, in a bidirectional 

manner, most likely through a variety of pathways including vagal nerve stimulation, 

interaction with the immune system and microbial production of human 

neurotransmitters (see Figure 1; Cryan and Dinan, 2012; Lyte, 2014; Yano et al., 2015; 

Schirmer et al., 2016; Kennedy et al., 2017). While the precise mechanism of action 

remains unknown, evidence for bidirectional communication between the 

microbiome and the brain is clear, and the impact striking. 
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Figure 1.1-1. The microbiota-gut-brain axis Pathways of communication between 
the gut microbiome and the brain, include vagal nerve stimulation, interaction with 
short-chain fatty acids, immunoregulatory elements and tryptophan metabolism. In 
addition, certain microbes are known to produce and secrete human 
neurotransmitters. Figure adapted from Cowan et al. (2018). 
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Besides regulating brain function, the microbiome has also been shown to regulate 

the physical development of the brain (Dinan and Cryan, 2017). For instance, 

hypermyelination of prefrontal cortex neurons has been observed in the brains of 

germ-free mice (Hoban et al., 2016). Moreover, the dendrites of neurons in the 

amygdala and hippocampus of germ-free mice are morphologically distinct to those 

in control mice (Luczynski et al., 2016). In a recent study, mouse pups born from 

germ-free mothers were either colonized with microbiota from slow or fast growing 

human infants (Lu et al., 2018). Pups with microbiota from fast-growing infants 

showed an accelerated neuronal differentiation when compared to slow-growing 

humanized and germ-free pups. In addition, slow-growing humanized mice were 

found to exhibit more signs of neuroinflammation. Finally, the microbiota-derived 

molecule Pglyrp2, which was determined to cross the blood-brain barrier, has been 

shown to influence the protein expression profile in the germ-free mouse model 

(Arentsen et al., 2017).  

 

Completing the circle, not only does targeting the gut microbiome influence the 

brain, there is research that suggests targeting the brain also influences the gut 

microbiome. There have been several recent studies indicating that certain 

pharmaceuticals, especially psychotropic agents, can shape the microbiome (Davey 

et al., 2012; Davey et al., 2013; Kao et al., 2018; Maier et al., 2018). The best evidence 

for psychotropic effects on the microbiota have been observed with antipsychotic 

drugs (Davey et al., 2012; Davey et al., 2013; Kao et al., 2018). In addition, most 

classes of antidepressants, including the widely-used selective serotonin receptor 

inhibitors (SSRIs), have also been shown to impact the microbiota, exhibiting 

antimicrobial activity in vitro (Munoz-Bellido et al., 2000; Macedo et al., 2017). These 

findings are suggestive of a potential whole microbiota-gut-brain axis effect of 

certain psychotropics, consistent with the effects of stress and psychological state on 

this axis (Cryan and Dinan, 2012; Moloney et al., 2014; Foster et al., 2017). However, 

it is difficult to disentangle whether such effects are mediated by changes in 

signalling from the brain to the gut microbiota or, alternatively, via direct actions of 
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the drugs on the microbiota. Other tools and models such as brain stimulation and 

traumatic brain injury are now being used to establish brain to microbiota influences 

more directly. Brain stimulation research is still very much in the preliminary stages; 

only one conference abstract has been published, which reported that deep 

transcranial magnetic stimulation (dTMS) improves symptoms of obesity by 

modulating gut microbiota (FERRULLI et al., 2018). In a controlled experimental 

model of stroke in mice, changes in the cecal microbiota were observed within 72 

hours after brain damage was induced (Houlden et al., 2016). This work replicates 

clinical findings from a patient population of Chinese stroke victims who exhibited 

altered microbiota composition compared to asymptomatic controls (Yin et al., 

2015). Together, these studies highlight the substantial influence of the brain over 

the microbiota, which we are only just beginning to understand. 

 

1.1.7 Tools to Interrogate the Microbiome 

Over the years, a plethora of different experimental models have been utilized to 

investigate the microbiome and its interactions with the host. Here, some of the most 

common will be discussed. For the most part, mice and rats are used as hosts when 

modelling the microbiome. While both animals have distinct features when 

compared to humans, there are many similarities and advantages, making them the 

preferred models in most studies (Nguyen et al., 2015). However, many other species 

from drosophila (Leitão-Gonçalves et al., 2017) to zebrafish (Borrelli et al., 2016) and 

up to primates (Bailey and Coe, 1999; McKenney et al., 2015; Amaral et al., 2017) 

have also been used to investigate the microbiome. As the field of microbiota-brain 

interactions matures we can expect that more studies will be carried out in healthy 

humans and clinical populations, which will further strengthen the conclusions that 

can be drawn from this line of research.  

 

1.1.7.1 Microbiota depletion: Germ-free animals & antibiotics 
As in all aspects of science and engineering, one of the main ways to confirm the 

importance of a specific process is to remove it and study the consequences. Germ-
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free animals represent our best available model for complete removal of all 

microorganisms. This method has been instrumental in linking the microbiome to 

many key brain processes and behaviors (Diaz Heijtz et al., 2011; Luczynski et al., 

2016; Luczynski et al., 2016). However, given that germ-free animals exhibit such 

dramatically abnormal neurodevelopment, it is difficult to determine the precise role 

of the microbiome in said processes (Al-Asmakh and Zadjali, 2015; Luczynski et al., 

2016). Moreover, this is an extreme model with limited clinical translation. 

 

While on first glance similar to the germ-free model, antibiotics represent an 

alternative distinct model to investigate the microbiome (Lundberg et al., 2016). 

Antibiotics have the advantage that they can be used to knock out/down the 

microbiota for specified timeframes without affecting neurodevelopmental 

programming per se. However, as antibiotic treatments can negatively impact the 

animals’ health, it is sometimes hard to distinguish the side-effects of the antibiotics 

from the microbiome-driven effects (Luczynski et al., 2016). Moreover, many 

antibiotics can cross the blood brain barrier (Nau et al., 2010) and caution is therefore 

required when interpreting studies of antibiotic-induced microbiota depletion.   

 

1.1.7.2 “Friends with benefits”: Prebiotics, probiotics, synbiotics & psychobiotics 
While disruption of the microbiome can have a negative effect on the host, 

supplementing the microbiome has been used as a strategy to optimize host 

performance. Introducing probiotic microbes that are known or suspected to be 

beneficial is an intuitive way to investigate the relationship between the host and the 

microbiome. Here, it is important to note that it is likely not just specific microbes 

that may be beneficial, but the collateral effects of that strain on the microbial 

ecosystem in given niches (Duran-Pinedo and Frias-Lopez, 2015). Although the term 

probiotic has gained substantial public attention and become part of the wider 

vocabulary, it is important to clarify that many commercially available strains 

marketed as probiotics have never been tested in clinical trials and therefore by 

definition would not meet the criteria of conferring a health benefit. 
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Prebiotics represent a more general way to alter microbiome composition, 

essentially providing nutrients to encourage the growth of beneficial microorganisms 

(Gibson et al., 2017). However, prebiotics are considered less specific than probiotics 

as there is little control over which microorganisms will metabolize the prebiotics and 

which will proliferate. A growing body of work is now focused on combining 

prebiotics and probiotics to develop synbiotics (Ford et al., 2014). Finally, and most 

recently, the term psychobiotics has been introduced to describe targeted 

microbiome interventions with a beneficial effect on mental health, which are of 

particular interest to the study of psychiatric disorders (Dinan et al., 2013; Sarkar et 

al., 2016; Anderson et al., 2017). Overall, these approaches are appealing because 

they can be introduced in food and drink and therefore provide a relatively non-

invasive method of manipulating the microbiota. While these studies show the 

potential of probiotics, negative studies have demonstrated that similar probiotic 

treatments can vary in effectiveness, suggesting that there are more factors at play 

than just the specific probiotic strain used (Hojsak et al., 2015 ; Mazurak et al., 2015). 

This conforms with the understanding that the behavior of a microbial strain is 

dependent on its metabolic, microbial and host environment (Succurro et al., 2018).   

 

1.1.7.3 Fecal microbiota transplantation (FMT) 
The concept of fecal microbiome transplantation (FMT) as a therapeutic intervention 

is disrupting Western medicine completely. The procedure involves introducing fecal 

microbiota from a selected donor to the gastrointestinal tract of the recipient, with 

the aim of making the recipient microbiome more similar to the donor (Borody and 

Khoruts, 2012). When used as a therapeutic intervention, donors must be screened 

to ensure they are healthy, as phenotypes like obesity and depression have been 

shown to be transferable via FMT, at least in rodents (Turnbaugh et al., 2006; Kelly 

et al., 2016). FMT used in a preclinical setting can involve deliberately unhealthy 

donor phenotypes. The realization that patients with recurrent Clostridium difficile 

infection have a good chance to recover after FMT treatment represents an arguably 
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non-invasive and cheap approach to an otherwise difficult to treat disease (Gianotti 

and Moss, 2017). Moreover, the potential of FMT as a clinical and experimental tool 

is reflected in the application of this approach to treat a wide variety of diseases (e.g. 

irritable bowel syndrome, steatohepatitis, ulcerative colitis, and even autism Pinn et 

al., 2015; Ren et al., 2015; Kang et al., 2017; Zhou et al., 2017) and investigations of 

the effects of inter-species FMT from specific clinical populations to experimental 

rodents (Arrieta et al., 2016). Intriguingly, FMT from young donors to middle-aged 

recipients has even been used to extend the lifespan of killifish (Smith et al., 2017). 

 

1.1.7.4 Cross-sectional studies 
One of the most widely used methods to study the microbiome in humans is to assess 

microbiome composition across cohorts of clinical patients and matched controls. 

Thanks to the increasing number of such studies including the microbiome in their 

measurements, there are a large number of databases available for interrogation, 

such as the Human Pan Microbial Communities Database (HPMCD; Forster et al., 

2016) and the NIH Human Microbiome Project (HMP; The N. I. H. H. M. P. Working 

Group et al., 2009). Here, it is important to note that it is often problematic to pool 

measurements from different databases together because the exact techniques used 

for extraction and processing of microbial genetic material account for a large part 

of the variation between samples (Clooney et al., 2016).  

 

1.1.8 Linking the Microbiome to Psychiatric Disorders 

Given the many modes of communication between the brain and the gut 

microbiome, it is not difficult to imagine the impact the gut microbiome has on host 

mental health and illness. Here, we first discuss the role of the gut microbiome in 

stress regulation, as stress is one of the most potent risk factors for psychiatric illness. 

We then briefly discuss the current state of the evidence linking the microbiome to 

various psychiatric disorders, from developmental disorders to mood, anxiety, and 

eating disorders. 
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1.1.8.1 The microbiome and stress 
There is a robust association between stress, which is associated with activation of 

the hypothalamus-pituitary-adrenal (HPA) axis, and the state of the microbiome (for 

reviews, see Moloney et al., 2014; Gur et al., 2015; de Weerth, 2017; Foster et al., 

2017; Bastiaanssen et al., 2018; Cryan et al., 2019). A number of studies have 

demonstrated that stress alters the composition of the microbiota in a range of 

different hosts, from rats and mice (Gareau et al., 2007; O'Mahony et al., 2011; 

Golubeva et al., 2015; Bharwani et al., 2016; Burokas et al., 2017) to Syrian hamsters 

(Partrick et al., 2018), pigs (Mudd et al., 2017) and non-human primates (Bailey and 

Coe, 1999; Bailey et al., 2011). 

 

In the other direction, the gut microbiome also regulates the stress response. In a 

seminal study, Sudo et al. (2004) elegantly demonstrated that germ-free mice exhibit 

elevated HPA axis responses to stress as measured by adrenocorticotropic hormone 

and corticosterone. The HPA axis response was found to be normalized by 

colonization with a probiotic species but exaggerated by colonization with an 

enteropathogen in the same study. Similarly, probiotics have been shown to reverse 

stress effects in many studies using various animal models (Gareau et al., 2007; 

Desbonnet et al., 2010; Bravo et al., 2011; Ait-Belgnaoui et al., 2012; Barouei et al., 

2012; Liang et al., 2015; Cowan et al., 2016; Bharwani et al., 2017; Callaghan, 2017). 

Promisingly, there is analogous evidence that probiotics promote stress resilience or 

reduce stress-induced physical symptoms and cognitive deficits in humans (Diop et 

al., 2008; Langkamp-Henken et al., 2015; Kato-Kataoka et al., 2016; Allen et al., 2017; 

Wang, 2017; Papalini et al., 2018). Finally, certain prebiotics have also been shown 

to protect against stress-induced effects on the microbiome, physiology and behavior 

(Tarr et al., 2015; Burokas et al., 2017; Provensi et al., 2019). 

1.1.8.2 Major depression 
There is  strong (and continually mounting) evidence that the microbiome plays a 

role in major depression (Foster and McVey Neufeld, 2013; Dash et al., 2015). Germ-

free mice display reduced depressive-like behavior; in the forced swim test of 

behavioral despair, germ-free mice will continue swimming or attempting to escape 
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an inescapable pool for longer than control mice (Zheng et al., 2016), while both 

probiotic and prebiotic treatments have been shown to reduce depressive-like 

behavior in rodent models (Desbonnet et al., 2010; Bravo et al., 2011; Burokas et al., 

2017). These studies seem to hold translational value, with several systematic 

reviews indicating that probiotics effectively improve mood in humans (Huang et al., 

2016; Pirbaglou et al., 2016; Wallace and Milev, 2017). It is worth noting though that 

one such systematic review found that benefits were limited to those with mild to 

moderate depression (i.e. healthy individuals did not significantly benefit; Ng et al., 

2018) which, alongside probiotic strain differences, may explain some of the 

conflicting findings in the attempts to translate probiotic effects to humans (Allen et 

al., 2016; Kelly et al., 2017).  

 

Clinically, several studies have found an altered microbial composition in patients 

with major depression (Naseribafrouei et al., 2014; Jiang et al., 2015; Kelly et al., 

2016; Zheng et al., 2016). Of note, two studies reported a reduction in the relative 

abundance of Faecalibacterium (Jiang et al., 2015; Zheng et al., 2016), mirroring the 

results described earlier for bipolar disorder (Evans et al., 2017). Jiang et al. (2015) 

went further to identify a negative correlation between the severity of depression 

and the prevalence of Faecalibacterium. Another study reported lower levels of 

Bifidobacterium and Lactobacillus in depressed patients (Aizawa et al., 2016). 

Strikingly, when the gut microbiome of depressed humans has been transferred to 

either rats or mice via FMT the recipient animals exhibit greater depressive- and 

anxiety-like behavior compared to those that received FMT from healthy humans 

(Kelly et al., 2016; Zheng et al., 2016). 

 

1.1.8.3 Anxiety disorders 
There is clear preclinical evidence to support a link between anxiety and the 

microbiome (Foster and McVey Neufeld, 2013; Malan-Muller et al., 2018). Germ-free 

mice and zebrafish exhibit reduced anxiety-like behavior (Diaz Heijtz et al., 2011; 

Neufeld et al., 2011; Clarke et al., 2013; Davis et al., 2016), although germ-free rats 



15 
 

exhibit more anxiety-like behavior compared to conventionally colonized controls 

(Crumeyrolle-Arias et al., 2014). Anxiety-associated microbiome differences have 

also been observed between strains of mice, with the anxious BALB/c having a 

distinct microbiome profile compared to the more resilient Swiss Webster strain 

(Bercik et al., 2011). Furthermore, FMT from one mouse strain to the other was 

sufficient to partially transfer the respective behavioral phenotypes (i.e., BALB/c mice 

given NIH Swiss microbiota became less anxious, whereas NIH Swiss mice given 

BALB/c microbiota became more so).  

 

Additional preclinical studies have shown that probiotic and prebiotic treatments can 

reduce anxiety-like behaviours in rodents (e.g. Bravo et al., 2011; Burokas et al., 

2017). Unfortunately, very few studies have examined the relationship between 

anxiety and the microbiome in clinical populations. A single, small study of a South 

African population revealed specific phylum-level differences in the microbiome for 

those diagnosed with post-traumatic stress disorder (PTSD) in comparison to trauma-

exposed controls (Hemmings et al., 2017). Aside from this correlational study, there 

have been two small intervention studies showing that probiotics reduce self-

reported anxiety in healthy individuals (Messaoudi et al., 2011) and in a clinical group 

presenting with chronic fatigue syndrome (Rao et al., 2009).  

1.1.8.4 Obsessive-compulsive disorders (OCD)  
While there have been no direct investigations (as of yet) into the microbiome in 

obsessive-compulsive disorder (OCD) patients, several researchers have speculated 

that there may be a link (Rees, 2014; Turna et al., 2016). This hypothesis is based on 

two lines of observation. First, it has been noted that many of the risk factors for 

onset of OCD are also known to disrupt the microbiome, including stress, pregnancy 

and antibiotic use (Rees, 2014). Second, there is preclinical evidence that OCD-like 

behavior in rodents (frequently measured using the marble burying test, which aims 

to assess repetitive, compulsive behaviors, one of the core symptoms of OCD) can be 

modified by microbial treatments, including germ-free environments and probiotic 

treatments (Nishino et al., 2013; Kantak et al., 2014; Savignac et al., 2014). Notably, 
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the deer mouse, or Peromyscus maniculatus, is used as an animal model for OCD. 

The deer mouse is a nest builder. Naturally, a large proportion of deer mice will 

display a behaviour where they build abnormally large nests (Wolmarans et al., 

2016). Indeed, large nest building deer mice have been shown to respond to selective 

serotonin reuptake inhibitors (SSRIs), which are commonly prescribed for OCD. 

Recently, the large nestbuilding phenotype was shown to have a differing 

microbiome composition compared to its normal nestbuilding counterpart 

(Scheepers et al., 2020).  

 

1.1.8.5 Eating disorders 
The gut microbiome has also been linked to diet-induced obesity (Torres-Fuentes et 

al.). Obese individuals exhibit differences in microbiota composition (Ley et al., 2005; 

Turnbaugh et al., 2006; but see also Sze and Schloss, 2016). Importantly, a causal 

contribution of the microbiome to diet-induced weight gain has been demonstrated 

using mice with a humanized microbiome (Turnbaugh et al., 2009). In these mice, 

switching from a plant-based diet to a Western-style diet caused rapid shifts in the 

microbiome composition (within 24 hours) and subsequent weight gain. 

Furthermore, the increased adiposity associated with the Western diet could then be 

transferred to naïve mice via FMT. Offering hope that we might utilize the 

microbiome to enact positive weight changes as well, it has been hypothesized that 

the microbiome may contribute to weight loss following bariatric surgery, based on 

evidence that such surgeries induce microbiome alterations in both humans and 

rodents (Peat et al., 2015; Torres-Fuentes et al., 2017). 

 

In patients suffering from disorders that are associated with altered eating habits, it 

will continue to be difficult to disentangle the direction of microbiome-mental health 

relationships. It is intriguing to consider this problem; is eating behavior 

“manipulated” by an altered microbiome (as has been suggested by some, e.g. Alcock 

et al., 2014), does eating behavior drive microbiome changes and thereby alter gut-

brain communication, or both? When considering this question, it is worth noting 
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that changes in eating habits are not limited to eating disorders but are observed 

across a variety of psychiatric disorders (including anxiety, ADHD, ASD, depression; 

Yannakoulia et al., 2008; Ptacek et al., 2014), while epidemiological studies show that 

healthy dietary patterns are associated with better mental health (O’Neil et al., 

2014). It is therefore an important question that deserves ongoing attention. 

Regardless of the initial cause of these disruptions, the opportunity to utilize dietary 

or other microbiome-targeting interventions to improve mental health holds great 

appeal and scientific potential. 

 

1.1.9 Linking the Microbiome to Neurological Disorders 

1.1.9.1 Alzheimer’s disease (AD) 
In addition to being involved in the general phenomenon of inflammaging, the gut 

microbiome has also been found to be involved in specific age-related illnesses. In 

patients with Alzheimer’s disease (AD), Hill et al. (2014) reported a correlation 

between colonization of certain pathogenic microbes such as Toxoplasma and 

Clamydophila pneumoniae and progression of the disease. Furthermore, patients 

suffering from AD were shown to have a less diverse microbiome with distinct 

compositional differences when compared to the healthy microbiome (Vogt et al., 

2017). In the same study, the researchers theorize about the high prevalence of pro-

inflammatory lipopolysaccharide producing gram-negative bacteria such as 

Bacteroides in AD patients and their role in pathogenesis (Cattaneo et al., 2017). In a 

large Chinese cohort, patients with mild cognitive decline had a distinct microbiome 

from patients suffering from AD (Liu et al., 2019). Promisingly, a modified ketogenic 

diet targeting the microbiome has been shown to ameliorate some of the mild 

cognitive decline effect of AD (Nagpal et al., 2019). Finally, germ free or antibiotic-

treated transgenic AD mouse models fail to develop plaques (Harach et al., 2017; 

Minter et al., 2017). 
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1.1.9.2 Parkinson’s disease (PD) 
There is a growing emphasis on the role of the gut-brain axis in the onset of 

Parkinson’s disease (PD; Dinan and Cryan, 2017; Perez-Pardo et al., 2017; Elfil et al., 

2020). A number of studies have shown alterations in the microbiome in PD 

(Scheperjans et al., 2014; Keshavarzian et al., 2015; Heintz-Buschart et al., 2018; Qian 

et al., 2018; Sun et al., 2018). When mice were colonized with the microbiota of PD 

patients via FMT, they developed motor deficits and neuroinflammation, two 

hallmark symptoms of PD (Sampson et al., 2016). Additionally, symptoms improved 

when the mice were treated with antibiotics. In rats, overexpression of alpha-

synuclein cooccurred with alterations in the gut microbiome (O’Donovan et al., 

2020). Large-scale investigations using the extensive patient records in Denmark and 

Sweden have shown that vagotomy (or more specifically truncal vagotomy), which 

removes one of the major routes for microbiota to brain communication, is 

protective against PD (Svensson et al., 2015; Liu et al., 2017).  
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1.2 Introduction to Microbiome Bioinformatics 

Analysis 

1.2.1 Introduction 

 

With the advent of high-throughput sequencing, the gut microbiome has become a 

popular subject of investigation. As part of these investigative efforts, it has become 

increasingly clear that the microbiome is in constant bidirectional communication 

with the host, and that both systems influence each other on multiple levels. For 

instance, the human gut microbiome has been shown to differ between individuals 

on the basis of dietary factors, physical health, age, medications, and even 

psychological health (Consortium, 2012; Cryan et al., 2019; Vujkovic-Cvijin et al., 

2020). Analysing and interpreting microbiome experiments can be challenging for 

various reasons. Some factors include the vast range of scientific fields relevant to 

the microbiome--each with their own unique research culture and norms--and the 

sheer number of specialist software tools needed to pre-process and analyse the 

associated data. In this section, we present an overview of the various methods used 

to analyse, interpret, and visualise microbiome studies. Figure 1.2-1 shows a 

representation of what a typical microbiome analysis workflow may look like.  
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Figure 1.2-1. From Stool to Story. Overview of what a typical gut microbiome 
analysis may look like. A) Shows the pre-digital part of the pipeline. Genetic material 
is isolated and digitized, either using the 16S or shotgun sequencing approach. In B) 
the digitized reads are annotated and based on taxonomy and/or function. In C), the 
features are tallied up into count tables. In D), mesoscale patterns, or patterns within 
the data that are larger than features but smaller than the whole such as functional 
modules, are identified. In E) features of the microbiome are assessed statistically. 
Finally, in F), the features are interpreted and presented for peer-review.  
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1.2.2 16S amplicon vs. shotgun sequencing 

Generally speaking, two methods of microbiome sequencing are widely used: (1) 16S 

or amplicon sequencing, which includes methods where an evolutionarily preserved 

genomic sequence is targeted and sequenced, and (2) whole genome shotgun 

sequencing, where all genetic material in a sample is targeted and sequenced.  

1.2.2.1 Pre-processing 16S sequencing data 
The analysis of 16S sequencing typically begins by trimming reads, filtering them for 

quality based on a threshold, and removing chimera sequences. Then, a table of 

either operational taxonomic units (OTUs) or amplicon sequence variants (ASVs) is 

generated. The philosophy and process behind these two units differ meaningfully, 

and this has been comprehensively written about elsewhere (Callahan et al., 2016). 

For all but the most theoretical purposes, both OTUs and ASVs can be seen as the 

highest taxonomic resolution that a specific method can distinguish. Roughly 

speaking, they can be viewed as analogous to species or genera. Although OTUs and 

ASVs are technically distinct, the two are interchangeable concepts when it comes to 

downstream statistical analysis. 

After generating a table of OTUs or ASVs, the next step is to assign taxonomy. In most 

cases, this is done by use of a reference database. Several such databases exist, and 

some are better curated than others. At time of writing, the SILVA database is widely 

regarded as the most accurate and extensive (Quast et al., 2012). Although the 

Greengenes database is still often used, it has not been updated since 2013.  

 

1.2.2.2 Pre-processing shotgun sequencing data 
In the case of shotgun sequencing, it is also common to filter and trim reads in a 

fashion analogous to 16S data. Apart from this, non-microbial genetic material needs 

to be filtered out. This is often done by removing all reads that map to a reference 

genome of the host organism, as well as any other genomes that may be 

contaminants (e.g., plant genetic material from diet).  
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1.2.2.3 The count table 
Although 16S/amplicon and shotgun sequencing differ widely in execution, the type 

of data that is obtained tends to converge downstream in the analysis. After pre-

processing, both 16S and shotgun sequencing methodologies yield a count table. A 

count table shows how many observations (i.e., counts) there were for each feature 

(e.g., microbe, function, gene, etc.) per sample. By convention, a count table will have 

features as columns and samples as rows. Although many software tools assume this 

organisation, there are notable exceptions, so it is always worth checking the 

software before proceeding with an analysis. It is tempting to directly correspond a 

count to a biological instance of a feature in a sample, but due to biases inherent to 

metagenomic sequencing (McLaren et al., 2019), raw counts should not be used with 

initial pre-processing (e.g., normalization). The remainder of this guide assumes the 

use of a count table, though some of the methods presented -- notably, log-ratio 

transformation-based methods -- will perform identically for counts and proportions. 

 

1.2.2.4 Rare features and Rarefaction 
Before the microbiome analysis starts, it is common to filter out rare features. 

Commonly, features that are only detected in a certain percentage of samples are 

removed. This is referred to as prevalence filtering. Similarly, features that are only 

detected in low levels can be dropped here. This is referred to as abundance filtering. 

In rare cases, features can be filtered out based on other metrics, such as variance 

(Guyon and Elisseeff, 2003). Importantly, features should not be filtered based on 

their association with a phenotype, as this could bias the p-value estimates of 

downstream statistical tests. 

The total number of observations recorded for each sample in a count table depends 

on the sequencing depth of the assay. Rarefaction is the practice of randomly 

removing observations from a sample until all samples have the same number of 

observations. However, it has been described as an unnecessary and potentially 

counterproductive measure (McMurdie and Holmes, 2014). It is more conventional 

now to address inter-sample differences in sequencing depth through effective 
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library size normalization or log-ratio transformation (Gloor et al., 2017). One notable 

exception is alpha diversity analysis, as discussed below. 

 

1.2.3 Linking the microbiome to host features 

1.2.3.1 Diversity indices 
The microbiome is a complex ecosystem. The analysis and visualisation of the 

microbiome can be qualitatively distinct from other high-throughput sequencing 

data. Although the data arise from a molecular biology assay, several of the statistical 

approaches used in microbiome analysis originate from other fields, such as ecology. 

This makes microbiome science a clear beneficiary of interdisciplinary research. 

Diversity, as popularized in ecology, is a way to quantify and understand variation in 

microbiome samples. Classically, diversity is separated into three related types: 

Alpha, Beta, and Gamma diversity (Hsieh et al., 2016). Alpha diversity refers to the 

degree of variation within a sample. Beta diversity refers to the degree of variation 

between samples. Gamma diversity refers to the total diversity in all samples (which 

can be thought of as the Alpha diversity of all samples combined). In practice, Gamma 

diversity is rarely used.  

1.2.3.2 Alpha diversity – the diversity within samples 
There are many measures of alpha diversity, which can make alpha diversity 

confusing to understand. It is helpful to classify alpha diversity measures along two 

axes: the Hill number (0, 1, or 2) and whether it is phylogenetic (yes or no).  

Regarding the first axis, alpha diversity measures can be understood as being the 

result of a unifying equation in which a single parameter--called the Hill number--acts 

to vary the meaning for the equation, and thus define the alpha diversity measures.  

Every number gives a different alpha diversity metric. In practice, three Hill numbers 

are most often used: 0, 1 and 2. The number 0 defines Richness, or how many 

different features a sample has. The number 1 defines Evenness, or how equally the 

features in a sample are represented (equivalent to Shannon entropy). The number 
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2 defines Simpson’s Index, or the probability that two features picked at random do 

not have the same name (as a probability it is bounded by 0 and 1).  

Regarding the second axis, other phylogenetic diversity (PD) measures, like Faith’s 

PD, extend alpha diversity by taking into account the coverage of all features (e.g., 

bacteria) on a phylogenetic tree. Typically, the more of the tree that is represented 

in a sample, the higher the diversity. Figure 1.2-2  illustrates a classification of several 

popular alpha diversity measures. 

 

     

 

Figure 1.2-2. Alpha Diversity metrics are related to each other. Commonly used 
alpha diversity metrics in the microbiome field can be mapped on two axes. Here, we 
show the hill number used on the x-axis and whether the index considers phylogeny 
on the y-axis.  

 

1.2.3.3 Statistical considerations with Alpha diversity 
Alpha diversity is used to summarize the entire microbiome composition as a single 

number (Hsieh et al., 2016; Hsieh and Chao, 2017). It is common to model alpha 
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diversity as a dependent variable, using sample meta-data as the predictors. When 

this is done, the literature has shown that a lower Alpha diversity is often associated 

with  worse host health outcomes (Ma, 2020). However, it should by no means be 

taken as principle that a higher Alpha diversity is strictly “better”, as there are many 

examples where elevated Alpha diversity indicates an abnormal or even unhealthy 

host state. For instance, in infants there is a high selection pressure on certain 

microbes, such as numerous species in the genera Bifidobacterium and Lactobacillus 

(Yang et al., 2019). Here, an increased Alpha diversity could indicate a lowered 

selection pressure, which could be indicative of health issues (Hill et al., 2017).  

There are at least 3 issues to consider when using alpha diversity for microbiome data 

analysis. First, all alpha diversity measures are sensitive to transcript-level 

measurement biases such as PCR bias (McLaren et al., 2019). This is recognized as a 

critical limitation of alpha diversity that cannot be resolved unless the PCR bias 

factors are already known a priori (McLaren et al., 2019). Second, some alpha 

diversity measures will change depending on the total number of observations (i.e., 

counts) recorded for a sample. It is often appropriate to “normalize” away 

differences in sequencing depth before comparing alpha diversity between samples. 

This can be done by dividing out total counts to get proportions (e.g., in the case of 

Shannon entropy), or by performing rarefaction (no longer recommended, as 

discussed above). Both procedures will equalise the number of observations 

between samples, so that they can be compared fairly. In fact, many alpha diversity 

software tools will perform this “normalization” step automatically. Third, all alpha 

diversity measures are sensitive to the number of rare taxa that get observed in 

samples, and thus are sensitive to sequencing depth. Failure to record the presence 

of a rare taxa, when it is in fact present, can make a sample appear less diverse than 

it is. 

 

It is important to keep in mind these 3 issues when interpreting the results from an 

alpha diversity analysis. For example, in the case of very low microbial load due to, 

say, an antibiotics course, alpha diversity may appear higher than expected (Elokil et 

al., 2020). This seemingly paradoxical phenomenon can be better understood when 
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considering that there is a limited amount of sequencing material during the 

sequencing process, regardless of method used. In the case of an abundance of 

microbes, the most prevalent ones will use up most of the sequencing reagents, 

leaving little for the rarer taxa to be sequenced. In the case of a low bacterial load, 

there are no prevalent microbes to take up most of the material and thus the rarer 

taxa that happen to be in the sample will have a much higher likelihood to be 

sequenced, thus inflating the calculated diversity.  

1.2.3.4 Beta diversity – the diversity between samples 
Beta diversity refers to the degree of difference between two microbiomes (Goodrich 

et al., 2014; Bastiaanssen et al., 2021). It is worth appreciating the assumptions and 

limitations that come with describing the total difference between two complex 

ecosystems as a single number. There are many ways to measure the “difference” 

between two samples, and each one imparts a unique perspective on the data. In 

principle, one could use any dissimilarity or distance measure. Three common 

difference measures are: 

1.2.3.4.1 Jaccard’s Index 
This is a similarity measure that simply describes the proportion of all features that 

are shared between two samples, without taking abundance into account. As such, 

one could interpret Jaccard’s Index as the fraction of unique taxa (not abundances) 

shared by two samples. If two samples have exactly the same microbe taxa, the 

Jaccard index will be 1. In the case that two samples share no microbe taxa, the 

Jaccard index will be 0. Subtracting Jaccard’s index from 1 makes it the Jaccard 

Distance measure.  

1.2.3.4.2 Euclidean Distance  
This is the geometric distance derived by applying the Pythagorean theorem, using 

every microbe as a separate dimension. It is computed by taking (the square root of) 

the sum of the squared differences in bacteria abundance. As in geometry, the 

minimum Euclidean distance is 0 while the maximum is unbounded.  Euclidean 

Distance satisfies the triangle inequality, making it useful for certain geometric 

analyses, such as volatility analysis as discussed below. A related measure called 
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Aitchison Distance is the Euclidean distance between log-ratio transformed data. This 

distance has a favorable property known as sub-compositional dominance (i.e., the 

removal of a taxa feature will never make two samples appear further apart), and is 

also equivalent to taking the Euclidean distance between all pairwise log-ratios 

(Aitchison et al., 2000). 

1.2.3.4.3 Bray-Curtis Dissimilarity 
This dissimilarity measure is similar to Jaccard’s Index in that it ranges from 0-to-1, 

while also being similar to Euclidean distance in that it is computed from the 

differences between abundances. Bray-Curtis is calculated by summing the 

difference in abundance between each bacteria taxa, and dividing it by the total 

microbial abundance of the two samples. Thus, one could interpret Bray-Curtis as the 

fraction of abundances (not unique taxa) unshared by two samples. 

The three common difference measures listed above make use of bacteria presence 

or abundance without considering the phylogenetic relationship between the 

bacteria. Just as we can make alpha diversity phylogenetic, we can do the same with 

beta diversity.  

1.2.3.4.4 UniFrac  
This distance makes use of phylogenetic information to measure the difference 

between samples. There are (at least) two types. The Unweighted UniFrac Distance 

considers the branch lengths of the phylogenetic tree along with bacteria presence, 

and is defined as the sum of branch lengths unshared between the samples divided 

by the sum of branch lengths present in either sample. This measure has some 

analogy to Jaccard Distance in that an unweighted UniFrac distance of 1 means the 

two samples share no bacteria taxa in common. The Weighted UniFrac Distance 

further considers bacteria abundance, and weighs each branch length in the 

Unweighted UniFrac formula by per-sample proportional abundances. 

1.2.3.4.5 PhILR 
This method uses a log-ratio transformation called the isometric log-ratio (ILR) 

transformation which uses a phylogenetic tree to recast the microbiome variables as 

a series of log-contrasts called “balances” (Silverman et al., 2017). PhILR offers 2 
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weighting options called taxon weighting and branch weighting. When both are 

disabled, the PhILR beta diversity is equivalent to Aitchison distance, although its use 

of phylogeny-based coordinates may yield a more interpretable ordination of the 

data (for example, via a principal coordinates plot). The taxon weighting provides a 

compositionally robust alternative to weighted Jaccard or Bray-Curtis measures, 

while the branch weighting provides a compositionally robust alternative to UniFrac 

measures. 

Figure 1.2-3 illustrates a decision tree that we the authors use when selecting a beta 

diversity measure. As with alpha diversity, it is sometimes helpful to compare and 

contrast the results from multiple measures of beta diversity. 

 

 

Figure 1.2-3. Decision tree featuring common Beta diversity indices. Different Beta 
diversity indices are more suitable depending on the needs of the researcher. This 
decision tree recommends an index based on three common criteria: The need to 
consider abundance, phylogeny and whether it needs to be a true distance metric (i.e. 
whether the metric needs to be compatible with geometry).  
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1.2.3.5 Statistical considerations with Beta diversity 
There are two general strategies used to assess beta diversity: 

(1) Qualitative – visualization of samples plotted across an ordination of the data, 

such as a principal components analysis (PCA) or principal coordinates analysis 

(PCoA) 

(2) Quantitative – explicit modelling of PCA/PcoA axes as a dependent variable, using 

the sample meta-data as the predictors, or some other formal comparison between 

the group centroids 

When discussing Beta diversity, it is important to consider that microbiome data are 

compositional. This is because some common difference measures can have an 

irregular behavior when applied to compositional data (most notably, Euclidean 

distances). Fortunately, the study of compositional data has allowed for the 

development of tools and transformations that enable us to work with compositional 

data in virtually the same manner as regular data. In the case of Beta diversity, the 

alternative to Euclidean distance is Aitchison distance (Aitchison et al., 2000). One 

clear advantage of Aitchison distance, which applies to the unweighted PhILR 

distance too, is that -- unlike alpha diversity and other beta diversities -- it is 

unaffected by PCR bias (McLaren et al., 2019). 

We note here that there is an interesting parallel between compositional data and 

the probability vectors routinely studied in information theory. Similar to how 

Shannon entropy can be used to measure alpha diversity, other informatic metrics 

like Kullback-Leibler divergence could feasibly be used to measure beta diversity (Erb 

and Ay, 2020). Although these metrics are not commonplace in microbiome analysis, 

they are often used in machine learning, and may be more robust for the analysis of 

amalgamated data, for example genus-level or family-level counts (Quinn and Erb, 

2020).  

1.2.3.6 Volatility 
The microbiome is a dynamic ecosystem and undergoes constant change. The degree 

of change in the microbiome over time is called volatility, which is inversely related 

to stability. It can be helpful to think of volatility as a change in sample diversity (alpha 
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or beta) over time. In a neutral setting, without intervention, a higher volatility is 

generally considered to be associated with negative health outcomes (Bastiaanssen 

et al., 2021). The term was first coined in the context of the microbiome in a study 

noting that the microbiome of patients with inflammatory bowel disease tend to 

change more over time than those of healthy controls (Halfvarson et al., 2017). One 

way to calculate volatility is to measure the beta diversity between two or more time 

points corresponding to the same host. When measuring volatility in this fashion, it 

is especially useful to choose a beta diversity metric that is also a distance (i.e., 

follows triangle inequality, like PhiLR or Aitchison distance).   

 

1.2.3.7 Differential feature abundance 

1.2.3.7.1 Taxa and Genes 
Differential abundance (DA) analysis is perhaps one of the most popular microbiome 

analyses. Like alpha and beta diversities, there are many approaches to measuring 

DA. Most methods follow the same general pattern: (a) applying a normalization to 

correct for variation in sequencing depth; (b) performing a univariate statistical test 

for each taxa as a dependent variable with the sample meta-data as predictors; and 

(c) adjusting the p-values for multiple testing, for example using Bonferroni, Storey’s 

q-value or Benjamini-Hochberg. 

1.2.3.7.2  Functions 
Another line of investigation that starts at this point is functional inference. There 

are two general strategies to measuring whether the functions of the measured taxa 

(or genes) associate with the sample meta-data. Both approaches require some 

external database that assigns functions to the taxa (or genes), which we will term a 

functional database.  

(1) Primary analysis: In this approach, the functional database is used to score each 

function based on the taxa or gene abundances. This produces a functional count 

table, which is simply a count table tallying the occurrence of functions rather than 

taxa or any other feature. Then, one could proceed with a routine statistical analysis 
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that uses the functional scores as a dependent variable, as one would for a microbial 

count table.  

(2) Secondary analysis: In this approach, a DA analysis is first performed on the taxa 

or genes, and then the functional database is used to summarize the DA results. In 

the simplest case, the DA results can be dichotomized into significant or non-

significant, and functional status can be dichotomized as present or absent. For each 

function, one could perform a Fisher exact test (or similar) to measure whether that 

function is over-enriched among the significant taxa or genes (Irizarry et al., 2009). 

Gene set enrichment analysis (GSEA) is a popular generalization of this concept, and 

is commonplace in gene expression analysis (Irizarry et al., 2009; Chong et al., 2018). 

The way in which one gets to the functional count table depends on the type of 

sequencing. In the case of 16S, Piphillin and PICRUSt2 are available. Both of these 

tools infer what the metagenome of a sample might look like by comparing all input 

16S sequences to a functional database (currently KEGG and MetaCyc) of fully 

sequenced microbial genomes and building a functional count table based on the 

functions present in these reference genomes. While these methods remain 

inferential, they do provide a reasonably accurate view of the functional potential of 

a microbiome. In the case of shotgun sequencing we still infer function, but since we 

do so from evidence from the genetic sequences in our sample, we only need to 

identify genes and annotate them, often by using a database. Tools like HUMAnN2 

in the biobakery suite are typically used to generate a functional count table for 

shotgun data. 16S functional inference can be thought of as a bigger inferential leap 

than with shotgun, as with 16S we guess the entire genomic content and thus 

function based on a single sequence rather than directly inferring function from the 

detected genes as is the case in shotgun sequencing.  In both cases, a functional 

analysis is limited by the validity and completeness of the functional database used 

to assign functional importance to the taxa or genes. The number of functional 

databases is currently quite limited, with KEGG, UniRef90 and MetaCyc being among 

the most common. Like taxonomic databases, functional databases are updated 

frequently and results may be affected as a consequence. In general, the functional 

microbiome is known to be more consistent between hosts than the taxonomic 
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microbiome, making it a method to reduce inter-subject variance worth 

consideration (Mehta et al., 2018).  

1.2.4 Exploring the mesoscale 

1.2.4.1 Mesoscale features 
Mesoscale features of the microbiome are features that do not necessarily contain 

information about its smallest parts, the microscale, like microbial taxa, nor about 

the whole system, the macroscale, like alpha diversity, but rather contain 

information about patterns within parts of a microbiome that can be seen across 

samples. Mesoscale analysis focuses on identifying community-level patterns that 

define the ecosystem(s) under study. The mesoscale is an important object of study 

in theoretical ecology (Hogeweg, 2010). Here, some of the more common types of 

mesoscale features will be discussed.  

1.2.4.1.1 Ecological Guilds 
Ecological guilds are taxonomically unrelated but functionally related clusters of 

microbes that fulfil a certain function in the microbiome (e.g., occupy a common 

niche). For example, microbial communities across a wide span of environments 

including soil, the ocean, and the human gut can be modelled as being organised in 

trophic groups that feed on one set of substrates and subsequently pass on 

metabolites to another trophic group. While ecological guilds are a promising 

concept in microbiome science, to our knowledge there are currently no 

standardized pipelines or databases that can be used to detect and compare 

ecological guilds across cohorts and experiments. Such tools would be welcome 

additions to the field (Lam et al., 2018; Zhao et al., 2018).  

1.2.4.1.2 Functional Modules  
Functional modules are a list of curated metabolic pathways encoding for processes 

that are related to a specific aspect of the microbiome. As of now, there exist two 

classes of functional modules. Gut-Brain modules cover pathways that are related to 

gut-brain communication, such as serotonin degradation or histamine production. 

The complete list of Gut-Brain Modules can be accessed as a table in the 

supplementary files of the paper that introduced them (Valles-Colomer et al., 2019) 
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as well as online (http://raeslab.org/software/gbms.html). Gut-Metabolic Modules 

cover metabolic processes in the microbiome. Changes in Gut-Metabolic Modules 

can indicate a shift in the microbial metabolic environment and thereby in the fitness 

landscape, thus allowing for microbes with different metabolic features to thrive. The 

complete list of Gut-Metabolic Modules can be accessed as a table in the 

supplementary files of the paper that introduced them (Vieira-Silva et al., 2016) as 

well as on GitHub (https://github.com/raeslab/GMMs). Functional modules are 

especially useful because they can be very easy to interpret and sometimes allow for 

clear hypothesis development for future experiments.  

1.2.5 A word on compositional data 

It may seem tempting to directly treat count data, such as from the microbiome, as 

one would normally treat other types of measurements, perhaps converting the 

count data to percentages or even performing a logarithm, or square root 

transformation to normalize the data. Indeed, up until recently most microbiome 

studies were conducted in this manner. In the past few years, more and higher 

impact microbiome studies employing compositional data analysis (CoDa) have been 

published, indicating that this approach is gaining traction (Johnson et al., 2019; 

Valles-Colomer et al., 2019; Martino et al., 2020).  

Microbiome datasets are compositional, which comes with a set of properties that, 

if ignored, will lead to an underpowered analysis and numerous spurious results. 

There are excellent reviews on CoDa in general and how it relates to the microbiome 

in particular that we encourage our audience to read (Aitchison, 1982; Gloor et al., 

2017).   

 

1.2.5.1 A straightforward and solid approach to account for compositionality in 
microbiome data 
In this guidebook, we will recommend performing a centered log-ratio (CLR) 

transformation on the count data before performing any plotting or statistical 

analysis like normal, with three exceptions. First, alpha diversity should not be done 

on transformed data. Second, stacked bar plots should rather be generated using 
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counts normalized to 1 or to percentages. Third, correlating taxa or other features to 

each other, for example with the intent of performing a network analysis, warrants 

more attention and will be covered in its own paragraph.  

Because microbiome count data is typically zero-inflated and, as the name implies, a 

centered log-ratio transformation involves taking a logarithm and, as is well-known, 

the logarithm of zero is undefined, the zeroes in microbiome count data must first 

be dealt with. Several good solutions have been proposed and in practice the exact 

method chosen from these solutions is of little consequence. In the chapters found 

in this thesis, I employ an approach derived from the ALDEx2 framework (Fernandes 

et al., 2013). In short, we take the median of the CLR-transformed Monte Carlo 

samples of the Dirichlet distribution for each sample as an estimate for what the 

theoretical CLR-transformed values would be. After the CLR-transformation, the 

values of features will have a domain of ℝ, rather than count data, which cannot be 

negative. From this point onwards, classical statistical approaches can be applied as 

normal.  

 

1.2.5.2 Compositions and correlations between microbiome features 
One of the properties of compositional data is that features are innately negatively 

correlated, rendering popular methods to assess correlations, like Pearson’s r, 

Spearman’s ρ or even Kendall’s τ unreliable. Indeed, Karl Pearson warned against 

applying his namesake Pearson’s correlation coefficient on compositional data 

(Pearson, 1897). Effective and compositionally appropriate alternatives exist. Here, 

we recommend the ϕ and ρ metrics found in the propr library in R (Quinn et al., 

2017). In a nutshell, these metrics assess proportionality; if the ratio between two 

features remains constant through many observations, this is an indication that the 

two are associated (Gloor et al., 2017; Quinn et al., 2017). 
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1.3 Specific Aims and Hypotheses 

1.3.1 General aim 

In this thesis I set out to investigate what features in the microbiome are most 

informative in regard to gut-brain communication. Given the highly complex nature 

of the microbiome and the quite specific ways in which we can practically measure 

the microbiome (i.e. mostly metagenomics and sometimes metabolomics), finding 

helpful and informative features that to measure is crucial when conducting a 

microbiome study. There is a consensus that diversity and differential taxon 

abundance should be considered, but other than this, there are few concrete 

guidelines to follow. In order to find and apply informative metrics, we set out to 

investigate the interplay between the microbiome and brain and behaviour in 

different settings.  

 

1.3.2 Sub-aims 

The figure below shows the aspects of the microbiome-gut-brain axis that we set out 

to investigate to identify our metrics of interest.  

1.3.2.1 Neurobehavioural phenotype 
Defining experimental groups based on neurobehavioural differences is a classic 

approach in the microbiome-gut-brain axis field. In chapter 5.1, we investigate the 

differences in microbiome composition between deer mice that build large nest and 

those that build normal nests. A proportion of deer mice will naturally exhibit large 

nest building behaviour and they are used as an animal model for OCD. Indeed, large 

nest building deer mice have been shown to respond to SSRIs, which are commonly 

prescribed for OCD.  

1.3.2.2 Stress 
It is well known that stress affects the microbiome, though the specific taxa that are 

altered by stress seem to differ between studies. Stress and the microbiome 

represent a major aspect of this thesis and their interplay is investigated in chapters 
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3.1, 3.2 and most notably in 5.1, which focuses on the effects of chronic stress on the 

microbiome in both mice and humans.  

1.3.2.3 Critical windows 
When Paracelsus famously claimed that dosis sola facit venenum (only the dose 

makes the poison), he unfortunately missed that timing is also important. It is evident 

that timing is crucial when it comes to the microbiome. Microbiome perturbations 

during colonization at early life are known to have consequences for the host later in 

life. In chapters 3.3, 3.5, 4.2 and 4.4, we study animal models of the microbiome 

undergoing early life adverse events and perturbations. In a category on its own, we 

studied the feasibility of targeting the microbiome during adolescence to cushion the 

symptoms of ageing in chapter 3.1. 

1.3.2.4 Diet 
Diet is known to be one of the major factors shaping the microbiome. It is also known 

to play a role in modulating brain and behaviour. In all subchapters of chapter 3, we 

investigate the effects of diet on the microbiome in animal models. Furthermore, 

chapter 7.3 features an observational study where we follow 24 human participants 

during a 12 week course where they all eat from the same diet rich in unpasteurized 

diary.  

1.3.2.5 Perturbation 
Perturbation of the microbiome is a broad term, but it captures an important aspect 

of my fascination with the microbiome. Here, perturbation is used to indicate 

alterations in the microbiome due to factors that are generally thought of as harmful, 

such as antibiotics or even host stress. In all subchapters of chapter 4 we investigate 

the dynamics of perturbation, robustness and recovery. Furthermore, we zoom in on 

the volatile nature of the microbiome in rest and during stress in chapter 6.1, on 

volatility.   

1.3.2.6 Psychobiotic Intervention 
A psychobiotic intervention will on first glance mean the administration of pre- or 

probiotics. However, in can be interpreted as any treatment that targets the 

microbiome composition with the goal to positively influence host mental health and 
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cognition. As such, I invite the reader to also think of FMT and certain dietary 

interventions as psychobiotic. Psychobiotic interventions are the most common 

theme in this thesis, but they can be found in particular in chapter 4.1 and 4.3, which 

feature FMT as well as 4.4, 7.2 and 7.3 which feature probiotics and unpasteurized 

dairy.  

 

 

Figure 1.3-1 summarising the aspects of the microbiota-gut-brain axis that have been 
investigated in the chapters in this thesis.  
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1.4 Summary of the Presented Papers and 

Manuscripts by subchapter 

Here, I will give a heavily abridged summary of every manuscript presented in this 

thesis, as to help remind the reader what the general subject and findings of a given 

manuscript were. For the published work, I will also provide the DOI on the title page 

of the subchapter. Supplementary figures and some tables have been omitted from 

this thesis and are all available online.  

 

Chapter 2 Targeting the Microbiome-Gut-Brain Axis with Diet 

2.1 Mid-Life Microbiota Crises: Middle Age is Associated with Pervasive 
Neuroimmune Alterations that are Reversed by Targeting the Gut Microbiome  
Ageing comes with a host of physiological and behavioural changes including 

cognitive decline. FOS-Inulin supplementation counteracted the neuroinflammatroy 

phenotype normally found in middle-aged mice after stress. Notable, both ageing 

and prebiotics supplementation showed their own signature in the microbiome. 

2.2 Preventing adolescent stress-induced cognitive and microbiome changes 
by diet  
Stress impacts the host in many ways, including behaviour and the microbiome. By 

supplementing rats with a diet rich in omega-3 fatty acids and vitamin A, these 

changes in both the microbiome and in behaviour were decreased. Notably, the 

effect of the enriched diet remained visible in adulthood.  

2.3 Polyphenols selectively reverse early-life stress-induced behavioural, 
neurochemical and microbiota changes in the rat  
Early life stress is known to promote anxiety and depressive-like behaviour later in 

life. Polyphenol supplementation rescued these early life stress effects and changed 

the microbiome, including its functional potential.  
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2.4 Prebiotic administration modulates gut microbiota and faecal short-chain 
fatty acid concentrations but does not prevent chronic intermittent hypoxia-
induced apnoea and hypertension in adult rats  
Hypoxia can promote cardiorespiratory morbidity and also affects the microbiome. 

Prebiotic (FOS/GOS) supplementation did not rescue cardiorespiratory effects of 

hypoxia, but affected the microbiome strongly, both in terms of taxonomy as in 

function.  

2.5 Adolescent Dietary Manipulations Differentially Affect Gut Microbiota 
Composition and Amygdala Neuroimmune Gene Expression in Male Mice in 
Adulthood  
Poor diets such as high fat or even cafeteria diet in adolescence affect the host during 

adulthood in many ways, including in terms of neuroimmunity. In adult mice, the 

effects of these diets are still visible in the microbiome, both in terms of differential 

taxa abundance as in beta diversity.  

 

Chapter 3 Targeting the Microbiome with Perturbations and 

Psychobiotics 

3.1 Microbiota from Young Mice Selectively Counteracts the Effects of Aging 
Across the Microbiome-Gut-Immune-Brain Axis 
In addition to impacting host physiology, immune system brain and behaviour, 

ageing impacts the host microbiome in specific manners. We show that Faecal 

Microbiota Transplantation (FMT) from young to aged mice counteracts some, but 

not all, of these age-induced changes.  

3.2 Enduring neurobehavioral effects induced by microbiota depletion during 
the adolescent period 
Antibiotics perturbation of the microbiome during adolescence can have long lasting 

consequences with regards to brain and behaviour. While the effects of antibiotics 

were no longer detectable in the microbiome in adulthood, a behavioural phenotype 

persists. This suggests some sort of critical window where adolescent mice are 

susceptible to antibiotics perturbation.  
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3.3 Strategies for effective gut microbiota recovery after chronic broad-
spectrum antibiotic administration in adult male rats. 
The way in which the microbiome restores itself after antibiotics depletion remains 

unclear. Strikingly, the genus Blautia was only able to colonize after ABX perturbation 

followed by prebiotics supplementation, but not after just ABX or just prebiotics 

alone. This colonization of Blautia was linked back to changes in functional capacity.  

3.4 Enduring behavioral effects induced by birth by caesarean section in the 
mouse 
C-section alters the starting state of the microbiome, as the offspring is never in 

contact with the birth canal, where microbiome colonisation is thought to typically 

take place. In early life, the microbiome of mice delivered by c-section is clearly 

different from that of naturally born animals. In adulthood, these changes can no 

longer be detected in the microbiome, but a signature remains in brain gene 

expression and in behaviour.  

Chapter 4 

4.1 Natural compulsive-like behaviour in the deer mouse (Peromyscus 
maniculatus bairdii) is associated with altered gut microbiota composition 
The deer mouse builds nests. Naturally, a proportion of deer mice builds much larger 

nests than the rest. The deer mouse is used as a model organism for OCD. We find 

that microbiome composition, but not any specific microbial genera, is associated 

with nest builder status. This in turn has implications for OCD being partially 

modulated by the microbiome.  

Chapter 5 

5.1 Volatility as a Concept to Understand the Impact of Stress on the 
Microbiome 
We find that degree of change in the microbiome after a stressor is correlated with 

severity of the stress response, both in mice and in students undergoing academic 

stress. Furthermore, we find that, while which genera are altered due to stress is 

dependent on the cohort, functional changes are consistent between cohorts and 

even between mice and humans.  
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Chapter 6 Human Microbiome-Gut-Brain Axis Studies 

6.1 A specific dietary fibre supplementation improves cognitive 
performance—an exploratory randomised, placebo-controlled, crossover study 
The prebiotic polydextrose improved scores in cognitive tasks. In the microbiome, it 

specifically increased relative abundance of the genus Ruminiclostridium but did not 

alter the microbiome composition detectably on a beta diversity level.  

6.2 Bifidobacterium longum Counters the Effects of Obesity: Partial Successful 
Translation from Rodent to Human 
In this translational study, the probiotic Bifidobacterium longum APC1472 was shown 

to have anti-obesity effects in mice but these were not replicated in humans. In a 

longitudinal cohort of obese and overweight (human) participants, recipients 

showed an improvement in other measurements, including higher ghrelin levels and 

reduced cortisol awakening response.  

6.3 Recipe for a Healthy Gut: Intake of Unpasteurised Milk Is Associated with 
Increased Lactobacillus Abundance in the Human Gut Microbiome 
After a 12-week residential cookery course where students have an increased intake 

in unpasteurized dairy, we find that milk-fermenting bacteria are strongly increased 

in the gut microbiome. We also find an increase in neuroactive gut-brain modules, as 

well as an overall increase in functional diversity.  
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2.1.1 Abstract 

Male middle age is a transitional period where many physiological and psychological 

changes occur leading to cognitive and behavioural alterations, and a deterioration 

of brain function. However, the mechanisms underpinning such changes are unclear. 

The gut microbiome has been implicated as a key mediator in the communication 

between the gut and the brain, and in the regulation of brain homeostasis including 

brain immune cell function. Thus, we tested whether targeting the gut microbiome 

by prebiotic supplementation, may alter microglia activation and brain function in 

ageing. Male young adult (eight weeks) and middle-aged C57BL/6J mice (ten months) 

received diet enriched with a prebiotic (10% oligofructose-enriched inulin (FOS-

Inulin)) or control chow for 14 weeks. Prebiotic supplementation differentially 

altered the gut microbiota profile in young and middle-aged mice with changes 

correlating with faecal metabolites. Functionally, this translated into a reversal of 

stress-induced immune priming in middle-aged mice. In addition, a reduction in 

ageing-induced infiltration of Ly-6Chi-monocytes into the brain coupled with a 

reversal in ageing-related increases in a subset of activated microglia (Ly-6C+) was 

observed. Taken together, these data highlight a potential pathway by which 

targeting the gut microbiome with prebiotics can modulate the peripheral immune 

response and alter neuroinflammation in middle age. Our data highlight a novel 

strategy for the amelioration of age-related neuroinflammatory pathologies and 

brain function.  
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2.1.2 Introduction 

We have trillions of microbes in our gastrointestinal tract, and a growing body of 

evidence supports a role for them in maintaining health across the lifespan (Lynch 

and Pedersen, 2016; Fung et al., 2017; Miquel et al., 2018). Indeed, microbiota has 

been implicated as a key mediator in the communication between the gut and the 

brain and regulating brain homeostasis. Diet has been shown to be one of the most 

important factors in modifying the gut microbiota composition (David et al., 2014; 

Sandhu et al., 2017). However, the ability of nutritional interventions that target the 

microbiome to alter brain function has not received much attention (Donovan, 2017; 

Sandhu et al., 2017; Miquel et al., 2018). 

 

Ageing is defined as a process involving slow deterioration of various homeostatic 

functions throughout the lifespan. Middle age in particular is a life period where 

many physiological and psychological changes occur, leading to first cognitive 

impairments and behavioural alterations, and a deterioration of brain function 

(Francia et al., 2006; Ennaceur et al., 2008; Duarte et al., 2014; Bensalem et al., 2016; 

Shoji et al., 2016). In rodents, increased anxiety-like behaviour occurs in middle-age 

(Ennaceur et al., 2008; Shoji et al., 2016). A few studies reported cognitive decline in 

middle-aged rodents (Bensalem et al., 2016; Shoji et al., 2016), with variable 

definitions of “middle-age“ highlighting the need for greater specification 

(Prenderville et al., 2015). Moreover, the levels of neurotransmitters (Duarte et al., 

2014) and neurotrophins (Francia et al., 2006) were shown to decline with age, which 

may possibly contribute to altered behaviour and brain homeostasis.  

 

Increased age is associated with a shift towards a pro-inflammatory state and 

inflammageing (Sparkman and Johnson, 2008; Franceschi et al., 2017). This, in turn, 

can make the ageing brain more vulnerable to various intrinsic and extrinsic 

disruptive effects including stress, disease and infection (Norden and Godbout, 2013; 

Prenderville et al., 2015). Moreover, this vulnerability may result in cognitive 

alterations (Miquel et al., 2018). However, it remains unclear to what extent an 
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altered brain immune system can contribute to alterations in cognitive functions in 

middle-aged subjects.  

 

Microglia are the major immune cells in the brain and have been shown to be a key 

player in neuropsychological and neurodegenerative conditions (Tay et al., 2017; 

Hickman et al., 2018). Increased activation of microglia in the aged brain has been 

suggested to be indicative of enhanced inflammation and heightened reactivity in 

the rodent and the human brain (Perry et al., 2003; Streit et al., 2004; Sparkman and 

Johnson, 2008). Following an immune stimulus, which is exaggerated in ageing, 

microglia are referred to as “primed“ due to their rapid induction and increased 

cytokine release upon activation (Perry et al., 2003; Sparkman and Johnson, 2008). 

Microglia are specialised cells continuously monitoring their environment 

(Nimmerjahn et al., 2005) and can sense changes in the brain’s milieu (Hickman et 

al., 2013). In addition, microglia play a crucial role in synaptic plasticity, brain function 

and cognition across the lifespan (Tay et al., 2017).  

 

Numerous studies have shown shifts in the composition of the intestinal microbiota 

with age in rodent models (Scott et al., 2017; van der Lugt et al., 2018) and in humans, 

including extreme ageing (Biagi et al., 2010; Biagi et al., 2016). Previous research 

utilizing pre-clinical models implicated a role of microbiota from aged mice in driving 

systemic immunity (Fransen et al., 2017; Thevaranjan et al., 2017). However, the 

effect on neuro-immunity and subsequent brain function and behaviour remains 

unaddressed. Interestingly, the transfer of gut microbiota from young-to-aged might 

influence healthy ageing as shown in the short-lived killifish model, which exhibited 

an increase in lifespan and motor behaviour (Smith et al., 2017). It has been shown 

that the administration of prebiotics (a substrate that is selectively utilized by host 

microorganisms conferring a health benefit (Gibson et al., 2017)) results in an 

increase in the number of beneficial intestinal bacterial species with a reduction in 

systemic inflammation in rodents (Burokas et al., 2017) and humans (Schiffrin et al., 

2007; Vulevic et al., 2008). Moreover, that prebiotics may alter microglia activation 
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in the aged brain (Matt et al., 2018) which would have important implications for the 

healthcare system. It however remains unclear what is driving these changes and 

what is the impact on brain function and behaviour, i.e. cognitive behaviour. 

Therapeutic interventions aim to delay ageing, decrease pro-ageing factors, reduce 

microglia activation and ultimately improve cognition during ageing. 

 

We hypothesise that there is a dysregulation in the communication between the gut 

microbiota and the brain during middle age, which is critical in mediating age-related 

functional decline. Thus, targeting the gut microbiota with prebiotics may alter 

microglia activation state and brain function in ageing. To this end, we hypothesised 

that targeting the gut microbiome by dietary intervention with a complex short- and 

long-chain prebiotic, oligofructose-enriched inulin (FOS-Inulin), would have selective 

effects on (neuro-) immune profile and behaviour in middle-aged male compared to 

young adult C57BL/6J mice.  
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2.1.3 Methods 

2.1.3.1  Animals 
Male young adult C57BL/6J mice (n = 60; Harlan, Cambridgeshire, UK; 2 months) and 

middle-aged C57BL/6J mice (n = 48; 10 months) were used in this study. All 

experiments were conducted in accordance with European Directive 86/609/EEC, 

Recommendation 2007/526/65/EC, and approved by the Animal Experimentation 

Ethics Committee of University College Cork (B100/3774). Animals were habituated 

to the animal facility for two weeks before experiments started and kept under a 12-

hour light/dark cycle, with a temperature of 21 ± 1 °C and humidity of 55 ± 10%. Food 

and water were given ad libitum. 

2.1.3.2 Prebiotic administration 
Mice received chow (ssniff-Spezialdiäten GmbH, Soest, Germany) enriched with 10% 

Oligofructose-enriched inulin (FOS-Inulin: mixture of 92±2% Inulin and 8±2% 

Fructooligosaccharide, Orafti®Synergy1; BENEO-Orafti N.V., Tienen, Belgium) or 

control chow for 3.5 weeks (microglia cohort) and 14 weeks (behavioural cohort). 

The dosage of FOS-Inulin supplementation was chosen based on previous studies in 

rodents (Messaoudi et al., 2005; Rault-Nania et al., 2006; Rozan et al., 2008). 

Duration of prebiotic intervention was chosen according to previous studies in 

rodents showing effects on brain and behaviour (Savignac et al., 2015; Burokas et al., 

2017).  

 

2.1.3.3 Study design and experimental timeline 
Two separate cohorts of animals were used (see Supplementary Figure S1).  

Cohort one investigated the effects of FOS-Inulin on behaviour including cognitive 

(spontaneous alternation behaviour, Morris water maze, fear conditioning), anxiety-

like (open field, elevated-plus maze, marble burying), social (three-chamber social 

interaction test) and depressive-like behaviour (forced swim test). Following a three-

week lead-in of diet, mice (n=8-10 per group) underwent behavioural assessment 

while continuing dietary supplementation for a total of 14 weeks. In addition, 
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peripheral immune cell activation (pre-/post stress) was assessed in blood by using 

flow cytometry. To correlate the changes in behaviour with specific neuroimmune 

targets, we subsequently analysed targets in the brain at the end of the study.   

To characterize the neuroimmune status in the brain at a time point that coincided 

with that before animals were tested behaviourally, cohort two (young adult: n=14-

16, middle-aged: n=8-10) investigated if a dietary lead-in phase of 3.5 weeks with 

FOS-Inulin can alter monocyte infiltration and subsequent microglia activation in the 

brain, key mediators influencing cognition and anxiety-like behaviour.  

 

2.1.3.4 Behaviour 

2.1.3.4.1  Spontaneous alternation in the Y-Maze 
Spontaneous alternation behaviour in the Y-maze tests hippocampal-dependent 

spatial memory and exploration exploratory activity and was carried out as 

previously described (Scott et al., 2017). Behaviour was assessed for five minutes. 

 

2.1.3.4.2  Morris water maze 
The Morris water maze represents a robust and reliable test for spatial learning that 

strongly correlates with hippocampal synaptic plasticity (Vorhees and Williams, 

2006). Briefly, mice were trained over five days (four trials per day, two minutes each) 

to spatially locate the submerged platform. On day six, the platform was removed 

and a probe trial lasting 30s conducted.  

 

2.1.3.4.3 Fear conditioning 
Fear conditioning was conducted as previously described (Izquierdo et al., 2006), 

over three consecutive days (day 1: conditioning by three pairings with variable inter-

pairing interval; day 2: conditioned stimulus recall and extinction in a novel context; 

day 3: context recall).  
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2.1.3.4.4 Open field 
The open field is a widely used test to assess approach-avoidance behaviour, 

locomotor activity and the behavioural response to a novel context, and was 

conducted as previously described (Burokas et al., 2017). Briefly, a test mouse was 

placed into an open arena with 60 lux lighting and allowed to explore the context for 

ten minutes.  

 

2.1.3.4.5 Marble burying test 
The marble burying test assesses compulsive, repetitive and anxiety-like behaviour, 

and was conducted as previously described (Burokas et al., 2017). Briefly, mice were 

tested for 30 min and the number of buried marbles was recorded.  

 

2.1.3.4.6  Elevated-plus maze 
The Elevated-plus Maze test was used to assess anxiety-like behaviour and was 

conducted as previously described (Burokas et al., 2017). Mice were allowed to 

explore the maze for five minutes; the time spent in the open arms, as well as number 

of entries into the open arms was analysed.  

 

2.1.3.4.7 Three-chamber social interaction test 
Sociability and social novelty were assessed in a three-chamber apparatus as 

previously described (Desbonnet et al., 2012). The test consists of three sequential 

ten minute trials: (1) habituation; (2) sociability (the analysis of time a test mouse 

spends in the chamber with the conspecific mouse or with the object).  (3) social 

novelty preference (the analysis of time a test mouse spends in the chamber with the 

novel or in the chamber with the familiar mouse).   

 

2.1.3.4.8 Forced swim test 
The forced swim test was used to assess depressive-like or despair-like behaviour 

(Porsolt et al., 1977; Cryan and Mombereau, 2004). Mice were individually placed in 
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a transparent glass cylinder for six minutes. Time spent immobile was defined as no 

movements apart from breathing and considered as depressive-like behaviour. 

Behaviour was analysed during the last 4 minutes of the test which represents the 

most common protocol to use in analysing FST in the mouse and accounts for the 

fact that most mice struggle heavily during the first two minutes as they habituate to 

the water situation (Porsolt et al., 1977; Cryan and Mombereau, 2004).  

 

2.1.3.5 Plasma collection and corticosterone analysis 
To investigate the endocrine and immune response to stress, we collected blood 

samples prior to and following the forced swim test session. Approximately 60 μl of 

blood per mouse were collected by tail tipping using Lithium-Heparin-coated 

capillaries (Sigma-Aldrich, St. Louis, Missouri, United States). Blood was centrifuged 

at 3500 g at 4 °C for 15 min. Plasma was aspirated and stored at −80°C. Blood was 

taken immediately before the forced swim test (baseline), as well as 15 min, 45 min 

and 120 min after the baseline. Baseline samples and samples at 120 min post-stress 

time point were used for flow cytometry (see 2.7). 

Plasma corticosterone levels were measured in duplicates by ELISA (ENZO 

Corticosterone ELISA, Enzo Life Sciences, Exeter, UK) as previously described (Scott 

et al., 2017). Data were expressed in ng/ml. Only data derived from duplicates with 

< 15% coefficient of variation (CV) were included in the analysis. 

 

2.1.3.6 Blood stimulation cytokine assay 
To assess if a prebiotic-enriched diet alters systemic immunity, 100 μl of trunk blood 

was obtained at the end of the study using Lithium-Heparin-coated tubes (Greiner 

Bio-One, Kremsmünster, Austria). Blood cells from each mouse were stimulated with 

lipopolysaccharide (LPS-2 μg/ml) or Concanavalin A (ConA-2.5 μg/ml) for 24 h or left 

unstimulated as control. Following 24 h-incubation, samples were taken and stored 

at -80°C. The levels of secreted IL-1β, IL-4, IL-6, IL-10, TNFα and CXCL1 were analysed 

with the Proinflammatory Panel 1 (mouse) V-PLEX Kit and the MESO QuickPlex SQ 

120, SECTOR Imager 2400 (Meso Scale Discovery, Maryland, USA). Only data derived 
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from duplicates with < 15% CV were included in the analysis. Concentrations of 

cytokines were expressed in pg/ml. 

 

2.1.3.7 Flow cytometry 
To assess stress-induced immune priming, blood was collected from young adult and 

middle-aged mice by tail tipping (60 μl) at baseline and 120 min after acute stress 

(cohort one). Staining was performed using CD11b-VioBright FITC, Ly-6C-PE, LY-6G-

PerCP-Vio700 and MHC-II-PE (all Miltenyi Biotec, Bergisch Gladbach, Germany) to 

assess inflammatory monocytes (CD11b+, SSClow, LY-6Chi) and MHC-II+-neutrophils 

(CD11b+, LY-6G+, MHC-II+). Inflammatory monocyte and MHC-II+-neutrophil counts 

were normalized to the amount of peripheral blood mononuclear cell (PBMC). Gating 

strategy is depicted in Supplementary Figure S2a. 

Cohort two investigated if the diet lead-in phase with FOS-Inulin modulates 

monocyte infiltration and subsequent microglia activation in the brain. Following 

perfusion with ice-cold PBS for five min, brains were carefully dissected, 

enzymatically digested using the neural dissociation kit (P), followed by incubation in 

myelin-removal beads and magnetic separation using LS columns (Miltenyi Biotec). 

Cells were stained using CD11b-Viobright FITC, CD45-APC and Ly-6C-PE (all Miltenyi 

Biotec). Gating strategy is depicted in Supplementary Figure S2b. Monocyte counts 

were normalized to CD11b+ cells, microglia to CD11b+, CD45low.  

 

2.1.3.8 Analysis of gene expression levels in the brain tissues (RT-qPCR) 
To assess gene expression brain areas associated with cognition, the right 

hemisphere of both, the hippocampus and the prefrontal cortex were used 

(Schellekens et al., 2012). Total RNA was extracted using the mirVana™ miRNA 

Isolation Kit (Ambion, Life technologies, Waltham, MA, US), followed by DNase 

treatment using the TURBO DNA-free™ Kit (Thermo Fisher Scientific Inc., Waltham, 

Massachusetts, USA) according to the manufacturer’s instructions. RNA was 

quantified using the NanoDrop™ spectrophotometer (Thermo Fisher Scientific Inc., 

Waltham, Massachusetts, USA).  
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RNA was reverse transcribed to cDNA using the Applied Biosystems High Capacity 

cDNA kit (Applied Biosystems, Warrington, UK). Ccl2 and Tnf genes were amplified 

with probes designed by Integrated DNA Technologies (Coralville, IA, US) (Table S1). 

PCR was run in triplicates on a LightCycler®480 (Roche). Data were analysed with the 

comparative cycle threshold (Ct) method. Data were normalized using Actb as 

endogenous control and transformed using the 2−ΔΔCT method (Livak and Schmittgen, 

2001). We confirmed beforehand that the housekeeper Actb is neither changed by 

age nor by prebiotic treatment. 

 

2.1.3.9 Caecal microbiota composition (16S rRNA gene sequencing) and short-chain 
fatty acid analysis 
Caecum was harvested, snap frozen and stored at -80°C prior to the analysis. DNA 

from caecal content was extracted using the Qiagen QIAmp Fast DNA Stool Mini Kit 

coupled with an initial bead-beating step, as previously described . The V3-V4 

hypervariable region of the 16S rRNA gene was amplified and prepared for 

sequencing as outlined in the Illumina 16S Metagenomic Sequencing Library 

Protocol. Samples were sequenced at Teagasc Sequencing Facility on the Illumina 

MiSeq platform using a 2 × 250 bp kit.  

FLASH was used to assemble paired-end reads. Further processing of paired-end 

reads including quality filtering based on a quality score of > 25 and removal of 

mismatched barcodes and sequences below length thresholds was completed using 

QIIME (version 1.9.0). Denoising, chimera detection and clustering into operational 

taxonomic unit (OTU) grouping were performed using USEARCH v7 (64-bit) (Edgar, 

2010).  OTUs were aligned using PyNAST (and taxonomy was assigned using BLAST 

against the SILVA SSURef database release 123. Alpha and beta diversities were 

generated in QIIME (Caporaso et al., 2010). 

Short chain fatty acids (SCFAs) were measured by gas chromatography, using a Varian 

3500 GC flame-ionization system fitted with a ZB-FFAP column as previously 

described (de Wouw et al., 2018).  
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2.1.3.10 Metabolomics from faecal water 
Faecal pellets were collected at the end of cohort one. Faecal material were freshly 

collected with sterilized tools to ensure no cross contamination within a time-

window of 10 minutes’ maximum to ensure least oxygen exposure of the faeces as 

possible. Subsequently, pellets were directly snap freeze to ensure optimal DNA 

integrity. Faecal water was prepared by homogenising faecal samples (20-50 mg) 

with 4x wt/volume sterile PBS followed by vortexing for 20 minutes. Samples were 

centrifuged at 16000 g for 30 minutes; the supernatant was transferred in a new 2 

mL micro centrifuge tube and centrifuged for further 30 minutes. This step was 

repeated one more time before filtering the supernatant through Costar Spin-X 

centrifuge filters 0.2 µM at 10000 g. Faecal water samples were stored at -20°C. 

Subsequently, samples were derivatized with methyl chloroformate as previously 

described (Smart et al., 2010) and processed by MS-Omics (Copenhagen, Denmark) 

using Gas Chromatography – Mass Spectometry (GC-MS). Raw data was converted 

to netCDF format using ChemStation (Agilent technologies) and processed in Matlab 

R2014b (Mathworks, Inc., Natick, MA, USA) using the PARADISe software described 

by (Johnsen et al., 2017). 

 

2.1.3.11 Statistical analysis 
Statistical analyses were conducted using SPSS 24 (IBM Corp., Armonk, NY, USA) and 

Graphpad Prism 7 (GraphPad Software, Inc., La Jolla, CA, USA). Data were analysed 

for normality using the Shapiro-Wilk test and for equality of variances using the 

Levene's test. Non-parametric data were analysed with Kruskal-Wallis test followed 

by post-hoc Dunn‘s, and are depicted as median with inter-quartile ranges (IQR) and 

min/max values as error bars. Parametric data were analysed using two-way analysis 

of variance (ANOVA) post-hoc Holm-Sidak, and are shown as mean ± SEM. Changes 

in corticosterone response, Morris Water Maze learning and fear conditioning were 

analysed using two-way-repeated measurement (RM)-ANOVA post-hoc Sidak. 

Correlation analyses were performed using Spearman correlations for non-

parametric data. Outliers were excluded using the Grubbs test. Statistical significance 

was set at p ≤ 0.05.  
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Statistical analysis of microbiota data was performed in an R software environment. 

For Principal Component Analysis (PCA), Permutational multivariate analysis of 

variance (PERMANOVA) was used to identify relationships of significance between 

variables the Adonis function from the vegan package on Aitchison distance matrices 

calculated with the ALDEx2 package. ALDEx2 was also used to calculate pairwise 

differential abundance. Hierarchical All-against-All significance (HAllA) was used to 

investigate between-dataset covariance. For all tests, a Benjamini-Hochberg post-

hoc test was performed to correct for multiple comparisons with a conservative q-

value of 0.2 as critical value.  
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2.1.4 Results 

2.1.4.1 Prebiotic supplementation reversed stress-induced immune priming in 
ageing 
To assess if ageing triggers stress-induced immune priming in middle-aged mice, and 

whether age-associated changes are alleviated following prebiotic supplementation, 

mice were exposed to an acute stress (forced swim test), and blood samples were 

taken at baseline and 2 hours after stress exposure. We focused on neutrophils, 

which act as the first responders to any immune challenge and can trigger adaptive 

immunity, including T-cell priming via expression of major histocompatibility 

complexes (MHC), a classical activation marker. 

In middle-aged mice, acute stress caused a long-lasting increase of the MHC-II+ 

neutrophil population (p=0.0280, Kruskal-Wallis post-hoc Dunn’s; Figure 2.1-1a); the 

response being absent in young adult animals. Strikingly, prebiotic supplementation 

prevented the development of the age-associated phenotype and restored the levels 

of MHC-II+ neutrophils in stressed aged animals to young levels (p=0.011).  

Since acute stress is known to affect peripheral innate immunity through 

corticosterone (Dhabhar et al., 2012), we investigated whether these changes in 

neutrophil activation status were associated with altered stress axis activity. For this, 

we measured plasma release of corticosterone (as an indicator of endocrine 

reactivity to stress) in the same animals, prior to and at different time points 

following the forced swim stress exposure. Two-way RM-ANOVA revealed an overall 

effect of age on the corticosterone response (F (1, 28) = 10.825, p=0.003; Figure 2.1-

1b). In particular, middle-aged mice exhibited lower plasma corticosterone levels at 

baseline (F (1, 29) = 16.68, p<0.001, Figure 2.1-1c) and at T15 (F (1, 34) = 24.65, p<0.001). 

Calculation of area-under-the-curve (AUC) for corticosterone response confirmed 

that middle-aged mice exhibited a blunted stress axis reactivity (F (1, 28) = 5.207, 

p=0.03, Figure 2.1-1d). However, we did not observe any modulation on 

corticosterone response neither at baseline nor following stress in neither young 

adult nor middle-aged mice by prebiotic supplementation suggesting that the 

changes in peripheral innate immunity are not mediated by corticosterone. 
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Figure 2.1-1. Prebiotic supplementation reversed stress-induced immune priming in 
middle-aged mice. (a) MHC-II+ neutrophils at baseline and 2h after acute stress. (b) 
Plasma Corticosterone (Cort) response curve at baseline, immediately before 
exposure to acute stress, and 15, 45 and 120 min after exposure to acute stress. (c) 
Plasma corticosterone at baseline. (d) Area-under-the-curve (AUC) of corticosterone 
response. Mean ± SEM. n = 8-10. vs. control young adult * p < 0.05, ** p < 0.01, *** 
p < 0.001, vs. control middle-aged # p < 0.05, ## p < 0.01, vs. prebiotic middle-aged 
vs prebiotic adult $ < 0.05. 
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2.1.4.2 Effect of prebiotic supplementation on systemic inflammation and immune 
cell priming 
To investigate if systemic inflammation and immune cell priming is altered in middle-

aged mice and counteracted by prebiotic supplementation, whole blood was taken 

after 14 weeks of prebiotic intervention and stimulated with LPS or ConA. Following 

ConA-stimulation, middle-aged control mice exhibited a trend towards increased IL-

1β and IL-10 cytokine release (p=0.089 and p=0.069, respectively, Supplementary 

Figure S3b+e), while prebiotic-treated middle-aged mice showed similar levels as in 

young controls. Moreover, prebiotic supplementation decreased TNFα in middle-

aged mice following ConA-stimulation (p=0.014, Kruskal-Wallis post-hoc Dunn‘s; 

S3a). No changes were observed at baseline or in response to LPS stimulation. 

2.1.4.3 Pervasive neuroimmune alterations in middle-aged mice were alleviated by 
prebiotic supplementation 
Given the decline of cognitive function in middle-aged mice (Prenderville et al., 2015; 

Shoji et al., 2016), we investigated whether the middle-aged brain is more vulnerable 

to peripheral immune cell trafficking and subsequent microglial activation, and this 

status can be targeted by prebiotic supplementation, we investigated brain immunity 

by flow cytometry. Two-way ANOVA revealed an effect of age (F (1, 41) = 11.94, 

p=0.001; Figure 2.1-2a) and prebiotic treatment (F (1, 41) = 7.88, p=0.008) as well as an 

interaction of both (F (1, 41) = 6.01, p=0.019) on trafficking of inflammatory monocytes 

(Ly-6Chi) into the brain. Specifically, middle-aged control mice showed an increase in 

Ly-6Chi monocytes compared to young controls (p<0.001), which was alleviated by 

prebiotic supplementation (p=0.007). We in addition investigated if these changes in 

infiltrating monocytes are also systemically reflected in the blood. We didn’t find any 

differences (see Supplementary Figure S7) suggesting that the brain becomes 

particularly vulnerable in middle-aged mice as inflammatory monocytes traffic to 

inflamed tissue. Furthermore, we investigated whether the observed increase in 

monocyte trafficking was associated with microglia activation. Two-way ANOVA 

revealed an effect not only of age (F (1, 43) = 10.75, p=0.002; Figure 2.1-2b), but also 

prebiotic treatment (F (1, 43) = 10.95, p=0.002) and an interaction of both (F (1, 43) = 
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13.81, p<0.001) on Ly-6C+ microglia. Middle-aged controls showed a higher 

percentage of Ly-6C+ microglia compared to young controls (p<0.001), which was 

reversed by prebiotic supplementation to young control levels (p<0.001).  

In agreement with these findings, the gene expression of Ccl2 and Tnf were up-

regulated in the hippocampus of middle-aged mice (F (1, 35) = 13.60, F (1, 35) = 15.79, 

p<0.001; Figure 2.1-2c-d). Ccl2 and Tnf encode for pro-inflammatory cytokines which 

are secreted from activated microglia and associated with monocyte infiltration. This 

supports the observation of microglia activation in the middle-aged brain, including 

the hippocampus, a key region controlling learning and memory. In contrast, both, 

Ccl2 and Tnf, were not found to be upregulated in middle-aged mice following 

prebiotic supplementation. Furthermore, we investigated this phenomenon in 

another cognition-related brain region, the prefrontal cortex. In contrast to the 

hippocampus, no effect of age or prebiotic supplementation on Ccl2 and Tnf gene 

expression was found (Supplementary Figure S4), suggesting a non-universal effect 

of prebiotic supplementation on cytokine expression across brain regions. 
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Figure 2.1-2. Middle-aged mice exhibited elevated infiltration of Ly-6Chi monocytes 
into the brain and increased microglia activation; the phenotype was reversed by 
prebiotic supplementation. (a) Monocyte infiltration in the brain. (b) Microglia 
expression pattern in the brain. (c-d) Pro-inflammatory cytokine expression in the 
hippocampus. Mean ± SEM. n = 7-16 (Flow Cytometry), n = 9-10 (Gene expression 
Hippocampus). vs. control young adult * p < 0.05, *** p < 0.001, vs. control middle-
aged ## p < 0.01, ### p < 0.001. 

 

2.1.4.4 Prebiotic intervention improved learning and reduced anxiety-like 
behaviour in young adult mice 
To assess if prebiotic intervention improves spatial learning and memory, mice were 

trained over five consecutive days to find a hidden platform in the Morris water maze 

(MWM). Middle-aged mice displayed an impairment in learning (F (1, 35) = 8.653, 

p=0.006; Figure 2.1-3a). However, prebiotic supplementation modulated learning (F 

(1, 35) = 10.252, p=0.003), the improvement was only evident in young adult mice (F (1, 

18) = 10.897, p=0.004). We did not identify an interaction (F (1, 35) = 2.073, p=0.159) 

suggesting that the prebiotic effects were specific to young adult mice. Although, the 

average between day four to five is visually different, both days are not statistically 

different from each other (p=0.19) and mostly explained by a much greater variation 

compared to day four. Similarly, area-under-the-curve (AUC) analysis confirmed the 

improved learning in prebiotic-treated young mice (p=0.005). Both, age (F (1, 34) = 

13.10, p=0.001) and prebiotic supplementation (F (1, 34) = 12.89, p=0.001) had a 

modulatory impact on spatial learning. To assess spatial long-term memory, a probe 

trial was performed on day six. A trend towards decreased time spent in the target 

quadrant with age (F (1, 35) = 3.442, p=0.072) was found, however, no improvement 

by prebiotic supplementation was observed (Figure 2.1-3a). Neither age or prebiotic 

exposure affected swim speed, or total distance respectively (data not shown). 

We further tested the effect on short-term memory by assessing spontaneous 

alternation behaviour in the Y-maze. Middle-aged mice showed a decrease in 

spontaneous alternations (F (1, 35) = 10.66, p=0.003) and total number of alternations 

(F (1, 35) = 7.986, p=0.008; Figure 2.1-3b) suggesting impairments in short-term 

memory. 
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Next, we tested if prebiotic supplementation can modulate amygdala-dependent 

learning and memory. For this, mice were tested in a fear conditioning task (Figure 

3c). On day one, mice were conditioned to three cued-shock pairings with a variable 

inter-pairing interval. Middle-aged mice displayed an impaired acquisition (F (1, 36) = 

4.842, p=0.034, Figure 2.1-3c). 24h later, CS recall and extinction learning were 

assessed. Middle-aged mice showed increased freezing during habituation to the 

new context (F (1, 35) = 6.702, p=0.014) suggesting anxiety-like behaviour. Although 

statistically not significant, the changes in extinction in the prebiotic-treated young 

adult mice compared to the other groups are explained by the less freezing across 

the cue-shock pairings during acquisition. Similarly, to deficiencies in acquisition, 

middle-aged mice showed impairments in extinction learning (F (1, 36) = 4.898, 

p=0.034). In contrast, no impact of age nor of prebiotic supplementation on context 

recall was found (Figure 2.1-3c). 

Next, we analysed anxiety-like behaviour in the elevated plus maze and the open 

field, as changes in anxiety levels are known to affect cognitive performance. Overall, 

middle-aged mice displayed increased anxiety-like behaviour, as shown by less time 

spent in the aversive open arms of the elevated plus maze (F (1,33) = 18.31 p<0.001; 

Figure 2.1-3d), the central zone of the open field arena (F (1, 34) = 7.337, p=0.011; 

Figure 2.1-3e) as well as decreased number of centre visits (F (1, 34) = 14.69, p<0.001). 

The locomotor activity was also marginally reduced in middle-aged mice (F (1,33) = 

4.538, p=0.041; Figure 2.1-3c). Prebiotic supplementation did not affect anxiety 

levels in middle-aged mice. However, a significant increase in the time spent in the 

open arms of the elevated plus maze was observed in young adult prebiotic-treated 

mice (p=0.027). This suggests that prebiotic supplementation did have an anxiolytic-

like effect, but in young animals only. The observed changes in anxiety-like 

behaviour, i.e. increased anxiety levels in aged mice and selective anxiolytic effect in 

prebiotic-treated young mice, had a similar pattern seen in the spatial recognition in 

the MWM. This suggests that impaired cognitive performance in middle-aged mice, 

as well as improved learning of prebiotic-treated young adults could may be partially 

mediated by changes in anxiety levels. 
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Interestingly, learning performance in the Morris water maze correlated with the 

relative abundance of the Verrucomicrobiaceae family (r (38) = -0.369, p=0.023; Figure 

2.1-3f); wherein the association is mainly driven by Akkermansia, the predominant 

genus within the Verrucomicrobiaceae (r (38) = -0.323, p=0.048; Figure 2.1-3f). 

Moreover, we identified a significant correlation between hippocampal Ccl2 

expression (as a readout of microglia activation linked to monocyte trafficking) and 

learning performance (AUC) in the MWM task (r (39) = 0.349, p=0.03; Figure 2.1-3g). 

To emphasize these correlations further, we indicated which data points relates to 

which group indicating that prebiotics drive these associations. 
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Figure 2.1-3. Prebiotic supplementation improved learning and reduced anxiety-
like behaviour in young adult mice. (a) Learning and memory in Morris water maze 
(MWM). Latency-to-find platform over five training days. Summarized as area-under-
the-curve (AUC), as well as the probe trial 24h after the last training day is depicted. 
(b) Short-term memory assessed by Spontaneous Alternation Behaviour (Y-Maze). (c) 
Fear Conditioning: Conditioning (Acquisition, day 1) including AUC. Extinction (day 2) 
– two consecutive cue presentations were depicted as one trial block. AUC for trial 
block 1-20 is depicted. Context recall (day 3). (d) Time spent in open arms in elevated-
plus maze. (e) Behaviour in open field. (f) Spearman correlation analysis of learning 
efficacy in Morris water maze (AUC) vs. relative abundance of bacteria from the 
Verrucomicrobiaceae family and Akkermansia genus (g) Spearman correlation 
learning in Morris water maze vs. hippocampal Ccl2 expression. Mean ± SEM. n = 9-
10. vs. control young adult * p < 0.05, ** p < 0.01, *** p < 0.001, vs. control middle-
aged # p < 0.05, prebiotic middle-aged vs prebiotic adult: $ < 0.05, $$ < 0.01, $$$ p < 
0.001.  
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Figure 2.1-4. Middle age and prebiotic treatment have distinct effects on the gut 
microbiota composition accompanied with changes in short-chain fatty acid (SCFA) 
profile. (a) PCA plot. (b) Alpha-diversity Indices (Chao1, Simpson, Shannon). (c) Heat 
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map representing differentially abundant taxa (genus with higher hierarchy family 
name). Microbes are sorted taxonomically; therefore, genetically closer microbes are 
closer together. Heat map represents all taxa which reach a Benjamini-Hochberg FDR 
q value < 0.2 at least once. Asterisks in the heat map represent the following q values: 
* <0.1, ** < 0.01, *** < 0.001. (d) Hierarchical All-against-All significance testing 
(HAllA) representing the 100 strongest significant correlations (q<0.2) between gut 
microbiota composition and faecal metabolomics. Numbers (1-100) indicate the 
strongest correlations in a descendant order. 

 

 

 

2.1.4.5 Effect of age and prebiotic supplementation on gut microbiota composition 
and short-chain fatty acid profile in the gut 
Principal Component Analysis (PCA) analysis identified structural differences in 

microbiota across all four groups (PERMANOVA, p<0.001; Figure 2.1-4a). The 

composition of caecal microbiota was significantly affected by age and by prebiotic 

supplementation (all p<0.05, pairwise PERMANOVA). Interestingly, no interaction 

between age and prebiotic was observed, i.e. marked differences between middle-

aged and young mice were evident in both control and prebiotic-treated groups, as 

well as prebiotic supplementation effectively shifted microbiota composition in both 

young adult and middle-aged animals.  

When we looked at structural properties of microbial communities at the genus level, 

we observed multiple changes in the relative abundance of individual bacterial taxa 

(Figure 2.1-4b). In particular, middle-aged mice displayed an increase in Clostridum 

sensu stricto 1, Delftia, Salmonella, Enterococcus, Turibacter (q < 0.1).  In contrast, 

Parabacteroides (q < 0.01) was decreased in middle-aged control mice. Interestingly, 

prebiotic supplementation not only increased the abundance of Bifidobacterium in 

young adult but also middle-aged mice (q < 0.1 and q < 0.01, respectively). In 

contrast, Akkermansia was only increased in middle-aged prebiotic-treated mice (q 

< 0.1). Moreover, prebiotic supplementation increased the abundance of 

Prevotellaceae UCG-001 and Bacteroides not only in young adult mice but even more 

pronounced in middle-aged mice (q < 0.01, respectively), while Lactobacillus and 

Roseburia were decreased in prebiotic-treated middle-aged mice (q < 0.1). 
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The Chao1 index was increased in middle-aged compared to young adult control 

mice, indicating an increase in overall richness of bacterial species associated with 

age (p=0.028; Kruskal-Wallis post-hoc Dunn’s; Figure 2.1-4c). However, the Shannon 

and the Simpson indices, which take into account the evenness of species 

abundance, were not affected by age but were reduced following prebiotic 

supplementation in young adult mice (p=0.010 and p=0.016, respectively). This 

suggest that prebiotic supplementation favoured the selective expansion of certain 

bacterial taxa in young adult animals only. 

To identify if changes in gut microbiota composition correlated with faecal 

metabolomics, we utilized Hierarchical All-against-All significance testing (HAllA). 

Among others, HAllA identified a negative association between the relative 

abundance of Akkermansia, which was significantly over-represented in prebiotic-

treated middle-aged mice, and several amino acids including leucine (ρ=-0.63, 

p<0.001, FDR corrected, Figure 2.1-4d), valine and isoleucine (ρ=-0.60, p<0.001, 

respectively). Similarly, between Bifidobacterium, which was significantly over-

represented in prebiotic-treated young and middle-aged mice, and the respective 

amino acids (ρ=-0.55, p=0.001).  

Prebiotic supplementation increased caecum weight (F (1, 35) = 88.95, p<0.001; 

Supplementary Figure S6b) in both young adult and middle-aged mice. Among short-

chain fatty acids (SCFAs), caecal butyrate, propionate and valerate levels were 

affected by either age or prebiotic supplementation. No effect was found on acetate 

and total-SCFA levels (data not shown). Middle-aged mice exhibited higher butyrate 

levels than young mice (F (1, 35) = 16.74, p<0.001; Figure S6c). Prebiotic 

supplementation increased propionate independent of age (F (1, 35) = 8.75, p<0.001), 

with a more pronounced increase seen in middle-aged mice (p=0.035). While 

valerate was increased in middle-aged compared to young controls (p<0.001), 

prebiotic supplementation reduced valerate in both, young adult (p=0.021) and 

middle-aged mice (p<0.001). 
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2.1.5 Discussion 

There is a growing appreciation of the role of the gut microbiota in regulating 

neuroinflammatory responses. The middle-aged brain remains completely 

understudied regarding this interrelationship. Our data show that middle age is 

already associated with pervasive alterations in systemic and brain immunity. 

Targeting the gut microbiome by prebiotic intervention (FOS-Inulin) reversed many 

of these age-associated neuroinflammatory impairments.  

 

To our knowledge, this is the first study demonstrating the presence of a strong basal 

and stress-induced (neuro-) inflammatory profile in middle-aged mice (11 months 

old), although an exaggerated inflammatory response has been previously reported 

in middle-aged rodents following immune stimulation (Bardou et al., 2013; Lee et al., 

2013; Nikodemova et al., 2016). Moreover, our study implicates the gut microbiome 

in such processes as dietary targeting with prebiotic supplementation counteracted 

stress-induced peripheral immune cell activation. Following acute stress, we 

investigated a subtype of neutrophils that express MHC-II, which plays a role in 

priming of T-cells and therefore provides a link between the innate and the adaptive 

immune system (Culshaw et al., 2008; Vono et al., 2017). Further research is 

warranted on the functional characterization of these neutrophils and their impact 

on the brain in ageing particularly following acute stress. 

 

The gut microbiome has emerged as being essential for brain health in ageing and as 

a key player in the bidirectional communication across the gut–brain axis (Leung and 

Thuret, 2015; Dinan and Cryan, 2017). Previous research points out a role of aged 

microbiota in driving systemic immunity (Fransen et al., 2017; Thevaranjan et al., 

2017). In addition, key metabolites which are produced by the gut microbiota 

following i.e. a prebiotic-enriched diet such as short-chain fatty acids (SCFAs) has 

been implicated in alleviating stress-induced alteration (van de Wouw et al., 2018). 

In addition, we show that prebiotic supplementation is capable of dampening age-

associated systemic inflammation, particularly TNFα, following stimulation with 



68 
 

Concanavalin A. As ConA stimulates both, T- and NK-cells, it seems that both cell 

types are in particular sensible to prebiotic treatment in middle-aged mice compared 

to LPS stimulation which unspecifically stimulates immune cells. We previously 

showed that prebiotic treatment rescues immune alteration induced by chronic 

psychosocial stress following ConA stimulation exclusively (Burokas et al., 2017) 

suggesting that prebiotics might have specific effects on immune priming on T- and 

NK-cells systemically, and may influence brain function and behaviour as recent 

research showed a role of T-cell activation in regulating behaviour, anxiety-like and 

fear-related behaviour (Miyajima et al., 2017), cognition (Derecki et al., 2010) and 

sociability (Filiano et al., 2016). A critical factor for T-cell activation is the availability 

of specific amino acids such as leucine (Sinclair et al., 2013). By using HAIIA, we 

identified strong correlations between prebiotic-driven changes in gut microbiota, 

Bifidobacterium and Akkermansia with several amino acids in faecal water, including 

valine, leucine and isoleucine amongst others. In fact the gut microbiome has been 

implicated in regulating amino acid availability (Lin et al., 2017). Interestingly, a 

recent study in a Chinese cohort of middle-aged to elderly individuals found a 

correlation between Akkermansia and CD8+ as well as CD4+ T cells (Shen et al., 2018).  

 

A bidirectional relationship between the brain and the peripheral immune system 

exists (Varvel et al., 2016), which can promote neuroinflammation and exacerbate 

neuronal damage in the hippocampus. Recent studies suggest a constant influx of 

immune cells, inflammatory monocytes (Ly-6Chi-monocytes), into the brain even 

under steady-state conditions (Möhle et al., 2016; Korin et al., 2017; Mrdjen et al., 

2018). Previously these cells were thought to only play a role in inflammatory 

conditions such as following viral infection and associated encephalitis (Getts et al., 

2008) or after social defeat stress (Wohleb et al., 2013; Sawicki et al., 2015). 

However, recent research suggests that trafficking of Ly-6Chi-monocytes into the 

brain is crucial for brain plasticity and influence cognitive behaviour (Möhle et al., 

2016). This link was mediated by the gut microbiome as antibiotic depletion and 

subsequent reconstitution of the gut microbiome restored the antibiotic-induced 

deficits in brain plasticity and cognitive behaviour (Möhle et al., 2016). To 



69 
 

characterize if these Ly-6Chi-monocytes also affect the brain in middle-aged mice 

before animals were tested behaviourally, we assessed their neuroimmune status in 

cohort two. Here we show that middle-aged mice exhibited an increased influx of 

inflammatory monocytes into the brain. To correlate the changes in behaviour with 

specific neuroimmune markers which link monocyte trafficking to microglia 

activation, we subsequently analysed targets in the brain at the end of the study. Ly-

6Chi-monocytes are hereby recruited to the brain in a CCL2-dependent manner 

(Mildner et al., 2007; Getts et al., 2008; Sawicki et al., 2015). We show that Ccl2 is 

specifically upregulated in the hippocampus of middle-aged mice, but not present 

following prebiotic supplementation suggesting that this is may be a potential 

pathway in which gut-microbiota-immune-brain communication can affect brain 

function and behavioural traits in this key region for learning and memory. However, 

despite these changes in neuro-immunity, we have not identified any overt cognitive 

impairments in middle-aged control mice. Although it is worth noting that the 

dynamics of hippocampal Ccl2 expression correlated with cognitive behaviour 

assessed in the Morris water maze paradigm. Interestingly, prebiotic-driven changes 

in the neuroinflammatory profile are not universal across brain regions as there were 

no changes in the prefrontal cortex. This is in line with previous findings that there 

are marked regional differences in microglia activation across brain regions (Grabert 

et al., 2016). Interestingly, we found that middle-aged mice exhibited increased 

microglia activation under basal conditions before animals were behaviourally 

assessed. This subset of inflammatory activated microglia expressed Ly-6C (Mildner 

et al., 2007; Stirling et al., 2014; Mrdjen et al., 2018) and have been suggested to 

arise from Ly-6Chi-monocytes (Getts et al., 2008). Recent work has demonstrated a 

modulatory effect of the gut microbiota on microglia function (Erny et al., 2015; Rea 

et al., 2016; Vuong et al., 2017). Of note, germ-free mice exhibited deficits in 

microglia maturation and function while addition of SCFAs rescued these deficits. 

However, the short-chain fatty acid receptor FFAR2 is actually not present on 

microglia (Erny et al., 2015), but on monocytes (Ang et al., 2016). Future studies are 

needed to investigate the mechanistic relationship between these receptors and 

prebiotic-induced effects on microglia activation across the lifespan.  
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Microglia activation has been shown to alter cognitive and anxiety-like behaviour 

(Wohleb et al., 2014; Tay et al., 2017). Here, we show that prebiotic supplementation 

improves anxiety-like behaviour and cognition in young adult mice. This is in 

accordance with previous studies which targeted the gut microbiome by dietary 

interventions in rodents (Savignac et al., 2015; Tarr et al., 2015; Vazquez et al., 2015; 

Burokas et al., 2017; Mika et al., 2018). Interestingly, studies using a probiotic mix 

(VSL#3) failed to show improvements in anxiety-related behaviour (Beilharz et al., 

2017) suggesting that strain selection is very important and that prebiotics might be 

a better approach to improve behaviour. Moreover, we show that middle-aged 

control mice showed a decreased number of centre visits in the open field suggesting 

increased anxiety-like behaviour (Ennaceur et al., 2008), which may have influenced 

cognitive performance (Shoji et al., 2016). Middle-aged mice displayed mild cognitive 

impairments, which were not present following prebiotic supplementation. It is 

worth noting that neuroinflammation at this stage was not significant enough to 

manifest in major cognitive impairments. However, our data imply that prebiotic 

intervention may have some potential to counteract cognitive decline. As the impact 

of prebiotic supplementation on behaviour, particularly the cognitive tests, is clearly 

stronger in adult subjects, the data suggests that prebiotics may be less effective as 

we age. On the other side, a much longer exposure to prebiotics might be needed to 

achieve significant effects suggesting that supplementation may have to start earlier 

to be effectively preventative before alterations in the brain occur. This is particularly 

evident for the behaviour. On the other side, particularly in light of the stress-induced 

peripheral immune data, the system may need to be challenged to potentially exert 

negative behavioural effects (Fonken et al., 2018) before prebiotic supplementation 

can act beneficially (Burokas et al., 2017). Future studies focused on long-term effects 

of this mid-life microbiota manipulation are now warranted.  

 

We hypothesized that the dysregulated gut-microbiome-brain axis in middle-aged 

mice can be ameliorated by targeting the gut microbiome with prebiotics known to 

promote beneficial bacteria like Bifidobacteria. It was previously shown that the 
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prebiotic, inulin, can alter the microbiome composition under pathophysiological 

conditions such as following high-fat diet (Zhang et al., 2017) or in extreme ageing 

(Matt et al., 2018); however, its effects remained unexplored in healthy 

ageing/middle age. In fact, by utilizing FOS-Inulin, we show a profound yet 

differential alteration of the gut microbiota composition in both young adult but also 

in middle-aged mice. This was concomitant with a change in short-chain fatty acids 

with propionate increased in prebiotic-treated middle-aged mice while prebiotic 

supplementation decreased valerate in both, young adult and middle-aged mice.  

 

Previous research has shown that diet-driven modulation of the gut microbiota by 

administration of prebiotics can modulate peripheral immune response in the serum 

of naïve mice (Burokas et al., 2017) and we recently showed that SCFAs attenuate 

the effect of chronic stress (van de Wouw et al., 2018). It was shown previously that 

propionate can inhibit the production of pro-inflammatory cytokines (Vinolo et al., 

2011). Moreover, in-vitro experiments suggests pro-inflammatory capabilities of 

valerate while it enhanced LPS-induced inflammatory response in a murine N9 

microglial cell line (Huuskonen et al., 2004). Although the effects on SCFA levels is 

relatively modest it is possible that some of the anti-inflammatory effects of prebiotic 

supplementation might have been mediated by the changes observed in SCFA 

concentrations. 

 

We have previously reported a shift in microbial composition by prebiotics in adult 

mice (Burokas et al., 2017) but the impact on middle-aged remained unexplored. 

Interestingly, we found an increase in species richness in middle-aged mice, which is 

in line with previous findings in rodents (Scott et al., 2017) and humans (Odamaki et 

al., 2016). In fact, it has been shown in humans that the gut microbiota remarkably 

changes with ageing not only in diversity but also representation of specific taxa 

(Claesson et al., 2011; Claesson et al., 2012; Yatsunenko et al., 2012). 
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Prebiotic supplementation increased the relative abundance of Bifidobacterium, 

which is in accordance with previous studies in humans (Gibson et al., 1995). 

Interestingly, Bifidobacteria has been reported to be reduced in the elderly (Hopkins 

et al., 2001). In addition, supplementation increased the relative abundance of 

Akkermansia in middle-aged mice suggesting that prebiotics might promote a young 

microbiota phenotype, compared to a previous study where Akkermansia abundance 

strongly declined in 12- vs. 4-months-old control mice (van der Lugt et al., 2018). 

When transferring faecal matter from old mice to young germ-free (GF) mice, 

Akkermansia was lower abundant in those recipients than in GF mice that received 

young microbiota (Fransen et al., 2017). Interestingly, Akkermansia has been 

associated with immune modulation (Fransen et al., 2017), has shown to protect 

against inflammation and promote gut health in diet-induced obesity (Everard et al., 

2013), and restored intestinal permeability and subsequent immunomodulation in 

aged mice (Bodogai et al., 2018). Moreover, Akkermansia has been found to be 

enriched in super-centenarians (Biagi et al., 2016). Together with Bifidobacterium, 

Akkermansia are claimed as longevity-adapted and possibly health-promoting taxa 

and therefore might be involved in healthy ageing (Biagi et al., 2016). It is worth 

noting that learning performance strongly correlated with the abundance of 

Akkermansia suggesting a link between microbiota and cognitive performance. 

Future studies are warranted to investigate the potential beneficial impact of 

Akkermansia on cognitive performance and healthy ageing. 

 

In conclusion, the present study identified a strong neuroimmune phenotype in 

middle-aged mice. Moreover, prebiotic-driven changes in gut microbiota 

composition are beneficial for host health and associated well-being in middle-aged 

mice (Figure 5). Prebiotic supplementation is capable of altering age-induced 

changes in brain homeostasis, particularly alleviation of microglia activation, 

suggesting a preventative strategy towards preservation of cognitive health in 

ageing.  Taken together, the modulatory effects of prebiotic supplementation on 

monocyte infiltration into the brain and accompanied regulation of age-related 

microglia activation highlight a potential pathway by which prebiotics can modulate 
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peripheral immune response and alter neuroinflammation in ageing. Our data thus 

suggest a novel strategy for the amelioration of age-related neuroinflammatory 

pathologies and brain function. 
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2.2.1 Abstract  

Psychological stress during adolescence may cause enduring cognitive deficits and 

anxiety, both in humans and animals that are accompanied by a rearrangement of a 

multitude of brain structures and functions. A healthy diet is essential for proper 

brain development and for the maintenance of optimal cognitive functions during 

adulthood. Furthermore, nutritional components profoundly affect the intestinal 

community of microbes that may impact on gut to brain communication. We 

adopted a relatively mild stress protocol, the social instability stress that when 

repeatedly administered to juvenile rats, modifies cognitive behaviors and plasticity 

markers in the brain. We then tested the preventive effect of a prolonged diet 

enriched with the -3 polyunsaturated fatty acids eicosapentaenoic, 

docosahexaenoic, docosapentaenoic acid, and vitamin A. Our study highlighted the 

beneficial effect of the enriched diet on cognitive memory impairment induced by 

social instability stress, as rats fed the enriched diet exhibited performance in both 

emotional and reference memory test indistinguishable from non-stressed rats. 

Furthermore, the decline of brain derived neurotrophic factor (BDNF) expression in 

the hippocampus and shifts in microbiota composition of stressed rats were 

normalized by the enriched diet. The detrimental behavioral and neurochemical 

effects of adolescent stress as well as the protective effect of the enriched diet were 

maintained through adulthood, long after the exposure to the stressful environment 

was terminated. Taken together, our results strongly suggest a beneficial role of 

nutritional components to ameliorate stress-related behaviors and associated 

neurochemical and microbiota changes, opening new venues in the field of 

nutritional neuropsychopharmacology. 

 

2.2.2 Introduction 

In rodents, as in humans, adolescence is a time of developmental changes and 

reorganization in the brain and stress systems, marked by cognitive maturation and 

behavioral changes (Spear, 2000). Interactions with age-matched conspecifics during 

adolescence are important for appropriate rodent neurodevelopment and any 
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alteration to such adolescent social experiences can result in neurobehavioral 

measurements relevant to anxiety, depression, and substance of abuse (Burke et al., 

2017). Preclinical research has focused on earlier and later periods of development, 

as several reports have demonstrated that early-life stress in rodents as well as in 

humans represents a neurodevelopmental risk with implications to subsequent 

cognitive abilities during adulthood (Kaplan et al., 2001; Oomen et al., 2011). Given 

the paucity of data on the key factors that contribute to the detrimental effects of 

adolescence stress, no effective strategies have been developed to prevent or cure 

these problems. In this respect, nutrition is one of the key lifestyle factors that 

contributes to mental health, and has far-reaching consequences on cognitive 

functions that extend late in life (Laus et al., 2011; Prado and Dewey, 2014). Among 

the nutritional components associated with optimal brain functioning, the -3 

polyunsaturated fatty acids (-3 PUFAs) play a critical role in the development and 

function of the central nervous system (CNS). In animal studies, prenatal deficiency 

of brain -3 PUFAs is associated with enduring neuroanatomical and 

neurotransmitters alterations, neurocognitive deficits, elevated behavioral indices of 

anxiety, aggression, and depression (reviewed in (McNamara and Carlson, 2006)) and 

increased vulnerability to the effect of inflammatory events (Delpech et al., 2015; 

Labrousse et al., 2018). Recent studies have proven the long lasting, beneficial 

cognitive effects of a diet supplemented with the -3 PUFAs eicosapentaenoic acid 

(EPA), docosahexaenoic acid (DHA) on early stressful events such as maternal 

separation (Mathieu et al., 2011; Pusceddu et al., 2015), or following -3 PUFAs 

deficiency during the perinatal period (Lozada et al., 2017; Robertson et al., 2017). 

Also, supplementation with -3 PUFAs prevented the emotional and neuronal 

impairments induced by chronic social defeat in adult mice (Larrieu et al., 2014) and 

ameliorated memory performance in aged animals (Denis et al., 2013). Another 

essential nutrient is vitamin A, that through its active metabolite retinoic acid, plays 

a key role in cognitive functions in adult (Olson and Mello, 2010) and aged rats 

(Bonhomme et al., 2014). Vitamin A deficiency increased hypothalamus-pituitary-

adrenal axis activity and vitamin A-deficient rats showed a delayed and heightened 

corticosterone response to restraint stress (Marissal-Arvy et al., 2013). On the 
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contrary, vitamin A supplementation to adult rats prevented age-associated spatial 

memory decline (Touyarot et al., 2013). A vast literature indicates that -3 PUFAs 

and retinoic acid signaling pathways may act together to modulate memory and 

synaptic plasticity and indeed, a combined diet enriched with EPA-DHA and Vitamin 

A had synergistic behavioral and neurochemical effects in middle-aged rats (Letondor 

et al., 2016). However, the long-lasting effects of a prolonged diet enriched with 

these micronutrients on the detrimental consequences of adolescence stress is a 

fairly unexplored field.  

The gut microbiota has emerged as one of the key regulators of brain health across 

the lifespan including adolescence (McVey Neufeld et al., 2016; McVey Neufeld et 

al., 2016; Dinan and Cryan, 2017). Stress and other insults can seriously impact the 

composition of the microbiome (Foster et al., 2017) and dietary interventions have 

been shown to normalize such effects (Pusceddu et al., 2015). Moreover, -3 PUFAs 

deficiency or supplementation have been shown to differentially modulate 

microbiome composition (Pusceddu et al., 2015; Robertson et al., 2017; Robertson 

et al., 2017).  

In the current study, we hypothesized that a diet enriched in -3 PUFAs and Vitamin 

A may prevent immediate and long-lasting behavioral deficit, neurochemical and 

intestinal microbiota changes induced by stress during adolescence. We used the 

social instability stress, a well validated animal model of social stress that produces 

long-lasting effects on cognitive and emotional responses that may persist for the 

entire life (McCormick et al., 2015; Burke et al., 2017). We then adopted a multilevel 

approach at two different ages (immediately after completion of the social instability 

stress procedure and at adulthood) using a battery of behavioral tests 

comprehensive of several domains potentially affected by chronic stress: cognition 

pertaining to emotional and recognition memory, anxiety-like and anhedonia-like 

responses. We also measured the expression of Brain Derived Neurotrophic Factor 

(BDNF) that promotes neuronal survival, regulates nerve cells differentiation and 

may influence cognitive impairment (Buchman et al., 2016), and of synaptophysin, 

an abundant synaptic vesicle-associated protein involved in synaptic formation 

(Tarsa and Goda, 2002) in the hippocampus and frontal cortex of adult and 
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adolescent rats. These brain regions are particularly vulnerable to the negative 

impact of stress, especially during early-life (Bennett and Lagopoulos, 2014).  

In addition, we investigated the short and long-term impact of social instability stress 

and the dietetic intervention on caecal microbiota composition and short chain fatty 

acids (SCFA) production. Our findings revealed that the -3 PUFAs/Vitamin A 

enriched diet prevented adolescent stress-induced cognitive and microbiome 

changes.  

2.2.3 Materials and Methods 

2.2.3.1 Social Instability stress.  
Male Wistar rats arrived to our animal facility at PND 25 and were randomly assigned 

to three experimental groups: a group of non-stressed animals fed with the control 

diet (NSCD), a second group subjected to social instability protocol and fed with the 

control diet (SCD), and a third group also submitted to stressful manipulation and fed 

with the enriched diet (SED). The social instability stress involves changing the social 

housing conditions of adolescent rats according to (McCormick et al., 2015). In brief, 

on each day from postnatal days (PND) 30 to 45, rats were isolated for 1 h in 

ventilated, round small plastic containers (10 cm in diameter), akin to restraint. After 

isolation, rats were housed with a new partner undergoing the same procedure in a 

new cage. The stress regimen occurred at various times during the light cycle to 

decrease the predictability of the event. After the last isolation on PND 45, rats were 

returned to their original cage partner. Non-stressed rats were not disturbed except 

for regular cage maintenance and to be weighed. The consequences of the social 

instability stress procedure were assessed during adolescence (PND 46-51) and 

during adulthood (PND 70-76) using a battery of tests comprehensive of several 

domains affected by chronic stress: cognition (novel object recognition and 

contextual fear conditioning), anhedonia-like behavior (sucrose preference), anxiety-

like behavior (elevated plus maze). Locomotor activity was measured in an open field 

arena. One day after the end of the behavioral tests, the brains and caecal content 

were collected for neurochemical determinations and metagenomics analysis, 

respectively. Different cohorts of animals were used at the two time points. The 
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experimental timeline is depicted in Fig. 1A. Details of the behavioral tests, western 

blot and metagenomics analysis are provided in the Supplementary Information. 

Previous reports indicate that while adult rats readily habituate to this procedure, 

adolescents show increased corticosterone release in response to repeated changes 

of cage partners. Consistently, the long-lasting cognitive and emotional alterations 

observed in adolescent rats subjected to the social instability procedure were not 

found in adults rats, suggesting that this model may capture adolescent-specific 

stress reactivity (Hodges and McCormick, 2015; McCormick et al., 2015). 

2.2.3.2 Diets composition.  
Diets were matched for macronutrients content and the detailed composition is 

shown in SI Table S1. To prevent oxidation of PUFAs, diets were maintained in air-

sealed bags at 4 oC in the dark. Food was changed and weighted every day.  

 

2.2.4 Results 

We adopted the social instability protocol (McCormick et al., 2015) consisting of daily 

isolation followed by change of cage partners from PNDs 30 to 45 (Fig. 2.2-1A). In 

rodents adolescence is defined by the time elapsed between weaning at PND 21 and 

the firsts signs of puberty that in males coincides with preputial separation occurring 

around PND 42±3 (Spear, 2000). To assess if social instability stress cause acute and 

long-lasting deficits and if an -3 PUFAs/Vitamin A enriched diet (SI Table S1) could 

ameliorate stress-induced deficits we utilized a battery of measurements and 

behavioral tests, that were performed starting on the day after completion of the 

stress protocol at PND 46 (adolescents) or at PND 70 (adults). 
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Figure 2.2-1. (A) Time line for the adolescent social instability stress experiment. 
Adolescent rats were randomly assigned to three experimental groups: NSCD, SCD, 
and SED. (B and C) Effects of stress and enriched diet on body weight at PND 45 on 
completion of the stress procedure (B) and at PND 70 (C). n = 18–24 rats/group. ***P 
< 0.001, *P < 0.05 vs. NSCD rats; ##P < 0.01, #P < 0.05 vs. NSCD by one-way ANOVA 
and the Bonferroni test. 

2.2.4.1 Effect of stress and enriched diet on body weight and food consumption  
As shown in Fig. 1B, adolescent stressed gained less weight than non-stressed rats 

(F(2,61)=9.950; P<0.001), an effect that lasted until adulthood (F(2,59)=5.262; P<0.01; Fig 

2.2-1C) as previously reported (Hodges and McCormick, 2015). This effect was 

counteracted by -3 PUFAs/Vitamin A enriched diet. At both ages, rats ate 

comparable amounts of food independently of stress and diet (SI Fig. 1S A, B). 

2.2.4.2 Enriched diet prevented the cognitive impairments induced by Social 
Instability Stress.  
Two weeks of social instability stress had a negative impact on recognition memory 

that lasted until adulthood. For short-term memory (1 hr after training), adolescent 

rats spent significantly more time exploring the novel object regardless of stress or 

diet (objects F(1,34)=62.88, P<0.001; condition F(2,34)=0.0, P>0.05; interaction 
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F(2,34)=4.43, P>0.05; Fig. 2.2-2A). Regarding long-term memory (4 hrs after training), 

Stressed rats fed with Control Diet (SCD) did not discriminate between the two 

objects (Fig. 2B). The enriched diet fully prevented the stress-induced impairment of 

object discrimination (objects F(1,30)=59.11, P<0.001; condition F(2,30)=0, P>0.05; 

interaction F (2, 30)=15.01, P<0.01). The cognitive impairment induced by the social 

instability stress persisted into adulthood and was prevented by the enriched diet 

administered since adolescence (F(1,30)=67.45, P<0.001; conditions F(2,30)=0, P>0.05; 

interaction F(2, 30)=14.08, P<0.001; Fig. 2.2-2D).  

 

Figure 2.2-2. The enriched diet prevented stress-induced cognitive impairment in 
the novel object recognition test. (A and C) Stress did not affect the performance of 
either adolescent or adult rats when the test was performed at 1 h after training. (B 
and D) Adolescent and adult stressed rats showed memory impairment when tested 
at 4 h after training, which was prevented by dietary supplementation with ω-3 
PUFA/vitamin A. n = 6–8 rats/group. ***P < 0.001; **P < 0.01; *P < 0.05 vs. familiar 
object within each experimental group by two-way ANOVA and the Bonferroni test. 

 

 

Furthermore, we tested rats with an emotional arousing training experience that 

engages both contextual and emotional memory processing: the contextual fear 

conditioning paradigm. Freezing time obtained during a 3 min re-exposure of rats to 

the conditioning apparatus 24 hrs after acquisition was used as an index of memory 

of the aversive experience. As shown in Fig. 2.2-3A, social instability stress did not 

affect acquisition of fear memory irrespective of diet, whereas SCD adolescent rats 
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froze less during context retrieval than did Non-Stressed rats fed with Control Diet 

(NSCD; F(5, 55)=22.77, P<0.001). The enriched diet restored contextual fear memory 

expression, as SED rats spent significantly more time freezing at recall than SCD rats 

which were indistinguishable from NSCD rats. The emotional memory deficit and 

beneficial effects of the enriched diet were long lasting, as adult Stressed rats fed 

with Enriched Diet (SED) froze significantly more than SCD rats (F(5, 55)=47.95, 

P<0.001; Fig. 2.2-3B) 

 

Fig 2.2-3. The enriched diet prevented immediate (A) and long-term (B) stress-
induced cognitive impairment in the contextual fear conditioning test. Rat freezing 
time did not differ at training regardless of treatment condition. When tested at 24 h 
after training, the SCD rats showed a lower freezing time than the NSCD rats, and the 
SED rats showed no stress-induced cognitive impairment. n = 9–10 rats/group. ***P 
< 0.001, **P < 0.01 vs. respective training; ###P < 0.001, #P < 0.05 vs. SCD by one-
way ANOVA and the Bonferroni test. 
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2.2.4.3 Enriched diet prevented short and long-term effects of social stress on the 
expression of BDNF.  
To investigate the effect of stress and diet on brain plasticity, we assessed the 

expression of BDNF in the brain. We found significant differences in BDNF protein 

levels in the hippocampus of adolescent rats (F(2,27)=10.33, P<0.001; Fig. 2.2-4A). 

BDNF expression was decreased in SCD compared to NSCD rats and this effect was 

prevented by the enriched diet. In the frontal cortex of adolescent rats, stress did not 

significantly modify BDNF, whereas the enriched diet increased BDNF levels 

(F(2,27)=5.808, P<0.01; Fig. 2.2-4B). Interestingly, social instability stress led to long-

lasting decrease of hippocampal BDNF while enriched diet prevented the effect of 

social instability stress (F(2,28)=6.896, P<0.01; Fig. 2.2-4C). Similar to adolescent rats, 

BDNF levels were significantly increased following enriched diet in the frontal cortex 

of adult rats (F(2,24)=3.680, P<0.05; Fig. 2.2-4D). 

In addition, we used Western blot analysis to detect synaptophysin (a glycoprotein 

associated with presynaptic vesicles) as a marker of synaptic density. Synaptophysin 

expression of adolescent and adult rats was not significantly affected by stress (SI Fig. 

S2), in agreement with a previous report (McCormick et al., 2012). In adolescent rats, 

the enriched diet did not significantly affect synaptophysin expression in the 

hippocampus (F(2,28)=2.121, P>0.05), nor in the cortex (F(2,29)=2.727, P>0.05). In adult 

rats, though, we observed a significant, diet-induced increase of synaptophysin 

expression both in the hippocampus (F(2,26) =8.858, P<0.001) and frontal cortex 

(F(2,27)=3.705, P<0.05) which is consistent with the previous observation that long 

exposure to -3 PUFAs increase hippocampal synaptophysin expression (Venna et 

al., 2009).  
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Fig. 2.2-4 The enriched diet restored BDNF expression in the brain of stressed rats. 
(A and B) Stress decreased BDNF levels in the hippocampus in both adolescent (A) and 
adult (B) rats. The enriched diet restored BDNF expression to control levels. (C and D) 
In the prefrontal cortex of stressed rats, the BDNF decrease did not reach statistical 
significance in either adolescence (C) or adulthood (D); nonetheless, the enriched diet 
augmented BDNF expression compared with stressed and control rats. (Insets) 
Representative immunoblots for each experimental group. n = 8–10 rats/group. **P 
< 0.01; *P < 0.05 vs. NSCD; ###P < 0.001, ##P < 0.01, #P < 0.05 vs. SCD by one-way 
ANOVA and Bonferroni’s test. 

 

2.2.4.4 Anhedonia-like behavior.  
In agreement with recent data (Marcolin et al., 2018) no differences were observed 

between stressed and control animals fed with the control diet in terms of 

preference towards the consumption of a sweetened solution when evaluated at 

different time points (SI Fig. S3). Neither stress nor the enriched diet had an effect 

on anhedonia-like behavior, as the preference for a sucrose sweetened drink was not 

affected by any of the experimental manipulations at any age tested.  
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2.2.4.5 Locomotor activity and anxiety-related behaviors.  
Locomotor activity measured as the distance travelled and time spent moving in an 

open field was comparable among the groups within each age, although adult rats 

were less active then adolescents (SI Table S2). Neither stress nor diet affected the 

number of entries and time spent in the center or periphery of the open field (SI 

Table S2). Treatment conditions did not affect other exploratory behaviors such as 

climbing, rearing, grooming indicative of a non-distressed state. Accordingly, there 

was no effect of treatment conditions on the number of entries and percentage of 

time spent by adolescent or adult rats in the open arms of the elevated plus maze (SI 

Table S3).  

2.2.4.6 Enriched diet prevented acute stress-induced changes in caecal microbiota 
composition of adolescent rats. 
The enriched diet increased alpha diversity (Chao1) of caecal microbiota of 

adolescent SED rats compared to both SCD (P<0.05; SI Fig. S4B) and NSCD rats 

(P<0.01). Consequently, significant differences were found in observed species 

(P<0.05 and P<0.01, respectively) indicating that the dietary intervention acutely 

increased microbiota diversity in adolescence irrespective of stress exposure. This 

was restricted to adolescence as there was no long-lasting effect of diet on diversity 

into adulthood. Principle Component Analysis (PCA) identified structural differences 

(beta-diversity) between adolescent NSCD and SCD rats (pairwise PERMANOVA, 

P<0.05; Fig. 2.2-5A) indicating a shift of the microbiome composition following social 

instability stress that was almost entirely prevented when stressed rats were fed the 

-3 PUFAs/Vitamin A enriched diet (pairwise PERMANOVA, P<0.1; Fig. 2.2-5A). No 

long-lasting impact of stress on the composition of the gut microbiota was identified 

in adult rats (Fig 2.2-5B). However, stressed rats exposed to an -3 PUFAs/Vitamin A 

enriched diet displayed a long-lasting shift in the gut microbiota composition 

(pairwise PERMANOVA, P<0.05; Fig. 2.2-5B). Compared to adolescent rats, adult rats 

exhibit a shift in the gut microbiota composition in all three treatment groups 

(pairwise PERMANOVA, P<0.05; Fig. 2.2-5C-E)   

Social instability stress during adolescence significantly modulated a multitude of 

taxa that were normalized by -3 PUFAs/Vitamin A enriched diet (Fig. 2.2-5F). Among 
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these, SCD rats had a decreased relative abundance of genera of the Lachnospiraceae 

family (in particular Acetatifactor, Anaerostipes and Lachnospiraceae NK4A136 

group) and several family members in the Ruminococcaceae family (in particular 

Ruminococcus 1), whereas the relative abundance of the Eubacterium genus as well 

as family members from Coriobacteriaceae were increased. These changes were 

largely counterbalanced by the -3 PUFAs/Vitamin A enriched diet. Independent of 

social instability stress, -3 PUFAs/Vitamin A enriched diet showed a long-lasting 

impact only on a few taxa into adulthood (Fig. 2.2-5F).  

Social instability stress reduced the concentration of the short-chain fatty acids 

(SCFAs), butyrate (P<0.05), valerate (P<0.05) and isobutyrate (P<0.05) in adolescent 

rats (SI Fig. S6). In contrast, SED rats exhibited an increase in isobutyrate (P<0.001) 

and isovalerate (P<0.05) that led to an overall increase in branched-chain fatty acids 

(BCFAs; P<0.001). In adult rats, the enriched diet decreased butyrate compared to 

stressed controls (SI Fig. 4C, P < 0.05).  
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Fig. 2.2-5 Social instability stress shapes the gut microbiome in adolescence. (A and 
B) PCA plots displaying beta diversity of the gut microbiome in adolescent (A) and 
adult (B) rats. (C–E) PCA plots comparing beta diversity of the gut microbiome for 
each treatment between adulthood and adolescence. (F) Changes in gut microbiome 
composition (genera) in adolescence (T1) and adulthood (T2). Changes in genera in 
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each age group are depicted as follows: (i) SCD vs. NSCD, (ii) SED vs. SCD, (iii) SED vs. 
NSCD. *P < 0.1, **P < 0.01, post hoc Benjamini–Hochberg test. 

 

2.2.5 Discussion 

Nutrition has a fundamental role in maintaining brain health and behavior at critical 

time periods, especially adolescence (Hueston et al., 2017). In rodents, appropriate 

essential micronutrient supplementation protects against cognitive decline 

associated with early life stress (Naninck et al., 2015). Our study corroborates the 

notion that dietary intervention affects neurobehavioral development (Robertson et 

al., 2017) by demonstrating for the first time, to the best of our knowledge, that a 

diet supplemented with the -3 PUFAs and vitamin A prevented the deleterious 

cognitive decline induced by social instability stress during adolescence, and the 

amelioration was maintained in adulthood. The rational for using a combination of 

-3 PUFAs and vitamin A stems from recent findings demonstrating a beneficial, 

synergistic effect of vitamin A and EPA/DHA on behavioral and neurobiological 

markers of aged rats (Letondor et al., 2016). Multiple levels of interactions occur 

between -3 PUFAs and retinoid signaling, as retinoic acid, the active metabolite of 

vitamin A, and DHA may bind to common nuclear receptors (de Urquiza et al., 2000). 

Furthermore, retinoic acid and -3 PUFAs have common intracellular signaling 

pathways such as AKT and ERK1/2 (Masia et al., 2007; Rao et al., 2007), that are 

known to be activated in several neuronal functions (Tang and Yasuda, 2017).  

We found that social instability stress during adolescence caused emotional and 

recognition memory impairments that were retained until adulthood. These 

behavioral changes were closely associated with alterations in BDNF expression in 

the hippocampus and the frontal cortex. Dietary -3 PUFAs/Vitamin A exposure from 

adolescence to adulthood was sufficient to prevent such alterations, and the 

beneficial outcomes were maintained through adulthood. 
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2.2.5.1 Enriched diet prevents memory and brain BDNF decline induced by social 
stress.  
Social instability stress in adolescence exerted long lasting effects on aversive and 

recognition memory. This is in line with previous reports that describe enduring 

deficits in contextual fear memory in response to adolescence stress (Morrissey et 

al., 2011). Indeed, the hippocampus is one of the brain structures crucially involved 

in regulation of stress responses (Reul and de Kloet, 1985). We found that social 

instability impaired contextual fear memory, a predominantly hippocampus-

dependent form of aversive memory (reviewed in (Kim and Diamond, 2002)) in both 

adolescent and adult rats.  

In the novel object recognition test as well, adolescent stressed rats showed long-

lasting memory impairments, an effect not previously observed (McCormick et al., 

2012). Infact, in McCormick’s study (McCormick et al., 2012), stressed rats had 

hippocampal-dependent spatial recognition impairment, but no reference memory 

deficit when tested 4 hs after training.  

We found a good correspondence between rats’ memory performance and BDNF 

expression in the hippocampus, as both were significantly decreased in stressed 

adolescent as well as adult rats and the enriched diet prevented both effects. Our 

results are in agreement with recent observations that -3 PUFAs induce BDNF 

increase in rat hippocampus (Vines et al., 2012). Unequivocal evidence suggests a key 

role for BDNF in the initiation of fear memory consolidation. Importantly, BDNF 

enhances and antibodies against BDNF impair fear memory when administered into 

the CA1 region of the hippocampus (reviewed in (Izquierdo et al., 2016)). Hence, 

BDNF expression and activity in the hippocampus is required to ensure successful 

storage for associative memory persistence over days (Bekinschtein et al., 2007). Our 

behavioral results are in accordance with these observations, as social instability 

stress reduced hippocampal BDNF and impaired contextual fear memory.  

In this regard, we cannot exclude that in our study BDNF modulation in the 

hippocampus affects also object memory. Although canonically the novel object 

recognition task is assumed to be largely independent of the hippocampus, some 

findings are challenging this theory (Clark et al., 2000; Cohen et al., 2013) pointing to 



90 
 

a temporal specificity for hippocampal involvement in object recognition memory 

(Hammond et al., 2004; Cohen and Stackman, 2015). Nonetheless, our results do not 

exclude that stressed-rats’ cognitive deficit is a global impairment in learning and 

memory function, rather than being specific to hippocampal responses. 

In the frontal cortex BDNF expression is required for fear memory consolidation and 

expression (reviewed in (Bekinschtein et al., 2014)). Social instability stress did not 

affect BDNF level significantly in the cortex, of adolescent and adult rats, though the 

enriched diet augmented BDNF level, presumably concurring in maintaining long-

term memory. 

2.2.5.2 Enriched diet does not affect behaviors relevant to anxiety and anhedonia.  
Social instability  administered during adolescence modifies several social behaviors, 

as stressed rats spend less time in social interactions with another male, have 

reduced sexual performance, longer latency to enter the center of an open arena 

(Green et al., 2013), all validated measures of anxiety-like behavior. Furthermore, the 

modified social repertoire is evident in adulthood weeks after the end of the stressful 

procedure (Burke et al., 2017). In our study, we found no difference between 

stressed and non-stressed rats in the latency to enter the center of the arena or in 

the number of entries, nor they showed behavioral differences in the elevated plus 

maze during adolescence or adulthood. One factor contributing to these 

discrepancies may be strain differences, which are known to be responsible for the 

anxiety profile (Ramos et al., 1997). In fact, Wistar rats used in our experiments 

appeared more resilient to the ones commonly used for anxiety-like tests. Other 

behavioral signs of stress, such as modified grooming, rearing or climbing (Kruk et al., 

1998; Fuzesi et al., 2016) were not affected by stress, nor by diet supplementation. 

Confirming recent data regarding the consumption of natural rewards (Marcolin et 

al., 2018), neither adolescent nor adult stressed rats did manifest anhedonia-like 

behavior in the sucrose preference test. 

2.2.5.3 Social instability stress during adolescence dramatically altered the gut 
microbiome which was reversed by -3 PUFAs/Vitamin A enriched diet.  
Increasing evidence shows that intestinal microbiota influences behaviors relevant 

to mood and cognitive functions. One of the ways that are proposed for such effects 
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is by producing metabolites with central effects, among which SCFAs are the most 

important (Bercik et al., 2011; Bravo et al., 2011; de Lartigue et al., 2011).  -3 PUFAs 

are known to have a positive action on the intestinal microbiota increasing the 

production of SCFAs (reviewed in (Costantini et al., 2017)). Moreover, perturbations 

of the microbiota during adolescence have been shown to result in enduring social 

and cognitive deficits (Desbonnet et al., 2015). 

Psychological stress (ranging from restraint stress to maternal separation and 

overcrowding) has been shown to alter microbiota composition (O'Mahony et al., 

2009; Bailey et al., 2011; Hsiao et al., 2013; De Palma et al., 2014; Bharwani et al., 

2017). Social instability stress induced striking differences in the gut microbiome 

composition of adolescent rats which were partially reversed by an -3 

PUFAs/Vitamin A enriched diet. Adolescence stress resulted in a decreased 

abundance of several genera within the Ruminococcaceae and the Lachnospiraceae 

family. The functional consequences of such changes are not clear at this stage but it 

is worth noting that both, Ruminococcaceae and Lachnospiraceae, were found to be 

decreased in patients with depressive disorders  (Jiang et al., 2015). In contrast, the 

Eubacterium genus was increased in stressed rats fed with control diet. 

Eubacteriaceae were found to be increased in rats with experimental colitis and 

when additionally exposed to stress (Konturek et al.) conditions where 

Lachnospiraceae were decreased (66). Coriobacteriaceae, in particular 

Enterorhabdus, were increased in SCD rats. This is in line with studies implicating 

Coriobacteriaceae with colonic health and inflammation (Morgan et al., 2012). 

Nonetheless, the enriched diet was sufficient to prevent such modifications. 

However, despite the stress-induced changes and independently of the diet, the 

intestinal microbiota during adulthood recovered the core microbiota composition 

characteristic of adult animals (Flemer et al., 2017).  Interestingly, no long-lasting 

impact of stress was identified in adult rats. However, stressed rats exposed to an -

3 PUFAs/Vitamin A enriched diet displayed a long-lasting shift in the gut microbiota 

composition. A limitation of our current study is that we cannot definitely prove a 

causal correlation between changes in microbiota and cognitive performance at this 

juncture. However, given that the microbiome has been implicated as a conduit for 
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the positive effects of nutrition on host health, modulation of the microbiota is a 

plausible mechanism as to how nutritional interventions may reduce the effects of 

stress (Sandhu et al., 2017), as we found that both diet and stress induced effects on 

both the microbiome and behavioral/neurochemical measures of cognitive 

functions. We also found that the enriched diet increased the production of branched 

SCFA whereas unbranched SCFA were unchanged. It was previously shown that SCFA 

levels strongly correlated with improvement in tests of anxiety- and depression-like 

behaviors induced by prebiotic diet (Burokas et al., 2017) and that SCFAs can reverse 

the enduring effects of social stress in adulthood .  

 

2.2.5.4 Conclusion 
Stress, emotional instability, impulsivity are all enhanced during adolescence and 

inadequate nutrition may exacerbate such conditions. Moreover, there is a growing 

link between changes in gut microbial composition and brain health in adolescence.  

Clinical studies have shown that young adults who endured environmental or 

psychosocial stressors during development or have low blood -3 PUFAs levels are 

often diagnosed with psychiatric disorders or cognitive impairments (Espejo et al., 

2007; Heim et al., 2008; Kuratko et al., 2013; Montgomery et al., 2013; Joffre et al., 

2014). Our study thus provides the first preclinical evidence that -3 PUFAs and 

vitamin A supplementation is sufficient to prevent long-lasting cognitive disturbances 

and modulate microbiota composition that accompany repeated, prolonged stressful 

stimuli during adolescence. Optimization of dietary components that affect brain 

development suggests the likelihood that we may improve our cognition throughout 

life. 
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2.3.1 Abstract 

There is a growing emphasis on the role of the microbiota-gut-brain axis as 

modulator of host behaviour and as therapeutic target for neuropsychiatric 

disorders. In addition, accumulating evidence suggests that early-life stress can exert 

long-lasting changes on the brain and microbiota, and this early adversity is 

associated with increased risk for developing depression in later life. The maternal 

separation (MS) model in rats is a robust paradigm to study the effects of early-life 

stress on the microbiota-gut-brain axis. Recently, we have shown that   polyphenols, 

naturally occurring compounds associated with several health benefits, have anti-

stress effects in in vitro models. In this study, we assess the therapeutic potential of 

a variety of both flavonoid and non-flavonoid polyphenols in reversing the impact of 

MS on behaviour and the microbiota-gut-brain axis. 

Rats underwent a dietary intervention with the naturally-derived polyphenols 

xanthohumol and quercetin, as well as with a phlorotannin extract for 8 weeks. 

Treatment with polyphenols prevented the depressive and anxiety-like behaviours 

induced by MS, where xanthohumol effects were correlated with rescue of BDNF 

plasma levels. In addition, MS resulted in altered brain levels of 5-

hydroxyindoleacetic acid (5-HIAA) and dopamine, accompanied by abnormal 

elevation of plasma corticosterone. Although polyphenols did not reverse 

neurotransmitter imbalance, xanthohumol normalised corticosterone levels in MS 

rats. Finally, we explored the impact of MS and polyphenolic diets on the gut 

microbiota. We observed profound changes in microbial composition and diversity 

produced by MS condition and by xanthohumol treatment. Moreover, functional 

prediction analysis revealed that MS results in altered enrichment of pathways 

associated with microbiota-brain interactions that are significantly reversed by 

xanthohumol treatment. These results suggest that naturally-derived polyphenols 

exert antidepressant-like effects in MS rats, which mechanisms could be potentially 

mediated by HPA regulation, BDNF levels rescue and modulation of the microbiota-

gut-brain axis. 
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2.3.2 Introduction 

Stress-related psychiatric disorders including depression and anxiety are currently a 

major public health concern. Indeed, the World Health Organisation (WHO) has 

predicted that depression will be the second largest cause of disability by 2020 

(Johnston et al., 2019). On the other hand, major depressive disorder is thought to 

result from the complex interplay of multiple inherited genetic factors and 

subsequent exposure to a wide range of environmental variables throughout life (aan 

het Rot et al., 2009); therefore, the search for adequate treatments is a great 

challenge as no established mechanisms have yet been determined (Berton and 

Nestler, 2006). Based on these observations and considering that depression has an 

inconsistent response to treatment, the development of new antidepressant 

strategies is increasingly being considered as a critical focus of research. 

It is well known that stressful events in early life can exert long-lasting changes in 

brain structure and function later on (Cryan and Dinan, 2013) and accumulating 

evidence indicates that this early life adversity is associated with an increased risk for 

developing depression (Chapman et al., 2004; Heim and Binder, 2012). For instance, 

inadequate maternal care has been linked to developmental, emotional and social 

deficits in humans (Field, 1998). In rodents, the maternal separation (MS) model is a 

well-described paradigm used to investigate the neurobiological and behavioural 

consequences of early life stress (O'Mahony et al., 2011; Nishi et al., 2014; Rincel and 

Darnaudery, 2019). For this reason, the MS model has been used to study various 

psychiatric conditions, especially depression (Meaney et al., 1996; Vetulani, 2013) 

(Wieck et al., 2013). 

The microbiota-gut-brain axis describes the complex bidirectional communication 

system that exists between the central nervous system (CNS) and enteric microbiota; 

involving endocrine, immune and neural pathways (Rhee et al., 2009; Foster et al., 

2017; Cryan et al., 2019). Accumulating research has focused on the impact of the 

microbiota on CNS function and stress perception, and its consequences for 

behaviour (Cryan and Dinan, 2012). Indeed, top down activation of the CNS can 

influence gut neuromotor and secretory function, immunity and microbiota 
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composition during stress (De Palma et al., 2014; Foster et al., 2017). In this regard, 

early-life stress models such as MS have long-term impact on the gut microbiota, 

which correlate with increased HPA axis activity and behaviour (Bailey and Coe, 1999; 

O'Mahony et al., 2009). Moreover, the MS model is sensitive to reversal treatments 

that target the gut microbiota (Gareau et al., 2007; Fukui et al., 2018; Cowan et al., 

2019; McVey Neufeld et al., 2019; O'Mahony et al., 2019). 

The emerging and compelling evidence for nutrition as a crucial factor in the high 

prevalence and incidence of mental disorders suggests that changes in diet are a 

viable strategy for improving mental health and treatment of psychiatric disorders 

including anxiety and depression (Jacka et al., 2014; Lai et al., 2014; Spencer et al., 

2017; Larrieu and Laye, 2018; Adan et al., 2019; Dinan et al., 2019). For instance, 

dietary polyphenols are a group of naturally occurring phytochemicals which are 

present in high amounts in fruits and vegetables and are characterised by the 

presence of multiple hydroxyl groups on aromatic rings (Vauzour, 2012). Several 

studies have focused on the potential of polyphenolic compounds in protecting 

cognitive function and reducing risk for developing neurodegenerative disorders 

(Spencer, 2008). In particular, some pre-clinical studies have confirmed the 

antidepressant capacity of polyphenols in different animal models (Anjaneyulu et al., 

2003; Kulkarni et al., 2008; Yi et al., 2008). Moreover, dietary polyphenols are capable 

of modulating the composition of the gut microbial community by inhibiting or 

stimulating the growth of certain bacteria (Lee et al., 2006). Hence, there is increasing 

interest in using polyphenols to target the microbiota-gut-brain axis to treat mental 

disorders (Filosa et al., 2018; Matarazzo et al., 2018). 

Polyphenolic compounds are characterised as having different functional activity 

depending on their chemical structure (Manach et al., 2004; Vauzour et al., 2010). 

For instance, phlorotannins are a type of polyphenolic tannins found in marine brown 

algae, which have been shown to possess anti-oxidant activity, as well as beneficial 

effects for different diseases such as cancer, cardiovascular problems and diabetes 

(Kim and Himaya, 2011). Other polyphenols can only be isolated from specific 

sources. Xanthohumol, for example, is described as a prenylated chalcone, a principal 

component of the female hop plant, Humulus lupulus (Stevens and Page, 2004). 
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Some health benefits associated with xanthohumol intake include anti-inflammatory 

and neuroprotective effects (Liu et al., 2015). In contrast, some members of the 

flavonoid family like quercetin are widely distributed in nature (Manach et al., 2004). 

Quercetin is one of the most studied polyphenols and has been demonstrated to 

confer protection against certain types of cancer, cardiovascular and 

neurodegenerative disorders (Boots et al., 2008). 

Recently, we showed that across a wide number of polyphenols, xanthohumol and 

quercetin were able to reverse the impact of corticosterone exposure in primary 

cortical neurons (Donoso et al., 2019). Moreover, although the antidepressant 

effects of several polyphenols have been studied in different preclinical studies (Xu 

et al., 2005; Bhutada et al., 2010; Liu et al., 2014), their therapeutic effects have not 

yet been examined in models of early life stress, nor the mechanisms underlying the 

polyphenol-mediated alleviation of mood. Therefore, the purpose of this study was 

to explore the therapeutic effects of different naturally derived polyphenols, 

including phlorotannins, xanthohumol and quercetin in the MS model in rats. In 

addition, the consequences of MS and polyphenol diet intervention on different 

aspects of the microbiota-gut-brain axis were explored.  

In this regard, we evaluated important components involved in the regulation of this 

axis, including BDNF, which is a crucial neurotrophin associated with plasticity and 

neuronal survival (Brunoni et al., 2008; Lee and Kim, 2010); the assessment of 

neurotransmitter concentrations in the brainstem, an important brain locus for 

monoaminergic transmission and which is implicated in mood disorders (Sasaki et al., 

2008), as well as highly influenced by the gut microbiota (Strandwitz, 2018); and the 

response to acute stress through the determination of plasma corticosterone, the 

main rodent stress hormone (de Kloet et al., 2005; Joels et al., 2018). Finally, we 

evaluated the consequences of MS and diet intervention with polyphenols on the gut 

microbiota abundance and through the determination of short-chain fatty acids 

(SCFAs), microbial metabolites thought to play a critical role in gut-brain 

communication (van de Wouw et al., 2018; Dalile et al., 2019). Together, findings 

from this study have the potential to provide new insights into the potential 

therapeutic effects of polyphenols and the role of the microbiota-gut-brain axis in 
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stress-related disorders, and add an important direction to future dietary advice on 

optimal nutrition for mental health and to counter the enduring impact of early life 

adversity. 

 

2.3.3 Methods 

2.3.3.1 Animals 
All experimental procedures involving animals were approved by the Ethics 

Committee of University College Cork. Pregnant Sprague Dawley dams weighing 250–

300 g were bred in-house in the Biological Services Unit facility, University College 

Cork. The pups were housed with their mothers in plastic cages (15 × 22 × 9 cm) in a 

temperature and humidity controlled room on a 12-h light, 12-h dark cycle (lights on 

from 7.00–19.00 h). Food and water were available ad libitum. 

2.3.3.2 Drugs 
Quercetin (Q4951) was purchased from Sigma. Xanthohumol (A-4-2014) was 

provided by Hopsteiner, GmbH (Mainburg, Germany). Phlorotannin-rich extract from 

Fucus vesiculosus (Gite et al., 2019) was obtained from National University of Ireland, 

Galway (Galway, Ireland). All diets were prepared by ssniff Spezialdiäten (Ferdinand-

Gabriel-Weg, Germany). The resulting grain based chows were isoenergetic and had 

the same proportion of macronutrients (carbohydrates, proteins and lipids). 

2.3.3.3 Maternal separation procedure 
MS was performed as previously described (O'Mahony et al., 2009; Pusceddu et al., 

2015). Briefly, pups were separated from their mother as a whole litter and placed 

into plastic cages maintained at 30 – 33 °C in a separate room to prevent 

communication through ultrasonic vocalisation (Hofer et al., 1994). Following the 3-

hour separation, pups were returned to their original home cage with their mother. 

This procedure was repeated each day (9.00am–12.00pm) from post-natal day (PND) 

2 through PND12. NS-Control rats consisted of non-handled pups, left untouched by 

the experimenter, and with their respective mothers. After postnatal day 12, pups 
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were left undisturbed except for routine cage cleaning every two days. At weaning, 

male rats were group-housed (2 – 4) in large cages. 

2.3.3.4 Treatments 
The rats were randomly assigned into five different experimental groups [1] NS-

Control diet (n = 12); [2] MS-Control diet (n = 12); [3] MS-Phlorotannins 0.03% (n = 

10); [4] MS-Xanthohumol 0.015% (n = 10); [5] MS-Quercetin 0.03% (n = 10). Dietary 

intervention of polyphenols, delivered ad libitum in food, began once the animals 

were eight weeks old and continued for eight weeks. The concentrations for the 

polyphenols tested were calculated based on doses previously reported in animal 

models and considered the average daily food intake and body weight of Sprague 

Dawley rats aged between 9 and 16 weeks (Laaksonen et al., 2013). Estimated doses 

are as follows; quercetin 20 mg/kg/day (Haleagrahara et al., 2009); xanthohumol 10 

mg/kg/day (Ceremuga et al., 2013); phlorotannins 20 mg/kg/day (Ahn et al., 2017). 

In the interest of reduction in the 3Rs a number of other interventions were also run 

contemporaneously with the control and treatment groups used here (Egerton et al. 

unpublished). 

2.3.3.5 Elevated plus maze 
The elevated plus maze (EPM) is one of the most commonly used rodent tests for 

assessing anxiety and was performed as previously described (Cryan et al., 2004; 

Pusceddu et al., 2015). Briefly, the maze consisted of two open arms (51 × 10 cm; 5 

lux) and two enclosed arms (51 × 10 × 41 cm) that all extended from a common 

central platform (10 × 10 cm). The apparatus was elevated 55 cm above the floor on 

a central pedestal. Animals were habituated to the testing room for 30 min prior 

experiment. At week 12, animals were placed in the centre of the maze facing an 

open arm to begin. Animal behaviour was recorded for 5 min. Frequency of open and 

closed arms entries were scored, as well as percentage time spent in each arm. 

2.3.3.6 Open field test 
The open field test (OFT) is commonly used as a mechanism to assess anxiolytic 

effects of compounds (Seibenhener and Wooten, 2015). Briefly, at week 13 rats were 

placed in the centre of a white open field arena (60 × 40 cm; 60 lux) and observed for 
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10 min. Animals were habituated to the test room for 30 min prior to the experiment. 

All trials were conducted between 9.00am and 1.00pm. The arena was cleaned with 

70% ethanol to avoid smell cues between each trial. At the end of each trial, animals 

were returned to their cages. Distance moved, velocity, percentage of time spent in 

inner zone, and frequency of inner zone entries were analysed and recorded using a 

tracking system (Ethovision XT 13, Noldus). 

2.3.3.7 Forced swim test 
The forced swim test (FST) is the most widely used model for predicting 

antidepressant activity in rodents, and increased immobility in this test is generally 

considered to reflect a state of behavioural despair (Porsolt et al., 1978). Briefly, at 

week 15 a modified rat FST protocol (Slattery and Cryan, 2012) was used to 

determine the antidepressant effects of polyphenols in rats. On day one, rats were 

placed individually in glass cylinders (H: 45 cm; D: 20 cm) filled with water to a depth 

of 30 cm at 24±1 °C for a 15 min pre-test period. The rats were removed from the 

water, dried and placed in their home cage. The cylinders of water were changed 

between each trial. 24 hours after the pre-test, the rats were again placed in the 

swim apparatus for 5 min and behaviours were monitored from above with a video 

camera for subsequent analysis. Behaviours rated include immobility, climbing and 

swimming (scoring of behaviours was blind to the experimental conditions). The 5-

min session was scored using a time-sampling technique, whereby the predominant 

behaviour in each 5-s period of the 300-s trial was recorded. Climbing behaviour 

consisted of upward-directed movements of the forepaws along the side of the 

cylinder. Swimming behaviour was defined as movement (usually horizontal) 

throughout the cylinder. The rat was considered to be immobile when the only 

activity observed was that which was required by the rat to keep its nose above 

water. 

2.3.3.8 Plasma corticosterone determination 
Blood sample collection was performed as previously described (Pusceddu et al., 

2015). Briefly, blood samples were collected on day one of FST via a tail-tip incision 

at five different time points: immediately before (baseline), 30 min, 60 min, 90 min 

and 120 min after the test was started. Approximately 200 µl of blood was collected 
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in a tube containing 10 µL of EDTA 0.1 M to avoid coagulation. Blood plasma was 

obtained by centrifugation at 3500 × g at 4 °C for 15 min. Corticosterone levels were 

measured using the Corticosterone EIA kit (Enzo) according to the manufacturer 

instructions, and absorbance signal was detected with a conventional plate reader 

(Synergy HT, Biotek). 

2.3.3.9 Plasma BDNF measurement 
Immediately after sacrifice, trunk blood was collected in EDTA Vacutainer tubes. 

Blood plasma was obtained by centrifugation at 3500 × g at 4 °C for 15 min. Protein 

levels of brain-derived neurotrophic factor (BDNF) were determined using an 

electrochemiluminescence multiplex system (MSD, Gaithersburg, MD, USA) 

according to the manufacturer’s protocol. BDNF levels were determined and 

analysed using the MSD QuickPlex SQ 120 Instrument. 

2.3.3.10 Brain monoamines concentration 
The monoamine neurotransmitters noradrenaline (NA), serotonin (5-HT), dopamine 

(DA) and their metabolites 5-HIAA and 3,4-dihydroxyphenylacetic acid (DOPAC) were 

determined in the brainstem using high-performance liquid chromatography (HPLC) 

with electrochemical detection as described previously (Clarke et al., 2012; Pusceddu 

et al., 2015). Briefly, samples were homogenised in mobile phase (consisting in 0.1 M 

citric acid, 0.1 M sodium dihydrogen phosphate monohydrate, 5.6 mM 1-

octanesulfonic acid, 0.01 mM EDTA, 11.1% (v/v) methanol, and 0.1 µg/mL of N-

Methyl 5-HT as internal standard and adjusted to pH 2.8). Then samples were 

centrifuged 14000 g for 15 min at 4 °C, and 20 µL of this supernatant was injected 

onto the HPLC system (consisting in a CBM-20A system controller, a EC3000 Recipe 

amperometric detector, a LC-20AD XR pump, a CTO-20A column oven at 30 ⁰C, a SIL-

20AC XR autosampler, and a Prominence DGU-20A3 degasser). A reverse-phase 

column (Kinetex 2.6u C18 100A 100 mm X 4.6 mm, Phenomenex) was employed in 

the separation using a flow rate of 0.9 mL/min. Each neurotransmitter was identified 

through their characteristic retention times and their concentration was determined 

using the ratios of peak heights of analyte versus internal standard provided by the 

LabSolutions software (Shimadzu). Results were expressed as nanograms of 

neurotransmitter per grams of fresh tissue. 
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2.3.3.11 Gut microbiota 16S rRNA sequencing 
Microbial DNA was isolated from frozen faecal samples using the QIAGEN QIAamp 

Fast DNA Stool Mini Kit (Qiagen) according to the manufacturer’s directions. DNA 

concentration and quality was determined using the NanoDrop® ND-1000 UV-Vis 

Spectrophotometer (Thermo Fisher Scientific). The V3-V4 variable region of the 16S 

rRNA gene was amplified from the DNA extracts using the Illumina 16S metagenomic 

sequencing library protocol, and PCR reactions were performed with the KAPA HiFi 

HotStart PCR Kit (KAPA Biosystems). PCR products were cleaned using AMPure XP 

magnetic bead-based purification (Beckman Coulter Life Sciences). This was followed 

by indexing PCR which attached Nextera XT barcodes and Illumina sequencing 

adapters to the 5′ overhangs and another round of AMPure XP clean-up. Finally, 

samples were sequenced on the MiSeq™ System (Illumina®), using a 2 x 250bp cycle 

kit, following standard Illumina sequencing protocols. 

 

2.3.3.12 Short chain fatty acid determination 
The SCFAs acetate, propionate, butyrate, and valerate, as well as the total branched 

chain fatty acids (BCFAs) were measured in caecal content using gas chromatography 

flame ionisation detection (GC-FID) as previously reported (van de Wouw et al., 

2018). Briefly, samples were vortexed with Milli-Q water (1:10 w/v), left to stand for 

10 min at room temperature, and then centrifuged at 14000 g for 5 min. The 

supernatant was filtered (0.2 µm) before transfer to a GC glass vial, and 2-

ethylbutyric acid (Sigma) was added as internal standard.  SCFA concentrations were 

measured using a Varian CP-3800 GC flame-ionization system, fitted with a Zebron 

ZB-FFAP column (30 m × 0.32 mm × 0.25 µm; Phenomenex) and a flame ionisation 

detector with a CP‐8400 auto‐sampler. Helium was used as the carrier gas at a flow 

rate of 1.3 ml/min. The initial oven temperature was set at 100 °C for 0.5 min, raised 

to 180 °C at 8 °C/min and held for 1 min, then increased to 200 °C at 20 °C/min, and 

finally held at 200 °C for 5 min. The temperature of the injector and the detector 

were set at 240 °C and 250 °C respectively. A standard curve made from a standard 

mix of acetic acid, propionic acid, n-butyric acid and iso-butyric acid (Sigma) at seven 

concentrations. Peaks were integrated by using the Varian Star Chromatography 
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Workstation version 6.0 software. Standards were included in each run to maintain 

calibration. 

2.3.3.13 Statistical analysis 
Statistical analysis was performed using the software SPSS 24.0, and the results were 

presented as mean ± SEM. MS-control group and NS-control group were compared 

using independent T-test to assess the MS effect. All MS groups were analysed using 

one-way analysis of variance (ANOVA) followed by Dunnett’s post hoc test. A p-value 

of 0.05 was considered statistically significant. FLASH was used to assemble paired-

end reads. Further processing of paired-end reads including quality filtering based on 

a quality score of >25 and removal of mismatched barcodes and sequences below 

length thresholds was completed using QIIME (version 1.9.0). Denoising, chimera 

detection and clustering into operational taxonomic unit (OTU) grouping were 

performed using USEARCH v7 (64-bit). OTUs were aligned using PyNAST, and 

taxonomy was assigned using BLAST against the SILVA SSURef database release 123. 

Statistical microbiome analysis was carried out in R (version 3.6.1) with Rstudio 

(version 1.2.1335). OTUs unknown on a genus level were excluded, as well as OTUs 

available in two or fewer samples. The ALDEx2 library (Fernandes et al., 2014) was 

used to compute the centred log-ratio transformed values of the remaining taxa. For 

principal component analysis, a pairwise implementation of the adonis() 

PERMANOVA function in the vegan library (Oksanen et al., 2017) followed by the 

Bonferroni-Holm correction was used to test for difference in β-diversity in terms of 

Aitchison distance. Differential abundance was assessed using a pairwise 

implementation of the aldex.test() function, followed by Benjamini-Hochberg 

correction. In these cases, a q-value < 0.1 was considered significant. α-diversity was 

computed using the iNEXT library (Hsieh et al., 2016). 

2.3.3.14 Functional prediction of Gut-Brain modules 
The Piphillin webservice (Iwai et al., 2016) was used to infer the functional 

metagenome per sample in terms of KEGG orthologues. Next, these KEGG 

orthologues were processed using the omixer library in R (Darzi et al., 2016) in order 

to calculate  abundance of gut-brain-modules (GBMs) (Valles-Colomer et al., 2019) 

and gut-metabolic modules (GMMs) in these samples. Then, the same 
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implementation from ALDEx2 was used to assess differential abundance. Scripts are 

publicly available on GitHub: https://github.com/thomazbastiaanssen/Tjazi doi: 

10.5281/zenodo.1480804 
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2.3.4 Results 

2.3.4.1 Polyphenols reversed MS-induced depressive-like behaviours 
To investigate the therapeutic effects of the dietary interventions with polyphenols 

from MS-induced behavioural despair, animals were subjected to a battery of 

behavioural tests to examine depressive- and anxiety-like behaviours. Firstly, animals 

did not differ in terms of body weight across the different experimental groups 

throughout the duration of the treatment (Fig. 1B and C). In FST, analysis yielded a 

significant effect of MS compared to NS-control group on the time spent immobile 

(t22 = -2.349; p = .028) and swimming (t22 = 2.611; p = .016) (Fig. 2.3-2A). MS animals 

exhibited improved depressive-like behaviours with xanthohumol; moreover, 

quercetin and phlorotannins significantly decreased immobility time in the FST (F3,36 

= 4.425; p = .05 and p = .002 respectively). In addition, treatment with phlorotannins 

increased swimming time compared to the MS-control group (F3,36 = 2.984; p = .008) 

(Fig. 2.3-2A). 

 

Figure 2.3-1 Diet intervention with polyphenols did not affect body weight. (A) 
Schematic representing the experimental timeline. (B) Body weight was measured 
weekly from 6-week old until the end of the diet intervention. (C) The weight gain was 
calculated as the difference between the first body weight record (6 weeks) and the 
last measurement (15 weeks). 
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2.3.4.2 Polyphenols showed anxiolytic potential in MS animals 
MS-induced anxiety-like behaviour in the OFT by significantly reducing the time spent 

in the centre (t21 = 2.156; p = .025), as well as in the number of entries in the centre 

of the arena (t21 = 2.855; p = .009) (Fig.2.3-2D and 2.3-E). Administration of quercetin 

in MS rats resulted in a significant increase in the number of entries in the open arms 

compared to the MS-control group (F3,38 = 2.714; p = .040), which was associated with 

an anxiolytic effect (Fig. 2.3-2G). Interestingly, treatment with phlorotannins 

ameliorated MS-induced anxiogenic effects in both, time in centre (F3,37 = 2.297; p = 

.025) and in entries into the centre (F3,37 = 2.405; p = .025). However, no differences 

were found between NS-control and MS animals during the EPM (Fig. 2.3-2F and G). 

 

Figure 2.3-2 Treatment with polyphenols induced antidepressant- and anxiolytic-
like effects in MS rats. (A) MS-induced increased immobility in the FST is prevented 
through treatment with quercetin and phlorotannins, while reduced swimming time 
caused by MS is reversed only by phlorotannins treatment. (B – C) Polyphenolic diets 
nor MS produced changes in locomotor activity. (D – E) Phlorotannins treatment 
produced a significant increase in the time spent in centre and number of centre 
entries when is compared to MS-control group in the OFT. (F – G) However, MS 
animals did not show anxiety-like behaviours in the EPM. Results are expressed as the 
mean ± SEM (*p < 0.05; **p < 0.01 versus ‘vehicle’ groups; #p < 0.05; ##p < 0.01 versus 
‘CORT’ groups). 

2.3.4.3 Xanthohumol prevented the exacerbated corticosterone production in MS 
rats after acute stress 
To determine the role of the HPA axis in MS-induced depressive- and anxiety-like 

behaviours, the concentration of corticosterone in plasma was measured at different 
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time points after an acute stress (Fig. 2.3-3A). Indeed, the corticosterone production 

was close to being statistically increased in MS-control relative to the NS-control 

group as revealed by the area under the curve (AUC) of corticosterone response (t20 

= -1.949; p = .065) (Fig. 2.3-3B). Interestingly, dietary intervention with xanthohumol 

in MS animals induced a significant reduction in corticosterone AUC compared to the 

MS-control group (F3,34 = 3.827; p = .010) (Fig. 2.3-3B). In addition, all polyphenolic 

treatments induced lower baseline levels of plasma corticosterone compared to MS-

control group (F3,36 = 3.979; quercetin p = .080; xanthohumol p = .006; phlorotannins 

p = .011). 

MS-induced plasma BDNF reduction was reversed by xanthohumol treatment 

BDNF is a critical modulator of neuroplasticity and survival, abundant in the brain and 

periphery, including serum and plasma (Lee and Kim, 2010). Preclinical and clinical 

studies have demonstrated that chronic stress and depressive status reduces BDNF 

expression (Russo-Neustadt et al., 2001; Gonul et al., 2005). Indeed, MS rats showed 

lower levels of plasma BDNF compared to NS animals (t19 = 2.672; p = .015), and this 

effect was significantly prevented by xanthohumol treatment (F3,36 = 1.748; p = .047) 

(Fig. 2.3-3D).  

 



108 
 

Figure 2.3-3 Xanthohumol treatment prevented corticosterone elevation and BDNF 
reduction in MS rats. (A) Corticosterone levels in plasma rise after rats are exposed 
to an acute stress. (B) MS-induced increase in corticosterone release is abolished by 
treatment with xanthohumol. (C) Baseline levels of corticosterone of rats treated with 
xanthohumol and phlorotannins are significantly lower compared to MS animals. (D) 
Rats treated with xanthohumol displayed higher levels of plasma BDNF compared to 
the MS-control group. Plasma corticosterone was determined using ELISA, and BDNF 
determination was performed with MSD system. Results are expressed as the mean 
± SEM (*p < 0.05 versus ‘vehicle’ groups; #p < 0.05; ##p < 0.01 versus ‘CORT’ groups). 

2.3.4.4 MS induced decreased levels of DA and 5-HIAA in brainstem 
To further determine the effects of early life stress on neurochemistry, and its 

potential implication on the antidepressant and anxiolytic effects of polyphenols, 

monoamine neurotransmitter concentration was measured in the brainstem. MS 

produced a significant reduction of DA and 5-HIAA levels (t20 = 6.121; p = .000 and t22 

= 3.934; p = .001 respectively) (Fig. 2.3-4B and 2.3-D), reduced 5-HT turnover (t21 = 

3.519; p = .002) (Fig. 2.3-4C), and increased DA turnover (t22 = -2.153; p = .047) (Fig. 

2.3-4F). In contrast, treatment with phlorotannins increased the levels of NA and 5-

HT compared to the MS-control group (Fig. 2.3-4A and G). 
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Figure 2.3-4 Polyphenols did not prevent MS-induced reductions in brainstem 
dopamine and 5-HIAA. Monoamine neurotransmitters were measured in the 
brainstem via HPLC. MS animals show depleted concentrations of dopamine and 5-
HIAA compared to NS-control rats. Phlorotannins diet intervention exerted an 
increase of noradrenaline and 5-HT MS animals, although not significant. Results are 
expressed as the mean ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001 versus ‘vehicle’ 
groups; #p < 0.05 versus ‘CORT’ groups). 

2.3.4.5 MS and dietary treatments induced changes in gut bacterial diversity 
To define whether the experimental treatments also altered gut microbiota diversity 

and bacterial abundance, α- and β-diversity analyses were performed. Although no 

differences in richness were found using the Chao1 α-diversity metric (Fig. 2.3-5A), 

Shannon entropy and Simpson index both indicate that MS rats treated with 

phlorotannins showed reduced diversity within this group compared to the MS-

control experimental group (p = .072 and p < .05, respectively) (Fig. 2.3-5B and C). In 

other words, while the total estimated amount of OTUs did not differ, the microbial 

ecosystem of animals treated with phlorotannins were distributed less evenly. On 
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the other hand, principal component analysis (PCA) to measure the diversity among 

groups, indicated that MS and NS control groups were significantly different from 

each other (F4,47 = 2.012; p = .046) (Fig. 2.3-5D). In addition, treatments with 

quercetin, xanthohumol and phlorotannins also produced significant changes in β-

diversity in terms of Aitchison distance compared to MS-control group (F4,47 = 2.012; 

p = .004; p = .045; p = .046, respectively) (Fig. 2.3-5D). 

2.3.4.6 Changes in the gut microbiota composition correlated with MS status and 
polyphenolic diets 
Alteration of the gut microbiota composition has been associated with different 

mental disorders, including major depression and other stress-related psychiatric 

disorders (Cryan and Dinan, 2012). Thus, we examined the differences in the gut 

microbiota composition of maternally separated rats. Significant differences in terms 

of the relative abundance between MS-control and NS-control animals were found 

in 5 specific bacteria based on effect size (Streptococcus; Ruminococcus; 

Parabacteroides; Rothia; Christensenellaceae; q < .1) (Fig. 2.3-5E). On the other hand, 

dietary interventions with quercetin and xanthohumol in MS rats induced significant 

changes in the abundance of other bacteria genera when compared to the MS-

control group. Specifically, quercetin produced a significant increase of 

Enterorhabdus (q < .1), while xanthohumol exerted changes in the abundance of 

Asteroplasma, Lachnospiraceae, and Coprococcus (q < .1) (Fig. 2.3-5E). 

2.3.4.7 Treatment with phlorotannins and xanthohumol restore MS-induced 
changes in bacteria associated with microbiota-gut-brain pathways 
To investigate the implications of MS-induced changes in gut microbiota composition 

on metabolic pathways associated with the microbiota-gut-brain axis, we performed 

a functional prediction based in previously described GBMs (Valles-Colomer et al., 

2019). MS significantly changed the abundance of bacteria linked to 8 GBMs in terms 

of effect size, including tryptophan degradation, quinolinic acid metabolism, nitric 

oxide metabolism, and p-cresol synthesis compared to NS-control group (q < .1) (Fig. 

2.3-5F). Intriguingly, although quercetin did not alter any relevant bacteria, 

xanthohumol and phlorotannins treatment restored most of the changes produced 

by MS in these bacteria.  
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Figure 2.3-5 MS and polyphenolic diets induced significant changes in gut 
microbiota composition and diversity. (A – C) Chao1, Simpson index and Shannon 
entropy were used as estimators of bacterial α-diversity. (D) Principal component 
analysis of genus level was performed to estimate the β-diversity between 
experimental groups. (E) Bacterial abundances were significantly altered in MS rats 
in terms of effect size (q < .1). In contrast, xanthohumol and quercetin changed other 
bacteria compared to MS animals. (F) Functional prediction of GBMs was utilised to 
detect potential microbiota-gut-brain pathways affected by MS or dietary 
treatments. Colours represent effect size, only microbiome features found to be 
significantly different in at least one comparison are shown (*q < .1; **q < .05; ***q 
< .01 vs MS-control group). 

 

 

2.3.4.8 Xanthohumol prevented MS-induced reduction of intestinal SCFAs 
To determine whether the observed changes in the gastrointestinal microbiota 

composition and diversity correlate with alteration in SCFA production, the levels of 

acetate, propionate, butyrate, valerate were determined in caecal content (Fig. 2.3-

6). Interestingly, maternal separation induced a significant reduction of acetate (t22 

= 2.409; p = .025), propionate (t22 = 2.988; p = .01), isobutyrate (t21 = 3.354; p = .006), 

isovalerate (t21 = 2.779; p = .016), total SCFAs (t21 = 2.228; p = .037), and total BCFAs 
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(t21 = 3.181; p = .008). In contrast, phlorotannin treatment significantly reversed the 

MS-induced propionate reduction (F3,38 = 4.646; p = .022), and exerted positive 

effects on isobutyrate, valerate and total levels of BCFAs. 

 

Figure 2.3-6 MS rats exhibited lower levels of gut microbiota-derived metabolites 
(A – H). MS induced significant reduction of gut microbiota-derived metabolites 
including acetate, propionate, isobutyrate and isovalerate, as well as decreased total 
short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA). Xanthohumol 
treatment ameliorated MS-induced propionate decrease and tends to improve 
isobutyrate and valerate levels. Fatty acid determination was performed through 
HPLC in caecal content. Results are expressed as the mean ± SEM (*p < 0.05; **p < 
0.01 versus ‘vehicle’ groups; #p < 0.05 versus ‘CORT’ groups). 
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2.3.5 Discussion 

There has been increasing attention given to the potential of nutritional approaches 

to ameliorate the effects of stress (Lakhan and Vieira, 2008; Marzola et al., 2013; 

Rechenberg and Humphries, 2013). In the present study, we tested different 

naturally-derived polyphenols as potential therapeutic strategies for depression and 

anxiety associated with early life trauma. Indeed, the polyphenols quercetin, 

xanthohumol and phlorotannins exert varying degrees of antidepressant- and 

anxiolytic-like responses in rats subjected to MS. Moreover, dietary interventions 

also modified gut microbial composition and diversity, suggesting that their 

therapeutic effects could be associated with the microbiota-gut-brain axis.  

The MS rat is an excellent model to study the negative effects of early life stress on 

brain function and structure, which are associated with the development of 

depression and anxiety (O'Mahony et al., 2011; Vetulani, 2013). MS in rats induce a 

robust depressive-like phenotype in adult animals, including changes in gut 

microbiota, dysregulation of the HPA axis, and an imbalance in neurotransmitter 

levels (Daniels et al., 2004; Aisa et al., 2007; O'Mahony et al., 2009; Desbonnet et al., 

2010; Liao et al., 2019). Furthermore, we demonstrated that all polyphenolic 

treatments tend to reverse these depressive-like behaviours. In particular, the 

phlorotannin-enriched diet produced a significant improvement in immobility and 

swimming behaviour in the FST compared to the MS-control group. Although the 

effect of polyphenols has been recently investigated in animal models of stress 

(Kwatra et al., 2016; Yang et al., 2017; Samad et al., 2018), to our knowledge there is 

no data on the effects of dietary intervention with polyphenols in animal models of 

early life stress per se.  

Regarding anxiety, quercetin administration exerted a significant anxiolytic effect in 

MS animals, resulting in an increase in the number of entries into the open arms of 

the EPM. Similarly, quercetin- and xanthohumol-enriched diets tend to induce 

anxiolytic effects in the OFT, while phlorotannin treatment revealed a significant 

improvement. Although the concept of a potential therapeutic effect of polyphenols 

in animal models of stress is not completely new (Anjaneyulu et al., 2003; Hurley et 
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al., 2014; Aubry et al., 2019), the neurobehavioural effects of polyphenols in a model 

of early-life stress have not to our knowledge been examined previously. 

We further investigated the role of the HPA axis in the therapeutic effects of 

polyphenol administration. Accumulated lines of evidence indicate that depressive 

or chronically stressed patients have an over activated HPA axis (Pariante and 

Lightman, 2008; Keller et al., 2017). Similarly, animals subjected to chronic stress 

possess a dysregulated HPA axis and increased baseline levels of glucocorticoids 

(O'Mahony et al., 2011; Uschold-Schmidt et al., 2012). Indeed, we demonstrated that 

the dietary intervention with xanthohumol significantly reduced the exacerbated 

production of corticosterone in MS animals. 

Next, we demonstrated that treatment with xanthohumol prevented the MS-

induced reduction in plasma BDNF. BDNF has strongly been implicated in 

antidepressant activity, and plasma BDNF has been shown to reflect aspects of that 

centrally and to be a biomarker of antidepressant effect (Sen et al., 2008; Lee and 

Kim, 2010; Woelfer et al., 2019). In addition, a positive correlation of BDNF levels 

between blood and brain has been demonstrated in rats (Karege et al., 2002; 

Sartorius et al., 2009; Harris et al., 2016), and a substantial amount of the circulating 

BDNF has been proposed to originate from the CNS itself (Dawood et al., 2007; 

Krabbe et al., 2007; Rasmussen et al., 2009). Although the possible pathways 

involved in BDNF rescue must be further investigated, it is tempting to speculate that 

the positive effects of xanthohumol on behaviour could be partly mediated by 

normalising BDNF expression. 

The relationship between stress and the gut microbiota is gaining a lot of attention 

(Foster et al., 2017; Bastiaanssen et al., 2020). Additionally, we have demonstrated 

that MS is able to induce strong changes to the gut microbiota in terms of 

composition and diversity which is in line with previous reports (O'Mahony et al., 

2009; Moussaoui et al., 2017). Although, we did not detect changes at the α-diversity 

level, analysis of β-diversity revealed that MS groups treated with polyphenols differ 

from the MS control group. We followed this up by assessing differential abundance 

of bacterial genera between the treatment groups. Notably, only xanthohumol and 

quercetin treatments produced significant changes in certain bacterial genera in MS 
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rats, suggesting that some polyphenol-enriched diets have the potential to modify 

bacterial composition in the gastrointestinal system. Several studies have 

demonstrated the capacity of polyphenolic intake to shape the gut microbiota 

(Etxeberria et al., 2013; Ozdal et al., 2016). The fact that all types of polyphenol intake 

were found to alter β-diversity compared to MS control, but only xanthohumol and 

quercetin yielded differences in the abundances of specific genera may suggest that 

polyphenols induce a general shift in the microbial composition, which may be 

indicative of a change in functionality in the microbiome. 

Therefore, we performed a functional prediction of the gut metagenome and used 

this to infer the abundance of GBMs, metabolic modules that are involved in the 

microbiota-gut-brain axis (Valles-Colomer et al., 2019). Indeed, the analysis predicted 

that MS is able to increase the abundance of GBMs associated with the modulation 

of several pathways altered in depression and other neuropsychiatric disorders, 

including metabolism of tryptophan (Curzon and Bridges, 1970; Oxenkrug, 2010), 

inositol (Coupland et al., 2005), p-cresol (Persico and Napolioni, 2013), quinolinic acid 

(Steiner et al., 2011), nitric oxide (Dhir and Kulkarni, 2011), and glutamate (Sanacora 

et al., 2012; Murrough et al., 2017). Interestingly, treatment with xanthohumol and 

phlorotannins reversed these predicted MS-induced changes, suggesting that 

restoration of these GBMs may partially explain their positive effects in behaviour. 

An important limitation due to the nature of 16S sequencing is that functional 

analysis can only be inferential. Future metabolomics-based studies should address 

this experimentally. 

In addition, our data revealed that MS rats exhibited decreased production of SCFAs 

compared with the NS-control group. We detected a significant reduction of acetate, 

propionate, isobutyrate, and isovalerate. The production of SCFAs is highly 

associated with certain bacterial populations in the gut, and there is common 

agreement surrounding the impact of SCFAs on human metabolism and health 

(Morrison and Preston, 2016). Indeed, it is widely accepted that SCFAs play a critical 

role in gut-microbiota-brain communication, and consequences for mental health 

and behaviour (Stilling et al., 2016; Dalile et al., 2019). A preclinical study showed 

that a depression-associated microbiota makeup can impact SCFA production (Kelly 
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et al., 2016), and that SCFAs can reverse the enduring effects of stress in a mouse 

model (van de Wouw et al., 2018). In our study, we demonstrated that treatment 

with xanthohumol specifically prevented the reduction of propionate in MS rats. 

Since the xanthohumol diet intervention induced acute changes in bacterial 

composition of the MS gut microbiota, we presume that the changes observed in 

propionate levels could be a product of improved microbial metabolism. 

In conclusion, our present work confirmed that the naturally derived polyphenols 

xanthohumol, quercetin and phlorotannins can alleviate depressive- and anxiety-like 

behaviours in the rat MS model. We further found that treatment with xanthohumol 

prevented exacerbated production of corticosterone after acute stress in MS 

animals, and reversed MS-induced plasma BDNF depletion. In addition, our data 

revealed that MS-induced behavioural despair correlated with significant changes in 

bacterial composition and diversity, alteration of predicted microbiota-gut-brain 

pathways, and reduced SCFA production. Although all polyphenols caused changes 

in diversity, only xanthohumol induced significant changes in several bacterial taxa 

and prevented the reduction of propionate in MS rats. Taken together, our findings 

present evidence of the therapeutic properties of polyphenols and provide a novel 

insight into the potential mechanisms underlying their antidepressant effect. 
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2.4.1 Abstract 

Background: Evidence is accruing to suggest that microbiota-gut-brain signalling 

plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia 

(CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits 

cardiorespiratory morbidity. We investigated if treatment with prebiotic fibres, 

promoting the expansion of beneficial microbes, ameliorates cardiorespiratory 

dysfunction in CIH-exposed rats.  

Methods: Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 

14 consecutive days with and without prebiotic supplementation (fructo- and 

galacto-oligosaccharides) beginning two weeks prior to gas exposures. 

Findings: CIH increased apnoea index and caused cardiac autonomic imbalance and 

hypertension. CIH exposure had modest effects on the gut microbiota, decreasing 

the relative abundance of Lactobacillus rhamnosus, but had no effect on microbial 

functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, 

plasma and brainstem pro-inflammatory cytokine concentrations and brainstem 

neurochemistry were unaffected by exposure to CIH. Prebiotic administration 

modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) 

and gut-brain (GBMs) modules and increased faecal acetic and propionic acid 

concentrations, but did not prevent adverse CIH-induced cardiorespiratory 

phenotypes. 

Interpretation: CIH-induced cardiorespiratory dysfunction is not critically dependent 

upon decreased gut SCFA concentrations. Prebiotic-related boosting of SCFAs and 

modulation of GBMs and GMMs were not sufficient to prevent CIH-induced apnoea 

and hypertension in our model. Our findings reveal that although multiple 

correlations were evident between bacterial species and blood pressure, it is 

improbable that the gut microbiota play a critical role in the development of CIH-

induced cardiorespiratory and autonomic dysfunction. Interestingly, prebiotic 

administration altered ventilatory responses to hypercapnic chemostimulation. Our 

findings are relevant to human sleep-disordered breathing and contribute to an 
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emerging interest in the potential manipulation of the gut microbiota as an 

adjunctive therapy for human cardiorespiratory disease. 

 

2.4.2 Introduction 

Obstructive sleep apnoea (OSA), the most common form of sleep-disordered 

breathing (SDB), is recognised as a major worldwide health crisis with devastating 

consequences for integrative body systems (Garvey et al., 2015). OSA is characterised 

by repetitive collapse of the pharyngeal airway during sleep, with episodic oxygen 

fluctuations culminating in recurrent exposure to chronic intermittent hypoxia (CIH). 

It is now apparent that exposure to CIH has adverse effects on the cardiorespiratory 

control network and is recognised as a major driver of OSA-related morbidities 

(Prabhakar et al., 2007; Julien et al., 2008; Edge and O'Halloran, 2015; O'Halloran, 

2016; Iturriaga et al., 2017; Laouafa et al., 2017; Elliot-Portal et al., 2018).  

 

Studies have recurrently implicated the carotid bodies, the dominant peripheral 

oxygen sensors, in the manifestation of CIH-induced cardiorespiratory dysfunction 

(Prabhakar et al., 2007; Peng et al., 2011; Iturriaga et al., 2015; Del Rio et al., 2016; 

Iturriaga et al., 2017). However, exposure to CIH elicits cardiorespiratory and 

autonomic disturbances in guinea-pigs with hypoxia-insensitive carotid bodies (Docio 

et al., 2018; Lucking et al., 2018), revealing that sites beyond the carotid bodies can 

contribute to the manifestation of CIH-induced cardiorespiratory and autonomic 

disturbances. It is known that CIH-induced plasticity also occurs at other key sites of 

the cardiorespiratory control circuit, including the nucleus tractus solitarius (NTS), 

pre-Bötzinger complex, ponto-medullary network and paraventricular nucleus of the 

hypothalamus (Veasey et al., 2004; Almado et al., 2012; Moraes et al., 2013; Garcia 

et al., 2016; Garcia et al., 2017; Li et al., 2018). More recently, studies have described 

effects of CIH on other peripheral sites including the gut microbiota (Moreno-Indias 

et al., 2015; Moreno-Indias et al., 2016; Lucking et al., 2018; AlMarabeh et al., 2019; 

O'Neill et al., 2019).  
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The microbiota-gut-brain axis plays a critical regulatory role in physiological systems. 

Dysregulated microbiota-gut-brain axis signalling affects homeostatic neurocontrol 

networks manifesting in pathophysiological behaviours and brain functions 

(Golubeva et al., 2015; Kelly et al., 2016; Dinan and Cryan, 2017). Recent studies 

extend this concept to cardiorespiratory control (Lucking et al., 2018; O'Connor et al., 

2019). There is considerable interest in the modulatory role of the gut microbiota 

and gut microbiota metabolites, particularly short-chain fatty acids (SCFAs), in 

cardiovascular and autonomic function (Durgan et al., 2016; Ganesh et al., 2018; Kim 

et al., 2018; Meng et al., 2019). Proliferation of lactate-producing, as well as 

diminished butyrate- and acetate-producing taxa is evident in hypertensive models 

(Yang et al., 2015; Durgan et al., 2016; Adnan et al., 2017; Kim et al., 2018). 

Hypertensive donor faeces transferred to normotensive animals leads to the 

development of hypertension in recipient animals (Durgan et al., 2016; Adnan et al., 

2017; Toral et al., 2019). Moreover, in a rat model of SDB, prebiotic administration 

stimulates the expansion of beneficial commensal microbiota augmenting several 

SCFA-producing taxa, restoring caecal acetate concentrations and preventing the 

establishment of hypertension (Ganesh et al., 2018). Chronic acetate administration 

into the caecum of OSA + high-fat diet (OSA+ HFD) rats prevents the development of 

high blood pressure (Ganesh et al., 2018). Additionally, butyrate treatment in 

angiotensin-II-induced hypertensive mice as well as spontaneously hypertensive rats 

prevented the establishment of hypertension (Kim et al., 2018; Robles-Vera et al., 

2020).   

 

In rat models, disruption of the gut microbiota using antibiotic administration, faecal 

microbiota transfer or pre-natal stress results in altered ventilatory responses to 

hypoxic and hypercapnic chemostimulation (Golubeva et al., 2015; O'Connor et al., 

2019). Respiratory frequency response to hypercapnic chemostimulation correlated 

with altered bacterial genera in adult rats with antecedent pre-natal stress (Golubeva 

et al., 2015). Several genera, predominantly from the phylum Firmicutes correlated 

with brainstem neuromodulators crucial in the control of breathing (O'Connor et al., 
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2019). Exposure to CIH dysregulates cardiorespiratory control in guinea pigs resulting 

in aberrant phenotypes including altered autonomic control of heart rate, decreased 

respiratory variability and prevalence of protective sighs and brainstem 

noradrenaline concentrations, as well as disturbed gut microbiota indicating that 

aberrant gut microbiota may at least partly contribute to cardiorespiratory and 

autonomic malaise in CIH-exposed guinea pigs (Lucking et al., 2018).  

 

Collectively, these studies highlight a contributory role of perturbations to 

microbiota-gut-brain axis signalling in the manifestation of CIH-induced 

cardiorespiratory dysfunction, of relevance to OSA. There is a growing interest in 

developing strategies to manipulate the microbiota as a potential therapeutic 

intervention in the treatment of cardiorespiratory disease. Rodent and human 

studies have revealed that prebiotic administration has positive impacts on brain 

neurochemistry and functions (Savignac et al., 2013; Burokas et al., 2017; Dinan and 

Cryan, 2017; Mika et al., 2017). Moreover, prebiotic feeding prevented the 

development of hypertension in a rat model of OSA (Ganesh et al., 2018). Therefore, 

we assessed cardiorespiratory physiology and gut microbiota composition and 

diversity in adult rats following exposure to normoxia (Sham) or CIH. We 

hypothesised that there would be evidence of cardiorespiratory and autonomic 

dysfunction and altered gut microbiota in CIH-exposed rats. We examined the effects 

of prebiotic fibre supplementation to test the hypothesis that manipulation of the 

gut microbiota ameliorates or prevents the deleterious effects of exposure to CIH on 

cardiorespiratory physiology. We performed whole-genome shotgun sequencing in 

an attempt to identify microbial patterns that underscore cardiorespiratory 

homeostasis and dysfunction. 
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2.4.3 Materials and Methods 

 

2.4.3.1 Ethical approval 
Procedures on live animals were performed in accordance with European directive 

2010/63/EU under authorisation from the Government of Ireland Department of 

Health (B100/4498) and Health Products Regulatory Authority (AE19130/P070). 

Ethical approval was obtained from University College Cork (AEEC #2013/035; 

#2017/023) and procedures were carried out in accordance with guidelines laid down 

by University College Cork’s Animal Welfare Body. 

 

2.4.3.2 Experimental animals 
Eight- to ten-week old adult male Sprague Dawley rats (n=72; purchased from Envigo, 

UK) were housed as age-matched pairs in standard rat cages. Rodents had ad libitum 

access to standard rat chow and were housed under a 12-hr light: 12-hr dark cycle. 

 

2.4.3.3 Prebiotic administration 
Eight-week old rats (n=24) were randomly allocated to receive prebiotic fibres in the 

drinking water (PREB; galactooligossaccharides and fructooligosaccharides) with ad 

libitum access for 4-weeks to promote the growth of beneficial host microbiota as 

previously described (Savignac et al., 2013; Gronier et al., 2018; Yang et al., 2018). 

After 2 weeks of PREB treatment, a subset of rats were exposed to CIH (see section 

2.4) for the final 2 weeks creating two groups: Sham+PREB (n=12) and CIH+PREB 

(n=12). 

 

2.4.3.4 Chronic intermittent hypoxia rat model 
Ten-week old rats (n=48) were randomly assigned to one of two groups, each 

receiving vehicle (VEH): Sham+VEH (n=24) and CIH+VEH (n=24). CIH exposed rats 

were placed in chambers wherein ambient oxygen concentration was tightly 
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regulated using a dynamic oxygen/nitrogen controller (Oxycycler™; Biospherix, New 

York, NY, USA). CIH exposure was comprised of 96 cycles of 90 secs of exposure to 

hypoxia (nadir, FiO2 = 0.06, balance N2) and 180 secs of exposure to normoxia (FiO2 

=0.21; balance N2), over 8 hours during the light phase for 14 consecutive days. 

Animals were studied on the day subsequent to the last day of CIH exposure. 

Concurrently, rats assigned to the Sham group were exposed to room air (normoxia) 

in the same room with similar environmental cues for the duration of the study.  

 

2.4.3.5 Assessment of respiratory flow in rats during quiet rest 
 

2.4.3.5.1 Whole-body plethysmography 
During quiet rest, whole-body plethysmography (DSI, St. Paul, Minnesota, USA) was 

used to record respiratory flow signals during quiet rest. Animals were placed into 

custom plethysmograph chambers (601-1427-001 PN, DSI) with a room air flow rate 

maintained at 3l/min. Animals were allowed to acclimate for 30-90 minutes to 

encourage habituation to the new surroundings. Paired contemporaneous 

observations were performed during light hours in Sham+VEH (n=12) versus CIH+VEH 

(n=12) and subsequently Sham+PREB (n=12) versus CIH+PREB (n=12) using a pair of 

plethysmograph chambers. 

 

2.4.3.5.2 Metabolic measurements 
O2 consumption (VO2) and CO2 production (VCO2) were measured in rodents 

throughout the experimental protocol (O2 and CO2 analyser; AD Instruments, 

Colorado Springs, CO, USA) as previously described (Haouzi et al., 2009; Bavis et al., 

2014; Lucking et al., 2018; O'Connor et al., 2019). 

2.4.3.5.3 Experimental protocol 
Once the acclimation period was complete and animals were confirmed to be at quiet 

rest, baseline parameters were recorded during a 10-15 minute steady-state 

normoxia period (FiO2 = 0.21; balance N2). This was followed by a 10 minute 
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poikilocapnic hypoxia challenge (FiO2=0.10; balance N2). Normoxia was subsequently 

restored in each chamber to re-establish stable baseline breathing. Thereafter, a 

second baseline period was recorded followed by a 10 minute hypercapnia challenge 

(FiCO2 = 0.05; balance O2). Subsequently, a third normoxic baseline period was 

recorded. Rats were then exposed to a 10 minute hypoxic hypercapnic challenge 

(FiO2 = 0.10; FiCO2 =0.05, balance N2). 

 

2.4.3.5.4 Data analysis for whole-body plethysmography 
Respiratory parameters including tidal volume (VT), respiratory frequency (fR), 

minute ventilation (VI), expiratory time (Te) and inspiratory time (Ti) were recorded 

on a breath-by-breath basis for analysis (FinePointe software Buxco Research 

Systems, Wilmington, NC, USA). Artefacts relating to animal movement and sniffing 

in respiratory flow recordings were omitted from analysis. A single baseline period 

during normoxia was determined by averaging the three baseline recording epochs 

to determine resting steady-state respiratory and metabolic parameters. Ventilatory 

and metabolic data were averaged and reported for the final 5 minutes of acute 

poikilocapnic hypoxia, hypercapnia and hypoxic hypercapnia allowing sufficient time 

for gas mixing in the custom plethysmograph chambers. Data are expressed as 

absolute change from baseline values. Respiratory flow recordings were assessed for 

the occurrence of augmented breaths (sighs) during normoxia, poikilocapnic hypoxia 

and hypercapnia, as well as the frequency of apnoea events (post-sigh and 

spontaneous apnoeas) during normoxia as previously described (Edge et al., 2012). 

The criterion for an apnoea was a pause in breathing greater than two consecutive 

missed breaths. Apnoea data are expressed as apnoea index (apnoea events per 

hour), combining post-sigh and spontaneous apnoeas. A sigh was defined as an 

augmented breath, double the amplitude of the average VT. The frequency and 

amplitude of sighs were determined. Poincaré plots expressing breath-to-breath 

(BBn) versus subsequent breath-to-breath interval (BBn+1) were extrapolated 

allowing for determination of short- (SD1) and long-term (SD2) respiratory timing 

variability during steady-state baseline breathing. VT, VI, VT/Ti, VO2 and VCO2 were 

normalised per 100g body mass. 
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2.4.3.6 Assessment of cardiorespiratory parameters under urethane anaesthesia 
 

2.4.3.6.1 Surgical protocol and cardiorespiratory measures 
Following whole-body plethysmography, cardiorespiratory parameters were 

assessed in Sham+VEH, CIH+VEH, Sham+PREB and CIH+PREB rats (n=11-12 per 

group) under urethane anaesthesia (1.5 g/kg i.p.; 20% w/v) following isoflurane 

induction (5% by inhalation in room air). Throughout the surgical and experimental 

protocol, the depth of anaesthesia was carefully assessed by monitoring reflex 

responses to tail/paw pinch and the corneal reflex. Supplemental doses of 

anaesthetic were given as required. Rodents were placed in a supine position on a 

homeothermic blanket system (Harvard Apparatus, Holliston, MA, USA) and a rectal 

temperature probe and heating pad used to maintain core temperature at 37 °C. A 

mid-cervical tracheotomy was performed, followed by intravenous (i.v.) cannulation 

of the right jugular vein for infusion of supplemental anaesthetic and drugs. The 

carotid (n=22)/femoral artery (n=1) was cannulated for the recording of arterial 

blood pressure and the withdrawal of blood samples for arterial blood gas, pH and 

electrolyte analysis (i-STAT; Abbott Laboratories Ltd). Using a foot clip, arterial 

oxygen saturation (SaO2; Starr Life Sciences, PA, USA) was determined and 

maintained above 95% via a bias flow of supplemental O2 passing the tracheal 

cannula sourced from a gas mixing system (GSM-3 Gas Mixer; CWE Inc.). A 

pneumotachometer (Hans Rudolf) and a CO2 analyser (microCapStar End-Tidal CO2 

analyser; CWE Inc., USA) were connected to the tracheal cannula to measure tracheal 

flow and end-tidal CO2 (ETCO2), respectively. Diaphragm electromyogram (EMG) 

activity was continuously measured using a concentric needle electrode (26G; Natus 

Manufacturing Ltd., Ireland). Signals were amplified (x5,000), filtered (band pass; 

500–5000 Hz) and integrated (50 ms time constant; Neurolog system, Digitimer Ltd., 

UK).  Data were digitised via a PowerLab-LabChart v7 (ADInstruments) data 

acquisition system.  
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2.4.3.6.2 Experimental protocol 
An arterial blood sample was obtained from each animal following a 30 minute 

stabilisation period, after which, a minimum 10 minute baseline recording period was 

observed for assessment of baseline parameters (FiO2 = 0.25-0.40; balance N2). The 

rats were exposed to a poikilocapnic hypoxia challenge (FiO2 = 0.12, balance N2) for 

5 minutes, followed by a recovery period. Animals were then exposed to a 5 minute 

hypoxic hypercapnic challenge (FiO2 = 0.12, FiCO2 = 0.05, balance N2). Following a 

recovery period, sodium cyanide (NaCN; 200 μg/kg i.v.) was administered to evoke 

carotid body-dependent increases in ventilation. After an adequate recovery period 

and removal of the pneumotachometer, a second arterial blood sample was taken. 

Next, the serotonin type 3 (5-HT3) receptor agonist phenylbiguanide (PBG; 25 μg/kg 

i.v.) was administered to stimulate pulmonary vagal afferent C-fibres (Dutta and 

Deshpande, 2010; Lucking et al., 2018) eliciting the classic pulmonary chemoreflex. 

Successively, phenylephrine (50 μg/kg i.v.), sodium nitroprusside (50 μg/kg i.v.), 

atenolol (2 mg/kg i.v.), propranolol (1 mg/kg i.v.) and hexamethonium (25mg/kg i.v.) 

were administered to assess cardiovascular responses to pharmacological 

manipulation with sufficient recovery periods allowed between each 

pharmacological challenge. Animals were euthanised by urethane (i.v) overdose. One 

animal (Sham+PREB, n=1) presented with uncharacteristically poor ventilatory and 

cardiovascular responses throughout the experimental protocol; this animal was 

excluded from data analysis. In all animals, blood was collected, prepared in 3% 

Na2EDTA (disodium salt dehydrate) and centrifuged. Plasma was snap frozen in liquid 

nitrogen for subsequent analysis of corticosterone and pro-inflammatory cytokine 

concentrations. Whole brains were removed, separated into pons and medulla 

oblongata, frozen in isopentane at −80 °C and stored at −80 °C unƟl subsequent 

analysis by high-performance liquid chromatography. The lungs were removed and 

weighed and were allowed to air dry at 37°C for at least 48 hrs before being re-

weighed to provide an index of pulmonary oedema. The caecum was removed, 

weighed and caecal contents were removed and snap frozen in liquid nitrogen for 

whole-genome shotgun sequencing. Faeces was removed from the colon for the 

assessment of SCFA concentrations by gas chromatography. The heart was removed, 
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and the right ventricle was separated from the left ventricle + septum and each were 

weighed separately. 

 

2.4.3.6.3 Data analysis of cardiorespiratory parameters in anaesthetised rats 
 

Baseline parameters were averaged over 10 minutes of stable recording and data are 

presented as absolute values. For cardiorespiratory and EMG responses to 

poikilocapnic hypoxia and hypoxic hypercapnia the average of the last minute of 

recordings was determined and data were compared with the 1 minute pre-

challenge baseline. Data for drug challenges were averaged into 3 or 5 second bins 

and the peak cardiorespiratory responses to NaCN, PBG, phenylephrine, sodium 

nitroprusside, atenolol, propranolol and hexamethonium administration were 

determined and compared to the respective 1 minute pre-challenge baseline. 

Maximum apnoea and post-apnoea tachypnoea in response to PBG are expressed as 

the duration of the apnoea or tachypnoea period normalised in each trial to the 

average cycle duration determined during the 30 sec pre-challenge baseline period. 

All cardiorespiratory responses to chemostimulation and drug administration are 

expressed as percent change from the preceding baseline values. 

 

2.4.3.7 Brainstem monoamine concentrations 
 

2.4.3.7.1 High-performance liquid chromatography (HPLC) coupled to 
electrochemical detection for the measurement of brainstem monoamine 
concentrations 
 

Pons (n=11-12/group) and medulla oblongata (n=11-12/group) tissues were 

sonicated in 1 ml of chilled mobile phase, spiked with 2ng/20μl of a N-methyl 5-HT 

(internal standard; Bandelin Sonolus HD 2070). Brainstem monoamine, precursor 

and metabolite concentrations were measured as previously described (Lucking et 
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al., 2018; O'Connor et al., 2019). Noradrenaline (NA), dopamine (DA), serotonin (5-

HT), and monoamine metabolites and precursor, 5-hydroxyindoleacetic acid (5-

HIAA), homovanillic acid (HVA), 3,4-Dihydroxyphenylacetic acid (DOPAC) and L-3,4 

dihydroxyphenylalanine (L-DOPA) were identified by their characteristic retention 

times. This was determined by standard injections run at regular intervals during 

sample analysis. 

 

2.4.3.7.2 Data analysis 
Class-VP5 software was used to process chromatographs. Concentrations (ng/g) of 

monoamines, precursors and metabolites in each sample were determined using 

analyte:internal standard peak response ratios. 

 

2.4.3.8 Plasma and brainstem pro-inflammatory cytokine concentrations 
 

2.4.3.8.1 Brainstem tissue homogenisation and protein quantification 
 

A separate cohort of rats (Sham, n=12; CIH, n=12) were euthanised by 

pentobarbitone (i.v.) overdose and whole brains were removed. The pons and 

medulla oblongata were separated from the brain, frozen in isopentane at -80oC and 

stored at -80oC until subsequent determination of brainstem cytokine 

concentrations. Pons and medulla oblongata tissue (Sham, n=12; CIH, n=12) were 

weighed and sonicated (1 ml per 100 mg of tissue) in radioimmunoprecipitation assay 

(RIPA buffer) (10X RIPA, deionised H20, 200Mm sodium fluoride, 100Mm, 

phenylmethylsulfonylfluoride (PMSF), 1X protease inhibitor cocktail and 1X 

phosphate inhibitor cocktail). Samples were centrifuged at 10,000  g for 15 minutes 

at 4 °C, to pellet membranes and nuclei. The protein concentration of each sample 

was determined using a bicinchoninic acid (BCA) protein quantification assay 

(Thermo Fisher Scientific) as per the manufacturer’s instructions, at a dilution of 1:10. 
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2.4.3.8.2 Multiplex assay for measurement of plasma and brainstem pro-
inflammatory cytokines 
 

Concentrations of interleukin(IL)-1β, IL-4, IL-5, IL-10, IL-13, interferon (IFN)-γ, 

keratinocytechemoattractant/growth-related oncogene (KC/GRO) and tumor 

necrosis factor (TNF)-α were measured in plasma (all groups; n=11-12/group) as well 

as pons and medulla oblongata (Sham and CIH only; n=12 each group) supernatants 

by sandwich immunoassay methods using commercially available detection kits (V-

Plex Pro-inflammatory Panel 2 (rat) kit; Meso Scale Discovery, Gaithersburg, USA) as 

per the manufacturer’s instructions. For pons and medulla oblongata tissues, 100 μg 

of protein sample was loaded per well as previously described (Lucking et al., 2018). 

Plates were read using QuickPlex SQ 120 imager and computer (Meso Scale 

Discovery). 

 

2.4.3.9 Plasma corticosterone 
Plasma samples were thawed and concentrations of corticosterone were determined 

using commercially available enzyme-linked immunosorbent assay kit according to 

the manufacturer’s instructions (ENZO Life Sciences, UK) using a spectrophotometer 

(SpectraMax M3, Molecular devices). 

 

2.4.3.10 Microbiota composition and function  
 

2.4.3.10.1 DNA extraction from caecal material 
DNA was extracted from caecal material as previously described (Gough et al., 2018).  

 

2.4.3.10.2 Whole-metagenome shotgun sequencing 
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Whole-metagenome shotgun libraries were prepared in accordance with the Nextera 

XT DNA Library Preparation Guide from Illumina with the exception that the 

tagmentation time was increased to 7 minutes. After indexing and clean-up of the 

PCR products as described in the protocol, each sample was run on an Agilent 

bioanalyser high sensitivity chip (Agilent) to determine the size range of the 

fragments obtained. The concentration of the samples was also determined at this 

point using a Qubit High Sensitivity Assay (Life-Sciences). Samples were then pooled 

equimolarly and the final concentration of the pooled library was determined by 

quantitative PCR using the Kapa Library Quantification kit for Illumina (Roche). The 

pooled library was then sequenced on the Illumina NextSeq using the 2 x150 High 

Output kit according to standard Illumina sequencing protocols. 

 

2.4.3.10.3 Metagenomic bioinformatic analysis 
Shotgun metagenomic sequence files (BCL, base calls) were converted to fastq 

format using bcl2fastq version 2.19. Forward and reverse fastq files were processed 

using KneadData version 0.7.2 from the Huttenhower bioBakery suite (McIver et al., 

2018). A reference library was created to remove host DNA in Bowtie2 version 2.3.4 

from the NCBI rat genome (Rattus norgegicus, GCF 000001895.5). Quality filtering 

was performed using the default setting (ex., phred=33) and trimming with 

Trimmomatic version 0.38-1. Resulting high quality paired-end reads for each sample 

were then concatenated in KneadData. Kraken2 version 2.0.7-beta was used for 

taxonomic classification with the standard database. Report files of taxonomic 

counts for each sample were merged into a single count file using a custom R script 

and ran in R version 3.5.2.  

 

2.4.3.10.4 Functional annotation, gut-brain module and gut-metabolic module 
analysis 
Humann2 was used to generate a table of Kyoto Encyclopedia of Genes and Genomes 

(KEGG) Orthologues. This table was aggregated into gut-brain modules (GBMs) and 

gut-metabolic modules (GMMs), pathways of functions performed by the gut 
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microbiome that have the potential to influence the host brain (Vieira-Silva et al., 

2016; Valles-Colomer et al., 2019), using the omixer-rpmR library for R (Darzi et al., 

2016). 

 

2.4.3.11 Faecal short-chain fatty acid concentrations 
 

SCFA analysis and extraction were carried out by MS-Omics (Vedbaek, Denmark) as 

follows. Faecal water was prepared by homogenising the faecal samples 

(approximately 100 mg) in ultrapure water (3µl/µg). Samples were then vortexed for 

2 minutes followed by centrifugation (5 minutes, 30000 g, 5°C). The supernatant was 

transferred to a centrifuge filter and the filtered samples were used for analysis. The 

filtrate was acidified using hydrochloride acid, and deuterium labelled internal 

standards where added. All samples were analysed in a randomized order. Analysis 

was performed using a high polarity column (Zebron™ ZB-FFAP, GC Cap. Column 30 

m x 0.25 mm x 0.25 µm) installed in a gas chromatography (GC; 7890B, Agilent) 

coupled with a quadropole detector (59977B, Agilent). The system was controlled by 

ChemStation (Agilent). Raw data was converted to netCDF format using Chemstation 

(Agilent), before the data was imported and processed in Matlab R2014b 

(Mathworks, Inc.) using the PARADISe software (Johnsen et al., 2017). Data are 

expressed as absolute concentration in mM. 

 

2.4.3.12 Statistical analysis 
Data (except microbiota data) was assessed for outliers, normal distribution and 

equality of variances using box-plots, Shapiro-Wilk test and Levene’s test, 

respectfully.  In situations of normal distribution, data were statistically compared 

using independent samples t-test and two-way ANOVA followed by Fisher’s least 

significant test for pairwise comparisons, where appropriate. In some instances, the 

assumptions of no significant outliers and homogeneity of variances were violated 

for the two-way ANOVA. When the assumption of normal distribution was violated, 

data were statistically compared using non-parametric Mann-Whitney U test and 
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non-parametric Kruskal-Wallis test followed by Mann-Whitney U test for pairwise 

comparisons, where appropriate. Statistical significance was assumed at p<0.05. 

Bonferroni correction was applied to adjust for multiple comparisons with the 

exception of microbiota data. Statistical significance for multiple comparisons was 

accepted at p<0.05 divided by the number of comparisons made.  

 

When handling compositional data such as the microbiome taxonomic data, GBM 

and GMM, the compositionally appropriate centered-log ratio (clr) transformation 

was performed using the ALDEx2 R library in preparation of statistical testing 

(Aitchison, 1982). The ALDEx2 library was also used to test for differentially abundant 

features, using a pairwise implementation of the aldex.ttest() function to compare 

multiple groups. Benjamini-Hochberg (BH) adjustment procedure was applied with 

the false discovery rate (FDR) set at 10% to correct for multiple testing in the relative 

abundance microbiota data.  The 2D principal component analysis (PCA) was 

constructed using the clr transformed values computed using the ALDEx2 (Fernandes 

et al., 2013) library in R (version 3.6.0) with Rstudio (version 1.1.453), as is 

appropriate for compositional data (Gloor et al., 2017) using recommended 

parameters and 1000 permutations. For correlation analysis between bacterial 

species and physiological parameters of interest, Hierarchical All-against-All 

association testing (HAllA) (Rahnavard et al., 2017) was used (version 0.8.7) with 

Spearman correlation as correlation metric, medoid as clustering method and q < 0.1 

as threshold for significance. Microbiota data are expressed as median (IQR). All 

other data are expressed as mean ± SD or displayed graphically as box and whisker 

plots (median, IQR and minimum to maximum values). SPSS v25 was used for all 

other statistical analysis. GraphPad Software v6 (GraphPad Software, San Diego, CA, 

USA) and R software environment were used to generate graphs. Adobe illustrator 

CS5 (v15) was used to edit figures. 
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2.4.4 Results 

2.4.4.1 Body and tissue weights 
CIH exposure and prebiotic administration had a significant effect on body weight 

(Diet*CIH, F (1, 43) = 5.426, p=0.025, ƞ2=0.112, Table 1). The combination of 

CIH+PREB, decreased body weight gain compared with CIH+VEH or Sham+PREB rats; 

Sham+PREB rats were also lighter than Sham+VEH rats. CIH exposure had no effect 

on caecum weight but as expected, prebiotic supplementation increased caecum 

weight. Differences between groups in normalised cardiac ventricle weights relate to 

changes in body weight (Supplementary table 1).  

2.4.4.2 Baseline ventilation and metabolism in rats during quiet rest 
CIH exposure did not affect the majority of respiratory parameters during normoxia. 

Prebiotic fibre supplementation increased baseline VI, VT and VT/Ti in Sham+PREB and 

CIH+PREB compared with Sham+VEH and CIH+VEH rats, respectively (Table 2), but 

the differences related to body weight (Supplementary Table 1). CIH exposure had 

no effect on VCO2 production; CIH+PREB rats had significantly increased VCO2 

production compared with CIH+VEH rats, but VCO2 production in Sham+PREB rats 

was not different compared with Sham+VEH (Table 2). CIH exposure had no effect on 

VI/VCO2 (breathing as a function of metabolism), but prebiotic administration 

increased VI/VCO2, however post hoc analysis revealed no difference between groups 

(Table 2). In summary, CIH exposure and prebiotic administration had modest effects 

on ventilation and metabolism during normoxia. 

2.4.4.3 Respiratory timing variability, apnoeas and sighs during normoxia in rats 
during quiet rest 
Assessments of short-term (SD1) and long-term (SD2) respiratory timing variability 

during normoxia did not reveal differences between groups (p>0.05; Fig. 2.4-1a-f). 

Apnoea index was significantly increased by CIH exposure (X2(3) = 9.284, p=0.026, 

Fig. 2.4-1j), a consequence of alterations in spontaneous apnoea events; no 

statistically significant differences were evident in post-sigh apnoea events (Table 2). 

Post hoc analysis revealed that apnoea index was increased in CIH+PREB compared 

with Sham+PREB rats (p=0.008; Fig. 2.4-1j). The frequency of sighs was not affected 
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by CIH exposure or prebiotic administration (p>0.05; Fig. 2.4-1k). Sham+PREB had 

elevated sigh amplitude compared with Sham+VEH rats (Table 2). The major finding 

was that CIH exposure increased apnoea index during quiet breathing at rest 

(normoxia) and prebiotic administration did not prevent this aberrant phenotype.  

 

Fig 2.4-1. Poincaré plots of breath-to-breath (BBn) and subsequent breath-to-breath 
(BBn + 1) interval of expiratory duration (Te; a) and total breath duration (Ttot; b) for 
Sham+VEH, CIH+VEH, Sham+PREB and CIH+PREB. Group data for Te short-term 
variability (SD1; c) and long-term variability (SD2; d) and Ttot SD1 (e) and SD2 (f) in 
Sham+VEH, CIH+VEH, Sham+PREB and CIH+PREB rats during normoxia. 
Representative respiratory flow traces (downward deflections represent inspiration) 
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illustrating a spontaneous sigh followed by an apnoea (g), a spontaneous apnoea (h) 
and a spontaneous sigh (i). Group data of apnoea index (j) and sigh frequency (k). CIH, 
chronic intermittent hypoxia; PREB, prebiotic; VEH, vehicle. Groups (c-f, j, k) are 
expressed as box and whisker plots (median, IQR and minimum to maximum values); 
n = 11–12. Groups were statistically compared using two-way ANOVA, followed by 
Fisher's least significant difference (LSD) post hoc where appropriate, or non-
parametric Kruskal-Wallis test, followed by Mann-Whitney U test, where appropriate. 
Apnoea index was significantly affected by CIH exposure (p = 0.026; Fig. 1j). 
Assessments of respiratory timing variability and frequency of sighs were not 
different between groups (p>0.05; Fig. 1a-f, 1k). # p = 0.008, CIH+PREB versus 
Sham+PREB. 

2.4.4.4 Ventilatory and metabolic responsiveness to chemostimulation in rats 
during quiet rest 

2.4.4.4.1 Ventilatory and metabolic responsiveness to hypoxic chemostimulation 
No significant differences were evident in CIH+VEH compared with Sham+VEH rats. 

CIH+PREB rats had decreased fR, VI, VT/Ti and increased Ti and Te compared with 

Sham+PREB rats (Table 3). Ti was decreased in Sham+PREB compared with 

Sham+VEH rats (Table 3). Sigh frequency and amplitude were not different in 

CIH+VEH compared with Sham+VEH rats, but CIH+PREB rats had less frequent but 

larger sighs compared with CIH+VEH rats. Sigh frequency was reduced in CIH+PREB 

compared with Sham+PREB rats (Table 3). The major observation was that prebiotic 

administration reduced the frequency of sighs during hypoxia in CIH-exposed rats.  

2.4.4.4.2 Ventilatory and metabolic responsiveness to hypercapnic 
chemostimulation 
CIH exposure elevated sigh frequency during hypercapnia, as such CIH+VEH rats had 

increased generation of sigh compared with Sham+VEH rats. Other respiratory and 

metabolic parameters were not different in CIH+VEH compared with Sham+VEH rats 

in response to hypercapnia (Table 3). Prebiotic administration in CIH-exposed rats 

elevated VT/Ti compared with CIH+VEH rats. Interestingly, Sham+PREB rats had 

elevated ventilation (VI) and increased drive to breathe (VT/Ti) in response to 

hypercapnia compared with Sham+VEH rats, with no change in VI/VCO2 (Table 3). 

Furthermore, Sham+PREB rats had augmented sigh frequency and amplitude 

compared with Sham+VEH rats. There was no difference between CIH+PREB and 

Sham+PREB rats (Table 3). The major finding was that prebiotic fibre 
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supplementation increased sigh frequency and the ventilatory response to 

hypercapnia. 

2.4.4.4.3 Ventilatory and metabolic responsiveness to hypoxic hypercapnic 
chemostimulation 
No significant differences were evident in CIH+VEH compared with Sham+VEH rats. 

CIH+PREB rats had elevated VI compared with CIH+VEH rats. Sham+PREB rats had an 

elevated ventilatory response to hypoxic hypercapnia compared with Sham+VEH 

rats, evident by increased VI, VT and VT/TI; VI/VCO2 was not different between groups 

(Table 3). Furthermore, there was no apparent difference between Sham+PREB and 

CIH+PREB rats. The major observation was that prebiotic administration elevated the 

ventilatory response to hypoxic hypercapnia.  

2.4.4.4.4 Baseline cardiorespiratory and blood gas parameters in anaesthetised 
rats 
CIH exposure had no effect on respiration in the anaesthetised rat during baseline 

conditions (Table 4). VI and VT were increased in PREB+CIH rats compared with CIH-

exposed rats (Table 4). CIH exposure significantly increased diastolic blood pressure 

(DBP) (CIH; F (1,41) = 16.321, p<0.0005, ƞ2=0.285, Fig. 2.4-2b). As a consequence, 

mean arterial blood pressure (MAP) was elevated (CIH; F (1, 41) = 17.485, p<0.005, 

ƞ2=0.299). Post hoc analysis revealed CIH+VEH had elevated blood pressure 

compared with Sham+VEH rats (DBP, p=0.006, Fig. 2b; MAP, p=0.004, Fig. 2.4-2a). 

DBP was not restored by prebiotic administration as CIH+PREB had elevated DBP 

compared with CIH+VEH rats (p=0.007, Fig. 2.4-2b). There was no statistical 

difference evident in MAP between CIH+PREB compared with CIH+VEH (p>0.05, Fig. 

2.4-2a), and MAP was elevated in CIH+PREB compared with Sham+PREB rats 

(p=0.006; Fig. 2.4-2a). CIH exposure or prebiotic administration had no effect on 

systolic blood pressure or heart rate (p>0.05, Fig. 2.4-2c, 2.4-2d). CIH exposure had 

no effect on haematocrit and haemoglobin concentrations; Sham+PREB had reduced 

concentrations compared with Sham+VEH (Table 4).  
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Fig. 2.4-2 Group data for MAP (a), DBP (b), SBP (C), heart rate (D), LF: HF (e) and LF 
(f) for Sham+VEH, CIH+VEH, Sham+PREB and CIH+PREB. MAP, mean arterial blood 
pressure; DBP, diastolic blood pressure; SBP, systolic blood pressure; LF, low-
frequency band; HF, high frequency band; CIH, chronic intermittent hypoxia; PREB, 
prebiotic; VEH, vehicle. Groups (a-f) are expressed as box and whisker plots (median, 
IQR and minimum to maximum values); n = 10–12 for all groups. Groups were 
statistically compared using two-way ANOVA, followed by Fisher's least significant 
difference (LSD) post hoc where appropriate, or non-parametric Kruskal-Wallis test, 
followed by Mann-Whitney U test, where appropriate. CIH significantly affected MAP, 
DBP, LF: HF and LF (p<0.005, p<0.0005, p = 0.008 and p = 0.017, respectively; Fig. 2a, 
2b, 2e, 2f). There was no change in SBP or HR (p>0.05, Fig. 2c, 2d).* p = 0.004, 
CIH+VEH versus Sham+VEH; # p<0.01, CIH+PREB versus Sham+PREB. 

 

CIH exposure increased the low-frequency band (LF) (CIH; nu, F (1, 40) = 6.170, 

p=0.017, ƞ2=0.134, Fig. 2.4-2 f; %, F (1, 40) = 6.723, p=0.013, ƞ2=0.144, Table 5) and 

decreased the high-frequency band (HF; nµ) (CIH, F (1, 40) = 1.159, p=0.014, 

ƞ2=0.142, Table 5) elevating the LF: HF ratio (CIH, F (1, 40) = 7.748, p=0.008, ƞ2=0.162, 

Fig. 2.4-2 e) during steady-state baseline recordings, indicating sympathetic 

dominance. LF:HF was increased in CIH+VEH compared with Sham+VEH rats 

(p=0.059, Fig. 2.2-4 e). There was no difference in CIH+PREB compared with CIH+VEH 

rats (p>0.05), however CIH+PREB rats had elevated LF:HF ratio compared with 

Sham+PREB rats (p=0.053, Fig. 2.4-2 e). After adjusting for multiple comparisons 

these changes were not statistically significant (Table 5). Other heart rate variability 

parameters were not different between groups (Table 5). The major finding was that 
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CIH exposure caused hypertension and cardiac autonomic imbalance, which were 

not alleviated by prebiotic supplementation.  

2.4.4.5 Cardiorespiratory responses to 5-HT3 receptor agonism evoking the 
cardiopulmonary reflex 
Stimulation of 5-HT3 receptors expressed on pulmonary vagal afferent nerve fibres, 

using PBG, evoked the integrated cardiopulmonary reflex. CIH exposure had no effect 

on hypotension, bradycardia, apnoea or post-apnoea induced tachypnoea associated 

with the pulmonary chemoreflex (Fig. 2.4-3 b-e). Prebiotic supplementation altered 

apnoea duration (Diet, F (1, 41) = 4.950, p=0.032, ƞ2=0.108, Fig. 2.4-3b), however, 

post hoc analysis revealed no differences between groups. There was no significant 

difference between groups in all other parameters (Fig. 2.4-3c-e). The major finding 

was that pulmonary chemoreflex responses to vagal afferent stimulation were 

unaffected by CIH exposure.  

 

 

Fig. 2.4-3 a) Representative traces of blood pressure, heart rate, peripheral oxygen 
saturation (SpO2) and raw and integrated diaphragm (Dia) electromyogram (EMG) 
activity during intravenous administration of the 5-HT3 agonist, phenylbiguanide (25 
μg.kg−1 i.v.). Group data for maximum apnoea duration (b) and tachypnoea (c) 
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normalised to respective baseline respiratory period in Sham+VEH, CIH+VEH, 
Sham+PREB and CIH+PREB rats. Absolute change in MAP (d) and heart rate (e) in 
response to PBG in Sham, CIH, Sham+PREB and CIH+PREB rats. MAP, mean arterial 
blood pressure; CIH, chronic intermittent hypoxia; PREB, prebiotic; VEH, vehicle. Data 
(b-e) are expressed as box and whisker plots (median, IQR and minimum to maximum 
values); n = 9–12. Groups (b-e) were statistically compared using two-way ANOVA, 
followed by Fisher's least significant difference (LSD) post hoc where appropriate, or 
non-parametric Kruskal-Wallis test, followed by Mann-Whitney U test, where 
appropriate. CIH exposure had no effect on hypotension, bradycardia, apnoea or 
post-apnoea induced tachypnoea (p>0.05; Fig. 2.4-3b-e). Prebiotic supplementation 
had a significant effect on apnoea duration (p = 0.032; Fig. 2.4-3b), with no effect on 
any of the other parameters (p<0.05; Fig. 2.4-3c-e). 

2.4.4.6 Cardiovascular responses to pharmacological blockade of sympathetic 
activity in anaesthetised rats 
The blood pressure response to β1 receptor antagonist administration (atenolol) was 

significantly increased by CIH exposure (X2(3) = 9.347, p=0.025). CIH+VEH was not 

different compared with Sham+VEH rats. There was a greater depressor response in 

CIH+PREB compared with Sham+PREB rats; the associated bradycardia was similar 

between all groups (Table 6). Intravenous infusion of the non-selective β-

adrenoceptor blocker (propranolol), and sympathetic ganglion blocker 

(hexamethonium) evoked similar bradycardia and hypotensive responses across all 

groups (Table 6).  

2.4.4.7 Pons and medulla oblongata neurochemistry 
Comparison of L-DOPA and DOPAC concentrations in the pons, as well as DOPAC/DA, 

HVA, HVA/DA, 5-HT and 5-HIAA concentrations in the medulla oblongata revealed 

group differences (p<0.05; Fig.2.4- 4a, 2.4-4c-f, 2.4-4h, 2.4-4i). However, post hoc 

analysis revealed that monoamine, monoamine metabolites and precursors were not 

different in CIH+VEH compared with Sham+VEH rats in the pons or medulla 

oblongata (Fig. 2.4-4a-j). Pontine L-DOPA (p=0.020) and medulla oblongata 5-HIAA 

(p=0.008) concentrations were significantly increased, with medulla oblongata HVA 

(p=0.041) levels decreased in CIH+PREB compared with CIH+VEH rats. CIH+PREB rats 

had increased pontine L-DOPA (p=0.038) concentrations compared with Sham+PREB 

rats. Sham+PREB rats had reduced pontine DOPAC (p=0.021) as well as medulla 

oblongata HVA (p=0.006) and HVA/DA (p=0.016) concentrations compared with 

Sham+VEH rats. Additionally, Sham+PREB rats had elevated pontine L-DOPA 
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(p=0.012) concentrations compared with Sham+VEH rats. After adjusting for multiple 

comparisons, differences in pontine L-DOPA and medulla oblongata HVA 

concentrations in Sham+PREB compared with Sham+VEH and medulla oblongata 5-

HIAA concentrations in CIH+PREB compared with Sham+PREB remained significantly 

different. In summary, prebiotic administration, but not CIH, altered brainstem 

neurochemistry.   

 

Fig. 2.4-4 Group data for l-DOPA (a), dopamine (b), DOPAC (c) DOPAC/Dopamine (d), 
homovanillic acid (e), homovanillic acid/dopamine ratio (f), noradrenaline (g), 
serotonin (h), 5-HIAA (i) and 5-HIAA/Serotonin ratio (j) in Sham+VEH, CIH+VEH, 
Sham+PREB and CIH+PREB. l-DOPA, l-3,4-dihydroxyphenylalanine; DOPAC, 3,4-
dihydroxyphenylacetic acid; 5-HIAA, 5-hydroindoleacetic acid; CIH, chronic 
intermittent hypoxia; PREB; prebiotic; VEH, vehicle. Data (a-j) are expressed as box 
and whisker plots (median, IQR and minimum to maximum values); n = 10–12. Groups 
were statistically compared using two-way ANOVA, followed by Fisher's least 
significant difference (LSD) post hoc where appropriate, or non-parametric Kruskal-
Wallis test, followed by Mann-Whitney U test, where appropriate. l-DOPA (p = 0.003; 
Fig. 2.4-4a) and DOPAC (p = 0.006; Fig. 2.4-4c) concentrations in the pontine region 
as well as DOPAC/DA (Diet*CIH, p = 0.042; Fig. 2.4-4d), HVA (p = 0.001; Fig. 2.4-4e), 
HVA/DA (p = 0.020; Fig. 2.4-4f), 5-HT (Diet, p = 0.043; Fig. 2.4-4h) and 5-HIAA (p = 
0.043; Fig. 4i) concentrations in the medulla oblongata are different. Other 
monoamine, metabolites and precursors were not statistically different between 
groups (p>0.05; Fig.2.4- 4b, 2.4-4g, 2.4-4h, 2.4-4j). ~ p = 0.008, CIH+PREB versus 
CIH+VEH; $ p = 0.006, Sham+PREB versus Sham+VEH. 

 

2.4.4.8 Plasma cytokine and corticosterone concentrations 
Pro-inflammatory cytokines, IL-4 (X2(3) = 8.042, p=0.045, Fig. 2.4-5c) and TNF-α (X2(3) 

= 10.784, p=0.013, Fig. 2.4-5h) were different between groups. Post hoc analysis 

adjusted for multiple comparisons revealed that CIH exposure had no significant 
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effect on IL-4 or TNF-α levels. However, TNF-α and IL-4 were decreased in 

Sham+PREB compared with Sham+VEH rats. All other pro-inflammatory cytokines 

and corticosterone concentrations were not different between groups (Fig. 2.4-5a-b, 

2.4-5d-g). In summary, CIH exposure had no effect on plasma cytokine or 

corticosterone concentrations. Prebiotic administration reduced TNF-α and IL-4 

concentrations compared with VEH rats.  

 

Fig. 2.4-5 Corticosterone and inflammatory mediators were equivalent between 
groups Group data for corticosterone concentration (a), IFN-γ (b), IL-4 (c), IL-6 (d), IL-
10 (e), IL-13 (f), KC/GRO (g) and TNF-α (h) in Sham+VEH, CIH+VEH, Sham+PREB and 
CIH+PREB. IFN-γ, interferon-γ; IL-4, interleukin-4; IL-6, interleukin-6; IL-10, 
interleukin-10;  IL-13, interleukin-13;   TNF-α, tumour necrosis factor-α; KC/GRO, 
keratinocyte chemoattractant/growth-related oncogene; CIH, chronic intermittent 
hypoxia; PREB; prebiotic; VEH, vehicle. Data (a-h) are expressed as box and whisker 
plots (median, IQR and minimum to maximum values); n = 11–12. Groups (a-h) were 
statistically compared using two-way ANOVA, followed by Fisher's least significant 
difference (LSD) post hoc where appropriate, or non-parametric Kruskal-Wallis test, 
followed by Mann-Whitney U test, where appropriate. Pro-inflammatory cytokines, 
IL-4 (p = 0.045; Fig. 5c) and TNF-α (p = 0.013; Fig. 5h) were affected by prebiotic 
administration. $ p = 0.003, Sham+PREB versus Sham+VEH. 

2.4.4.9 Caecal microbiota 

2.4.4.9.1 Microbiota composition and diversity 
CIH exposure had no effect on indices of alpha diversity (Fig. 2.4-6b-d). Prebiotic 

treatment significantly reduced bacteria species evenness in all statistical 

comparisons, indicated by decreases in Shannon and Simpson indices of alpha 

diversity (Fig. 2.4-6c-d). However, bacterial species richness, indicated by Chao1 

index was not affected by prebiotic administration (Fig. 2.4-6b). These findings 
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suggest proliferation of a select number of bacterial species with no overall 

difference in bacterial richness. Principal component analysis revealed that CIH 

exposure did not affect β-diversity. Prebiotic administration shifted β-diversity in 

Sham+PREB and CIH+PREB compared with Sham+VEH and CIH+VEH rats, respectively 

(Fig. 2.4-6a, p<0.001, PERMANOVA).  

 

 

Fig. 2.4-6 Prebiotic administration alters rat caecal microbiota structure Group data 
for principal coordinate analysis (a) in 2-dimensional representations, Chao1 (b), 
Shannon (c), Simpson (d) in Sham+VEH, CIH+VEH, Sham+PREB and CIH+PREB. CIH, 
chronic intermittent hypoxia; PREB; prebiotic; VEH, vehicle. Data (b-e) are expressed 
as box and whisker plots (median, IQR and minimum to maximum values); n = 11–12. 
Data (b-e) were statistically compared by non-parametric Mann-Whitney U test. P-
value adjusted; ~ p<0.01, CIH+PREB versus CIH+VEH; $ p <0.0001, Sham+PREB versus 
Sham+VEH;. 
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Whole-metagenome shotgun sequencing identified around 3200 bacteria species of 

34 phyla. BH adjustment for multiple comparisons at bacterial species level did not 

reveal statistically significant differences between CIH+VEH and Sham+VEH rats given 

the exhaustive multiple comparisons performed. However, 3 large effect sizes (~1) 

were evident between CIH+VEH and Sham+VEH rats. Pathogenic species, namely, 

Streptomyces sp. 452 and Raoultella planticola were increased and Lactobacillus 

rhamnosus (Fig. 2.4-6e), a beneficial commensal bacterial species, was decreased in 

CIH+VEH compared with Sham+VEH rats. Similarly, no statistically significant 

difference was evident between Sham+PREB and CIH+PREB rats, but large effect sizes 

(~0.8) were evident in 4 species. The pathogenic species Helicobacter bilis was 

increased whereas Candidatus Gullanella endobia, Pectobacterium wasabiae and 

Corynebacterium striatum were decreased in CIH+PREB compared with Sham+PREB 

rats (~0.8 effect size). A total of 420 bacterial species were statistically different in 

CIH+VEH rats compared with CIH+PREB rats, with 549 species different in Sham+VEH 

rats compared with Sham+PREB rats. The largest difference between these 

comparisons was due to a significant increase in the beneficial bacterial species 

Bifidobacterium animalis in the prebiotic groups.  
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Fig. 2.4-7 Lactobacilli species are decreased in CIH+VEH compared with Sham+VEH 
Group data for Lactobacillus amylovorous (a), Lactobacillus apis (b), Lactobacillus 
helveticus (c), Lactobacillus jensenii (d), Lactobacillus amyloyticus (e), Lactobacillus 
acetotolers (f), Lactobacillus johnsonii (g) and Lactobacillus kefiranofaciens (h) in 
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Sham+VEH, CIH+VEH, Sham+PREB and CIH+PREB. CIH, chronic intermittent hypoxia; 
PREB; prebiotic; VEH, vehicle. Data (a-h) are expressed as box and whisker plots 
(median, IQR and minimum to maximum values); n = 11–12. Data (b-e) were 
statistically compared by non-parametric Mann-Whitney U test. 

2.4.4.9.2 Gut-brain module and gut-metabolic module analysis 
Using GBMs and GMMs we evaluated gut microbial functions. Our novel findings 

reveal that CIH exposure did not affect GBMs and GMMs analysis of caecal 

microbiota. Prebiotic administration altered the microbial potential of 10 and 31 

GBMs and GMMs, respectively (adjusted p<0.05). Several GMMs and GBMs were 

enriched (positive effect size) and reduced (negative effect size) in prebiotic treated 

rats compared with vehicle treated rats. Interestingly, GABA degradation (p=0.9; 

effect size=0.4, CIH+VEH versus Sham+VEH; p=0.9, effect size=0.4, CIH+PREB versus 

Sham+PREB; p=0.009, effect size ~1, CIH+PREB versus CIH+VEH; p=0.001, effect size 

~1, Sham+PREB versus Sham+VEH; Fig. 2.4-7c) and butyrate synthesis I (p=0.9; effect 

size=0.4, CIH+VEH versus Sham+VEH; p=0.9, effect size=0.3, CIH+PREB versus 

Sham+PREB; p=0.2, effect size=0.6, CIH+PREB versus CIH+VEH; p=0.9, effect size=0.4, 

Sham+PREB versus Sham+VEH; Fig. 2.4-7d) abundance trended in diverging 

directions in CIH-exposed rats compared with Sham rats, depending on prebiotic or 

vehicle administration. 
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Fig. 2.4-8 Prebiotic administration alters GBMs and GMMs Group data for GBMs (a) 
and GMMs (b) in heatmap representation, GABA degradation (c) and Butyrate 
synthesis I (d) in Sham+VEH, CIH+VEH, Sham+PREB and CIH+PREB. CIH, chronic 
intermittent hypoxia; PREB; prebiotic; VEH, vehicle. Data (c-d) are expressed as box 
and whisker plots (median, IQR and minimum to maximum values); n = 11–12. A 
pairwise implementation of the aldex.ttest() function was used to compare multiple 
groups. CIH exposure did not alter GBMs and GMMs. Prebiotic administration 
significantly modulated many metagenomes of the GBMs and GMMs. A positive 
effect size indicates an increase in prebiotic treated rats, a negative effect size 
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indicates a decrease in prebiotic treated rats. Benjamini-Hochberg corrected q-
values,* q<0.05, ** q<0.01, *** q<0.001. GABA degradation and Butyrate synthesis I 
diverge in CIH-exposed compared with Sham rats, depending on prebiotic 
administration. ~ p<0.01, CIH+PREB versus CIH+VEH; $$$ p< 0.001, Sham+PREB 
versus Sham+VEH. 

2.4.4.10 Correlation analysis 
Using Hierarchical All-against-all correlation analysis the relative abundance of 

Francisella sp. FSC1006 strongly negatively correlated with sigh frequency during 

hypercapnia in rats that did not receive prebiotics. No other significant correlations 

were evident. A total of 269, 16 and 110 bacterial species correlated with mean, 

diastolic and systolic blood pressure, respectively, when we independently 

investigated if blood pressure parameters correlated with bacterial species 

(Supplementary tables 9-11).  

2.4.4.11 Faecal short-chain fatty acid concentrations  
PCA analysis did not identify distinct clustering of CIH+VEH compared with 

Sham+VEH rats. However, separation of vehicle from prebiotic groups was evident 

(Fig. 8a). The loading plot (Fig. 8b) demonstrates this separation is due to higher 

concentrations of acetic, propanoic and hexanoic acid in prebiotic groups. Further 

analysis revealed that prebiotic supplementation significantly influenced faecal 

acetic (X2(3) = 22.420, p<0.0005, Fig. 8c) and propanoic (X2(3) = 11.211, p=0.011, Fig. 

2.4-8d) concentrations. Prebiotic treatment significantly increased faecal acetic acid 

in all statistical comparisons (CIH+PREB versus CIH+VEH, p=0.002; Sham+PREB versus 

Sham+VEH, p=0.001; Fig. 2.4-8c), propanoic acid concentrations were increased in 

CIH+PREB compared with Sham+PREB rats (p=0.009; Fig. 2.4-8d). There was no 

significant difference in other SCFA concentrations (Fig. 2.4-8e-h). CIH exposure had 

no effect on SCFA, whereas prebiotic administration increased SCFA concentrations 

in Sham and CIH-exposed rats.  
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Fig. 2.4-9 Prebiotic administration increases faecal acetic and propanoic acid Score 
plot (a) from principal component analysis (PCA) model calculated on the relative 
concentrations of detected SCFA and loading plot (b) from PCA model calculated on 
the relative concentrations showing which variables are responsible for the pattern 
observed in (a). Group data for acetic acid (c), propanoic acid (d), hexanoic acid (e), 
butanoic acid (f), pentanoic acid (g) and 3-methylbutanoic acid (h) in Sham+VEH, 
CIH+VEH, Sham+PREB and CIH+PREB. CIH, chronic intermittent hypoxia; PREB; 
prebiotic; VEH, vehicle. Data (c-h) are expressed as box and whisker plots (median, 
IQR and minimum to maximum values); n = 11–12. Groups (c-h) were statistically 
compared using two-way ANOVA, followed by Fisher's least significant difference 
(LSD) post hoc where appropriate, or non-parametric Kruskal-Wallis test, followed by 
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Mann-Whitney U test, where appropriate. Acetic (p<0.0005; Fig. 2.4-8c) and 
propanoic acid (p = 0.011; Fig. 2.4-8d) were increased as a result of prebiotic 
supplementation. All other SCFAs were not different (p>0.05 Fig. 2.4-8e-h). ~ p = 
0.002, CIH+VEH versus CIH+PREB; $ p = 0.001, Sham+PREB versus Sham+VEH.  
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2.4.5 Discussion 

There is a growing evidence-based consensus that the gut microbiota plays a 

modulatory role in physiological homeostasis. Recent studies posit that 

cardiorespiratory morbidity is linked to aberrant microbiota-gut-brain axis signalling 

(Ganesh et al., 2018; Meng et al., 2019; O'Connor et al., 2019; Toral et al., 2019). 

Investigations in rodents reveal that exposure to CIH disturbs the gut microbiota 

(Moreno-Indias et al., 2015; Moreno-Indias et al., 2016; Lucking et al., 2018). 

Exposure to CIH elicits cardiorespiratory dysfunction (O'Halloran, 2016; Laouafa et 

al., 2017; Elliot-Portal et al., 2018; Laouafa et al., 2019), predominantly considered to 

be mediated via CIH-induced carotid body sensitisation (Prabhakar et al., 2007; 

Iturriaga et al., 2009; Iturriaga et al., 2017), but also suggested to relate to aberrant 

signalling from other sites (Docio et al., 2018; Lucking et al., 2018). When viewed 

together, these observations encourage a new line of enquiry. Dysregulated 

microbiota-gut-brain axis signalling in CIH-exposed rodent models may play a 

modulatory role in cardiorespiratory disturbances evident in animal models of SDB. 

Manipulation of the gut microbiota via antibiotic administration/faecal microbiota 

transfer perturbs the gut microbiota and alters cardiorespiratory control (O'Connor 

et al., 2019). Prebiotic administration, promoting the expansion of beneficial 

microbes, could prove effective in the prevention of CIH-induced cardiorespiratory 

dysfunctions.  

We sought to explore the interplay between cardiorespiratory physiology and the gut 

microbiota in a rat model of SDB, investigating if manipulation of the gut microbiota 

by prebiotic fibre administration could prevent or ameliorate cardiorespiratory 

dysfunctions evident in a CIH animal model. The principal novel findings of this study 

are: 1) CIH-exposed rats have reduced relative abundance of L. rhamnosus; prebiotic 

administration shifted the bacteria microbiota composition and diversity but did not 

restore L rhamnosus relative abundance; 2) CIH exposure did not alter GBMs and 

GMMs analysis of caecal metagenomes; prebiotic administration modulated 

microbial functions; 3) CIH-exposed rats developed hypertension, which prebiotics 

failed to prevent; 4) CIH exposure had no effect on faecal SCFA concentrations; acetic 

and propanoic acid are increased in prebiotic groups; 5) CIH exposure increased the 
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apnoea index during normoxia, which was unaffected by prebiotic administration; 6) 

Monoamine, monoamine precursor and metabolite concentrations were unaffected 

by exposure to CIH; prebiotic administration had modest effects on brainstem 

neurochemistry; 7) Cardiorespiratory responsiveness to vagal afferent nerve 

stimulation was unaffected by CIH exposure; prebiotic administration had modest 

effects on apnoea duration; 8) CIH did not affect ventilation or metabolism; prebiotic 

administration increased ventilatory responsiveness to hypercapnia 

Exposure to CIH elicited hypertension and a shift in autonomic balance towards 

sympathetic dominance, as evident by alterations in heart rate variability and 

spectral analysis parameters (Zoccal et al., 2007; Yamamoto et al., 2013). 

Furthermore, there was an elevated propensity for central apnoea apparent in CIH-

exposed rats, (Julien et al., 2008; Edge et al., 2012; Donovan et al., 2014; Souza et al., 

2015). There is considerable evidence supporting CIH-induced sensitisation of the 

carotid bodies, the principal peripheral oxygen sensors, with persistent elevation in 

chemo-afferent traffic to the NTS of the brainstem and resultant potentiation of 

sympathetic nervous outflow giving rise to hypertension (Fletcher et al., 1992; Kumar 

and Prabhakar, 2012; Iturriaga et al., 2015; Del Rio et al., 2016; Lucking et al., 2018). 

Carotid body ablation prevents CIH-induced hypertension and elevations in heart 

rate variability indicative of cardiac autonomic dysfunction (Iturriaga et al., 2015; Del 

Rio et al., 2016). Nevertheless, CIH-exposed guinea-pigs, with hypoxia-insensitive 

carotid bodies, have altered autonomic control of heart rate associated with 

modification in gut microbiota composition and diversity (Lucking et al., 2018). 

Moreover, exposure to severe CIH elicits sympathetic over-activity and hypertension 

in guinea-pigs in the absence of carotid body sensitisation (Docio et al., 2018), 

revealing sites beyond the carotid bodies that can contribute to the manifestation of 

CIH-induced hypertension.  

Increased apnoea index, an observation commonly observed in CIH animal models, 

is proposed to manifest due to disturbances in the respiratory control network 

(Nsegbe et al., 2004; McKay and Feldman, 2008; Ramirez, 2014; Mateika et al., 2019). 

Carotid body plasticity and altered chemoreflex responsiveness is also suggested to 

be a driver of respiratory instability and apnoea (Prabhakar et al., 2007; Marcus et 
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al., 2010; Julien et al., 2011) and may have been a driver of apnoea in our model, 

although the lack of change in basal breathing and ventilatory responses to hypoxia 

in our study suggest a central origin. Numerous studies have recently linked the 

development of aberrant cardiorespiratory phenotypes, particularly hypertension, to 

perturbed gut microbiota, aberrant function profiles of gut microbes and altered 

SCFA production (Yang et al., 2015; Adnan et al., 2017; Li et al., 2017; Santisteban et 

al., 2017; Yan et al., 2017; O'Connor et al., 2019; Toral et al., 2019).  

In our study, whole-metagenome shotgun sequencing revealed novel data showing 

that CIH+VEH hypertensive rats have modest alterations in bacterial species, 

however, gut microbial functional alterations where not different compared with 

Sham+VEH normotensive rats. The greatest bacterial species difference was in the 

relative abundance of the beneficial commensal bacterial species, L. rhamnosus, 

which was decreased in CIH+VEH compared with Sham+VEH rats. Interestingly, L. 

rhamnosus supplementation ameliorated CIH+HSD-induced hypertension in rats (Liu 

et al., 2019). Of note, the relative abundance of L. rhamnosus remained decreased in 

hypertensive CIH+PREB rats, suggesting that CIH-induced reductions in the relative 

abundance of L. rhamnosus may have contributed to the development of 

cardiovascular and autonomic dysfunction in our study, at least the development of 

hypertension. However, L. rhamnosus abundance was also reduced in Sham+PREB 

rats. If gut microbiota contribute to CIH-induced hypertension, it is more likely that a 

complex interplay of bacterial species contribute to the development of 

hypertension or the maintenance of normal blood pressure per se. In our study, a 

large number of bacterial species correlated with blood pressure parameters.   

To our knowledge there are no studies using whole-genome shotgun sequencing to 

investigate the predicted gut microbial functions in OSA/hypertensive rodent models 

or animals treated with prebiotics. This area of research is in its infancy. In humans, 

numerous modules, essential for the host, were reduced and enriched in 

hypertensive compared with normotensive patients (Li et al., 2017; Yan et al., 2017; 

Kim et al., 2018). In our study, GBMs and GMMs were not altered in Sham+VEH 

compared with CIH+VEH rats and Sham+PREB compared with CIH+PREB rats, 

revealing that the predicted microbial function is unaltered as a result of CIH 
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exposure. Prebiotics had significant effects on gut microbial functions, resulting in 

increases and decreases in multiple modules important to the host. For example, 

increases in acetate degradation and propionate synthesis in prebiotic groups as 

predicted using GBMs and GMMs, coincides with elevated acetic and propionate 

acid, respectively in prebiotic treated rats.  

Acetate-producing bacteria taxa, such as Holdemania were shown to be decreased 

in hypertensive rodents (Yang et al., 2015; Ganesh et al., 2018). Intriguingly, probiotic 

or prebiotic administration prevented the progression of hypertension in an 

OSA+HFD rat model, increasing caecal acetate and various SCFA producing bacteria 

that are diminished in the hypertensive rats (Ganesh et al., 2018). In our study, SCFA 

concentrations were unaffected by CIH exposure, yet, CIH-exposure caused 

hypertension, revealing that depletion of gut SCFAs is not obligatory for the 

development of CIH-induced hypertension. Prebiotic administration increased faecal 

acetic and propionic acid concentrations but had no beneficial effects on 

cardiovascular control; hypertension and enhanced heart rate variability were 

evident in CIH+PREB rats. In our study, elevations in SCFAs in prebiotic treated 

rodents may have had equal ‘buffering effects’ on blood pressure given that SCFAs 

act via olfactory receptor 78 (Olfr78) and G-protein-coupled receptor (Gpr41) to 

increase and decrease blood pressure, respectively having opposing effects on blood 

pressure regulation (Pluznick, 2013). This may contrast to outcomes in Ganesh et al., 

2018 wherein elevated acetate concentrations prevented the development of 

hypertension in OSA+HFD rodents, perhaps via Gpr41 receptor activation. Prebiotic 

administration did not ameliorate CIH-induced hypertension revealing that 

elevations in SCFA concentrations (or at least increases in acetic acid and propionic 

acid) or changes to microbial functional characteristics do not protect against CIH-

induced hypertension.  

We did not examine the effects of CIH exposure on intestinal function, but of interest 

CIH exposure did not increase plasma (or brainstem) pro-inflammatory cytokines in 

this study, although prebiotic administration decreased plasma TNF-α and IL-4 levels 

in Sham rats. Others have reported that CIH exposure in rodents increases plasma 

lipopolysaccharides (LPS) and elevates gut inflammation, contributing to intestinal 
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barrier dysfunction (Moreno-Indias et al., 2015; Wu et al., 2016), a phenotype also 

evident in other hypertensive models (Santisteban et al., 2017; Kim et al., 2018). 

Faecal microbiota transfer from donor normotensive to hypertensive recipient rats, 

and prebiotic and probiotic administration each independently decrease blood 

pressure, and prevent intestinal dysfunction and neuroinflammation in hypertensive 

models, including OSA animal models (Ganesh et al., 2018; Liu et al., 2019; Toral et 

al., 2019).  

Prebiotic administration increased chemoreflex control of breathing in response to 

hypercapnia and hypoxic hypercapnia. Hypercapnia is primarily sensed by central 

chemoreceptors residing in the brainstem. Increased ventilatory responsiveness to 

hypercapnia is particularly interesting given that rats exposed to pre-natal stress 

exhibit altered ventilatory responsiveness to hypoxic and hypercapnic 

chemostimulation in adulthood, which correlated with changes in the gut microbiota  

(Golubeva et al., 2015). Moreover, antibiotic administration and faecal microbiota 

transfer were shown to perturb the gut microbiota composition and blunt 

chemoreflex control of breathing (O'Connor et al., 2019). The latter observation 

combined with findings from the present study suggests that the gut microbiota may 

shape brainstem responsiveness to carbon dioxide (acidosis) with implications for a 

range of respiratory control disorders.  

We assessed monoamines and monoamine metabolites and precursors in the pons 

and medulla oblongata of the brainstem that are crucial in the neuromodulation of 

cardiorespiratory control. No significant modifications in monoamine, metabolite 

and precursor concentrations were evident in the brainstem of CIH-exposed rats. 

There was a trend for reduced dopamine turnover in the medulla oblongata of 

Sham+PREB rats, with elevated ventilatory responses to hypercapnia and hypoxic 

hypercapnia compared with Sham+VEH rats. This finding is particularly interesting 

given that antibiotic treated and faecal matter transfer rodents with perturbed gut 

microbiota each display blunted ventilatory responses to hypercapnia and exhibit 

increased brainstem dopamine turnover (O'Connor et al., 2019). Perhaps, D1 

receptor activation may underpin elevated ventilatory responses to 

chemostimulation in Sham+PREB rats (Lalley, 2004). Previous studies demonstrate 
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that prebiotic administration affected DOPAC concentrations in the brainstem and 

frontal cortex of mice (Burokas et al., 2017). Yet, prebiotic administration did not 

alter other monoamine, metabolites and precursors of the dopaminergic pathway in 

animal models (Kannampalli et al., 2014; Burokas et al., 2017). CIH+PREB rats 

revealed significantly increased 5-HIAA concentrations in the medulla oblongata 

compared with CIH+VEH rats. Noteworthy, lesions of raphé serotonergic neurons 

and transgenic rodents without 5-HT neurones display reduced respiratory 

responsiveness to hypercapnic chemostimulation (Dias et al., 2007; Hodges et al., 

2008; Li and Nattie, 2008; Hodges and Richerson, 2010). However, serotonin 

turnover was not different in CIH+PREB rats compared with CIH+VEH. It is not likely 

that serotonin mediated the elevated ventilatory drive to breathe in response to 

hypercapnia associated with prebiotic supplementation. Altered 5-HT receptor levels 

and 5-HT concentrations have been observed in the rodent pre-frontal cortex after 

prebiotic administration (Savignac et al., 2016; Burokas et al., 2017). Our data suggest 

that reduced dopamine turnover in Sham+PREB rats may be associated with 

increased ventilatory responses to hypercapnic chemostimulation.  

The afferent vagal pathway is a pivotal signalling pathway of the microbiota-gut-brain 

axis, which responds to various stimuli including cytokines, bacterial metabolites 

including SCFAs, gut hormones and neurotransmitters (Goehler et al., 2000; 

Raybould et al., 2003; Johnston and Webster, 2009; Nohr et al., 2015). Central 

integration of vagal afferent signals occurs within the NTS of the brainstem. PBG, 

which is a 5-HT3 receptor agonist, activates pulmonary vagal afferent C-fibres 

manifesting the pulmonary chemoreflex characterised by decreased blood pressure, 

bradycardia, apnoea and post apnoea-induced tachypnoea. Exposure to CIH did not 

affect the pulmonary chemoreflex but prebiotic administration increased apnoea 

duration. Post hoc analysis determined that there were no statistically significant 

differences between groups suggesting that vagal influence over these critical control 

centres was unaltered by any potential changes in microbiota-gut-brain signalling. Of 

interest, cardiorespiratory responses to PBG was also unaffected in other models of 

disrupted gut microbiota (O'Connor et al., 2019). Thus, notwithstanding alterations 

to the gut microbiota in CIH+VEH rats, as well as the notable changes in the gut 
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microbiota, SCFA concentrations, microbial functional characteristics and brainstem 

neurochemistry in prebiotic groups, no major differences in cardiorespiratory 

efferent responses to vagal afferent stimulation were observed revealing intact 

pulmonary chemoreflex circuit function in CIH-exposed and prebiotic supplemented 

animals. This does not preclude however, the possibility of altered vagal signalling 

from the gut in our models, which warrants attention in future studies.  

 

2.4.6 Conclusion 

Our novel findings add to the growing field investigating the role of the microbiota-

gut-brain axis in the control of breathing and cardiovascular function (Ganesh et al., 

2018; Liu et al., 2019; O'Connor et al., 2019). Herein we confirm that CIH exposure 

leads to the development of adverse cardiorespiratory and autonomic control, 

resulting in hypertension, cardiac autonomic imbalance and elevated propensity for 

apnoea. We revealed for the first time using whole-metagenome shotgun 

sequencing that a beneficial commensal species, L. rhamnosus, was decreased in CIH-

exposed rats, but gut microbial functional characteristics were unaltered. 

Furthermore, faecal SCFA concentrations were not altered by CIH exposure.  

Prebiotic administration did not restore L. rhamnosus relative abundance in CIH-

exposed rats and it decreased L. rhamnosus abundance in Sham+PREB rats. 

Prebiotics increased SCFAs and modulated GBMs and GMMs in CIH-exposed and 

Sham rats. Our findings suggest that microbiota-gut-brain axis signalling is unlikely to 

play a critical role in the development of the principal cardiovascular and respiratory 

maladies observed in CIH-exposed rats. These observations further support the 

pivotal role of the carotid bodies in the manifestation of CIH-induced 

cardiorespiratory malaise, which has relevance for human cardiorespiratory control 

disorders. Interestingly, ventilatory responses to hypercapnic and hypoxic 

hypercapnic chemostimulation were altered in prebiotic treated groups. Significant 

modulations to the gut microbiota may shape brainstem responsiveness to acidosis 

which has implications for homeostatic function of integrative body systems. Our 

findings extend previous knowledge of the relationship between the gut microbiota 
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and cardiorespiratory control in OSA animal models. Further studies are required to 

unravel discrepancies within the field, which will lead to a better understanding of 

the role of the microbiota-gut-brain axis in OSA animal models, and the potential use, 

where appropriate, of interventional adjunctive therapies focussed on the gut 

microbiota for the treatment of cardiorespiratory dysfunction.   
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2.5.1 Abstract 

Adolescence is a critical developmental period that is characterised by growth spurts 

and specific neurobiological, neuroimmune and behavioural changes. In tandem the 

gut microbiota, which is a key player in the regulation of health and disease, is shaped 

during this time period. Diet is one of the most important regulators of microbiota 

composition. Thus, we hypothesised that dietary disturbances of the microbiota 

during this critical time window may result in long-lasting changes in immunity, brain 

and behaviour. C57BL/6 male mice were exposed to either high fat diet or cafeteria 

diet, which consists of normal chow and a high caloric treat presented each day, 

during the adolescent period from postnatal (P) day 28 to P49 and were tested for 

anxiety and social-related behaviour in adulthood. Our results show long-lasting 

effects of dietary interventions during the adolescent period on microbiota 

composition and the expression of genes related to neuroinflammation or 

neurotransmission. Interestingly, changes in myelination-related gene expression in 

the prefrontal cortex following HFD exposure were also observed. However, these 

effects did not translate into overt behavioural changes in adulthood. Taken 

together, these data highlight the importance of diet-microbiota interactions during 

the adolescent period in shaping specific outputs of the microbiota-gut-brain axis in 

later life.  
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2.5.2 Introduction 

Adolescence, the transition period from childhood to adulthood, is a critical 

developmental period characterised by the onset of puberty, as well as specific 

neurobiological processes and behavioural changes (Larsen and Luna, 2018). As 

adolescence is the last developmental stage before adulthood, it is not surprising that 

major refinement of neuronal structure and function during the adolescent period 

are associated with the maturation of social behaviours and cognitive abilities that 

promote individuation (Burnett et al., 2011). However, the growth and specialization 

of the adolescent brain that allow for maturation and adjustments to environmental 

challenges, also creates vulnerability and can result in maladaptation of brain circuits 

(Spear, 2013). Hence, adolescence is also a high-risk period for the onset of 

psychological disorders including psychosis, substance use disorders, eating 

disorders, impulse control disorders and affective disorders (Walker, 2002). 

In recent years there is a growing appreciation that the microbiota, which describes 

the trillions of microbes including bacteria, archaea, eukarya, viruses and parasites 

living in and on their host, plays a key role in all aspects of host health including 

neurodevelopment and behaviour (Borre et al., 2014; Sampson and Mazmanian, 

2015; Gilbert et al., 2018; Cryan et al., 2019). Hence, changes in the gut microbiota 

during the adolescent period are likely to impact brain and behaviour of the 

developing individual but are not well studied (McVey Neufeld et al., 2016; Cowan et 

al., 2019). 

The microbiota during the developmental period is shaped by a variety of internal 

and external factors (Spor et al., 2011; Gilbert et al., 2018) which make the 

microbiota susceptible to external impact during development that might lead to 

maladaptation later in life. One of the most important factors that determines the 

composition of gut microbiota is diet. A corpus of studies have shown that different 

nutritional composition of the daily diet can drastically alter gut microbiota 

composition in humans and rodents (Klurfeld et al., 2018). These changes can occur 

rapidly and are transient in the adult rodents and humans. For example, consuming 

specific animal-based or plant-based diets alters the composition of the microbiota 
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composition within 24 hours and returns to baseline within 48 hours of termination 

of that specific diet (David et al., 2014; Singh et al., 2017) and microbiota composition 

of mice fed a high fat diet for 12 weeks reverts to baseline after 4 weeks (Zhang et 

al., 2012). 

Regarding the microbiota-gut-brain axis there are a number of studies that show that 

dietary interventions in adulthood or early life can affect neurobiological, 

neuroimmune and behavioural changes (Sandhu et al., 2017). For example, exposure 

to high fat diet for either 18 days or 21 weeks results in impaired spatial learning in 

the Morris water maze (Denver et al., 2018) as well as in the object location memory 

and social memory during adolescence (Khazen et al., 2019; Yaseen et al., 2019), and 

increases levels of anxiety in the light/dark exploration test (Kang et al., 2014), as well 

as depressive-like behaviour in the trail suspension- and forced swim test (Vagena et 

al., 2019). Similarly, exposure to various forms of cafeteria diet, which is a variation 

of high fat and high sugar diet results in cognitive impairment in the novel object 

recognition task and the Morris water maze (Stranahan et al., 2008; Beilharz et al., 

2014; Feijo et al., 2019) as well as alterations of anxiety-related behaviour in the 

elevated plus maze (Ferreira et al., 2018). 

However, there is a paucity of studies focusing on the enduring effects of diet-

induced changes in the adolescent microbiota-gut brain axis. We hypothesize that 

due to its relative instability, the adolescent microbiota is likely to be affected more 

drastically than the adult microbiota, which could result in long-lasting alterations in 

microbiota composition. To this end we investigate to which extent changing the diet 

from normal chow to either high fat diet (HFD) or cafeteria diet (CafD) during 

adolescence long-lastingly impacts microbiota composition and examine 

neurobiological, neuroimmune and behavioural outputs in adulthood. 
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2.5.3 Material and Methods 

 

All experiments were conducted in accordance with the European Directive 

2010/63/EEC, the requirements of the S.I No 543 of 2012 and approved by the Animal 

Experimentation Ethics Committee of University College Cork (2012 #45) and the 

Health Products Regulatory Authority (HPRA). All efforts were made to reduce the 

number of animals used and minimise animal suffering. 

 

2.5.3.1 Animals 
36 male C57BL/6JOlaHsd mice (Envigo, UK) were received at our facility at postnatal 

(P) day 21 and allowed to acclimatise for one week. Mice were marked and housed 

in groups of four in standard mouse cages. Mice were kept in ventilated rooms under 

a 12h light/dark cycle with lights on at 7.30am. Water and the diets described below 

were accessible ad libitum. The experimental timeline is depicted in figure 2.5-1. 

 

 

Figure 2.5-1: Experimental timeline. 3CSIT three-chamber social interaction task, 
EPM elevated plus maze, FC fear conditioning, NORT novel object recognition task. 

 

 

2.5.3.2 Dietary Intervention 
To impact gut microbiota during the adolescent period, three different diets were 

provided; standard diet, high fat diet (HFD) and cafeteria diet (CafD). Teklad Global 

18% Protein Rodent Diet (2018S, Envigo, UK) was purchased as standard diet. This 

diet provided 3.1 kcal/g, 18% energy as fat, 58% as carbohydrate and 24% as protein. 
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HFD (D12451, Rodent Diet with 45% kcal% fat) was ordered from Research Diets Inc., 

USA. This diet provided 4.7kcal/g, 45% energy as fat, 35 % as carbohydrate and 20% 

as protein. Both diets were accessible ad libitum. CafD consisted of a variety of high 

caloric food items (Table 1) of which one was presented in addition to normal chow 

each day. To avoid strong individual differences in food intake of these items induced 

by hierarchy (Lee et al., 2018) all food items were presented in excess. Food items 

were weighed before presentation and the remainder was weighed after 24h. The 

information provided by the manufacturer was then used to calculate the energy 

intake (kcal). On average this diet provided 4.1 kcal/g, 36% energy as fat, 50% as 

carbohydrate and 14% as protein.   

Animals were assigned to experimental groups (n=12) matching the average weight 

per cage (n=4), per treatment group (Ctrl 12 ± 1 g, 12 ±1 g HFD, 12 ± 2 g CafD). At the 

onset of adolescence (P28) (Schneider, 2013), HFD or CafD were provided ad libitum 

for treatment groups. Control animals were provided with normal chow throughout 

the experiment. On P49 treatment groups were switched back to normal chow. 

Water was accessible ad libitum throughout the experiments. Bodyweight was 

measured in regular intervals to monitor weight gain.  

 

 

Food Item Company 
Density 

kcal/g 

Fat 

per 100g 

Carbohydrate 

per 100g 

Protein 

per 100g 

g kcal g kcal g kcal 

Oreo Cookie 
Mondelez 

International 
4.8 20.0 96.0 69.0 331.2 5 24.0 

Craze milk chocolate 

Cereals 
Aldi Own Brand 4.4 13.0 56.6 70.0 304.5 7.4 32.2 

Mini Marshmallows Aldi Own Brand 3.4 <0.5 <1.7 80.0 268.0 3.3 11.1 



164 
 

 

Table 1: List of food items presented during CafD treatment. 

 

2.5.3.3 Behavioural Testing 
Behavioural testing commenced three weeks after the end of treatment (P73). At 

least three days were allowed between tests for the animals to rest. Tests were 

performed between 9.00 am and 3.00 pm. Apart from the elevated plus maze, which 

was run under red light, all experiments were performed under dim light.  

 

Doritos tangy cheese 

flavoured corn chips 
Doritos 5.0 26.3 131.2 55.4 276.5 6.8 33.9 

dried Banana 
Tesco whole 

foods 
3.0 1.1 3.3 67.1 199.3 4.5 13.4 

Asian two minutes 

noodles 
Nestle 4.4 18.3 81.1 57.8 256.1 9.9 43.9 

Popcorn 
Manhatten 

Peanuts 
4.4 18.8 82.5 65.9 289.3 9.6 42.1 

M&Ms peanut 
Mars Chocolate 

France 
5.1 25.3 129.3 59.2 302.5 9.7 49.6 

roasted salted peanuts Tesco Own Brand 6.2 50.5 312.1 10.6 65.51 27.2 168.1 

Tapas crackers 

(leek&onion) 
Valeo foods 5.1 25.0 126.8 60.0 304.2 8.7 44.1 

Chocolate dairy milk Cadbury 5.3 30.5 161.7 56.5 299.5 7.5 39.8 

Kitkat Nestle 5.1 24.8 126.7 27.2 139.0 2.4 12.3 

Peanut butter Tesco Own Brand 6.6 57.2 377.5 9.1 60.1 24.7 163.0 
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2.5.3.4 Elevated Plus Maze 
The elevated plus maze (EPM) was used to assess anxiety-related behaviours. 

Anxiety-related behaviours have been shown to be influenced by the gut microbiota 

(Bravo et al., 2011; Savignac et al., 2014). The transfer of microbiota from an anxious 

strain to a less anxious strain for example causes increased anxiety in the recipient 

(Bercik et al., 2011). The EPM was carried out as described previously (Savignac et 

al., 2014). Mice were habituated to the testing room 60 min prior testing. The plus 

shaped maze was elevated 75 cm above the ground and consisted of two open and 

two enclosed arms (30 × 5 cm with 20 cm wall height). Mice were placed in the centre 

of the elevated plus maze facing the open arm and allowed to explore the maze for 

5 min. The experiments were conducted under red light (5 lx). In between animals 

the maze was cleaned with 70% Ethanol. Experiments were recorded using a ceiling 

camera. The amount of entries into and time mice spent in the arms, as well as the 

time spent in the centre was manually scored by a blind observer. An entry into an 

arm was scored when all four paws entered. 

 

2.5.3.5 Three-Chamber Social Interaction Task 
It has been shown that social behaviour is dependent on the gut microbiota 

(Desbonnet et al., 2014; Stilling et al., 2015) and that the presence of microbiota 

during development is essential for the development of normal social behaviour 

(Stilling et al., 2018). Therefore, we assessed social behaviour in the three-chamber 

social interaction task. The test was conducted in a grey plastic box (36 x 19 x 30 cm, 

L x W x H) with three chambers interconnected by small openings as previously 

described (Stilling et al., 2018). A thin layer of fresh bedding was covering the ground 

and light levels were set to 60lx throughout the box. The test procedure 

consisted of three 10 min exploration trials, each starting with the mouse being 

placed in the middle chamber. During the initial phase, two empty wire cages 

(10 cm bottom diameter, 13 cm H) were placed in the outer chambers of the box 

and mice were allowed to explore for 10 min. In the second phase, an age-, sex- 

and strain-matched unfamiliar mouse and an inanimate object (rubber duck) were 
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placed in either of the wire cages and the test mouse allowed to explore for another 

10 min. Following this session, mice were tested for social memory. They were placed 

back in the middle chamber and then allowed to explore a wire cage with the familiar 

mouse from the previous test session or a wire cage with an unfamiliar mouse. The 

time mice spent interacting with either of the wire cages was scored manually. 

Following, mice were moved back to their homecage.  

  

2.5.3.6 Novel Object Recognition Task 
Cognition is another parameter that has been shown to be impacted by microbiota 

composition (Davari et al., 2013; Desbonnet et al., 2015; Frohlich et al., 2016). We 

used the novel object recognition task to assess the memory in our animals.  Novel 

object recognition is a well characterised test for working memory (Antunes and 

Biala, 2012) and was carried out essentially as described previously (Desbonnet et al., 

2015). The arena was illuminated with 60lx. For this test the mice were habituated 

to a grey, plastic open field (40 cm x 30 cm x 25 cm, L x W x H) for 10 minutes. On the 

subsequent day, mice are placed in the same open field and exposed to two identical 

objects for 10 min. Following, mice were placed back in their homecage and allowed 

to rest for 1 hour. When they were placed in the open field one object had been 

replaced by a new object. Mice were again left to explore for 10min. The entire 

sessions were video-taped, and the time spent exploring either of the objects was 

scored manually by an observer blind to the experimental groups. 

2.5.3.7 Differential Fear-Conditioning Paradigm 
Hoban and colleagues had demonstrated that the gut microbiota is involved 

in amygdala dependent fear recall. Differential fear conditioning was adapted 

from Verma and colleagues (Verma et al., 2016) and run in a box 

with transparent front and metal side walls and evenly distributed metal rods 

as a floor (Med Associates, 30.5 cm × 24.1 cm × 21.0 cm). The chamber was 

illuminated with 80 lx. The box itself was enclosed by a sound-attenuating 

chamber. On day 1 of testing, mice were subjected to a differential fear-
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conditioning paradigm in which an auditory stimulus (conditioned stimulus 

(CS+), 30 s white noise, 80 dB) was paired with a mild electric foot shock 

(unconditioned stimulus (US), 0.5mA for 2s). All mice received 5 CS+ with 

random inter-stimulus interval, starting 120 s after the mouse was placed in 

the box, followed by another 120 s without presentation of CS+/US at the end 

of conditioning. On day 2, mice were placed back in the same context as the 

previous day for 12 min to assess contextual fear. Between mice the box was 

cleaned with 70% Ethanol. For fear extinction and extinction recall on the 

following days, the grid floor was covered by white Plexiglas and a black 

triangle changing the dimensions of the box. Furthermore, the box was 

cleaned with 1% acetic acid instead of ethanol. For extinction, the CS+ was 

presented 25 times (30s, inter-stimulus interval 5 s) following a 120 s 

habituation period. Mice were removed from the box 120 s after the last CS+ 

presentation. For extinction recall on day 4, mice were placed in the same 

context but only presented with 5 CS+. Freezing was assessed by automated 

tracking software (Video Freeze®, Med Associates Inc). The motion threshold 

index was set 18 and a minimum freezing duration of 30. Freezing during 

extinction was averaged into 5-trail blocks for analysis. Trial block 1 which 

consisted of the first 5 CS tones was used to depict memory retention.  

 

2.5.3.8 Sample Collection 
Mice were decapitated rapidly, and brain and gastrointestinal tract were removed. 

Randomly, 10 out of the 12 brains per group were gross dissected and the regions of 

interest snap frozen on dry ice. The other two were immersion perfused in 4% PFA 

and kept for analysis. Colon length, caecal weight and the amount of mesenteric fat 

were determined before samples were snap frozen. All samples were stored at -80 C 

until further processed. 
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2.5.3.9 Quantitative RT-qPCR 
For quantitative RT-qPCR total RNA was extracted from the amygdala and the 

prefrontal cortex. Genes that were analysed were chosen based on having been 

shown to be influenced by the gut microbiota and/or their involvement in the 

behaviours under investigation. All genes analysed are listed in table 2. Total RNA 

was extracted with the mirVana total RNA extraction kit (Ambion, United Kingdom). 

RNA was reverse transcribed using high-capacity cDNA reverse transcription kit 

(Thermo Fisher Scientific, Waltham, MA, USA) in a G-storm thermocycler (G-storm, 

Surrey, UK). Gene expression was analysed SYBR® Green real-time PCR was 

performed on the cDNA samples using SYBR green (SensiFAST™ SYBR®, BioLine) to 

evaluate gene expression levels. Gene expression levels were analysed on an AB7300 

system (Applied Biosystems, Thermo Fisher Scientific). Expression levels were 

calculated as the average of three replicates for each biological sample from all three 

groups (n=8-9 per group) relative to β-actin expression. Fold changes were calculated 

using the ΔΔCt method (van de Wouw et al., 2018). 

 

2.5.3.10 Caecal content DNA extraction 
The QIAmp Fast DNA Stool Mini Kit (Qiagen, Sussex, UK) was used for caecal DNA 

extraction. The procedure was coupled with an initial bead-beating step. Briefly, 200 

mg of each caecal sample were homogenised in 2 ml screw-cap tubes (Sarstedt, 

Wexford, Ireland) containing 0.25 g of a 1:1 mix of 0.1 mm and 1.0 mm sterile zirconia 

beads plus a single 3.5 mm diameter bead (BioSpec Products, Bartlesville, USA) with 

1 ml of Qiagen InhibitEX® buffer as previously described (van de Wouw et al., 2018). 

Subsequent extraction steps followed the manufacturer’s instructions. DNA was 

quantified using the QubitTM 3.0 Fluorometer (Bio-Sciences, Dublin, Ireland) and the 

Qubit® dsDNA HS Assay Kit (Life Technologies, Oregon, USA). Extracted DNA was 

stored at -20ºC. 
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2.5.3.11 16S rRNA Gene Sequence-based microbiota analysis 
Caecal microbiota collected at the end of the experiment (in adulthood) was used for 

16S rRNA gene sequencing. No sequencing was done right at the end of the dietary 

intervention.  Amplification and preparation for sequencing of the V3-V4 

hypervariable region of the 16S rRNA gene was done as outlined in the Illumina 16S 

Metagenomic Sequencing Library Protocol and as previously described (Boehme et 

al., 2019). Briefly, 5 ng/μl of microbial genomic DNA was run with 1 μM of each 

primer (forward primer 

(5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3') and 

reverse primer (5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH VGG 

GTATCTAATCC-3') and 12.5 μl 2X Kapa HiFi Hotstart ReadyMix (Kapa Biosystems Ltd., 

UK) in a total volume of 25 μl. PCR was run under the following conditions: initial 

denaturation at 95 ºC x 3 min; 25 cycles of 95 ºC x 30 s, 55 ºC x 30 s, 72 ºC x 30 s; and 

72 ºC x 5 min for final extension. PCR products were purified using the Agencourt 

AMPure XP system (Beckman Coulter Genomics, Takeley, UK). Dual indices and 

Illumina sequencing adapters were attached to PCR products using the Nextera XT 

Index Kit (Illumina, San Diego, USA). 5 μl of purified DNA with 5 μl index primer 1 

(N7xx), 5 μl index primer 2 (S5xx), 25 μl 2x Kapa HiFi Hot Start Ready mix and 10 μl 

PCR grade water was amplified using the previous program with only 8 amplification 

cycles instead of 25. Thereafter, DNA was again purified using the Agencourt AMPure 

XP system. PCR products were quantified, normalized and pooled in an equimolar 

fashion using the Qubit® dsDNA HS Assay Kit (Life Technologies, Oregon, USA). 

Following, samples were run on the Agilent Bioanalyser for quality analysis and 

samples prepared for sequencing following Illumina guidelines. Samples were 

sequenced on the MiSeq sequencing platform (Clinical Microbiomics, Denmark), 

using a 2 × 300 cycle kit. 

 

2.5.3.12 Microbiota Bioinformatics  
Statistical analysis of microbiota data was performed in the R (version 3.6) software 

environment with Rstudio (verison 1.1.453). Alpha diversity was calculated using the 

iNEXT library (Hsieh et al., 2016).  Wilcoxon Rank Sum followed by Bonferroni post 
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hoc tests were used to assess difference in Alpha diversity scores. For principal 

component analysis (PCA), permutational multivariate analysis of variance 

(PERMANOVA) was used to identify relationships of significance between variables 

the adonis() function from the vegan library on Aitchison distance matrices 

calculated with the ALDEx2 library (Fernandes et al., 2013). A pairwise 

implementation of the ALDEx2 function aldex.t.test() was also used to calculate 

pairwise differential abundance. The benjamini-hochberg procedure was used to 

account for multiple comparisons, a q-value of 0.1 was deemed significant.  

 

2.5.3.13 Statistical analysis 
Data was checked for normality using D’Agostino & Pearson normality test. 

Behavioural results, physiological results and gene expression were analysed using a 

one-way ANOVA (post hoc Dunett). Kruskal-Wallis test (post hoc Dunn) was used 

when data was not distributed normally. For body weight analysis as well as the 

learning curve and cued extinction in the fear conditioning paradigm two-way 

repeated measures ANOVA was used and corrected for multiple comparison using 

Tukey posthoc test. Significance was denoted with selection of a p-value of less than 

0.05.  
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2.5.4 Results 

2.5.4.1 Dietary intervention affects body weight 
An overall effect of dietary intervention during the adolescent period on body weight 

was observed (repeated measures ANOVA for treatment F(2, 33)=3.36 p=0.047 and 

interaction F(14,231)=2.195 p<0.001, figure 2.5-2A). Tukey post hoc analysis showed 

that mice exposed to HFD had a significant increase of body weight at the end of 

treatment at day 21 (p<0.01), when compared to controls and displayed increased 

body weight compared to CafD treated mice from day 21 to day 51 (p<0.05). No 

difference in body weight was seen between groups at the end of the experiment on 

day 64.  

 

2.5.4.2 Animals on HFD have higher energy intake during the treatment period 
 

The energy provided by the different type of diets comes from different proportions 

of macronutrients available in the diet (figure 2.5-2B). While HFD provides the largest 

% of energy as fat, CafD like control diet provided the largest % of energy as 

carbohydrates. However, unlike control diet the % energy provided as proteins was 

much lower in CafD and the % energy provided as fat was elevated. Figure 2C depicts 

the chow intake of the three groups during the course of the experiment. An overall 

effect of dietary intervention during the adolescent period on chow intake was 

observed (repeated measures ANOVA for treatment F(2, 6)=8.13 p=0.02 and 

interaction F(16, 48)=13.38 p<0.0001, figure 2.5-2C). Tukey post hoc analysis 

revealed that mice exposed to CafD had a lower chow intake during the time of 

treatment in comparison to controls. This is an expected compensation for the 

increased intake of the food items in the cafeteria diet. There also is a significant 

increase in the amount of chow in HFD animals in the second half of the treatment 

period. This results in a different daily average energy intake per cage as depicted in 

figure 2.5-2D (Kruskal-Wallis test H(2)=7.2, p=0.004). Post hoc analysis  
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Figure 2.5-2 HFD but not CafD has enduring effects on Body weight. A Body weight 
was measured weekly during the experiment. Grey area highlights the period of 
dietary intervention. B Difference in kcal% of macronutrients depending on diet. The 
values for CafD represent the average macronutrient distribution over the entire 
treatment period. C Intake of chow and HFD during the experiment. Intake of treats 
of CafD are not included in this measure. D Average daily intake of energy per cage. 
Mean ± SEM. A, C & D n = 3, A & B Repeated Analysis of Variance (ANOVA) post hoc 
Tuckey, D Kruskal Wallis post hoc Dunn: * significant difference between CTRL and 
treatment, # significant difference between CafD and HFD, *,# p<0.5, ** p<0.01, *** 
p<0.001 

 

 

revealed that mice exposed to HFD show significantly increased energy intake per 

cage when compared to control mice and mice exposed to CafD (p=0.023). When 

switched back to normal chow, no significant difference in chow intake can be 

observed between treatment groups (figure 2.5-2C). 
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2.5.4.3 Physiological readouts were not affected by adolescent dietary 
manipulations 
Alterations in diet have been linked to changes in physiological measures of the 

gastrointestinal tract (Beraldi et al., 2015; Soares et al., 2015; Le Roy et al., 2019). 

Therefore, we measured caecum weight, colon length and the amount of visceral fat. 

No differences in either parameter were observed between mice that underwent 

dietary intervention during adolescence and control mice (caecum weight F(2, 

33)=0.677 p=0.515, colon length F(2, 33)=1.126 p=0.336, visceral fat F(2, 33)=0.623 

p=0.543, data not shown). 

2.5.4.4 Enduring effects of dietary intervention on microbiota  
To investigate the long-term effects of dietary intervention during adolescence on 

the gut microbiota, the caecal microbiota was analysed from adult mice at the end 

of the experiment. Long-lasting effects of dietary intervention on the microbiota 

composition and structure of adult mice were observed in mice exposed to either 

HFD or CafD during the adolescent period. HFD and CafD differentially affected alpha 

and beta diversity. 

Alpha diversity, which describes the diversity of species in a community, was 

measured by calculating indices for richness and evenness based on ASV (amplicon 

sequence variant) level. Richness was estimated using Chao1. Figure 2.5-3A shows 

that there are no significant differences in the number of species within a group 

between control mice and mice that were exposed to dietary intervention during 

adolescence (pairwise comparison using Wilcoxon rank sum test, p>0.05). However, 

a significant decrease in Shannon diversity was observed in HFD treated mice 

(pairwise comparison using Wilcoxon rank sum test, followed by Bonferroni post hoc 

test, p=0.011), indicating a decrease in evenness across ASVs. No difference in 

evenness was seen for CafD treated mice (p>0.05).  

On the beta diversity level, which describes the difference between communities, 

principal component analysis (PCA) identified long-lasting structural differences in 

microbiota following dietary intervention during adolescence (PERMANOVA 

followed by pairwise PERMANOVA; p<0.001 in all cases; figure 2.5-3B). Notably, the 

positive part of the second component is exclusively populated by subjects that were 
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exposed to dietary intervention (figure 2.5-3B blue area). The long-lasting effects of 

dietary intervention on the microbiota are also reflected by changes in the relative 

abundance of families (figure 2.5-3C). Members of the families Ruminococcaceae, 

Lachnospiraceae, Erysipelorichaceae, Coriobacteriaceae and Alcaligenaceae are 

changed following both dietary interventions (figure 2.5-3C). However, differences in 

the structural properties of microbial communities between HFD and CafD treated 

mice compared to controls were observed in the relative abundance at the ASV level. 

Whereas a significant change in the relative abundance of UCG-010 (q<0.05), 

NK4A214 (q<0.05), one ASV of Roseburia (q<0.05), 5 ASVs of the genus NK4Q136 (all 

q<0.05), two ASVs of Lachnoclostridium (q<0.05), Turicibacter (q<0.05), 

Gordonibacter (q<0.05), two ASVs of Enterorhabdus (q<0.05) and Parasutterella 

(q<0.05) were observed in HFD-treated mice when compared to controls. Changes 

after CafD treatment only occurred in one ASV of Roseburia (q<0.05), one ASV of 

NK4A136 (q<0.05), Turicibacter (q<0.05)and one ASV of Enterorhabdus (q<0.05) but 

showed a strong and significant increase in an ASV of UCG-002 (q<0.001). HFD and 

CafD treated mice differed significantly in the relative abundance of 

Ruminiclostridium 9 (q<0.05), Anaerotruncus (q<0.05), UCG-001 (q<0.05), one ASV of 

NK4A1136 (q<0.05) and Parasutterella (q<0.05). Overall, more genera are affected 

by HFD than CafD treatment but, genera seem to be more strongly affected by CafD 

than HFD. The ASV UCG-002 is very strongly increased in CafD treated mice. 

 

2.5.4.5 Altered Gene Expression in the Amygdala 
During recent years, many studies have demonstrated a link between the gut 

microbiota and gene expression in the amygdala (Arentsen et al., 2015; Stilling et al., 

2018). To understand to which extent short-term exposure to different diets and 

subsequent changes in the gut microbiota during the adolescent period could impact 

gene expression, we therefore focused on genes that have previously been shown to 

be impacted by the gut microbiota and to influence the behaviour under 

investigation. 



175 
 

 

Figure 2.5-3 Long-lasting changes in Caecal Microbiota Composition following 
dietary intervention. A. α-diversity indices, Chao1 and Shannon Index depicting the 
richness and evenness of the sample, respectively, Mean ± SEM. B. β-diversity, PCA 
blots of all groups together, HFD and CafD in comparison and HFD and CafD 
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compared to controls. C. Heat map representing relative abundance of ASVs that 
were significantly changed between controls, HFD and CafD mice. A Wilcoxon Rank 
Sum test, post hoc Bonferroni, * p<0.05 B Permutational multivariate analysis of 
variance (PERMANOVA), followed by pairwise PERMANOVA post hoc Benjamini–
Hochberg, C Mann–Whitney U test post hoc Benjamini–Hochberg, Benjamini–
Hochberg false discovery rate (FDR) q value < 0.2. Asterisks in the heat map represent 
the following q values: *p < 0.1, **p < 0.01, ***p < 0.001.   

 

 

 

We analysed various genes from whole amygdala lysates. 22 genes involved in 

neuroimmunity (Carrillo-Salinas et al., 2017), neurotransmission (Bravo et al., 2011; 

Hoban et al., 2018), tight junctions (Braniste et al., 2014; van de Wouw et al., 2018) 

or short chain fatty acid signalling (Erny et al., 2015; van de Wouw et al., 2018) were 

analysed. mRNA levels in the amygdala of adult mice were drastically changed 

following dietary intervention during adolescence in all clusters of genes analysed. 

Out of the 22 genes 19 were altered by adolescent exposure to HFD and 18 in CafD 

treated mice (figure 2.5-4F). Furthermore, genes were differentially affected by HFD 

or CafD treatment (results and statistics are summarised in Table 2). Of the genes 

involved in immune response, interleukin 1b (Il1b) was only increased in HFD, 

whereas interleukin 10 (Il10) was only increased in CafD treated mice. Gene 

expression for Fc fragment of IgG receptor IIb (Fcgr2b), toll-like receptor 4 gene 

(Tlr4), complement component 3 (C3), complement C1q A chain (C1qa), interleukin 

8 receptor alpha (Cx3cr1) and Rho GTPase Rac2 (Rac2) was elevated following HFD 

and CafD treatment (figure 4A). This indicates that there are persistent changes in 

genes involved in neuroimmunity following adolescent treatment to diets. 

Genes involved in neurotransmission were also upregulated (figure 2.5-4B). The gene 

expression of genes encoding for the gamma-aminobutyric acid type A receptor 

alpha2 subunit (Gabra2), dopamine receptor D1 (Drd1), metabotropic glutamate 

receptor type 5(Grm5), corticotropin- releasing hormone receptor 1 (Crhr1,) 

neuropeptide Y (Npy) and its Y1 receptor (Npyr1) was increased in mice following 

exposure to HFD and CafD during adolescence. However, gene expression for 
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glucocorticoid receptor NR3C1 was only increased in mice exposed to HFD and no 

change in gene expression was seen for the gamma-aminobutyric acid type B 

receptor subunit 1 (Gabbr1) for either HFD or CafD treated mice. Taken together 

these results suggest a high possibility for changes in neuronal transmission in the 

amygdala. Gene expression of genes associated with short chain fatty acids, free fatty 

acid receptor 1 (Ffar1) and the solute carrier subtypes (Slc5a8 and Slc16a1) were also 

upregulated in both experimental groups (figure 2.5-4C). Gene expression for tight 

junction proteins, however, was affected differentially (figure 2.5-4D). Whereas gene 

expression for tight junction protein 1 (Tjp1) was upregulated in HFD treated mice, 

claudin 5 (Cldn5) was only upregulated in CafD treated mice. Occludin (Ocld) was 

upregulated in both experimental groups. 

2.5.4.6 Altered gene expression related to myelination in the prefrontal cortex 
The gut microbiota has been shown to be involved in the regulation of myelination 

in the prefrontal cortex which in turn influences anxiety (Gacias et al., 2016; Hoban 

et al., 2016; Lu et al., 2018). We therefore investigated whether myelination-related 

genes were affected in mice exposed to HFD or CafD during adolescence by analysing 

the gene expression levels of myelin regulatory factor (Myrf), the proteolipid protein 

1 (Plp1) and the transcription factor sox-10 (Sox10) (figure 2.5-5). One-way ANOVA 

revealed that Myrf) and Sox10 were not changed by dietary intervention (F(2, 

25)=0.238, p=0.79,  
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Figure 2.5-4 Altered Gene Expression in the Amygdala following dietary 
intervention. Gene expression related to A Neuroimmunity, B Neurotransmission, C 
Short chain fatty acids and D Tight junction proteins. E Overview of extent of changes 
in gene expression for all genes investigated. C1qa complement C1q subunit A, C3 
complement component 3, Cldn5 claudin 5, Crhr1 corticotropin-releasing hormone 
receptor 1, Cx3cr1 interleukin 8 receptor alpha, Drd1 dopamine receptor 1, Fcgr2b 
IgG receptor FcγRIlb gene, Ffar1 free fatty acid receptor 1, Gabbr1 gamma-
aminobutyric acid type B receptor subunit 1,  Gabra2 gamma-aminobutyric acid type A 
receptor alpha2 subunit, Grm5 glutamate metabotropic receptor type 5, Il1b 
interleukin 1b, Il10 interleukin 10, Npy: neuropeptide Y, Nr3c1 glucocorticoid 
receptor, Ocld occludin,  Rac2 Ras-related C3 botulinum toxin substrate 2, Slc16a1 
Solute Carrier Family 16 Member 1, Slc5a8 Solute Carrier Family 5 Member 8, Tlr4 
toll-like receptor 4, Tjp1 tight junction protein 1, Npy1r neuropeptide Y receptor Y1, 
Mean ± SEM. A-D n=8-9, A one way ANOVA post hoc Dunnett, except Tlr4 Kruskal 
Wallis post hoc Dunn, B one way ANOVA post hoc Dunnett, except Npy1r Kruskal 
Wallis post hoc Dunn, C one way ANOVA post hoc Dunnett, D one way ANOVA post 
hoc Dunnett, * p<0.5, ** p< 0.01, *** p<0.001  
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Sox1 F(2, 27)=1.857, p=0.176), whereas gene expression of Plp1 was affected (Plp1 

F(2, 27)=4.778, p=0.017). Post-hoc analysis using Dunnett’s multiple comparisons 

test revealed that Plp1 was significantly elevated following HFD exposure during 

adolescence (p=0.012). 

 

Figure 2.5-5 Changes in myelination related gene expression in the prefrontal 
cortex following HFD exposure. Genes related to myelination in the prefrontal cortex. 
PLP1 is significantly upregulated following HFD exposure during adolescence.  Myrf 
myelin regulatory factor; Plp1 proteolipid protein; Sox10 SRY-Box Transcription Factor 
10. Mean ± SEM, n=9-10, for all comparisons one-way ANOVA post hoc Dunnett, **; 
p<0.01.  

 

2.5.4.7 No enduring behavioural effects of either dietary interventions during 
adolescence 
To investigate possible long-lasting effects of dietary interventions and subsequent 

changes of microbiota composition during adolescence on behaviour, mice were run 

through a battery of tests in adulthood analysing aspects of anxiety, fear, sociability 

and memory. No differences in anxiety-related behaviour was observed in the 

elevated plus maze (figure 2.5-6A). Mice did not demonstrate differences in the % 

time spend in the open arm (F(2, 27)=0.957, p=0.397, figure 2.5-6A) or the % of 

entries made into the open arm (F(2, 27)=3.36, p=0.05, post-hoc analysis using 

Dunnett’s multiple comparison test p>0.05 for both treatments, figure 2.5-6B). 

Similarly, social behaviour as measured in the three-chamber social interaction task 

(figure 2.5-6C) was not affected by dietary interventions. Mice did not show 

alterations in the time spent with either an inanimate object or a conspecific (2-way 
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ANOVA interaction F(2, 54)=1.83 p=0.17) or when exploring a familiar versus an 

unfamiliar mouse (2-way ANOVA interaction F(2, 54)=1.774, p=0.179 and treatment 

F(2, 54)=0.854, p=0.432, data not shown). This was further supported by the lack of 

differences in the total time the mice spent exploring both the inanimate object and 

the conspecific (Kruskal-Wallis test H(2)=3.579, p=0.167, figure 2.5-6D) or the familiar 

and the unfamiliar mouse (F(2, 27)=0.097, p=0.908, data not shown).  When tested 

in the novel object recognition task dietary intervention has no effect on memory 

either (one-way ANOVA F(2, 27)=0.187, p=0.831, data not shown). Furthermore, 

dietary interventions during adolescence did not show any effects on fear 

conditioning. Mice show a normal learning curve (figure 2.5-6E). When exposed to a 

sequence of foot shocks mice showed no differences in the increase of % freezing 

over time (two-way repeated measures ANOVA F(10, 135)=1.092, p=0.373, and 

treatment F(2, 27)=1.204, p=0.316). Mice also did not show any differences in the % 

freezing when exposed to the training context (one-way ANOVA F(2, 27)=1.294, 

p=0.291 figure 2.5-6F), indicating no differences in hippocampal dependent fear 

learning. When placed in a different context and exposed to the tone, freezing 

response dropped similarly for all groups, hence, no difference was seen in cue 

extinction (two-way repeated measures ANOVA interaction F(12, 162)=0.372, 

p=0.9712 treatment F(2, 27)=0.711, p=0.5 figure 2.5-6F). Fear recall was tested 

thereafter and again dietary intervention did not have any effects on this parameter 

(one-way ANOVA F(2, 27)=1.653, p=0.210) (figure 2.5-6G). 
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Figure 2.5-6 No effects of dietary intervention in adolescence on behaviour in 
adulthood. Behavioural parameters from the elevated plus maze A. % time spend in 
the open arm B. % entries into the open arm. C. Time spent interacting with the mouse 
and the object in the three-chamber social interaction task D. Total time of 
exploration for both object and mouse. Data from the fear conditioning paradigm E. 
Learning curve with the first foot-shock being administered after the pre-shock phase 
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followed by 5 time bins following one foot-shock each. F. Total amount of freezing in 
contextual fear conditioning. G. Cued fear extinction H. Extinction recall. Mean ± SEM, 
A-H n=10, A & B, one-way ANOVA post hoc Dunnett, C two-way ANOVA post hoc 
Bonferroni, D Kruskal Wallis post hoc Dunn, E two-way ANOVA post hoc Bonferroni, 
F one-way ANOVA post hoc Dunnett, G two-way ANOVA post hoc Bonferroni, H one-
way ANOVA post hoc Dunnett.  
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2.5.5 Discussion 

In this study we assessed the long-term effects of short-term exposure to unbalanced 

diets during adolescence on gut microbiota composition as well as on molecular and 

behavioural parameters in adulthood. As gut microbiota composition is strongly 

influenced by dietary composition, we hypothesised that there would be differential 

enduring effects of such adolescent exposure to unbalanced diets and subsequent 

alterations to the adolescent gut microbiota on the adult microbiota composition as 

well as gene expression in the amygdala and the prefrontal cortex and behaviour. 

Interestingly, although we demonstrated that exposure to three weeks of HFD or 

CafD during the critical adolescent period results in significantly altered microbiota 

composition and altered gene expression in adult mice these changes did not 

translate to enduring alterations in overt changes in the behaviours under 

investigation. Thus, our hypothesis was only partially confirmed. 

In these studies we show a persistent effect of diet on the microbiota which are in 

line with previous studies that have demonstrated effects of a variety of deleterious 

diets on human and rodent gut microbiota (Brown et al., 2012; David et al., 2014) 

and it is known that different dietary components differentially shape microbiota 

composition (Albenberg and Wu, 2014; Klurfeld et al., 2018). For example, exposure 

to cafeteria diet has caused alterations in the abundance of the phyla Firmicutes, 

Actinobacteria and Proteobacteria (Del Bas et al., 2018) in rats, whereas long-term 

treatment with high fat diets has altered Firmicutes, Bacteroidetes, Proteobacteria 

and Actinobacteria (Kim et al., 2012; Daniel et al., 2014; Kim et al., 2019). Obviously, 

depending on the composition of high fat and control diet (Huang et al., 2013), length 

of treatment (Kim et al., 2019) and age period (Villamil et al., 2018), changes on the 

phylum, family or genus level can differ. For example, 8 weeks treatment of C57BL/6J 

mice with high fat diet (60 kcal % fat, Research Diets) resulted in increase of 

Ruminococcaceae and Rikenellaceae (Kim et al., 2012), whereas a 12 weeks 

treatment of C57BL/6NCrl mice with high fat diet (60 kcal % fat, Ssniff GmbH) 

resulted in a decrease of Ruminococcaceae and an increase of Rikenellaceae (Daniel 

et al., 2014). However, overall Ruminococcaceae, Rikenellaceae and Lachnospiraceae 

seem to be the families that are commonly affected by diet with high fat content 
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(Kim et al., 2012; Daniel et al., 2014; Lecomte et al., 2015; Reichelt et al., 2018). This 

is supported by a recent meta-analysis study of the effects of high fat diet on the 

microbiota in mice stating that Ruminococcaceae and Lachnospiraceae are highly 

enriched following high fat diet treatment (Bisanz et al., 2019). Such changes in 

microbiota composition agree with those observed in the current study with changes 

in the phyla Firmicutes and Actinobacteria following CafD exposure and altered 

abundances of Firmicutes, Proteobacteria but also Actinobacteria in adulthood 

observed following HFD treatment during adolescence. Furthermore, we observe 

changes in Ruminococcaceae and Lachnospiraceae in HFD treated mice and changes 

in Lachnospiraceae in CafD treated mice.  

The different effects of HFD and CafD on phylum, family and genus level observed in 

this study are most likely induced by differences in diet composition and 

consumption. Mice exposed to HFD consumed more fat and less carbohydrates than 

control mice, whereas mice on CafD consumed more fat and a similar level of 

carbohydrates but consumed far less proteins than the control animals. 

Furthermore, it is worth noting that as fat in the CafD was provided by a variety of 

different food items in addition to the normal chow, lipids and fatty acids provided 

by this diet differed in source, type and quantity from the fat provided by HFD. 

Thereby, the dietary composition and the consumption are likely to have 

differentially impacted microbiota composition.  

 

The effects of dietary intervention seen on genus level, in comparison to what is 

observed in the literature might be not only due to differences in dietary composition 

but also the difference in treatment time. It is worth noting that in most common 

dietary intervention studies mice are exposed to the diet for long periods without 

interruption and are usually still receiving the diet at the termination of the 

experiment lab (Boitard et al., 2014; Boitard et al., 2015; Labouesse et al., 2017; 

Hassan et al., 2018; Reichelt et al., 2018), whereas mice in our study only had the diet 

during a critical developmental time period - adolescence. The fact that the effects 

of these diets on the microbiota and brain can still be observed even after 47 days of 

normal chow exposure, could be explained by the developmental instability of the 
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gut microbiota during adolescence. Microbiota composition in adulthood is 

considered rather stable, however, it only acquires its stability by slowly being 

shaped by internal and external factors during the developmental period (Walsh et 

al., 2014). Therefore, changes to the microbiota composition during the adolescent 

period are likely to have a far bigger and longer-lasting impact than when exposed to 

the same external factor in adulthood (Borre et al., 2014). Hence, our data suggests, 

that the impact of dietary intervention on the gut microbiota during adolescence is 

long-lasting, and that microbiota composition does not recover fully after exposure 

to either HFD or CafD. However, the data available on the regeneration of the gut 

microbiota following exposure to unbalanced diet in adulthood is inconsistent. 

Whereas exposure to four weeks of 60% high fat diet results in an altered microbiota 

composition even after 21 weeks of normal chow (Thaiss et al., 2016) switching back 

to normal chow after a 8 week exposure to 60% high fat diet was sufficient to 

normalise changes observed in gut microbiota composition (Safari et al., 2019). 

Overall, these data strongly suggest that gut microbiota composition was changed 

during the adolescent period and did not recover fully from this exposure until the 

end of the experiment. However, further studies are therefore needed to investigate 

whether indeed the same treatment in adulthood would result in changes in gut 

microbiota composition after switching to normal chow.  

Diet induced changes in gut microbiota have been linked to alterations in 

immune response (Zinocker and Lindseth, 2018), neurotransmission (Hassan 

et al., 2018), and alterations of the microbiota by other factors has been 

implicated in myelination (Gacias et al., 2016; Hoban et al., 2016). As we were 

interested in the effect of changes in the microbiota during the adolescent 

period, we focused on gene expression analysis in the amygdala and the 

prefrontal cortex, as it has been shown previously that gene expression in these 

areas is strongly affected by microbiota during development (Stilling et al., 

2015; Hoban et al., 2016). Here we show that dietary intervention during the 

adolescent period leads to permanent changes in gene expression of genes 

involved in neurotransmission, short chain fatty acid transport and signalling 
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or blood brain barrier integrity in the amygdala, as well as genes involved in 

myelination (Plp1) in the prefrontal cortex in HFD treated mice. 

The microbiota, not only during the developmental period but also thereafter 

plays an important role in the induction and training of the host immune 

system and the symbiotic relationship with the microbiota is essential for 

proper immune system functioning (Belkaid and Hand, 2014). Changes in 

microbiota composition induced by dietary intervention therefore are likely to 

impact the immune system. Furthermore, excessive consumption of diets rich 

in fat results in increased secretion of pro-inflammatory cytokines (Thaler et 

al., 2012) and disruption of blood-brain-barrier integrity (Kanoski et al., 2010; 

Guillemot-Legris and Muccioli, 2017; Reichelt et al., 2018). Gene expression for 

the pro-inflammatory cytokines Il1b was upregulated in mice exposed to HFD 

and the anti-inflammatory cytokine Il10 was upregulated in CafD treated mice, 

indicating that there is a possibility for differential immune response activation 

in adulthood following dietary intervention during adolescence. Other genes 

involved in immune response, however, were elevated in both dietary 

intervention groups. These include genes involved in microglial-mediated 

phagocytosis and synaptic remodelling as well as components of the innate 

immune systems (Fcgr2b, Rac2, C3, C1qa, Cx3cr1, Tlr4), indicating that overall 

immune system activity is elevated resulting in neuroinflammation. Increased 

levels of neuroinflammation would suggest a decrease in blood-brain-barrier 

integrity, which plays an important role in regulating the brain’s response to 

inflammation (Zlokovic, 2008). We find elevated levels of expression of genes 

involved in blood-brain barrier integrity which are differentially affected by 

dietary intervention. CafD seems to be affecting blood barrier-related genes 

more drastically than HFD as gene expression of claudin 5, which is thought to 

be the dominant tight junction protein, is significantly increased in CafD but 

not in HFD treated mice. HFD treatment on the other hand increased gene 

expression of tight junction protein ZO-1 and occludin, which could still 
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translate into changes of blood-barrier permeability as it was shown that these 

proteins play a much bigger role in blood-brain-barrier integrity than 

previously assumed (Berndt et al., 2019). Interestingly, blood-brain-barrier 

integrity is decreased in germ-free mice and rescued upon colonisation of 

germ-free mice, indicating that an increase of blood-brain-barrier integrity is 

possible following changes in gut microbiota composition (Braniste et al., 

2014).  

The gut microbiota produces short-chain-fatty acids by fermentation of 

indigestible polysaccharides. These have been implicated in gastrointestinal 

homeostasis, immune regulation, host metabolism but also in brain and 

behaviour (van de Wouw et al., 2018; Li et al., 2019; Vagena et al., 2019). Dietary 

intervention has been shown to affect short-chain-fatty acid metabolism 

(Maciejewska et al., 2018), which in turn can affect brain homeostasis and 

behaviour (van de Wouw et al., 2018; Vagena et al., 2019). Here we observe 

changes in the expression of Ffar1 and Slc5a8 and Slc16a1 indicating that 

transportation and signalling of short-chain fatty acids following dietary 

intervention in adolescence have changed. Furthermore, classical and 

peptidergic neurotransmission is likely to be affected by dietary intervention 

during the adolescence period, as gene expression is changed for the genes 

encoding the GABA receptor a2 (Gabar2), the metabotropic glutamate 

receptor (Grm5), dopamine receptor 1, corticotropin-releasing factor receptor 1 

(Crhr1), neuropeptide Y receptor 1 (Y1) and its ligand neuropeptide Y (Npy). 

Although, gamma-aminobutyric acid receptor 1b is not affected be either of the 

treatments and expression of the glucocorticoid receptor Nr3c1 was only 

affected by HFD treatment, we can say that overall neurotransmission is 

changed by dietary intervention during adolescence. This is in line with results 

published in literature which has shown that changes in the microbiota results 

in altered neurotransmission. For example, the administration of a single 

bacterium, Lactobacillus rhamnosus, results in altered gene expression of 
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Gabra2 in the amygdala (Bravo et al., 2011) and is known to be changed 

drastically in the amygdala of germ free mice (Hoban et al., 2018). Overall, it 

can be concluded that the gene expression profile of the amygdala is 

drastically and long-lastingly changed following dietary intervention in 

adolescence.  

In contrast to the amygdala which matures much faster, the prefrontal cortex 

still develops during adolescence. As it was shown previously that the 

microbiota affects myelination in the prefrontal cortex (Gacias et al., 2016; 

Hoban et al., 2016), we also analysed whether dietary intervention could alter 

gene expression of myelination-related genes. Indeed, HFD induced increased 

expression of Plp1, which could result in abnormal myelination in the 

prefrontal cortex (Karim et al., 2007) and therefore affect emotional learning. 

However, as myelination-related genes were only marginally changed by the 

dietary intervention and subsequent changes in gut microbiota composition 

we speculate that gene expression in the prefrontal cortex is not as drastically 

changed as in the amygdala.  Although this data points towards a role of the 

gut microbiota in the regulation of gene expression in the amygdala and the 

prefrontal cortex, we cannot fully exclude the influence of the diet on its own 

on these parameters. Further studies will be needed to fully disentangle the 

role of the gut microbiota on long-lasting changes of gene expression during 

the adolescent period. 

However, even though dietary intervention had long-lasting effects on the 

microbiota composition and gene expression, no long-lasting effects on 

physiological readouts or behaviour were observed. Different reasons might 

explain the lack of these effects. First, we cannot rule out that the lack of 

translatability of changes in the microbiota composition and gene expression to 

behavioural readouts are due to the selection of the test battery we used. We have 

focused on amygdala dependent tests, which have been shown to be affected by 

changes or the lack of microbiota (Cowan et al., 2018; Hoban et al., 2018; Stilling et 
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al., 2018). However, dietary intervention or the gut microbiota of high fat diet fed 

mice are often linked to changes in depressive-like and exploratory behaviour, as well 

as cognitive abilities (Bruce-Keller et al., 2015; Almeida-Suhett et al., 2017), which 

were not specifically tested in depth in this study. Furthermore, studies have shown, 

that behavioural effects at least in part can be reversed when switching back to 

normal chow following a high fat diet intervention (Sobesky et al., 2014; Boitard et 

al., 2016; Carlin et al., 2016) and 21 days is a relatively short time of diet exposure 

and brain changes in the adolescent brain can continue through to P60, which could 

account for the lack of behavioural differences in adulthood.  

Overall, this study highlights the importance of the microbiota during the 

developmental period in shaping its host microbiota and brain. The results presented 

here support the need for further studies investigating the effect of dietary 

intervention during the adolescent period and their long-term effects on the 

microbiota, gut, immunity, brain and behaviour. Given that a dietary pattern high in 

fat and sucrose is associated with increased risk of mental health problems in 

adolescents (Oddy et al., 2018) it is important to determine to which degree the 

changes persists and to which extent they can be opposed by dietary intervention to 

prevent vulnerable phenotypes for mental health disorders. Furthermore, as it is 

difficult to fully disentangle the effects of the dietary intervention itself from the 

effects of altered gut microbiota composition during the adolescent period, it will be 

useful for future studies to study these effects utilising different factors to alter the 

microbiota such as antibiotics. Moreover, future studies should also investigate the 

underlying mechanisms underpinning such changes with a focus on differentiating 

between immune, humoral and neuronal communication routes (Cryan et al., 2019). 

Given that the vagus nerve is so important in such communication (Fulling et al., 

2019) the inclusion of  experiments on vagotomised animals will also be a useful 

approach. 

 

 

  



190 
 

Chapter 3 Targeting the Microbiome 

with Perturbations and Psychobiotics 
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3.1.1 Introductory paragraph 
The gut microbiota is increasingly recognized as an important regulator of host 

immunity and brain health. The aging process yields dramatic alterations in the 

microbiota, which is linked to poorer health and frailty in elderly populations. 

However, there is limited evidence for a mechanistic role of the gut microbiota in 

brain health and neuroimmunity during aging processes. Therefore, we conducted 

fecal microbiota transplantation (FMT) from either young (3-4 months) or old (19-20 

months) donor mice into aged recipient mice (19-20 months). Transplant of a 

microbiota from young donors reversed aging-associated differences in peripheral 

and brain immunity, as well as the hippocampal metabolome of aging recipient mice. 

Finally, the young donor-derived microbiota attenuated selective age-associated 

impairments in cognitive and social behavior when transplanted into an aged host. 

Our results reveal that the microbiome may be a suitable therapeutic target to 

promote healthy aging.   
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3.1.2 Main Body  

Aging triggers metabolic and immune alterations that lead to perturbation of brain 

function and behavior, including impairments in hippocampal-associated cognitive 

functioning and social behavior (Matt and Johnson, 2016; Bettio et al., 2017; Boehme 

et al., 2019; Boyer et al., 2019). Notably, the gut microbiota, encompassing the  

population of trillions of micro-organisms, undergoes a parallel community shift, 

which has been correlated to changes in host frailty and cognition (Claesson et al., 

2012; Jackson et al., 2016; Jeffery et al., 2016; Cryan et al., 2019; Ghosh et al., 2020).  

 

Animal models have shown specific roles for the microbiota in shaping hallmarks of 

aging in the gut (Stebegg et al., 2019; Donaldson et al., 2020). Moreover, the 

consequences of an elderly-associated microbiota on a young host showing 

alterations in host immunity, neurogenesis, and cognition (Fransen et al., 2017; 

Kundu et al., 2019; D’Amato et al., 2020; Li et al., 2020). Interestingly, transferring 

microbiota from young fish (African turquoise killifish) into middle-aged fish 

improves lifespan and motor behavior (Smith et al., 2017). However, it is completely 

unknown if microbiota from young donors can restore aging-associated impairments 

in mammals.  

 

To determine if fecal microbiota transplantation (FMT) from young mice can 

ameliorate aging-induced neurocognitive and immune impairments, we collected 

fecal microbiota from naïve young mice (3-4 months) and transplanted this into aged 

mice (Aged yFMT, 19-20 months). A separate group of aged mice received fecal 

microbiota from naïve old mice to control for handling during FMT administration 

(Aged oFMT, 19-20 months). To allow aging-associated comparisons, naïve young 

mice received the same yFMT mixture (Young yFMT). We found aging-associated 

differences in microbiota (Fig. 3.1-1, Supplementary Table 1, 2), immunity (Fig. 3.1-

2, Extended Data Fig. 2, 3), hippocampal neurogenesis (Extended Data Fig. 2), 

hippocampal metabolomics (Fig. 3.1-3, Supplementary Table 3), and behavior (Fig. 

3.1-4, Extended Data Fig. 5) – some, but not all, of which were attenuated by 
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microbiota transplantation from a young mouse into an aged host. Our research 

offers the intriguing possibility that a microbiota from a young individual may have 

beneficial effects when given to an aged host. 

 

3.1.2.1 Age-associated Changes in the Gut Microbiota are Shifted Following FMT 
To investigate the impact of aging on fecal microbiota, we analyzed baseline fecal 

microbiomes of young and aged mice using 16S rRNA amplicon sequencing. We 

reassessed composition and diversity after 4 weeks of FMT to examine engraftment 

and colonization dynamics of the FMT (Fig. 3.1-1a).  Pre-FMT, we found clear 

differences between young and aged mice in beta-diversity. However, following FMT, 

differences in beta-diversity were no longer significant (Fig. 3.1-1b). No temporal or 

intergroup alpha-diversity changes were significant using Simpson or Shannon 

indices. The fact that only richness, measured by Chao1, dropped significantly 

following FMT in all groups (Fig. 3.1-1c), indicates that evenness was retained among 

the reduced number of taxa post-FMT. Twenty genera were significantly changed 

following FMT (Fig. 3.1-1d). Some of these temporal differences appeared congruent 

between aged mice regardless of treatment, indicating potential age-dependent 

responses regardless of the content of the FMT. On the other hand, certain genera, 

including Enterococcus, were altered in aged mice, but transitioned towards young 

mouse abundance following yFMT exclusively (Fig. 3.1-1e).  
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Fig. 3.1-1 – FMT Alters the Microbiota on a Taxonomic and Functional Level (a) 
Overview of the experimental design and the study timeline. Vertical bars represent 
one week. Behaviors conducted include Y-Maze, Novel Object Recognition Test (NOR), 
Elevated Plus Maze (EPM), Intestinal Motility (IM), Three-Chamber Social Interaction 
Test (SIT), Morris Water Maze (MWM), Observation Battery (OB), and, in Study 2, the 
Novelty-Induced Hypophagia Test (NIH). BrdU indicates intraperitoneal injection of 
bromodeoxyuridine. (b) Principal Component Analysis showing the effects of FMT on 
the fecal microbiome in young and aged mice in terms of beta-diversity as measured 
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in Aitchison distance. Arrows indicate the trajectory per group following its respective 
treatment. Ellipses show the 95% confidence intervals per group. WD*: p < 0.001. (c) 
Violin plots displaying the effects of FMT on young and aged mice in terms of alpha-
diversity. Black horizontal lines in violin plots depict the medians. The Chao1 index 
showed a decrease after FMT; two-way ANOVA: (F(1,144)= 50.1 p<0.001). 
***p<0.001. No effects were found in the Shannon or Simpson index. (d) Heatmap 
showing genera differentially altered by FMT. Color depicts effect size, with blue 
(negative) indicating higher abundances pre-treatment and red (positive) indicating 
higher abundances post-treatment. *q < 0.1, **q < 0.01, ***q < 0001. Comprehensive 
statistical results can be found in Supplementary Table 1. (e) Violin plots showing 
Enterococcus abundance is restored to young levels in old mice after yFMT but not 
after oFMT. Black horizontal lines in violin plots depict the medians. Y-axis shows CLR-
transformed abundance. Dashed horizontal red line depicts a threshold for estimated 
abundance of 0 (Mann-Whitney U test: p<0.001, q<0.001, e=1.48). (f) Heatmap 
showing gut-brain modules (GBMs) differentially altered by FMT. Color depicts effect 
size, with blue (negative) indicating higher abundances pre-treatment and red 
(positive) indicating higher abundances post-treatment. *q< 0.1, **q<0.01, 
***q<0.001. Comprehensive statistical results can be found in Supplementary Table 2. 
(g) Violin plots showing the differences in Aitchison distance traveled per microbiome 
after treatment. Black horizontal lines in violin plots depict the medians. Aged oFMT 
group changed more than Young yFMT (F(72)=3.82 p=0.026). Tukey’s HSD: Young 
yFMT vs Aged oFMT: p=0.03. Young yFMT vs Aged yFMT: p=0.88. Aged yFMT vs Aged 
oFMT: p=0.082. *p<0.05, & p<0.1.  
 

Functionally, we found significant changes in nine gut-brain modules (GBMs)(Valles-

Colomer et al., 2019) following FMT (Fig. 3.1-1f). Interestingly, propionate synthesis 

III and acetate degradation were reduced in Aged yFMT, but not in Aged oFMT mice, 

suggesting differences in the metabolism of short-chain fatty acids (SCFA), which are 

involved in gut-brain communication  and aging(Unger et al., 2016; Dalile et al., 

2019). We found that Aged oFMT microbiota composition had changed significantly 

more than Young yFMT in terms of Aitchison distance post FMT, while no significant 

change was observed between Aged yFMT and Young yFMT (Fig. 3.1-1g).  

 

3.1.2.2 yFMT Modulates Age-Associated Mesenteric Lymph Node and 
Hippocampal Immune Changes 
The gut microbiota is a key regulator of host immunity especially in aging (Fransen et 

al., 2017; Thevaranjan et al., 2017). Moreover, the immune system influences 

hippocampal-associated cognitive and social behavior (Filiano et al., 2016; Mohle et 
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al., 2016; Cruz-Pereira et al., 2020). Thus, the immune system may be an important 

link between alterations in the gut microbiota and potential effects on the brain in 

aging.  

 

To determine if aging-invoked immune alterations can be ameliorated by FMT from 

a young donor, we characterized innate and adaptive immunity in the mesenteric 

lymph nodes (MLNs) and circulation. Aging triggered a substantial increase in early 

activated CD8+ T-Cells in MLNs, which was reversed by yFMT (Fig. 3.1-2a). In contrast, 

memory CD8+ T-cells (CD44hi) were unaffected (Extended Data Fig. 3a), perhaps due 

to the low turnover rate of memory CD8+ T-cells (Baliu-Pique et al., 2018). 

Furthermore, CD103+ dendritic cells, which are tightly linked to CD8+ T-cell activation 

(Joffre et al., 2012) and sensitive to changes in the microbiome (Tan et al., 2016), 

were reduced in Aged yFMT mice compared to Aged oFMT mice (Fig. 3.1-2a). yFMT 

into aged mice decreased the proportion of F4/80+ macrophages in MLNs and 

rescued the decrease of the activation marker CD11b on Ly6Chi monocytes (Fig. 2a). 

Despite strong effects of aging on innate and adaptive immunity in the circulation 

(Extended Data Fig. 3c, d), yFMT only trended towards decreasing the aging-

associated rise of marker CD11b on Ly6G+ neutrophils (Fig. 3.1-2b) (Uhl et al., 2016) 

while rescuing the aging-associated rise in peripheral IL-10 (Fig. 3.1-2b). However, 

yFMT did not reverse aging-associated reductions in IFNγ and IL-5, which are both 

predominantly produced by T-cell populations, implying a stage of 

immunosenescence (Fig. 3.1-2b). This indicates that yFMT into an aged host may 

selectively modulate peripheral immunity. The mesenteric lymph node immune 

profile was particularly sensitive to FMT-induced changes in the aged host. 

 

Given the relationship between the gut microbiota, neuroinflammatory processes, 

and brain plasticity (Erny et al., 2015; Mohle et al., 2016; Thion et al., 2018; van de 

Wouw et al., 2019), we characterized microglia, the brain’s resident macrophages, in 

the hippocampus, a brain region critical for cognition. Microglia are essential for 

regulating cellular aspects of cognition, supporting neuroplasticity (Rogers et al., 
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2011; Elmore et al., 2018), and responding to various signals, including cytokines. 

Higher populations of activated microglia, distinguished by enlarged somas, are 

prominent in neurodegenerative conditions (Tay et al., 2017; Hickman et al., 2018). 

Aged oFMT mice showed substantial enlargement in microglia cell soma size, which 

was further pronounced when microglia somas were classified as ‘large’ or ‘small’ 

(Fig. 3.1-2c) (Kozareva et al., 2019). This phenotype was reversed by yFMT (Fig 3.1-

2c). However, we did not observe changes in microglia complexity, or maximum or 

average branch length (Extended Data Fig. 2c).  

 

Fig. 3.1-2 - FMT from Young to Aged Mice Modulate Peripheral Immunity and 
Hippocampal Neuroimmunity (a) Immune profile in mesenteric lymph nodes (MLN) 
was assessed by Flow Cytometry at the end of the study. Differences were detected 
in both early activated CD8+ T-cells (CD69+) (F(2,44)=9.418, p<0.001) and CD103+ 
dendritic cells (DC) (H(3)=7.836, p=0.02) in MLNs. Interestingly, yFMT into aged mice 
reversed (p=0.022) the age-associated increase (p<0.001) in early activated CD8+ T-
cells, while Aged yFMT showed reduced levels of CD103+ DCs compared to Aged oFMT 
(p=0.023). (b) Immune profile in circulation was assessed before mice were assessed 
for behavior. Distinct marker expression change, assessed by median fluorescence 
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intensity (MFI), for the activation marker CD11b on Ly6G+ neutrophils (F(2,46)=12.53, 
p<0.001), were found with an increased expression in Aged oFMT (CD11b: p<0.001) 
which tended to be rescued in Aged yFMT (CD11b: p=0.0645). Cytokine levels were 
assessed in the circulation. Notably, both IFNγ and IL-5 decreased in both age groups 
(F(2,42)=9.331, p<0.001, and (F(2,39)=8.758, p<0.001) respectively) while an age-
associated increase in IL-10 in Aged oFMT  F(2,42)=4.357, p<0.001, post-hoc: p=0.03) 
was found which was counteracted in Aged yFMT (p=0.033). Interestingly, Aged yFMT 
exhibited decreased IL-6 compared to Young yFMT (F(2,42)=3.768, p=0.031, post-hoc: 
p=0.027). (c) Hippocampal neuroimmunity was assessed by examining microglia 
soma area (F(2, 13)=8.418. p=0.005). There was a significant increase in microglia 
soma size in Aged oFMT mice compared to Young yFMT mice (p=0.005), which was 
reversed in Aged yFMT mice compared to Aged oFMT (p=0.042). When microglia 
were further classified as having a ‘large’ or ‘small’ soma (F(2, 13)=6.328, p=0.012), 
Aged oFMT mice had significantly more microglia classified as ‘large’ compared to 
Young yFMT (p=0.022) and Aged yFMT (p=0.264). Mean ± SEM. n = 12-21, *p<0.05, 
**p<0.01, ***p<0.001 & p<0.1.  
 

In addition to supporting brain immunity, microglia regulate hippocampal 

neurogenesis (Gemma et al., 2010; Sierra et al., 2010), a key activity in some learning 

and memory processes(Sahay et al., 2011; Anacker and Hen, 2017), which is hindered 

in aging (Klempin and Kempermann, 2007). Intestinal microbiota can alter 

hippocampal neurogenesis, potentially contributing to age-associated disruptions in 

neurocognition (Ogbonnaya et al., 2015; Kundu et al., 2019). Using another cohort of 

animals (Fig. 3.1-1a) we confirmed a decrease in the number of surviving newly-born 

hippocampal neurons in aged mice (Extended Data Fig. 2a). But this was not 

prevented with yFMT.  

 

3.1.2.3 The Aged Hippocampal Metabolome is Sensitive to the Rejuvenating Effects 
of yFMT 
Given the aging-associated changes in the brain and the influence of gut microbiota 

on hippocampal function (Mohle et al., 2016), we examined whether FMT from 

young to aged mice shaped the hippocampal metabolome.  

 

Aging induced significant differences in hippocampal metabolites, with aged and 

young mice clustering separately (Fig. 3.1-3a, 3.1-3c). Notably, 35 metabolites altered 
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in aging were restored towards pre-aged levels by yFMT (Fig. 3.1-3b, 3.1-3d and 

Supplementary Table S3), resulting in Aged yFMT mouse hippocampal metabolomes 

clustering between aged and young individuals (Fig. 3.1-3c). Notably, GABA and N-

glycolylneuraminate were among those restored by yFMT. These metabolites play 

critical roles in cognition and brain plasticity (Wang, 2012; Fritschy and Panzanelli, 

2014). In line with previous research (Hunsberger et al., 2020), arginine increased 

with aging, and is linked to the nitric oxide pathway and neurodegeneration (Wu and 

Morris, 1998; Malinski, 2007); its reversal by yFMT into aged mice proposes possible 

neuroprotective effects of yFMT on the aged brain. Functionally, these restored 

metabolites are enriched in six metabolic pathways (Fig. 3.1-3e), predominantly 

related to amino acid metabolism, which is critical for healthy cognition (Canfield and 

Bradshaw, 2019), and aminoacyl tRNA biosynthesis, which is crucial for proper 

functioning of the brain (Schaffer et al., 2019).  
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Fig. 3.1-3 - FMT from Young to Aged Mice Shapes the Hippocampal Metabolome 
Volcano plots depicting the effect of aging (a) and the difference between oFMT and 
yFMT (b) in the hippocampal metabolome. Metabolites on the 5% extremes of effect 
sizes of differential abundance are labelled. Horizontal dashed lines represent p=0.05. 
Comparisons with p>0.05 or q>0.2 are depicted as smaller and more transparent. 
Comprehensive statistical results including the full legend for the abbreviations can 
be found in Supplementary Table 2. (c) Principal Component Analysis showing the 
effects of FMT on the hippocampal metabolome in young and aged mice in terms of 
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Aitchison distance. Ellipses show the 95% confidence intervals per group. 
PERMANOVA: p<0.001. (d) Violin plots representing the 35 metabolites that were 
significantly altered by aging and restored towards young levels after yFMT. Black 
horizontal lines in violin plots depict the medians. Y-axis shows CLR-transformed 
metabolite concentrations. Q-values can be seen in the bottom-right corners of every 
figure. Significance symbols represent Mann-Whitney U-test post-hoc tests: *p<0.05, 
**p<0.01, ***p<0.001, # p<0.1. Comprehensive statistical results can be found in 
Supplementary Table 2. (e) Scatterplot showing the results of the MetaboAnalyst 
Pathway analysis. Labeled, dark-blue points depict the pathways that withstood FDR 
at a 0.1 threshold.  

3.1.2.4 yFMT Counteracts Hippocampal-Dependent Cognitive and Social 
Behavioral Changes in Aging.  
Alterations in the gut microbiome have been widely linked to changes in behavior, 

including hippocampal-dependent cognition (Cryan et al., 2019), which declines 

during the aging process (Smith et al., 2000; Scheff et al., 2006; Koh et al., 2014). 

Thus, we examined if yFMT rescued aging-induced, hippocampus-associated 

behavioral abnormalities in aged mice in a series of cognitive tasks. Consistent with 

the extant literature, aging was associated with an increase in the latency to enter 

the target quadrant in the Morris Water Maze probe trial. However, this was 

attenuated in aged mice that received FMT from a young donor (Fig. 3.1-4c), 

indicating that yFMT may improve aging-associated impairments in long-term spatial 

memory. Notably, there were no differences in locomotor activity between groups 

(Fig 3.1-4e).  

 

We also assessed short-term working memory and short-term recognition memory 

using the Y-Maze and Novel Object Recognition (NOR) tests. While there were no 

significant aging-induced impairments in either spontaneous alternation behavior in 

the Y-Maze or the novel object recognition index (Fig. 3.1-4a, b), Aged oFMT mice 

tended to interact less with objects in the NOR test (Fig. 3.1-4b). Furthermore, in the 

Three-Chamber Social Interaction Test, Aged oFMT mice spent significantly less time 

interacting with a social partner than their Young yFMT counterparts (Fig. 3.1-4d). 

Both aging-associated deficits in environmental interaction were rescued by FMT 

from young donors (Fig. 3.1-4b, d).  Overall, these data suggest that yFMT can rescue 

specific aspects of aging-induced impairments in behavior. 
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Fig. 3.1-4 - FMT from Young to Aged Mice Influence Behavior (a) Short-term memory 
assessed by spontaneous alternation behavior (Y-maze). No significant differences 
were observed between groups. (b) Short-term memory and exploration in the Novel 
Object Recognition (NOR) test. While long-term memory in the NOR was not 
significantly different across groups, there were significant differences in exploration 
of the objects (F(2,44)=3.388, p=0.028), with aged mice receiving yFMT (Aged yFMT) 
showing an increased exploration activity compared to Aged oFMT (p=0.043). (c) 
Learning and memory in Morris Water Maze: Latency-to-find platform over five 
training days summarized as area under-the-curve (AUC) displays the learning 
efficacy to find the platform. Interestingly, neither age nor FMT did affect learning 
efficacy. Subsequently, we assessed long-term memory in the probe trial 24 h after 
the last training day by measuring the latency to find the target quadrant. The 
treatment significantly altered the time to reach the target quadrant (F(2,47)=3.357, 
p=0.043) with Aged oFMT (p=0.041) needed a longer time to allocate the target 
quadrant which was not seen in aged mice which received yFMT. d) Social behavior 
and memory: Treatment affected social behavior with respect to the time the test 
mouse interacted with a con-specific mouse (over an object) in the second phase of 
the 3-chamber social interaction test (F(2,49)=4.168, p=0.021) while interaction with 
a novel mouse (over the now familiar mouse) in the third phase of the 3-Chamber 
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Social Interaction Test remained unaffected by the treatment. Post-hoc analysis 
indicated decreased interaction with a con-specific mouse in Aged oFMT compared 
to Young yFMT (p=0.022) which trended to be rescued by yFMT into aged mice 
(p=0.077). (e) Locomotion: Locomotion was unaltered by age (Aged oFMT) or FMT 
from young to aged mice (Aged yFMT). (f) Observation Battery: Bar plots show 
observation battery score prior to FMT compared to end of study. Both aged groups 
showed a decreased score prior to FMT compared to Young yFMT (H(3)=13.33, 
p=0.001; post-hoc: Aged oFMT p=0.001, and Aged yFMT p=0.038, respectively). In 
contrast, Aged yFMT did not more show a significant difference (p=0.46) at the end 
of the study while Aged oFMT retained a decreased score compared to Young yFMT 
(H(3)=6.146, p=0.046; post-hoc: p=0.04). Mean ± SEM. n = 14-21, *p<0.05, **p<0.01, 
& p<0.1.  

 

3.1.3 Conclusion 

Here, we demonstrate, for what is to our knowledge the first time, that transplanting 

microbiota from healthy, young male mice into aged male mice can significantly 

attenuate aging-associated deficits in cognitive behavior. Upon investigating 

potential mechanisms for how the intestinal microbiota may orchestrate these 

improvements, we found specific aspects of peripheral immunity and 

neuroimmunity were restored following yFMT into aged male mice. Moreover, we 

uncovered amelioratory effects of yFMT on the aging hippocampal metabolome, 

which coincided with the improvements in behavior. While specific aging-associated 

deficits in behavior, immunity, or neurogenesis were not restored by yFMT, this 

research provides fundamental evidence that the gut microbiota should be 

considered as a therapeutic target for treating aspects of aging-associated decline in 

hippocampus-related function. 

 

3.1.4 Methods  

3.1.4.1 Animals 
Male young adult C57BL/6 mice (n=25; Envigo, Cambridgeshire, UK; 10-12 weeks) 

and aged C57BL/6mice (n=50; Charles River, UK, 19-20 months) were used in this 

study. All experiments were performed in accordance with European guidelines 

following approval by University College Cork Animal Ethics Experimentation 
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Committee (AE19130/P052). Animals were habituated to the animal facility for at 

least four weeks before experiments started and were kept under a 12-hour 

light/dark cycle, with a temperature of 21 ± 1 °C and humidity of 55 ± 10%. Food and 

water were given ad libitum.  

 

3.1.4.2 Fecal collection and fecal microbiota transplant (FMT) 
For all fecal material collection, mice were placed in an empty plastic cage, free of 

bedding and sterilized with 70% ethanol, until defecation. For future microbiome 

analysis, fecal pellets were immediately collected and snap-frozen on dry ice, then 

stored at -80 °C until sequencing.  

 

To collect material for FMT, a separate cohort of naive young adult C57BL/6 mice (n 

= 40, Envigo, Cambridgeshire; 12-15 weeks at collection, group-housed), and the 

same aged mice defined above, supplemented with additional naive old mice to 

ensure enough collection volume (n = 83, 18.8-20 months at collection, group-

housed), were used, prior to the start of the experimental timeline. Fecal pellets were 

collected fresh and immediately transferred to an anaerobic hood, where they were 

pooled per group to ensure enough volume. Fecal material was homogenized in 

reduced sterile phosphate buffered saline (PBS) with 20% glycerol (w/v), and filtered 

through a 70 µm strainer to remove large particles before being aliquoted and frozen 

at -80 °C. To ensure enough volume of FMT material without risking potential cross 

contamination, collection was spaced out over six to nine collection days per group, 

one group at a time. Prior to FMT, equal aliquots from every collection day were 

pooled together to consistently generate enough volume. 

Fecal microbiota transplantation (FMT) was performed by oral gavage bi-weekly (100 

µl of 100 mg/ml homogenized fecal slurry). Briefly, mice were gently scruffed, and 

the fecal slurry was administered through an oral gavage needle (23G). FMT occurred 

once per day for the first three days to encourage microbiota engraftment, then 

twice per week thenceforth.  
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3.1.4.3 Study design and experimental timeline 
Aged mice were randomly delegated into one of two groups, balanced by weight: 

aged mice receiving FMT from young donor mice (Aged yFMT), and to control for 

handling, aged mice receiving FMT from old donor mice (Aged oFMT). Young mice 

were given FMT from young mice (Young yFMT) to allow for inter-age comparisons. 

To ensure appropriate engraftment of microbiota, and to allow for potential 

microbiota-driven neurocognitive and behavioral effects, mice were orally gavaged 

with FMT once per day for the first three days, then twice weekly thenceforth in line 

with previous research (Bruce-Keller et al., 2015). 

 

Baseline fecal samples were collected prior to the start of the study and after four 

weeks of FMT inoculation to assess the effects of FMT on recipient fecal microbiota 

prior to the start of the behavioral battery. Following four weeks of FMT, blood was 

collected, and flow cytometry was run to assess markers of mesenteric and 

peripheral immunity accompanied with cytokines measurements (see flow 

cytometry methodology under 3.6, and cytokine assessment under 3.10). Mice then 

underwent a series of behavioral tests designed to assess a variety of locomotor, 

social, cognitive and anxiety-like parameters, including the following: Y-Maze,  Novel 

Object Recognition, Elevated Plus Maze, 3-Chamber Social Interaction Test 

(Sociability and Social Memory), and the Morris Water Maze. Finally, mice were 

euthanized via decapitation, and blood and tissues immediately harvested for further 

analysis. See experimental timeline Fig. 1a. 

 

Aged and young mice were monitored throughout the study through a dedicated 

observation battery which compromises different aspects of health including general 

appearance, physical characteristics and sensorimotor reflexes(Roux et al., 2005; 

O'Leary et al., 2016) (see Extended Data Fig. 5).   
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An additional study was performed following a similar design as above to allow for 

visualization and further investigation potential mechanisms of action, including 

microglia and adult hippocampal neurogenesis. Herein, mice were treated once per 

day with 150 mg/kg Bromodeoxyuridine (BrdU; Sigma-Aldrich, cat. no. 59-14-3) 

diluted to 20 mg/ml in sterile saline via intraperitoneal injection during the first three 

FMT inoculation days to label proliferating cells. Following four weeks of FMT 

inoculation, the Novelty-Induced Hypophagia Test was performed. Finally, mice were 

anesthetized with 90 mg/kg pentobarbital and tissue fixed via transcardial perfusion 

with chilled sterile saline for two minutes, followed by eight minutes of 4% 

paraformaldehyde (PFA). Brains were harvested and transferred into 4% PFA 

overnight, then transferred to 15% sucrose overnight, and finally 30% sucrose for 24 

hours before being snap-frozen in isopentane and stored at -80 °C. 

 

3.1.4.4 DNA extraction for 16S rRNA amplicon microbiota analysis 
DNA was extracted using the QiaAMP Power Fecal Pro kit (Qiagen) according to the 

manufacturer’s instructions. DNA concentration was normalized and 16S rRNA 

amplicon libraries were prepared using primers to amplify the V3-V4 region of the 

bacterial 16S rRNA gene, with Illumina adapters incorporated as described in the 

Illumina 16S rRNA Metagenomic Library Preparation guide, with the exception that 

30 amplification cycles were used. Following index PCR and purification, the products 

were quantified using the Qubit high sensitivity DNA kit (Life Technologies) and 

pooled equimolarly. The pooled libraries were assessed using an Agilent high 

sensitivity DNA kit and examined by quantitative PCR (qPCR) using the Kapa 

Quantification kit for Illumina (Kapa Biosystems, USA) according to the 

manufacturer’s guidelines. Libraries were then diluted and denatured following 

Illumina guidelines and sequenced (2 × 300 bp) on the Illumina MiSeq platform. 

 

3.1.4.5 16S Microbiota analysis and bioinformatics 
Paired-end reads were pre-filtered based on a quality score threshold of >28 and 

trimmed, filtered for quality and chimaeras using the DADA2 library in R (version 
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3.6.3)(Callahan et al., 2016). QC was done using the fastqc program in Ubuntu 18.04. 

Samples with fewer than 10,000 reads after filtering were discarded. Taxonomy was 

assigned with DADA2 against the SILVA SSURef database release v138(Quast et al., 

2013). Parameters as recommended in the DADA2 manual were adhered to unless 

mentioned otherwise. Amplicon Sequence Variants (ASVs) were aggregated at genus 

level. Those that were unknown on the genus level were not considered in 

downstream analysis, as were genera that were only detected as non-zero in 10% or 

fewer of total samples. After filtering, 86 different genera were left in total over all 

microbiome samples. 

 

Microbiota bioinformatics were done in R (version 3.6.3) with the Rstudio GUI 

(version 1.2.5033). Principal component analysis was performed on center log-ratio 

transformed (clr) values using the ALDEx2 library(Fernandes et al., 2014). The 

number of permutations was always set to 1000. The iNEXT library was used to 

calculate alpha diversity using the Chao1, Shannon and Simpson indices. Beta-

diversity was assessed in terms of Aitchison distance and visualized via principle 

component analysis(Hsieh et al., 2016). Wd*(Hamidi et al., 2019) followed by a 

pairwise post-hoc and Bonferroni was used to find structural differences between 

treatments on a compositional level. The degree of change per mouse through time 

was calculated in terms of Aitchison distance, using one-way ANOVA followed by 

Tukey’s test. Degree of change in the microbiome after treatment, or volatility, was 

calculated as Aitchison distance. The Piphillin web server was used to infer the 

functional metagenome in terms of KEGG-orthologues(Iwai et al., 2016). Using these 

KEGG-orthologues, Gut-Brain Modules and Gut-Metabolic Modules were calculated 

using the omixerRpm R library(Valles-Colomer et al., 2019). Differential abundance 

of microbial genera as well as functional modules was calculated using the Wilcoxon 

signed-rank test implementation in the ALDEx2 library. To correct for multiple testing 

(FDR) in tests involving microbiota features, the internal ALDEx2 implementation of 

the Benjamini-Hochberg (BH) post-hoc procedure was performed with a q-value of 

0.1 as a cut-off. All custom R scripts are available online at 
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https://github.com/thomazbastiaanssen/Tjazi (Bastiaanssen, 2018). Microbiota 

figures were generated using ggplot2.  

 

3.1.4.6 Flow cytometry 
To assess immunity following four weeks of intervention with FMT, before mice were 

subjected to behavioral assessments, blood sample preparation was done as 

previously described with minor modifications(van de Wouw et al., 2020). Briefly, 

blood was collected by tail tipping using Eppendorf tubes containing 2.5 µL 3% EDTA 

solution to prevent blood clotting. Blood was resuspended in each 10 mL home-made 

red blood cell lysis buffer (15.5 mM NH4Cl, 1.2 mM NaHCO3, 0.01 mM tetrasodium 

EDTA diluted in deionized water) for three min. Blood samples were subsequently 

centrifuged (1500×g, 5 min), plasma taken for cytokine analysis using the 

Proinflammatory Panel 1 (mouse) V-PLEX Kit (Meso Scale Discovery, Maryland, USA) 

(see 3.10 for full details of methodology), and cells resuspended in PBS containing 

1:1000 FVS780 (PE-Cy7) (BD Biosciences, cat. no.  565388) and incubated for 15 min 

at RT to distinguish live from dead cells. Subsequently, samples were centrifuged 

(1500×g, 5 min) and each aliquot (two per sample) resuspended in 50 µl BV staining 

buffer (BD Biosciences, cat. no. 563794). All subsequent procedures were conducted 

on ice / at 4°C. For the staining procedure, 5 μl of FcR blocking reagent (Miltenyi, cat. 

no. 130-092-575) was added to each sample. Samples were subsequently incubated 

with a mix of antibodies for extracellular staining to investigate (a) innate immune 

system properties focused on monocytes / neutrophils, and (b) adaptive immune 

system properties focused on T-cells (see Table 1) and incubated for 30 min on ice. 

Samples for panel a (monocytes / neutrophils populations) were subsequently 

washed in staining buffer and fixed in 4% PFA for 30 min on ice, whilst samples for 

panel b (T-cells populations) underwent intracellular staining using the eBioscience™ 

Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific, cat. no. 00-

5523-00), according to the manufacturer's' instructions, together with FoxP3-APC 

(Thermo Fisher Scientific, cat. no. 17-5773-82). Fixed samples were subsequently 

resuspended in the staining buffer and analyzed the subsequent day using the BD 

FACSCelesta. Data was analyzed using FlowJo (version 10). Target populations were 
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normalized to the number of live cells or the respective parent population. Gating 

strategy is depicted in Extended Data Fig. 4.  

 

To assess gut-associated immunity at the end of the study, mesenteric lymph nodes 

(MLNs) were carefully dissected and processed for Flow Cytometry as previously 

described(van de Wouw et al., 2020). Briefly, MLNs were transferred onto a 70 μm 

strainer and disassembled using the plunger of a 1-mL syringe. The strainer was 

subsequently washed with 10 mL media (RPMI-1640 medium with L-glutamine and 

sodium bicarbonate, supplemented with 10% FBS (Sigma, cat. no. F7524l) and 1% 

Pen/strep (Sigma, cat. no. P4333), centrifuged and 3×106 cells were resuspended in 

90 μl staining buffer and split into three aliquots for the staining procedure. Samples 

were always kept on ice. For the staining procedure, 5 μl of FcR blocking reagent 

(Miltenyi, cat. no. 130-092-575) was added to each sample. Samples were 

subsequently incubated with a mix of antibodies (see Table 2) for 30 min on ice 

followed by a washing step and final fixation using 4% PFA for 30 min on ice. Samples 

were analyzed the subsequent day using the BD FACSCalibur. Data was analyzed 

using FlowJo (version 10). The investigated cell populations were normalized to the 

number of obtained peripheral blood mononuclear cells (PBMCs). 

 

Table 1  

Marker Conjugation Volume per sample 

[µl] 

Company, Catalog 

number 

Innate immune system - Focus Monocytes / Neutrophils  

CD11b VFITC 

 

5 Miltenyi 

130-109-290 

CD11c 

  

PE 2 Miltenyi 

130-110-701 
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CD62L PE-Cy7 

 

2 Biolegend 

104418 

LY6G PerCP-

Vio700 

 

5 Miltenyi 

130-107-917 

CD192 (CCR2) APC 

 

5 Miltenyi 

130-108-723 

MHC-II 

  

BV421 0.5 Biolegend 

107632 

LY6C 

  

BV605 2 Biolegend 

128036 

CX3CR1 

  

BV786 2 Biolegend 

149029 

Adaptive immune system - Focus T-cells 

CD49b 

  

FITC 5 Miltenyi 

130-102-258 

CD69 

  

PE 5 Miltenyi 

130-103-946 

CD62L PE-Cy7 

 

2 Biolegend 

104418 

CD8a PerCP-

Vio700 

 

5 Miltenyi 

130-102-239 

FoxP3  APC 5 Thermo Fisher Scientific 
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(intracellular 

staining) 

 17-5773-82 

CD25 

  

BV421 2 Biolegend 

102034 

CD4 

  

BV605 0.5 Biolegend 

100548 

CD44 

  

BV786 2 BD Biosciences 

563736 

 

Table 2 

Marker Conjugation Volume per sample [µl] Company, Catalog number 

T-cell panel 

CD4 FITC 

 

0.5 Thermo Fisher Scientific 

11-0042-85 

CD69 PE 5 Miltenyi 

130-103-946 

CD8a PerCP-Vio700 

 

5 Miltenyi 

130-102-239 

CD44 APC 

 

5 Miltenyi 

130-110-084 

Monocyte/Macrophage/Neutrophil panel 
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CD11b FITC 

 

2 Miltenyi 

130-113-243 

LY6C 

  

PE 5 Miltenyi 

130-102-391 

LY6G 

  

PerCP-Vio700 5 Miltenyi 

130-107-917 

F4/80 

  

APC 5 Miltenyi 

130-102-379 

Dendritic cell panel 

CD103 

  

FITC 5 Miltenyi 

130-102-479 

CD11c 

  

PE 2 Miltenyi 

130-110-701 

CX3CR1 PerCP-Cy5.5 

 

0.3 Biolegend 

149010 

MHC-II APC 

 

5 Miltenyi 

130-102-139 

 

 

3.1.4.7 Hippocampal Metabolomics  
Mice were decapitated at the end of the study, the hippocampus carefully dissected, 

immediately snap frozen in liquid nitrogen and stored at -80 °C until use. For 



214 
 

metabolomics, the left hemisphere of the hippocampus was used. Hippocampal 

metabolomics were conducted at Metabolon using UHPLC/MS/MS.  

 

Samples were prepared using the automated MicroLab STAR® system from Hamilton 

Company. Several recovery standards were added prior to the first step in the 

extraction process for QC purposes. To remove protein, dissociate small molecules 

bound to protein or trapped in the precipitated protein matrix, and to recover 

chemically diverse metabolites, proteins were precipitated with methanol under 

vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation. 

The resulting extract was divided into five fractions: two for analysis by two separate 

reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray 

ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one 

for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was 

reserved for backup. Samples were placed briefly on a TurboVap® (Zymark) to 

remove the organic solvent. The sample extracts were stored overnight under 

nitrogen before preparation for analysis.   

 

Several controls were analyzed in concert with the experimental samples: a pooled 

matrix sample generated by taking a small volume of each experimental sample (or 

alternatively, use of a pool of well-characterized human plasma) served as a technical 

replicate throughout the data set; extracted water samples served as process blanks; 

and a cocktail of QC standards that were carefully chosen not to interfere with the 

measurement of endogenous compounds were spiked into every analyzed sample, 

allowed instrument performance monitoring and aided chromatographic 

alignment.  Instrument variability was determined by calculating the median relative 

standard deviation (RSD) for the standards that were added to each sample prior to 

injection into the mass spectrometers. Overall process variability was determined by 

calculating the median RSD for all endogenous metabolites (i.e., non-instrument 

standards) present in 100% of the pooled matrix samples. Experimental samples 
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were randomized across the platform run with QC samples spaced evenly among the 

injections. 

 

For analysis, a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and 

a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass 

analyzer operated at 35,000 mass resolution was utilized.  The sample extract was 

dried then reconstituted in solvents compatible to each of the four methods. Each 

reconstitution solvent contained a series of standards at fixed concentrations to 

ensure injection and chromatographic consistency. One aliquot was analyzed using 

acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds. In this method, the extract was gradient eluted from a C18 column 

(Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 

0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was 

also analyzed using acidic positive ion conditions; however, it was 

chromatographically optimized for more hydrophobic compounds.  In this method, 

the extract was gradient eluted from the same C18 column using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher 

organic content.  Another aliquot was analyzed using basic negative ion optimized 

conditions using a separate dedicated C18 column. The basic extracts were gradient 

eluted from the column using methanol and water, however with 6.5mM Ammonium 

Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization 

following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) 

using a gradient consisting of water and acetonitrile with 10mM Ammonium 

Formate, pH 10.8. The MS analysis alternated between MS and data-dependent MSn 

scans using dynamic exclusion.  The scan range varied slighted between methods but 

covered 70-1000 m/z. Raw data files are archived and extracted as described below. 
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Raw data was extracted, peak-identified and QC processed using Metabolon’s hard- 

and software. Compounds were identified by comparison to library entries of purified 

standards or recurrent unknown entities.   

 

Peaks were quantified using area-under-the-curve. Biostatistics were done in R 

(version 3.6.3) with the Rstudio GUI (version 1.2.5033). Missing values were imputed 

by taking 95% of the minimum observed abundance per metabolite. Metabolites that 

were detected in less than 10% of samples were dropped from analysis. Principal 

component analysis was performed on centered log-ratio transformed (clr) values 

using the ALDEx2 library(Fernandes et al., 2014). Number of permutations was 

always set to 1000. PERMANOVA followed by a pairwise PERMANOVA was used to 

find structural differences between treatments on a compositional level. In order to 

find metabolites that were altered by aging and restored by yFMT, we first did a 

Mann-Whitney U-test between all yFMT samples and the Aged oFMT group, 

identifying metabolites where the Aged oFMT group was different from the two 

yFMT groups. Then we did pairwise Mann-Whitney U-tests in between both 

individual yFMT groups and the Aged oFMT group, to verify that both yFMT groups 

were indeed different from the Aged oFMT group levels individually. To correct for 

multiple testing in tests involving metabolomics features, Storey’s q-value post-hoc 

procedure was performed with a q-value of 0.2 as a cut-off. Metabolites that were 

found to be altered in aging and restored by yFMT were mapped to their 

corresponding Human Metabolome Database (HMDB) identifier and subjected to 

pathway analysis using the MetaboAnalyst online pipeline, choosing the murine 

KEGG library as a reference. Custom R scripts are available online at 

https://github.com/thomazbastiaanssen/Tjazi. Metabolomics figures were 

generated using ggplot2.  

3.1.4.8 Behavior 
All behavioral tests were performed and scored by experimenters blinded to the 

treatment groups. 
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3.1.4.8.1 Spontaneous alternation in the Y-Maze 
To access short-term working memory, spontaneous alternation behavior in the Y-

maze tests hippocampal-dependent spatial memory and exploration and was carried 

out and analyzed as previously described(Scott et al., 2017). Briefly, mice were 

habituated to the room 30 min prior to testing, and behavior recorded for five 

minutes using a ceiling-mounted camera.  

3.1.4.8.2 Novel Object Recognition 
To assess short-term recognition memory, mice were subjected to the Novel Object 

Recognition (NOR) task as previously described with some modifications(Golubeva 

et al., 2017). Animals were habituated to the room 60 min before the test. On the 

pre-trial day, mice were habituated to the empty, open arena (40×45×45 cm, L×W×H) 

in two habituation phases (10 min each, with 3h time in between). One the following 

day, test mouse was exposed for 10 min to two identical objects placed in the corners 

of the arena (acquisition phase). 3 h later, one of the familiar objects was substituted 

with a novel object, and the animal could explore the objects for 10 min (retention 

phase). The test was conducted under dimmed lighting (15 lux). Animal behavior was 

video recorded; time spent in exploration of the objects was blindly scored in 

Ethovision version 15 (Noldus). Exploration behavior was defined as orienting the 

nose towards the object at a distance < 2 cm, or direct contact with the object. 

Discrimination index was calculated according to the formula: (t [novel] − t [familiar]) 

/ (t [novel] + t [familiar]). Mice who interacted in sum less than 12 seconds with either 

the novel or the familiar object, were excluded from the analysis.  

 

3.1.4.8.3 Open Field 
The Open Field is a widely used assay to assess approach avoidance behavior, 

locomotor activity and the behavioral response to a novel context and was 

conducted as previously described with some modifications(van de Wouw et al., 

2020). Briefly, mice were placed in an open arena (40×45×45 cm, L×W×H) and could 

explore the arena for 10 min, which represented the first habituation phase for the 

NOR testing. Animals were habituated to the room 60 min prior to the test. Testing 
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was performed under dim light (15 lux). The open field test box was cleaned with 

70% ethanol in-between animals. Experiments were videotaped using a ceiling-

mounted camera and were analyzed for time spent in the virtual center zone (33% 

of the total area) and total distance travelled using Ethovision 15. 

 

 

3.1.4.8.4 Elevated Plus Maze 
The Elevated Plus Maze test was used to assess anxiety-like behavior and was 

conducted as previously described(van de Wouw et al., 2020). Briefly, mice were 

allowed to explore the maze, which was elevated 1 m above the ground and 

consisted of a grey cross-shaped maze with two open arms and two closed arms (50 

× 5 cm with 15 cm walls in the closed arms and 1 cm walls in the open arms) for five 

minutes. Mice were habituated to the room 30 min prior to the test. Experiments 

were conducted in red light (5 lux). The Elevated Plus Maze apparatus was cleaned 

with 70% ethanol in-between animals. Experiments were videotaped using a ceiling-

mounted camera and time spent as well as the number of entries in the open arms, 

which was defined as all paws in the open arm, measured. 

 

3.1.4.8.5 3-Chamber Social Interaction Test 
Sociability and social novelty were assessed in a three-chamber apparatus as 

previously described(van de Wouw et al., 2020). The test consists of three sequential 

ten minutes’ trials: (1) habituation; (2) sociability (analysis of time animals spent in 

the chamber with the conspecific mouse or with the object). (3) social novelty 

preference (analysis of time animals spent in the chamber with the novel mouse or 

in the chamber with the familiar mouse).   

 

3.1.4.8.6 Morris Water Maze 
The Morris Water Maze represents a test for spatial learning(Vorhees and Williams, 

2006) and was conducted as previously described(Cryan et al., 2019). Briefly, mice 
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were trained over five days, with four trials per day each lasting two minutes to 

spatially allocate the submerged platform. On day six, the platform was removed and 

a probe trial lasting 30s conducted.  

 

3.1.4.9 Plasma collection and corticosterone assay 
Using Lithium-Heparin-coated capillaries, trunk blood was collected at the terminal 

time point of the study. Blood was centrifuged at 3500g at 4°C temperature for 15 

min. Plasma was aspirated and stored at −80°C. Plasma CORT was measured as 

previously described(Scott et al., 2017) by ELISA, following vendor instructions (ENZO 

Corticosterone ELISA, cat. no. ADI-900-097). Concentration is expressed in ng/ml.  

  

3.1.4.10 Cytokine assay 
Cytokine secretion was assessed using the Proinflammatory Panel 1 (mouse) V-PLEX 

Kit (Meso Scale Discovery, cat. no. K15048D-1). Samples were run in duplicates. 

Reading and analyses were performed using the MESO QuickPlex SQ 120, SECTOR 

Imager 2400. Values under the fit curve range and detection range were excluded. 

Concentration is expressed in pg/ml. 

 

3.1.4.11 Microglia analysis 
For morphological characterization of microglia an Iba1 staining was performed with 

modifications as previously described(Boehme et al., 2014). Brains were sliced at -

20°C in 30μm sections into antifreeze solution. Iba1 (ionized calcium-binding adapter 

molecule 1) is a Ca-dependent cytosolic protein that is expressed in the brain in 

microglia(Ito et al., 1998). 

 

Iba1 staining was carried out using the 3,3'-Diaminobenzidine (DAB) method as 

described previously(Boehme et al., 2014). Briefly, slices (free-floating) were washed 

six times for 5 min in PBS, before sections were incubated for 30 min in 0.24% H2O2 
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(in PBS) and then washed four times for 5 min each in PBS-T (PBS with 0.2% Triton). 

After blocking in PBS-T serum (0.2% Triton, 3% NDS) for 1 hour, incubation was 

carried out overnight at 4°C with the primary antibody (rabbit anti-Iba1, 1:2000 in 

PBS-T, #019-19741; Wako Pure Chemical Industries, Osaka, Japan). On day two, slices 

were washed four times for 5 minutes in PBS-T and blocked with 3% PBS-T serum for 

15 minutes, followed by a two-hour incubation with the biotin-conjugated secondary 

antibody (Biotin-Sp conjugated donkey anti-rabbit IgG, 1: 500 in PBS-T; Jackson 

ImmunoResearch, cat. no.  711-065-152). After washing four times for 5 min in PBS-

T, sections were transferred to Vectastain ABC peroxidase kit (Vector Laboratories, 

cat. no. PK-6100) for 1 h. Following a four-fold five-minute wash with PBS-T, the DAB 

reaction was started. Using the SIGMAFAST™ DAB Tablets (Sigma, cat. no. D4293), 

slices were put in DAB and the reaction started by adding 1:1 H2O2 urea, slices were 

subsequently incubated for ten minutes. After four times wash with PBS for five 

minutes, sections were mounted using DPX (Sigma, cat. no. 06522) as a mounting 

media and stored for analysis at room temperature. 

 

The morphological complexity of microglia was assessed using the ImageJ-based 

"Sholl Analysis Tool"(Ferreira et al., 2014) and conducted following previously 

described guidelines(Gonzalez Ibanez et al., 2019). The focus was on the cornu 

Ammonis CA1 region of the hippocampus as it has been widely related to spatial 

memory(Tsien et al., 1996). The analysis was performed blinded. Altered morphology 

of the microglia, e.g. as a result of a lipopolysaccharide application, can be used to 

characterize whether the microglial cells are in the ramified or in the activated state. 

As a result of activation, microglial cells retract their processes into the cell body, 

thereby increasing its size(Kettenmann et al., 2011). 

 

The Sholl analysis(Sholl, 1953) is a common technique used to evaluate and describe 

branching of cells, and is frequently used to analyze microglia morphology. The 

algorithm places concentric rings from a previously defined point and with a defined 

span and radius over the corresponding cell and counts the intersections of the 
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structures with these rings to automatically detect the number of branches. The 

"Advanced Sholl Analysis Tool" version 3.6.12 (https://imagej.net/Sholl) was used. 

Images were taken on the Olympus BX53 Upright Microscope with a 40x objective in 

Tagged Image File Format (.tif), to prevent losing any image information. The 

resolution was 2880x1800 pixels. The pictures were converted to 8-bit. Twelve cells 

per hemisphere per animal were evaluated. Cells were selected according to the 

following criteria: the entire cell had to be in focus, the cell had to be as clear as 

possible from its surrounding neighboring cells separable (i.e., the extensions should 

be as clearly as possible in the case of overlap), the cell was allowed on average not 

oblique be cut and it had to be always a single cell - duplications or superimpositions 

of several microglial cells in the area of Somas and/or the extensions were excluded. 

Care was taken that the analyzed cell within the frame was cropped according to the 

extent of branches that were clearly connected to the cell body of interest and fully 

separable from crossing branches of other cells. The evaluation of specifically 

selected microglial cells was performed as follows: First, the soma of the 

corresponding cell was marked using the ImageJ Polygon Selection tool. Thus, the 

parameters important for the further course could be grasped: the center of gravity 

of the cell (as starting point for the Sholl analysis), the area of the cell and the pixel 

coordinates, in order to cut out the soma from the later obtained skeleton. The cell 

with the highlighted soma was subsequently cut out of the corresponding image 

using the Freehand Selection tool. Then a binary image was created. This binary 

image was skeletonized in the next step. Subsequently, the soma was cut out. The 

focus point of the analyzed soma was marked and the Sholl analysis performed. The 

chosen radius was 2 to 60 μm to detect the complete cell. The distance of the 

concentric rings placed over each cell was 1 μm. On average, the first intersection 

was registered at 4 μm. Finally, the number of intersections per radius, the average 

maximum length of the projections and the soma size were evaluated per microglia.  

 

3.1.4.12 Analysis of neurogenesis (BrdU+/NeuN+ staining, immunohistochemistry) 
The same brains used in microglia analysis were used to assess the survival of newly 

born hippocampal neurons. Washing steps involve washing tissue in PBS on a gentle 
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plate mixer three times for 5 min each unless otherwise indicated. Free-floating 

sections were washed then incubated in 2N HCl at 37°C for 15 min. Sections were 

then rinsed twice in a sodium tetraborate buffer for 5 min, then washed in PBS. 

Blocking solution (10% normal donkey serum (NDS), 0.3% PBS-T) was added and 

sections set onto a gentle shaking plate for 1hr at RT. Sections were incubated in 

Anti-Rat BrdU (Abcam, cat. no.  AB6326) in 1% NDS, 0.1% PBS-T, 1:100 dilution at 4°C 

overnight. Following BrdU antibody retrieval, sections were washed. All subsequent 

steps were carried out in darkness. Sections were incubated sections in secondary 

antibody (Donkey Anti-rat 594, 1:200; Thermo Fisher Scientific, cat. no. A-21209) for 

90mins at RT in 1% NDS, 0.1% PBS-T in PBS, then washed. For NeuN staining, samples 

were blocked again for 30 min in the previously described blocking solution, then 

incubated in mouse anti-NeuN (Merck, cat. no. MAB377) in 1% normal goat serum 

(NGS; Abcam, cat. no. ab7481), 0.1% Triton-X 100, in PBS, 1:100 dilution at 4°C 

overnight. Sections were washed and placed in the second secondary antibody 

(Donkey Anti-mouse 488, 1:200; Thermo Fisher Scientific, cat. no. A-21202) for 

90mins at RT in 1% NDS, 0.1% PBS-T. Finally, sections were washed, mounted onto 

slides and cover-slipped using PVB DABCO, and stored at 4°C until imaging. Stained 

slices were imaged under dim light at room temperature using an Olympus BX53 

Upright Research Microscope. Hippocampal BrdU+/NeuN+ cells were quantified as 

cells that were distinguishably co-stained for both BrdU and NeuN fluorescent 

markers. 

 

3.1.4.13 Intestinal motility assay 
Gastrointestinal motility was assessed as previously described(Golubeva et al., 2017). 

Briefly, mice were single-housed at 8.00 a.m. with ad libitum access to food and 

drinking water. Three hours later, 0.2 ml of non-absorbable 6% carmine red in 0.5% 

methylcellulose dissolved in sterile PBS was administered by oral gavage, after which 

drinking water was removed. The latency for the excretion of the first red-colored 

fecal pellet was subsequently timed as a measure of gastrointestinal motility. 
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3.1.4.14 Assessment of fecal water content and weight 
Mice were singly housed for 1 h during which fecal pellets were collected (five per 

animal). Pellets were subsequently weighed, dried at 50 °C for 24 h and weighed 

again. The average weight per pellet and percentage of fecal water content was 

calculated. 

 

3.1.4.15 Telomere detection 
Telomere attrition is a hallmark of aging(Lopez-Otin et al., 2013). To measure 

telomere length DNA was extracted from whole blood samples, which were collected 

at the end of the study, using the High Pure PCR Template Preparation Kit (Roche, 

cat. no. 11796828001) according to the manufacturer's instructions. Subsequently, 

the average telomere length was determined and calculated using the Absolute 

Mouse Telomere Length Quantification qPCR Assay Kit (ScienCell, cat. no. M8918) 

following the manufacturer's instructions. 

 

3.1.4.16 Statistical analysis 
Statistical analyses were conducted using SPSS 25 (IBM Corp., Armonk, NY, USA) and 

Graphpad Prism 8.3.0 (GraphPad Software, Inc., La Jolla, CA, USA). Prior to statistical 

analysis, data were analyzed for normality using the Shapiro-Wilk test and for 

equality of variances using the Levene's test. Non-parametric data were analyzed by 

Kruskal-Wallis post-hoc Dunn‘s. Parametric data were analyzed using one-way 

analysis of variance (ANOVA) post-hoc Holm-Sidak, and is shown as Mean ± SEM. All 

tests were two-sided where applicable. Outliers were excluded using the ROUT 

method(Motulsky and Brown, 2006) with Q = 1%. Statistical significance was set at 

p<0.05.  
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3.2.1 Abstract 

The gut microbiota is an essential regulator of many aspects of host physiology. 

Disruption of gut microbial communities affects gut-brain communication which 

ultimately can manifest as changes in brain function and behaviour. Transient 

changes in gut microbial composition can be induced by various intrinsic and extrinsic 

factors, however, it is possible that enduring shifts in the microbiota composition can 

be achieved by perturbation at a timepoint when the gut microbiota has not fully 

matured or is generally unstable, such as during early life or ageing. In this study we 

investigated the effects of 3-week microbiota depletion with antibiotic treatment 

during the adolescent period and in adulthood. Following a washout period to 

restore the gut microbiota, behavioural and molecular hallmarks of gut-brain 

communication were investigated. Our data revealed that transient microbiota 

depletion had long-lasting effects on microbiota composition and increased anxiety-

like behaviour in mice exposed to antibiotic treatment during adolescence but not in 

adulthood. Similarly, gene expression in the amygdala was more severely affected in 

mice treated during adolescence. Taken together these data highlight the 

vulnerability of the gut microbiota during the critical adolescent period and the long-

lasting impact manipulations of the microbiota can have on gene expression and 

behaviour in adulthood. 
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3.2.2 Introduction 

The adolescent period is a key developmental period which marks the transition from 

childhood to adulthood (Paus et al., 2008). It is during this last developmental stage 

before adulthood that the brain is highly responsive to certain environmental cues 

that will shape neuronal architecture and promote maturation of social behaviours, 

emotional and cognitive capabilities and is hence a vulnerable period for the onset 

of psychiatric diseases (Borre et al., 2014). The gut microbiota composition of an 

adolescent is usually simpler and more unstable when compared with an adult, which is 

highly diverse and stable (Fouhy et al., 2012; Borre et al., 2014). These differences are 

probably due to relative immaturity of the gut microbiota during the adolescence, which 

make it more vulnerable to environmental stressors such as infection, use of antibiotic 

and poor diet. In addition to this, gonadal hormones are peaking during the puberty and 

it has been shown to have a long-term on the microbiota diversity (Paus et al., 2008; 

Yurkovetskiy et al., 2013). Overt changes in the gut microbiota composition might 

therefore contribute to the onset of such disease and could be targeted by the use 

of biotherapeutics, antibiotics or different types of diet to intervene (Borre et al., 

2014; McVey Neufeld et al., 2016). Nonetheless, the consequences of gut microbiota 

manipulation during adolescence are yet to be fully understood. 

The gastrointestinal tract is colonised by trillions of bacteria that are tightly 

associated with host physiology. When the equilibrium of the microbial milieu in the 

gut is shifted it can have long lasting effects on whole-body health including the brain 

and behaviour (Diaz Heijtz et al., 2011; Codagnone et al., 2018; Cryan et al., 2019). In 

mammals, the initial microbiota is obtained during the birthing process and develops 

alongside its host from a rather instable to a highly stable and diverse community in 

adulthood (Borre et al., 2014; Walsh et al., 2014). Microbiota composition during the 

developmental period is shaped by a combination of genetic and environmental 

factors to be highly adapted to the host and the host’s environment (Walsh et al., 

2014). However, maladaptation of the gut microbiota could affect innate and 

adaptative immunological players within the intestine and at site anatomically 

remote such as the brain and alter the host response to infection and vaccination as 

well as increase the susceptibility to brain disorders (Borre et al., 2014; Cowan et al., 
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2019). For example, altered gut microbiota composition can immediately affect brain 

function by impacting the turnover and release of neurotransmitters, hormones as 

well as growth factors and consequently affect behavioural parameters and thereby 

increase the susceptibility to develop neuropsychiatric disorders (Verdu et al., 2006; 

Cryan and Dinan, 2012; Buffington et al., 2016; Leclercq et al., 2017).  

One way to study the perturbation of the gut microbiota during critical periods is by 

using antibiotic-induced depletion. Antibiotics are one of the most important factors 

influencing the gut microbiota composition and structure (Hoban et al., 2016). 

Studies in both female and male mice (Cox et al., 2014; Hoban et al., 2016; Leclercq 

et al., 2017; Ruiz et al., 2017) and children (Ferrer et al., 2017; Korpela et al., 2018) 

have shown that antibiotic administration can induce changes in physiology, brain 

and behaviour. Antibiotic depletion of the microbiota for a defined time period 

represents an advantage in comparison to classic approach such as germ-free (GF) 

animals as the effects of microbiota depletion during the developmental period can 

be avoided (Luczynski et al., 2016; Lundberg et al., 2016). It has been shown, that the 

use of antibiotics to chronically deplete the gut microbiota during adulthood has 

been associated with hormonal changes and alterations in gene expression, 

decreased adult hippocampal neurogenesis, and changes anxiety-related responses, 

exploratory behaviour, and cognitive abilities (Desbonnet et al., 2015; Frohlich et al., 

2016; Hoban et al., 2016). Moreover, early life exposure to antibiotics induces long-

lasting increases in visceral pain responses (O’mahony et al., 2014) as well as altered 

metabolic programming (Cox et al., 2014). We have previously shown that microbiota 

depletion with antibiotics commencing in adolescence all the way through adulthood 

resulted in deficits in anxiety and cognitive behaviour (Desbonnet et al., 2015). It is 

not clear whether such changes are a result of microbiota changes specifically in 

adolescence, in adulthood or a combination.  

Thus, in these experiments we investigated the consequences of gut microbiota 

depletion specifically during adolescence or adulthood and their associated long-

term effects on emotional and cognitive behaviours and related-neurochemical 

measures. 
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3.2.3 Experimental Procedures 

3.2.3.1 Animals and experimental design 
Adolescent and adult male C57Bl/6OlaHsd mice (Envigo, UK) were housed 4 per cage 

in standard cages. All mice were housed in our animal facility and maintained under 

a 12-h light/dark cycle. All experiments were conducted in accordance with the 

European Directive 86/609/EEC. Approval by the Animal Experimentation Ethics 

Committee of University College Cork and Health Products Regulatory Authority 

were obtained before commencement of all experiments. To comply with 3Rs 

(reduction, refinement and replacement) and animal welfare, the adolescent aspect 

of the experiment was run simultaneously with another experiment investigating the 

gut microbiota (Fülling et al., 2020). The same control group was used in this study. 

In order to sufficiently deplete the gut microbiota, a wide-spectrum antibiotic 

cocktail (ABX) consisting of ampicillin (1 g/L, CAS no. 69-52-3), vancomycin (0.5 g/L, 

CAS no. 1404-93-9), ciprofloxacin HCL (0.2 g/L, CAS no. 93107-08-5), imipenem (0.25 

g/L, CAS no. 74431-23-5) and metronidazole (1 g/L, CAS no. 443-48-1) was prepared 

(Fig. 1B) (Hoban et al., 2016; Fülling et al., 2020). All substances were purchased from 

Discovery Fine Chemicals, UK. This antibiotic cocktail has little to no oral 

bioavailability and was prepared freshly with autoclaved water every second day for 

three weeks (Frohlich et al., 2016). Control mice received autoclaved water (CTRL). 

Mice were treated during adolescence (P28-P49) or adulthood (P76-97) and will be 

referred to as ABXadolescence and ABXadulthood, respectively (see 3.2-Fig. 1A). Behavioural 

tests commenced 24 days after the final antibiotic exposure. Mice were equally 

assigned to experimental groups based on bodyweight to ensure equally distribution 

among the groups. Behavioural tests investigating aspects of anxiety, cognition, 

social behaviour and fear conditioning were chosen as these behaviours have been 

shown to be affected by alterations in gut microbiota composition and structure [14, 

41–44]. Tissue samples were collected 24 h after the last behavioural test. Body 

weight was monitored throughout the experiment. The investigators who were 

involved in sample processing and data analysis were blinded to the groups. All 

behaviours were assessed by two independent scorers blind to the groups. See 
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supplemental methods for detailed information of all procedures and analysis run in 

this study. 

 

Fig. 3.1-1: Experimental design and body weight performance during the 

experiment. A Schematic representation of the experimental timeline. Numbers 

represent the age of the mice at that specific timepoint. B List of drugs used for the 

antibiotic cocktail. C, D Changes in body weight during adolescence (C) and adulthood 

(D) over the time course of the experiment. ABX-treated mice show a significant body 

weight loss on PND10 which is restored afterwards. Mean ± SEM. *p < 0.05. Sample 

size for adolescence: CTRL n = 12 and ABX n = 10, adults: CTRL and ABX n = 11. Two-

way repeated measures ANOVA followed by Sidak’s post hoc test. PND: postnatal 

day, CTRL: control, ABX: antibiotic, 3CSIT: three-chambered social interaction test, 

NORT: novel object recognition task, EPM: elevated plus maze, FC: fear conditioning, 

Beh: behavioural test. 

 

 

3.2.3.2 Elevated Plus Maze 
The elevated plus maze (EPM) was used to investigate anxiety-like behaviours 

(Fülling et al., 2020). Mice were allowed to explore the maze for 5 min; the time spent 

in the open arms, as well as the number of entries into the arms and head dips were 

analysed.  



230 
 

 

3.2.3.3 Novel Object Recognition Task 
Novel object recognition task (NORT) is a test for working memory (Desbonnet et al., 

2015). Mice were exposed to two identical objects which they could explore for 10 

min. One hour later they were exposed to a familiar and a new object. The time they 

spent exploring the new object was taken as indication of their memory function. 

 

3.2.3.4 Three-chamber social approach test  
Sociability and social novelty were investigated using the three-chamber social 

interaction test (3CSIT) (Fülling et al., 2020). The test consisted of three sequential 

10-min trials: (1) habituation, (2) sociability, measured as the time the mouse spent 

in proximity to a conspecific or an object and (3) social novelty preference as 

measured by the time the mouse spent with an unfamiliar conspecific or a familiar 

one.  

 

3.2.3.5 Differential fear-conditioning paradigm.  
Fear conditioning (FC) is based on pairing an initially neutral and non-aversive 

stimulus, an auditory cue or context (conditioned stimulus, CS), with an aversive 

stimulus, such as a foot shock (unconditioned stimulus, US), which will result in a fear 

response in the presence of the CS (Verma et al., 2015). The paradigm was run over 

four consecutive days: day 1 (context A): conditioning, day 2 (context A): contextual 

extinction, day 3 (context B): conditioned extinction in a novel context, day 4 (context 

B): context recall.  

 

3.2.3.6 RNA extractions, reverse transcription and quantitative RT-PCR 
Whole amygdala and prefrontal cortex were rapidly gross-dissected on an ice-cooled 

Petri dish following coordinates described in the “The Mouse Brain in Stereotaxic 

Coordinates” (Paxinos and Franklin, 2012) and snap-frozen on dry-ice. These brain 

regions were chosen as they are major contributor to anxiety and fear learning 
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(amygdala) and proper neuronal communication during development (prefrontal 

cortex) (Bravo et al., 2011; Stilling et al., 2015; Hoban et al., 2016; Cowan et al., 2018; 

Stilling et al., 2018). The list of genes was elaborated together with the experimental 

design to assess major components modulated by the gut microbiota, such as 

immune and microglia-related markers, tight junction proteins and myelin- and 

stress-related genes (Stilling et al., 2015; Hoban et al., 2016; Stilling et al., 2018; Cryan 

et al., 2019; Fülling et al., 2020). Additionally, based on the behavioural phenotype, 

we included genes associated with anxiety-like behaviour such as the genes involved 

in the GABAergic and glutamatergic system, NPY system and genes related with 

neuroplasticity (Bravo et al., 2011; Frohlich et al., 2016; Lach et al., 2018; Cryan et al., 

2019; Fülling et al., 2020). Total RNA was extracted with the mirVana total RNA 

extraction kit (Ambion, UK) and RNA was reverse transcribed using a high-capacity 

cDNA reverse transcription kit (Thermo Fisher Scientific, Waltham, USA) in a G-storm 

thermocycler (G-storm, Surrey, UK). Real-time PCR was performed on the cDNA 

samples using SYBR green (SensiFAST™ SYBR®, BioLine, UK) and gene expression 

levels were analysed on an AB7300 system (Applied Biosystems, Thermo Fisher 

Scientific, USA). Expression levels were calculated as the average of three replicates 

for each biological sample from all three groups relative to the endogenous control. 

Fold changes were calculated using the ΔΔCt method (Fülling et al., 2020). The 

expression of the housekeeper ACTB was not affected by ABX treatment or age.  

 

3.2.3.7 Caecal microbiota composition (16S rRNA gene sequecing)  
The QIAmp Fast DNA Stool Mini Kit (Qiagen, Sussex, UK) was used for caecal DNA 

extraction. The procedure was coupled with an initial bead-beating step. 

Amplification and preparation for sequencing of the V3-V4 hypervariable region of 

the 16S rRNA gene was done as outlined in the Illumina 16S Metagenomic 

Sequencing Library Protocol and as previously described (Fülling et al., 2020). Briefly, 

microbial genomic DNA was run with each primer (forward primer 

(5’TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3') and 

reverse primer (5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3'). 
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PCR products were purified using the Agencourt AMPure XP system (Beckman 

Coulter Genomics, UK). Dual indices and Illumina sequencing adapters were attached 

to PCR products using the Nextera XT Index Kit (Illumina, USA). PCR products were 

quantified, normalized and pooled in an equimolar fashion using the Qubit® dsDNA 

HS Assay Kit (Life Technologies, USA). Following, samples were run on the Agilent 

Bioanalyser for quality analysis and samples prepared for sequencing following 

Illumina guidelines. Samples were sequenced on the MiSeq sequencing platform 

(Clinical Microbiomics, Denmark).  

3.2.3.8 Microbiome bioinformatics processing 
Three hundred base pair paired-end reads were prefiltered based on a quality score 

threshold of >28 and trimmed, filtered for quality and chimaeras using the DADA2 

library in R (Callahan et al., 2016). Samples with fewer than 10.000 reads after 

trimming and filtering were dropped. Taxonomy was assigned with DADA2 against 

the SILVA SSURef database release v132. Parameters as recommended in the DADA2 

manual were adhered to unless mentioned otherwise. ASVs that were only detected 

as non-zero in 2 or fewer of total samples were excluded. 

 

3.2.3.9 Statistics 
Power analysis was performed beforehand using the Software G*Power 3.1 to 

ensure adequate sample size number to detect changes in behaviour and gene 

expression. Statistical analysis and plotting were conducted using Prism 7 (GraphPad, 

USA). Data were checked for normality using D’Agostino & Pearson normality test 

and the ROUT method was used to check for outliers. Two-tailed Welch’s t-test was 

used for comparison between ABX treated mice and their respective controls for the 

EPM, NORT as well as context and extinction recall in FC. Two-way analysis of 

variance (ANOVA) was used for 3CSIT and two-way repeated measures ANOVA was 

used to analyse data for body weight as well as acquisition and cued extinction in FC. 

Sidak's multiple comparisons post hoc test was used where applicable. Statistical 

significance was set at p<0.05.  
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Statistical analysis of microbiota data was performed using the R software (version 

3.6) environment with Rstudio (version 1.1.453). Alpha diversity was calculated using 

the iNEXT library (Hsieh et al., 2016).  Wilcoxon Rank Sum followed by Bonferroni 

post hoc tests were used to assess differences in Alpha diversity scores. For principal 

component analysis (PCA), permutational multivariate analysis of variance 

(PERMANOVA) was used to identify relationships of significance between variables 

using the adonis() function from the vegan library on Aitchison distance matrices 

calculated with the ALDEx2 library (Fernandes et al., 2014). A pairwise 

implementation of the ALDEx2 function aldex.t.test() was also used to calculate 

pairwise differential abundance, using the Bonferroni procedure as a post-hoc. In the 

case of microbiome analysis, the benjamini-hochberg procedure was used to account 

for false discovery rate due to multiple comparisons, a q-value of 0.1 was deemed 

significant.  

 

3.2.4 Results 

3.2.4.1 Antibiotic treatment in adolescence affects body weight 
Two-way repeated measures ANOVA showed an overall effect of ABX treatment 

during adolescence on body weight (interaction F(3,48)=3.84, p=0.015, treatment 

F(1,16)=7.18, p=0.017), whereas such an effect was not seen following treatment 

with ABXadulthood (interaction F(3,60)=12.56, p<0.001, treatment F(1,20)=0.11, 

p=0.75; Fig. 3.2-1C, D). Sidak’s multiple comparison, however, revealed that body 

weight was significantly lower in the ABX treatment in both ABXadolescence and 

ABXadulthood mice on day 10 of the treatment (p=0.003 and p=0.05, respectively). 

 

3.2.4.2 Microbial diversity was only affected by ABX treatment during adolescence 
To investigate possible long-lasting effects of ABX treatment during adolescence and 

adulthood on the gut microbiota, microbiota was sequenced from caecal contents 

49 days after termination of the treatment. Overall, sequencing demonstrated that 

microbial diversity and structure was shifted only in ABXadolescence mice (Fig. 3.2-2A-
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C). With regards to beta-diversity PERMANOVA identified significant differences 

between ABXadolescence mice when compared to their controls (p<0.001, R2=0.193, 

padj=0.004; Fig. 3.2-2A), but no such change was observed in ABXadulthood (p=0.029, 

R2=0.071, padj=0.174; Fig. 3.2-2A).  
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Fig. 3.2-2: Long-lasting changes in caecal microbiota composition following ABX 
intervention during adolescence. A PCA blots depicting differences in beta-diversity 
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between mice treated with ABX and their respective controls. While beta-diversity 
was affected by ABXadolescence treatment no such effects were seen following 
ABXadulthood treatment. B alpha-diversity indices: Chao1, Shannon and Simpson. 
Changes in the Chao1 and Simpson indices are observed following treatment with 
ABX during adolescence but not after treatment in adulthood. C Heat map 
representing relative abundance of ASVs. Significant differences were observed 
between control mice and ABX-treated mice during adolescence but not when treated 
during adulthood. Some differences in ASVs were observed when comparing both ABX 
treatments and controls with one another. The latter does not explain the effect on 
relative abundance of ABX treatment during adolescence. Mean ± SEM. *p < 0.05. 
Sample size for adolescence: CTRL n = 12 and ABX n = 10; for adults: CTRL and ABX 
n = 11. A Permutational multivariate analysis of variance (PERMANOVA), followed by 
pairwise PERMANOVA post hoc Benjamini–Hochberg, B Wilcoxon rank-sum test, post 
hoc Bonferroni, *p < 0.05, C Mann–Whitney U test post hoc Benjamini–Hochberg, 
Benjamini–Hochberg false discovery rate (FDR) q < 0.2. Asterisks in the heat map 
represent the following q values: *p < 0.1, **p < 0.01, ***p < 0.001. 

 

Alpha diversity, which describes the diversity of species within a community, was 

measured by calculating indices for richness and evenness based on amplicon 

sequence variants (ASV) level. Figure 3.2-2B shows reduced numbers of bacterial 

species between ABXadolescence and their controls (Chao1 Index; pairwise comparison 

using Wilcoxon rank sum test, p<0.001) while no changes were observed in 

ABXadulthood mice. Moreover, a significant decrease in evenness across ASVs was 

observed in ABXadolescence mice (Shannon Index; pairwise comparison using Wilcoxon 

rank sum test, p<0.001), indicating that treatment with ABX during adolescence 

disrupted the uniformity of the population size of each of the species present. No 

effects of treatment during adolescence or adulthood were observed for the 

Simpson’s index. 

ABX treatment only resulted in significant changes in relative abundance comparing 

ABX treated mice with controls when mice were exposed to ABX during the 

adolescent period. In comparison to control mice, ABXadolescence mice showed reduced 

relative abundance of most of the strains affected. At the phylum level, Firmicutes 

and Bacteriodetes were most affected by the ABXadolescence intervention (Fig. 3.2-2C). 

Changes in the phylum Actinobacteria were restricted to the family 

Coriaobacteriaceae, with increased numbers in the genus UCG002 while the genus 

Enterorhabdus was differentially affected depending on the ASVs. Relative 
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abundance of all the affected genera in the phylum Bacteriodetes was decreased, 

with the strongest reduction in the genera Bacteroides. Firmicutes was the phylum 

most affected by ABXadolescence treatment. Genera in this phylum were differentially 

affected by ABXadolescence treatment. In the family Lachnospiraceae relative 

abundance of all affected ASV of the genera Rosburia, UCG-001, UCG-004, UCG-010, 

FCS020 group and Pseudobutyrivibrio was decreased, whereas at least one ASV form 

the genera UCG-006, NK4A136 group, Lachnoclostridium and Blautia showed 

increased relative abundance following ABXadolescence treatment. Of the affected ASVs 

of the family Ruminococcaceae relative abundance of all the ASVs in the genera UCG-

003, UCG-009, UCG-010 and UCG-013 was decreased while one ASV each of the 

genera Ruminiclostridium 5, Ruminiclostridium 9 and Anaerotruncus was significantly 

increased. Similarly, one ASV of the genus Lactobacillus of the family Lactobacillaceae 

was strongly decreased, whereas another ASV of this genus was strongly increased 

following ABXadolescence treatment. The relative abundance of all affected ASVs of the 

family Family XIII and Eryspelotrihaceae was decreased. The only affected ASV of the 

phylum Proteobacteria was also decreased. No significant effects of ABXadulthood on 

relative abundance were observed. However, differences in relative abundance were 

observed when comparing ABX treated groups or control groups with one another. 

When comparing ABX treated groups, relative abundance of most of the ASVs is 

increased in ABXadulthood mice in comparison to ABXadolescence treated mice and vice 

versa (e.g. ASVs of the genera Parabacteroides and Odoribacter). This is in line with 

the decrease observed in the comparison of relative abundance of ABXadolescence mice 

and their controls. Similarly, the differences seen between the controls of either 

treatment is not in contradiction with the differences observed in relative abundance 

of ABXadolescence mice in comparison to their controls. The differences in relative 

abundance between controls mostly occurred in ASVs that are not affected in the 

ABXadolescence, 14 out of the 25 ASVs that were different between the controls where 

not significantly affected by ABXadolescence treatment (e.g. ASVs of the genus 

Alistipedis). 
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3.2.4.3 Treatment with antibiotics strongly affected anxiety-like behaviour, with a 
more pronounced effect in mice treated during adolescence  
To test effects of ABX treatment on anxiety-like behaviour, mice were tested in the 

EPM. Mice that underwent antibiotic treatment showed increased anxiety-like 

behaviour. Unpaired t-test with Welch’s correction showed that the percentage of 

time into the open arms as well as the number of head dips (t=2.846, p=0.01 and 

t=2.909, p=0.01, respectively; Fig. 3.2-3A, B) were affected significantly in 

ABXadolescence mice. Student t-test showed that the percentage of entries into the open 

arms also was affected significantly in ABXadolescence mice (t=2.529, p=0.02; Fig. 3.2-

3C). Welch’s t-test revealed no statistical significance in the percentage of entries 

into the open arm in ABXadulthood mice (t=1.946, p=0.06; Fig. 3.2-3K). Mann-Whitney 

non-parametric test found that the percentage of time into the open arms as well as 

head dips were no difference in ABXadulthood compared to the controls (U=38, p=0.148 

and U=38, p=0.145, respectively; Fig. 3.2-3I, J). Entries into the closed arm did not 

differ between treatment groups (adolescence: t=0.419, p=0.68; adulthood: t=0.449, 

p=0.65; Fig. 3.2-3D, L), indicating that ABX treatment did not affect locomotor 

activity. 
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Fig. 3.2-3: ABX treatment during adolescence affects anxiety-like behaviour and the 
fear response during fear acquisition. A–D Mice treated with ABX during adolescence 
showed increased anxiety-like behaviour as they showed decreased % time in and % 
entries into the open arm as well as decreased number of head dips. I–L No significant 
decrease in anxiety-like behaviour was seen in mice treated with ABX during 
adulthood. E–H An effect of treatment was seen for the acquisition of fear 
conditioning in mice treated with ABX during adolescence, but no other parameter 
was affected. M–P Treatment with ABX during adulthood had no effect on any 
parameter measured in the fear-conditioning paradigm. Mean ± SEM. A–D, F, H, I–L 
Welsh’s t-test comparison between CTRL and ABX. E, G, M, O two-way repeated 
measures ANOVA, followed by Sidak’s post hoc test when applicable *p < 0.05 and 
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**p < 0.01. Sample size for adolescence (CTRL: n = 9; ABX: n = 10) and adulthood 
(CTRL: n = 11; ABX: n = 11). 

3.2.4.4 Sociability and memory processes were not affected by antibiotic 
treatment in adolescence or adulthood 
As social behaviour and cognition have been shown to be impacted by alterations in 

gut microbiota composition, we investigated the effects of ABX treatment on 

measures in 3-CSIT and NORT. ABX treatment during adolescence or adulthood had 

no effects on sociability or social novelty. Control and ABX treated mice both 

preferred a stranger mouse (S1) over an innate object (O) (two-way repeated 

measures ANOVA, interaction: S1 x O: F(1,17)=52.92, p<0.001, treatment: 

F(1,17)=1.76, p=0.20 for adolescence; interaction: S1 x O: F(1,20)=0.59, p=0.44, 

treatment: F(1,20)=0.013, p=0.90 for adulthood, supplementary Fig. 1B, E, 

respectively). Similarly, no effect of ABX treatment was seen on social novelty, as no 

differences were observed between ABX treated mice and their respective controls 

(two-way repeated measures ANOVA, interaction: S1 x S2: F(1,17)=13.96, p<0.01, 

treatment: F(1,17)=3.03, p=0.09 for adolescence; interaction: S1 x S2: F(1,20)=2.74, 

p=0.11, treatment: F(1,20)=0.61, p=0.44 for adulthood, supplementary Fig. 1C, F, 

respectively)  

In the NORT, neither ABXadolescence or ABXadulthood exhibited differences in the ability to 

recognize a distinct object one hour after the training session, expressed by the time 

exploring the novel object (adolescence: t=1.233 df=16.47, p=0.23; adulthood: 

t=0.5288 df=16.77, p=0.60, supplementary figure 2A, D).  

 

3.2.4.5 Fear learning is only affected in animals treated with antibiotics during 
adolescence  
Fear conditioning aimed to investigate different fear responses, such as fear learning, 

contextual fear, and cued extinction (Fig. 3.2-3E-H, M-P). All experimental groups 

learned the task as indicated by increasing freezing behaviour during acquisition 

(two-way repeated measures ANOVA; CS presentation, adolescence: F(4,68)=38.11, 

p<0.001; adulthood: F(4,80)=27.36, p<0.001; Fig. 3.2-3E, M). Only ABXadolescence mice 

significantly increased freezing behaviour compared to the control group during fear 
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acquisition, while in adults, ABX did not affect fear acquisition (two-way repeated 

measures ANOVA; treatment, adolescence: F(1,17)=4.48, p=0.04; adulthood: 

F(1,20)=0.17, p=0.67). Sidak’s multiple comparison post hoc test did not find a 

significance between CTRL and ABX in any timepoint in both adolescence and adults 

mice. On day 2, contextual fear was assessed. Unpaired t-test with Welch’s correction 

revealed that the treatment did not affect freezing behaviour in adolescent mice 

(t=1.70, p=0.10; Fig. 3.2-3F). Student t-test revealed the same in adult mice (t=0.73, 

p=0.47; Fig. .2-3N). In the cued extinction session (day 3), the response to the CS 

(paired sound) was analysed. All experimental groups reduced their freezing 

response over the course of CS presentation (CS presentation, two-way repeated 

measures ANOVA adolescence: F(4,68)=18.03, p<0.001, adulthood: F(4,80)=15.15, 

p<0.001; Fig. 3.2-3G, O), suggesting that all experimental groups were able to 

extinguish cued fear. Fear extinction was not affected by treatment (two-way 

repeated measures ANOVA; adolescence: F(1,17)=0.095, p=0.76, adulthood: 

F(1,20)=0.11, p=0.74). Pre and post CS freezing were similar in ABX treated mice 

compared to their controls (Welch’s t-test; adolescence; pre: t=0.36, P=0.72; post: 

t=0.61, p=0.54; adulthood; pre: t=0.22, p=0.82; post: t=0.15, p=0.88), indicating the 

absence of generalized fear. Fear recall was tested on day four and no difference was 

observed (Welch’s t-test; adolescence: t=0.86, p=0.39, adulthood t=0.93, p=0.36; Fig. 

3.2-3H, P). Taken together, this data show that transient depletion of the gut 

microbiota has little potential to long-lasting affect fear response.  

 

3.2.4.6 Amygdala gene expression is more strongly affected by treatment during 
adolescence than adulthood 
Many studies have demonstrated a link between the gut microbiota and gene 

expression in the amygdala [52, 58]. In amygdala homogenates, mRNA levels 

revealed a stronger effect of ABXadolescence than ABXadulthood treatment (Fig. 3.2-4 and 

Table 1). The immune response was heavily affected by ABX treatment during 

adolescence and adulthood (Fig. 3.2-4A, E). For instance, elevated levels of Fcgr2b 

(Fc Fragment of IgG Receptor IIb) gene were observed in both ABXadolescence and 

ABXadulthood mice. The toll-like receptor 4 gene (Tlr4) was oppositely affected by ABX 
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treatment with elevated gene expression following ABXadolescence treatment and 

reduced expression after ABXadulthood treatment. In contrast, interleukin 1b (Il1b) was 

elevated following ABXadulthood treatment but not following ABXadolescence treatment, 

while the microglia-related gene C1qa (encodes the A-chain polypeptide of serum 

complement subcomponent C1q) and Cx3cr1 (interleukin 8 receptor, alpha) were 

only upregulated in ABXadolescence mice. Rac2 (Rho GTPase Rac2), which regulates 

phagocytosis was upregulated in both experimental groups. The complement 

component 3 (C3) which is also involved in the regulation of phagocytosis, was only 

upregulated in ABXadulthood mice. Classical and peptidergic neurotransmission was 

strongly affected by ABXadolescence treatment but remained mostly unaltered in 

ABXadulthood mice (Fig. 3.2-4B, F). The levels of gamma-aminobutyric acid receptor 

subunit alpha-2a (Gabra2) and beta-1b (Gabrb1), the metabotropic glutamate 

receptor subunit 5 (Grm5), neuropeptide Y (NPY) and its Y1 receptor (Npy1r) and the 

glucocorticoid receptor (Nr3c1) were only increased in ABXadolescence mice. The 

corticotropin-releasing hormone receptor subunit 1 (Crh1r) was the only gene 

affected in ABXadulthood mice, that was not altered by ABXadolescence treatment. 

Neuroplasticity genes were differently affected by ABXadolescence and ABXadulthood (Fig. 

3.2-4C, G). While the levels of postsynaptic density protein 95 (Psd95) and 

synaptophysin (Syp) were increased in ABXadolescence mice, these genes were 

downregulated following ABXadulthood treatment. Interestingly, genes associated with 

short chain fatty acids (SCFAs), the solute carrier subtypes (Slc5a8 and Slc16a1) were 

only elevated in ABXadolescence mice. Similarly, the gene expression of tight junction 

genes, such as occludin (Ocln) and tight-junction protein 1 (Tjp1) were only increased 

in ABXadolescence mice. Taken together, although more genes are affected in 

ABXadolescence, immune-related genes are similarly affected by both ABX treatments. 
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Fig. 3.2-4: Amygdalar gene expression is more drastically changed following ABX 
treatment during adolescence. A, B While genes related to neuroimmunity and 
microglia are similarly affected in ABXadolescence and ABXadulthood mice, gene 
expression genes involved in C, D neurotransmission, E, F neuroplasticity, short-chain 
fatty acids and tight-junction proteins are more drastically affected in 
ABXadolescence mice. Mean ± SEM. Unpaired t-test with Welch’s correction 
comparing vehicle and antibiotic treatment for each gene. *p < 0.05, **p < 0.01 and 
***p < 0.001. Sample size for adolescence: CTRL and ABX n = 8 (Il10, Il1b, Gabra2, 
Gabbr1, Npy1r, Psd95 and Tjp1), CTRL n = 8 and ABX n = 9 (Fcgr2b, Cx3cr1, Rac2, C3, 
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C1qa, Grm5, Chr1r, Npy, Syp, Ffar1, Slc5a8, Slc16a1, Ocln), CTRL n = 9 and ABX n = 8 
(Tlr4), CTRL and ABX n = 9 (Nr3c1). Sample size for adults: CTRL and ABX n = 9 (Fcgr2b, 
Il1b, Cx3cr1, Rac2, C3, Gabra2, Gabbr1, Grm5, Crh1r, Npy1r, Psd95, Syp, Ffar1, Slc5a8, 
Ocln, Tjp1), CTRL n = 10 and ABX n = 9 (Il10, Tlr4, Nr3c1, Slc16a1), CRTL n = 9 and ABX 
n = 8 (C1qa, Npy). SCFA: short-chain fatty acid, C1qa: complement C1q subunit A, C3: 
complement component 3, Crh1r: corticotropin-releasing hormone receptor 1, 
Cx3cr1: chemokine receptor 1, Fcgr2b: Fc fragment of IgG receptor IIb, Ffar1: free 
fatty acid receptor 1, Gabrb1: gamma-aminobutyric acid type B receptor subunit 1, 
Gabra2: gamma-aminobutyric acid type A receptor alpha2 subunit, Grm5: glutamate 
metabotropic receptor 5, Il1b: interleukin 1b, Il10: interleukin 10, Npy: neuropeptide 
Y, Npy1r: neuropeptide Y receptor Y1, Nr3c1: glucocorticoid receptor, Ocln: occludin, 
PSD95: postsynaptic density protein 95, Rac2: Ras-related C3 botulinum toxin 
substrate 2, Slc5a8: solute carrier family 5 member 8, Slc16a1: solute carrier family 
16 member 1, Syp: Synaptophysin, Tjp1: tight-junction protein 1, Tlr4: toll-like 
receptor 4. 

 

 

Finally, we analysed myelination-related genes in the prefrontal cortex, which have 

been suggested to be modulated by the gut microbiota [38, 59]. Therefore, we 

analysed gene expression of myelin regulatory factor (Myrf), proteolipid protein 1 

(Plp1) and the transcription factor SOX-10 (Sox10). ABXadulthood treatment resulted in 

increased gene expression of Myrf and Sox10 while ABXadolescence showed no effects 

(Supplementary Fig. 2A-B). 
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3.2.5 Discussion 

Adolescence is a particularly vulnerable time for the onset of psychopathology. 

Understanding what factors mediate such susceptibility is an important area in 

biological psychiatry research. In the present studies we assessed the long-term 

effects of transient gut microbiota depletion using an ABX cocktail in mice during 

adolescence or adulthood. ABXadolescence had long-lasting effects on composition and 

structure of the gut microbiota and anxiety-like behaviour, whereas ABXadulthood had 

no effects. This long-lasting shift in the gut microbiota when depleted during 

adolescence highlights the vulnerability of the gut microbiota during development 

and may be responsible for the anxiety-like phenotype and pronounced changes in 

gene expression within the amygdala observed in ABXadolescence mice. To our 

knowledge, this is the first study demonstrating that the long-lasting effects on gut 

microbiota only occur when treated during a critical developmental period.  

In mammals, the initial microbiota is acquired during the birthing progress and is 

shaped during the developmental period by genetics and environmental factors until 

early adulthood (Borre et al., 2014; Ruiz et al., 2017; Korpela et al., 2018). During this 

developmental process, the gut microbiota adapts to its host’s needs and becomes 

increasingly stable and resistant to challenges such as ABX treatment or transient 

changes in diet. Here, we observed long-lasting changes in alpha- and beta-diversity 

as well as relative abundance of the gut microbiota following exposure to 

ABXadolescence treatment only. ABX intervention during early development is 

characterized by long-lasting shifts in gut microbiota composition (Borre et al., 2014; 

Cowan et al., 2019) and exposure to ABX during adulthood drastically shifts gut 

microbiota composition and structure (Cox et al., 2014; Hoban et al., 2016; Leclercq 

et al., 2017; Ruiz et al., 2017). It is not surprise that the rearrangement of the 

microbiota composition is age dependent (Boehme et al., 2019). Increased stability 

and maturity of the gut microbiota in adulthood is likely to have prevented long-

lasting effects of ABXadulthood treatment and buffers some effects of ABX treatment, 

which could explain why behavioural and gene expression changes were only 

observed in ABXadolescence mice. 



246 
 

Many studies have described the interaction between gut microbiota depletion 

either by ABX treatment or in GF mice and alterations in behaviour (Desbonnet et al., 

2015; Frohlich et al., 2016; Hoban et al., 2016; Cryan et al., 2019). Here, we observed 

a statistically significant increase in anxiety-like behaviour in the EPM in ABXadolescence 

mice but not in ABXadulthood mice, reproducing the pattern that was observed for 

changes in microbiota composition and structure. The role of gut microbiota 

depletion in anxiety, however, is controversial with studies describing a reduction of 

anxiety-like behaviours (Bercik et al., 2011; Desbonnet et al., 2015), no effect 

(Frohlich et al., 2016; Hoban et al., 2016) or an anxiolytic effect following microbiota 

depletion (Leclercq et al., 2017). Firmicutes, Actinobacteria and Bacteroides are 

known to affect anxiety levels, with lower abundance being associated with elevated 

anxiety-like behaviour in rodents and humans (Bercik et al., 2011; Bravo et al., 2011), 

which is in line with the changes in gut microbiota composition observed in 

ABXadolescence mice. In particular, we found Lacotbacillus acteroides and 

Lachnospiraceae NKA136 reduced in ABXadolescence mice.  

 

 

 Indeed, the stronger effect observed in adolescent mice over adults may have been 

influenced by sex hormones peaking during adolescence. Preclinical studies in males 

suggest that testosterone yields protective benefits against anxiety [79] while 

decreased levels of testosterone is associated with significantly higher prevalence of 

anxiety disorders in men, compared to those with normal levels [80–82]. Moreover, 

high levels of testosterone during the adolescence is known to influence the 

commensal bacteria Firmicutes/Bacteroides ratio [8, 67, 68]. Therefore, the 

depletion of the gut microbiota during a critical developmental window itself has 

impaired the natural interaction between the testosterone and commensal bacteria 

that, together with the enduring shift in microbiota composition and structure are 

likely to have contributed to the increased anxiety-like behaviour in ABXadolescence 

mice. 
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In addition, it has previously been found that administration of probiotics containing 

Lactobacillus (Firmicutes) correlates with the expression of Gabrb1 within the 

amygdala, an effect that has been shown to be influenced by vagal communication 

[49, 83]. Given that Gabrb1 is strongly reduced in mice treated with ABX during 

adolescence but not during adulthood this data suggest that alterations in gut 

microbiota composition induced by ABX treatment plays a role in GABA receptor 

expression in the amygdala which translates in behavioural alterations.  

Interestingly, despite the body of literature showing that the gut microbiota is 

implicated in social behaviour or cognitive abilities [28, 36–38, 60, 64, 84–88], we did 

not observe any overt effect of ABX treatment in the three chamber task nor the 

novel object recognition task suggesting that with the parameters we used these 

phenotypes are not responsive to long-lasting effects of gut microbiota depletion. 

Moreover, it has been shown that deficient synaptic pruning, which is associated with 

weak synaptic transmission and decreased functional brain connectivity is correlated 

with deficits in social interaction and other neuropsychiatric disorders [89]. These 

failure in the synaptic connectivity is due to lack of activity of the Cx3cr1 gene [89, 

90]. Since Cx3cr1 here was found upregulated, this is probably play locally role on 

brain inflammatory response which is not directly associated with sociability.  In 

addition, fear conditioning which has previously been shown to be modulated by 

microbiome manipulations [42, 49, 91] was only marginally affected by gut 

microbiota depletion as only ABXadolecence mice showed increased freezing behaviour 

during fear acquisition, indicating that learning and memory indeed is not overtly 

influenced by ABX treatment. 

Changes in gut microbiota composition and structure have been linked to changes in 

gene expression in the brain [92]. Here we focused on the amygdala to understand 

to which extent changes in gene expression could underly the differences observed 

in the anxiety-like behaviour. Gene expression in the amygdala was more drastically 

affected in ABXadolescence mice, with twice as many genes of those tested affected 

compared to ABXadulthood mice. Despite the highest prevalence of overall gene 

expression changes in ABXadolescence, the administration of ABX induced similar 

disturbance for genes involved in neuroimmunity reponse in ABXadolescence and 
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ABXadulthood mice. Gene expression of various genes related to microglial-mediated 

phagocytosis and components of the innate immune system were strongly affected. 

Given the importance of microglia in the normal brain function, it is not surprising 

that these genes have been associated with the ABX treatment. The microglia-related 

genes Fcgr2b and Rac2 were upregulated in both groups, while Cx3cr1 and C1qa were 

elevated only in ABXadolescence mice, confirming a role for microbiota recolonization 

observed in ABXadulthood (but not in ABXadolescence) with restored microglia features 

[90]. It has been suggested that elevated levels of the Cx3cr1 ligand CX3CL1 is 

associated with pro-neurogenic response by altering the environment in which new 

cells are born [93], suggesting that together with C1qa, Cx3cr1 are playing a role in 

the prevention of chronic inflammation induced by the gut microbiota depletion. In 

fact, microglia seems to keep engulfing apoptotic debris even after antibiotic 

treatment [94], which together with elevated Tlr4 expression followed by 

ABXadolescence treatment could indicate certain level of neuroinflammation has been 

occurring without the participation of the cytokines. In addition, it is well known that 

SCFAs directly affect immune response with the intention to maintain homeostasis 

by finetuning microglial function and production of inflammatory cytokines, further 

suggesting that the overexpression of the SCFAs transporters Slc5a8 and Slc16a1 in 

the amygdala of ABXadolescence mice could be related with the microbiome-derived 

factors that are involved in modulate adaptive immune responses in  the brain.  

C3 is a downstream member of the component cascade with an extremely versatile 

role that it is not restricted to immune responses but also in tissue regeneration and 

synapse pruning [95]. Interestingly, C3 and Il1β were elevated only in ABXadulthood. This 

could suggest that neuronal loss and consequently cognitive deficits associated with 

long-term depression caused by C3 could have been counteracted by production of 

Il1β, a cytokine with a neuromodulatory role on neurogenesis [96].  

Tight junction proteins at the blood-brain barrier are known to be regulated by the 

gut microbiota, where the decreased expression of these proteins are associated 

with an increase in blood-brain barrier [97–99]. Although gut depletion is necessary 

to promote tight junction protein changes in the brain, the direction of these changes 

is dependent of the brain region and protein tested. Herein, we observed an 
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upregulation of amygdalar Tjp1 and Ocln only in ABXadolescence mice, confirming the 

role of depleted gut microbiota on brain permeability [37, 99]. Moreover, this study 

also showed that natural recolonization of the gut microbiota is enough to normalize 

the functionality of the information transfer between the gut and brain. Taken 

together, our findings show that the immunological markers changed in ABXadolescence 

and ABXadulthood mice are not a result of a brain leakage through the blood-brain 

barrier but probably due to local synthesis or volume diffusion into the brain at the 

circumventricular organs that lack a blood-brain barrier [100, 101]. 

When examining the pattern of expression of genes involved in neurotransmission it 

was clear that they were more strongly affected in ABXadolescence than ABXadulthood 

mice. Gabra2, Gabrb1, Grm5, Npy, Npy1r and Nr3c1 were upregulated in the 

amygdala of ABXadolescence mice, while Crh1r was the only gene affected in ABXadulthood 

mice. Elevated levels of Crh1r in brain regions like the hypothalamus and the 

hippocampus are usually found immediately after ABX treatment or in GF mice [12, 

38] while downregulation of the transcription levels of Crh1r has been found after 

biotherapeutics or SCFA treatment in stressed animals [102, 103] and could explain 

why we see altered Crh1r expression in ABXadulthood mice. In addition, NPY and 

activation of NPY1R are known to promote stress resilience and have anxiogenic 

effects [104–109]. NPY locally influences GABAergic activity through NPY1R, and both 

were found to be upregulated in chronic stress events [108, 109], in line with the 

results observed in ABXadolescence mice. In fact, evidence suggest that the gut 

microbiota may contribute to resilience after repeated stress [110–113]. For 

instance, it has been shown that chronic stress significantly improve the gut 

microbiota diversity in antibiotic-treated mice and neutralize not only stress-inducing 

anhedonia phenotype as well blood levels of inflammatory markers, suggesting that 

the development of susceptibility to stress in mice is subjected to the gut microbiome 

composition [110, 113].  

Interestingly, genes related with neuroplasticity, postsynaptic density protein 95 

(Psd95) and synaptophysin (Syp) were oppositely affected by ABXadolescence and 

ABXadulthood, suggesting a direct role of the gut microbiota composition on the 

expression of these genes. A recent study has shown that depletion of the gut 
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microbiota drastically elevated the levels of such genes in the brain [113], whereas 

restoration of the gut microbiota normalizes the levels of Syp and Psd95 [15]. 

Therefore, the upregulated expression of these genes in ABXadolescence mice could be 

due to the long-lasting shift in microbiota composition and structure, whereas the 

decrease observed in ABXadulthood mice might come from an exaggerated 

downregulation of these genes due to a possibly overexpression during the gut 

microbiota depletion period. 

Unexpectedly, ABXadulthood treatment seems also to play a role in myelin-related gene. 

Recent studies have shown upregulation of myelination-related genes in the PFC of 

animals with disrupted gut microbiota, suggesting a role for the gut microbiota in the 

formation of myelin [50, 114]. Our study indicates that depletion of the gut 

microbiota does not exclusively affect myelination during critical developmental 

periods but can also influence myelination-related gene expression in adulthood. 

Whether these changes in gene expression translates to altered myelination, 

however, still needs to be investigated. 

Overall, this study highlights vulnerability of the gut microbiota during the adolescent 

period and the importance of the microbiota during the developmental period in 

shaping its host’s microbiota, brain and behaviour. Adolescence is a time where the 

body and brain are in dramatic shift, facing a handful of stressful experiences such as 

unstable hormones and changes in functional connectivity in the brain. Taking into 

account the role of the gut microbiota in the brain and sexual hormones, adolescence 

is a sensitive period where minimal interventions have a huge impact that may be 

carried to life. Future studies are needed to determine if the behavioural effects are 

driven by the discrete genes in gene expression in the amygdala. Further, 

understanding what pathways of communication between the gut and the brain are 

responsible for such changes at this time period are also required (eg. vagus nerve) 

[115, 116]. Moreover, whether the effects seen can be reversed, ameliorated or even 

worsened by specific dietary interventions would be of further interest to investigate 

[40, 117]. Finally, as adolescence is a time for antibiotic usage clinically [118] and its 

use is epidemiologically relevant to the risk of several psychiatric conditions [119], 

the results presented here support the need for further studies investigating their 
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impact and their long-term effects on the microbiota and associated risks to the brain 

function and behaviour.  
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3.3.1 Abstract 

There is considerable interest in the contribution of microbiota-gut-brain signalling 

in integrative physiological systems, which has recently extended to 

cardiorespiratory control. Chronic antibiotic strategies to reduce the microbiota are 

commonly employed. However, the optimal approach to normalise the gut 

microbiota, and interactions that occur during efforts to recolonise the gut 

microbiota after significant microbial perturbations, are currently unknown.  

 

In adult male rats, we sought to characterise the effects of prebiotics, faecal 

microbiota transfer and natural recolonisation on the gut microbiota after 4-week 

administration of a cocktail of antibiotics or vehicle. 16S sequencing of the caecal 

contents was performed for microbiota analysis. Furthermore, high-performance 

liquid chromatography and whole-body plethysmography was used to assess 

brainstem neurochemistry and respiratory control, respectively. 

  

Using a compositionally appropriate approach, an interaction was found between 

antibiotics and prebiotics for the colonisation rate of Blautia, as well as five functional 

modules in the microbiota. Blautia was found to be responsible for a large partition 

of these modules. Modulation of the gut microbiota caused significant disruptions to 

brainstem monoamine neurochemistry, but had no major effect on respiration 

during room air breathing or in response to hypoxic or hypercapnic 

chemostimulation.   

 

Natural recolonisation appears the optimal approach to restore the gut microbiota 

following antibiotic administration in rodents.  Blautia was shown to only colonise 

the caecum following antibiotic administration, in the subsequent presence of 

prebiotics. We posit that these findings have significant implications for studies 

employing manipulation of the gut microbiota, with potential relevance to clinical 

settings.  
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3.3.2 Introduction 

 

The gut microbiota defines an extensive community of numerous commensal, 

pathogenic and symbiotic microbes that reside within the gastrointestinal tract. This 

ecosystem includes bacteria, archaea, viruses and fungi. It is estimated that the 

gastrointestinal bacterial population establishes a ratio of host:bacterial cells 1:1 

(Sender et al., 2016). The gut microbiota is influenced throughout life by various 

factors including life-style, hormones, ageing, stress, health status, environment, 

medication, amongst others (Woodmansey, 2007; O'Mahony et al., 2011; Albenberg 

and Wu, 2014; Panda et al., 2014; Golubeva et al., 2015; Kelly et al., 2015; Foster et 

al., 2017; Boehme et al., 2019). Extensive evidence suggests that the gut microbiota 

plays a fundamental role in whole-body health and disease (Cryan and O'Mahony, 

2011; Grenham et al., 2011; Kelly et al., 2016; Sarkar et al., 2016; Kelly et al., 2017). 

Studies in rodents display that aberrant gut microbiota is associated with numerous 

maladies, including anxiety, depression and cardiorespiratory pathologies (Kelly et 

al., 2015; Burokas et al., 2017; Ganesh et al., 2018; O'Connor et al., 2020). Similarly, 

disrupted gut microbiota is increasingly associated with a broad range of human 

diseases such as cardiovascular disease, obesity and inflammatory bowel 

disease/syndrome (Benjamin et al., 2012; Burke et al., 2017; Yan et al., 2017). It is 

widely accepted that antibiotic administration, in rodents and humans, damages the 

natural gut microbiota composition and diversity (Blaser, 2016; Gasparrini et al., 

2016; Haak et al., 2019; O'Connor et al., 2019). Despite this, best practice for 

remediation of the antibiotic-depleted gut microbiota in rodent models and in 

standard clinical practice is unknown (Gagliardi et al., 2018; O'Connor et al., 2019; 

Wilson et al., 2019).  

 

In rodents, broad spectrum antibiotics are routinely used to investigate the role of a 

depleted gut microbiota on integrative body systems (Hoban et al., 2016; Galla et al., 

2018; O'Connor et al., 2019). Normalisation or beneficial expansion of the gut 
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microbiota following antibiotic administration would benefit investigations aiming to 

tease out associations between the gut microbiota and brain/physiological functions. 

Furthermore, mounting evidence suggesting a casual role of aberrant gut microbiota 

in disease has led to the necessity to develop targeted therapeutic approaches to 

restore or beneficially promote the microbial composition. Among these, faecal 

microbiota transfer (FMT) has demonstrated a profound capability to shift the gut 

microbiota in rodents and in patients (Mullish et al., 2015; Suez et al., 2018; Wilson 

et al., 2019). FMT studies in rodents, using a variety of transplantation methods, aim 

to assess if ‘restoration’ of the gut microbiota reverses abnormal brain behaviours, 

such as depression, anxiety and cardiorespiratory impairments (Kelly et al., 2015; 

Burokas et al., 2017; O'Connor et al., 2019). In recent years, FMT has been widely 

used as a treatment for recurrent Clostridium difficile infections in patients, and 

advances have been made in other chronic diseases (Wilson et al., 2019). Prebiotics 

are another method of microbiota modulation. Prebiotic fibres are fermented in the 

gut and produce specific changes in bacterial composition, promoting the growth of 

beneficial gut microbes (Gibson et al., 2010).  Prebiotics have recently been included 

in the definition of ‘psychobiotics’ and have effects on emotional, central and 

systemic functions in rodents and in clinical populations (Sarkar et al., 2016).  We 

explored whether the gut microbiota, depleted as a result of broad spectrum 

antibiotics, could be restored or beneficially expanded through the use of 

intervention strategies known to modulate the gut microbiota and/or by natural 

recolonisation. Furthermore, we examined the effects of altered gut microbiota on 

the control of breathing, given that we previously reported that disruption to the gut 

microbiota was associated with respiratory dysfunction, which was related to 

reported disturbances in brainstem neurochemistry (O'Connor et al., 2019).  
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3.3.3 Materials and Methods  

3.3.3.1 Ethical approval  
Procedures on live animals were conducted under licence from the Government of 

Ireland Department of Health (B100/4498) in accordance with National and 

European directive 2010/63/EU. Ethical approval was obtained from University 

College Cork (AEEC #2013/035) and procedures were carried out in accordance with 

guidelines laid down by University College Cork’s Animal Welfare Body. 

Fig. 3.3-1 Experimental setup. Schematic representation of the experimental design 
utilised in this study. 

 

3.3.3.2 Experiment animals 
Ten-week old adult male Sprague Dawley rats (n=60; purchased from Envigo, UK) 

were housed as age-matched pairs in standard rat cages under a 12-hour light: 12-

hour dark cycle.  Rodents had ad libitum access to standard rat chow.  
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3.3.3.3 Antibiotic administration 
Rats were randomly allocated to receive autoclaved deionised water (vehicle, VEH; 

n=30) or a cocktail of antibiotics (ABX; n=30) for 4-weeks. In an effort to deplete the 

microbiota, broad–spectrum antibiotics including ciprofloxacin (20 mg/l), imipenem 

(250 mg/l), ampicillin (1 g/l), vancomycin (500 mg/l) and metronidazole (1g/l) in 

autoclaved deionised water were utilised. Water bottles were replenished every 

second day. Rat body weights, water consumption and food intake were recorded 

every other day. Fresh bedding was transferred to ABX rats every second day.  

 

3.3.3.4 Collection and processing of microbiota for faecal microbiota 
transplantation 
Faecal microbiota was obtained from the pooled faeces of 3 VEH rats. Faeces was 

collected and processed as previously described (O'Connor et al., 2019). 

 

3.3.3.5 Prebiotic and FMT administration  
Rats consuming broad spectrum antibiotics for 4-weeks remained on antibiotics for 

an additional 31 days (ABX-ABX; n=10) or received a washout period of autoclaved 

deionised water for 3 days. Following the washout period, rats remained on 

autoclaved deionised water (ABX-NAT; n=10) or were transferred to prebiotics (PREB; 

7.5 g/L of galactooligossacharides and fructooligosaccharides) in autoclaved 

deionised water for 4-weeks, with or without FMT administration (ABX-PREB-FMT, 

n=10; ABX-PREB, n=10, respectively), as previously described (O'Connor et al., 2019; 

O'Connor KM, 2020). After 31 days, rats assigned to vehicle administration continued 

to receive water (VEH-VEH; n=10) or were transferred to prebiotics (VEH-PREB; n=10) 

for 4-weeks. Rat body weights, water consumption and food intake were recorded 

every other day. Fresh bedding was transferred to ABX-ABX cages every second day.  

Bedding was changed for all other cages weekly; VEH-VEH, VEH-PREB and ABX-NAT 

cages were transferred to fresh bedding. In order to promote host microbiota 

establishment, ABX-PREB and ABX-PREB-FMT cages received bedding from VEH-

PREB and VEH cages, respectively. 



258 
 

 

3.3.3.6 Assessment of respiratory flow and metabolism in the unrestrained rat 
during quiet rest 

3.3.3.6.1 Whole-body plethysmography  
In unrestrained rats during quiet rest, whole-body plethysmography (DSI, St. Paul, 

Minnesota, USA) was used to record respiratory flow recordings. Rats were 

introduced into custom plethysmograph chambers (601-1427-001 PN, DSI). Room air 

moved through the chambers (3l/min) ensuring adequate oxygen (O2) and carbon 

dioxide (CO2) environmental conditions. Rats were allowed to settle for 30-90 min to 

encourage habituation to the surroundings.  

 

3.3.3.6.2 Metabolic measurements 
CO2 production (VCO2) and O2 consumption (VO2) were measured in rats throughout 

the protocol (O2 and CO2 analyser; AD Instruments, Colorado Springs, CO, USA) as 

previously described (Haouzi et al., 2009; Bavis et al., 2014; Lucking et al., 2018). 

3.3.3.6.3 Experimental protocol 
Following the acclimation period, baseline parameters were assessed during a 10-15-

min steady-state normoxia period (FiO2 = 0.21; balance N2). This was followed by a 

10-min poikilocapnic hypoxia challenge (FiO2=0.10; balance N2). Each rat was re-

exposed to normoxia to re-establish stable basal breathing. Subsequently, animals 

were exposed to a 10-min hypercapnia challenge (FiCO2 = 0.05; balance O2) followed 

by a recovery period.  

 

3.3.3.6.4 Data analysis for whole-body plethysmography 
Respiratory variables including respiratory frequency (fR), minute ventilation (VI), 

tidal volume (VT), expiratory time (Te) and inspiratory time (Ti) were recorded on a 

breath-by-breath basis for analysis (FinePointe software Buxco Research Systems, 

Wilmington, NC, USA). Artefacts in respiratory flow signals relating to animal 

movement and sniffing were omitted from analysis. A steady-state normoxia period 
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was averaged to assess baseline respiratory and metabolic parameters. Ventilatory 

and metabolic data were reported for the final 5-mins of the acute poikilocapnic 

hypoxic and hypercapnic challenges allowing for adequate gas mixing in the 

plethysmograph chambers ensuring steady-state assessment of respiratory and 

metabolic parameters. Data are expressed as a change in absolute from baseline 

values. Respiratory flow signals were examined for the occurrence of augmented 

breaths (sighs) during normoxia, hypoxia and hypercapnia as well as for apnoea 

events (spontaneous and post-sigh apnoeas) during normoxia as previously 

described (Edge et al., 2012). The criterion for apnoea was a pause in breathing for a 

duration greater than two consecutive missed breaths. Apnoea data are expressed 

as apnoea index (apnoea events per hour). A sigh was defined as an augmented 

breath twice the amplitude of the average VT. Poincaré plots expressing breath-to-

breath (BBn) versus subsequent breath-to-breath interval (BBn+1) were constructed 

allowing for determination of respiratory timing variability during steady-state 

baseline bouts and hypoxic and hypercapnic challenges. VT, Vi, VT/Ti, VO2 and VCO2 

were normalised per 100g body mass. 

 

3.3.3.7 Tissue collection  
Animals were euthanised by decapitation under isoflurane anaesthesia (5% by 

inhalation in room air). Blood was collected immediately, prepared in 3% Na2EDTA 

(disodium salt dehydrate) and centrifuged (14,000g for 20 min at 4 °C) for 

subsequent analysis. Plasma was snap frozen in liquid nitrogen. Whole brains were 

harvested and frozen at -80°C isopentane for subsequent high-performance liquid 

chromatography analysis. The lungs were removed and weighed and were allowed 

to air dry at 37°C for at least 48 h and re-weighed. The faeces from the colon as well 

as the caecum were harvested. The caecum was weighed and caecal contents were 

quickly removed and snap frozen in liquid nitrogen. The heart was removed and the 

right ventricle and left ventricle and septum were separated and weighed.  
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3.3.3.8 Brainstem monoamine concentrations 

3.3.3.8.1 High-performance liquid chromatography (HPLC) coupled to 
electrochemical detection for measurement of pons and medulla oblongata 
monoamine concentrations 
The brainstem was dissected from the brain and separated into two distinct regions, 

pons and medulla oblongata at -20˚C. The pons and medulla oblongata were 

sonicated (Bandelin Sonolus HD 2070) in 1 ml of chilled mobile phase, spiked with 

2ng/20μl of a N-methyl 5-HT (internal standard). High-performance liquid 

chromatography coupled to electrochemical detection was performed as previously 

described (Lucking et al., 2018; O'Connor et al., 2019). Noradrenaline (NA), dopamine 

(DA), serotonin (5-HT), monoamine precursor L-3,4 dihydroxyphenylalanine (L-DOPA) 

and metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) 

were quantified. Each monoamine, precursor and metabolite was identified by its 

characteristic retention times. Standard injections were run at intervals during 

sample analysis. 

 

3.3.3.8.2 Data analysis 
Chromographs were processed using Class-VP5 software. Concentrations of 

monoamines, precursors and metabolites were determined using analyte:internal 

standard peak response ratios. Data are expressed as nanograms of 

neurotransmitter per gram of tissue weight (ng/g). 

 

3.3.3.9 Plasma corticosterone concentrations 
Plasma samples were thawed and concentrations of corticosterone were determined 

using commercially available enzyme-linked immunosorbent assay kit (ENZO Life 

Sciences, UK) according to the manufacturer’s instructions. A spectrophotometer 

(SpectraMax M3, Molecular devices) was used to read absorbance for the assay. 
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3.3.3.10 16S rRNA sequence-based microbiota composition and diversity analysis 
in caecal content  

3.3.3.10.1 DNA extraction from caecal matter 
DNA was extracted from caecal matter as previously described (Gough et al., 2018).  

 

3.3.3.10.2 16S rRNA Gene Sequence-based microbiota analysis. 
Primers were used to prepare the 16S metagenomic libraries by amplifying the V3-

V4 region of the 16S gene, with Illumina adaptors incorporated as described in the 

Illumina 16S Metagenomic Library preparation guide with the following exceptions: 

the first PCR reaction was performed in a total volume of 50μl instead of 25μl and 

the number of cycles used in the first PCR was increased from 25 cycles to 30. The 

volume of AMPure XP beads (NEB) used in the initial clean-up was scaled up 

accordingly. Following index PCR and purification, Qubit high sensitivity DNA kit (Life 

technologies) was used to quantify the products. The PCR products were pooled 

equimolarly. The pooled libraries were assessed by Agilent high sensitivity DNA kit 

and quantified by qPCR using the Kapa Quantification kit for Illumina (Kapa 

Biosystems) according to the manufacturer’s guidelines. Libraries were diluted and 

denatured following Illumina guidelines and sequenced on the Illumina MiSeq using 

the V3 600 cycle kit according to Illumina sequencing protocols at the Teagasc 

sequencing facility, Teagasc Food Research Centre, Fermoy, County Cork, Ireland. 

 

3.3.3.10.3 Bioinformatic sequence analysis 
The resulting amplicons after sequencing with the MiSeq Illumina platform (2x300pb 

paired-end reads) were pre-filtered based on a quality score threshold of >28 and 

trimmed, filtered for quality and chimaeras using the DADA2 (Callahan et al., 2016) 

library in R (v3.6.3). Taxonomy was assigned with DADA2 against the SILVA SSURef 

database release v132. Parameters recommended in the DADA2 manual were 

adhered to. Amplicon Sequence Variants (ASVs) were aggregated at genus level, 

those that were unknown on the genus level were not considered in downstream 
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analysis, as were genera that were only detected as non-zero in five per cent or fewer 

of total samples.  

 

3.3.3.10.4 Data analysis 
Microbiome based data analysis was performed in R (v3.6.3) in the Rstudio 

environment (v1.2.5033). The ALDEx2 (Fernandes et al., 2014) library in R was used 

to perform a center log-ratio (clr) transformation in order to account for the 

compositional nature of microbiome data sets. Alpha diversities were calculated 

using the iNEXT (Hsieh et al., 2016) library. Beta diversity was calculated as Aitchison 

distance and differences were assessed by PERMANOVA followed by a pairwise 

implementation of PERMANOVA as a post-hoc. Functional inference was performed 

by use of the online Piphillin service (Iwai et al., 2016). The resulting count table of 

Kegg orthologues was piped into the omixerRpm R library in order to detect gut-brain 

modules (GBMs) and gut-metabolic modules (GMMs)(Valles-Colomer et al., 2019). 

Custom R scripts and functions are publically available online (Bastiaanssen, 2018). 

In all cases, FDR was controlled by Benjamini Hochberg, with a threshold of 20%.  

 

3.3.3.11 Universal 16S bacterial PCR in faecal matter 
DNA was extractad from faecal material of ABX-ABX and VEH-VEH rats using QIAamp 

Fast DNA Stool mini kit (Qiagen), following the manufacturer’s protocol. An 

additional bead-beating step was added to increase DNA yield. Qubit dsDNA broad 

range kit was used to quantify dsDNA.  The final 16S PCR reaction mix (0.2µl F: 5’-

CGGCAACGAGCGCAACCC-3’ (1114) (10 mM work solution), 0.2µL R: 5’-

CCATTGTAGCACGTGTGTAGCC-3’ (1275) (10 mM work solution), 5µl KAPA SYBR® 

FAST qPCR Kit Master Mix (2x) Universal and DNA 10ng/well diluted in PCR H20) was 

10µl/well. RT-PCR was carried out using a LightCycler 96 (Roche Diagnostics Ltd.) on 

a 96-well plate. All reactions were performed in triplicate. Relative number of copies 

were calculated using the 2-Ct method. Data were expressed as fold-change ratio: 

ABX-ABX/VEH-VEH. 
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3.3.3.12 Statistical analysis 
Data were assessed for outliers, normal distribution and equality of variances using 

box-plots, Shapiro-Wilk test and Levene’s test, respectively.  For data sets with 

confirmed normal distribution, a one-way ANOVA with Dunnett’s test was used to 

test for statistically significant between group differences. When data were normally 

distributed, but the assumption of homogeneity of variances was violated, a Welch 

ANOVA with Games-Howell test was used. For data sets where normal distribution 

was violated, non-parametric Mann-Whitney U test or Kruskal-Wallis test with Mann-

Whitney U test for pairwise comparisons was used to test for statistical significance. 

Statistical significance was assumed at p<0.05. Bonferroni correction was applied to 

adjust for multiple comparisons, with the exception of microbiota data. The ALDEx2 

R library was used for the generalised linear model (GLM) and differential abundance 

testing for microbiome features. Benjamini-Hochberg (BH) adjustment procedure 

was applied with the false discovery rate (FDR) set at 20% to correct for multiple 

testing in the clr-transformed microbiota data. Microbiota data are expressed as 

median (IQR). All other data are expressed as mean ± SD or displayed graphically as 

box and whisker plots (median, IQR and minimum to maximum values). SPSS v25 was 

used for all other statistical analysis. GraphPad Software v6 (GraphPad Software, San 

Diego, CA, USA) and R software environment were used to generate graphs. Adobe 

illustrator CS5 (v15) and Inkscape were used to edit Figures.  
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3.3.4 Results 

3.3.4.1 Body and tissue weight 
Microbiota modulation had significant effects on body weight, right and left ventricle 

weights, and caecum and dry lung weights (Table 1). ABX-ABX and ABX-PREB rats had 

reduced body weight. Furthermore, heart weight was decreased in ABX-ABX rats. As 

expected, ABX-ABX had significantly heavier caecum, which was similar to previous 

studies (Hoban et al., 2016; O'Connor et al., 2019). Similarly, prebiotic administration 

significantly increased caecum weights in all groups due to heightened fibre intake. 

Natural recolonisation normalised caecum weight of rats previously treated with 

ABX.  

3.3.4.2 Caecal microbiota composition and diversity  
ABX-ABX rats had significantly depleted 16s bacterial DNA compared with VEH-VEH 

rats (data not shown) and perturbed gut microbiota (Supplementary excel). In terms 

of alpha diversity, beta diversity (Fig. 3.3-2a-b) and differentially abundant genera 

(Supplementary Fig. 1a, Fig 2c), naturally recolonised rodents (ABX-NAT) showed no 

differences compared to VEH (Fig 3.3-2a-c, Suppl Fig. 1a). Both ABX-PREB and VEH-

PREB showed a similar change in terms of beta diversity (Fig. 3.3-2b). The ABX-PREB-

FMT group showed the largest differences compared to VEH in alpha diversity, beta 

diversity and differential abundance (Fig. 3.3-2a-c and Supplementary Fig. 1a). After 

Bonferroni correction, ABX-PREB-FMT was lower than VEH in the Chao1 (Fig. 3.3-2a; 

W = 7, p = 0.0049) and Shannon (Fig. 3.3-2a; W = 11, p = 0.021) metrics. In terms of 

beta-diversity, all groups were different from VEH in a pairwise PERMANOVA (Fig. 

3.3-2b; all p < 0.001, vs VEH-PREB F = 3.35, R2 = 0.157; vs ABX-PREB F = 4.15, R2 = 

0.19; vs ABX-PREB-FMT F = 12.11, R2 = 0.40 ) except for VEH vs ABX-NAT (p > 0.05; F 

= 0.95; R2 = 0.05). In order to leverage the partial two-factor design of the study, we 

applied the ALDEx2 GLM implementation with the intent to test for interactions 

between ABX and PREB on a genus level. After the Benjamini-Hochberg procedure, 

only Blautia was found to have a significant interaction (Fig. 3.3-3a; q = 0.072, t = -

4.33). Administration of PREB substantially increased the abundance of Blautia in the 

host, but the effect was much stronger following depletion of microbiota with ABX.  
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Fig. 3.3-2. Natural recolonisation normalised gut microbiota diversity. Group data 
for alpha diversity (a), principal component analysis (PCA; b) in 2-dimensional 
representation and stacked barplots showing taxa present at at least 0.1% at least 
once (c) for VEH-VEH, VEH-PREB, ABX-NAT, ABX-PREB and ABX-PREB-FMT. VEH, 
autoclaved deionised water; PREB, Prebiotic treated; ABX, antibiotic-treated; NAT, 
Natural recolonisation; FMT, faecal microbiota transfer.  Data (a) are expressed as 
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box and whisker plots (median, IQR and minimum to maximum values). Data (a) were 
statistically compared by non-parametric Mann-Whitney U test. 

3.3.4.3 Gut-brain modules and gut-metabolic modules  
Pursuing the functional consequences of the difference in Blautia, we proceeded to 

detect affected gut-brain modules (GBMs) and gut metabolic modules (GMMs) with 

a similar pipeline to previous studies (Supplementary Fig. 1b, c) (Butler et al., 2020; 

Donoso et al., 2020). Using the same statistical procedure on the floored count 

tables, a significant interaction between PREB and ABX administration was found for 

two GBMs and three GMMs after post-hoc correction. Specifically, Inositol 

degradation; q = 0.0747; t = -4.07 and Glutamate degradation II; q = 0.0288; t = -4.58, 

for the GBMs (Fig. 3.3-3b, c) along with Glutamate degradation III; q = 0.0468; t = -

4.52, Aspartate degradation II; q = 0.1249; t = -3.47 and Pyruvate:formate lyase; q = 

0.1031; t = -3.55, for GMMs (Fig. 3.3-3b-f). These functional modules were increased 

by PREB, but the effect was substantially stronger following microbiota depletion by 

ABX. By tracing back the genomes in the KEGG database that contributed to these 

functions and aggregating these genomes on a genus level, we found that Blautia 

genomes contribute a substantial proportion of the detected 16S sequences that 

were inferred to be contributing to the GBMs and GMMs (Fig. 3.3-4a-e). 
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Fig. 3.3-3. Antibiotics and prebiotics interaction increases Blautia relative 
abundance and alters predicted function. Group data for Blautia relative abundance 
(a), inositol degradation abundance (b), glutamate degradation II abundance (c), 
glutamate degradation III abundance (d), aspartate degradation II abundance (e) and 
pyruvate:formate lyase abundance (f) in VEH-VEH, VEH-PREB, ABX-NAT, ABX-PREB 
and ABX-PREB-FMT. VEH, autoclaved deionised water; PREB, Prebiotic treated; ABX, 
antibiotic-treated; NAT, Natural recolonisation; FMT, faecal microbiota transfer. 

 

3.3.4.4 Inflammatory markers and corticosterone 
No statistically significant differences were evident in pro/anti-inflammatory 

cytokines and corticosterone plasma concentrations compared with VEH-VEH rats 

(Table 2). 



268 
 

 

Fig. 3.3-4. Blautia relative abundance represents degradation and lyase of 
predicted functional characteristics in antibiotic-treated rats administered 
prebiotics. Bar columns for relative abundance of bacterial genera related to inositol 
degradation abundance (a), Glutamate degradation II abundance (b), Glutamate 
degradation III abundance (c), Aspartate degradation II abundance (d) and 
Pyruvate:formate lyase abundance (e) in VEH-VEH, VEH-PREB, ABX-NAT, ABX-PREB 
and ABX-PREB-FMT. VEH, autoclaved deionised water; PREB, Prebiotic treated; ABX, 
antibiotic-treated; NAT, Natural recolonisation; FMT, faecal microbiota transfer. 

 

3.3.4.5 Monoamine concentrations in the pons and medulla oblongata  
Comparisons of L-DOPA, HVA, HVA/DA, 5-HT, 5-HIAA and 5-HIAA/5-HT in the pons 

and medulla oblongata revealed significant differences between groups (Fig. 3.3-5a, 

c, d, f-h). Additionally, DA and NA were altered in the pons and medulla oblongata, 

respectively (Fig. 3.3-5b, e).  Post hoc analyses revealed significant differences 

compared with VEH-VEH rats. Medulla oblongata NA concentrations were decreased 

in VEH-PREB rats (p=0.004). HVA concentrations in the pons (p=0.002) and medulla 

oblongata (p<0.0001) of VEH-PREB rats was significantly reduced, which resulted in 

blunted dopamine turnover (HVA/DA) in the pons (p<0.0005). ABX-ABX rats had 

diminished HVA (p=0.004) and HVA/DA (p=0.002) concentrations in pons and 

medulla oblongata regions. Elevated serotonin turnover (5-HIAA/5-HT) was evident 

in the medulla oblongata of ABX-ABX rats (p=0.006). Pontine HVA (p=0.002) and 



269 
 

medulla oblongata 5-HIAA (p=0.001) concentrations were decreased and increased, 

respectively in ABX-Nat rats. Pontine L-DOPA (p=0.008), HVA (p=0.01) and HVA/DA 

(p=0.006) concentrations were reduced in ABX-PREB; pontine DA (p=0.001) and 

medulla oblongata 5-HIAA/5-HT (p=0.002) concentrations were increased. ABX-

PREB-FMT had elevated DA (p=0.007) and 5-HIAA (p=0.007) concentrations in the 

pons and medulla oblongata, respectively.  Decreased dopamine turnover (p=0.001) 

and NA concentrations (p=0.008) were evident in the pons and medulla oblongata, 

respectively of ABX-PREB-FMT rats.  
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Fig. 3.3-5. Microbiota modulation alters pontine and medulla oblongata 
neurochemistry. Group data for L-3,4-dihydroxyphenylalanine (a), dopamine 
(b), homovanillic acid (c), homovanillic acid/dopamine ratio 
(d), noradrenaline (e), serotonin (f), 5-hydroxyindole acetic acid (g) and 5-
hydroxyindole acetic acid/serotonin ratio (h) for pons and medulla in VEH-VEH, VEH-
PREB, ABX-ABX, ABX-NAT, ABX-PREB and ABX-PREB-FMT rats. VEH, 
autoclaved deionised water; PREB, Prebiotic treated; ABX, antibiotic-treated; NAT, 
Natural recolonisation; FMT, faecal microbiota transfer. Groups (a-h) are expressed 
as box and whisker plots (median, IQR and minimum to maximum values). n=7-10. 
Groups were statistically compared using one-way ANOVA, Welch’s ANOVA or non-
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parametric Kruskal-Wallis test. Dunnetts test, Games-Howell and Mann-Whitney U 
test, were used appropriate for post hoc analysis.  * p<0.05 divided by the number of 
comparisons made.  

 

3.3.4.6 Baseline, hypoxic and hypercapnic ventilation 
During room air and hypoxic breathing, long-term breathing instability (SD2) was 

altered by microbiota manipulation (Supplementary Table 1). Drive to breathe (VT/Ti) 

and inspiratory time (Ti) in response to hypercapnic chemostimulation were affected 

by microbiota manipulation; sigh amplitude during hypercapnia was also different 

between groups (Supplementary Table 1). Other respiratory parameters assessed 

during room air and in response to hypoxic and hypercapnic chemostimulation were 

unaltered (Supplementary Table 1, Supplementary Fig. 2 and 3; p>0.05). 
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3.3.5 Discussion 

 

A collective body of consensus-based evidence emphasises the regulatory role of the 

gut microbiota on whole-body function in health and disease states (Cryan and 

O'Mahony, 2011; Grenham et al., 2011; Kelly et al., 2016; Sarkar et al., 2016; Kelly et 

al., 2017). In rodent microbiota intervention studies (i.e. antibiotic administration 

and FMT), aberrant gut microbiota is a potent contributor to numerous maladies 

including depression, anxiety and cardiovascular pathologies (Kelly et al., 2015; 

Burokas et al., 2017; Ganesh et al., 2018) . More recently, we have extended this line 

of enquiry by linking disturbed gut microbiota to altered control of breathing (Lucking 

et al., 2018; O'Connor et al., 2019). In humans, disrupted gut microbiota composition 

and diversity has been associated with multiple illnesses such as cardiovascular 

disease as well as neurodegenerative, neurodevelopmental, metabolic and 

biopsychosocial disorders (Benjamin et al., 2012; Burke et al., 2017; Yan et al., 2017). 

Given the rapid advancements in research regarding the potential of the gut 

microbiota to shape physiological and brain function there is increased necessity for 

the development of targeted approaches to restore or beneficially promote the gut 

microbiota. 

 

We sought to explore whether disruption of the gut microbiota composition and 

diversity as a result of broad spectrum antibiotic cocktail administration could be 

normalised or beneficially expanded through natural recolonisation and/or the use 

of interventions known to alter the gut microbiota.  Furthermore, we expand on 

present knowledge investigating the influence of the gut microbiota on the 

respiratory control system. The principal findings of this study are: 1) Following 

antibiotic administration, natural recolonisation led to a similar gut microbiota 

composition, diversity and predicted microbial function to that of vehicle treated 

animals; 2) Prebiotic administration modulated composition and function of the gut 

microbiota; 3) Prebiotic administration significantly expanded Blautia relative 

abundance in animals pre-treated with antibiotics; Blautia relative abundance was 
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associated with predicted gut microbiota functions that were altered in ABX-PREB 

and ABX-PREB-FMT rats; 4) FMT shifted the gut microbiota composition, diversity 

and predicted function in the presence of prebiotics in rats previously treated with 

antibiotics; 5) Manipulation of the microbiota had minimal effects on breathing, 

metabolism and ventilatory responsiveness to chemostimulation. 

 

It is well-established that antibiotic administration in rodents and humans perturbs 

gut microbiota structure and diversity (Hoban et al., 2016; Suez et al., 2018; O'Connor 

et al., 2019). In our study, 8 weeks of antibiotics almost completely depleted 16S 

bacterial DNA (data not presented). After 4 weeks of antibiotic administration, a 

variety of approaches were used in our study in an effort to recolonise the gut 

microbiota. These included natural recolonisation, and prebiotic administration with 

and without FMT. We found that natural recolonisation appears the optimal 

approach compared with other invention strategies (i.e. prebiotic administration 

with and without FMT) to normalise the gut microbiota configuration of antibiotic-

treated rats; animals treated with antibiotics followed by natural recolonisation 

(ABX-NAT) had similar composition, diversity and function to that of vehicle 

treatment rats (VEH-VEH). Other investigators have reported similar findings when 

the gut microbiota is assessed before antibiotic treatment and after natural 

recolonisation. For example, in mice, 4 weeks of spontaneous recovery (natural 

recolonisation) following antibiotic administration partially restored baseline 

bacterial richness and load (Suez et al., 2018). In humans, 4 weeks after completion 

of ciprofloxacin administration, which has milder effects on the gut microbiota 

compared with the cocktail of antibiotics used in this current study, the composition 

of the microbiota closely resembled its state prior to antibiotic treatment (Dethlefsen 

et al., 2008). Furthermore, within 60 days of stopping an antibiotic treatment in 

humans there was 89% gut microbiota similarity to that of pre-treatment (De La 

Cochetiere et al., 2005). Noteworthy, in our study we did not assess the gut 

microbiota pre-antibiotic treatment.  
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Our group along with others have previously reported that prebiotic administration 

alters the gut microbiota composition and modulated metagenomic functions 

(Gibson et al., 2004; Boehme et al., 2019; O'Connor KM, 2020). Similarly, in the 

current study, we showed that prebiotic administration in vehicle treated rats 

significantly altered microbiota composition and modulated predicted function of 

the gut microbiota, although differences between GBMs and GMMs were not 

statistically significant. Probiotics have widely been used for prevention of 

antibiotics-associated gut microbiota disturbances and related adverse effects, 

although certain discrepancies are evident in terms of beneficial effects (Kechagia et 

al., 2013; Suez et al., 2018; Forssten et al., 2020). Although, prebiotics are also shown 

to have positive effects on gut microbiota composition, few studies have investigated 

these effects following antibiotic administration (Johnson et al., 2015; Burokas et al., 

2017). We revealed that prebiotics alter gut microbiota composition and diversity in 

specific patterns depending on previous vehicle or antibiotic administration, with an 

interaction evident between ABX and prebiotics in both taxonomy and functionality. 

Specifically, antibiotic treated animals that received prebiotic administration 

thereafter (ABX-PREB and ABX-PREB-FMT rats) had increased Blautia relative 

abundance; the efficiency with which Blautia was able to colonise the murine gut was 

dependent on prior perturbation by antibiotics. This finding was accompanied by 

inferred functional changes in a similar direction, increasing the likelihood that these 

alterations have noticeable impact. Similarly, others have described that in humans, 

antibiotics and dietary fibres interact in their effect on metabolic function and gut 

microbiota composition, stating that in some cases, prebiotics restored microbiota 

growth and metabolic function diminished by antibiotic administration and in other 

cases antibiotics treatment negated the effects of the dietary fibres (Johnson et al., 

2015). Interestingly, in a human study, inulin prebiotic administration resulted in 

elevated Blautia taxonomy frequency in individuals that had received gentamin 

antibiotic administration (Johnson et al., 2015). Our findings suggest that microbial 

colonisation is dependent on at least two different factors. First, as antibiotic 

perturbation was necessary for efficient colonisation by Blautia, the stability of the 

existing microbiome seems to be an important factor. Second, as the administration 

of prebiotics, GOS and FOS, were required for colonisation, the metabolic 
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environment of the microbiome seems to be of equal importance. Thus, it may well 

be that the availability of the exogenous microbe in the environment is required, 

however given our experimental design we did not investigate this hypothesis. 

Notably, as ABX-PREB and ABX-PREB-FMT cages received bedding from VEH-PREB 

and VEH cages, respectively this may have enhanced availability of Blautia in the 

environment (Johnson et al., 2015).   

 

Studies have described that within 8 days of FMT in mice, alpha diversity was 

indistinguishable to the control group and after 28 days, composition was similar 

(Manichanh et al., 2010; O'Connor et al., 2019). Furthermore, autologous FMT in 

humans resulted in a microbiota structure similar to that of the pre-antibiotic state 

as early as 1 day post autologous FMT (Suez et al., 2018). On the other hand, our 

group and others have previously shown that FMT can disturb the gut configuration 

and a unique bacterial composition and diversity develops (Halkjaer et al., 2018; 

O'Connor et al., 2019). In the current study, we explored a combination of FMT and 

prebiotics to examine the effects of two well-known microbiota intervention 

strategies on the gut microbiota structure. Others have previously reported that FMT 

combined with dietary fibres showed increased short- and long-term clinical efficacy 

in patients with slow transit constipation (Ge et al., 2016; Zhang et al., 2018). Novel 

findings in the current study revealed that ABX-PREB-FMT rats had increased gut 

microbiota diversity, altered composition and predicted functionality compared with 

vehicle treated rats. 

 

Noteworthy, ABX-PREB rats displayed a watery faecal content for 6-7 days after 

completing antibiotics and commencing prebiotic supplementation, whereas the 

ABX-PREB-FMT rats had diarrhoea-like faecal matter for 3-4 days. It is likely that 

prebiotic administration following antibiotic administration resulted in watery faecal 

content, due to the fact that there was little bacterial abundance after ABX 

administration, as evident by 16S bacterial DNA, to feed on dietary fibres. The influx 

of bacteria due to the FMT in ABX-PREB-FMT rats likely improved the diarrhoea-like 
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symptoms.  Indeed, multiple bacteria taxa administrated to the host using FMT may 

have thrived in the environment induced by prebiotic administration, which might 

contribute to important functionality in ABX-PREB-FMT rats i.e. some functional 

changes may be deemed beneficial such as elevations in butyrate, propionate and 

acetate synthesis (Roberfroid et al., 2010; Ganesh et al., 2018).  On the contrary, FMT 

influx might result in colonisation of some pathogens that otherwise would not have 

been able to expand in the population. Considering the significant differences in 

composition, diversity and function in the ABX-PREB-FMT group, our study supports 

the suggestion that for successful FMT administration, pre-screening of faeces to 

prevent induction of pathogenic microbiota is likely required (Papanicolas et al., 

2020; Stallmach et al., 2020). Notably, the FMTs were not autologous, but rather 

pooled from control animals. It is possible unpooled or autologous FMT would result 

in a different outcome in terms of recolonisation. More research is needed in this 

regard.  

 

3.3.6 Summary and conclusion 

Natural recolonisation is the most effective method to normalise the gut microbiota 

composition, diversity and predicted microbial function following antibiotic 

administration, which may have relevance in rodent studies assessing the role of the 

gut microbiota in microbiota-gut-brain axis signalling and in clinical settings, where 

normalisation or restoration of the gut microbiota structure is deemed a successful 

end-point of a therapeutic strategy. Furthermore, considering that expansion of 

Blautia is evident as a result of an antibiotic/prebiotic interaction, depending on the 

specific goal of a microbial intervention strategy, destabilisation of the gut 

microbiota might be warranted in order to ensure optimal engraftment of target 

microbes (Ji et al., 2017). Although parameters for engraftment and colonisation of 

gut microbiota are still unclear, we present evidence supporting the idea that 

stability of the gut microbiota may play a fundamental role in the engraftment of 

microbial species.  
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3.4.1 Summary  

Birth by Caesarean (C)-section impacts early gut microbiota colonization and is 

associated with an increased risk of developing immune & metabolic disorders. 

Moreover, alterations of the microbiome have been shown to affect 

neurodevelopmental trajectories. However, the long-term effects of C-section on 

neurobehavioural processes remain unknown. Here, we demonstrated that birth by 

C-section results in marked but transient changes in microbiome composition in the 

mouse, and in particular the abundance of Bifidobacterium spp. was depleted in early 

life. Mice born by C-section had enduring social, cognitive and anxiety behavioural 

deficits in early-life and adulthood. Interestingly, we found that these specific 

behavioural alterations induced by the mode of birth were also partially corrected by 

co-housing with vaginally born mice. Finally, we show that supplementation from 

birth with a Bifidobacterium breve strain, or with a dietary prebiotic mixture that 

stimulates the growth of bifidobacteria, reverses selective behavioural alterations in 

C-section mice. Taken together, our data link the gut microbiota to behavioural 

alterations in C-section born mice and suggest the possibility of developing 

adjunctive microbiota-targeted therapies which may help to avert long-term 

negative consequences on behaviour associated with C-section birth mode.  

 

3.4.2 Introduction 

The gut microbiota -the collection of bacteria, archaea and eukarya residing in the 

gastrointestinal tract- has co-evolved with their hosts over thousands of years 

resulting in an intricate mutual relationship wielding significantly benefit to host 

health (Kundu et al., 2017). Interactions between the gut microbiota and the host 

involve signalling via chemical neurotransmitters and metabolites, neuronal 

pathways, and the immune system (Cryan et al., 2019). There is growing appreciation 

that microbiota, especially in early-life, influences the development and function of 

multiple hosts physiological systems, including the central nervous system (Sampson 

et al., 2016; Codagnone et al., 2019). Thus, it has been posited to be a key pillar in 

understanding the developmental origins of mental health and disease (Dinan and 
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Cryan, 2017; Codagnone et al., 2019). Preclinical studies using mice born and raised 

without exposure to microorganisms, germ-free mice, have highlighted the long-

lasting effects of the disruption of the normal acquisition and maturation of the gut 

microbiota on cognition (Gareau et al., 2011), social behaviour (Desbonnet et al., 

2014), and brain development (Heijtz et al., 2011). However, germ-free animals are 

specialized model systems and it is unclear if more medically relevant alterations in 

microbiome composition in early life can have enduring psychological and 

neurobehavioral effects.  

In mammals, the composition of the gut microbiota starts to develop mainly upon 

birth and continues to mature and change throughout life, influenced by several 

factors including breast-feeding patterns (Pannaraj et al., 2017), diet (Zmora et al., 

2019) antibiotic exposure (Becattini et al., 2016), and birth mode (Dominguez-Bello 

et al., 2010). In humans, birth by Caesarean (C)-section results in a different pattern 

of microbiota colonization and it is associated with increased likelihood of developing 

immune and metabolic disorders in childhood (Horta et al., 2013; Martinez et al., 

2017; Wampach et al., 2018; Shao et al., 2019). Moreover, babies born by C-section 

exhibit lower relative abundance of maternally transmitted commensal bacteria and 

higher relative abundance of opportunistic microorganisms that are commonly found 

in the hospital environment (Shao et al., 2019). Despite this, the number of infants 

delivered by C-section worldwide has rapidly increased over recent years, and in 

many jurisdictions far exceeds the World Health Organization guidelines of between 

10-15% (Dominguez-Bello et al., 2016). Until recently, there has been limited 

epidemiological data examining behavioural and psychiatric outcomes in individuals 

born by C-section. Associations have been made with autism, psychosis, depression, 

attention deficit disorder and school performance (Curran et al., 2015; O'Neill et al., 

2016; Curran et al., 2017; Yang et al., 2019), though some of these associations fail 

to stand up when familial confounding is considered (Curran et al., 2015; O'Neill et 

al., 2016). Although the importance of maternal vaginal microbiome transmission for 

programming of the offspring brain has been recently demonstrated (Jasarevic et al., 

2018), C-section-induced changes in the microbiome have been largely neglected in 

the context of brain health.  
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Within the gut microbiota bifidobacteria are among the earliest and most abundant 

bacterial colonizers of the gut and are essential for appropriate immune, metabolic 

and gastrointestinal development in infancy (Arboleya et al., 2016; Vatanen et al., 

2018). The establishment of Bifidobacterium spp. seeding in the neonatal gut is 

largely influenced by vertical transmission from mother-to-infant during vaginal 

delivery (Hill et al., 2017; Wang et al., 2020). Birth by C-section circumvents early 

bifidobacterial colonization and, compared to vaginally born babies, C-section babies 

have decreased Bifidobacterium spp. relative abundance in their gut microbiota 

(Dominguez-Bello et al., 2010; Dominguez-Bello et al., 2016; Korpela et al., 2018; 

Shao et al., 2019). Although this difference tends to normalize somewhere between 

6 months and 4 years (Dominguez-Bello et al., 2016; Fouhy et al., 2019), it may lead 

to maladaptive programming of brain and behaviour. Intervention strategies that 

promote a healthy balance of the gut microbiota in babies born by C-section have 

included the use of prebiotics and probiotics to promote growth of Bifidobacterium 

spp. and other beneficial bacteria (Moya-Perez et al., 2017).  

 

Given the importance that initial colonization of the gut microbiota has on brain 

development we used a mouse model to assess the long-term consequences of birth 

by C-section on neurobehavioural outcomes and the potential role of gut microbiota-

based interventions in remediating such effects. To interrogate these interactions, 

we used three different approaches. First, we compared the gut microbiota 

composition and neurobehavior of pups delivered by C-section and given to foster 

dams (C-section, CS) with pups delivered spontaneously and nursed by their own 

mothers (Vaginally born, VB) or by a fostered dam (Cross-fostered, CF) (Figure 3.4-

1A). To prove the importance of the microbiome in mediating such effect we 

transfered microbiota from VB to CS born mice at weaning through co-housing. Co-

housing may be the simplest and most convenient technique for microbial transfer 

as it offers opportunities of microbiota mixing between co-housed partners due to 

the coprophagic nature of mice (Robertson et al., 2019). Finally, we treated pups from 

birth with a Bifidobacterium breve strain, or with a dietary prebiotic mixture, which 
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stimulates the growth of bifidobacteria, to investigate if it could avert the long-term 

negative consequences on behaviour associated with delivery C-section. 

 

3.4.3 Results  

 

3.4.3.1 Gut microbiota alterations induced by C-section mode of birth across 
lifespan  
 

To address our hypothesis that birth by C-section can affect the programming of the 

microbiota-gut-brain-behaviour axis, we used 16S rRNA gene sequencing to profile 

the gut microbiota composition in CS, VB and CF offspring in early-life (postnatal day 

(P) 9), pre-weaning adolescence (P21) and adulthood (week (wk) 20).  

Regardless of the delivery mode, the composition of the gut microbiota was the most 

diverse, with regard to alpha diversity, and exhibited the highest inter-animal 

variability in early-life (P9), with the overall dominance of the Lactobacillus genus 

from the Firmicutes phylum (Table S1 and Figure S1A). Principal component (PCA) 

and canonical correspondence (CCA) analyses showed that the structure of the 

intestinal microbial community was significantly altered in both CS and CF offspring 

across the lifespan (Figure 3.4-1B-D and see also Table S1). Indeed, CS clustered 

separately from the VB and CF groups at P9, and the separation persisted throughout 

adolescence and adulthood (Table S1). From weaning onwards, the microbiota 

successfully re-shaped towards an approximately equal dominance of Bacteroidetes 

and Firmicutes phyla (see also Table S1 and Table S2 and Table S 3), which is typical 

for the adult murine microbiota (Donaldson et al., 2015). 

Analysis of individual bacterial taxa abundance at the phylum, family and genus levels 

revealed that, albeit both the CS model of delivery and the CF procedure itself had a 

long-lasting impact on the gut microbiota in the affected offspring, the profile of 

observed changes was unique for each intervention. The latter can be illustrated by 

the CCA plots, with CS and CF groups diverging from the VB mice (Figure 3.4-1B-D). 
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For instance, at P9, CF offspring displayed a dramatic increase in the relative 

abundance of Gammaproteobacteria species, while CS offspring was characterized 

by an increase in the proportion of a few Bacteroidetes genera (Odoribacter, 

Parabacteroides) and a marked reduction in the Lactobacillus bacteria (see also Table 

S1). Similarly, at P21 and wk20, various genera from the Actinobacteria and 

Tenericutes phyla, as well as Rikenellaceae, Lachnospiraceae and Ruminococcaceae 

families of the Firmicutes phylum, were differentially affected by CS and CF (see also 

Table S1). Differences in the composition of the microbiota among treatment groups 

were associated with alterations in the short chain fatty acid (SCFA) profile, whereby 

caecal levels of acetate were different among groups in adolescence, but post-hoc 

testing did not yield significant results. Butyrate levels were higher in adulthood in 

CS compared with CF, but not with VB mice (see also Table S2).  
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Figure 3.4-1. Mode of Delivery Affects Microbial Beta-Diversity throughout the 
Lifespan (A) CS animal model and experimental design. (B–D) Principal component 
analysis (PCA) and canonical correspondence analysis (CCA) showed that beta-
diversity of intestinal (cecal) microbial community was significantly altered in the CS 
offspring in early-life (P9), adolescence (P21), and adulthood (week 20). CS did not 
impact alpha-diversity indices (Chao1, Simpson, and Shannon) at any time point. 
Alpha-diversity indices are presented as median and interquartile range with whiskers 
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representing minimum and maximum values. The x and y axes explain the variability 
between samples. (B) Early life (P9; VB n = 9, 4 litters; CF n = 22, 4 litters; CS n = 7, 4 
litters). (C) Adolescence (P21; VB n = 10, 4 litters; CF n = 7, 4 litters; CS n = 8, 4 litters), 
#p < 0.05 CS versus CF. (D) Adulthood (VB n = 14, 4 litters; CF n = 12, 4 litters; CS n = 
12, 4 litters). 

CF, cross-fostering; CS, C-section; VB, vaginal birth. Statistical details: Among-group 

differences in alpha-diversity indices were analyzed with Mann-Whitney U test. 

Benjamini-Hochberg adjustment with Q = 0.2 was used to correct p values for 

multiple testing. PCA plots at the operational taxonomic unit (OTU) level were 

constructed using Aitchison distance calculated in the ALDEx2 library; PCA was done 

using the prcomp() function. CCA plots at the OTU level were generated with the 

vegan library; ellipses represent 95% confidence interval calculated by the ggplot2 

library. The vegan implementation of PERMANOVA followed by PERMANOVA as a 

post hoc was used to test for differences at a beta-diversity level; Data S1; Figure S1. 

See also Data S3 and S4 and Table S1. 

 

3.4.3.2 C-section delivery leads to neurobehavioural changes in early life  
We then compared the consequences of mode of delivery on offspring behaviour in 

early-life, particularly focusing on social behaviour, cognitive, and anxiety-like 

aspects of a behavioural phenotype (Figure 3.4-2A). Quantification of ultrasonic 

vocalization (USV) is widely used to measure early communicative behaviour and 

aversive affective reactions to stress separation (Jung et al., 2018). Here we found 

that, in early life (P9), CS offspring exhibited a higher number of USV calls when 

isolated from their littermates and mother than CF or VB animals (Figure 3.4-2B). It 

has been previously demonstrated that by P10 pups are normally able to respond to 

relevant social stimuli and to efficiently discriminate their mother’s nest when 

physically separated (Macri et al., 2010). Unlike VB or CF animals, CS pups had less 

preference for the maternal versus neutral bedding (Figure 3.4-2C-D), thus 

expressing early social recognition and maternal attachment deficits. Together these 

results suggest that birth by C-section is interfering with early-life communication, 

perception of relevant signals, and association with particular environmental 

contexts. 
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Figure 3.4-2. CS Delivery Mode Leads to Neurobehavioral Changes in Early Life (A) 
Experimental timeline. (B) CS-born offspring exhibited communication deficits and 
anxiety-like behavior at P9 as measured by increased number of USV calls. ∗∗∗p < 
0.0001 CS versus VB; ###p < 0.0001 CS versus CF. (C and D) CS-born mice exhibited 
deficits in maternal attachment behavior at P10. (C) CS-born offspring failed to exhibit 
preference for their home/maternal bedding, ∗∗∗p < 0.0001 CS versus VB; ###p < 
0.0001 CS versus CF. (D) CS-born offspring displayed increased preference for a 
neutral bedding; ∗∗∗p < 0.0001 CS versus VB; ###p < 0.0001 CS versus CF. All data are 
presented as median and interquartile range with whiskers representing minimum 
and maximum values. VB n = 24, 4 litters; CF n = 12, 4 litters; CS n = 24, 4 litters. USV, 
ultrasonic vocalization. Statistical details: (B) number of calls (x2 = 33.303; p < 0.001); 
(C) time spent on the home/maternal bedding (x2 = 26.106; p < 0.0001); and (D) time 
spent on a neutral bedding (x2 = 20.577; p < 0.0001). (B–D) Among-group differences 
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were analyzed with Kruskal-Wallis test, followed by Mann-Whitney U test. See also 
Data S3 and S4. 

 

3.4.3.3 Enduring neurobehavioural effects induced by C-section  
Alterations in sociability are a common feature among a variety of neuropsychiatric 

conditions, and microbiota-deficient mice develop social deficits (Desbonnet et al., 

2014). Here we investigated whether mice born by C-section exhibit deficits in social 

behaviour in adulthood. Although CS mice displayed normal sociability in the three-

chamber test (i.e preference for mouse over object) (Figure 3.4-3A), a specific deficit 

in social novelty recognition (i.e preference for novel over familiar social partner) was 

revealed in CS mice compared with VB and CF offspring (Figure 3.4-3B). Interestingly, 

during the subsequent intervention studies where we probed adult CS mice against 

non-social cognitive cues in the novel object recognition test, the CS mice failed to 

discriminate between a novel and a familiar object in active investigation time (the 

effect was not significant in investigation index, see also Figure S2).  

The hippocampus is an important brain area for learning and memory as well as for 

the regulation of the stress response (Levone et al., 2015). Accumulating data also 

show that it represents a key node in the microbiome-gut-brain axis, with alterations 

in the gut microbiome being associated with changes in hippocampal gene 

expression, neurogenesis, and neurotransmission (Clarke et al., 2013; Ogbonnaya et 

al., 2015; Burokas et al., 2017; Chen et al., 2017). In addition, the hippocampus is 

required for proper social recognition (Raam et al., 2017) and social memory 

formation (Phillips et al., 2019). Thus, it was important to investigate whether the 

hippocampus transcriptome was sensitive to C-section induced changes in the gut 

microbiota. In agreement with the behavioural data, the transcriptome analysis of 

the hippocampal brain region in adult mice revealed substantial transcriptional 

differences in the CS offspring (Figure 3.4-4A-B). CS mice clustered separately from 

either VB or CF counterparts, while no differences between CF and VB groups were 

observed. Interestingly, of the 38 genes up-regulated in CS mice, nine belonged to 

extracellular matrix-associated group (Col8a1, Col8a2, Col4a3, Ctsc, Frdc9, Itih5, etc).  
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In addition to alterations in social novelty recognition in adulthood, CS mice exhibited 

exaggerated anxiety-like behaviour as observed by increased number of buried 

marbles in the marble burying test (Figure 3.4-3C), reduced number of entries into 

the open arms in the EPM test (Figure 3.4-3D-E), and reduced locomotion and time 

spent in the central zone of the OF test (Figure 3.4-3F-G). Most of the CS-associated 

effects on anxiety remained significant after adjustment for the litter effect (see also 

Table S3), but failed to be robustly evident in subsequent cohorts (see also Figure 

S3). This suggests a subtle nature of the pro-anxious behavioural phenotype in the 

CS offspring, and/or the importance of postnatal environment for the development 

of these outcomes. In contrast, CS-induced deficits in social novelty recognition not 

only withstood the adjustment for the litter effect (see also Table S3), but were 

consistently observed across all experimental cohorts (Figure 3.4-5C and Figure 3.4-

6H), thus indicating the robustness of the observed effects. Controlling for the early 

environment exposure was an important goal of the initial experiments and that is 

why for this first set of experiments we included all three groups (CS, CF and VB), that 

would give us a fully balanced stratified experimental design. Although the CF 

procedure itself resulted in a unique effect on the gut microbiota (Figure 3.4-1 B-D), 

these changes did not manifest in many behavioural alterations throughout (Figure 

3.4-2 and Figure 3.4-3). For statistical, logistical and ethical reasons (in order to meet 

3R requirements and minimize animal usage), we chose to only have VB group as 

control in the follow-up studies. 
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Figure 3.4-3. Enduring Neurobehavioral Effects Induced by CS (A and B) CS 
delivery mode had an impact on social behavior in adulthood (three-chamber test). 
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(A) CS did not impair sociability. ∗∗∗p < 0.001 mouse versus object for the interaction 
time data. (B) CS-born mice had deficits in social novelty recognition. ∗∗∗p < 0.001 
novel versus familiar mouse for the interaction time data. ∗∗∗p < 0.001 CS versus VB 
and ###p < 0.001 CS versus CF for the interaction index data. (C–G) In adulthood, 
mice delivered by CS displayed enhanced anxiety-like behavior across various tests. 
(C) Increased number of buried marbles in the CS group. ∗∗∗p < 0.001 CS versus VB 
and ###p < 0.001 CS versus CF. (D) Decreased number of entrances into the open 
arms in the CS group. ∗p < 0.05 CS versus VB and #p < 0.05 CS versus CF. (E) 
Number of entrances in the closed arms were unchanged. (F) Reduced time spent in 
the center zone of an aversive open-field arena in the CS group ∗p < 0.05 CS versus 
VB; #p < 0.05 CS versus CF. VB n = 15, 4 litters; CF n = 13, 4 litters; CS n = 12, 4 
litters. (G) Reduced total distance traveled in the aversive open field in the CS 
group. ∗∗p < 0.05 CS versus VB. Data are presented as mean + standard error of the 
mean (SEM). (A–E and G) VB n = 15, 4 litters; CF n = 14, 4 litters; CS n = 12, 4 
litters. Statistical details: (A) interaction time: VB t (14) = 6.341, p < 0.0001; CF t 
(13) = 9.776, p < 0.0001; CS t (11) = 9.811, p < 0.0001, paired Student’s t test. 
Interaction index: F (2,38) = 1.555; p = 0.224; one-way ANOVA followed by Tukey 
post hoc tests. (B) Interaction time: VB t (14) = 7.8; p < 0.001: CF t (13) = 5.1; p < 
0.0002: CS t (11) = −0.167; p = 0.8707; paired Student’s t test. Interaction index: F 
(2,38) = 14.73; p < 0.0001; one-way ANOVA followed by Tukey post hoc tests. (C) 
Marbles: F (2,38) = 14.73; p < 0.0001. (D) Entrances to open arms: F (2,38) = 4.74; 
p = 0.015. (E) Entrances to closed arms: F (2,38) = 0.614; p = 0.4047. (F) Time in 
the center zone: F (2,37) = 1.077; p = 0.0076. (G) Distance: F (2,38) = 5.22; p = 
0.01. (C–G) One-way ANOVA, followed by Tukey post hoc tests. See also Data 
S3 and S4 and Table S2. 
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Figure 3.4-4. CS Mode of Birth Induces Enduring Changes in the 
Hippocampal Transcriptome Heatmap showing differentially expressed 
genes in the adult hippocampus of CS versus VB offspring (A) and CS versus CF 
offspring (B). Differential gene expression was determined using the DESeq2 R-
package (v1.6.2) with default parameters on pairwise comparisons of all possible 
group combinations. An adjusted p ≤ 0.1 (Benjamini-Hochberg method) was 
considered statistically significant. Red color indicates increased expression, and blue 
color indicates decreased expression levels of the affected genes. VB n = 5, 4 litters; 
CF n = 5, 4 litters; CS n = 6, 4 litters. See also Data S3 and S4. 

 

3.4.3.4 Microbiota transfer by co-housing reverses specific neurobehavioural 
changes induced by C-section  
To investigate a potential causal role for the gut microbiota in mediating the 

observed behavioural changes, we examined whether transferring microbiota from 

VB to CS born mice at weaning could prevent C-section-mediated behavioural 
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deficits. We exploited the coprophagic nature of mice and performed faecal transfer 

by co-housing one CS mouse with three VB mice in adolescence (based on the 

strategy utilized by Buffington and colleagues, (Buffington et al., 2016)). Littermates 

originating from multiple litters were randomly assigned to the different housing 

systems to minimize the litter effect. Behaviour was assessed in adulthood (Figure 

3.4-5A). Although CS mice displayed normal sociability in the three-chamber test (i.e 

mouse vs object) (Figure 3.4-5B), co-housing CS with VB mice selectively reversed C-

section-induced cognitive deficits, restoring social novelty recognition (Figure 3.4-

5C). Despite not affecting the marble-burying or EPM readouts (see also Figure S5B-

C), co-housing had anxiolytic effects in CS mice, increasing the time spent in the 

central zone of the OF (see also Figure S5D). 

Next, we investigated the gut microbiota composition in VB, CS and CS co-housed 

offspring at week 4, i.e one week following the commencement of the co-housing 

regimen). Co-housing did not affect alpha-diversity indices (see also Figure S4A, 

Table S4). Moreover, the PCA analysis did not show significant differences in the 

microbial communities structure across groups (Figure 3.4-4D), though all three 

groups clustered separately on the CCA plot (Figure S4B, p<0.05, PERMANOVA, Table 

S4, beta diversity analysis). When we looked at the individual bacterial taxa that 

showed the strongest response to mode of delivery or co-housing regimen, we 

observed that co-housing reversed C-section-associated reduction in the 

Bacteroidetes genus (Figure 3.4-5E). Furthermore, co-housing had a unique effect on 

the relative abundance of Blautia and Rikenella bacteria, while not affecting 

Bacteroidales S24-7 group and Anaeroplasma species in CS mice (Figure 3.4-5E). 

These data support the concept of plasticity within the microbiome-gut-brain axis 

and show that the enduring effects of C-section can be at least partially restored via 

microbial transfer.  
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Figure 3.4-5. Microbiota Transfer by Co-housing Partially Restores CS 
Behavioral Phenotype (A) Experimental timeline of the co-housing study.(B) Co-
housing did not affect sociability; ∗∗∗p < 0.001 for mouse versus object for the 
interaction time data. VB n = 11, 9 litters; CS n = 12, 6 litters; VB-CH, n = 11, 9 
litters; and CS-CH, n = 12, 7 litters. (C) Co-housing reversed social novelty 
recognition deficits in CS-born mice; **p < 0.01 and ***p < 0.001 for novel versus 
familiar mouse for the interaction time data. *p < 0.05 CS versus VB and #p < 0.05 



293 
 

CS versus CS-CH for the interaction index data. Social novelty: VB n = 10, 9 litters; 
CS n = 10, 6 litters; VB-CH, n = 10, 9 litters; and CS-CH, n = 11, 7 litters. (D) PCA 
did not show significant differences in the beta diversity among all groups in the 
intestinal (fecal) microbiome community (see also Data S2). The x and y axes explain 
the variability between samples. (E) Co-housing restored CS-associated reduction in 
the Bacteroidetes genus. Relative abundance of the bacterial taxa (clr) with the 
strongest response to mode of delivery and/or housing regimen. Data are presented 
as mean + SEM on (B) and (C) and as median and interquartile range with whiskers 
representing minimum and maximum values (E). (D and E) VB n = 9, 9 litters; CS n = 
8, 6 litters; and CS-CH, n = 11, 7 litters. CS-CH, CS co-housed. Statistical details: 
(B) interaction time: VB t (10) = 8.863, p = 0.001; VB co-housed t (10) = 11.94, p = 
0.0001; CS t (11) = 4.920, p = 0.0005; CS co-housed t (11) = 8.835, p < 0.0001, 
paired Student’s t test. Interaction index: group effect F(1,42) = 0.146, p = 0.705; 
mode of delivery effect F(1, 42) = 0.557, p = 0.646; group × mode of delivery effect 
F(1,42) = 0.692, p = 0.410, two-way ANOVA followed by Tukey post hoc. (C) 
Interaction time: VB t (9) = 4.566, p = 0.001; VB co-housed t (8) = 2.902, p = 0.0198; 
CS t (9) = 0.7423, p = 0.7873; CS co-housed t (10) = 4133, p = 0.002, paired 
Student’s t test. Interaction index: group effect F(1,37) = 6.49, p = 0.0151; mode of 
delivery effect F(1,37) = 5.565, p = 0.0237; group × mode of delivery effect F(1,37) = 
3.203, p = 0.0817, two-way ANOVA, followed by Tukey post hoc. (D) Beta-diversity, 
PCA plots, pairwise PERMANOVA, p < 0.001, Data S2 and Figures S2–S4. See 
also Data S3 and S4 and Table S2. 

 

 

3.4.3.5 Bifidobacterium spp. contribute to C-section-induced neurobehavioural 
changes 
Since 16S rRNA gene sequencing provides a general overview of microbial 

community structure, we next employed a quantitative reverse transcription 

polymerase chain reaction (RT-qPCR) approach to look at the absolute abundance of 

specific bacterial taxa. We focused on the Bifidobacterium genus, since mode of 

delivery was shown to be an important factor in shaping bifidobacteria colonization 

in infants (Penders et al., 2006; Dominguez-Bello et al., 2010; Fouhy et al., 2019). We 

quantified Bifidobacterium species in the faeces of VB and CS mice at weaning (wk 

3), adolescence (wk 4) and in adulthood (wk 7). Herein, we demonstrate a transient 

significant decrease in Bifidobacterium spp. abundance in CS offspring at weaning 

(wk 3), which was no longer observable one week or four weeks later (Figure 3.4-6A). 

Given the fact that bifidobacteria are among the earliest bacterial colonizers of the 

neonatal gut and are essential for appropriate immune, metabolic and 

gastrointestinal development in infancy, disturbances in their appropriate 
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establishment at the beginning of life could have long-term neurobehavioural 

effects. To this end, we used two different methods of dietary intervention to 

augment Bifidobacterium levels in our mouse model (Figure 3.4-6B). We 

supplemented CS-nursing dams through their diet with either human commensal 

Bifidobacterium breve M16-V (B. breve) or a prebiotic mixture of short-chain galacto-

oligosaccharides and long-chain fructo-oligossaccharides (scGOS/lcFOS) in a 9:1 

ratio, known to promote Bifidobacterium growth (Kosuwon et al., 2018). At wk 3, CS 

pups were weaned onto the corresponding maternal diet. Both scGOS/lcFOS and B. 

breve supplementation successfully restored early-life deficit in the Bifidobacterium 

spp. abundance associated with CS (Figure 3.4-6C). Notably, even as early as at P9, 

treatment with the prebiotic mixture prevented communication deficits by reducing 

the number of USV calls emitted by the CS pups when they were isolated from their 

nest (Figure 3.4-6D). Moreover, at P10, both interventions successfully restored 

neonatal recognition abilities and maternal attachment deficits in the CS pups (Figure 

3.4-6E-F). As in Figure 3.4-3, social and non-social recognition, as well as anxiety-like 

behaviour were assessed in adulthood (Figure 3.4-6G-H, see also Figure S3). In 

adulthood, CS-induced social recognition impairment persisted in mice treated with 

B. breve, while treatment with scGOS/lcFOS completely reversed this deficit (Figure 

3.4-6H). Moreover, scGOS/lcFOS treatment restored novel object recognition deficits 

(see also Figure S4C-D) in the CS group, with all positive cognitive effects remaining 

significant after controlling for postnatal environment litter effect.  
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Figure 3.4-6. Targeting Bifidobacterium Genus from Birth Restores Behavioral 
Deficits in CS Mice (A) Transient significant decrease in Bifidobacterium spp. 
abundance (log10 cell/g feces) was seen in the CS offspring at weaning (week 3). 
Week 3 VB n = 24, 9 litters; CS n = 19, 6 litters; week 4 VB n = 9, 9 litters; CS n = 11, 6 
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litters; and week 7 VB n = 7, 4 litters; CS n = 6, 7 litters. ∗p < 0.05 CS versus VB. (B) B. 
breve and scGOS/lcFOS administration and experimental timeline. (C) Treatment with 
scGOS/lcFOS and B. breve restored early-life deficit in the Bifidobacterium spp. 
abundance (log10 cell/g feces) associated with CS. ∗∗p < 0.01 CS versus VB; ###p < 
0.001 CS versus CS+B. breve and CS versus CS+prebiotic. VB n = 5, 4 litters; CS n = 7, 3 
litters; CS+B. breve, n = 13, 3 litters; and CS+prebiotic, n = 11, 3 litters. (D) Prebiotic 
mixture attenuated communication deficits in CS-born mice at P9; B. breve 
supplementation had no effect on early-life communication and anxiety. ∗p < 0.05 CS 
versus VB; #p < 0.05 CS versus CS+prebiotic. VB n = 14, 4 litters; CS n = 9, 3 litters; 
CS+B. breve, n = 10, 3 litters; and CS+prebiotic, n = 6, 3 litters. (E and F) scGOS/lcFOS 
and B. breve treatments restored maternal attachment deficits in the CS pups at P10. 
VB n = 16, 4 litters; CS n = 15, 3 litters; CS+B. breve, n = 14, 3 litters; and CS+prebiotic, 
n = 8, 3 litters. (E) Time spent on the maternal bedding. ∗∗∗p < 0.001 CS versus VB; #p 
< 0.05 CS versus CS+B. breve; ###p < 0.05 CS versus CS+prebiotic. (F) Time spent on 
the neutral bedding ∗∗∗p < 0.001 CS versus VB; #p < 0.05 CS versus CS+B. breve; ###p 
< 0.05 CS versus CS+prebiotic. (A–F) Data are presented as median and interquartile 
range with whiskers representing minimum and maximum values. (G) Treatment with 
prebiotic did not affect sociability. ∗∗∗p < 0.001 for mouse versus object for the 
interaction time data. VB n = 11, 4 litters; CS n = 8, 3 litters; CS+B. breve, n = 8, 3 
litters; and CS+prebiotic, n = 8, 3 litters. (H) Treatment with prebiotic reversed social 
novelty recognition deficits in CS-born mice. B. breve supplementation had no effect 
on social novelty recognition. ∗p < 0.05 and ∗∗p < 0.01 for novel versus familiar mouse 
for the interaction time data. ∗∗p < 0.01 CS versus VB and p < 0.05 CS versus 
CS+prebiotic for the interaction index data. VB n = 11, 4 litters; CS n = 8, 3 litters; CS+B. 
breve, n = 6, 3 litters; and CS+prebiotic, n = 8, 3 litters. (G and H) Treatment with 
prebiotic did not affect sociability but reversed social novelty recognition deficits in 
CS-born mice. B. breve supplementation had no effect on social novelty recognition. 
∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 for mouse versus object and novel versus 
familiar mouse for the interaction time data. ∗∗p < 0.01 CS versus VB and p < 0.05 CS 
versus CS+prebiotic for the interaction index data. Data are presented as mean + SEM. 
Statistical details: (A) week 3, U = 129.00, p = 0.015; week 4, U = 56.5, p = 0.161; and 
week 7, U = 18.00, p = 0.070, Mann-Whitney U test. (C) Bifidobacterium spp. 
abundance: CS versus VB, x2 = 0.000, p = 0.004, Mann-Whitney U test; CS versus 
CS+treatment, x2 = 20.472, p < 0.0001, Kruskal-Wallis test followed by multiple 
comparisons. (D) Number of calls: CS versus VB, U = 27.500, p = 0.025, Mann-Whitney 
U test; CS versus CS+treatment; x2 = 6.203, p = 0.045, Kruskal-Wallis test followed by 
multiple comparisons. (E) Time spent on the home/maternal bedding; CS versus VB, 
x2 = 35.000, p = 0.001, Mann-Whitney U test; CS versus CS+treatment, x2 = 10.484, p 
= 0.005, Kruskal-Wallis test followed by multiple comparisons. (F) Time spent on the 
neutral bedding: CS versus VB, x2 = 35.000, p = 0.001, Mann-Whitney U test; CS versus 
CS+treatment; x2 = 10.484, p = 0.005, Kruskal-Wallis test followed by multiple 
comparisons test. (G) Sociability. Interaction time: VB t (10) = 6.150, p = 0.0001; CS t 
(7) = 6.813, p = 0.001; CS+B. breve t (7) = −2.236, p = 0.060; CS+prebioƟc t (7) = 4.662, 
p = 0.0023, paired Student’s t test. Interaction index: CS versus VB t (17) = 0.349, p = 
0.731, unpaired Student’s t test; CS versus CS+treatment groups F (2,21) = 0.1374, p 
= 0.8724, one-way ANOVA followed by Tukey post hoc tests. (H) Social novelty 
recognition. Interaction time: VB t (10) = 2.974, p = 0.014; CS t (7) = 0.1795, p = 0.8626; 
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CS+B. breve t (5) = 1.588, p = 0.1232, CS+prebiotic t (7) = 3.776, p = 0.0069, paired 
Student’s t test. Interaction index: CS versus VB, t (17) = 3.053, p = 0.007, unpaired 
Student’s t test; CS versus CS+treatment groups, F (2,21) = 4.379, p = 0.027, one-way 
ANOVA followed by Tukey post hoc. See also Data S3 and S4, Table S2, and Figures S2 
and S3. 

 

 

 

3.4.4 Discussion 

Thousands of years of interkingdom symbiosis between gut microorganisms and 

their animal hosts have influenced the hosts physiological systems development, 

including the central nervous system (Sherwin et al., 2019). Birth is one of the key 

factors shaping the gut microbiota structure in mammals and maternal transmission 

of the gut microbiota has likely contributed to the establishment of this evolutionary 

symbiotic relationship in many different species (Funkhouser and Bordenstein, 

2013). In humans, mode of delivery at birth is one of the key factors regulating early-

life gut microbiota composition of mammals (Penders et al., 2006; Martinez et al., 

2017). Here, we establish a mouse model of C-section mode of delivery which 

recapitulates structural changes in the intestinal microbial community in early life 

that endured through adolescence. Previous human studies have demonstrated that 

C-section significantly reduces Bifidobacterium spp. Abundance in the infant 

intestine, with the observed deficit normalising later in life (Dominguez-Bello et al., 

2010; Fouhy et al., 2019). In agreement, our model shows a significant and transient 

depletion of Bifidobacterium spp. in the CS offspring in early life. Altered microbiome 

composition at critical stages of early life, during which rapid development and 

maturation of central nervous system occur, has been implicated in a variety of 

behavioural alterations in animals (O'Mahony et al., 2017) and humans (Christian et 

al., 2015; Carlson et al., 2018; Cowan et al., 2020). However, until recently there has 

been limited epidemiological data examining behavioural and psychiatric outcomes 

in individuals born by C-section, and scarce data that exists from animal models was 

inconclusive (Vaillancourt and Boksa, 1998; El-Khodor and Boksa, 2002; Castillo-Ruiz 
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et al., 2018; Swift-Gallant et al., 2018; Chiesa et al., 2019; Yang et al., 2019). Here we 

demonstrate that structural alterations in the intestinal microbial community 

induced by C-section are associated with robust and persistent behavioural changes 

in the affected offspring. CS mice display social communication and maternal 

attachment deficits in early-life, and specific impairment of social novelty recognition 

in adulthood. CS-induced deficits in recognition also extend to discrimination of non-

social cognitive cues. 

 

In order to establish if disturbances in the appropriate colonization of bifidobacteria 

at the beginning of life is implicated in the observed behavioural deficits, we used 

two alternative approaches to counteract the reduction in Bifidobacterium spp. 

abundance induced by C-section (dietary supplementation of either B. breve strain 

or a prebiotic mixture of scGOS/lcFOS). Treatment with both strategies successfully 

reversed social and non-social recognition deficits in the CS offspring. Thus, we 

provide here a causal link between deficits in early life bifidobacteria colonization of 

the gut and the behavioural phenotype associated with C-section. Strikingly, in a 

recent human study, maternal supplementation with a B.breve strain completely 

reversed the impact of birth by C-section and antibiotic treatment on the microbiota 

composition in infants (Chua et al., 2017).  

  

In the co-housing experiment, we demonstrated that non-specific faecal microbiota 

transfer from the VB to the CS offspring at weaning was similarly effective in 

reversing C-section-induced behavioural deficits, and was associated with partial 

restoration of gut microbiota composition in the CS offspring. This further supports 

the implication of gut bacteria in mediating specific behavioural changes associated 

with C-section. Here we showed that co-housing had a unique effect on the relative 

abundance of Blautia and Rikenella bacteria, while not affecting Bacteroidales S24-7 

group and Anaeroplasma species in CS mice. Thus, the exact bacteria involved in 

restoring behavioural effects are unclear and remain to be explored in future 

intervention studies (Sbahi and Di Palma, 2016). It should be acknowledged that 
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transmission of the microbiota via coprophagy may have limited efficacy on 

microbiota standardisation as it select for bacteria that are more tolerant of certain 

environments and able to conquer resident microbiota response to colonization in 

the recipient mouse (Robertson et al., 2019). Further, co-housing mice that express 

different behaviours may have an effect itself. Thus, the effects of co-housing with 

CS with VB may not be entirely to faecal microbiome transfer. 

 

A growing body of work implicates the gut microbiota in social behaviour and 

cognitive performance, and alterations of microbiota have been recently associated 

with neurodevelopmental disorders (Hsiao et al., 2013; Desbonnet et al., 2014; 

Buffington et al., 2016). The precise mechanism by which C-section affects the 

developing brain and behaviour remains to be determined. However, pathways of 

communication that may be involved include alterations in vagus nerve signalling, 

immune system response, metabolite production including bile acids, tryptophan 

metabolism, enteroendocrine signalling, and changes in blood-brain and 

gastrointestinal barrier permeabilities (Cryan et al., 2019). Future studies should 

integrate behavioural outcomes with more functional analysis of the gut microbiota 

including metabolomic and metagenomic profiling which will allow for a more 

mechanistic view of microbiota gut-brain axis alterations in C-section. We observed 

differential expression of genes belonging to the extracellular matrix-associated 

group in the hippocampus of the CS offspring. Changes to this gene cluster have been 

associated with formation of memory (Tsien, 2013), cognitive flexibility (Happel et 

al., 2014), synaptic plasticity, and autistic-like behaviours in animal models (Jung et 

al., 2018). In line with our behavioural findings, C-section has been previously 

suggested to alter the dopaminergic system (Vaillancourt and Boksa, 1998; El-Khodor 

and Boksa, 2002), to increase neuronal cell death in the mouse brain and specifically 

affect vasopressin neurons in the hypothalamus (Swift-Gallant et al., 2018), the latter 

being important for social behaviour and recognition. The role of microbiota in the 

remodelling of these pathways has yet to be elucidated. As previously demonstrated 

in the extreme situation in germ-free mice, our results reinforce the importance of 
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gut microbiota composition in early life on normal host neurobehavioural 

development.  

 

3.4.5 Conclusion  

Together our findings raise significant concerns regarding the overuse of elective C-

section deliveries in modern medicine because of likely consequential changes in the 

microbiome and neurobehavioural effects. However, it is worth noting that along 

with the microbiota, C-section can affect other physiological changes, such as stress 

and immune priming during the birthing process, all of which may also contribute to 

the phenotype (Lagercrantz and Slotkin, 1986). It is clear that certain keystone 

species (including Bifidobacterium spp.) are vitally important during critical windows 

of development; they contribute to essential immune priming and represent a viable 

target for dietary intervention in mothers and infants. Restoration of bifidobacteria 

imbalance in C-section delivered infants represents a challenge that can be 

addressed in many ways. Recently, partial restoration of the gut microbiota of infants 

born by C-section was demonstrated via vaginal microbial transfer (Dominguez-Bello 

et al., 2016). Vaginal seeding, performed by swabbing babies with vaginal fluid over 

their entire bodies, successfully colonized the newborn gut with maternal vaginal 

microbes for up to 30 days (Dominguez-Bello et al., 2016). It should be noted though, 

in cases of C-section, vaginal seeding is currently considered unsafe due to the 

potential transfer of pathogenic bacteria to the newborn infant (2017; Haahr et al., 

2018). Dietary intervention may represent a more acceptable approach, both 

interventions (dietary supplementation of either B. breve strain or a prebiotic 

mixture of scGOS/lcFOS) did not interfere with the further colonization of native 

bifidobacteria and represent a safer alternative to vaginal seeding (Moya-Perez et al., 

2017). 

 

Our study is not without limitations; we use only male mice to allow us to compare 

our findings with previously published data from both our group and others on the 

role of the microbiome in behaviour and neurodevelopment (Jaggar et al., 2019). 
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Future studies should focus on interrogating the impact of C-section-induced 

microbiota changes on behaviour in female mice (Lagercrantz and Slotkin, 1986). 

Moreover, these studies now call for the investigation of the long-term impact of C-

section on brain and behaviour in other mouse strains and other species including 

humans. Finally, since C-section deliveries when medically indicated, are unavoidable 

lifesaving interventions; our data point to the possibility of developing adjunctive 

microbiota-targeted therapies (Dominguez-Bello et al., 2016; Moya-Perez et al., 

2017) in this vulnerable population. Such interventions may help to avert any long-

term negative consequences for microbiota-gut-brain axis and behaviour. 

 

 

3.4.6 STAR Methods 

3.4.6.1 Animals 
The experiments were performed in male NIH Swiss mice of different ages. Maternal 

care was a key consideration in our choice of strain, and the NIH Swiss outbred 

female mice are attentive mothers with a lower pup retrieval latency compared to 

B6 and 129Sv mice(Champagne et al., 2007). 8-week-old female and male breeders 

were obtained from Harlan laboratories, Oxford, UK. Breeding began after 1-2 weeks 

of acclimatization to the animal holding room. The animals were kept under a strict 

12:12-h dark-light cycle, controlled temperature and humidity (20±1 oC, 55.5%), with 

food and water given ad libitum unless specified. Male offspring were weaned on 

P21 and group-housed with 3-4 mice per cage. Experimental groups consisted of 

offspring from 3-10 litters (litter numbers for each experiment are specified in the 

figure legends). 10-week old Swiss mice, purchased from Harlan laboratories, UK, 

were used as conspecifics in the three-chamber sociability test. All procedures used 

in the present study were conducted in accordance with the Directive 2010/63/EU 

for the protection of animals used for scientific purposes and were approved by the 

Animal Experimentation Ethics Committee of University College Cork # 2012/036.  
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3.4.6.2 C-section surgery 
Mice were time-mated, and the presence of a vaginal plug was marked as gestational 

day 0.5 (G0.5). Males were removed from the cage, and pregnant females were not 

disturbed unless for cage cleaning. At full term (G19.5) female mice were euthanized 

by cervical dislocation. To reduce bacterial contamination of the abdominal cavity, 

the abdominal skin was prepped by application of 70 % ethanol. The abdomen was 

incised, the uterus was removed and placed on sterile gauze. After this step, an 

incision was made in the uterus. To prevent hypothermia of the foetuses in the 

uterus, a heating pad was placed underneath to provide thermal support. The pups 

were then removed by gentle pressure with a sterile swab, and the umbilical cord 

was cut. Sterile cotton swabs were used to tear the amniotic membrane and massage 

each pup until spontaneous breathing was noted. The pups were given to a foster 

dam that gave birth on the same day. The pups were dried by smearing them with 

the bedding material from the cage of foster dam (CS). In addition, pregnant females 

were allowed to deliver spontaneously, and these litters were used as full-term 

vaginal delivery controls (VB). To control for the effects of fostering, a cross-fostered 

vaginally born group was included in the experimental design (CF, see next section) 

(Figure 1A).  

 

3.4.6.3 Cross-fostering 
Cross-fostering was performed on litters born within 12 h of each other. On the day 

of the birth, the litters were removed and put with their foster mothers. The pups 

were nursed by their respective foster mothers until weaning. Given that CF and VB 

animals showed a very similar behavioural phenotype across the lifespan, we focused 

on the VB control group for later experiments to meet the 3R requirements and 

minimise animal usage.  

 

3.4.6.4 16S rRNA gene sequence-based microbiota analysis 
Total DNA extraction from caecal and faecal matter was performed using the QIAmp 

Fast DNA Stool Mini Kit (Qiagen, Manchester, UK) coupled with an initial bead-
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beating step. Extracted DNA was kept frozen at -20ºC until further analysis. The V3-

V4 hypervariable region of the 16S rRNA gene was amplified and prepared for 

sequencing as outlined in the Illumina 16S Metagenomic Sequencing Library Protocol 

http://www.illumina.com/content/dam/illuminasupport/documents/documentatio

n/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-

b.pdf). PCR was performed using forward primer (5’- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3') and 

reverse primer (5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3'). 

Each 25 μL PCR reaction contained 5 ng/μL microbial genomic DNA, 1 μM of each 

primer and 12.5 μL 2X Kapa HiFi Hotstart ReadyMix (Kapa Biosystems Ltd, Sigma, 

Dublin, Ireland.). The PCR conditions were as follows: initial denaturation at 95 ºC for 

3 min; 25 cycles of 95 ºC for 30 s, 55 ºC for 30 s, 72 ºC for 30 s; and 72 ºC for 5 min 

for final extension. PCR products were purified with Agencourt AMPure XP system 

(Beckman Coulter Genomics, Indianapolis, IN, USA). In the next step, dual indices and 

Illumina sequencing adapters were attached to PCR products using the Nextera XT 

Index Kit (Illumina, San Diego, USA). Each 50 μL PCR reaction contained 5 μL purified 

DNA, 5 μL index primer 1 (N7xx), 5 μL index primer 2 (S5xx), 25 μL 2x Kapa HiFi Hot 

Start Ready mix and 10 μL PCR grade water. PCR amplification was completed using 

the previous program but with only 8 amplification cycles. Following this, a second 

clean-up step with the Agencourt AMPure XP system was done. PCR products were 

quantified, normalized and pooled in an equimolar fashion using the Qubit® dsDNA 

HS Assay Kit (Life Technologies, Dublin, Ireland). 2 × 300 (bp) paired-end sequencing 

was performed on the Illumina MiSeq platform, using standard Illumina sequencing 

protocols. 

 

3.4.6.5 Microbiota bioinformatic sequence analysis 
Paired-end sequences were assembled using FLASH (min overlap of 30 bp and min 

length of 460 bp) and analyzed using QIIME v1.8.0. Sequences were quality-checked 

and clustered into OTUs using USEARCH (v7.0-64bit). Taxonomic ranks were assigned 
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with a BLAST search against the SILVA SSU database v123. Alpha diversity indices 

were generated in QIIME. 

 

3.4.6.6 Microbiota statistical analysis 
Statistical analysis was done in SPSS (IBM, SPSS Statistics 24) and R software 

environment. The OTUs detected only in ≤ two animals in each group were excluded 

from the analysis, as were the OTUs that did not give any BLAST hits or were 

unidentified or unknown on the genus level. Relative abundance of bacterial taxa on 

the phylum, family and genus level was expressed as % of identified sequences. 

Among-group differences in alpha-diversity indices and in the relative abundance of 

bacterial taxa were analysed with independent Mann-Whitney U test. p value < 0.05 

was deemed significant; Benjamini-Hochberg (BH) adjustment with Q=0.2 was used 

to correct p values for multiple testing. p values are presented in Tables S1 and S4. 

For beta diversity, the Aitchison distance was calculated using the ALDEx2 library in 

R to account for zeroes. Recommended settings were used, with 1000 permutations 

per sample. Variance-based Principal Component Analysis was done using the 

prcomp() function in R (version 3.5.1) using Rstudio (version 1.1.456). The 

vegan implementation of PERMANOVA followed by PERMANOVA as a post-hoc was 

used to test for differences on a beta-diversity level. Canonical correspondence 

analysis was performed using the vegan package in R (version 3.5). CCA plots on the 

OTU level were generated with the vegan library, ellipses represent 95% confidence 

interval visualised and calculated by the ggplot2 library (ter Braak, 1986). In order to 

investigate the impact of co-housing on the microbiome in CS mice, a linear model 

was constructed based on the effect sizes for all identified bacteria in these groups 

in base R. Bacteria with the highest Cook's distance from the model were selected 

for further analysis. Samples samples with <40000 reads were excluded from the 

analysis (technical outliers). 
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3.4.6.7 Behavioural testing 
The short and long-term effects of C-section on behaviour were evaluated in male 

offspring in early-life (P9/P10) and in adulthood (weeks 8-16). Mice were habituated 

to the behavioural room for 30 minutes prior to each test. The experimental 

procedures are described below; the experimental timelines are illustrated in Figure 

2A, Figure 5A and Figure 6B. The order of behavioural tests and between-test 

recovery intervals were chosen to minimize the potential confounding carryover 

effects from the previous behavioural test. Behavioural tests were analysed by three 

independent experimenters blinded to experimental groups. All tests were 

performed during the lights on phase and between the hours of 9am and 2pm. 

 

3.4.6.7.1 Isolation-induced ultrasonic vocalizations test 
Isolation-induced ultrasonic vocalizations (USV) are produced by mouse pups during 

the first two weeks of life when separated from their mother and littermates 

(Winslow et al., 2000). USV was performed as described by Robertson et 

al.(Robertson et al., 2017). Pups were isolated and placed into a clean plastic 

container enclosed in a sound-attenuating chamber. Emission of USV calls were 

monitored by an ultrasound sensitive microphone – a bat detector (US Mini-2 bat 

detector, Summit, Birmingham, USA) tuned in the range of 60-80 kHz – suspended 

above the isolated pup for 3 min. The number of calls was recorded. 

 

3.4.6.7.2 Maternal attachment test (homing test) 
Maternal attachment test evaluates the ability of pups to differentiate their mother’s 

and littermates’ nest (Macri et al., 2010). Maternal attachment was evaluated 

accordingly to Morais et al. (Morais et al., 2018). At P10, the floor of a clean mouse 

cage was subdivided into three areas by wire-mesh dividers. One area was uniformly 

covered with home cage bedding, thus containing familiar odour stimuli. The 

opposite area was covered with bedding from the cage of another litter (born at 

approximately the same time). The middle section was covered with clean bedding 

material. Pups were placed individually in the middle section for 1 min; the dividers 
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were then removed, and the pups were allowed to freely explore the arena for 2 min. 

Total time spent in each area was recorded. 

 

3.4.6.7.3 Three-chamber test  
Sociability and social novelty recognition were evaluated as previously described by 

Desbonnet et al. (Desbonnet et al., 2014). Animals were placed in a rectangular 

apparatus divided into three chambers (left and right, and a smaller center chamber) 

with transparent partitions; small circular openings allowed easy access to all 

compartments. The test was composed of three sequential 10 min trials: (1) 

habituation (the test animal was allowed to explore three empty chambers); (2) 

sociability (an unfamiliar con-specific animal was placed in an inner mesh wire cage 

in either left or right chamber, the alternative chamber had an empty inner cage); (3) 

social novelty recognition (a novel con-specific animal was placed into the previously 

empty inner cage). All animals were age- and sex-matched; each chamber was 

cleaned and lined with fresh bedding between trials. For each of the three stages, 

behaviours were recorded by a video camera mounted above the apparatus; time 

spent in active exploration of inner cages (t) was measured and sociability index was 

calculated by using the formula (t novel mouse- t familiar mouse)/ (t novel mouse+ t 

familiar mouse). 

 

3.4.6.7.4 Marble burying test 
Marble burying test was used to measure anxiety-like behaviour, indicating higher 

levels of anxiety at higher number of marbles buried as described by Burokas et al. 

(Burokas et al., 2017). Clean cages were filled with a 4-cm layer of chipped wood 

bedding. Twenty glass marbles (15 mm diameter) were gently laid on top of the 

bedding, equidistant from each other in a 4×5 matrix arrangement. Each mouse was 

placed in the cage and allowed to explore it for 30 min. The number of buried marbles 

(> 2/3 marble covered by bedding material) was recorded. 
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3.4.6.7.5 Aversive open-field (OF) test 
The aversive open-field (OF) test is used to assess the locomotor activity and the 

response to a novel stressful environment. Light was set at 1000 lux. A test mouse 

was placed in the center of an aversive open-field arena (Perspex box with white 

base: 30 x 30 x 20 cm) and was allowed to explore the arena for 10 min. The distance 

moved and time in zone were recorded using Ethovision videotracking system 

(Noldus Information Technology, Nottingham, UK). Using this technology, a center 

zone was demarcated as (20 x 15 cm, L x W). The time spent in each zone and the 

frequency of entries into each zone were also measured. The box was cleaned with 

10% ethanol and allowed to dry between animals. 

 

3.4.6.7.6 Novel object recognition test 
Novel object recognition test was performed as Burokas et al. (Burokas et al., 2017). 

On day one, a test mouse was habituated to a square open-field box (Perspex sides 

and base: 34.5cm x 42.7 cm for mice) for 10 min in a dimly lit room (60 lux). On day 

two, two identical objects were positioned in adjacent corners of the arena 

approximately 5 cm from the walls, and the test mouse was placed in the arena for a 

10 min exploration period. Following a 24 h inter-trial interval, one familiar object 

was replaced with a novel object, and the test mouse was introduced for a 10 min 

exploration period. Object exploration was defined as when the animal’s nose comes 

within a 2 cm distance to the object. In-between trials, objects and testing arena were 

cleaned with 10% ethanol. Novel object recognition index was calculated by using 

the formula (t novel object- t familiar object)/ (t novel object+ t familiar object). 

 

3.4.6.8 Statistical analysis for animal behavioural data 
Statistical analysis was done in SPSS (IBM, SPSS Statistics 24) and R software 

environment (version 3.5.1). The normality of data distribution was checked with 

Shapiro-Wilk test, and the homogeneity of variances across groups was compared 

using Levene’s test. For parametric data, two-tailed un-paired Student’s T-test, two-

tailed paired Student’s T-test, one-way ANOVA followed by Tukey post-hoc tests or 
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two-way ANOVA with Tukey post-hoc tests were used to compare means between 

groups where appropriate. Extreme outliers were excluded when values exceeded 2 

x Standard Deviation from the mean.  Technical outliers were excluded when animals 

were unable to perform the test. All parametric data were expressed as mean ± 

S.E.M. For nonparametric data, a Kruskal-Wallis test and Mann-Whitney U test were 

used to compare differences across groups. Non-parametric data were expressed as 

median and interquartile range. p value < 0.05 was deemed significant; F and p values 

are presented in the figure legends or Supplemental tables. Mixed-effects regression 

model was used to re-analyse adult behavioural data using litter or cage as a fixed 

effect in order to examine the covariance structure that is inherent in the 

experimental design using R (version 3.4.1). p value < 0.05 was deemed significant; F 

and p values are presented in the Table S3. 

 

 

3.4.6.9 Co-housing procedure 
At three weeks of age, male offspring born by VB or CS were weaned, and mice were 

split across three different housing conditions: 1) VB group, where each cage 

consisted of three to four VB mice housed together (from 9 litters); 2) CS group, 

where each cage consisted of four CS mice housed together (from 6 different litters); 

3) co-housing groups, where in each cage one CS born mouse was housed together 

with three VB mice (CS co-housed, from 7 litters and VB co-housed, from 10 litters). 

For this experiment, mice from different litters were randomly distributed across 

different cages and housing regimens. The co-housing system was adopted from 

Buffington et al. (2016) (Buffington et al., 2016). In the VB co-housed group, one 

animal per cage was randomly selected to pass through behavioural tests. 

 

3.4.6.10 Quantitative determination of Bifidobacterium breve in faecal pellets 
Absolute quantification of Bifidobacterium breve species was determined by 

quantitative PCR using genus-specific primers Bifidobacterium spp. F (5’-

CTCCTGGAAACGGGTGG-3’) and R (5’-GGTGTTCTTCCCGATATCTACA-3’),(Matsuki et 
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al., 2002). Standard curves were created using bacterial DNA extracted from a pure 

culture of Bifidobacterium longum NCBIM8809 as previously reported (Arboleya et 

al., 2012) . 

 

3.4.6.11 Probiotic and prebiotic administration 
CS offspring were exposed to either probiotic Bifidobacterium breve M16V (B. breve), 

a commercially available probiotic and supplied by Danone Nutricia Research 

(Utrecht, The Netherlands) or a prebiotic mixture of short-chain galacto-

oligosaccharides (scGOS) and long-chain fructo-oligossaccharides (lcFOS)  (ssniff 

Spezialdiäten GmbH, D-59494 Soest, Germany) starting from birth and throughout 

the experiment (Table S5). B. breve was given in drinking water at a concentration of 

109 c.f.u./mL (freeze-dried bacterial stocks were re-suspended in MediDrop clear H2O 

(75-02-1001), and drinking bottles were changed daily in the evening). Prebiotic 

mixture was given in the custom-made AIN93G rodent diet in a 9 (scGOS): 1 (lcFOS) 

ratio at the final concentration of 1%. Both interventions were given to the nursing 

dams starting from birth and throughout the lactation period till weaning. Male 

offspring were weaned on P21 onto the corresponding treatment. Control VB dams 

and offspring were given MediDrop clear H2O as drinking water and AIN93G diet ad 

libitum. 

 

3.4.6.12 Hippocampal RNA sequencing  
Ventral hippocampus was dissected from adult VB, CF and CS mice (Figure 2A) using 

micro punch technique. Briefly, whole brains were snap-frozen on dry ice and stored 

at −80°C unƟl ready for use. Using a mouse brain slicer , 1-mm thick sections were 

obtained from the entire brain, and micro punches of ventral hippocampal tissue 

were taken using a mouse brain atlas reference (Paxinos and Franklin, 2012). Total 

RNA was isolated from the ventral hippocampus using the mirVana™ miRNA Isolation 

Kit as per manufacturer’s instructions (Thermo Fisher Scientific, Dublin, Ireland). RNA 

concentration was quantified using the ND-1000 spectrophotometer (NanoDrop®). 

RNA from hippocampal micro-punches from each group VB (N=5), CF (N=5) and CS 
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(N=6) were subsequently sequenced. Library preparation and sequencing, as well as 

Fastq-file generation was done by Beckman Coulter Genomics service (Danvers, MA, 

USA). Paired-end reads of 2×100 bp were produced on an Illumina HiSeq2500 

sequencer. 

 

3.4.6.13 Bioinformatic analysis pipeline 
Fastq-format reads were quality filtered and trimmed using Trimmomatic (v0.32) 

with the following non-default parameters: AVGQUAL: 20; SLIDINGWINDOW: 4:20; 

LEADING: 10; TRAILING: 10; MINLEN: 60. Alignment to the mouse reference genome 

(GRCm38.p3) was achieved using the STAR aligner (v2.4.0f1) with default options and 

an index compiled with gene models retrieved from the Ensembl database (release 

78). These gene models were also used for read counting for each gene using HTSeq-

Count (v0.6.0) with the following non-default parameters: -s: no; -r: pos; -q –f bam –

m intersection-nonempty. Differential gene expression was determined using the 

DESeq2 R-package (v1.6.2) with default parameters on pairwise comparisons of all 

possible group combinations. An adjusted p-value ≤ 0.1 (Benjamini-Hochberg 

method) was considered significantly differentially regulated. Raw and processed 

original data will be deposited in NCBI's Gene Expression Omnibus and made 

accessible through a unique GEO accession number upon publication. 

 

3.4.6.14 Short chain fatty acid analysis  
Caecal content (30-40mg) from adolescent and adult mice was vortex-mixed with 

1ml Milli-Q water and incubated at room temperature for 10 min and subsequently 

centrifuged at 10,000g for 5mins to pellet bacteria and other solids. The supernatant 

was filtered, transferred to a clear gas chromatography (GC) vial and 2-ethylbutyric 

acid (Sigma-Aldrich, Ireland) was added as an internal standard. Standard solutions 

of 10.0 m mol/L, 8.0m mol/L, 6.0m mol/L, 4.0m mol/L, 1.0m mol/L and 0.5m mol/L 

of acetic acid, propionic acid, isobutyric acid and butyric acid (Sigma-Aldrich), 

respectively were used for calibration. The concentrations of SCFA were measured 

using a Varian 3800 GC-flame-ionization system fitted with a ZB-FFAP column (30 m 
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X 0.32 mm X 0.25 µm; Phenomenex, Macclesfield, Cheshire, UK). Initial oven 

temperature was set at 100ºC for 30 secs and raised to 180ºC at 8ºC per min and 

subsequently held for 1 min, then increased to 200ºC at 20ºC per min and finally held 

at 200ºC for 5 min. Helium was used as the carrier gas at a flow rate of 1.3ml/min. 

The temperature of injector and the detector were set at 240ºC and 250ºC 

respectively. A standard curve was constructed with different concentrations of a 

standard mix containing acetic acid, propionic acid, isobutyric acid and N-butyric acid 

(Sigma-Aldrich). Peaks were integrated using the Varian Star Chromatography 

Workstation v6.0 software (Table S2). 
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4.1.1 Abstract 

Obsessive-compulsive disorder (OCD) is a psychiatric illness that significantly impacts 

affected patients, while available treatments yield suboptimal therapeutic response.  

Recently, the role of the gut-brain axis (GBA) in psychiatric illness has emerged as a 

potential target for therapeutic intervention.  However, studies concerning the role 

of the GBA in OCD are limited.  To investigate whether a naturally occurring 

obsessive-compulsive-like phenotype in a rodent model, i.e. large nest-building in 

deer mice, is associated with perturbations in the gut microbiome, we investigated 

and characterized the gut microbiota in specific pathogen free bred and housed large 

(LNB) and normal (NNB) nest building deer mice of both sexes (n = 11 per group, 

including 3 males and 8 females).  Following baseline characterisation of nest building 

behaviour, a single faecal sample was collected from each animal and the gut 

microbiota analysed.  Our results reveal the overall microbial composition of LNB 

animals to be distinctly different compared to controls (PERMANOVA p < 0.05).  

While no genera were found to be significantly altered after correcting for multiple 

comparisons, the normal phenotype showed a higher loading of Prevotella and 

Anaeroplasma, while the OC-phenotype demonstrated a higher loading of 

Desulfovermiculus, Aestuariispira, Peptococcus and Holdemanella (cut-off threshold 

for loading at 0.2 in either the first or second component of the PCA).  These findings 

not only provide proof-of-concept for continued investigation of the GBA in OCD, but 

also highlight a potential underlying etiological association between alterations in the 

gut microbiota and the natural development of obsessive-compulsive-like 

behaviours. 

 

4.1.2 Introduction 

Obsessive compulsive disorder (OCD) is a multidimensional psychiatric disorder that 

is characterised by intrusive and persistent thoughts or ideas, i.e. obsessions and/or 

ritualistic behaviours (compulsions) that are often expressed in an attempt to 

mitigate the level of distress caused by the obsessive thoughts (Apa, 2013; 

Abramowitz and Jacoby, 2015; Wu and Lewin, 2017).  The condition is phenotypically 
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heterogeneous and symptoms usually cluster along the basis of specific themes, e.g. 

fears of contamination and cleaning rituals, fears of harm and checking compulsions, 

a need for symmetry and just-right feelings associated with ordering compulsions, as 

well as covert inappropriate thoughts relating to, among others sexual misconduct, 

religion, and violence (Williams et al., 2013; Abramovitch and Cooperman, 2015). 

Chronic high-dose selective serotonin reuptake inhibitors (SSRIs) are currently 

recommended as first line pharmacotherapy for OCD (Albert et al., 2018), while 

increasing the dose of the SSRI used or SSRI-antipsychotic augmentation strategies 

are clinically employed in the treatment of SSRI-refractory OCD (Dold et al., 2015).  

Nevertheless, a significant number of patients respond poorly to these options and 

other available pharmacotherapeutic interventions (Albert et al., 2018).  Therefore, 

a better understanding of the etiology and pathophysiological processes underlying 

OCD is needed to develop more effective treatment options. 

During the past decade, the gut-brain axis (GBA) and its involvement in psychiatric 

disease has gained significant interest (Mayer et al., 2014; Dinan and Cryan, 2017; 

Bastiaanssen et al., 2018).  Communication between the gut and the brain takes place 

on a number of functional levels, including neural, neuroendocrine and 

immunological signalling (Foster and Neufeld, 2013; Cussotto et al., 2018).  Indeed, 

the gut microbiota is regarded as one of the major immunomodulatory influences in 

the human body (Zhao and Elson, 2018).  While the exact etiological associations 

between psychiatric illness and the gut microbiota are still not fully understood, 

altered immune responses may be instrumental in the pathogenesis of brain 

disorders, including OCD (da Rocha et al., 2008; Turna et al., 2016).  In light of this, 

several investigations into microbiota manipulation in animal models of psychiatric 

illness have been conducted, including models of depression (Kelly et al., 2016), 

anxiety (Crumeyrolle-Arias et al., 2014), and OCD (Kantak et al., 2014).  However, the 

exact translational value of these findings remains to be established (Kelly et al., 

2016). 

Regarded collectively, natural compulsive-like behavioural phenotypes expressed by 

deer mice (Peromyscus maniculatus bairdii), i.e. large nest building (LNB) and high 

stereotypy, provide a well-validated naturalistic pre-clinical framework in which to 
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study the etiopathology of OCD (Scheepers et al., 2018).  Approximately 30% of 

laboratory housed deer mice of both sexes express LNB (Wolmarans et al., 2016).  

LNB manifests by the age of 8 weeks and is persistent and repetitive over the course 

of several trials.  From a teleonomic perspective (Thornhill, 1996), LNB can be 

regarded as a maladaptation in a specific component of the normal behavioural 

repertoire of deer mice.  Indeed, considering that mice build nests for the purposes 

of safety and protection, temperature regulation and to provide adequate nurseries 

for offspring (Jirkof, 2014), excessively large nests expressed in the laboratory serve 

no unique purpose.  From an evolutionary perspective, nesting size and quality play 

a major role in mate choice and reproductive success in some species, e.g. birds 

(Holveck and Riebel, 2009), fish (Jamieson, 1995), and frogs (Felton et al., 2006).  

However, this is not true for mice, which generally exercise mate choice by random 

or on the basis of amongst others, dominance, probability of genetic success, overall 

health, or patterns of ultrasonic vocalization (for a detailed review, see Latham and 

Mason (2004)).  That both male and female deer mice engage in LNB, also excludes 

the likelihood of sex-related differences in nesting phenotype.  Therefore, it is likely 

that excessive nest-building is expressed at the cost of other functions for which 

effort, time and energy is required, and may thus be regarded as a naturalistic 

maladaptation (Crespi, 2000). 

We have previously shown that LNB is responsive to chronic high-dose (50 

mg/kg/day) oral treatment with the SSRI, escitalopram (Wolmarans et al., 2016).  This 

is in line with the therapeutic, albeit varying, effect of SSRI intervention observed in 

the majority of patients with OCD (Fineberg et al., 2006).  Moreover, normal nest 

building (NNB) and LNB can be separated based on the underlying involvement of 

serotonin in its expression, as NNB remains wholly unaltered following such 

intervention, with nests neither decreasing or increasing in size (Wolmarans et al., 

2016).  Such difference in treatment response also imply that it is not the behavioural 

act of nesting per se, but rather the aberrant cognitive processes that underlie such 

behaviour, that are modified by serotonergic intervention. 

Considering the literature reviewed here and the fact that LNB spontaneously 

manifest in a sub-population of deer mice only, the present work aimed to 
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investigate whether an association between such behaviour and natural 

modifications in the gut microbiota may exist.  In fact, bearing in mind that theories 

pertaining to the involvement of the gut-brain axis in psychiatric illness point to 

developmental relationships (Borre et al., 2014), the study of parallel, but equally 

intrinsic and non-induced changes in both behaviour and the gut microbiome may 

provide valuable insight into our understanding of neurodevelopmental psychiatric 

conditions. 

4.1.3 Materials and Methods 

4.1.3.1 Animals 
Deer mice of both sexes were obtained from the deer mouse colony of the North-

West University (NWU), Potchefstroom, South Africa (ethical approval number: 

NWU-00284-17-S5; AnimCare Research Ethics Committee, National Health Research 

Ethics Committees Registration Number: AREC-130913-015).  The original breeding 

pairs were established using animals obtained from the Peromyscus Genetic Stock 

Centre at the University of South Carolina, USA.  Since only 30% of deer mice express 

LNB behaviour (Wolmarans et al., 2016), 40 deer mice (age 12 weeks) were screened 

to identify 11 (3 male and 8 female) deer mice of each nesting cohort, i.e. NNB and 

LNB.  In line with the minimum recommendations set by the ARRIVE-guidelines 

(Kilkenny et al., 2010), and considering an extensive review of recent literature (Cani 

et al., 2008; Chang et al., 2015; Desbonnet et al., 2015; Luczynski et al., 2016; 

Sampson et al., 2016), group sizes of 3 – 8 animals are deemed sufficiently powerful 

in pre-clinical microbiome investigations.   

Animals were bred according to a standard out-bred protocol (Bateson, 1983) and 

housed and maintained in the specific-pathogen-free (SPF) area of the Vivarium at 

the North-West University, Potchefstroom, South Africa.  The initial breeding pairs—

used to breed the 40 mice screened in this investigation—were randomly allocated 

without prior knowledge of their nest building profiles.  After weaning, offspring 

were housed in same-sex groups (4 – 6 animals per cage) in individually ventilated 

cages [(35cm (l) x 20cm (w) x 13cm (h); Techniplast® S.P.A., Varese, Italy], until one 

week prior to the onset of the first nest building analysis.  From this point onwards, 
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each animal was allocated to its own cage, while all experimental analyses were 

conducted in these same cages throughout the investigation.  Animals were kept on 

a 12-hour light/dark cycle (06h00/18h00), at a temperature of 22 ± 1°C and relative 

humidity of 55 ± 5%.  Food and water were provided ad lib.  All mice received food 

from the same batch of pelleted rodent chow throughout the study.  Cages were 

cleaned and new bedding material, consistently taken from the same batch of ground 

corncob, added once a week on the same day. 

4.1.3.2 Nest building analysis 
Nest building behaviour was quantified as described previously (Wolmarans et al., 

2016).  In short, nesting behaviour was assessed in each animal for 7 consecutive 24-

hour periods.  An excess of pre-weighed, sterile, hospital-grade, non-scented cotton 

wool was introduced in the roof of each home cage every day between 15h00 and 

16h00.  As mice generally build their nests just before dawn (Jirkof, 2014), the 

remaining cotton wool was only removed and weighed between 13h00 and 14h00 

on the following day.  Each day, built nests were removed, discarded and additional 

pre-weighed cotton wool supplied.  Animals did not have access to any other form of 

nesting material, and food and water were supplied as normal.  Daily nesting scores 

were expressed in grams of cotton wool used with a cumulative nesting score, 

describing nesting size and not quality per se, determined after one week 

(Wolmarans et al., 2016).  As nest building is a natural behaviour expressed by all 

rodents (Smithers, 1983), only animals that consistently built large nests over the 

course of 7 days were included in the LNB cohort.  This was determined by plotting 

the total nesting scores against the coefficients of variance with respect to daily 

nesting behaviour, where LNB was defined as nesting behaviour that clustered 

within, or as near to, the upper quarter of the nesting score distribution, while 

demonstrating the lowest degree of variance (Figure 4.1-1).  Likewise, NNB animals 

were identified as those individuals that built the smallest nests consistently over the 

course of 7 days—for a full review of this methodology, please refer to Wolmarans 

et al. (2016).  A clear separation of the LNB and NNB cohorts (Figure 4.1-2i – 2iv) is 

important in order to directly relate the compulsive-like phenotype to perturbations 

in the gut microbiota.  As such, a group of mice that not only built smaller nests than 
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the LNB group, but also did so with the lowest possible degree of variability (Figure 

4.1-1), were set as control.  That said, while not a single animal refrained from 

engaging in nesting behaviour (Figure 4.1-1), NNB animals expressed nest building 

behaviour in a more adaptable manner (as indicated by the higher degree of 

between-day variance compared to LNB animals; Figure 4.1-1).  These characteristics 

in nesting phenotype point to a clear separation between the two cohorts, as LNB 

animals not only express the highest nesting scores but do so without significant 

between-day variation.  In other words, the motivational drive to engage in LNB is 

not only observed during a few nights of the 7-day assessment period, but across 

most of the trials (Figure 4.1-1), pointing to a OCD-like phenotype akin to behavioural 

inflexibility (Gillan et al., 2011). 

 

Fig. 4.1-1 Plot of the average total nesting scores (g) generated by each animal over 
the course of 7 days and the coefficients of variance with respect to the between‐day 
nesting scores. Horizontal dotted lines intersecting the y‐axis indicate the 25th and 
75th percentiles of with respect to the total nesting scores generated. The vertical 
dotted line intersecting the x‐axis indicates the 25th percentile with respect to the 
coefficients of variance. Blue circle: animals identified as LNB; Green oval: animals 
identified as NNB. 
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Fig. 4.1-2 Photographs of typical nests built by NNB (i, ii) and LNB (iii, iv) animals, 
respectively. 

4.1.3.3 DNA analyses 

4.1.3.3.1 Sample collection and DNA extraction 
Fresh faecal samples were collected during the first hour of the dark (wake) cycle 

with a sterilized tweezer, transferred to 1.5ml Eppendorf® Safe-Lock tubes and 

immediately flash frozen in liquid nitrogen (Hong et al., 2010).  Samples were kept 

frozen at -80°C until the extraction of DNA.  The QIAamp® PowerFecal® DNA kit 

(QIAGEN, Valencia, CA, USA) was used to extract the microbial DNA from faecal 

samples (0.25g/sample).  DNA extraction was performed as per the manufacturer’s 

instructions to ensure maximal cell lysis of bacterial cell wall components.  The 

Thermo-Scientific® NanoDrop One Microvolume UV-Vis Spectrophotometer was 

used to assess the quality and quantity of the extracted microbial DNA. 

4.1.3.3.2 DNA sequencing 
Paired-end sequencing of the V3 to V4 hypervariable regions of the 16S rRNA was 

performed by Macrogen® Inc. (South-Korea) using the FWD 5’-

CCTACGGGNGGCWGCAG-3’ and REV 5’-GACTACHVGGGTATCTAATCC-3’ primer pair 
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on a MiSeq (Illumina) platform.  The V3 to V4 hypervariable region was used as high 

inter-taxon variability of these regions can be used to distinguish between closely 

related bacteria.  Library preparation was performed as per the 16S Metagenomic 

Sequencing Library, Preparation Part #15044223, Rev. B protocol, except when using 

the Hercules II Fusion DNA Polymerase (Agilent, Santa Clara, USA), the Nextera Index 

Kit V2 (Illumina, San Diego, USA) and the V3-V4 primers.  Indexed adapter-ligated 

fragments were pooled and then gel purified and PCR amplified. 

4.1.3.3.3 Statistical analysis 
First, quality control of raw fastq sequencing files was performed using fastqc and 

multiqc programs respectively (Ewels et al., 2016).  Second, a Divisive Amplicon 

Denoising Algorithm (DADA) 2 (version 1.8) (Callahan et al., 2016) in R studio (R 

version 3.4.3; R-studio version 1.1.456) (Gandrud, 2016) was used for the 

construction of an amplicon sequence variant (ASV) table (Callahan et al., 2016).  The 

DADA 2 workflow consisted of the following steps: inspecting the read quality 

profiles, filtering and trimming low-quality reads, identifying error rates, 

dereplication (eliminating redundant comparisons), sample inference, merging 

paired reads, constructing an amplicon sequence variant (ASV) table, removing 

chimera’s and assigning taxonomy.  Taxonomy was assigned using the Ribosomal 

Database Project (RDP) as a reference database (Cole et al., 2005).  The vegan 

package in R was used to evaluate β-diversities.  For PCA, Aitchison distance was 

calculated using the ALDEx2 library (Fernandes et al., 2014; Gloor et al., 2017).  The 

Shannon, Simpson, Chao1, Observed and Fisher diversity indices were used to 

evaluate α-diversity.  Filtering was performed to only include taxa that were 

observed more than once in at least 15% of the animals.  Centred log-ratio 

transformed (clr) relative abundance for each ASV was also determined using 

ALDEx2.  To test for statistically significant differences in the relative abundance of 

ASVs between the gut microbial composition of NNB and LNB animals, we used 

permutational multivariate analysis of variance (PERMANOVA; vegan package).  The 

Mann-Whitney U test was used to compare alpha diversity metrics, a p-value of < 

0.05 was deemed significant in all cases. 
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Fig. 4.1-3 Principal Component Analysis with biplot of the faecal microbiota of LNB 
and NNB deer mice. Aitchison's distance was used as the beta‐diversity metric. 
Individual genera that were found to have a loading of at least 20% in either PC1 or 
PC2 have been depicted as arrows, with their length and orientation representing 
their respective loading. 

4.1.4 Results 

To test for differences between the gut microbial composition of NNB and LNB 

animals (3 male and 8 female animals per group, respectively), a total of 22 faecal 

samples were analysed, each from the same time point in the sleep cycle.  All samples 

passed quality control (QC) with a minimum read count threshold of 10 000 and 

median read depth of 34 686 reads per sample.  From this, 86 genera were detected. 

The Mann-Whitney U test revealed no differences in α-diversity between NNB and 

LNB animals, as measured by Chao 1, Shannon, Simpson, Observed and Fisher 

distance matrices, respectively.  However, β- diversity using Aitchison distance at the 

genus level, revealed a clear clustering of NNB and LNB cohorts (Figure 4.1-3).  PC1 

and PC2 accounted for 13.77% and 10.91% of the variance observed respectively, 

and PERMANOVA revealed this distinction to be statistically significant (p < 0.05).  In 

this regard, two clusters, having a 20% loading in either PC1 or PC2 (Camacho et al., 

2010) were observed that associated with the control (driven by the prevalence of 

Prevotella and Anaeroplasma), and the OC-phenotype (driven by the prevalence of 

Desulfovermiculus, Aestuariispira, Peptococcus and Holdemanella), respectively. 
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4.1.5 Discussion 

The major findings of the present work are that 1) there is a significant difference in 

the overall gut microbiota composition of NNB and LNB animals, and 2) such 

difference is driven in NNB and LNB animals by the prevalence of Prevotella / 

Anaeroplasma, and Desulfovermiculus / Aestuariispira / Peptococcus / Holdemanella, 

respectively. 

The neurobiological and pathophysiological processes underlying OCD are not yet 

fully elucidated, with current treatment options also yielding suboptimal results 

(Atmaca, 2016).  During the past decade, our understanding of the GBA has expanded 

significantly (Sherwin et al., 2018), having been shown to play a role in the 

pathophysiology of a number of psychiatric illnesses, including anxiety and 

depression (Foster and Neufeld, 2013).  In terms of OCD, very little research has been 

conducted to elucidate if and how the gut microbiota may be associated with the 

condition (Kantak et al., 2014; Turna et al., 2016).  Further, although some clinical 

results have been reported that may be indicative of the potential therapeutic value 

of microbiotic modification in the treatment of central nervous system disorders 

(Messaoudi et al., 2011), it remains difficult to translate these findings to clinical 

studies (Kelly et al., 2016). 

In this investigation we interrogated possible associations between a naturally 

developing compulsive-like phenotype, i.e. LNB in the deer mouse (Wolmarans et al., 

2016), and alterations in the gut microbiota.  Our finding that the community 

composition of the gut microbiota in LNB animals is significantly different from that 

in the NNB cohort is noteworthy.  Taking into account that LNB transpires naturally 

over the course of development and given that animals included in this investigation 

have been randomly selected without litter bias and housed individually, the 

differences observed in microbial composition parallel the differences observed in 

behavioural expression; this association is therefore likely naturalistic.  Our finding 

that a clustering of Prevotella and Anaeroplasma was driving the compositional 

ordination in NNB compared to LNB animals, is noteworthy.  Interestingly, while the 

human gut microbiota demonstrates significant biogeographical stratification 
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(Donaldson et al., 2016), most organisms cluster within the phyla Firmicutes and 

Bacteroidetes, which includes the genus Prevotella, and (Albenberg and Wu, 2014; 

Marchesi et al., 2016).  Further, both Prevotella (Shenker et al., 1991) and 

Anaeroplasma (Beller et al., 2019) have been associated with significant anti-

inflammatory properties, while children diagnosed with autism, a condition also 

characterized by persistent behavioural phenotypes, have been shown to present 

with lower gut Prevotella abundance (Kang et al., 2013). 

In terms of the gut microbiota composition of LNB animals, members of the phylum 

Proteobacteria, of which Aestuariispira is an example, have been proposed as 

microbial signatures of among others, inflammatory conditions (Rizzatti et al., 2017).  

Further, hydrogen sulphide releasing bacteria, of which Desulfovermiculus 

(Loubinoux et al., 2002), and Peptococcus (Bourgault and Rosenblatt, 1979; Van 

Eldere et al., 1988) are examples, have been associated with gut mucosal injury and 

inflammatory pathology (Loubinoux et al., 2002).  Interestingly, Peptococcus, has also 

been implicated in other models of adult neurodevelopmental aberrancies following 

exposure to prenatal stress (Golubeva et al., 2015).  Therefore, considering that LNB 

develops spontaneously over time, and that this phenotype is associated with a lower 

loading of Prevotella and Anaeroplasma, it is possible that the composition of the 

microbiota in LNB animals reported here, can exert a gut-to-brain neuroimmune-

associated etiological influence on the expression of compulsive-like nest building in 

the deer mouse (Heijtz et al., 2011; Furtado and Katzman, 2015; Turna et al., 2016).  

This possibility should be elaborated in future investigation. 

4.1.6 Conclusion 

The data presented here indicates for the first time in a pre-clinical model that 

naturally developing OC-like behaviour is associated with inherent differences in the 

gut microbial composition, compared to that in normal controls.  Future 

investigations into a possible causal role of the gut microbiota in the etiology of 

compulsive phenotypes are warranted.  Specifically, the relationship between 

obsessive-compulsive behaviour, stress, and immune alterations on the one hand, 

and adaptations in the microbiota of normal and compulsive-like animals on the 
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other, needs further elucidation.  Further, using gnotobiotic mice and other means 

of microbiota modification, e.g. antibiotic treatment, it would be of value to 

characterize the behavioural response in LNB deer mice under circumstances of 

microbiota alterations.  Such studies will potentially contribute to a better 

understanding of the neurobiology underlying OCD and may ultimately lead to the 

development of better treatment. 
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5.1.1 Abstract 

The microbiome-gut-brain-axis is a complex phenomenon spanning several dynamic 

systems in the body which can be parsed at a molecular, cellular, physiological and 

ecological level. A growing body of evidence indicates that this axis is particularly 

sensitive to the effects of stress and that it may be relevant to stress resilience and 

susceptibility. Although stress-induced changes in the composition of the 

microbiome have been reported, the degree of compositional change over time, 

which we define as volatility, has not been the subject of in-depth scrutiny. Using a 

chronic psychosocial stress paradigm in male mice, we report that the volatility of 

the microbiome significantly correlated with several readouts of the stress response, 

including behaviour and corticosterone response. We then validated these findings 

in a second independent group of stressed mice. Additionally, we assessed the 

relationship between volatility and stress parameters in a cohort of health volunteers 

who were undergoing academic exams and report similar observations. Finally, we 

found inter-species similarities in the microbiome stress response on a functional 

level. Our research highlights the effects of stress on the dynamic microbiome and 

underscores the informative value of volatility as a parameter that should be 

considered in all future analyses of the microbiome.   

5.1.2 Introduction 

The mammalian gut plays host to approximately 1 trillion microbial organisms 

collectively known as the gut microbiome (Sommer and Bäckhed, 2013). The 

microbiome is highly sensitive and reactive to the effects of stress to the extent that 

it is now accepted that the stress response is not solely the domain of brain function, 

but rather that it results from a synergy of mechanisms that constitute the gut-brain 

axis (Dinan and Cryan, 2012; Foster et al., 2017; Bastiaanssen et al., 2018; Cryan et 

al., 2019; Bastiaanssen et al., 2020; Cruz-Pereira et al., 2020). In particular, studies in 

rodents have correlatively linked alterations in microbiota composition to the effects 

of stress on behaviour (Bharwani et al., 2016; Bharwani et al., 2017; Burokas et al., 

2017; Marin et al., 2017; Szyszkowicz et al., 2017; Xu et al., 2020) and the 

central/peripheral inflammatory milieu (Bailey et al., 2011; Bharwani et al., 2016; 
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Bharwani et al., 2017; Burokas et al., 2017; Szyszkowicz et al., 2017). Going further, 

manipulation and perturbation of the microbiome have been shown to alter the 

reaction to stress, further solidifying the regulatory role of the microbiome in the 

stress response (Jašarević et al., 2017; Langgartner et al., 2018; Pearson-Leary et al., 

2019; Provensi et al., 2019; Stothart et al., 2019; Donoso et al., 2020; Kuti et al., 2020; 

Morais et al., 2020; Wang et al., 2020). Moreover, in humans there have been a 

number of studies confirming a relationship between stress and microbiome 

composition across the lifespan (Messaoudi et al., 2011; Zijlmans et al., 2015; Allen 

et al., 2016; Hemmings et al., 2017; Papalini et al., 2019).    

 

These observations notwithstanding, a common feature of the above cited studies is 

the fact that they are a ‘snapshot-in-time’ analyses of samples and therefore do not 

consider the compositional and temporal instability of the microbiome (Caporaso et 

al., 2011; Claesson et al., 2011). Temporal variance as a feature of the microbiome 

has been discussed before. Initially, the volatile nature of the microbiome was 

pointed out (Weinstock, 2011) and relatively soon thereafter, the term volatility was 

used to refer to the degree of change between timepoints (Goodrich et al., 2014).  In 

the context of stress, recent studies have shown differential effects on microbiota 

beta-diversity dependent on when the samples were taken – shortly after 

commencement of social stress or towards the end of the protocol (Gautam et al., 

2018), though the degree of change was not pursued, nor linked to the severity of 

the stress response. Recently, in a large human cohort, patients with Inflammatory 

Bowel Disease (IBD), a condition that is associated with an increased level of stress, 

were shown to have a more volatile microbiome than healthy volunteers (Clooney et 

al., 2020; Ryan et al., 2020). While these studies provide some evidence that volatility 

maybe related to stress, the impact of stress on microbial volatility measures remain 

unknown. Furthermore, deciphering what makes a microbial community volatile can 

provide new insights into its role in mediating the effects of stress. To further 

investigate volatility in relation to stress, we exposed mice to chronic psychosocial 

stress and assessed volatility. Based on the findings of this discovery cohort, we then 

set out to validate our findings in an independent cohort of a different strain of mice 
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under the same experimental conditions.  Finally, we also took advantage of an 

ongoing study involving healthy volunteers undergoing academic examination stress 

and sought to examine whether the interaction between volatility and stress 

occurred across species.  
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5.1.3 Materials & Methods 

5.1.3.1 Animals 
For this study we used two cohorts of adult male mice. The first cohort will be 

referred to as the Discovery cohort and consisted of (B6;129-Gt(ROSA)26Sortm1(CAG-

cas9,-EGFP)Fezh/J; https://www.jax.org/strain/024857). The second cohort will be 

referred to as the Validation cohort and consisted of adult male C57BL/6 (Envigo, 

UK). There were no differences in terms of experimental treatment and handling 

between the two cohorts. There were three weeks between the arrival of the animals 

and the start of singly housing. Approximately one week before commencement of 

social defeat sessions, all mice were singly housed and weighed daily over the course 

of the experimental protocol (Figure 5.1-1). For the chronic social defeat stress 

procedure, non-experimental singly housed adult male CD1 were used as aggressors 

(Envigo, UK). Mice were kept under a 12 hr light/dark cycle (ON 7:30AM, OFF 7:30PM) 

in a temperature/humidity controlled environment (21°C, 55.5%) with food and 

water ad libitum. The main behavioural and physiological responses to chronic stress 

of the Discovery cohort have been initially reported elsewhere (Gururajan et al., 

2019) and are used here in a correlative capacity with the microbiome analysis. 

 

 

 

Figure 5.1-1: Mouse experimental timeline. Mice were singly housed for 1 week prior 
to the first stool and plasma collection on Day 0. From Day 1 to 10, mice were 
randomly assigned to either the control condition (not shown) or chronic social defeat 
stress. On Day 11, plasma and faecal boli samples were again collected and social 
behaviour was assessed. The following day, all mice were culled. Trunk blood was 
collected for flow cytometry and brain tissue was processed for gene expression 
analyses. 
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5.1.3.2 Chronic social defeat stress 
Mice were randomly assigned to either the social defeat stress or control groups. 

Defeat sessions were performed as previously described (Gururajan et al., 2019). 

Control mice remained in their home-cages over the course of the stress protocol but 

were handled to an equal extent as the stressed mice in the process of measuring 

daily body weight and collecting tail-blood samples. Across the duration of the defeat 

protocol, to prevent contamination during defeat procedures, the experimenter 

removed any traces of faecal boli produced by the aggressor or the stressed mice. 

Based on the findings in the first cohort of mice, we repeated the experiment in a 

larger cohort. We refer to these cohorts as the Discovery cohort and the Validation 

cohort, respectively. Further details can be found in Supplementary Methods. 

 

5.1.3.3 Social interaction test 
The social interaction testing of mice was used to assess avoidance of the CD1 

aggressors the day after the last defeat session and was carried out as previously 

described (Gururajan et al., 2019). Social interaction (SIT) ratios were generated 

based on social investigation time in an arbitrarily defined interaction zone. Further 

details can be found in Supplementary Methods. 

 

5.1.3.4 Plasma sampling for corticosterone 
Collection and analysis of plasma samples for corticosterone was carried out as 

previously described (van de Wouw et al., 2018; Gururajan et al., 2019). Briefly, tail 

bleeds were carried out within 1 hour of the lights turning off (1930-2030). Whole 

blood was collected in sterile eppendorfs. Whole blood was centrifuged (3500g, 10 

minutes, 4 degrees C) and plasma was collected. Plasma samples were analyzed in 

duplicate using the Enzo® Corticosterone ELISA kit plate (ADI-900-097, Enzo, Exeter, 

United Kingdom) according to the manufacturer’s instructions. ELISA plates were 

read using a Multiskan® microplate photometer (Thermofisher Scientific®, Waltham, 

MA, USA) at 405 nm. See Supplementary Methods for further detail. 
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5.1.3.5 Human Study 
Briefly, healthy volunteer study participants were recruited via advertisement and 

direct contact to the student population of University College Cork (UCC). A total of 

84 volunteers responded to advertisement and direct contact; 54 were pre-screened 

by telephone call (64%); 36 were invited to a screening visit (43%); and thirty were 

enrolled in the study and randomised to treatment (36%). Inclusion criteria: 

participant must be able give written informed consent; be between 18 and 30 years 

of age; be male; be in generally good health as determined by the investigator. Prior 

to testing days, participants were asked to refrain from strenuous exercise and 

alcohol 24 hours before the session, and from caffeine three hours prior to the 

session. At the screening visit, two weeks before baseline measurement, study 

participants were asked about their demographics, general medical history, 

medication record, and other metadata. Furthermore, the participants were 

screened using the MINI International Psychiatric Interview (to exclude subjects with 

a significant DSM-V psychiatric diagnosis). Participants attended for study visits 

during 2 semesters in UCC – both 8 weeks prior to an exam period and during an 

exam period.  The exam visit took place during the participant’s exams, but not on 

the day of an exam. The measures taken during the visit included Cohen’s Perceived 

Stress Scale (PSS). Faecal samples from the morning of the visit were collected into 

plastic containers containing an Anaerogen sachet. Participants were instructed to 

keep the sample in a cool place until delivery at the study visit. Salivary Cortisol 

Awakening Response was assessed using the Cortisol ELISA kit plate ADI-900-071, 

Enzo, Exeter, United Kingdom) according to the manufacturer’s instructions. ELISA 

plates were read using a Multiskan® microplate photometer (Thermofisher 

Scientific®, Waltham, MA, USA) at 405 nm. 

 

5.1.3.6 16S rRNA Gene Sequencing 
DNA was extracted from faecal samples and prepared for sequencing using an 

Illumina 16S Metagenomic Sequencing Library Protocol. See supplementary methods 

for further details. 
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5.1.3.7 Bioinformatics analysis 
Three hundred base pair paired-end reads were pre-filtered based on a quality score 

threshold of >28 and trimmed, filtered for quality and chimaeras using the DADA2 

library in R (version 3.6.3). Only samples with >10.000 reads after QC were used in 

analysis. Taxonomy was assigned with DADA2 against the SILVA SSURef database 

release v138. Parameters as recommended in the DADA2 manual were adhered to 

unless mentioned otherwise. ASVs were aggregated at genus level; those that were 

unknown on the genus level were not considered in downstream analysis, as were 

genera that were only detected as non-zero in 10% or few of total samples.  

 

5.1.3.8 Statistical analysis  
Further data-handling was done in R (version 3.6.3) with the Rstudio GUI (version 

1.1.453). Custom R scripts are available at at 

https://github.com/thomazbastiaanssen/Tjazi (Bastiaanssen, 2018). Stacked 

barplots were generated by normalizing counts to 1, generation proportions. Genera 

that were never detected at a 1% relative abundance or higher were aggregated and 

defined as Rare taxa for the purposes of the stacked barplots. Principal component 

analysis was performed on centred-log ratio transformed (clr) values using the 

ALDEx2 library (Fernandes et al., 2014). Number of permutations was always set to 

1000. Volatility was measured as distance between before and after the experiment 

or treatment and was calculated as the Aitchison distance between the two 

timepoints. Unlike other distance metrics such as Bray-Curtis and Jensen-Shannon 

divergence, the Aitchison distance takes into account the compositional nature of 

microbiome datasets (Aitchison et al., 2000).  Piphillin  was used for functional 

inference from 16S rRNA gene seqeunce of mouse stool samples in the form of KEGG 

orthologues (Iwai et al., 2016). Gut-Brain Modules (GBMs) and Gut-Metabolic 

Modules (GMMs) were calculated using the R version of the Gomixer tool (Valles-

Colomer et al., 2019). Differential abundance of both microbes and functional 

modules were calculated using implementations of the ALDEx2 library. As part of 

testing for  correlations between volatility and metadata, skadi, an implementation 

of jackknifing and Grubb’s test, was used to assess reliability of the data and detect 
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outliers (R scripts avaliable). Correlation was assessed using Spearmans’s rank 

correlation coefficient in the case of low N or heteroskedacity. In all other cases the 

Pearson correlation coefficient was used. Normality was assessed using the Shapiro-

Wilk test. For normally distributed data, between-group differences were analysed 

using ANOVA or unpaired two-tailed t-test and Tukey’s test for post-hoc analysis. For 

datasets in which the condition of normality was violated the non-parametric 

Kruskal-Wallis test was used and post-hoc analysis was done using the Wilcoxon test. 

A p-value of <0.05 was deemed significant in all cases. To correct for multiple testing 

in tests involving microbiota or Functional Modules, the Benjamini-Hochberg (BH) 

post-hoc was performed with a q-value of 0.1 as a cut-off. 

5.1.4 Results 

5.1.4.1 The gut microbiome is differentially volatile in response to chronic social 
defeat stress. 
To quantify volatility, which we define as the degree of compositional change of the 

microbial ecosystem over time, we calculated the intra-subject Aitchison distance 

between the genus-level count tables from the same subject taken before and after 

the experiment using the clr-transformation (Figure 5.1-2C). Stressed mice showed a 

trend toward a significantly higher degree of volatility when compared to controls in 

the Discovery cohort (Figure 5.1-2D). In the validation cohort, we again found a 

higher degree of volatility in stressed animals compared to controls, this time 

significantly so (Figure 5.1-2E-F).  
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Figure 5.1-2: Microbial volatility is influenced by stress. (A) Stacked barplot showing 
the proportion of genera based on 16S sequences detected per sample in the 
Validation cohort and the (B) Discovery cohort. Volatility was defined as the Aitchison 
distance travelled over the 10-day experiment. (C) PCA showing the microbiome 
compositions of animals before and after the 10-day period. Lines link the same 
animal over time, showing the trajectory and distance travelled in time. (D) Aitchison 
distance travelled is shown on the y-axis; Mann-Whitney p=0.093. (E) The PCA of the 
validation cohort and (F) corresponding elevated volatility in stressed mice.; Mann-
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Whitney p=5.06x10-5. Discovery cohort: Control N = 9; Stress: N = 13, validation 
Control cohort: N = 10; Stress: N = 28.  

 

 

Figure 5.1-3: Volatility correlates with biological measures associated with stress. 
(A) Inverse volcano plot showing correlations between volatility and all other 
experimental parameters. Y and x-axis represent p-value on a log10 scale and 
spearman’s rho, respectively. Red dashed line depicts p = 0.05. (B-F) Show individual 
correlations between all experimental values (y-axis) and volatility (x-axis). 
Measurements were assessed for reliability using Grubbs’ test for outliers and jack-
knifing. Controls and outliers were left out for correlations (opaque circles). Lines 
represent the fitted regression line, with a full line indicating a significant correlation, 
while a dotted line indicates no significance. Spearman: (B); p = 0.016, rho = -0.676 
(C); p = 0.154, rho = 0.441 (D); p = 0.001, rho = 0.832 (E); p = 0.019, rho = 0.709 (F);  p 
= 0.011, rho = -0.730. Discovery cohort: Control N = 9; Stress: N = 13.  
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5.1.4.2 Volatility of the gut microbiome is correlated with aspects of the stress 
response. 
Pursuing the elevated volatility in stressed animals compared to controls, we found 

a significant correlation between social avoidance behaviour and volatility. This 

finding was again replicated in the validation cohort (Figure 5.1-4).   

 

Figure 5.1-4: Microbial volatility is negatively correlated with Social Interaction 
Ratio after Social Defeat Stress. The x-axis shows volatility as defined by Aitchison 
distance moved over 10 days, while the y-axis shows the Social Interaction Ratio as 
defined by the ratio of time spent in proximity to an unfamiliar CD-1 mouse and time 
spent in the same area without the second mouse present. Red points show stressed 
mice, while blue points show controls. Lines represent the fitted regression line, with 
a full line indicating a significant correlation, while a dotted line indicates no 
significance. Spearman: In the Discovery cohort (Left); p = 0.017, rho = -0.68. In the 
Validation cohort (Right); p = 0.045, rho = -0.41. Discovery cohort: N = 8; stress: N = 
13, validation cohort: N = 10; Stress: N = 28.    
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5.1.4.3 Volatility is correlated with absolute change in measures of alpha-diversity 
 

As alpha-diversity and beta-diversity are related metrics, we asked whether changes 

in beta-diversity, volatility, would be related to changes in alpha diversity. We 

computed alpha diversity based on the first three hill-numbers; Chao1, Simpson and 

Shannon and found correlations between these metrics and volatility in both cohorts 

in the stressed mice, but never in controls (Figure 5.1-5).  

 

Figure 5.1-5: Microbial volatility is positively correlated with absolute changes in 
Alpha Diversity indices after Social Defeat Stress. The x-axis shows volatility as 
defined by Aitchison distance moved over 10 days, while the y-axis shows the absolute 
difference in Chao1 (A,D), Simpson Index (B,E) and Shannon Index (C,F) on a genus 
level. A-C relates to the discovery cohort, whereas D-F corresponds to the Validation 
cohort. Red points show stressed mice, while blue points show controls. Lines 
represent the fitted regression line, with a full line indicating a significant correlation, 
a dashed line showing a trend (0.05< p <0.1) while a dotted line indicates no 
significance. Spearman: (A); p = 0.004, rho = 0.739 (B); p = 0.014, rho = 0.687 (C); p = 
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0.10, rho = 0.495 (D); p = 0.024, rho = 0.43 (E);  p = 0.003, rho = 0.55 (F); p = 0.002, 
rho = 0.55. Discovery cohort: Control N = 9; Stress: N = 13, validation Control cohort: 
N = 10; Stress: N = 28.   
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5.1.4.4 Perceived Stress in Humans 
To investigate whether the relation between volatility and stress was observed in 

humans, we tested for correlation between volatility and stress as measured by the 

Perceived Stress Scale (PSS) in a cohort of students undergoing academic exams. We 

found a significant correlation between volatility and PSS during stress, but not under 

non-stress conditions I.e. before the exam period (Figure 5.1-6).  
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Figure 5.1-6: Microbial volatility is correlated with Perceived Stress during 
academic exam stress. (A) Stacked barplot showing the proportion of genera based 
on 16S sequences detected per sample. (B) The x-axis shows volatility as defined by 
Aitchison distance while the y-axis shows the Perceived Stress Scale Score during 
academic exam stress. Line represents the fitted regression line indicating a 
significant correlation. N = 16, Spearman: p = 0.028, rho = 0.55. 

 

Additionally, we set out to compare the relationship between blood cortisol and 

corticosterone and volatility in our human and mouse cohorts, respectively. In 

humans, we found a correlation between the cortisol awakening response (AUC) and 

volatility. Analogously, we found a significant positive correlation between evening 

corticosterone levels in the discovery mouse cohort as well as a trend in the same 

direction in the validation mouse cohort (Figure 5.1-7). 

 

Figure 5.1-7: Microbial volatility is positively correlated with Cortisol and 
Corticosterone after chronic stress in humans and mice, respectively. The x-axis 
shows volatility as defined by Aitchison distance while the y-axis shows the evening 
corticosterone levels in the two left-most figures and the Cortisol Awakening 
Response in the rightmost figure. Line represents the fitted regression line, with a full 
line indicating a significant correlation and a dashed line indicating a statistical trend. 
Pearson: Discovery: p = 0.0293, rho = 0.537; Validation: p = 0.063, rho = 0.327; 
Human: p = 0.024, rho = 0.517. Discovery cohort: Control: N = 8; Stress: N = 13, 
validation cohort: N = 10; Stress: N = 28, human cohort: N = 16. 
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5.1.4.5 Comparing Microbiome response to stress across cohorts 
 

Finally, we set out to investigate whether other types of changes could be replicated 

between cohorts. We assessed differential abundance on the genus level in both 

discovery and validation cohorts as well as differential abundance on the level of Gut-

Brain Modules (GBMs) and Gut-Metabolic Modules (GMMs). These modules 

represent functional pathways curated from literature that have been reported to 

take place in the microbiome and are involved in either gut-brain communication or 

in microbiome metabolism, respectively (Valles-Colomer et al., 2019). In order to 

compare the responses between the two cohorts, the effect sizes representing the 

change per microbiome feature were extracted and those modules that were present 

in both cohorts were tested for correlation. In the theoretical case of perfect 

agreement between cohorts, the rho for the correlation of the effect sizes would be 

1. We found no correlation on the genus level in all animals, but in the stressed 

animals we found a strong positive correlation in the effect sizes on both the GBM 

and GMM level (Figure 5.1-8). The same procedure was then carried out comparing 

the functional changes in the mouse cohorts to those in the human cohort. The 

mouse cohorts were aggregated in order to promote interpretability (Figure 5.1-9). 

We observed significant correlations between the responses to chronic stress for 

both GBM and GMM across human and mouse host species. In particular, in terms 

of effect sizes, GABA synthesis and Isovaleric acid synthesis seemed to increase the 

most in both host species in terms of GBMs, while Mucin degradation increased the 

most in terms of GMMs. 
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Figure 5.1-8: Microbiome responds to stress similarly on a functional level but not 
on a taxonomical level. The x-axis shows the effect size per feature of the Discovery 
cohort, while the y-axis shows the effect size fer feature of the Validation cohort. 
Every dot is one microbial feature. The top (blue; A-C) row shows the comparisons 
from the Controls, while the bottom (red; D-F) shows the comparisons for the Stressed 
animals. Lines represent the fitted regression line, with a full line indicating a 
significant correlation, a dashed line showing a trend (0.05< p <0.1) while a dotted 
line indicates no significance. Pearson: (A); p = 0.657 rho = 0.052 (B); p = 0.844, rho = 
0.04 (C); p = 0.051, rho = 0.243  (D); p = 0.674, rho = 0.04 (E);  p = 0.0004, rho = 0.625 
(F); p = 1.9x10-11, rho = 0.694. 
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Figure 6.1-9: Microbiome responds to stress similarly on a functional level across 
mice and humans. The x-axis shows the effect size per feature of the Mouse cohort, 
while the y-axis shows the effect size fer feature of the Human cohort. The left (A) 
figure shows Gut-Metabolic modules while the right (B) figure shows Gut-Metabolic 
Modules. Every dot is one microbial feature. Labels show the module names that had 
an absolute effect size higher than 0.2 in both mice and humans. Lines represent the 
fitted regression line, with a full line indicating a significant correlation. Pearson: (A); 
p = 0.005 rho = 0.494 (B); p = 0.011, rho = 0.279. 
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5.1.5 Discussion 

Microbiome volatility is a relatively underutilized concept in microbiome ecology. 

With regard to stress it has not been really explored previously. One exception is in 

the context of irritable bowel syndrome (IBS) (Halfvarson et al., 2017), a condition 

which has been linked to physical and psychosocial stress exposure (Mayer et al., 

2001) or Inflammatory Bowel Disease (IBD), which has also been linked to stress and 

anxiety (Mawdsley and Rampton, 2005), both of which found display more volatility 

(though it was not referred to as such) in patients compared with healthy controls 

(Clooney et al., 2020; Ryan et al., 2020). In this study, we further investigated the 

concept of volatility and, for what is to our knowledge the first time, report its 

potential influence on stress-related central and peripheral phenotypes. 

 

We firstly showed that mice which had higher values in biological measures 

commonly associated with stress, such as changes in corticosterone levels also 

showed an increased volatility. Secondly, we observed a significant negative 

correlation between volatility and social behaviour. Notably, this correlation was 

found in both the discovery and validation cohorts. The implication is that severity of 

the stressor is related to degree of volatility, indicating volatility is related to stress 

susceptibility and resilience. Clearly, some stressed animals showed a higher degree 

of volatility than others. There are two possible explanations for this observation. 

The first is that volatility is determined by the microbiome, which would imply that a 

more volatile microbiome is a marker of stress susceptibility. Conversely, a more 

stable microbiome would then be a marker of stress resilience. Second, an elevated 

volatility after stress could be the result of a more severe stressor.  While 

inconclusive, we initially sought to identify features in the baseline microbiome that 

could explain the degree of volatility after stress (data not shown), however, such 

differences in baseline did not hold up in the validation cohort or in the human study. 

Here, we were unable to find predictor features in the baseline microbiome that 

were generalizable over all three cohorts. In future studies, the volatility at baseline 

as opposed to single point measures in the current study could be measured to 



345 
 

address this question. Specifically, one may hypothesize that hosts with the most 

volatile microbiomes during neutral conditions could be the most susceptible to 

stress and that low volatility is a predictor of stress resilience.  Additionally, future 

studies are needed to examine the correlation between volatility and other 

phenotypes of relevance following chronic stress. 

 

The findings of this study have potential translational implications in understanding 

volatility in the context of human health. Indeed, the fact that we observed a 

correlation between self-reported stress during academic exams and volatility 

strengthens the notion that volatility is closely associated to stress and stress 

resilience. For example, one could consider volatility in the context of microbial-

based interventions to treat stress-induced psychopathologies, formulations 

designed to stabilise the microbiome could be administered over a period of time to 

improve response. Alternatively, given that psychotropics are themselves known to 

influence the microbiome (Cussotto et al., 2019), we speculate that pre-treatment 

with psychobiotics which introduce specific keystone species into the microbiome, 

may make it more receptive to the therapeutic effects of antidepressants or 

anxiolytics. This latter approach could be relevant especially for patients who are 

resistant to treatment using conventional approaches. This also opens the door to 

keystone species, species that when absent will destabilize the gut ecosystem, in 

psychobiotic formulations. On its own, it is unclear what the impact a more volatile 

microbiome could be on host health, if any. One could hypothesise that volatility 

destabilizes the microbiome resulting in an increased susceptibility for bacterial taxa 

to colonize. We did not find evidence of this, but this might be due to the sanitary 

housing conditions of the animals and that mice are coprophagic. Indeed, fecal 

microbiota transplantation, representing a high-alpha-diversity pool, has been 

shown to expedite colonization rate over natural recovery (Suez et al., 2018). More 

research is warranted to test this hypothesis.  
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We also found consistent changes across cohorts and even between mice and 

humans in the microbiome after chronic stress. We did not, however, find such 

agreement at a taxonomic level. This is likely due to the differences in baseline 

microbiome between the two cohorts and the humans. Indeed, in humans, it is well-

known that interpersonal variability is much lower on the functional level than on 

the taxonomical level (Human Microbiome Project Consortium, 2012; Mehta et al., 

2018). From our findings we extrapolate that in the context of stress, while the 

taxonomical changes of the microbiome seem to be cohort-dependent and 

ultimately baseline microbiome dependent, there is a strong agreement in how the 

functional microbiome changes after a stressor. A stress response in the microbiome 

that seems invariant of the baseline condition could indicate some sort of adaptive 

stress response, either on the level of the microbiome or on the host level. Per 

definition, the GMMs and especially the GBMs have functional implications for host 

health. In a recent study, GBMs were shown to be influenced by diet (Valles-Colomer 

et al., 2019; Butler et al., 2020). Together with the finding that stress influences these 

modules in a specific manner, this opens up the door for psychobiotics that 

specifically aim to control the levels of specific modules that are known to be altered 

by stress. Notably, GABA synthesis was altered in both our human and mouse 

cohorts. The GABAergic system has been previously shown to be modulated by the 

microbiome in the context of the stress response (Bravo et al., 2011) and GABA-

modulating bacteria have been implicated in stress-related disorders such as 

depression in humans  (Strandwitz et al., 2019). This alteration should be pursued in 

future research. 

 

To conclude, we propose that an analysis of volatility should be considered in all 

future longitudinal microbiome research projects. Given the novelty of this concept, 

we make some basic recommendations as to how examine this variable. The 

approach to calculating volatility presented here relies on Aitchison distance. This 

metric was selected because it was specifically designed to deal with compositional 

data, such as the microbiome (Aitchison et al., 2000; Gloor et al., 2017). While other 

algorithms for beta-diversity do exist, Aitchison distance has the added benefit of 
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satisfying the criteria for being a Euclidean distance, making comparisons between 

two distances within the same analysis possible. Other popular metrics like Bray-

Curtis do not have this property, but rather give relative distance on a scale from zero 

to one, making them less suitable for the purpose of assessing volatility. We 

speculate that further convergence of high-dimensional mathematics, microbiology 

and genetics will lead to newer algorithms which prove to be more useful and easier 

to use. Lastly, in this study, volatility was calculated by assessing the distance 

‘travelled’ between two points over time. Future studies should consider collecting 

samples over multiple time points (e.g. during stress exposure) to produce higher-

dimensional geometric shapes in microbiome-space which could lead to more 

nuanced insights into the role of the microbiome as a mediator of the stress 

response.  
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6.1.1 Abstract  

6.1.1.1 Rationale:  
The impact of the microbiota on the gut-brain-axis is increasingly appreciated. A 

growing body of literature demonstrates that use of dietary fibre and prebiotics can 

manipulate the microbiota and affect host health. However, the influence on 

cognition and acute stress response is less well understood.  

6.1.1.2 Objectives:  
The objective of this study was to investigate the efficacy of a dietary fibre, 

polydextrose (PDX), in improving cognitive performance and acute stress responses 

through manipulation of the gut microbiota in a healthy population.  

6.1.1.3 Methods:  
In this double-blind, randomised, placebo-controlled, cross-over design study, 18 

healthy female participants received 12.5g Litesse®Ultra (>90% PDX polymer ) or 

maltodextrin for four-weeks. Cognitive performance, mood, acute stress responses, 

microbiota composition, and inflammatory markers were assessed pre- and post-

intervention.  

6.1.1.4 Results:  
PDX improved cognitive flexibility as evidenced by the decrease in the number of 

errors made in the Intra-Extra Dimensional Set Shift (IED) task. A better performance 

in sustained attention was observed through higher number of correct responses and 

rejections in the Rapid Visual Information Processing (RVP) task. Although there was 

no change in microbial diversity, abundance of Ruminiclostridium 5 significantly 

increased after PDX supplementation compared to placebo. PDX supplementation 

attenuated the increase of adhesion receptor CD62L on classical monocytes 

observed in the placebo group. 

6.1.1.5 Conclusions: 
Supplementation with the PDX resulted in a modest improvement in cognitive 

performance and inflammatory profile. The results indicate that PDX could benefit 

gut-to-brain communication and modulate behavioural responses. 
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6.1.1.6 Introduction 
There is a growing realisation that the symbiotic relationship between microbes and 

their host can significantly impact on health. The gut microbiota is vital for normal 

physiological functioning, aiding in the digestion and utilization of nutrients, 

development of the immune system, and general host metabolism (Jandhyala et al., 

2015). Many diseases (e.g., inflammatory bowel disease (Sheehan et al., 2015), 

obesity (Martinez et al., 2017) or autism spectrum disorder (Strati et al., 2017; 

Berding and Donovan, 2018)) have now been associated with an altered gut microbial 

profile, often manifested by a decreased abundance of beneficial or increased 

abundance of pathogenic bacteria, or a reduced microbial diversity. Besides the 

potential involvement in psychological disease processes, an ever-increasing number 

of studies have shown that stress, anxiety, memory, cognition and 

neuroinflammation may be effected by the composition of the gut microbiota (Rea 

et al., 2016; Allen et al., 2017; Sarkar et al., 2018; Smith and Wissel, 2019). Therefore, 

modulation of the gut microbiota is emerging as an exciting potential strategy to 

support mental health and cognitive function (Dinan et al., 2019; Long-Smith et al., 

2020). In this context, the term psychobiotic was coined to describe any exogenous 

influence (i.e., probiotics, prebiotics, dietary fibre) whose positive effect on mental 

health is bacterially mediated (Dinan et al., 2013; Sarkar et al., 2016).  

The use of dietary fibre, which includes most prebiotics, has been an exciting 

opportunity to support the growth of beneficial host microbiota (Gibson et al., 1995; 

Bindels et al., 2015; Holscher, 2017). Indeed, some prebiotics fibres such as inulin, 

fructooligosaccharides (FOS), galactooligosaccharides (GOS), and polydextrose 

(PDX), which are resistant to digestion and absorption in the intestinal tract, have 

been shown to beneficially alter the microbiota composition and promote the 

growth of beneficial bacteria such as Bifidobacterium (Roytio and Ouwehand, 2014; 

Holscher, 2017). Systemically, improvements in metabolic outcomes and increased 

satiety (Hull et al., 2012) in an obese population after supplementation with PDX in 

combination with probiotic strains were described (Hibberd et al., 2019). While pre-

clinical studies have shown potential benefits for prebiotic fibres in brain health 
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(Savignac et al., 2013; Tarr et al., 2015; Burokas et al., 2017; Boehme et al., 2019), 

there are limited studies published on the effects on brain and cognitive function in 

humans. A small-scale study in healthy individuals has demonstrated that 

intervention with B-GOS resulted in an improved stress response as well as emotional 

information processing (Schmidt et al., 2015). Improvements in memory tasks and 

subjective improvements in mood were observed in a study with healthy individuals 

receiving a prebiotic of oligofructose-enriched inulin (Smith et al., 2015), while a B-

GOS formulation significantly improved anxiety levels in patients with irritable bowel 

syndrome (Silk et al., 2009). However, the impact of PDX on stress responses and 

cognitive performance has not been investigated. Therefore, in this study, we 

examined the potential of PDX (Litesse®Ultra, Danisco USA Inc., Terre Haute, IN, USA) 

to modulate the microbiota composition,  mood, cognition and acute stress 

responsivity. We hypothesized that PDX supplementation would increase the 

abundance of beneficial bacteria, positively modulate cognitive performance and 

decrease physiological and psychological response to stress.  

 

6.1.2 Methods 

This research study was conducted in accordance to the Good Clinical Practice 

guidelines and the Declaration of Helsinki. The protocol was approved by the Clinical 

Research Ethics Committee of the Cork Teaching Hospitals (Protocol Number 

APC076). Informed consent was obtained from all participants prior to enrolment 

into the study.  

 

6.1.2.1 Participants and Study Design  
This study was designed as double-blind, randomised, placebo-controlled, using a 

repeated measure cross-over design study. Due to the higher prevalence of stress-

related conditions such as depression in females, female participants between the 

ages of 18 and 40 were recruited in the Cork area and completed the study between 

March 2018 and December 2018. Eligible participants were randomised to take 12.5g 

of Litesse®Ultra (>90%PDX polymer, Danisco USA Inc., Terre Haute, IN, USA) or 
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placebo (maltodextrin; matched for taste, colour, odour) for 4 weeks, followed by a 

4-week washout period and a 4-week period of PDX or placebo (Figure 6.1-1a). The 

same dose of 12.5g per day of Litesse®Ultra was selected for this study as it closely 

resembles the efficacious doses used in previous studies for metabolic health 

(Stenman et al., 2016; Ibarra et al., 2017). Participants were instructed to consume 

one sachet of blinded study product every morning mixed in a hot drink. Reminders 

to consume the study product were sent to participant 3 times weekly. Additionally, 

participants were instructed to refrain from introducing other probiotic or nutrition 

supplements during the course of the intervention and keep dietary intake and 

physical activity consistent throughout the study.  
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Fig. 6.1-1 Study visit diagram illustrates study procedures over the 12-week study 
period (a). Intervention periods were separated by a 4-week washout period. 
Biological samples (stool, saliva, blood), cognitive performance (CANTAB), and acute 
stressor (SECPT) were collected and assessed pre- and post-intervention periods. 
Participants were block randomized (block of 4) with an allocation ratio to 
group/treatment of 1:1 of PDX:placebo to account for balanced group allocation. In 
intervention period 1, group A received PDX and group B received placebo. In 
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intervention period 2, group A received placebo and group B received PDX. b 
CONSORT diagram shows subject enrolment and allocation to treatment groups. 

 

Participants were excluded from the study if they had any significant acute or chronic 

illness, were taking medication, were peri-menopausal, menopausal or post-

menopausal, were pregnant, or lactating, were not fluent in the English language, 

were colour blind, had dyslexia or dyscalculia, were vegan, a habitual daily smoker or 

had taken any pro-, pre- or antibiotic 4-weeks prior to enrolment in the study.  

At the initial screening visit, participants were screened for any psychiatric disorder 

using the MINI International Neuropsychiatric Interview (MINI) and demographic 

data were collected. Additionally, a battery of self-reported questionnaires to obtain 

a baseline psychological profile were completed (for description of test see 

Supplementary Methods). Participants also completed the National Adult Reading 

Test (NART, (Nelson and Willison, 1991) as a brief measure of verbal IQ. Cognitive 

assessment and the acute stressor procedure as well as collection of biological 

samples and questionnaire data (as described below) were completed at visits 2, 3, 

4 and 5. All study visits were performed in the HRB Clinical Research Facility at 

University College Cork.  

Participants, study facilitators, nurses and research analysts were kept blinded until 

all data analysis was completed. The block randomisation (block of 4) of treatment 

schedules was carried out by DuPont. To balance group assignment, an allocation 

ratio to group/treatment of 1:1 PDX:placebo was used. Remaining study product was 

collected from participants to check for compliance following visit 3 and 5. 

 

6.1.2.2 Neuropsychological assessment  
The Cambridge Neuropsychological Test Automated Battery (CANTAB) was used to 

assess cognitive performance (https://www.cambridgecognition.com/cantab/). The 

test battery was presented on a touch screen monitor. A researcher provided verbal 

instructions from a standardized script as well as specific verbal prompts or 

encouragement when needed. To avoid effects of fatigue for tests completed later 
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in the session, the tests were presented in different orders for different participants, 

using a Latin square design. The whole battery lasted approximately 40 minutes and 

included the Motor Screening Test (MOT), Rapid Visual Information Processing (RVP), 

Paired Associates Learning (PAL), Spatial Span (SS), the Intra-Extra Dimensional Set 

Shift (IED) and the Emotion Recognition Task (ERT). A detailed description of each 

task can be found in the Supplementary Methods.  

 

6.1.2.3 Faecal Sample Collection and 16S rRNA sequencing 
Freshly voided faecal samples were collected from study participants into plastic 

containers containing an Anaerogen sachet (Oxoid AGS Anaerogen Compact, Fischer 

Scientific, Dublin), and kept cool in a refrigerator until delivery to the laboratory. The 

sample was aliquoted and stored at -80° for later analysis. Participants were 

instructed to collect the faecal sample as close to the study visit as possible. The 

range of times between sample produced by the participant and freezing in the 

laboratory varied between 4 to 6 hours. The samples were stored in the participant’s 

fridge until transport to the study site using a cool pack. Upon arrival at the study site 

the sample was placed in the fridge until collected by the researcher processing the 

sample.  

 

6.1.2.4 DNA Extraction:  
DNA was extracted from 250mg faecal samples using a previously described modified 

protocol, which combined the repeat bead beating method with the QIAmp Fast DNA 

Stool Mini Kit (Qiagen, Germany) (Yu and Morrison, 2004; Fouhy et al., 2015). DNA 

was quantified using the QubitTM 3.0 Fluorometer (Bio-Sciences Dublin, Ireland or 

Life Technologies or Thermo Fisher Scientific) and the Qubit® dsDNA HS Assay Kit 

(Bio-Sciences Dublin, Ireland or Life Technologies or Thermo Fisher Scientific), along 

with being run on a 1.5% agarose gel to check the DNA quality. Extracted DNA was 

then stored at -20°C until prepared for 16s rRNA sequencing. 
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6.1.2.5 16S rRNA Microbiome Sequencing 
The V3-V4 hypervariable region of the 16S rRNA gene was amplified from the DNA 

extracts and prepared for sequencing using the Illumina 16S Metagenomic 

Sequencing Library Protocol (Amplicon et al., 2013). A detailed description of the 16S 

rRNA sequencing protocol can be found in the Supplementary Methods.  

 

6.1.2.6 Blood Inflammatory Profile  
Whole blood was collected into 4 mL lithium-heparin containing tubes (Greiner Bio-

One, 454029). Plasma samples were collected into 3 mL K3EDTA tubes (Cruinn 

Diagnostics Limited, Dublin). Blood samples to analyse the impact of the acute 

stressor on inflammatory markers were taken immediately upon completion of the 

stressor (described below). Plasma samples were centrifuged at 1500g for 10 

minutes. The supernatant was aliquoted and stored at -80°C for later analysis.  

 

6.1.2.7 Whole blood stimulation 
Whole blood was diluted 1:10 with Dulbecco’s Modified Eagle’s Medium/Nutrient 

Mixture F-12 Ham (Sigma Aldrich) supplemented with 10% foetal calf serum and 5% 

penicillin streptomycin. Of the diluted mixture, 500µL was aliquoted to a 24-well 

plate. Each well was stimulated with 5 µL of the stimulant (TLR4 agonist - E. coli K12 

LPS and TLR5 agonist – S. typhimurium Flagellin, Invivogen, Toulouse, France). The 

blood was harvested after 24 hours of incubation at 37°C and stored at -80°C for later 

analysis.  

 

6.1.2.8 Cytokine quantification 
Cytokine levels from plasma samples and stimulated blood samples were quantified 

using the V-PLEX Proinflammatory Panel 1 (human) Kit (MSD, K15049D). Cytokine 

quantification was done according to the manufacturer's guidelines with one 

modification, where 100 μl sample was added directly onto the plate without 

dilution.  
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6.1.2.9 Flow cytometry 
Mononuclear cells were isolated using Ficoll® Paque Plus (Sigma-Aldrich, GE17-1440-

02) from whole blood. Cells were counted and 2*106 cells were used for flow 

cytometric staining. Samples were first treated with BD Horizon™ Fixable Viability 

Stain 780 (BD Biosciences, 565388), after which cells were incubated with FcR 

blocking reagent (Miltenyi Biotec, 130-059-901) and a mix of extracellular antibodies 

(Supplemental Table 1) in Brilliant Stain Buffer (BD Biosciences, 563794). Cells were 

finally fixed with 4% paraformaldehyde. Samples were analysed the following day 

using a BD FACSCelesta (BD Biosciences). Data were analysed using FlowJo (version 

10) for the gating strategy of classical monocytes (Supplemental Figure 2). Briefly, 

cells were first selected based on FSC/SSC, after which doublets were excluded. Live 

cells (FVS780-) were selected, after which SSChigh cells (granulocytes) and DUMP- cells 

(CD3+ T cells, CD19+ B cells, and CD56+ NK cells) were excluded. Classical monocytes 

(CD14+, CD16-) were subsequently selected based on CD14 and CD16 receptor 

expression. Cell numbers were normalized to total live single-cell numbers. Receptor 

expression was assessed using median fluorescent intensity (MFI). Details on the flow 

cytometry method can be found in the Supplementary Methods. 

 

6.1.2.10 Acute Stress Response 
The socially evaluated cold pressor test (SECPT) (Schwabe et al., 2008) combining a 

psychological with a physiological stressor was utilized to elicit an acute stress 

response as previously described (Allen et al., 2016). Galvanic skin response was 

measured during the stress using the NeXus 4 Software (Biotrace, Mind Media, 

Netherlands). A total of eight saliva samples were taken during the stressor, with the 

first sample taken 5 minutes before the beginning of the stressor.  
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6.1.2.11 Cortisol Awakening Response  
Morning saliva samples were collected using the salivette system (Sarstedt, 

Germany). Participants were instructed to collect the saliva samples in the morning 

of the day of their study visit. A total of four samples was collected, with the first one 

collected upon wakening, the second one 30 minutes later, and the third and fourth 

one in 15 minutes increments. Participants were instructed to not brush their teeth 

until after all saliva samples were collected, to not eat or drink anything prior to the 

first sample, and to avoid eating and drinking 15 minutes prior to the remaining 

samples. Saliva samples were centrifuged at 1500g for 5 minutes, aliquoted and 

stored at -80°C for later analysis.  

 

6.1.2.12 Cortisol analysis 
Salivary cortisol (CAR and SECPT saliva) was analysed in duplicates using the ENZO 

Life Sciences enzyme-linked immunosorbent assay (ELISA) kits (Exeter, UK) per 

manufacturer’s instructions. The lower limit of detection was 0.156 nmol/L. Inter- 

and intra-assay coefficients of variability were 13.4% and 10.5%.  

 

6.1.2.13 Self-report questionnaires during study visits  
Participants completed self-reported paper-based questionnaires to assess 

perceived stress (Cohen’s Perceived Stress Scale (PSS) (Cohen et al., 1983)), 

depression and anxiety levels (Beck’s Depression Inventory II (BDI-II) (Beck et al., 

1996)), Hospital Anxiety and Depression Scale (HADS-A and HADS-D) (Bjelland et al., 

2002)) and psychopathological symptoms (Symptom Checklist-90-R (SCL-90-R) 

(Derogatis and Unger, 2010)). Dietary intake was quantified using a food frequency 

questionnaire (FFQ, (Harrington et al., 2011)). Gastrointestinal (GI) tolerability was 

assessed using a GI symptom visual analogue scale (VAS). Changes in stool type were 

captured by the Bristol Stool chart.  
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6.1.2.14 Statistical Analysis 
All data were analysed using SPSS 25 (IBM, Armonk, NY, USA). All data analysis was 

performed using the intention-to-treat analysis, and the last observation carried 

forward approach was employed for missing data. Standardized z-scores (using a cut 

off value of ±3.29) and box plots were used to identify outliers.  

Data were examined for normality using the Shapiro-Wilk statistic and log 

transformed, if necessary. Differences between outcome measures between pre-and 

post-intervention were analysed using within-subject repeated measured analysis of 

variance (ANOVA) and post-hoc paired samples t-test. Where parametric 

assumptions were violated and data transformation did not achieve normal 

distribution, the Friedman and paired sample Wilcoxon signed-rank tests were 

applied. Areas under the curve for cortisol measurements were calculated with 

respect to ground (AUCg) (Pruessner, Kirschbaum, Meinlschmid, & Hellhammer, 

2003). Flow cytometry data were assessed using the paired-sample Wilcoxon signed-

rank test or t-test (differences between pre- and post-stress) or Mann-Whitney U test 

(differences between the two treatment groups). Categorical data (i.e., Bristol stool 

chart) were analysed using the Chi-squared test. Correlation between microbial 

abundance and other outcome measures were performed using spearman rank 

correlation. P<0.05 was considered significant and p<0.1 was considered a trend. 

Data is expressed as mean ± SEM. 

 

6.1.2.15 Bioinformatics analysis: 
Three hundred base pair paired-end reads were prefiltered based on a quality score 

threshold of > 28 and trimmed, filtered for quality and chimeras using the DADA2 

library in R (version 3.6.1) (Callahan et al., 2016). Samples with a quality score < 28 

and/or <10000reads were discarded, resulting in a range of reads for the kept 

samples was 10696 – 143246. Taxonomy was assigned with DADA2 against the SILVA 

SSURef database release v132. Unless mentioned otherwise, recommended 

parameters according to the DADA2 manual were adhered to. A total of 1353 

amplicon sequence variants (ASVs) were identified. ASVs were summarized on a 

genus level, with ASVs that were unknown on the genus level not being considered 
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in downstream analysis, as were genera that were only detected as non-zero in 5% 

or fewer of total samples. 

Microbiome data-handling was done in R with the Rstudio GUI (version 1.2.1555). 

Principal component analysis (PCA) was performed on centre-log ratio transformed 

(clr) values using the ALDEx2 library (Fernandes et al., 2013). Number of 

permutations was always set to 1000. Differential abundance of microbes between 

groups was assessed using the ALDEx2 library. As part of testing for correlations 

between microbial abundance and metadata, skadi, an implementation of 

jackknifing and Grubb’s test, was used to assess the reliability of the data and detect 

outliers (R scripts avaliable online, https://github.com/thomazbastiaanssen/Tjazi 

(DOI: https://doi.org/10.5281/zenodo.1480804). Correlation was assessed using 

Spearman’s rank correlation coefficient. For datasets in which the condition of 

normality was violated the non-parametric Kruskal-Wallis test was used and post-hoc 

analysis was done using the Wilcoxon test. A p-value of < 0.05 was deemed significant 

in all cases. To correct for multiple testing, the Q-value post-hoc procedure was 

performed with a q-value of 0.1 as a cut-off (Storey et al., 2015).  
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6.1.3 Results 

A total of 18 healthy female participants completed the study. The CONSORT diagram 

is shown in Figure 6.1-1 b. Baseline demographics can be found in Table 1. 

Participants were of good health, had a normal BMI (mean: 23.7) and baseline 

psychological profile and were free of gastrointestinal symptoms or disorders.  

 

6.1.3.1 Neurocognitive performance 
In the CANTAB battery, an improvement in IED (cognitive flexibility) and RVP 

(sustained attention) after PDX supplementation was observed. 

In the IED task, there was a significant interaction effect between time (pre- vs. post-

intervention) and product (PDX vs. placebo) for completed stage errors (F(1,16) = 5.8, 

p=0.03) and completed total trials F(1,15) = 9.6, p=0.007) (Figure 6.1-2 a,b). Post-hoc 

analysis revealed that compared with the placebo phase, participants made less 

errors on the stages successfully completed (completed stage errors, t(1,17) = -3.9, 

p=0.001; 95% CI[-2.65, -0.79]) and successfully completed the stages using a lower 

number of trials (completed stage trials, t(1,17) = -4.9, p<0.001; 95%CI [-3.66, -4.95]) 

after the PDX phase. 

Similarly, improvements in the number of correct responses, total correct rejections 

and failure to respond in the RVP task after PDX supplementation were recorded 

(Figure 6.1-2 c-e). The number of correct responses (probability of hit (t(1,17) = -3.5, 

p=0.003); 95%CI [-0.18, -0.044]) and total correct rejections (t(1,17) = -3.9, p= 0.001; 

95%CI [-10.98,-3.24]) increased after the PDX but not placebo condition. There was 

also a decrease in failure to respond (total misses (t(1,17) = 3.4, p=0.003; 95%CI [1.17, 

4.83]) after PDX supplementation. However, neither of these outcome measures 

were significantly different between treatments.  
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Fig. 6.1-2 PDX supplementation improved neurocognitive performance in the IED and 
RVP task of the CANTAB battery. After PDX supplementation, in the IED task, 
participants made less errors on stages successfully completed (a) and had a lower 
number of trials completed on all attempted stages (b). In the RVP task, PDX increased 
the number of correct responses (c), and total correct rejections (d) and lowered the 
number of misses (e). Individual dots represent a participant; data shown as mean ± 
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SEM; data was analysed by repeated measures ANOVA; *p < 0.05; **p < 0.01; ***p 
< 0.001; IED, intra extra dimensional set shift; RVP, rapid visual information 
processing 

6.1.3.2 Microbiota composition  
All DNA quantity was above 8.3 ng/ul which is the recommended threshold to pool 

the DNA to for sequencing. Single bright bands of the expected fragment size were 

seen for all the samples on the agarose gel. 

A boxplot of the relative abundance of microbiota composition at the genus level 

pre- and post- placebo and PDX intervention is shown in Figure 6.1-3 a. A total of 168 

genera were identified through 16S rRNA sequencing in this cohort. Undirected 

pairwise analysis (Wilcoxon rank sum test with storey’s q-value post-hoc correction) 

revealed significant changes in only one ASV after PDX intervention. A significant 

increase to the genus Ruminoclostridium 5 (q=0.002; effect size: 1.48) only after PDX, 

but not placebo supplementation, was observed (Figure 6.1-3 b).  

Microbial α-diversity within each participant quantified before and after each 

treatment course did not differ between treatments (Chao 1, p=0.85; Simpson, 

p=1.0; Shannon, p=1.0; data not shown). Likewise, no statistically significant 

differences in β-diversity were detected (p=0.996; data not shown).  
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Fig. 6.1-3 Abundance of Ruminiclostridium 5 increased after PDX supplementation. 
Representative graphs for changes in microbiota composition pre- and post-placebo 
and PDX supplementation. a Stacked bar plots showing abundance of microbes at 
genus level for each participants pre (left) and post (right) treatment arm. Each pair 
of bars represents one individual. b A significant increase in Ruminiclostridium 5 after 
PDX but not placebo supplementation was observed. Data was analysed by Kruskal-
Wallis and paired-sample Wilcoxon signed-rank tests; **q < 0.01; data in (b) is 
expressed as median (horizontal line), interquartile range (box), and range (whiskers) 

 

6.1.3.3 Inflammatory profile 
Flow cytometric analysis revealed that acute stress did not influence circulating 

classical monocyte (CD14+, CD16-) levels (Figure 6.1-4 a,b). Acute stress did increase 

the expression of the adhesion receptor CD62L on classical monocytes in the placebo 

group, but not in participants that received PDX supplementation (Z = -2.803, p = 

0.005) (Figure 6.1-4 c). This increase in CD62L expression in the placebo group was 

significantly higher compared to the PDX group (U = 14, p = 0.005) (Figure 6.1-4 d).  
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Fig. 6.1-4 PDX supplementation lowers acute stress-induced increases in CD62L 
receptor expression on classical monocytes. Flow cytometric analysis was performed 
to quantify classical monocytes (CD14+, CD16-) (a, b), and their expression of the 
CD62L receptor (median fluorescent intensity (MFI)) (c, d). Individual dots represent 
participants (n = 10/group). **p < 0.01; data expressed as mean ± SEM; data was 
analysed using paired-sample Wilcoxon signed-rank test or t test (differences 
between pre- and post-stress) or Mann-Whitney U test (differences between the two 
treatment groups) 

 

 

There was no difference in the inflammatory profile of plasma samples (Table 2) or 

in the TLR4 stimulated whole bloods (Table 3). In the TLR5 stimulated bloods, a trend 

for lower concentrations of IFN γ (t = -1.85, p = 0.087; 95%CI [-24.4, 1.89]) and IL-2 

(t=-1.9, p= 0.074; 95% CI [-3.46, 0.18]) post- PDX supplementation compared to 

placebo was observed (Table 3).  

 

6.1.3.4 Stress responses  
Neither cortisol awakening response or salivary cortisol concentrations after the 

acute stressor were affected by PDX supplementation (Figure 6.1-5). Likewise, the 
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galvanic skin response was not affected by the stressor or PDX administration (data 

not shown).  

 

Fig. 6.1-5 Salivary cortisol responses to acute stressor and morning awakening 
response did not change after PDX supplementation. Salivary cortisol for each visit as 
measured by the area under the curve with respect to ground (AUCg). Neither total 
salivary output in response to the socially evaluated cold pressor test (SECPT, (a)), nor 
cortisol awakening responses (CAR, b) were affected by PDX supplementation. Data 
analysed by Friedman test; data expressed as mean ± SEM 

 

6.1.3.5 Mood and Psychological Symptoms 
PDX supplementation did not affect levels of anxiety (HADS-A score), depression 

(HADS-D score, BDI-II score), perceived stress (PSS score) or psychopathological 

symptoms (SCL-90-R global severity index) (Table 4).  

 

6.1.3.6 Dietary intake 
Intake of total calories, macronutrient and dietary fibre intake as assessed by the FFQ 

was mostly consistent throughout the study period. There was a slight decrease in 

vitamin E (Z=-2.4, p=0.02), polyunsaturated fatty acids (Z=-2.4, p=0.02) and 

monounsaturated fatty acids (Z=-1.7, p=0.09) during the PDX period (Supplemental 

Table 2).  
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6.1.3.7 Compliance and tolerability  
Overall, participants showed good compliance to study product (>70%). One 

participant showed lower compliance at 60% during the PDX phase. No treatment 

related adverse events occurred during the PDX treatment arm.  

Overall, PDX supplementation was well tolerated as measured by the GI VAS at each 

visit. Only two people reported GI symptoms after PDX supplementation as assessed 

by the GI VAS, of which one reported abdominal pain. However, these symptoms 

were only present one out of every 10 days. Three participants reported 

development of bloating after the PDX intervention. However, these participants also 

reported bloating at other time points of the study, suggesting that bloating might 

be due to other causes.  

Generally, satisfaction with bowel habits was very high and GI symptoms did not 

interfere with life satisfaction in this cohort. PDX supplementation did not change GI 

symptom satisfaction and GI symptom life interference. Stool consistency as 

measured by the Bristol Stool chart did not change throughout the study period 

(mean Type 3 (“Like a sausage but with cracks on its surface”)) (Supplemental Table 

3).  
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6.1.4 Discussion 

The expanding knowledge of the impact of the gut microbiota on cognition and brain 

function has led to a number of studies investigating potential avenues to manipulate 

the microbiota-gut-brain connection, including the use of probiotics, prebiotics or 

dietary fibre. While some benefits of prebiotic supplementation on host physiology 

have previously been illustrated in animals (Savignac et al., 2013; Mika et al., 2014) 

and humans (Hull et al., 2012; Holscher, 2017), evidence for the impact on mental 

health and cognition is limited. Thus, in this study we aimed to investigate the 

potential of a prebiotic fibre, PDX, on cognitive function, acute stress response and 

inflammation. Overall, PDX only had limited effects on the outcome measures 

assessed in this cohort. Contrary to our hypothesis, diversity of the gut microbiota 

did not change after PDX supplementation and only an increase in Ruminiclostridium 

5 was detected. While a modest improvement in cognitive flexibility and sustained 

attention of participants as well as attenuation of the increase in adhesion receptor 

CD62L on classical monocytes after the acute stressor was observed, PDX 

supplementation neither impacted the other measures of the inflammatory profile 

and stress responses nor mood or psychological outcomes.  

 

In animal models, combined with other pre- or probiotics, PDX affected cognitive 

function such as exploratory behaviour, recognition memory and neurochemistry 

(Fleming et al., 2019) and could attenuate the effects of early life stress on anxiety-

like behaviour and learning (McVey Neufeld et al., 2019). Here, a subtle improvement 

in cognitive flexibility as measured by the IED task and in sustained attention as 

shown by the increased number of total correct rejections in the RVP task after PDX 

supplementation was observed. Cognitive flexibility is an executive function that 

allows to switch from thinking about one concept to another or to alternate between 

tasks (Kim et al., 2011). The IED task specifically tests behavioural set shifting abilities 

involving visual discrimination and attentional set formation maintenance, shifting 

and flexibility of attention that depend on fronto-striatal areas. The RVP task, on the 

other hand, measures sustained attention and speed of processing. Sustained 
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attention is the ability to maintain attention through a set of stimuli over a long 

period of time which is mainly regulated by the right prefrontal and superior parietal 

cortex (Pardo et al., 1991). The present data indicating better performance in 

cognitive flexibility and sustained attention after PDX supplementation aligns with 

observations from other studies showing improved performance in these two 

cognitive processes after prebiotic consumption. For example, in the same 

attentional set shift task adapted for rodents as the one used in this study, rats 

consuming B-GOS required fewer trials shifting from an intra- to an extra-

dimensional set (Gronier et al., 2018). In human studies, B-GOS supplementation  

improved sustained attention measured as vigilance or tonic alertness in healthy 

volunteers (Schmidt et al., 2015) and enhanced cognitive performance, specifically 

executive functioning, in patients with psychosis (Kao et al., 2019). Taken together, 

results from the cognitive assessment in this study could provide evidence for a 

psychobiotic and cognitive-enhancing effect of PDX supplementation.  

 

Contrary to previous studies showing that PDX increases microbial diversity and 

supports the growth of beneficial bacteria (such as increases in Faecalibacterium, 

Akkermansia and Dialister (Roytio and Ouwehand, 2014), in this cohort no 

statistically significant changes in microbiota diversity and only minimal changes in 

composition were observed. However, it should be noted that the effect of PDX on 

the microbial composition varies greatly from study to study (Roytio and Ouwehand, 

2014), mainly due to different dosages of PDX (8g (Costabile et al., 2012) vs. 21g 

(Holscher et al., 2015; Holscher, 2017), differences in microbiota analysis (next 

generation sequencing (Holscher et al., 2015) vs. denaturing gradient gel 

electrophoresis (Costabile et al., 2012)) and difference in population characteristics 

(healthy vs. obese, age, gender etc.). Additionally, PDX has been shown to only 

impact outcome measures of weight management, gut barrier function and 

inflammation in combination with other probiotic supplementations (Stenman et al., 

2016) or elicited microbial changes in obese populations, in which an aberration in 

microbiota composition is commonly observed (Hibberd et al., 2019). It is also 

increasingly being established that the magnitude of response to prebiotic 
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supplementation and dietary interventions depends on factors such as baseline 

microbiota composition or dietary habits. Thereby, baseline microbial diversity, 

richness and prior stability could be predictors of the responsiveness of a participant 

to an intervention (Salonen et al., 2014; Tap et al., 2015). The lack of vast microbial 

changes observed herein could therefore be explained by the relatively low dose of 

the prebiotic fibre, an unresponsive baseline microbial community or the healthy 

status of the population. 

 

Interestingly, we found a significant increase in Ruminiclostridium 5 abundance after 

PDX supplementation. Little is known about the function of Ruminiclostridium 5 in 

humans. Lower levels of Ruminiclostridium 5 were found in patients with kidney 

stones (Tang et al., 2018) and in a rat model of acute necrotizing pancreatitis (Chen 

et al., 2017), potentially indicating an important role of this bacterium in 

inflammatory diseases. Additional studies are needed to decipher the potential 

function of Ruminiclostridium 5 in human physiology. It is worth mentioning that 

dietary intake over the study period did not change majorly, so that the increase in 

Ruminiclostridium 5 could mainly be attributed to the PDX.  

 

Monocytes have previously been described as a pathway for the microbiota-brain 

communication and levels of the murine counterpart of classical monocytes have 

been shown to change in response to acute stress (van de Wouw et al., 2019; van de 

Wouw et al., 2020). Previous research indicated that PDX could have immune 

modulatory effects (Schley and Field, 2002), such as increased secretion of IgA and 

decreased expression of cyclooxygenase-2 in rats and pigs (Peuranen et al., 2004; 

Fava et al., 2007). Here, we report that the increase in CD62L receptor expression on 

classical monocytes that was observed after the acute stressor during the placebo 

phase was attenuated by PDX supplementation. CD62L receptor expression can be 

used as a marker of acute stress-responsiveness, as it has been reported to be 

changed in response to acute stress in rats (Dhabhar et al., 2012). Based on the 

preliminary data presented herein, it could be hypothesized that potential anti-
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inflammatory effects of PDX may mediate the immune-to-brain communication. In 

animal models, classical monocytes have been implicated in microbiota-associated 

changes in cognition (Mohle et al., 2016). In obese individuals, low grade 

inflammation was reported as a mediator between obesity and performance in the 

IED task (Lasselin et al., 2016). These studies suggest that PDX supplementation 

controls the inflammatory response and might have potential health implications for 

patients with chronic inflammatory diseases, potentially including brain health. 

 

There are several limitations to this study. First, the sample size is relatively small.  

Although we acknowledge the exploratory nature of this study and the implications 

of a small sample size for uncertainty regarding type I and specifically type II error, 

the cross over design reduces confounding variables and provides statistical control 

for between-participant variation, thus allowing for a lower sample size to achieve 

similar power as non-crossover design studies. Nevertheless, we acknowledge that 

the current findings should be interpreted with caution due to the preliminary nature 

and should be used to inform larger clinical trials. Additionally, while a 4-week 

washout period and carryover design was applied to this study, the potential of 

carryover effects cannot be ruled out. The lack of effects of PDX on psychopathology, 

anxiety or stress could be partially explained by the healthy study cohort, showing 

low baseline depression, perceived stress or anxiety levels for which it would be 

difficult to observe significant changes. On the other hand, cognitive function in a 

healthy population might have more scope for improvement; however, larger studies 

are needed to investigate the specific benefits of PDX on cognition. The limited 

amount of changes observed in the microbiota composition could be due to the 

limitations of 16S rRNA sequencing. More detailed taxonomic classification using 

shot-gun metagenomic sequencing might be required to fully understand the impact 

of PDX on the microbiota composition and function. Nevertheless, while some 

studies observed more pronounced changes in the microbial profile after PDX 

supplementation, others report very subtle changes in the microbiome composition 

similar to the results observed herein (Roytio and Ouwehand, 2014). Lastly, although 

maltodextrin is frequently used as the placebo in various studies, it can readily be 
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digested and thus might have psychological and physiological effects (Kendig et al., 

2014), potentially impacting some outcomes measures of this study.  

 

Despite these limitations, to the best of our knowledge the data generated from this 

study is the first human study investigating the impact of PDX on brain health, 

thereby generating preliminary evidence to inform future clinical trials.. Previously, 

mechanisms by which PDX can exert beneficial effects on the host have been 

suggested to include microbial metabolites affecting hormonal concentrations in the 

blood (Tolhurst et al., 2012). Although the data provided from this study is 

insufficient to draw conclusions on underlying mechanisms, it could be hypothesized 

that the prebiotic PDX improved cognitive function through reducing inflammatory 

status, potentially mediated by Ruminiclostridium 5 abundance. However,  future 

larger studies using cognition as the primary outcome are warranted to fully 

understand whether PDX could be a potential psychobiotic candidate to support 

cognitive function and unravel underlying mechanisms.   
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6.2.1 Abstract 

6.2.1.1 Background 
The human gut microbiota has emerged as a key factor in the development of 

obesity. Certain probiotic strains have shown anti-obesity effects. The objective of 

this study was to investigate whether Bifidobacterium longum APC1472 has anti-

obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum 

APC1472 supplementation reduces body-mass index (BMI) in healthy 

overweight/obese individuals as the primary outcome. B. longum APC1472 effects 

on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were 

analysed as secondary outcomes. 

6.2.1.2 Methods 
B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 

16 weeks. In the human intervention trial, participants received B. longum APC1472 

or placebo supplementation for 12 weeks, during which primary and secondary 

outcomes were measured at the beginning and end of the intervention. 

6.2.1.3 Findings 
B. longum APC1472 supplementation was associated with decreased bodyweight, fat 

depots accumulation and increased glucose tolerance in HFD-fed mice. While, in 

healthy overweight/obese adults, the supplementation of B. longum APC1472 strain 

did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio 

(0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting 

blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). 

6.2.1.4 Interpretation 
This study shows a positive translational effect of B. longum APC1472 on fasting 

blood glucose from a preclinical mouse model of obesity to a human intervention 

study in otherwise healthy overweight and obese individuals. This highlights the 

promising potential of B. longum APC1472 to be developed as a valuable supplement 

in reducing specific markers of obesity. 
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6.2.2 Introduction 

Obesity is one of the most pervasive, chronic diseases globally, in both developed 

and developing countries, contributing to at least 2.8 million deaths annually and 

significantly impacting the healthcare system (WHO, 2018). The growing obesity 

epidemic is associated with increases in several comorbidities, such as cardiovascular 

disease, stroke, metabolic syndrome, type 2 diabetes and cancer (Tchernof and 

Despres, 2013; Narayanaswami and Dwoskin, 2017). Current available anti-obesity 

therapeutics are limited and associated with poor efficacy and adverse side effects 

(Bloom et al., 2008; Torres-Fuentes et al., 2014). Diet and exercise have been 

demonstrated to be the most potent in reducing obesity symptomatology (Fock and 

Khoo, 2013). In addition, natural compounds and their derivatives have been 

proposed as safer anti-obesity alternatives, either as functional foods or 

nutraceuticals (Torres-Fuentes et al., 2014).  

The gut microbiota has emerged as a key component in the development of obesity 

and modulates the host’s physiology and metabolism, including energy harvest, 

storage and expenditure (DiBaise et al., 2012; Torres-Fuentes et al., 2014; 

Rosenbaum et al., 2015; Patterson et al., 2016; Maruvada et al., 2017; Torres-Fuentes 

et al., 2017; van de Wouw et al., 2017; Cani et al., 2019). Preclinical and clinical 

evidence demonstrating the critical role of the gastrointestinal microbiota on host 

metabolism is steadily increasing. For example, germ-free mice are protected against 

obesity and are significantly leaner than normal control mice despite consuming 

more calories (Backhed et al., 2004). In addition, faecal transplantation from obese 

donors was shown to replicate the obese phenotype in lean germ-free mice 

independent of diet (Ley et al., 2005; Ley et al., 2006; Ridaura et al., 2013). Moreover, 

accelerated post-dieting weight regain is associated with a persistent intestinal 

microbiome signature after successful dieting in obese mice (Thaiss et al., 2016). 

However, the exact mechanisms of how diet-induced changes in gut microbiota 

affect gut-brain signalling, including host metabolism, appetite regulation and brain 

health, are currently still lacking (Adan et al., 2019; Ezra-Nevo et al., 2020). 

Interestingly, the obese-associated microbiota has been shown to have an increased 
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capability to harvest energy from food and contributes to host insulin resistance, gut 

permeability, low-grade inflammation, and fat deposition (Cani and Delzenne, 2009; 

Khan et al., 2016). Intestinal microbiota-derived metabolites have also been shown 

to impact the central regulation of appetite (Fetissov, 2017; Sandhu et al., 2017; 

Torres-Fuentes et al., 2017). For example, certain bacterial strains modify gut 

peptides secretion, such as glucagon-like peptide (GLP)-1, thus contributing to 

hypothalamic appetite and satiety signalling via afferent nerve fibres of the vagus 

nerve as well as by direct secretion into the circulatory system (Everard and Cani, 

2014; Sandhu et al., 2017). Furthermore, germ-free mice display marked decreases 

in expression of intestinal satiety peptides, including cholecystokinin (CCK), peptide 

tyrosine-tyrosine (PYY) and GLP-1 and also lower circulating levels of leptin and 

ghrelin (Duca et al., 2012). In addition, serum ghrelin levels are negatively correlated 

with the abundance of certain microbiota, including Bifidobacterium and 

Lactobacillus species (Queipo-Ortuno et al., 2013). And intake of the prebiotic 

oligofructose, which promotes the growth of Bifidobacterium and Lactobacillus, 

decreases the secretion of ghrelin in obese humans (Parnell and Reimer, 2009). 

Taken together, modulation of the gut microbiota is emerging as a promising strategy 

for the management of obesity and obesity-related disorders such as type-2 diabetes 

and cardiovascular disease (DiBaise et al., 2012; Torres-Fuentes et al., 2014; 

Patterson et al., 2016; Torres-Fuentes et al., 2017; Peng et al., 2018). 

Several probiotic strains with different anti-obesity effects in humans have been 

identified (Jung et al., 2013; Rajkumar et al., 2014; Torres-Fuentes et al., 2014; Zarrati 

et al., 2014; Stenman et al., 2016; Sabico et al., 2017; Kim et al., 2018; Hibberd et al., 

2019). The bacterial strain B. longum APC1472 has recently been shown to modulate 

ghrelinergic signalling in vitro (Torres-Fuentes et al., 2019), highlighting the 

therapeutic potential for host metabolism, appetite and obesity modulation. The 

ghrelin receptor (GHS-R1a) is activated by the endogenous hormone, ghrelin, the first 

and only known peripheral orexigenic peptide, which regulates peripheral 

metabolism and energy expenditure as well as centrally regulated homeostatic 

appetite and food-motivated reward signalling, governing eating behavior and food 

intake (Kojima et al., 1999; Tschop et al., 2000; Cummings et al., 2001; Nakazato et 
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al., 2001; Muller et al., 2015). Interestingly, obese individuals have attenuated 

postprandial suppression of ghrelin and a blunted nocturnal plasma ghrelin increase, 

reinforcing aberrant ghrelinergic signalling in obesity (Yildiz et al., 2004; le Roux et 

al., 2005). While the precise site of action of ghrelin is somewhat controversial 

(Abizaid, 2009; Abizaid and Horvath, 2012; Howick et al., 2017), the high prevalence 

of the ghrelin receptor throughout the small and large intestine, make it a likely 

target for interaction with the gut microbiota and thus may hold potential as a local 

therapeutic target (Takeshita et al., 2006).  

As such, we investigated B. longum APC1472 for its ability to ameliorate high-fat diet 

(HFD)-induced obesity in mice, and significant effects on adiposity and metabolism 

were observed. Based on these promising effects of B. longum in the preclinical 

model, we subsequently investigated whether it could improve obesity 

symptomatology in healthy overweight/obese adults. The primary objective of the 

human intervention study was to determine whether a 12-week daily 

supplementation of B. longum APC1472 decreases body-mass index (BMI), while the 

secondary objective was to investigate the effects on waist-to-hip ration (W/H ratio), 

and biomarkers associated with obesity, such as glucose, insulin, HbA1c and ghrelin 

levels. The exploratory objectives were to investigate the impact of B. longum 

APC1472 on the gut microbiota composition and diversity, peripheral inflammatory 

profile, stress hormone profile, self-reported stress, anxiety and satiety. 
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6.2.3 Methods 

6.2.3.1 Animal study 

6.2.3.1.1 Animals, diets and ethical approval 
Five-week-old male C57BL/6 mice (Harlan Laboratories, UK) (40 mice, n=8-10 per 

group) were housed in groups of 2 mice per cage in standard holding cages with free 

access to food and water in the animal care facility of University College Cork. The 

holding room temperature (21 ± 1°C) and humidity (55 ± 10%) were controlled under 

a 12 h light/dark cycle (lights on 7.00 AM, lights off 7.00 PM). The mice were fed a 

low-fat diet (LFD) (10% fat (kcal/100 g), D12450B, Research Diet, USA) or a high-fat 

diet (HFD) (45% fat (kcal/100 g), D12451, Research Diet, USA) for 16 weeks. Food 

intake was recorded once per week and calculated on the basis of two mice per cage 

and five cages per group. The data were reported as cumulative food intake per 

mouse. Bodyweight was monitored weekly for 15 weeks.  Experiments were 

conducted in accordance with the European Directive 86/609/EEC and the 

Recommendation 2007/526/65/EC and were approved by the Animal 

Experimentation Ethics Committee of University College Cork.  

6.2.3.1.2 In vivo probiotic administration  
Bifidobacterium longum APC1472 was grown anaerobically in De Man, Rogosa and 

Sharpe (MRS) medium as previously described (Torres-Fuentes et al., 2019). The 

bacterial cell pellet was washed and concentrated in sterile phosphate buffered 

saline (PBS) containing 25% Glycerol (v/v) to an end concentration of 7.5x109 

CFU/mL, aliquoted and stored at -80°C. Aliquots were defrosted daily just prior to the 

start of the dark phase and diluted to 2x108 CFU/mL in drinking water for 

administration to LFD-fed and HFD-fed mice for 16 weeks. Water intake was 

monitored throughout the experiment. Drinking water containing an equivalent end 

concentration of sterile PBS (2% v/v) and glycerol (0.5% v/v) was administered to 

control mice. Water was replaced for probiotic/vehicle-free water every morning. B. 

longum APC1472 survival in drinking water (distilled water) in ambient temperature 

and oxygen content was tested over 24 h prior to the start of the experiment. 

Bacteria counts (CFU/mL) did not decrease over 1 log unit for the first 12 hours 
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suggesting adequate viability of the strain upon the time of consumption (Figure 

S1A). No significant changes in water intake were observed within the same diet 

groups (Figure S1B).  

6.2.3.1.3 In vivo Glucose tolerance test 
Glucose tolerance was assessed after 15 weeks of treatment as previously described 

(Suez et al., 2014), with minor modifications. Briefly, mice were fasted for 7 hours 

during the light phase, with free access to water. Glucose levels were measured in 

tail vein blood using a glucometer (Bayer, UK) immediately before and 15, 30, 60, 90 

and 120 min after intraperitoneal injection of glucose (1 g/kg of body weight in sterile 

saline).  

6.2.3.1.4 Murine tissue sampling 
Mice were euthanized by decapitation. Trunk blood was collected in tubes containing 

25 μM dipeptidyl peptidase IV (DPP-IV) inhibitor, 2x protease inhibitor cocktail 

(Roche) (diluted in PBS) and 0.1% Na2 EDTA for an expected blood volume of 400 µL, 

centrifuged at 3500 g for 15 min at 4°C and placed on dry ice until storage at −80°C 

for further analysis. Adipose depots (epididymal, subcutaneous, mesenteric and 

retroperitoneal) were dissected and weighed. Whole-brains were collected and 

placed for 8-10 sec into ice-cold isopentane. All tissues were frozen on dry ice and 

subsequently stored at −80°C for further analysis.  

6.2.3.1.5 Murine biochemical analysis 
Plasma insulin and leptin levels were analysed by ELISA using the MILLIPLEX® MAP 

Mouse Metabolic Hormone Magnetic Bead Panel (Millipore, MMHMAG-44K) 

accordingly to the manufacturer’s instructions. Plasma ghrelin levels were analysed 

using the Rat/Mouse Ghrelin (Total) ELISA Kits (Millipore, EZGRA-88K). Triglycerides 

levels were analysed with a Triglyceride Quantification Kit (Abcam Ltd, ab65336) 

following the to manufacturer’s instructions. Corticosterone levels were assayed 

using ELISA kits (Enzo Life Sciences, ADI-900-097) according to the manufacturer’s 

instructions.  
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6.2.3.1.6 Murine RNA Isolation and Quantitative Real-Time PCR 
Hypothalamus was dissected with a forceps (macropunch) from the frozen brain on 

dry ice and immediately processed for RNA extraction. Hypothalamus and epididymal 

adipose tissue total RNA were extracted using the mirVana™ miRNA Isolation kit 

(Ambion/Life Technologies, AM1560) and RNeasy® Lipid Tissue Mini Kit (Qiagen, 

74804), respectively with DNase treatment using Turbo DNA-free (Ambion/life 

Technologies, AM1907) according to the manufacturer’s recommendations. Equal 

amounts of RNA were first reverse transcribed to cDNA using High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, 4368814). Real-time PCR was 

performed using TaqMan Universal Master Mix II, no Uracil-N glycoslyase (UNG) on 

a LightCycler®480  System (Roche). Mouse β-actin control mix Probe dye: VIC-MGB 

(Applied Biosystems, 4352341E) was used as an endogenous control. Target genes 

were amplified with probes designed by Integrated DNA Technologies (Table S1). 

Cycle threshold (Ct) values were recorded, normalized to its endogenous control and 

transformed to relative gene expression value using the 2−ΔΔCt method (Livak and 

Schmittgen, 2001). Each sample was analysed in triplicate for both target gene and 

endogenous control. The gene expression levels for each animal was calculated 

considering the mean from each of these triplicates. 

6.2.3.2 Human intervention study 

6.2.3.2.1 Human intervention study outline  
This study has a parallel-controlled design. In total, 150 individuals were screened, 

after which 124 were randomized into the treatment groups (Placebo: n = 50; 

Treatment: n = 74). The aim of the first visit of the participant was to assess 

participants for their eligibility to participate in the study and explain which 

procedures would be undertaken. Subjects were given an appointment for the next 

visit within a 3-week period. At the second visit, all baseline data and biologics were 

recorded, which was also done after 6 (visit 3) and 12 weeks (visit 4) of placebo or B. 

longum APC1472 treatment. Vital signs, anthropometric measurements and medical 

history were recorded. For women of childbearing age, a urine sample was collected 

for a pregnancy test. Fasting blood samples (20 mL) were collected to assess glucose, 

insulin, HbA1c, lipid profiles, satiety/appetite hormone profiles, and inflammatory 
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profiles. Saliva samples were collected for the assessment of the cortisol awakening 

response, as well as a stool sample for the microbiota analysis and short-chain fatty 

acid (SCFA) quantification. Questionnaires were administered to assess self-reported 

stress, anxiety, hunger/satiety, exercise and diet.  

Participants were asked to take one capsule per day, providing a daily dose of 1x1010 

CFU. Subjects, study facilitators, nurses and research analysts were kept blind as to 

in which group they belonged. The randomisation of treatment schedules was carried 

out by a computer-generated program. The remaining study product was collected 

to check for compliance following visits 3 and 4 (Haynes et al., 1980).  

6.2.3.2.2 Inclusion and exclusion criteria 
The inclusion criteria were as follows: subjects had to give written informed consent; 

had to be between 18-65 years of age; had a BMI between 28-34.9; had a W/H ratio 

≥0.88 for males and ≥0.83 for females; had to be willing to consume the 

investigational product daily for the duration of the study. Subjects were excluded if 

they were pregnant, lactating, or female and wish to become a parent during the 

study; regularly took probiotics; were hypersensitive to any of the components of the 

test product; were severely immune-compromised (i.e. HIV positive, transplant 

patient, antirejection medications, on a steroid for >30 days, or underwent 

chemotherapy or radiotherapy within the last year); had Type 1 or Type 2 Diabetes 

Mellitus; had a history of bariatric surgery; had taken anti-obesity medication in the 

previous 12-weeks; were actively, or has within the last 3 months, participating in a 

weight loss program or incurred a weight change of more than 3 kg during the past 

3 months; had a life-threatening illness; was on Metformin, anti-psychotic drugs or 

any medication that the investigator determined could impact the results of the 

study; had commenced use of anti-hypertensive drugs, anti-depressive drugs, statins 

or any other medication that the investigator determined could impact the results of 

the study within 3-months of randomisation date; had a history of co-existing 

gastrointestinal, and/or gynaecological, and/or urologic pathology (e.g. colon cancer, 

colitis, Crohn’s Disease, Celiac, Endometriosis, prostate cancer) or lactose 

intolerance; had a history of drug and/or alcohol abuse; was currently, or planning, 

to participate in another study during the study period; had a history of non-
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compliance; had been on antibiotics in the 12-weeks prior to randomisation; or 

consumed vitamin D supplements (>5000 IU/d). 17.3% of all screened participants 

were excluded due to these exclusion criteria.  

Subjects were removed from the study if they independently elected to withdraw; 

he/she developed any condition which contravened the original criteria; or was 

considered at any point to be unsuitable to continue the study, at the discretion of 

the investigator.  

6.2.3.2.3 Study setting and ethical approval  
The study was conducted in accordance with the ethical principles set forth in the 

current version of the Declaration of Helsinki (seventh version, October 2013), the 

International Conference on Harmonization E6 (R2) Good Clinical Practice (ICH GCP, 

November 2016) and all applicable local regulatory requirements (i.e. Clinical 

Research Ethics Committee of the Cork Teaching Hospitals). This study was registered 

with ClinicalTrials.gov (NCT04042181). The CONSORT diagram of this study is 

depicted in Figure 6.2-1, the study layout is depicted in Figure S2. This study was run 

by Atlantia Food Clinical Trials (Cork, Ireland) (study reference: AFRCO-088).  
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6.2.3.2.4 Randomisation and blinding 
The investigational product arrived on site labelled with randomisation number. A 

randomisation list was generated by an independent statistician. Participants were 

assigned a randomisation number in chronological order from this randomisation list. 

The study team, participants and researchers were unaware which randomisation 

numbers were active or placebo. Blinding was undone after all data had been 

analyzed.  

6.2.3.2.5 Study recruitment 
Subjects were recruited through the database of Atlantia Food Clinical Research 

Trials, general practitioners’ offices and by posting adverts in local newspapers. 

Subjects underwent an initial phone screen. Eligible subjects were scheduled for a 

screening visit. Subjects received €300 upon completion of the study to cover costs 

and expenses incurred. 

Figure 7.21. Consort diagram. Number of healthy overweight/obese participants that were assessed for 
eligibility and excluded or allocated to the trial, treated, followed, and analysed. 



384 
 

6.2.3.2.6 Product formulation and dosage 
Bifidobacterium longum has been granted Qualified Presumption of Safety (QPS) 

status by the European Food Safety Authority (EFSA). B. longum APC1472 grown 

culture and the corresponding placebo were freeze-dried (Sacco SRI, Italy) and 

provided as hydroxypropylmethylcellulose (HPMC) capsules in PE bottles (Nutrilinea, 

Italy). The freeze-dried powder of the strain was blended with standard food-grade 

excipients to achieve the target dose of 1x1010 CFU. The excipients consisted of corn 

starch, magnesium stearate and silicon dioxide. The probiotic formulation consisted 

of B. longum APC1472, whereas the placebo contained maltodextrin. The product 

was stored at -20°C until distributed to the study participant and the participant was 

instructed to keep the product refrigerated. Participants returned any leftover 

product at their next visit, and the excess product was counted to check for 

compliance. 

6.2.3.2.7 Collection and analysis of blood samples 
Fasting blood samples were taken into EDTA tubes, fasting defined as refraining from 

food overnight (at least 10 hours), however drinking water was allowed throughout 

the duration of the fast. Samples for the analysis of active ghrelin were immediately 

treated with AEBSF (final concentration 1 mg/mL, Sigma, A8456), centrifuged and the 

resulting plasma was treated with HCl (final concentration 0.05N). Blood samples for 

the analysis using the U-PLEX assays were treated with DPP-IV inhibitor (final 

concentration 1%, Sigma, DPP4) and centrifuged. Blood plasma samples for other 

analyses did not undergo any additional processing, except for centrifugation. 

Centrifugation was performed at 1000g for 10 minutes at 4 °C, after which samples 

were aliquoted and either processed or stored at -80 °C for future analysis.  

Blood plasma from visit 1 was used to measure urea, creatinine, bilirubin, alanine 

aminotransferase, alkaline phosphatase, aspartate aminotransferase, gamma-

glutamyl transferase, total protein, albumin, globulin, calcium, magnesium, 

phosphate, uric acid, cholesterol, HDL cholesterol, LDL cholesterol, total triglycerides, 

glucose, full blood count + 5-part diff. Safety blood, haematology and biochemistry 

parameters were analysed by Biomnis-Eurofins Ireland.  
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Blood from visits 2, 3 and 4 was used to measure total cholesterol, LDL, HDL, 

triglycerides HbA1c, glucose and insulin by Biomnis-Eurofins Ireland. Furthermore, 

blood plasma was assessed for active ghrelin levels using an ELISA (EMD Millipore, 

EZGRA-88BK) which was performed according to the manufacturer’s instructions. 

Plates were read at 405 nm with a correction at 590 nm using the synergy HT plate 

reader (Biotek instruments). Blood plasma was also assessed for metabolic and 

inflammatory biomarkers using custom U-PLEX assays (MSD, K151ACM-2), which 

were also performed according to the manufacturer’s instructions. Blood plasma 

samples were diluted 1:3 for the U-PLEX assays. U-PLEX markers were linked as 

following; Plate 1: 1) Leptin, 2) PYY, 3) GLP-1 – total, 4) IFNγ, 5) Il-4, 7) TNF-α, 8) Il-10, 

9) C-peptide, 10) Ghrelin – total; Plate 2: 1) GLP-1 – active. The working solution was 

supplemented with DPP-IV inhibitor (final concentration 1%, Sigma, DPP4). Plates 

were read using the MESO QuickPlex SQ 120. Duplicates with ≥ 20% coefficient of 

variability were re-analysed. Samples did not undergo any additional freeze-thaw 

cycles. 

6.2.3.2.8 Collection and analysis of cortisol awakening response samples 
To monitor the cortisol awakening response, saliva from visits 2 and 4 was collected 

in Salivette devices (Sarstedt, 51.1534.500) immediately upon awakening, and after 

30, 45 and 60 minutes. Participants were instructed to keep samples in the fridge 

until delivery at the visit time, after which they were centrifuged at 1500 g for 5 min, 

the saliva was harvested and immediately stored at -80 °C. Salivary cortisol 

concentrations were quantified using ELISA kits (Enzo life sciences, ADI-901-071), 

which were performed according to the manufacturer’s instructions. Saliva samples 

were diluted 1:2. Plates were read at 405 nm with a correction at 580 nm using the 

synergy HT plate reader (Biotek instruments). Duplicates with ≥ 20% coefficient of 

variability were re-analysed. Samples did not undergo any additional freeze-thaw 

cycles. Cortisol awakening response was calculated using the area under the curve 

increase (AUCi). Briefly, data from the 30-, 45- and 60-minute time-points were 

normalized (delta) to the samples taken immediately upon awakening, after which 

the sum was taken of the 30-, 45- and 60-minute time-points (Stalder et al., 2016).  
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6.2.3.3 Murine and Human Microbiota 

6.2.3.3.1 Murine and Human Microbiota sequencing 
Murine cecal DNA was isolated using the QIAamp Fast DNA Stool Mini kit (Qiagen) as 

previously described and kept at -20°C until further analysis (Burokas et al., 2017). 

Isolated DNA was quantified on a NanoDrop ND2000 spectrophotometer (Thermo 

Scientific, DE) and used for 16S ribosomal RNA sequencing by Illumina MiSeq System 

(Illumina Inc., USA) according to the manufacturer’s instructions. Briefly, PCR 

amplicons (primers for V3-V4 hypervariable region of the 16S rRNA gene: F (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGAC AGCCTACGGGNGGCWGCAG-3') and R 

(5’-GTCTCGTGGGCTCGGAGATGTGTATA AGAGACAGGACTACH VGGGTATCTAATCC-3') 

were purified and libraries prepared as previously described (Burokas et al., 2017). 

Briefly, the 16S V3-V4 amplicons were generated using Kapa HiFi HS ready mix and 

purified using the Agencourt AMPure XP system (Beckman Coulter Genomics, 

Takeley, UK). The Nextera XT Index Kit (Illumina Inc., USA) was used to barcode each 

sample. PCR products were cleaned using AMPure XP beads and a magnetic 96-well 

plate. Final barcoded amplicons were measured using the Qubit dsDNA High 

Sensitivity assay kit on the Qubit 3.0 fluorometer, diluted to 5 ng/µL and pooled. The 

PCR products from both PCR steps (Amplicon & Indexing) were visualised in agarose 

gels stained with SYBR Safe DNA gel stain (Invitrogen). Samples were sequenced at 

Clinical-Microbiomics, Denmark on the Illumina MiSeq platform using a 2 x 300 bp 

kit. After sequencing, reads were assembled, processed and analysed as previously 

described (Burokas et al., 2017). In the microbiota composition analysis, LDA Effect 

Size (LEfSe: Linear Discriminant Analysis Effect Size) was used as an algorithm with 

default settings on the interface Galaxy 

(http://huttenhower.sph.harvard.edu/lefse/) (Segata et al., 2011) to identify taxa 

with differentiating abundances. The differentially abundant features are ranked by 

effect size after undergoing linear discriminant analysis (LDA), using an effect size 

threshold of 2 (log10 scale). In non-technical terms, LEfSe pre-selects features that 

are different between groups and then tries to fit a model to see how well these 

features explain the groups. The score is an average between the effect size and how 

well the model fits, after which they are transformed to a value between -6 and 6. 
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Principal coordinates Analysis (PCoA) was performed based on Bray-Curtis beta 

diversity distances using the Adonis function in the “vegan” (2.4-3) package for R 

(version 3.3.1).  

For the human intervention study, faecal sample collection and DNA extraction was 

performed as previously described (see supplementary material for details) (Yu and 

Morrison, 2004). The DNA samples were processed according to the Illumina 16S 

Metagenomic Sequencing   Library Preparation instructions as described above for 

the murine DNA samples. Final barcoded amplicons were measured using the Qubit 

dsDNA High Sensitivity assay kit on the Qubit 3.0 fluorometer, diluted to 8.3 ng/µL, 

pooled and sent for sequencing. Microbiome analysis was carried out in R (version 

3.6.1) with Rstudio (version 1.2.1335). DADA2 was used to denoise and call amplicon 

sequence variants (ASVs). Taxonomy was assigned using the SILVA SSUREf database 

version 132. ASVs unknown on a genus level were excluded, as well as ASVs present 

in two or fewer samples. The ALDEx2 library used to compute the centered log-ratio 

transformed values of the remaining taxa (Fernandes et al., 2014). For principal 

components analysis (PCA), a pairwise implementation of the adonis() PERMANOVA 

function in the vegan library followed by the Bonferroni-Holm correction was used 

to test for difference in β-diversity in terms of Aitchison distance (source: Oksanen, 

Jari, et al. "Package ‘vegan’." Community ecology package, version 2.9 (2013): 1-295). 

Differential abundance was assessed using a pairwise implementation of the 

aldex.test() function, followed by Benjamini-Hochberg correction. In all cases, a q-

value < 0.1 was considered significant. α-diversity was computed using the iNEXT 

library (Hsieh and Chao, 2017). 

6.2.3.4 Faecal SCFA quantification 
Faecal samples were homogenised with acidified water (HCl pH 3) at a ratio of 1:7.5 

w/v and analyzed by gas chromatography flame ionisation detection (GC-FID) using 

a Varian 3800 GC system, fitted with an Agilent DB-FFAP column (30 mL x 0.32mm ID 

x 0.25 μm df; Agilent) and a flame ionisation detector with a CP-8400 auto-sampler. 

Helium was employed as the carrier gas at an initial flow rate of 1.3 mL/min. The 

initial oven temperature was 50 °C, was maintained for 30 seconds, raised to 140°C 

at 10 °C/min and held for 30 seconds, before being increased to 240°C at 20 °C/min, 
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and held for 5 minutes (total run time 20 minutes). The temperatures of the detector 

and the injection port were 300 °C and 240 °C, respectively. A split-less injection of 

0.2 µL was carried out for each sample or standard using a 10 µL syringe (Agilent) 

installed to a CP-8400 auto-sampler (Varian). A 5 m guard column was installed 

between the injector and analytical column (Restek). Peak integration was 

performed using Varian Star Chromatography Workstation version 6.0 software. 

Vials containing 1800 µL of water were run between each sample duplicates as blanks 

to control for any potential carryover. Standards were included in each run to 

maintain the calibration. For further details on sample and standards preparation see 

supplementary information. 

6.2.3.5 Questionnaires 
Using self-report scales, participants were assessed for perceived stress using 

Cohen’s Perceived Stress Scale and anxiety and depression using the Hospital Anxiety 

and Depression Scale (HADS) at baseline, after 6 and after 12 weeks, as previously 

described (Cohen et al., 1983; Zigmond and Snaith, 1983). In addition, satiety/hunger 

was determined using a visual analogue Hunger/Satiety scale, physical activity using 

the International Physical Activity Questionnaire (IPAQ) (Craig et al., 2003). Nutrient 

intake was assessed using a Food Frequency Questionnaire (FFQ), as previously 

described (Harrington et al., 2011).  

6.2.3.6 Statistical analysis 
Preclinical data were assessed for normality using the Shapiro-Wilk test. Normally 

distributed data were analysed using a two-way ANOVA, followed by Fisher’s least 

significant difference (LSD) post hoc test. Non-parametric datasets were analysed 

using the Kruskal-Wallis test, followed by the Mann-Whitney U test with Bonferroni 

adjustment of p-values. Body weight changes and glucose levels in glucose tolerance 

test were analysed with a two way repeated-measures ANOVA (with Diet and 

Probiotic as two independent factors and Time as a repeated-measured factor), 

followed by LSD post hoc test at each time point. Statistical analysis was performed 

using SPSS software (IBM SPSS statistics 22). Preclinical data are represented as mean 

± SEM.  
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For the human intervention study, differences between the treatment and placebo 

groups at the last visit (i.e. visit 4) were analysed using an analysis of covariance 

(ANCOVA), correcting for baseline variance (i.e. visit 2) and sex. Comparisons 

between baseline measurements (visit 2) and post-intervention measurements (visit 

4) were analysed using an unpaired student’s T-test. Analyses were performed on 

the intention to treat populations. Statistical analysis was performed using SPSS 

software version 26 (IBM Corp). Data in table are presented as mean ± SEM or 95% 

CI. P-Values <0.05 were considered statistically significant. Partial eta-squared (η2) 

was used to estimate effect size (Tabachnick and Fidell, 2012). Effect sizes were 

interpreted as following: η2 ≤ 0.06 was considered small, 0.06 > η2 ≤ 0.14 was 

considered moderate, η2 ≥ 0.14 was considered large. 

 

6.2.4 Results  

6.2.4.1 B. longum APC1472 decreases body weight gain and fat depots 
accumulation in obese mice 
B. longum APC1472 decreased body weight gain after 15 weeks of administration (F 

(1, 33) = 4.751, p = 0.037) (Figure 6.1-2A, 2B). HFD feeding increased caloric intake (F 

(1, 15) = 9.229, p = 0.008) (Figure S1C), body weight (F (1, 33) = 29.715, p < 0.001)  

(Figure 6.2-2A) and fat depot accumulation (mesenteric (F (1, 33) = 61.328, p < 

0.001), retroperitoneal (F (1, 32) = 128.409, p < 0.001), subcutaneous (F (1, 31) = 

124.091, p < 0.001) and epididymal (F (1, 33) = 81.673, p < 0.001)) (Figure 6.2-2C, D, 

E, F). Pairwise comparisons showed a significant decreased body weight effect of B. 

longum APC1472 in HFD-fed mice (p = 0.047) (Figure 6.2-2B), which was independent 

of caloric intake (Figure S1). Furthermore, the administration of B. longum APC1472 

significantly reduced fat depot accumulation (mesenteric (F (1, 33) = 5.908, p = 

0.021), and subcutaneous (F (1, 33) = 4.270, p = 0.047)) (Figure 6.2-2C, D, E, F). Finally, 

pairwise comparisons revealed a significant decreased fat depot accumation effect 

of B. longum APC1472 administration in HFD-fed mice (mesenteric p = 0.002, 

retroperitoneal p = 0.05 and subcutaneous p = 0.023).  
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6.2.4.2 B. longum APC1472 administration improves glucose tolerance, circulating 
levels of leptin and corticosterone in obese mice 
Effect of HFD feeding (F (5, 155) = 3.321, p = 0.007) and a B. longum APC1472 

supplementation (F (5, 155) = 4.792, p < 0.001) effect were observed, as well as an 

interaction effect between these two factors and time (F (5, 155) = 3.307, p = 0.007) 

in the glucose tolerance test. Supplementation with B. longum APC1472 normalized 

glucose levels after 15 mins of glucose administration in HFD-fed obese mice (p = 

0.006) and also significantly decreased glucose after 90 (p = 0.019) and 120 min (p = 

0.018) respectively (Figure 6.2-3A) as determined by 2 way ANOVAs at each 

individual timepoint. Moreover, HFD feeding (F (1, 33) = 29.761, p < 0.001), B. longum 

APC1472 (F (1, 33) = 4.425, p = 0.043) and interaction effects between these two 

factors (F (1, 33) = 5.337, p = 0.027) were also observed when analyzing the area 

under the glucose levels curve (AUC) (Figure 6.2-3B), with B. longum APC1472 

administration  significantly reducing AUC in HFD-fed mice (p = 0.003) as determined 

by post-hoc comparison (Figure 6.2-3B). In addition, both a HFD feeding (F (1, 33) = 

9.167, p = 0.005) and a B. longum APC1472 effect  (F (1, 33) = 4.796, p = 0.036) were 

observed for non-fasting insulin levels (Figure 6.2-3C). Interestingly, B. longum 

Figure 6.2-2. Effects of Bifidobacterium longum APC1472 on body weight and fat depots accumulation in 
mice. (A) Weekly body weight gain, (B) total body weight gain and (C) mesenteric, (D) retroperitoneal, (E) 
subcutaneous and (F) epididymal fat depots accumulation (% of total body weight) in control mice treated 
with drinking water containing sterile PBS (2% v/v) and glycerol (0.5% v/v) and fed a control low-fat diet 
(LFD)  (n=10) or a high-fat diet (HFD) (n=9) and in mice treated with B. longum APC1472 in drinking water 
(2x108 CFU/mL) and fed a LFD (n=9 in A, B, C, E and F; n=8 in D) or a HFD (n=9 in A, B, C, D, and F; 
n=8 in E) for 15 (A, and B) or 16 weeks (C, D, E and F). Data are shown as mean ± SEM.. Data are significant 
different (p<0.05) accordingly to Repeated Measures ANOVA (A) or two-way ANOVA followed by LSD post-
hoc test (B, C, D, E and F). * indicates significant diet treatment effect (*p<0.05, **p<0.01, ***p<0.001) 
and # indicates significant B. longum APC1472 treatment effect (#p<0.05, ##p<0.01).  
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APC1472 reduced non-fasting insulin levels in LFD-fed mice (p = 0.054) but not in 

HFD-fed mice (Figure 6.2-3C). However, for fasting glucose levels, only a HFD feeding 

effect was observed (F (1, 32) = 29.153, p < 0.001) (Figure 6.2-3D). Moreover, both a 

HFD feeding (F (1, 31) = 30.926, p < 0.001) and a B. longum APC1472 effect (F (1, 31) 

= 17.917, p < 0.001) was observed for epididymal insulin receptor substrate 1 (IRS-1) 

expression  (Figure 6.2-3E). Post-hoc comparisons determined that interestingly, B. 

longum APC1472 significantly reduced IRS-1 expression in both LFD (p = 0.002) and 

HFD-fed mice (p = 0.011) (Figure 6.2-3E). Both a HFD feeding (F (1, 33) = 38.023, p < 

0.001) and a B. longum APC1472 (F (1, 33) = 5.340, p = 0.027) effect as well as an 

interaction effect (F (1, 33) = 4.237, p = 0.048) was observed for fasting leptin levels 

(Figure 6.2-3F). The effect of HFD on leptin levels  was attenuated by B. longum 

APC1472 treatment (p = 0.004). Finally, we found a significant B. longum APC1472 

treatment effect (F (1, 32) = 7.774, p = 0.009) for plasma corticosterone levels (Figure 

6.2-3G). Administration of B. longum APC1472 significantly decreased plasma 

corticosterone levels in HFD-fed mice (p = 0.011) (Figure 6.2-3G), which may have 

contributed to its overall impact on glucose homeostasis. 
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6.2.4.3 B.  longum APC1472 induces changes of hypothalamic neuropeptide 
expression in mice 
Analysis of the gene expression levels of hypothalamic neuropeptides involved in 

appetite modulation revealed a significant HFD effect on the gene expression of the 

orexigenic peptide agouti-related protein (AgRP) (F (1, 33) = 10.412, p = 0.003)  but a 

non-significant reduction in neuropeptide Y (NPY) expression (Figure S3). 

Interestingly, both a B. longum APC1472 effect (F (1, 33) = 7.820, p = 0.009) and an 

interaction effect (F (1, 33) = 5.881, p = 0.021) were observed for cocaine- and 

Figure 6.2-3. Bifidobacterium longum APC1472 improved glucose tolerance, leptin plasma levels and 
stress-induced corticosterone circulating levels in high-fat diet-induced obesity in mice. (A and B) Glucose 
tolerance test (GTT) glucose curve and area under the curve (AUC) after 1 g/kg glucose challenge, (C and 
D) non-fasting and fasting insulin plasma levels, (E) fasting leptin plasma levels, (F) epididymal fat insulin 
receptor substrate (IRS)-1 mRNA expression and (G) fasting-induced corticosterone plasma in control mice 
treated with drinking water containing sterile PBS (2% v/v) and glycerol (0.5% v/v) and fed a control low-fat 
diet (LFD)  (n=10 in A, B, C, E, F and G) or a high-fat diet (HFD) (n=9 in A, B, C, D, E and G; n=8 in F) 
and in mice treated with B. longum APC1472 in drinking water (2x108 CFU/mL) and fed a LFD (n=9 in A, 
B, C, D, E and F; n=8 in G) or a HFD (n=9 in A, B, C, D, E and F; n=8 in G) for 15 (A, B,C) or 16 weeks 
(D, E, F and G). Data are shown as mean ± SEM. Data are significant different (p<0.05) accordingly to 
Repeated Measures ANOVA (A) or two-way ANOVA followed by LSD post-hoc test (B, C, D, E, F and G). * 
indicates significant diet treatment effect (*p<0.05, **p<0.01, ***p<0.001) and # indicates significant B. 
longum APC1472 treatment effect (#p<0.05, ##p<0.01).  
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amphetamine-regulated transcript (CART) expression (Figure S3). Indeed, B. longum 

APC1472 administration significantly reduced CART expression in HFD-fed mice (p = 

0.001). While a reduced expression was observed for the anorexigenic pro-

opiomelanocortin (POMC) gene expression in HFD-fed animals treated with B. 

longum APC1472 compared to HFD-fed, this did not reach statistical significance. 

Finally, no significant change in leptin (LEP-R) nor ghrelin (GHS-R1a) receptor 

expression was observed (Figure S3). 

6.2.4.4 Human Intervention Study population 
In the human study, no significant differences were observed in weight, BMI, W/H 

ratio, age, height, sex, ethnicity, mode of delivery, alcohol consumption, 

medical/surgical history and compliance at baseline between B. longum APC1472 

treatment and placebo groups (Table 1). We did observe an increased prevalence of 

concomitant medical or nutritional supplement consumption in the treatment group 

(48.6%) compared to the placebo group (33.3%). In addition, we also observed 

differences in the socioeconomic profile where there was a lower prevalence of 

employers and managers in the treatment group (2/74) compared to the placebo 

group (4/48). Similarly, we observed a lower prevalence of past smokers in the 

treatment group (28/74) compared to the placebo group (9/48). In conclusion, the 

baseline characteristics of our placebo group and B. longum APC1472 group are 

mostly the same. 

Physical activity and food intake patterns were also assessed, using self-report 

questionnaires, throughout the study (Table S2, S3). No differences in physical 

activity levels or calorie, macro- and micronutrient intake were observed over the 

12-week treatment period or between the placebo and B. longum APC1472 group. 

6.2.4.4.1 Adverse Events 
There were seven adverse events (6 placebo participants and 1 treatment 

participant) that were possibly related to the investigational product. The adverse 

event of the treatment participant was constipation. The remaining 6 adverse events 

were; gastro-intestinal discomfort and increased appetite; bloating; increased 
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flatulence; aches in joints and increased temperature; rash on knees, elbows, scalp 

and red blotches on chest & upper arm.  

Table 1. Baseline characteristics of subjects in the placebo and treatment arms at visit 

1 (screening visit). Abbreviations: BMI = Body-mass index; W/H ratio = waist-to-hip 

ratio.  
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Variable 
Placebo 

(n = 48, mean ± STD) 

B. longum APC1472 

(n = 74,  mean ± STD) 

Weight (kg) 87.9 ± 1.7 89.0 ± 1.3 

BMI 31.2 ± 0.3 30.8 ± 0.2 

W/H ratio 0.95 ± 0.01 0.96 ± 0.01 

Age (years) 46.3 ± 9.9 44.9 ± 11.4 

Height (m) 1.67 ± 0.10 1.70 ± 0.09 

Sex (no. of subject (%)) 

Male 19 (39.6 %) 34 (45.9 %) 

Female 29 (60.4 %) 40 (54.1 %) 

Race or ethnicity (no. of subject (%)) 

Caucasian 48 (100 %) 73 (98.6 %) 

Arabic 0 (0 %) 1 (1.4 %) 

Socioeconomic status (no. of subject (%)) 

Non-manual 15 (31.3 %) 21 (28.4 %) 

Lower Professional 14 (29.2 %) 19 (25.7 %) 

Manual skilled 4 (8.3 %) 8 (10.8 %) 

Semi-skilled 4 (8.3 %) 8 (10.8 %) 

Employers and managers 4 (8.3 %) 2 (2.7 %) 

Own account workers 3 (6.3 %) 7 (9.5 %) 

Higher Professional 3 (6.3 %) 5 (6.8 %) 

All others gainfully occupied and 

unknown 
1 (2.1 %) 2 (2.7 %) 

Farmer 0 (0 %) 1 (1.4 %) 

Unskilled 0 (0 %) 1 (1.4 %) 

Smoking status (no. of subject (%)) 

Non-smoker 22 (45.8 %) 40 (54.1 %) 

Past smoker 17 (35.4 %) 28 (37.8 %) 

Current smoker 9 (18.8 %) 6 (8.1 %) 
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6.2.4.5 B. longum APC1472 does not affect BMI and W/H ratio in humans 
The primary outcome of this study was to investigate whether B. longum APC1472 

supplementation could alter BMI, and a secondary outcome of change in W/H ratio 

was included to support the primary outcome. However, no differences were 

observed in BMI and W/H ratio over the 12-week treatment period, or between the 

placebo and B. longum APC1472 treatment groups (Figure 6.2-4). 

 

Alcohol consumption (mean ± SEM) 

Units per week 4.97 ± 0.68 4.31 ± 0.46 

Currently on concomitant medical or nutritional supplements (no. of subject (%)) 

Yes  16 (33.3 %) 36 (48.6 %) 

No 32 (66.7 %) 38 (51.4 %) 

Compliance (% product consumed) 

Week 6 95.8 ± 1.2 97.9 ± 0.8 

Week 12 94.0 ± 2.0 97.2 ± 1.2 
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6.2.4.6 B. longum APC1472 improves fasting glucose levels independent of other 
blood markers of energy metabolism and satiety in humans 
We subsequently measured markers associated with host energy metabolism and 

satiety as part of the secondary and exploratory outcome measures (Figure 6.2-5 and 

Table S4 for full statistical results). Here we observed that both the B. longum 

APC1472 and the placebo arm reduced fasting glucose levels over the 12-week 

treatment period (Figure 6.2-5A). However, glucose levels were 0.266 mmol/L (95% 

CI [-0.44, -0.09]) lower in the B. longum APC1472 group compared with the placebo 

group (F(1,112) = 9.073, p = 0.003) (Figure 6.2-5B). The effect size of the B. longum 

APC1472-induced decrease was moderate (η2 = 0.075). We also observed that HbA1c 

levels decreased over the 12-week treatment period in both the placebo group 

(t(62.372) = 4.277, p < 0.001) and B. longum APC1472 treatment group (t(85.983) = 

5.787, p < 0.001) (Figure 6.2-5C). However, there were no differences between the 

groups, indicating that the decrease in HbA1c levels is most likely explained by the 

12-week treatment period or placebo effect. No changes were observed in other 

biomarkers of host metabolism such as insulin, C-peptide, ghrelin (active and total), 

Figure 6.2-4. B. longum APC1472 supplementation does not impact BMI and W/H ratio in overweight and 
obese individuals. Body mass index (BMI) (A, B) and waist-to-hip ratio (W/H ratio) (C, D) were measured as 
the beginning of the study (pre), after 6 weeks (mid) and after 12 weeks (post) of treatment. All BMI and W/H 
ratio data are depicted of all 3 timepoints (A, C), as well as the change after 12 weeks compared to at the 
beginning of the study (B, D). Data are depicted as boxplot or scatter dot plot, where the dots depict individual 
datapoints. N = 48 for the placebo group and n = 74 for the B. longum APC1472 treatment group. 
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GLP-1 (active and total), PYY and leptin levels (Figure 6.2-5 E-T). 

 

 

6.2.4.7 B. longum APC1472 does not influence human lipid and inflammatory 
profiles in humans 
It is well-known that obesity is associated with metabolic syndrome, hypertension 

and hyperlipidemia (Jarolimova et al., 2013). B. longum APC1472 did not impact lipid 

Figure 7.5-5. B. longum APC1472 supplementation reduces fasting blood glucose levels in overweight and 
obese individuals. Markers associated with host metabolism and satiety were measured as the beginning of 
the study (pre), after 6 weeks (mid) and after 12 weeks (post) of treatment. All data are depicted of all 3 
timepoints (A, C, E, G, I, K, M, O, Q, R), as well as the change after 12 weeks compared to at the beginning 
of the study (B, D, F, H, J, L, N, P, R, T). Data are depicted as boxplot or scatter dot plot, where the dots 
depict individual datapoints. N = 48 for the placebo group and n = 74 for the B. longum APC1472 treatment 
group. * indicates a significant effect (*p<0.05, **p<0.01, ***p<0.001) 
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profiles (i.e. cholesterol, triglycerides and LDL), and inflammatory profiles (i.e. IL-10, 

TNF-α and IFNγ) compared to the placebo group (Table 2). In addition, vital signs 

remained unaltered throughout the study (Table S5). These results reveal that B. 

longum APC1472 did not evoke any negative effects on vital signs or induced any 

inflammation. Interestingly, even though no significant changes were observed in 

HDL levels over the 12-week treatment period, a small increase in HDL levels was 

observed in the B. longum APC1472 group (F(1,117) = 3.260, p = 0.074). The effect-

size of the increase in HDL levels was small (η2 = 0.027).  

6.2.4.8 B. longum APC1472 does not affect satiety, mood, perceived stress and 
cortisol awakening response in humans 
Considering that the gut microbiota has been implicated in the modulation of host 

mood and food intake behaviour (van de Wouw et al., 2017; Lach et al., 2018), we 

investigated whether B. longum APC1472 could improve levels of the stress hormone 

cortisol upon waking (i.e. cortisol awakening response), or self-reported measures of 

satiety, and self-reported measures of mood (i.e. perceived stress, anxiety and 

depression) (Table 3). B. longum APC1472 did not impact cortisol awakening 

response, or self-reported satiety, perceived stress, anxiety and depression 

measures. 

6.2.4.9 B. longum APC1472 improves fasting glucose levels, active ghrelin and 
cortisol awakening response in obese individuals 
Participants in this study were either overweight (n = 40; 28 ≥ BMI < 30) or obese (n 

= 82; 30 ≥ BMI < 35). It is possible that B. longum APC1472 could evoke a stronger 

effect in obese individuals as they have a stronger phenotype compared to 

overweight individuals. As such, we investigated whether any of the 

anthropomorphic measures, blood biomarkers and measures of mood were affected 

by B. longum APC1472 in the obese subpopulation only compared to placebo (Figure 

6.2-6 and Table S7-11 for population characteristics and full statistical results). 

Similar to the analysis on the entire study population, B. longum APC1472 and 

placebo reduced fasting glucose levels over the 12-week treatment period (Figure 

6.2-6A). However, glucose levels were 0.295 mmol/L (95% CI [-0.5, -0.1]) lower in the 

B. longum APC1472 group compared to the placebo group (F(1,75) = 7.566, p = 
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0.007), with a moderate effect size (η2 = 0.092) (Figure 6.2-6B). Furthermore, B. 

longum APC1472 increased active ghrelin levels (F(1,74) = 4.903, p = 0.030), with a 

moderate effect size (η2 = 0.062). B. longum APC1472 also reduced cortisol 

awakening response (F(1,51) = 4.415, p = 0.041), with a moderate effect size (η2 = 

0.080).  

Overall, these results show beneficial effects of B. longum APC1472 on fasting plasma 

glucose levels, active ghrelin levels and cortisol awakening response in obese 

individuals. It is also important to note that the effect size in the obese subpopulation 

(η2 = 0.092) was bigger than the effect size in the overall study population (η2 = 

0.075). This indicates that B. longum APC1472 has a more robust beneficial effect on 

fasting glucose levels in obese, rather than in overweight, individuals. 
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Figure 6.2-6. B. longum APC1472 supplementation reduces fasting blood glucose levels and cortisol 
awakening response and increase active ghrelin in obese individuals. Fasting glucose and active ghrelin 
levels were measured at the beginning of the study (pre), after 6 weeks (mid) and after 12 weeks (post) of 
treatment. Cortisol awakening response was only assesed at the beginning of the stduy. All data are depicted 
of all 3 timepoints (A, C, E), as well as the change after 12 weeks compared to at the beginning of the study 
(B, D, F). Data are depicted as boxplot or scatter dot plot, where the dots depict individual datapoints. N = 
36 for the placebo group and n = 46 for the B. longum APC1472 treatment group. * indicates a significant 
effect (*p<0.05, **p<0.01) 
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6.2.4.10 B. longum APC1472 does not induce major rearrangements on the 
microbiota composition but increases the abundance of Bifidobacterium  
We subsequently investigated whether the observed changes induced by the B. 

longum APC1472 strain were mediated in part through modulation of the gut 

microbiota. Investigations into the cecal microbiota in the preclinical experiment 

revealed that there was a significant dissimilarity in beta diversity between LFD- and 

HFD-fed mice (p < 0.01) (Figure S5A), with a decreased relative abundances of 

Bacteroidetes phylum and increased relative abundances of Firmicutes class 

Clostridia, respectively (Figure S5B), which is in line with previous studies (Nadal et 

al., 2009; Clarke et al., 2012). Different phylotypes were responsible for the cecal 

microbiota differences among the treatment groups (Figure S5C), showing 

increments on different Firmicutes members in HFD-fed mice treated with B. longum 

APC1472. Moreover, B. longum APC1472 partially ameliorated the HFD-induced 

decrease in Bifidobacteriaceae relative abundance (p = 0.054, adjusted p = 0.170) 

(Figure S5D).  

Analysis of the faecal microbiota in the human intervention study revealed that B. 

longum APC1472 did not impact the alpha diversity indices (Shannon, Simpson and 

Chao1, Figure 6.2-7A-C). Furthermore, the overall composition of the microbiota 

remained unaffected as determined by the PCA analysis of the beta diversity (Figure 

6.2-7D). B. longum APC1472 did increase Bifidobacterium relative abundance over 

the 12-week intervention period (t(57) = -2.891, p = 0.005), which was not observed 

in the placebo group (Figure 6.2-7E). This resulted in a higher Bifidobacterium 

abundance in the treatment group compared to the placebo group post-intervention 

(F(3, 89) = 5.922, p = 0.017) (Figure 6.2-7F). Similar results were observed in the 

obese subpopulation (Figure S6). 
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Short-chain fatty acids (SCFAs) are potentially one of the most investigated gut 

microbiota-derived metabolites implicated in host energy metabolism and obesity 

symptomatology (Torres-Fuentes et al., 2017; van de Wouw et al., 2017). Analysis of 

faecal SCFA levels in human samples revealed no differences in levels of acetate, 

propionate, butyrate and valerate (Table S6). Furthermore, isobutyrate and 

isovalerate levels remained unaffected (Table S6).  

6.2.5 Discussion  

There has been an increased emphasis on gut microbiota-targeted therapeutics for 

the amelioration of obesity (Torres-Fuentes et al., 2014; Cani et al., 2019; Muscogiuri 

et al., 2019; Sivamaruthi et al., 2019). For example, recent studies have identified 

several probiotic strains with different anti-obesity effects, including members of the 

genus Bifidobacterium (Jung et al., 2013; Rajkumar et al., 2014; Torres-Fuentes et al., 

Figure 6.2-7. B. longum APC1472 increases Bifidobacterium abundance without impacting the overall 
composition of the gut microbiota in humans. The gut microbiota was assesed at the beginning (pre) and 
end of the study (12 weeks, past). Alpha (A-C) and beta diversity (D) were investigated, as wel as the bacterial 
genera present (E-F). Microbial taxa were centre-log-transformed (CLR). Significant differences between pre 
and post were anlysed using the Mann-Whitney U test, whereas treatment differences were analysed using an 
ANCOVA controlling for sex and pre-intervention Bifidobacterium abundance. Data are depicted as boxplot 
or scatter dot plot, where the dots depict individual datapoints. N = 48 for the placebo group and n = 74 for 
the B. longum APC1472 treatment group. * indicates a significant effect (*p<0.05, **p<0.01).  
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2014; Zarrati et al., 2014; Stenman et al., 2016; Sabico et al., 2017; Kim et al., 2018; 

Hibberd et al., 2019), but the exact mechanisms of action are still lacking. In the 

present study, we demonstrate that a novel isolated B. longum APC1472 strain, 

which was previously shown to attenuate ghrelinergic signalling (Torres-Fuentes et 

al., 2019), reduces body weight gain, fat depot size, glucose tolerance and leptin 

levels in a preclinical mouse model of HFD-induced obesity. Furthermore, when the 

B. longum APC1472 strain was investigated in a human cohort of healthy overweight 

and obese individuals a reduced fasting blood glucose level was observed. 

Noteworthy, stratification and analysis of the obese human subpopulation revealed 

that B. longum APC1472 was able to normalize active ghrelin levels and the cortisol 

awakening response, which are both dysregulated in obesity (Tschop et al., 2001; 

Yildiz et al., 2004; Cummings, 2006; Wester et al., 2014; Zigman et al., 2016; Jackson 

et al., 2017). This highlights the translational value of this novel Bifidobacterium 

longum species, B. longum APC1472, from a preclinical mouse model to a human 

intervention study where this probiotic positively impacts markers of obesity, which 

may be linked to the ghrelinergic effects previously demonstrated (Torres-Fuentes et 

al., 2019). Specifically, we found that in the preclinical mouse model of obesity, the 

supplementation with B. longum APC1472 significantly reduced fat depots and body 

weight gain in HFD-fed mice independent of energy intake. Furthermore, B. longum 

APC1472 significantly reduced circulating leptin levels in HFD-fed mice, which is in 

line with the reduction in fat depot size as leptin is released into the bloodstream in 

proportion to body fat mass (Friedman and Halaas, 1998). Notably, circulating levels 

of leptin were increased in HFD-fed mice compared to LFD-fed mice with no 

alterations in leptin receptor hypothalamic expression, suggesting no alterations in 

leptin sensitivity, as has been previously reported in obesity (Cui et al., 2017). No 

changes were observed in the hypothalamic expression of the orexigenic peptides 

NPY and AgRP following B. longum APC1472 supplementation in mice. Both NPY and 

AgRP are orexigenic peptides that increase food intake when overexpressed or when 

administered centrally (Ilnytska and Argyropoulos, 2008; Zhang et al., 2014) and HFD-

fed mice demonstrate, as expected, a decrease in both of these orexigenic peptides. 

In contrast, increased hypothalamic expression of anorexigenic peptides such as 

POMC and CART in response to a high-fat diet has been suggested as a natural 
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feedback mechanism in order to maintain energy balance and body weight 

homeostasis (Bergen et al., 1999; Tian et al., 2004). The B. longum APC1472 was able 

to normalize the increased hypothalamic expression of the anorexigenic peptide 

CART in HFD-fed mice, suggesting a lower degree of energy imbalance and, therefore, 

a potential reduced metabolic dysfunction compared to HFD-fed mice. Moreover, 

CART is regulated by leptin and its expression is positively correlated with leptin 

levels (Wortley et al., 2004). Therefore, the decreased leptin levels observed in the 

B. longum APC1472-HFD group also support the observed decreased CART 

expression. This highlights the potential of B. longum APC1472 to modulate 

hypothalamic gene expression involved in energy homeostasis and appetite 

regulation, which warrants further investigation. 

In the human intervention study, no differences were observed in the primary 

outcome of BMI, even though the B. longum APC1472 supplementation was able to 

reduce body weight gain in HFD-induced obese mice. Similarly, no differences were 

observed in the supportive secondary outcome W/H ratio. This discrepancy might be 

explained by the fact that the majority of the human intervention cohort was non-

diabetic, whereas the HFD-induced obese mice had a decreased glucose tolerance, 

implying that host glucose metabolism may have been the main factor driving the 

reduction in body weight gain in the obese mice. It must also be noted that the 

treatment duration of the preclinical study was longer and, therefore, a longer 

treatment period in the human intervention study, or a higher treatment dosage, 

could have resulted in more significant differences and bigger effect-sizes. The 12-

week duration of the human study may have been too short of a time to see 

significant changes in BMI and W/H ration. Age has also been shown to affect body 

fat distribution and metabolism increasing both the risk and the severity of obesity 

development (Jura and Kozak, 2016). Therefore, some of the discrepancies and lack 

of translation between the mice study and humans could be explained by the 

relatively low age of the mice (adolescence to adulthood) versus the human cohort 

with an average age at midlife. A low age may facilitate a better response to changes 

in metabolic and physiologic responses and therefore a higher capacity to positively 

respond to therapeutic interventions. Moreover, the administration strategies were 
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differences between both studies. The mouse study followed a prevention strategy 

as B. longum APC1472 was administered before obesity was established, while in the 

human study the participants were already obese at the time of administration and, 

therefore, presented a more severe condition to ameliorate. 

Most notably, the B. longum APC1472 supplementation significantly improved 

glucose tolerance in HFD-induced obese mice. Similarly, B. longum APC1472 

decreased fasting blood glucose levels in overweight/obese individuals (-0.266 

mmol/L compared to placebo). It is important to note that the participants in this 

study had average fasting blood glucose levels of 5.0 mmol/L, which is considered 

healthy and non-diabetic (n = 11 were prediabetic). Above 5.6 mmol/L is considered 

prediabetic, whereas above 6.9 is considered diabetic (Emerging Risk Factors et al., 

2010; Chatterjee et al., 2017). The data indicate that B. longum APC1472 may have a 

bigger effect-size on fasting blood glucose levels in a prediabetic or diabetic 

population, which warrants further investigations. This is further reinforced by the 

obese subpopulation analysis of the obese individuals, rather than overweight and 

obese combined, which revealed a fasting blood glucose level (-0.295 mmol/L 

compared to placebo), which constitutes a bigger effect-size in fasting blood glucose 

levels (η2 = 0.092 vs 0.075), indicating a more potent treatment efficacy in obese 

individuals. This warrants further investigation into the effect of B. longum APC1472 

in a cohort of prediabetic or diabetic individuals. 

The underlying mechanisms for the decreased fasting blood glucose levels may be 

associated with the changes in ghrelinergic signalling, as B. longum APC1472 was 

found to attenuate ghrelinergic signalling in vitro (Torres-Fuentes et al., 2019) and 

ghrelin has been shown to be involved in glucose homeostasis via inhibition of insulin 

secretion (Ahima, 2006). Moreover, insulin receptor substrate 1 (IRS-1) has been 

reported to play a key role in glucose homeostasis being involved in glucose 

transporter 4 (GLUT-4) mobilization (Dong et al., 2006; Wang et al., 2009). Low IRS-1 

expression levels have been associated with glucose and insulin sensitivity 

impairments (Dong et al., 2006; Wang et al., 2009). Therefore, increased IRS-1 

expression in epididymal fat tissue of B. longum APC1472 treated mice may have also 

influenced glucose homeostasis. Nevertheless, glucose metabolism is multifactorial 
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and other mechanisms are likely also affected following the supplementation of the 

B. longum APC1472. However, while the biggest effect-size was observed on plasma 

glucose levels in both the preclinical and human intervention studies, it is also 

possible that the other observed effects are secondary to the decrease in plasma 

glucose levels. 

Notably, obesity is associated with decreased circulating levels of ghrelin (Tschop et 

al., 2001; Yildiz et al., 2004), which we also observed in the HFD-fed mice and the 

reason why the ghrelinergic system has been implicated as a promising therapeutic 

target to combat obesity (Schellekens et al., 2013; Howick et al., 2017). Indeed, the 

“hunger hormone” ghrelin was first described as a growth hormone secretagogue, 

but its key role in the regulation of appetite, food intake, adiposity and metabolism 

have directed the main therapeutic focus of ghrelin and its receptor towards obesity 

research with promising anti-obesity potential (Tschop et al., 2000; Wren et al., 2001; 

Horvath et al., 2003; Schellekens et al., 2012; Collden et al., 2017; Cui et al., 2017; 

Howick et al., 2017). Interestingly, B. longum APC1472 supplementation increased 

levels of active ghrelin, but not total ghrelin levels, in healthy obese individuals. The 

increase in active ghrelin may indicate an amelioration of the deficiencies in 

ghrelinergic signalling associated with obesity. It is also interesting to note that B. 

longum APC1472 was selected on its ability to modulate the ghrelinergic system in 

vitro (Torres-Fuentes et al., 2019). Future studies are warranted to investigate if 

administration of other bacterial strains and their metabolites, including SCFAs, 

which equally showed the ability to modulate ghrelin signaling in vitro (Torres-

Fuentes et al., 2019), have similar effects in obese individuals.  

Furthermore, our data reveal that B. longum APC1472 decreased fasting 

corticosterone levels in HFD-induced obese mice, indicating the downregulation of 

the hypothalamic-pituitary-adrenal (HPA) axis. In line with these results, B. longum 

APC1472 reduced cortisol awakening responses in obese individuals. Dysregulation 

of the HPA axis, which is colloquially seen as the “body’s stress system”, is a risk factor 

for obesity-related conditions such as cardiovascular disease, insulin resistance and 

type 2 diabetes (Incollingo Rodriguez et al., 2015). Hence, the stress hormone cortisol 

(corticosterone in rodents), which is central in the HPA axis, has been shown to 
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promote the accumulation of fat cells and weight gain (Incollingo Rodriguez et al., 

2015) and to regulate the function of pancreatic α and β cells affecting glucagon and 

insulin secretion (Kuo et al., 2015). As such, even though no changes were observed 

in insulin, the changes in cortisol awakening responses could indicate that the HPA 

axis has contributed to the B. longum APC1472-induced decrease in fasting blood 

glucose. Furthermore, the HPA axis is also affected by ghrelin, indicating that the 

observed changes in ghrelin could have also contributed to the changes in cortisol 

(Bali and Jaggi, 2016).  

Finally, we investigated the effects of B. longum APC1472 treatment on gut 

microbiota composition. Overall, B. longum APC1472 treatment did not have a major 

impact on microbiota composition other than the partial restoration of 

Bifidobacterium levels in HFD-fed mice. These findings are in line with the effects of 

B. longum APC1472 on healthy human overweight and obese individuals and with 

other investigations on obesity using different probiotics strains, where major 

rearrangements on microbiota composition were also not observed (Depommier et 

al., 2019; Everard et al., 2019). 

Of note, while the modulation of ghrelin receptor signalling by B. longum APC1472 

strain may have contributed to an improved metabolic profile, we cannot rule out 

other beneficial anti-obesity effects. As such, future studies are warranted further 

investigating the mechanisms and metabolites through which B. longum APC1472 

modulates host glucose homeostasis, with a focus on the ghrelinergic system.  

In conclusion, we have demonstrated positive anti-obesity effects of a novel B. 

longum APC1472 in HFD-induced obese mice and a partial translation of these 

positive effects of B. longum APC1472 supplementation in otherwise healthy 

overweight and obese individuals. In particular, we show the promising potential of 

B. longum APC1472 to be developed as a valuable supplement in reducing specific 

markers of obesity, possibly via the ghrelinergic system. Most notably, the decrease 

in fasting plasma glucose induced by B. longum APC1472 may have clinically 

significant health indications for prediabetic and type 2 diabetes mellitus populations 

in particular.   
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6.3.1 Abstract:  

6.3.1.1 Introduction:  
The gut microbiota plays a role in gut-brain communication and can influence 

psychological functioning. Diet is one of the major determinants of gut microbiota 

composition.  The impact of unpasteurized dairy products on the microbiota is 

unknown. In this observational study, we investigated the effect of a dietary change 

involving intake of unpasteurized dairy on gut microbiome composition and 

psychological status in participants undertaking a residential 12-week cookery course 

on an organic farm.  

6.3.1.2 Methods:  
Twenty-four participants completed the study. The majority of food consumed 

during their stay originated from the organic farm itself and included unpasteurized 

milk and dairy products. At the beginning and end of the course, participants 

provided faecal samples and completed self-report questionnaires on a variety of 

parameters including mood, anxiety and sleep. Nutrient intake was monitored with 

a food frequency questionnaire. Gut microbiota analysis with performed with 16S 

rRNA gene sequencing. Additionally, faecal short chain fatty acids (SCFAs) were 

measured.  

6.3.1.3 Results:  
Relative abundance of the genus Lactobacillus increased significantly between pre- 

and post-course time points. This increase was associated with participants intake of 

unpasteurized milk and dairy products. An increase in the faecal SCFA, valerate was 

observed along with an increase in the functional richness of the microbiome profile, 

as determined by measuring the predictive neuroactive potential using a gut-brain 

module approach.  

6.3.1.4 Conclusions:  
While concerns in relation to safety need to be considered, intake of unpasteurized 

milk and dairy products appear to be associated with the growth of the probiotic 

bacterial genus, Lactobacillus in the human gut. More research is needed on the 
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effect of dietary changes on gut microbiome composition, in particular in relation to 

the promotion of bacterial genera such as Lactobacillus, which are recognized as 

being beneficial for a range of physical and mental health outcomes. 

 

6.3.2 Introduction 

A growing body of evidence over the past decade has demonstrated the importance 

of the gut microbiome in all aspects of physical and mental health. While it is still 

unclear what exactly constitutes a ‘healthy’ gut microbiome, certain bacterial groups 

have been strongly associated with better health outcomes. Lactobacillus is one of 

the foremost genera considered to have probiotic properties (Di Cerbo et al., 2016). 

A probiotic is defined as a live microorganism which, when administered in adequate 

amounts, confers a health benefit on the host (Hill et al., 2014). The word 

‘psychobiotic’ is an expansion of this term and describes an organism which has been 

proven to be beneficial in relation to psychological functioning (Dinan et al., 2013). 

There have been a wide variety of studies undertaken in recent years which have 

demonstrated the benefit of a Lactobacillus probiotic, both mono- and multi-strain, 

for improving a range of health outcomes including obesity (John et al., 2018), 

diabetes (Hsieh et al., 2018), liver disease (Wong et al., 2013), cardiovascular disease 

(DiRienzo, 2014), gastrointestinal conditions (Wilkins and Sequoia, 2017) and 

neuropsychiatric disorders such as depression, anxiety and autism (Butler et al., 

2019). 

A key present-day challenge involves identifying the most effective ways of 

maintaining a healthy gut microbiome and promoting the growth of probiotic 

bacteria. While commercial probiotic products are widely available, there are 

concerns in relation to regulation, quality control, efficacy and cost (Kolacek et al., 

2017). Dietary intake is one of the main factors regulating gut microbiome 

composition and food-based interventions can be tailored to each individual to 

modify their bacterial profile (Johnson et al., 2019). While unravelling the diet-

microbiome relationship is a formidable task given the many confounding factors, 

attempts to do so have been made over the past decade. Gut microbiome profile has 
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been shown to be distinctly different in those living in rural areas with a traditional 

diet in comparison to urban-based westernized populations (De Filippo et al., 2010; 

Yatsunenko et al., 2012; Clemente et al., 2015). Even when one accounts for 

contributions of human genetic and geographical factors between populations, 

subsistence methods and diet significantly impact gut microbiota composition (Jha 

et al., 2018). It is hypothesized that a ‘microbiota insufficiency syndrome’ has 

resulted from modern lifestyle with its highly processed diets, overuse of antibiotics 

and increased sanitation and that the ‘industrialized’ microbiota may be a major 

contributing factor in the rise of many non-communicable chronic diseases in 

westernized societies (Sonnenburg and Sonnenburg, 2019). Even as one moves from 

looking at the early ancestral microbiota to more recent times, significant changes in 

lifestyle have continued until relatively recently. Ireland, as with many countries in 

the developed world, was a predominantly agrarian society up until the mid-late 20th 

century. In 1966, over 30% of the workforce were employed in agriculture with this 

figure estimated at less than 5% in 2016 (Office, 2016). Consumption of 

unpasteurized milk was a common part of the diet of those living on farms and 

epidemiological studies suggest that it may have played a protective role against the 

development of allergies and atopic diseases (Braun-Fahrlander and von Mutius, 

2011).  

Despite food safety concerns, the consumption of unpasteurized milk appears to be 

growing in popularity (Buzby et al., 2013; Fagnani et al., 2019). To our knowledge, 

there are no studies exploring the impact of unpasteurized milk intake on the gut 

microbiome. In this observational study, we investigated the effect of a dietary 

change involving the intake of unpasteurized milk on gut microbiota composition, 

metabolites and psychological status in 24 participants undertaking a residential, 

farm-based, 12-week cookery course. Our centre had previously published a study 

(Quigley et al., 2013) on the microbiota composition of unpasteurised milk taken 

from Irish cows which would thus be representative of the expected microbiota 

composition of the raw milk that would be consumed by participants in our study. 

Given the reported high proportion of viable probiotic bacteria such as Lactobacillus 

(and other lactic acid bacteria including Lactococcus and Leuconostoc), along with 
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the fact that Lactobacillus are considered intrinsically resistant to gastric acid 

(Tannock, 2004), we hypothesized that a dietary change involving raw milk 

consumption would alter the gut microbiome of participants with a potential 

differential increase in the relative abundance of these probiotic bacterial groups. 

6.3.3 Results 

6.3.3.1 Participant characteristics 
A total of 62 participants who were completing the 12-week course between May-

July 2018 were informed about the study. Twenty-eight participants volunteered and 

underwent screening. Two were excluded; one had a chronic gastrointestinal 

disorder and another had taken antibiotics in the previous month. Twenty-six 

participants were enrolled with 24 (13 females, 11 males) completing the study; 2 

failed to provide faecal samples. Of note, subject metadata and faecal samples were 

collected within the first three days of the course and again at week 11. The final 

week of the course (week 12) involved several examinations for students and thus, 

the associated increased stress during this week may have had the potential to 

influence findings. Our study sample comprised 24 participants; 13 females and 11 

males. Baseline characteristics of participants, including age, body mass index (BMI), 

smoking status, sleep quality and exercise levels are shown in Table 1.  

  

Table 1: Baseline Characteristics of participants 

 

  Pre-course Post-course P-value 

Number of participants 24   

Female; n (%) 13 (54%)   

Mean age; n (range) 30.25 (18-59)   

Smoking status; n (%) 7 (29)  
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BMI (kg/m) 24.87 (3.42) 

 

25.33 (3.61) 

 

0.1 

Physical activity (as 

measured by IPAQ score) 4757.52 (4614.74) 

 

3271.52 (7280.05) 

 

0.32 

Sleep quality (as measured 

by PSQI) 5.36 (2.87) 

 

4.95 (2.91) 

 

0.25 

Bristol stool scale score 3.78 (1.085) 

 

4.04 (0.706) 

 

0.39 

GI-Visual Analogue Scale; 

Satisfaction with bowel habit 

38.37 (33.757) 

 

27.29 (27.98) 

 

0.25 

 (BMI: Body Mass Index, IPAQ: International Physical Activity Questionnaire; PSQI: 

Pittsburgh Sleep Quality Index) 

6.3.3.2 Changes in diet 
Based on food frequency questionnaire (FFQ) analysis (Tables 2 and 3), there was no 

change in total calorie intake during the course. In terms of macronutrient intake, 

protein and carbohydrate intake remained unchanged and though total fat 

consumption increased, this change did not reach statistical significance (mean 

increase (g) from 94±35 to 128±66, p=0.08). With regards to micronutrients, Vitamin 

A (µg) intake increased significantly (715±577 to 1505±975, p=0.005)   as did Vitamin 

B12 (µg) (7.8±3.6 to 11±5.8, p=0.04). Although intake of fruit reduced slightly 

(2.02±1.2 to 1.38±0.84, p=0.04) consumption of vegetables and wholegrains did not 

change, nor did intake of alcohol or unhealthy foods such as sweets or snacks. 

 

 

Table 2: Changes in dietary components between pre-course and post-course time 

points, obtained from analysis of food frequency questionnaires. (P-values reaching 

statistical significance are in bold and accompanied by an asterix) 
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Nutrient 
Recommended daily 

intake* 
Pre-course 

Post-

course 

p-

value 

Kilocalories 

2,000 – 2,400 (males; 

depending on activity 

level) 

2264±1006 
2723±149

4 
0.47 

Protein (g) 10-35% of total energy 
97±40 

(17%) 

109±57 

(16%) 
0.54 

Fat (g) 20-35% of total calories 
94±35 

(37%) 

128±66 

(42%) 
0.08 

Carbohydrate (g) 45-65% of total calories 
246±158 

(43%) 

275±178 

(40%) 
0.77 

Alcohol (ml) 

21 standard drinks (1/2 

pint of beer, small glass 

of wine, one measure of 

spirits) 

15±13 14±13 0.98 

Monounsaturat

ed fatty acids (g) 
>12% of total energy 

38±17 

(15%) 

51±27 

(17%) 
0.13 

Polyunsaturated 

fatty acids (g) 
>6% of total energy 

16±7 

(6%) 

22±13 

(7%) 
0.20 

Saturated fatty 

acids (g) 
<10% of total energy 

34±13 

(14%) 

49±25 

(16%) 
0.04* 

Cholesterol (mg) 300 mg 381±173 469±236 0.13 

Total sugar (g) <10% of total energy 
115±67 

(20%) 

125±76 

(18%) 
0.81 
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Starch (g)  128±96 147±104 0.62 

Fibre (g) >25g 19±15 20±15 0.88 

Vitamin A (µg) 800 µg 715±577 1505±975 
0.005

* 

Thiamine (mg) 1.1 mg 1.8±1.2 1.9±1.2 0.87 

Riboflavin (mg) 1.4 mg 2.3±1.5 2.6±1.7 0.45 

Niacin (mg) 16 mg 27±15 29±19 1.00 

Vitamin B6 (mg) 1.4 mg 3.1±3.0 2.9±1.9 0.81 

Vitamin B12 (µg) 2.5 µg 7.8±3.6 11±5.8 0.04* 

Folate (µg) 200 µg 339±284 328±236 0.58 

Vitamin C (mg) 80 mg 104±60 79±41 0.16 

Vitamin D (µg) 5 µg 3.6±2.3 5.1±3.5 0.09 

Vitamin E (mg) 12 mg 14±7 16.6±9.7 0.41 

Phosphorous 

(mg) 
700 mg 1612±763 1787±942 0.64 

Calcium (mg) 1000 mg 914±387 1062±548 0.34 

Iron (mg) 7 mg 15±11 16±11 0.81 

Selenium (µg) 55 µg 67±30 79±43 0.49 

Zinc (mg) 10 mg 12±6 13±7 0.58 

Sodium (mg) 1600 mg 2983±1559 
3385±196

4 
0.59 

Potassium (mg) 2000 mg 3798±1603 
4015±195

8 
0.85 

Magnesium (mg) 375 mg 359±200 343±189 0.67 
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Copper (mg) 1 mg 1.2±0.6 1.5±0.8 0.31 

Chloride (mg) 800 mg 4407±2407 
4885±288

6 
0.64 

Manganese (mg) 2 mg 3.1±1.5 3.2±1.8 0.85 

Iodine (µg) 15 µg 169±76 201±100 0.28 

 

Table 3: Change in food group intake between pre-course and post-course time 

points, obtained from analysis of food frequency questionnaires. (P-values reaching 

statistical significance are in bold and accompanied by an asterix) 

Food Group Pre-course Post-course P-value 

Red meats 0.62±0.35 0.85±0.56 0.07 

Processed meats 0.58±0.77 0.33±0.27 0.08 

Poultry 0.31±0.26 0.25±0.22 0.73 

Organ meats 0.04±0.07 0.11±0.09 0.01* 

Fish 0.55±0.43 0.68±0.49 0.04* 

Fried foods 0.21±0.14 0.30±0.16 0.03* 

Refined 

carbohydrates 

0.84±0.56 1.28±1.17 0.26 

Whole grains 0.66±0.41 0.95±0.75 0.29 

Cereal 0.69±1.45 0.47±0.55 0.76 

Potatoes 0.34±0.26 0.49±0.34 0.06 

Pasta meals 0.42±0.31 0.34±0.25 0.66 

High-fat dairy 

products 

2.03±1.15 3.59±3.07 0.09 
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Low-fat dairy 

products 

0.21±0.27 0.36±0.28 0.02* 

Egg dishes 0.61±0.49 0.43±0.29 0.34 

Fruit 2.02±1.2 1.38±0.84 0.04* 

Green leafy 

vegetables 

0.77±0.42 1.25±1.03 0.11 

Cruciferous 

vegetables 

0.68±0.61 0.44±0.32 0.34 

Starchy vegetables  0.42±0.56 0.37±0.24 0.16 

Other vegetables 3.98±2.17 3.72±2.03 0.66 

Legumes 0.30±0.24 0.22±0.25 0.10 

Sweets 1.77±1.29 2.45±2.00 0.31 

Snacks 0.48±1.00 0.37±0.66 0.40 

Soups  1.15±1.24 1.11±1.17 0.48 

Sauces 0.19±0.17 0.27±0.28 0.31 

Condiments 2.68±1.65 3.17±2.12 0.58 

Non-alcoholic 

beverages 

2.39±1.71 1.99±1.42 0.45 

Alcoholic beverages 1.43±1.21 1.42±1.29 0.91 

Fruit Juice 0.42±0.71 0.39±0.53 0.50 

Sweetened 

beverages 

0.81±1.03 0.78±0.74 0.56 

 

Participants intake of milk and dairy products are summarised in Table 4. In relation 

to participants overall intake of milk, this did not change during the course (mean 
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increase from 177mls±120 to 192mls±134, p=0.60).  However, a switch to 

unpasteurised milk was evident for most participants. Only one of 24 (4%) 

participants reported consuming unpasteurised milk prior to commencing the 

residential course while 23 participants (96%) reported its consumption during the 

course (mean increase from 23±116mls to 239±51mls, p<0.0001). Pre-course, 3 

participants consumed skimmed milk, 7 semi-skimmed, 11 whole and 3 non-specific 

and post-course only one participant consumed semi-skimmed while the remaining 

participants consumed whole milk, consistent with unpasteurized milk intake. Total 

intake of dairy products (cream, yoghurt, dairy desserts, cheese; salad cream or 

mayonnaise, butter, cottage cheese) did increase slightly though not to a statistically 

significant level (mean increase from 2.24±1.23 daily servings to 3.35±3.16, p=0.07). 

Two participants (8%) reported intake of unpasteurised dairy products prior to the 

course whereas 21 (87.5%) consumed these products during the course (mean 

increase from 0.01±0.04 servings per day to 1.2±1.4, p<0.0001).  

 

Table 4: Change in participants consumption of milk and dairy products between pre-

course and post-course time points, obtained from analysis of food frequency 

questionnaires. (P-values reaching statistical significance are in bold and 

accompanied by an asterix) 

Dairy intake Pre-course Post-course P-value 

Total Milk (mL)  177mls±120 192mls±134 0.6 

High-fat dairy 

products 

(servings/day) 

2.03±1.15 3.59±3.07 0.09 

Low-fat dairy 

products 

(servings/day) 

0.21±0.27 0.36±0.28 0.02* 

Total dairy products 2.24±1.23 3.35±3.16 0.07 
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Unpasteurised milk 

(mL) 
23±116 239±51 <0.0001* 

Unpasteurised 

dairy products 

(servings/day) 

0.01±0.04 1.2±1.4 <0.0001* 

 

6.3.3.3 Change in Microbiome composition 
 

We quantified the microbial diversity within each subject (α-diversity) before and 

after the course, and the difference between each subject’s pre-course and post-

course gut microbiota (β-diversity). No significant differences were found in either α-

diversity (simpson; p = 0.41, shannon; p = 0.26) or β-diversity (p= 0.998) (Figures 6.3-

1A and 6.3-1B). No differences were found between males and females.  

Analysis of the differential relative abundance of bacterial taxonomic groups 

revealed a total of 578 amplicon sequence variants (ASVs) within our samples (Figure 

1D). Undirected pairwise analysis of all ASVs, (Wilcoxon signed rank test, allowing for 

Storey's q-value post-hoc correction) revealed only one ASV which changed 

significantly between pre-course and post-course time points. This ASV 

corresponded to the genus, Lactobacillus which increased significantly 

(p=0.0003728; q = 0.0498) (Figure 6.3-1C). Identification of ASVs at a species level 

was not possible. We subsequently performed a directed search in relation to other 

lactic acid bacteria (LAB), a dominant population in bovine milk prior to 

pasteurization based on what was previously reported in the literature on the subject 

[21]. On the genus level, the relative abundance of Leuconostoc (p=0.09) and 

Enterococcus (p=0.14) did not change but that of Lactococcus increased significantly 

(p=0.01; q = 0.0108). Other major components of unpasteurized milk include 

Pseudomonas and Acinetobacter, We did not detect these genera in any of our 

samples.  
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We directly tested for associations between changes in dietary components and 

changes in microbiome composition within each subject over time. We observed a 

positive correlation between Lactobacillus abundance and combined intake of 

unpasteurized milk and dairy products (Spearman correlation, r=0.618, 

p=0.0000027) Upon closer inspection, Lactobacillus abundance appeared to fall into 

two groups based on the centred log-ratio (clr) transformation of relative abundance 

scores of >2.5 or <2.5, prompting us to dichotomize the data for Pearson’s Chi-

squared test. We defined these groups as low versus high Lactobacillus abundance 

and found a positive association between these two groups and the change in intake 

of unpasteurized milk and dairy products (combined score), binned into four groups 

based on the amount of portions consumed; 0-2, 3-4, 5-6 and 7-8. (Pearson's Chi-

squared, X-squared = 13.265, df = 3, p-value = 0.004096) (Figure 6.3-2). This 

association also held when looking at the relationship between Lactobacillus 

abundance and unpasteurized milk or unpasteurized dairy products individually. We 

analysed this Lactobacillus grouping against our other metadata (including age, sex, 

BMI, sleep, exercise and gastrointestinal parameters) but found no other factors 

associated with the high versus low split.  
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Figure 6.3-1: A; Relative abundance of Lactobacillus at pre-course and post-course 
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time points. B; Alpha diversity of gut microbiome at pre-course and post-course time 
points. C Beta diversity of gut microbiome at pre-course and post-course time points. 
D; Relative abundance of genus-level taxa for each participant. Each column 
represents one participant with pre-course taxa on the left and post-course taxa on 
the right. (Box plots: Body represents median and interquartile range, whiskers 
represent the extreme values) 

 

 

 

 

Figure 2: Box plots showing the change in combined unpasteurised dairy score and 
Lactobacillus abundance between pre- and post-course time points. (Body represents 
median and interquartile range, whiskers represent the extremevalues; As some 
scores overlap, each participant is not visible as an individual point on the graph)  

  



424 
 

6.3.3.4 Functional Prediction and Application of Gut-Brain Modules 
Functional analysis of our microbiome data was performed using Piphillin (Iwai et al., 

2016) and further extended by subjecting our metagenomic data to a module-based 

analytical framework which targets microbial pathways involved in microbiota-gut-

brain communication, thus generating a predication of the neuroactive potential of 

a microbiome sample (Valles-Colomer et al., 2019). Within our sample, we observed 

43 of the 56 gut-brain modules (GBMs) described previously by the authors. In 

addition, we observed an increase in the functional richness of the microbiome 

profile, as determined by the number of gut-brain modules (GBMs) present 

(Wilcoxon signed rank test; mean increase of 1.79, p=0.00087), following the 12-

week course (Figure 6.3-3A). On analysis of the individual GBMs, one consistently 

increased significantly; GBM026: Nitric oxide synthesis II (nitrite reductase) (p = 

0.001; q = 0.061) (Figure 6.3-3B). Notably, GBM004: Kynurenine synthesis was never 

found in participants pre-course, but was detected in 6 out of 24 participants post-

course at very high levels. This observation did not pass the post-hoc correction (p = 

0.036, q = 0.361) (Figure 6.3-3C). Functional alpha diversity, measured here by 

calculating the alpha diversity of the floored KEGG Orthologue tables generated by 

Piphillin, did not differ between pre- and post-course time points (chao1; p = 0.14, 

simpson; p = 0.19,  shannon; p = 0.85).  

 

Figure 6.3-3: A: Functional richness of microbiome, as measured by observed number 
of gut-brain modules (GBM) at pre-course and post-course time points. B: Increase in 
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abundance of GBM 026: Nitric oxide synthesis II (nitrite reductase) between pre- and 
post-course time points. C: Increase in GBM 004: Kynurenine synthesis between pre- 
and post-course time points. (Box plots: Body represents median and interquartile 
range, whiskers represent the extreme values; As some scores overlap, each 
participant is not visible as an individual point on the graph) 

 

6.3.3.5 Change in microbiome metabolites 
Analysis of faecal short-chain fatty acids (SCFAs) revealed a significant increase in 

Valerate (p=0.04) over the 12 weeks. Propionate also increased, although not to a 

statistically significant level (p=0.08) while no change was observed in butyrate, iso-

butyrate, iso-valerate or acetate. (Table 5) 

 

 

Table 5: Short-chain-fatty-acid (SCFA) concentrations;  

pre- and post-course results 

 

SCFA  

(µmol/g) 

Pre-

course 

Mean 

(SD) 

 

Post-

course 

Mean 

(SD) 

P-

value 

Acetate 27.0 

(8.6) 

29.3 

(10.3) 

0.268 

Propionate 14.0 

(7.0) 

16.3 

(7.6) 

0.091 

Iso-butyrate 2.4 (1.1) 2.6 (0.9) 0.485 

Butyrate 17.6 

(9.6) 

19.0 

(10.8) 

0.156 
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Iso-valerate 3.2 (1.9) 3.4 (1.7) 0.498 

Valerate 2.3 (0.8) 2.5 (0.8) 0.049 

* 

Total BCFA 5.6 (2.9) 6.0 (2.5) 0.44 

Total SCFA 66.6 

(24.7) 

73.1 

(27.7) 

0.113 

Figure 6.3-4: Concentration of Valerate at pre- and post-course time points. (Body 
represents median and interquartile range; whiskers represent the extreme values) 
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6.3.3.6 Change in psychological measures  
 

There was no change in total scores on the Cohen’s Perceived Stress Scale (PSS), 

Hospital Anxiety and Depression Scale (HADS)-total score, HADS-anxiety subscale or 

HADS-depression subscale between pre- and post-course time points. However, 

because our study involved a healthy population, baseline anxiety and stress scores 

were low and mood scores were within the normal range (Table 6). Further analysis 

was considered taking into account baseline scores. The sample was dichotomized 

based on the median score of the above scales. Participants with higher baseline 

scores on the PSS showed a mean reduction of 4.42 points, whereas the rest of the 

participants reported a mean increase of 1 point (Wilcox test, p=0.026) between pre-

course and post course time points. Participants with higher anxiety scores than the 

median on the HADS-A also showed a statistically significant reduction compared to 

the rest of the participants (mean reduction of 2 vs a mean increase of 2, Wilcox test 

p=0.0043). We did not find any relationship between microbes and psychological 

scales. No differences were found between males and females. 

 

Table 6: Results of psychological scales at pre- and post-course time points 

.  

Scale/Mean 

(SD) 

Pre-course Post-Course p-value 

PSS  14.96 (6.23) 13.13 (5.12) 0.149 

HADS-A 5.61 (3.72) 4.83 (3.21) 0.274 

HADS-D 3.04 (2.82) 3.83 (3.42) 0.198 

HADS-T 8.65 (5.37) 8.65 (5.93) 1 

HADS: Hamilton Anxiety and Depression Scale, HADS-D: HADS-Depression subscale, 

HADS-A:  

HADS-Anxiety subscale, HADS-T: HADS-Total. PSS: Percieved Stress Scale 



428 
 

6.3.4 Discussion 

In this observational study, we investigated the effect of a dietary change on the gut 

microbiome of participants who undertook a 12-week residential cookery course on 

an organic farm, where the majority of food consumed and used for cooking, was 

locally-sourced, seasonal and produced using organic methods. Of particular interest 

was the use of unpasteurized milk and dairy products obtained from a small herd of 

Jersey cows on the farm. Most participants had not been using any unpasteurized 

dairy prior to the course and all used these products to some degree throughout their 

stay. We found that the main change in terms of microbiome composition was a 

dramatic increase in participants Lactobacilli between pre-course and post-course 

faecal samples. This increase was strongly associated with participants intake of 

unpasteurized milk and dairy products. In addition, a positive change was noted in 

relation to microbiome metabolites with an increase in valerate and, to a lesser 

extent not quite reaching statistical significance, propionate. 

While administration of probiotics in the form of conventional pharmaceutical agents 

such as tablets or capsules is a common method, the majority of probiotics 

commercially available are in the form of food-based delivery systems which use 

probiotic bacteria in their production or add these bacteria during the manufacturing 

process, e.g., cheese, yoghurt or fermented drinks (Govender et al., 2014). There are 

several problems associated with pharmaceutical and commercially-produced 

probiotic formulations. Firstly, the probiotic potential of bacteria is species and 

strain-specific but efficacy is often generalized across products in the current 

unregulated commercial probiotic market (de Simone, 2019). Secondly, there are 

many aspects of the manufacturing process of such products which can alter the 

delivery of viable functional probiotic bacteria (Sanders et al., 2014). Because 

probiotic products are generally categorized as food supplements, they are subject 

to less stringent regulatory criteria and quality control processes with regard to 

microorganism specification, their numbers and functional properties (Kolacek et al., 

2017). Thirdly, there is a cost consideration when it comes to commercial probiotic 

products, which may place daily probiotic supplements out of the reach of many.   
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An alternative to consuming commercially-produced probiotic supplements for the 

maintenance of a healthy gut microbiome is to alter one’s diet. It is increasingly 

accepted that the ‘Western-diet’, characterized by highly-processed, low-fibre, high-

sugar, high-fat foodstuffs has negative implications for health (Cordain et al., 2005) 

which may be mediated by an unfavourable impact on the gut microbiome (Zinocker 

and Lindseth, 2018). In contrast, adherence to a Mediterranean-style diet 

(characterized by high-level consumption of olive oil, fruit, nuts, vegetables, and 

cereals with moderate intake of fish and poultry) has been strongly associated with 

better physical (Estruch et al., 2018) and mental (Lassale et al., 2018) health 

outcomes, which again may be related to a beneficial impact on the gut microbiome 

and metabolome (De Filippis et al., 2016). Gut microbiome composition can be 

rapidly and significantly altered by introducing dietary change (David et al., 2014) 

with the impact of food choices on the microbiome being highly individualized 

(Johnson et al., 2019). In this study, the key change in relation to dietary intake during 

the 12-week residential course was an increase in dairy products, which in this 

context were unpasteurized. This was a major change for our subjects, the vast 

majority of whom did not consume unpasteurized milk or dairy products prior to the 

course.  

Cow’s milk is produced on a massive scale worldwide and has long played an 

important role in human nutrition (Haug et al., 2007). Cow’s milk harbours a rich 

microbiota and typically contains a significant population of lactic acid bacteria (LAB) 

that includes Lactococcus (8.2 x 101–1.4 x 104 CFU/ml), Streptococcus (1.41 x 101–1.5 

x 104 CFU/mL), Lactobacillus (1.0 x 102–3.2 x 104 CFU/ml), Leuconostoc (9.8 x 101–2.5 

x 103 CFU /mL) and Enterococcus spp. (2.57 x 101–1.58 x103 CFU/mL) (Quigley et al., 

2013). Other organisms present in substantial proportions are Pseudomonas and 

Acinetobacter, so-called psychrotrophs which can flourish during cold storage 

conditions and typically cause milk spoilage (Raats et al., 2011). Pasteurization of milk 

gained widespread popularity in the early 1900’s when cow’s milk was linked to the 

spread of disease epidemics such as tuberculosis, diphtheria, typhoid fever, scarlet 

fever, anthrax and cholera (Rankin et al., 2017). A recent Irish study, using molecular, 

culture-independent techniques, compared the microbial content of raw and 
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pasteurized cow’s milk (Quigley et al., 2013). Authors reported that, although the 

bacterial diversity of the raw and pasteurized milk were similar, raw milk contained 

mostly viable cells whereas the cell population in pasteurized milk were 

predominantly non-viable. Thus, while pasteurized milk appeared to have a 

somewhat similar microbiome composition to that of the raw milk, any potential 

probiotic LAB would have been in a nonviable state. In this study, Pseudomonas and 

Acinetobacter, two major genera found in unpasteurized milk, were not detected by 

16S rRNA analysis of the microbiomes of the participants, either pre or post 

treatment. This may be due to a selective filtering effect of the human immune 

system or physiological barriers such as gastric acid, which is known to act as such a 

filter  (Freedberg et al., 2015; Imhann et al., 2017).  

The consumption of raw milk is growing in popularity, although there is some debate 

in relation to its purported benefits and concern about the potential dangers of 

contracting milk-borne illnesses if the raw milk is contaminated with human 

pathogens (Lucey, 2015). There is a strong suggestion from epidemiological literature 

that the consumption of unpasteurized cow’s milk or yoghurt by children living on 

farms or rural areas has a protective effect against the development of asthma, 

allergies and atopy, a finding which seems to be independent of other farm-related 

exposures (Braun-Fahrlander and von Mutius, 2011). In addition, raw milk is 

anecdotally reported to be beneficial for people with lactose intolerance (Beals, 

2008). This is thought to be due to the fact that raw milk contains high counts of LAB 

that produce lactase enzymes, which would otherwise be destroyed during 

pasteurization. However, there is little research evidence to support these anecdotal 

claims and, in fact, one recent pilot randomized controlled trial (RCT) involving 16 

adults with lactose malabsorption, failed to find any benefit of raw milk over 

pasteurized milk for gastrointestinal symptoms (Mummah et al., 2014). Despite this, 

in a survey of raw-milk consumers (Mullin and Belkoff, 2014), over one-third of 

responders claimed to experience gastrointestinal discomfort from drinking 

pasteurized milk but no discomfort after drinking raw milk, although the vast 

majority of these people did not have a diagnosis of lactose intolerance. Another 

proposed benefit of raw milk is that it contains higher quantities of vitamins. A meta-
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analysis (Macdonald et al., 2011) reported that pasteurization reduced the 

concentrations of Vitamin E, Vitamin B12, Vitamin B2, Vitamin C and folate. Of these 

vitamins, B2 is of most importance as bovine milk contributes significantly to the 

recommended daily intake whereas in the case of all the others, milk is not typically 

an important source. In relation to the human gut microbiome, we are unaware of 

any studies specifically examining the effect of raw milk consumption. However, a 

few studies have investigated the impact of pasteurized milk on the human 

microbiome. One cross-sectional study reported a differential oral microbiome based 

on high versus low (pasteurized) milk intake (Johansson et al., 2018). Another 

investigated the impact of whole milk supplementation on the gut microbiota and 

cardiometabolic biomarkers between lactose malabsorbers (LM) and absorbers (LA) 

(Li et al., 2018). Authors found that whole milk supplementation significantly altered 

the intestinal microbiota composition in LM resulting in an increase in the phylum 

Actinobacteria along with increases in several genera; Bifidobacterium, Anaerostipes 

and Blautia. These changes occurred only in LM and not LA, suggesting that it was 

the increased lactose substrate reaching the colon which preferentially enhanced the 

growth of some micro-organisms. In addition to pasteurization, milk can be altered 

by skimming which is currently a widespread procedure. Prior to the course 10/24 of 

our participants reported consuming skimmed or semi-skimmed milk while post-

course 23/24 participants consumed whole milk, reflecting the unpasteurized milk 

intake. Skimmed milk contains less fat than whole milk and thus also less fat-soluble 

vitamins such as A and E. However, regular unfortified milk is not a major contributor 

to a person’s recommended daily allowance of these vitamins (Herrero et al., 2002) 

and despite the variable amounts in different milk types there does not appear to be 

significant difference in their bioavailability (Herrero-Barbudo et al., 2006). Other 

micronutrients such as calcium, sodium and choline do not differ between skimmed 

and whole milk (Manzi et al., 2013). Therefore, we considered the skimmed versus 

whole milk type to be of limited consequence. 

An obvious limitation of this study is the inherent potential for confounding given 

that, in addition to a change in diet, study participants experienced a change in 

environment. Disentangling the impact of diet and geographical environment on the 
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gut microbiome, however, is a very difficult task. Several large scale studies have 

attempted to explore the differences in microbiome composition between 

industrialised Western urban dwellers and those living in traditional rural 

communities in South America and Africa, such as the Hadza hunter-gatherers of 

Tanzania (Schnorr et al., 2014), rural Papua New Guineans (Martínez et al., 2015) 

children from the rural African village of Burkina Faso (De Filippo et al., 2010) and 

communities from Malawi and Amazonian Amerindians (Yatsunenko et al., 2012). 

Although a rural setting will likely contribute to gut microbiome differences, these 

farming environments are intrinsically linked to variation in diet and it is difficult to 

separate the impact of the farm environment itself and the farm-related dietary 

patterns. If a move to a rural farming environment were to account for the changes 

in microbiome seen in our study one could postulate that the changes would be 

consistent with the microbiome composition in rural dwellers from the above 

studies. This was not the case. While rural dwellers from PNG did have higher 

abundance of Lactobacillus than their urban counterparts (Martínez et al., 2015), 

those from the other rural farming communities did not (De Filippo et al., 2010; 

Schnorr et al., 2014). Obviously, the rural locations in the above studies were at the 

extreme end in relation to geographical location and traditional lifestyle and poorly 

comparable to the developed farm environment in which our participants were 

based. In a study more closely resembling our location, authors compared the 

microbiome of infants from farming and non-farming families in Wisconsin, United 

States, and again no differences in Lactobacillus or other LAB abundance were seen 

(Thorsen et al., 2019). Furthermore, the changes in bacterial taxa in the microbiome 

of our subjects were consistent with those species found in unpasteurized milk, 

supporting our conclusion that this specific dietary change was driving the 

microbiome differences between pre- and post-course time points.  

In this study we found that, during the 12-week course, the levels of the faecal SCFA 

valerate increased with a trend towards increase in proprionate. Straight-chain SCFAs 

(acetate, butyrate, propionate and valerate) are produced by the gut microbiota 

during the fermentation of partially and nondigestible polysaccharides whereas 

branched-chain SCFAs (isobutyrate and isovalerate) result from the metabolism of 
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proteins (He et al., 2018). SCFAs are thought to play a major role in the maintenance 

of gut and immune homeostasis (Tan et al., 2014) as well as in the gut-brain axis 

response to stress (van de Wouw et al., 2018). SCFA production can be stimulated by 

increasing dietary fibre intake (Francois et al., 2012) or protein consumption (Russell 

et al., 2011). However, in our study, participants intake of fibre or protein did not 

change and thus, it is proposed that increased valerate and propionate levels may 

have been secondary to increased abundance of Lactobacilli, which, along with other 

LAB, are known producers of SCFA (LeBlanc et al., 2017). Propionate has anti-

inflammatory properties and has been shown to be of potential benefit across a 

range of disorders, including hypertension and cardiovascular disease (Bartolomaeus 

et al., 2019), obesity (Chambers et al., 2015) and hypercholesterolemia (Demigne et 

al., 1995). Valerate is a less well-known SCFA with limited research to date into its 

therapeutic potential. However, a recent study revealed that it also appears to have 

an immunomodulatory effect (Luu et al., 2019). Interestingly, supplementation with 

Lactobacillus acidophilus increased the concentration of valerate in the caecum of 

chickens infected with Clostridium perfringens while reducing the infection-

associated gut dysbiosis (Li et al., 2017). Valerate may also hold some translatable 

therapeutic value in the context of Clostridium difficile infection (CDI). Valerate was 

shown to be significantly reduced in the faecal samples of patients with recurrent CDI 

and recovered following successful treatment with FMT (McDonald et al., 2018).  

Changes in the functionality of the microbiome were assessed in the context of a 

recent study which facilitates analysis of the neuroactive potential of a microbiome 

sample (Valles-Colomer et al., 2019). Authors achieved this using a gut-brain-module 

(GBM) framework which targets microbial pathways known to be involved in 

microbiota-gut-brain communication and have made this GBM catalogue available 

for use by other researchers (https://raeslab.org/software/gbms.html). When 

applying our predictive metagenomic data to this GBM catalogue we found an 

increase in the functional richness of the microbiome profile, as determined by the 

number of GBMs present, following the 12-week course (Figure 4). Such a consistent 

general increase in GBMs without a significant increase in microbial alpha diversity 

goes somewhat against the intuition that a more diverse microbial ecosystem will 
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necessarily display a higher functional diversity. More strikingly, the functional alpha 

diversity did not change during the course. GBMs represent a specific subset of 

microbiome function and are calculated using the values of specific KEGG 

Orthologues. A shift in microbial functions that specifically potentially impact the 

host brain without a corresponding general shift in microbial function detectible on 

the alpha diversity level shines light on the possibility that many more such specific 

shifts can occur undetected using current bioinformatics tools. Because of this, we 

call for a move away from general diversity and towards informed interrogation of 

specific functional changes in the microbiome as a readout.   

One GBM changed significantly after post-hoc correction; ‘GBM026; Nitric oxide 

synthesis II (nitrite reductase)’. Several studies have demonstrated the ability of 

various Lactobacillus species to synthesize nitric oxide by nitrate reductase activity 

(Xu and Verstraete, 2001; Liu et al., 2014). Nitric oxide is a complex and widespread 

signaling molecule which participates in virtually every organ system of the body. It 

is thought to play a role in the stress response and mood regulation (McLeod et al., 

2001) and may represent one mechanism by which Lactobacilli exert psychobiotic 

effects. The authors believe another GBM warrants discussing here, although its 

increase did not satisfy significance after post-hoc correction; ‘GBM004, Kynurenine 

synthesis’. This module was never detected in participants pre-course but was 

present in very high levels in 6 out of 24 participants post-course. This can be 

explained by the fact that the Kynurenine synthesis module requires two enzymatic 

steps. One of these was found in Lactobacillus, but the other one was not specific to 

a single microbe in this data set, but rather spread over several microbes and was 

only found in the 6 participants positive for MBG004. This finding conforms well with 

literature regarding emergent biosynthetic capacity of the microbiome (Chiu et al., 

2014; Perisin and Sund, 2018).  

Although we found no direct correlation between Lactobacillus abundance and 

psychological measures, it is notable that stress and anxiety levels reduced 

significantly in those with higher baseline scores on the PSS and HADS-A. This is 

consistent with probiotic interventional trials in healthy populations, whereby an 

impact is often only seen in those with higher anxiety or depression scores at baseline 
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(Ng et al., 2018; Liu et al., 2019). Of course, there are many possible confounding 

factors when it comes to interpreting this reduction. Participants in this course had 

varying reasons for completing the course; for some, the purpose was to enhance or 

change their career options and thus, possibly associated with stress; for others it 

was simply for leisure and viewed more as a holiday incorporating cookery classes. 

The change in environment and daily activity, the purpose of participation in the 

course and interaction with new people may all have contributed to psychological 

status. However, given the increasing evidence that the gut microbiome is an 

important node in gut-brain communication and that certain psychobiotics have 

anxiolytic effects, it is plausible to consider the possibility that the improvement in 

stress and anxiety may have been partially related to the increase in Lactobacillus. 

Lactobacillus rhamnosus (JB-1) has been shown to reduce anxiety behaviours in mice 

as well as altering central levels of gamma-aminobutyric acid (Bravo et al., 2011), a 

key neurotransmitter in anxiety regulation. Several species of Lactobacillus have 

demonstrated the ability to reduce anxiety and stress levels in healthy subjects 

(Messaoudi et al., 2011; Nishihira J.   et al., 2014; Takada et al., 2016) as well as in 

patients with chronic fatigue syndrome (Rao et al., 2009) or laryngeal cancer (Yang 

et al., 2016).  

There are several limitations to our study. Firstly, this was an observational study. 

While of course an RCT would be preferable, there are many challenges inherent in 

designing RCTs involving dietary interventions. It can be difficult to define 

appropriate control groups and effective blinding of participants and investigators is 

often extremely difficult (Weaver and Miller, 2017). In particular, it can be 

challenging to accomplish a high level of adherence with whole food, or dietary 

pattern, interventions. A major strength of our study in this regard was that our 

participants were based on-site for the entire duration of the study making it possible 

to ensure a consistency across individual diets which would be difficult to achieve 

outside a residential setting. The potential confounding effect of the farm 

environment as an independent modulator of microbiome composition is addressed 

earlier in the discussion. Secondly, our sample size was quite small. However, 

previously published studies investigating the diet-microbiome relationship have 
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involved participant numbers of ten or less (David et al., 2014; Ruggles et al., 2018) 

and have  generally been of much shorter duration (Johnson et al., 2019). Another 

factor which may limit the generalizability of our study was that participants 

undertaking this course were interested in food and cooking. Thus, they were likely 

to have good nutritional knowledge and possibly healthier than average diets at 

baseline. A specific limitation in this regard was an absence of any information on the 

use of non-nutritive sweeteners (NNS). These are being increasingly used due to the 

concern about the negative health impact of high-sugar diets and have been shown 

to significantly, and generally negatively, impact the gut microbiome (Suez et al., 

2015). Finally, given the limitations of 16S rRNA gene sequencing we were unable to 

characterize organisms beyond the genus level. More accurate taxonomic 

classification would have been useful had shotgun metagenomic sequencing been 

performed. Despite these limitations, this is, to our knowledge, the first study to 

report on the potential impact of unpasteurized milk and dairy products on the 

human gut microbiome. Given the growing popularity of consumption of raw milk 

and other probiotic-rich fermented foods, it is important that the effect of such 

products on the gut microbiome are investigated. 

While there are understandable concerns in relation to potential contamination and 

safety when it comes to unpasteurized milk, it is a rich source of probiotic bacteria. 

Abundances of Lactobacilli increased significantly following a 12-week dietary 

change which involved consumption of unpasteurized milk and dairy products. 

Lactococcus abundance, also increased, although to a lesser extent. These changes 

in microbiome composition were reflected by an increase in levels of the SCFA, 

valerate with an observed trend towards increase of propionate, along with an 

increase in the predicted functional richness of the microbiome. Given the growing 

appreciation of the importance of a healthy gut microbiome and the limitations of 

commercial probiotic products, there is a need for further research into the effect of 

different dietary changes on the microbiome. In particular, further studies 

investigating the probiotic potential of natural probiotic-containing foodstuffs such 

as unpasteurized milk are warranted.  
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6.3.5 Methods 

6.3.5.1 Study Site and Subjects  
Ballymaloe Cookery School, Organic Farm and Gardens is located in East Cork, Ireland 

and runs bi-annual 12-week residential courses where students live on-site, learn 

about organic farming methods and undertake intensive cookery classes. The 

majority of food consumed by participants during their stay originates from the 

organic farm itself or consists of high-quality, locally-sourced produce. The farm has 

a small herd of Jersey cows whose milk is used in its raw unpasteurized state for 

direct consumption, cooking and the production of other dairy products including 

cream, butter, cheese and yoghurt. There is an emphasis on eating, and cooking with, 

local seasonal fruit and vegetables, the vast majority of which is organic. Meat and 

fish are also locally sourced and, for the most part, organic.  

Approval of the study protocol was granted by the Clinical Research Ethics 

Committee of the Cork Teaching Hospitals (Protocol number DOP001) and conducted 

following the ICH Guidelines on Good Clinical Practice, and the Declaration of 

Helsinki. Written informed consent was obtained from all subjects before study 

procedures were conducted. Course participants were emailed in advance informing 

them of the study and a short talk on the gut microbiome was given at an 

introductory session prior to commencement of the course. In order to be eligible for 

the study, participants had to be between the age of 18-65 years and be generally 

healthy, with no chronic or current, physical or mental illness. Exclusion criteria 

included the use of medications which were likely to interfere with the objectives of 

the study (including any psychotropic medications) as well as intake of antibiotics, 

probiotics or prebiotics within the month prior to commencement of the study.   

6.3.5.2 Subject Metadata 
Demographic data was collected for each individual including information on age, sex 

and race. Weight and height were measured and used to calculate body mass index 

(BMI). Information in relation to medical and psychiatric history, along with 

medication use, was also obtained at interview. At the beginning and end of the 12-

week course participants completed self-report questionnaires on a variety of 
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parameters including mood, anxiety, sleep, exercise (PSS, HADS, PSQI, International 

Physical Activity Questionnaire (IPAQ)).  

6.3.5.3 Diet Quantification 
To monitor nutrient intake, participants completed the self-administered 152-item 

SLAN-06 (Survey of Lifestyle, Attitudes and Nutrition in Ireland) food frequency 

questionnaire (FFQ) (Harrington J, 2008) which is validated to be used in an Irish 

population. An additional eight food items as well as questions about type and 

frequency of milk, salt and fried food consumption were added. These items are 

included in the EPIC Norfolk questionnaire (Riboli and Kaaks, 1997) from which the 

SLAN-06 FFQ was adapted. An extra section was added to the FFQ by the authors to 

quantify intake of unpasteurized milk and dairy products before and during the 

course, as this information would not otherwise have been captured. These extra 

questions followed the same response format as the other food items.  

Participants were asked to estimate the frequency with which they consumed a 

specified portion size of each of the foods listed over the preceding month. The FFQ 

has nine possible responses ranging from “never or less than once per month” to “6+ 

per day”. Participants completed the FFQ before and after the stay at Ballymaloe. 

The FFQs were analysed for nutrient intake using the FETA software (Mulligan et al., 

2014).  

The 160 foods items were grouped into 29 food groups (e.g., fruits, vegetables, 

grains, sweets) using methods similar to those described in previous studies of 

dietary patterns (Arthur et al., 2013). To estimate the number of servings of any food 

group, each response was converted to the corresponding frequency factor and 

summed over all the food items to get the average servings of a specific food group 

per day. Intake of unpasteurised milk and dairy products was analysed in a similar 

way.  

6.3.5.4 Faecal sample collection and 16S rRNA gene sequencing and processing 
Faecal samples were collected at the beginning and end of the 12-week period in 

disposable plastic containers with a Thermo Scientific™ Oxoid AnaeroGen 2.5L Sachet 

in situ to generate anaerobic conditions within the container. Participants were 



439 
 

instructed to keep the sample containers in a refrigerator at 4oC. Samples were 

collected and transferred to a -80oC freezer within 12 hours.  

DNA was extracted using the DNA Fast Stool DNA extraction kit (Qiagen) using the 

protocol for Gram positive bacteria and including an additional bead beating step at 

the beginning of the procedure. DNA was quantified using the Qubit High Sensitivity 

Kit (Life Technologies), standardized and then used as a template for PCR. 16S 

metagenomic libraries were prepared using primers to amplify the V3-V4 region of 

the bacterial 16S rRNA gene, with Illumina adaptors incorporated as described in the 

Illumina 16 s Metagenomic Library Preparation guide. Following index PCR and 

purification, the products were quantified using the Qubit high sensitivity DNA kit 

(Life Technologies) and pooled equimolarly. The pooled libraries were assessed using 

an Agilent high sensitivity DNA kit and examined by quantitative PCR (qPCR) using 

the Kapa Quantification kit for Illumina (Kapa Biosystems, USA) according to the 

manufacturer’s guidelines. Libraries were then diluted and denatured following 

Illumina guidelines and sequenced (2 × 300 bp) on the Illumina MiSeq platform. 

6.3.5.5 Sequence table generation 
Three hundred base pair paired-end reads were prefiltered based on a quality score 

threshold of > 28 and trimmed, filtered for quality and chimeras using the DADA2 

library in R (Callahan et al., 2016). Taxonomy was assigned with DADA2 against the 

SILVA SSURef database release v132. Parameters as recommended in the DADA2 

manual were adhered to unless mentioned otherwise. ASVs were cut off at genus 

level, those that were unknown on the genus level were not considered in 

downstream analysis, as were genera that were only detected as non-zero in five 

percent or fewer of total samples. 

6.3.5.6 Short chain fatty acid (SCFA) measurements 
The concentration of SCFAs, acetate, propionate, Iso-butyrate, butyrate, Iso-valerate, 

and valerate were analyzed by gas chromatography flame ionization detection (GC-

FID) using a Varian 3800 GC system, fitted with a 5m guard column (Restek) 

connected to an Agilent DB-FFAP column (30 m L x 0.32mm ID x 0.25 μm df) and a 

flame ionization detector with a CP-8400 auto-sampler. 
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6.3.5.7 Statistical analysis  
Statistical analysis for changes in dietary measures was performed using SPSS 

Statistical Packages version 25 (SPSS, Inc., Chicago, IL, USA). Normality of outcome 

measures was assed using Shapiro Wilk’s test of normality. Differences in nutrient 

and food group intake pre- and post-course participation were analyzed using 

Student’s t-test or the non-parametric Wilcoxon Rank sum test. 

Microbiome data-handling was done in R (version 3.6) with the Rstudio GUI (version 

1.2.1555). In all cases, the iNEXT library was used to calculate alpha diversity (Hsieh 

et al., 2016).  

Principal component analysis (PCA) was performed on centered-log ratio 

transformed (clr) values using the ALDEx2 library (Fernandes et al., 2014). Number of 

permutations was always set to 1000. Aitchison distance was used as a distance 

metric for beta-diversity. Piphillin (Iwai et al., 2016) was used for functional inference 

from 16S rRNA gene sequences of stool samples in the form of Kyoto Encyclopedia 

of Genes and Genomes (KEGG) orthologues. Gut-brain modules were calculated 

using the R version of the Gomixer tool (Darzi et al., 2016). Differential abundance of 

microbes between groups was assessed using the ALDEx2 library. As part of testing 

for correlations between microbial abundance and metadata, skadi, an 

implementation of jackknifing and Grubb’s test, was used to assess the reliability of 

the data and detect outliers (R scripts avaliable online, 

https://github.com/thomazbastiaanssen/Tjazi; (Bastiaanssen T, 2018)). Correlation 

was assessed using Spearmans’s rank correlation coefficient. The relationship 

between categorical variables was assessed using Pearson's Chi-squared test. For 

datasets in which the condition of normality was violated the non-parametric 

Kruskal-Wallis test was used and post-hoc analysis was done using the Wilcoxon test. 

A p-value of < 0.05 was deemed significant. To correct for multiple testing in tests 

correlating volatility and specific microbiota, KEGG orthologues or pathways, the Q-

value post-hoc procedure was performed with a q-value of 0.1 as a cut-off  (Storey J, 

2019).  
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Chapter 7 Discussion 

7.1 In summary 

The microbiome-gut-brain axis field currently spans both clinical and animal 

research. This is reflected in the approaches used in this thesis, where the chapters 

were organised into three general categories. It is clear that diet is one of the main 

ways in which the microbiota can be modified. In chapter 2 of this thesis, which 

focuses on diet-based animal studies, we found that we were able to blunt the 

neuroinflammatory effects of ageing in the host by targeting the microbiome, using 

dietary prebiotic approaches. Similarly, we were able to show that the effects of 

stress could also be rescued by prebiotics or a dietary supplementation. Notably, not 

all stressors are created equal and the microbiome does not seem to hold the key in 

all cases. We were unable to find evidence of rescuing the effects of chronic hypoxia, 

which was previously shown to alter the microbiome, by prebiotics supplementation. 

In all cases, altering diet was shown to consistently change both microbiome 

composition and relative abundance of microbiome features. Importantly, in the last 

paper in this chapter, we show that is also possible for a poor quality diet such as a 

high-fat diet or even cafeteria diet to affect the microbiome and its host negatively.  

Chapter 3 features four papers and is themed around the effects of disrupting the 

normal microbiome colonization and homeostasis. It is clear that perturbing the 

microbiome can affect host brain and behaviour. First, we show that disrupting the 

microbiome with antibiotics in adolescence has persistent negative effects for host 

brain and behaviour in adulthood, even though the microbiome itself seems to 

recover. Then, we show that antibiotics perturbation can alter the permissivity to 

colonization of new species, potentially allowing the microbiome to develop in ways 

that would not occur without antibiotics administration, including on a functional 

level. Continuing this investigation of the effects of perturbing the microbiome, in 

the next paper we show that the microbiomes from mice delivered by caesarean 

section are distinct from those delivered vaginally. Like was the case with antibiotic-
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based perturbation, the microbiomes converge over time, making them 

indistinguishable by birth mode, but behavioural effect remain.  

Chapter 4 consists of a single paper where we show that deer mice, which naturally 

tend to compulsive-like behaviour in the form of building, have a different 

microbiome composition based on their behavioural phenotype.  

Then, in chapter 5 we discuss a single paper that not only reconfirms the microbiome-

gut-brain axis, but also sheds light on our findings regarding the importance of 

microbiome perturbation in the previous chapter of this thesis. We investigate the 

dynamics of microbiome change over time, which is termed volatility. First, we 

demonstrate how volatility can be measured. Then, we show that volatility is 

correlated to the severity of stress in both mice and humans. Finally, we show that 

there are consistent functional changes in the microbiomes of both humans and mice 

undergoing stress.  

In chapter 6 we make the step resolutely from animals to humans. While there are 

many differences between animal and human research, indeed, one of the many 

reasons why animal research is so important is the possibility to control for otherwise 

difficult to control factors like diet, genetics and environment, our findings in this 

chapter echo what we previously reported in animal work. While there are important 

differences between the rodent and human research described here, there are 

interesting patterns and commonalities in the findings worth discussing further. In 

these three subchapters, we show that we can improve host mood and behaviour by 

targeting the microbiome, by using a prebiotic in the first paper, a probiotic in the 

second and a diet rich in unpasteurized dairy products in the third. In order to help 

the reader link chapters to the sub-aims I introduces in chapter 1.3.3, I have provided 

a visual aid (figure 7.1-1).  
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Figure 7.1-1 summarising the aspects of the microbiota-gut-brain axis that have 
been investigated in the chapters in this thesis. Chapters are depicted in their 
respective bubbles.  

 

7.2 Identifying patterns in our microbiome-gut-brain 

axis studies 

7.2.1 Enduring effects of perturbations in the microbiome and 

its lasting effects on the host  

The perturbation of the host microbiome is a common pattern among the research 

described in this thesis. In chapter 2.5 we examined the effects of dietary 

perturbations in adolescence on microbiome composition in adulthood. Analogously, 

in chapter 3.2, we used antibiotics to perturb the microbiome in the same stage of 

life. In both cases we found that, while the microbiome is able to recover on a 
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compositional level to the extent where it is indistinguishable from controls, lasting 

effects remain in the host organism. In chapter 3.4, we again find that the differences 

animals delivered vaginally or by c-section are most clear on the level of the 

microbiome in early life, but that these differences resolve in adolescence. Again, we 

find that behavioural effects remain even after the microbiomes have converged. 

Interestingly, we were also able to show that the conditions of the microbiome can 

also be such that changes in the microbiome will be lasting. In chapter 3.3, we found 

that Blautia was only able to colonize animals that were given prebiotics in the case 

that their microbiome was first perturbed by antibiotics. This change was not 

detected in beta diversity as only a single genus was affected by it, though we were 

able to show that this increase in Blautia would also likely have functional 

consequences. As past states seem to matter for how a microbiome turns out even 

if the current environment is constant, one wonders whether the microbiome has a 

memory and, if so, how we could read it. This also reinforces that time is an important 

factor when it comes to the microbiome-gut-brain axis. There is evidence of critical 

windows in the developmental period where the host may be particularly vulnerable 

to perturbations in the microbiome. Interestingly, the development of the 

microbiome has recently been shown to follow some consistent and predictable 

trajectory (Chng et al., 2020; Gibbons, 2020). This taken together with the finding 

that the infant microbiome strongly selects for specific bacterial taxa from the 

mother  (Ferretti et al., 2018) suggests that the early-life microbiome may provide 

some metabolic function that is crucial for healthy development of the host. Indeed, 

as eukaryotes have never existed without prokaryotes, it makes sense from an 

evolutionary perspective that certain developmental processes in the host organism 

could rely on the presence of a microbiome with particular metabolic properties.  

7.2.2 There is disagreement between studies which specific 

genera react to stress interventions targeting the microbiota. 

Several studies discussed here examine the effects of stress on the microbiome. In 

all cases, we report changes in microbial genera after stress. However, perhaps 

surprisingly, the genera that were altered differ between studies. Indeed, chapter 

5.1, on volatility, features two cohorts of mice undergoing chronic social defeat 
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stress, but there is little to no agreement in what genera are affected by this stressor. 

Similarly, there was little agreement between the specific taxa that were altered in 

chapter 2.4, where we rescue the effects of chronic stress. In that study we also 

measured the microbiome in response to stress, albeit in rats this time rather than 

mice.  

There are several reasons for this disagreement, some of which lead to interesting 

hypotheses and points of discussion. First, we should acknowledge the consistent 

biases that are inherent to modern metagenomic analysis (McLaren et al., 2019). As 

sequencing efficiency has been shown to differ between  laboratories and even 

between researchers or individual plates to be sequenced, we cannot assume that 

the same microbiome perturbation will give the same signature between two 

experiments. Second, as is likely the case for the volatility study in chapter 5.1, the 

microbiome compositions at baseline can easily differ between cohorts of animals. It 

stands to reason that if conditions in the microbiome at baseline are different 

between two cohorts, one cannot expect the same treatment to have the same effect 

there.  

This makes the finding that there is indeed concordance in the stress response in the 

microbiome on an inferred functional level in these aforementioned animals from 

the volatility study in chapter 5.1 particularly striking. Indeed, it has been reported 

that there is more unexplained variance on the taxonomical level of the microbiome 

than on the functional level, suggesting that function is more strongly conserved than 

taxonomy in the microbiome (Eng and Borenstein, 2018; Mehta et al., 2018). This 

stands in contrast with the strict strain-level selection during early life development 

we discussed in the previous point. In both the cases of stress and development do 

we see an agreement on a functional level, but we only see agreement on the 

functional level in the case of early life development (Ferretti et al., 2018). This raises 

the question whether the mechanisms of selection differ between these two 

phenomena and, if so, how. In the case of the conserved functional shifts in the 

microbiome due to the stress-response, perhaps this can be explained by a conserved 

physiological stress response in the host. In contrast, the more preserved succession 

of microbiota during early life development may be more dependent on the infant 
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immune system, which is known to be influenced by the maternal microbiome 

(Mueller et al., 2015).  

7.2.3 Functional metagenomics analysis can provide more 

sensitivity and interpretability in microbiome-gut-brain axis 

studies. 

Functional metagenomics analysis is an increasingly common feature of microbiome-

gut-brain axis studies. We utilised functional metagenomics analysis next to 

taxonomical metagenomics analysis is several of  the pieces of research discussed 

above. It’s striking that the type of information we can gleam from functional analysis 

seems to differ depending on the research. In some cases, like in chapter 3.3, 

documenting the colonization of Blautia, functional analysis can contribute to the 

interpretation of ones findings by confirming that alterations in a given bacterial 

taxon indeed would have functional consequences. In chapter 2.4, regarding the 

effect of prebiotics on chronic hypoxia, the functional analysis echoed what we saw 

in the microbiome analysis, being a strong effect of prebiotics and only a weak effect 

of hypoxia. Interestingly, we tend to see a strong effect in the  capacity of the 

microbiome to metabolize substrates in studies where prebiotics are administered. 

In other cases, functional analysis is more sensitive than taxonomical level analysis. 

For instance, in chapter 2.3, the effects of polyphenols on the functional microbiome 

were more pronounced and numerous than on the taxonomical level. Another 

important example of an effect only visible on the functional level is the potential of 

the microbiome to metabolize levodopa (van Kessel et al., 2019). In chapter 6.3, 

which follows 24 participants on a diet high in unpasteurized dairy, we use the 

functional microbiome in a different manner. There, we show that after the course, 

the participants showed potential for a higher functional richness in regards to 

neuroactive functions.  

In general, it is clear that functional analysis can represent a useful complementary 

analysis next to the more traditional taxonomical analysis. Another advantage to 

functional analysis is that it can make interpretation more straightforward. Especially 

in the case of 16S analysis, where we are usually constrained to the genus level, is 
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can be hard to defend that an entire genus is either “good” or “bad” for host health. 

On the other hand, functional analysis provides the researcher with molecular 

pathways that in many cases can lead to more defensible and concrete molecular 

mechanistic understanding. In the case where both microbiome and gut 

metabolomics measurements were taken, it would even be possible to integrate the 

two approaches using a framework like KEGG to confirm which molecular pathways 

are differentially affected.  

7.2.4 There exists random drift in the microbiome over time, 

though intra-subject variance is smaller than inter-subject 

variance.  

The microbiome can be seen as a dynamic ecosystem, in constant flux. Compositional 

stability and variability of the microbiome are investigated in several of the reports 

presented above. Most clearly in chapter 5.1, where volatility, the degree of change 

in the microbiome over time, is shown to be correlated to severity of the stress 

response in both mice and a healthy human cohort. In human cohorts, such as the 

cohort of students undergoing academic stress featured in chapter 5.1 for volatility 

measurements, but also the human cohorts from chapters 6.2, and 6.3, on probiotic 

administration in an obese cohort and the consumption of unpasteurized dairy, 

respectively, which both feature samples at multiple time points per participant, 

intra-subject variance of the microbiome over time was smaller than inter-subject 

variance. Indeed, other research groups report this as well (Johnson et al., 2019).  

There are several important points to be made there. First, the fact that a previous 

composition of the microbiome holds some information on the next composition of 

the microbiome is an important confirmation that the microbiome is a consistent 

community with a drive towards homeostasis. Second, we can go further and say that 

this homeostasis is at least in part determined by function in relation to the host. 

Some interesting theoretical works has shown that different functions in a 

microbiome show different levels of robustness to perturbation, specifically, 

functions that were associated with a given biogeographical region were more robust 

in the microbiomes of that region (Eng and Borenstein, 2018). In many cases, the 
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reverse is also shown to be true. The microbiome compositions of healthy subjects 

are shown to be much more similar to each other than those of patients in numerous 

but not all microbiome-associated diseases, notably including Parkinson’s Disease 

and Schizophrenia (Ma, 2020). This phenomenon is referred to as the Anna Karenina 

principle and has been applied to a wide array of academic fields. In these cases, the 

microbiome-associated disease may rather be modulated by a dysregulated 

microbiome, a lack of stability, rather than a certain stable pathogenic state like in 

the case of a disease like Clostridium difficile infection.  

In the case of rodents, there have been reports of cage and litter effects in the 

microbiome. Indeed, as both rats and mice are known to be coprophagous, it stands 

to reason that the microbiomes of cage-mates would be converge towards each 

other. This is also reflected in the scientific literature (Ericsson et al., 2018; Miyoshi 

et al., 2018) and it is considered best practice to properly account for these effects 

during the experimental design. In humans, it has been reported that cohabitants 

have a more similar microbiome than average (Finnicum et al., 2019). The driving 

forces that determine in what way the microbiomes of cohabitants or cage-mates 

converge remains to be speculated on. 

7.3 Identifying Strengths in the analysis of our studies 

Limitations notwithstanding, there are several aspects that strengthened our 

understanding and yielded particularly informative or otherwise interesting results. 

It is worth discussing these so that future experiments can be tailored in such a way 

to ensure it can take advantage of these strengths.  

7.3.1 Specific functional modules over a general functional 

analysis 

As mentioned in the limitations, functional metagenomics analysis represents a 

valuable addition to taxonomical microbiome analysis, the two often complement 

each other. In several of our manuscripts, we went a step further and used the 

functional module framework. There are currently two types of functional modules, 

both introduced by the Flemish Raes group (Valles-Colomer et al., 2019). To reiterate, 
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first, there are Gut-Metabolic Modules (GMMs), which represent collections of the 

metabolic pathways and reactions that cover the genetic capacity of the microbiome 

to metabolise a given substrate. Next, there are Gut-Brain Modules (GBMs) which 

cover pathways and reactions that are known to synthesise or degrade neuroactive 

compounds, such as serotonin or GABA or histamine. There are many advantages to 

using these functional modules rather than a full non-curated list of all genes in a 

metagenome. First, functional modules represent a much shorter list than all genes 

or KEGG orthologues, making the results more practically feasible to interpret and 

reducing the risk of cherry-picking your favourite result from a long list of functions. 

Second, focusing on a shorter list of specific modules reduces the severity for post-

hoc correction of the false discovery rate. This way, changes that are relevant to the 

researcher are more likely to remain detectable as significantly altered without being 

drowned out by other functions that would not have been relevant to the research 

question anyway. Third, the functional modules represent a convenient common 

ground between different studies. The type of database or sequencing technique 

used during analysis determines the exact annotation and naming of taxa and may 

even determine what functional databases the researcher has access to. However, 

as the functional modules represent a small list of pre-defined processes, it is trivial 

to compare them between studies. This makes it easier to compare and contrast ones 

findings with that of other groups with similar questions or manipulations, without 

necessitating a complete concordance in bioinformatics pipelines. Especially the 

ability to calculate functional modules in both 16S, like we did in chapters 2.3, 3.1, 

5.1, and 6.3, as well as in whole genome shotgun sequencing, like we did in chapter 

2.4, on prebiotics and hypoxia and the microbiome, greatly improves our ability to 

compare effects in the microbiome between these to approaches. Moving forward  

with functional modules, the ability to assess how many taxa have the capacity to 

perform certain function as well the degree of contribution of each of those taxa to 

a function seems like an excellent point to expand on. In chapter 3.3, we were able 

to use this approach to show that Blautia was the main contributor to the functions 

that were altered in the group receiving prebiotics after antibiotics perturbation of 

the microbiome. We were not able to find a difference in the number of taxa capable 
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of performing those functions in that study, but it would be interesting to find cases 

where this division of labour, so to speak, is indeed altered.  

7.3.2 Volatility encapsulates the dynamic nature of the 

microbiome 

It is well-know that the microbiome is a complex dynamic ecosystem that spans all 

kingdoms of life. It is known to be in constant flux, yet, this dynamic nature is rarely 

considered in the context of host health. Volatility was shown to be related to host 

state, not only in chapter 5.1, on volatility specifically, where it was linked to stress, 

but also in chapter 3.1, where aged mice receiving young donor FMT showed a lower 

volatility than those who received FMT from aged donors. We argue for the inclusion 

of volatility in all future research that permits it, in a way similar to how alpha-

diversity is often considered. Further research on volatility itself should focus on the 

mechanisms determining what makes a microbiome volatile. In a longitudinal study 

following 34 participants over 17 consecutive days, the Knights group showed that 

stability of the microbiome was not related to stability of the diet, but that it was 

dependent on the diverseness of the diet (Johnson et al., 2019). This could mean that 

the host gut lumen metabolic environment regulates microbiome volatility.  

Volatility in the context of the microbiome-gut-brain axis aside, incorporating 

multiple measurements from different time points has several advantages from 

different points of view. First, from an ecological standpoint, taking several 

observations per sample reveals information about stability and robustness of an 

ecosystem. Currently, we are not able to estimate whether a community, like a 

microbiome, would be stable just from a single metagenomics sample. Indeed, in 

chapter 5.1, on volatility, we were unable to pin down any features of the 

microbiome at baseline that may reveal anything about the volatility that 

microbiome would display over the course of the experiment. However, this 

information may be quite relevant to the researchers. Not only would a less stable, 

more volatile microbiome be reason to suspect negative health outcomes, 

perturbing a microbiome may increase permissivity for new taxa, potentially 

pathogens, to colonize it as seen in chapter 3.3, where antibiotics perturbation was 
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necessary for Blautia to colonize. Blautia is typically seen as a commensal genus, but 

it is hard to imagine that this is the only genus that can colonize the microbiome after 

a perturbation. Second, from a statistical standpoint, taking multiple measurements 

allows the researcher to use more sensitive statistical models and tests, potentially 

reducing the required n-number to be able to detect the alterations taking place. The 

most simple example of this would be that a paired t-test is more sensitive than an 

unpaired t-test. We used this to our advantage in chapters 3.1, on FMT and ageing 

and 5.1, on volatility, but the approach paid off especially well in the human studies 

in chapter 6 where we had multiple timepoints available; 6.2 and 6.3. It is 

unsurprising that human microbiomes show more unexplained variance than 

laboratory murine microbiomes in general, given the larger variance in genetics, diet 

and environment for humans just to name a few factors.  Using the baseline 

microbiome, we were able to sidestep some of it, improving our power. Notably, The 

Knight group has recently released a tensor-based statistical model that takes intra-

subject variability into account, improving sensitivity compared other common 

methods (Martino et al., 2020). Notably, while the manuscript does describe it as a 

way to take advantage of longitudinal data, the model is completely invariant to the 

order of the measurements and can also be used if the repeated measurement range 

from different microbiota in from the same host, further increasing possibilities.  

 

7.4 Identifying Limitations of Microbiome Studies in 

the Microbiota-Gut-Brain Axis Field 

There are several key limitations that should be considered when it comes to 

microbiome studies, including the ones discussed here. Some of these limitations 

could be seen as features of metagenomics sequencing. It should also be noted here 

that any metagenomic analysis that involves database-assisted annotation is 

dependent on experimental work. We simply could not perform high-throughput 

microbiome analysis without the massive amount of work performed in the wet lab.  
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7.4.1 There are inherent hidden biases in all metagenomic 

sequencing data 

It is inherently problematic to compare microbiome between cohorts and, indeed, 

between plates within the same cohort. This phenomenon was thoroughly described 

and is invariant to 16S sequencing or whole genome shotgun metagenomics 

(McLaren et al., 2019). In a nutshell, it is not possible to infer abundance of a microbe 

or even the ratio between the abundance of two microbes in a single microbiome 

based on the amount of reads ascribed to said microbe. This is because hidden, often 

unknowable factors such as the ability of the microbial cell wall to withstand lysis or 

the resistance of the microbial genetic material to catalases will differentially affect 

the different microbes in a sample. Indeed, some of these biases are shown to be 

specific to a laboratory or even a sequencing plate, making it problematic to compare 

microbiome metagenomic sequencing data between batches or experiments. 

Fortunately, this does not impede our ability to investigate the microbiome outright. 

Within a batch, all biases are assumed to be equal. Furthermore, while the actual 

amounts of reads may differ based on these biases, the ratios of taxa can still be used 

to compare between cohorts. For example, if the proportion of, say, Lactobacillus in 

a sample increases based on the age of the host in a cohort, we would expect this to 

be the case in other cohorts as well, though the actual read count levels may vary to 

several orders of magnitude. Other metrics that don’t rely on singular taxa or 

features, such as volatility, have also been shown to be robust to this hidden bias 

effect as is indeed the case in chapter 5.1, on volatility.  

7.4.2 There are limitations specific to 16S amplicon 

sequencing 

With the exception of chapter 2.4 on hypoxia and prebiotics in rats, all studies 

presented here feature 16S sequencing rather than whole genome shotgun 

metagenomics. While there are several advantages to 16S sequencing such as the 

lower price, faster processing time and the need for less biomaterial, the microbiome 

field is moving towards whole genome shotgun metagenomics. There are arguably 

three main limitations of 16S sequencing. Firstly, the 16S ribosomal RNA is virtually 
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exclusively found in prokaryotes, making the technique unsuitable to investigate the 

eukaryote and otherwise non-prokaryote section of the microbiome, which includes 

fungi, archaea, protists, some animalia like helminths and viruses like bacteriophage. 

Secondly, 16S sequencing is typically thought of as only being reliably up to the genus 

level, whereas whole genome shotgun metagenomics have been used to go to the 

strain level and even single nucleotide variants (Zeevi et al., 2019). This worse 

resolution can and does lead to the conflation of different strains within a genus. For 

instance, there have been instances of researchers using 16S sequencing to assess 

colonization efficiency of certain probiotics without the ability to actually detect 

these bacteria in this probiotic (Zmora et al., 2018).Thirdly, as 16S only picks up (part 

of the) the 16S sequence, the technique does not provide a direct way to investigate 

the functional capacity of the microbiome. Rather, inferential tools such as PICRUSt2 

and Piphillin are necessary to take a best guess at the functional repertoire of the 

microbiome. Fortunately, both of these techniques perform reasonably well 

compared to whole genome shotgun sequencing, making this limitation generally not 

as limiting as the first two. In the case where a conclusion hinges on the presence or 

absence of a certain function, it is certainly recommended to verify the actual 

presence of a gene or functional pathway by sequencing it, be it by whole genome 

shotgun metagenomics or simply by targeted qPCR.  

 

7.4.3 Many microbiome studies lack a longitudinal 

component  

Longitudinal microbiome studies have several advantages over their single time point 

counterparts. As we discussed in chapter 5.1, on volatility, longitudinal studies enable 

us to investigate volatility, which has been shown to contain information on both the 

microbial ecosystem and on host health. Furthermore, as discussed in chapter 7.2.4, 

there is a large degree if intra-subject variance that can somewhat be accounted for 

by using a baseline measurement of each participant as its own control. Indeed, a 

framework to utilize multiple measurements per subject in order to reduce this intra-

subject variance was recently proposed by another group (Martino et al., 2020). 
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Arguably similarly, one would be able to drastically reduce this variance as well by 

harnessing the longitudinal nature of a data set, simply employing a linear mixed 

effects model, with the random factor being the subject (donor). Because of the 

dynamic state of the microbiome, not taking baseline measurements forces the 

researches to assume that all microbiomes have a similar state at baseline. 

Fortunately, this is often a reasonable and justifiable assumption, but it is important 

to consider nonetheless. For instance, in the case of chapter 5.1, on volatility, the 

two cohorts of mice had a completely different microbiome at baseline. Not taking 

this into account would have likely led to a drastically different outcome. When 

linking microbiome data to host behaviour, cognition or mental health, there is an 

added difficulty in that many of the tests that are performed to assess these factors 

are subject to a learning effect, meaning that these tests themselves cannot 

necessarily be performed at all the time points one intends to take microbiome 

samples.  

7.4.4 Many microbiome studies lack a functional component  

In many cases when reporting on microbiome-gut-brain axis experiments, the 

researchers will speculate on the effects of significantly affected microbial taxa on 

the host. While this is not problematic on itself, it often makes more sense to rather 

look at the potential functional changes in the microbiome. In certain cases, it is 

completely justified to use both approaches side by side. For instance, in chapter 6.3, 

which focuses on a diet enriched in unpasteurized dairy, it makes sense to look at 

genera that are typically seen as lactic acid bacteria. Still, in the same research, we 

would not have been able to find an increase in neuroactive potential in the 

microbiome after the course without looking at the functional level. Several of the 

papers presented above would have benefited from functional analysis. For instance, 

consider chapters 2.1 and 2.2, which both deal with a dietary intervention targeting 

the microbiome, the first being a prebiotic intervention to rescue the effects of 

ageing and the second showing that dietary supplementation of omega-3 fatty acids 

and vitamin A rescues the effects of stress. It would have been interesting to 

investigate whether changes in the microbiome could have been explained based on 

the metabolic potential of said microbiome, or whether the observed 
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neuroprotective and anxiolytic effects could be linked to a change in the neuroactive 

potential of the microbiome. While 16S sequencing is not optimal for this type of 

analysis, inferential methods can still give a reasonable indication of what may be 

taking place.  

 

7.5 Moving Forward 

The microbiome-gut-brain axis field has undergone rapid development in the past 

decades and it will likely continue to do so for some time. New technologies and 

resources as well as a growing scientific knowledge will lead to a more mechanistic 

understanding of the microbiota-gut-brain axis in health and disease. Based on the 

research discussed above, we will discuss and in some cases recommend how to 

move the field forward.  

7.5.1 Improving the bioinformatics 

Because of the high-dimensional data nature of microbiome sequencing data, 

bioinformatics have played an important role in the microbiome-gut-brain axis field. 

In recent years, reproducibility has vastly improved, which many prominent journal 

strongly recommending researchers to publish their bioinformatics analysis scripts 

alongside their work. Yet, there are still some points that stand out to us in particular 

when it comes to moving the field forward. First, there is no consensus in which 

bioinformatics approach to take. Numerous tools, frameworks, pipelines and 

platforms have been proposed over the years. While this rapid growth in the amount 

of available resources should be seen as a boon in many ways, there is one major 

downside to them. Often, it is problematic to compare between microbiome studies 

because of differences in bioinformatics methodology. For instance, reference 

databases can evolve rapidly, some even yearly, sometimes reassigning entire clades 

such as was the case for Lactobacillus (Salvetti et al., 2018). This difficulty to compare 

between studies makes it particularly problematic to perform meta-analyses. Often, 

reanalysing raw sequencing reads to is cumbersome and the quality of metadata is 

still insufficient. Besides the obvious solution of all using the same database, ways to 
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convert between databases, such is the case between many functional databases 

seems like the way forward. Another interesting approach could be meta-feature 

analysis with tools like the functional Gut-Brain Modules or Gut-Metabolic Modules. 

These tools are mostly agnostic to the upstream bioinformatics pipelines that were 

used, but still give outputs in the same format. Similar modules, be they related to 

function, taxonomy or something else, may enable us to converge on outcomes that 

are similar enough to compare without enforcing any one pipeline on researchers. In 

some cases like the use of the GreenGenes database, which was last updated in 2013, 

this type of reconciliation may still prove difficult. Second, microbiome 

metagenomics datasets are compositional in nature. This comes with a host of 

features not seen in classical datasets, such as an internal negative correlation 

between features within the data. In other words, if we know that one taxon takes 

up 10% of the population in one sample and 90% in the next sample, we already 

know as a result of this, that the rest of the taxa in the former sample encompass a 

lot more of the population than in the latter sample. The relative abundances are 

thus negatively correlated within the sample. Fortunately, compositional data 

analysis is a well-described field and there exist straightforward transformations, 

such as ALR, CLR and ILR, to essentially get rid of these effects and allow us to apply 

conventional statistical approaches (Aitchison, 1982; Aitchison et al., 2000). Recently, 

there have been some microbiome publications in high-impact journals that employ 

or even directly introduce adaptations of compositional data analysis effectively, 

thus improving the accuracy of their outcomes and improving the statistical 

approaches of the field as a whole (Johnson et al., 2019; Valles-Colomer et al., 2019; 

Martino et al., 2020).  

 

 

7.5.2 Integrating ecological understanding 

The microbiome-gut-brain axis field is a clear example of an interdisciplinary field, 

featuring aspects ranging ecology to molecular biology to gastroenterology to 

psychology, just to name a few. Notably, whereas many of these fields have other 
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areas of studies where they may overlap, it’s safe to say that generally ecologists 

don’t cross paths with the other fields as regularly. Microbe-microbe interactions are 

known to determine the behaviour of individual gut microbes and this is likely to also 

affect their neuroactive potential. There are several ecological subjects that we deem 

likely will be developed more deeply in terms of the microbiome. First, there is 

colonization. Indeed, during early life, the colonization of the microbiome is known 

to be important for normal development of the immune system and behaviour, like 

we also show in chapter 2.5, on the enduring effect of high fat and cafeteria diet, 

chapter 3.2, on the lingering effects of antibiotics during adolescence and chapter 

3.4, on the lingering effect of caesarean section. There are indications the host allies 

a selective pressure on the microbiome to control this colonization (Ferretti et al., 

2018). Furthermore, the microbiome has been shown to follow some patterns in how 

it recolonizes after antibiotics depletion (Chng et al., 2020). Understanding the 

factors determining healthy colonization, including that of psychobiotics, will 

undoubtedly prove beneficial to the microbiome-gut-brain axis field as a whole. 

Second, there are ecological guilds. Ecological guilds represent taxonomically 

unrelated but functionally related species that typically perform some sort of ‘task’ 

in the ecosystem, such as the degradation of a certain otherwise hard to process 

material (Simberloff and Dayan, 1991; Zhao et al., 2018). It is often of little 

consequence which members of a guild are present, but rather that there are some 

guild representation at all. In the microbiome, we are aware of two lines of research 

that try to elucidate the dynamics of guilds in the microbiome. First, Liping Zhao and 

colleagues have reported on the restoration of ecological guilds in patients with type 

2 diabetes and argue for the experimental identification of guild members in order 

to efficiently screen for host health risks (Lam et al., 2018). Second, there is the study 

of trophic levels in the microbiome (Wang et al., 2019). In short, rather than 

microbiome being a chaotic collection of microbes that randomly metabolize based 

on what genes they may possess, the trophic levels model describes a hierarchy of 

sub-consortia of the microbiome, each feeding on metabolites produced by the 

lower layer and producing metabolites for the next layer. Interestingly, this 

phenomenon leads back to the first point of colonization as a trophic layer can only 

develop if the necessary lower trophic layer is already present in the microbiome 
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(Gralka et al., 2020). It seems likely that early colonizers such as members of 

Lactobacillus or Bifidibacterium could represent the base trophic level in both 

humans and rodents, given their importance in early life development and 

colonization of the microbiome, as also discussed in chapter 3.4, documenting the 

effects of caesarean section on the microbiome and neurobehaviour. Moving 

forward, it would be beneficial to develop a framework to identify or recognise 

ecological guilds in a fashion similar to the framework used to detect functional 

modules. Thirdly, there are enterotypes and the core microbiome, two concepts that 

are deeply related. It remains a point of discussion in the microbiome field whether 

enterotypes exist in the human population. In a nutshell, enterotypes can be thought 

of as stereotypical microbiomes, perhaps related to ones diet and lifestyle. In 

contrast, the core microbiome could arguably be thought of as the single viable, 

healthy enterotype, if there indeed is such a thing. Typically, in research arguing for 

the existence of enterotypes, three or four different ones are distinguished. Typically, 

at least one enterotype is characterised by it’s high relative abundance of 

Bacteroides, while another one has a high proportion of Prevotella, though the 

difficulties in comparing between studies and cohorts that was discussed in chapter 

7.2.2 on commonalities between studies and chapter 7.4.1 in the limitations section 

make it problematic to make strong descriptive statements in this regard. In a 

seminal study, the Flemish group that also introduced functional modules showed 

that psychological quality of life scores are unevenly distributed between the four 

enterotypes they distinguished in their cohort of 1054 participants (Valles-Colomer 

et al., 2019). Going further, another study by a different group showed that certain 

intermediate states between two enterotypes are much less likely to occur than 

others, with metaphorical barriers preventing one enterotype to transition into a 

different enterotype, in addition to either enterotype being stable on itself (Levy et 

al., 2020).  Thus, it seems likely that the enterotype framework holds scientific merit 

and furthermore that it holds predictive power when it comes to the microbiome-

gut-brain axis. However, enterotypes are not considered when applying linear 

modelling approaches in the microbiome, which typically assume that all samples 

come from the same distribution. This stands in direct contrast with the concept of 

enterotypes. Looking forward, identifying enterotypes as part of microbiome 
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analysis, perhaps using some sort of reference tool or database, would enable 

bioinformaticians to take enterotypes into account in their statistical modelling 

approaches.  

 

All models are wrong, but some are useful  

George P.Box 

 

7.5.3 Advancing the microbiome-gut-brain axis field 

Throughout this text we have recommended numerous way in which to continue 

researching the microbiome-gut-brain axis field. Most notably, there is a lack of 

longitudinal studies. For instance, investigating microbiome stability and volatility in 

different types of stress or other psychiatric conditions such as major depressive 

disorder may lead to a deeper understanding of the mechanisms of gut-brain 

communication at play. Recently, more longitudinal studies have been published in 

the microbiome-gut-brain axis field. Psychotropic drugs were shown to affect the 

microbiome in a clinical population with anxiety and depressive disorder, including 

changes in neuroactive Gut-Brain Modules (Tomizawa et al., 2021). Another aspect 

of microbiome volatility that would be interesting to investigate is the interplay 

between volatility and other examples of stable changes, such as is the case in the 

circadian rhythm and the menstrual cycle.  Other ways to characterize the 

microbiome, such as through metabolomics, should also be considered for volatility. 

We have inferentially shown that microbiome function is affected as part of volatility, 

but whether, and to what degree, the metabolic environment is affected still remains 

to be answered. Another important goal is the integration of microbiome datasets 

with other ‘omics data, such as host transcriptomics or metabolomics. There are two 

main ways to approach this, one currently common than the other. First, there is 

naive integration. This involves simply correlating all features from the first data set 

to those of the other. Notably, the names of these features holds no weight in this 

analysis. Second, there is informed integration. This method is more rare and 
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typically relies on bioinformatics scripts rather than tools. Here, it matters which 

features are compared between datasets, drastically reducing possibility-space for 

correlations to occur and in turn increasing power. For example, metabolites from 

serum metabolomics may be compared to just the genes encoding for enzymes with 

said metabolites as known ligands. This approach is dependent on the quality of 

databases and was recently leveraged in a publication (Kim et al., 2020). Often, these 

methods are documented poorly or even unavailable altogether.  In the study where 

we investigated the potential of FMT form young mice to reverse the effects of 

ageing in mice, I ended up developing my own method to integrate metabolomics 

and functional microbiome metagenomics using a biologically informed framework, 

by leveraging the KEGG framework. This method allowed me to specifically 

investigate whether relevant functions in the microbiome were altered based on the 

metabolites whose levels were found to be altered by ageing and rescued by FMT 

from young animals. Integrating data from different ‘omics approaches can yield a 

clearer view of the metabolic pathways that play a role in microbiome-gut-brain 

communication, driving the field towards hypotheses that can lead to mechanistic 

understanding. Third, the effectiveness of the functional modules approach warrants 

an expansion of this type of framework. Rather than assessing the potential to 

metabolize neuroactive compounds, one could imagine a framework that assesses 

risk factors for mental health conditions. Furthermore, quantification of a 

microbiomes capacity to metabolize different psychobiotic drugs, its degree of 

antibiotic resistance and its permissivity to be colonized by new taxa, be they 

pathogenic or beneficial to the host come to mind as factors that would greatly 

improve interpretability of microbiome studies. Furthermore, as discussed in chapter 

7.3.1, in the strengths section, an overlaying framework of modules that are invariant 

to upstream bioinformatics pipelines will enable researchers to reliably and compare 

outcomes between cohorts, also improving our ability to perform meta-analyses.  
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7.6 Conclusion 

The microbiome is involved in regulating host health, including mental health. 

Furthermore, microbiome perturbation during critical windows of development can 

have lasting behavioural and neurophysiological consequences. The studies 

discussed here not only confirm this, but also build further upon previous studies 

investigating the microbiome-gut-brain axis. Furthermore, we have investigated and 

advanced our understanding of neglected features of the microbiome that we have 

shown to be informative in regard to the microbiome-gut-brain axis. Prime among 

these are volatility and functional modules. We have demonstrated how to measure 

these features and we have discussed how to leverage them in experiments. 

Additionally, we have argued for a stronger integration of ecological knowledge into 

our model of the gut microbiome, which we find to be essential in order to explain 

the results we find. Based on our findings, we have recommended new lines of 

questioning for future research. Future research incorporating volatility, functional 

markers and an ecological understanding from the design stage will enable us to 

move the field forward towards a deeper mechanistic understanding of microbiome-

gut-brain communication. With this mechanistic understanding, we will be able to 

more effectively and safely develop therapies targeting the microbiome for mental 

health.  
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