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LETTER
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Abstract
Non-perennial streams are widespread, critical to ecosystems and society, and the subject of
ongoing policy debate. Prior large-scale research on stream intermittency has been based on
long-term averages, generally using annually aggregated data to characterize a highly variable
process. As a result, it is not well understood if, how, or why the hydrology of non-perennial
streams is changing. Here, we investigate trends and drivers of three intermittency signatures that
describe the duration, timing, and dry-down period of stream intermittency across the continental
United States (CONUS). Half of gages exhibited a significant trend through time in at least one of
the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of
gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited
changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional
patterns of change were evident, with widespread drying in southern CONUS and wetting in
northern CONUS. These patterns are correlated with changes in aridity, though drivers of
spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow
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timing and duration were strongly related to climate, dry-down period was most strongly
related to watershed land use and physiography. Our results indicate that non-perennial
conditions are increasing in prevalence over much of CONUS and binary classifications of
‘perennial’ and ‘non-perennial’ are not an accurate reflection of this change. Water
management and policy should reflect the changing nature and diverse drivers of changing
intermittency both today and in the future.

1. Introduction

Non-perennial streams—referring to streams and
rivers that do not flow continuously, including inter-
mittent rivers and ephemeral streams (Busch et al
2020)—are present across all global continents, eco-
regions, and climate types (Messager et al 2021) and
provide many ecosystem services such as agricultural
and domestic water supply while sustaining the eco-
logical integrity of river networks (Datry et al 2018a,
Kaletová et al 2019, Stubbington et al 2020). Though
non-perennial streams constitute over half the global
stream network length (Messager et al 2021), hydro-
logical and ecological research have predominantly
focused on perennial waters, in part because gauge
networks are biased toward larger rivers (Zimmer
et al 2020). However, non-perennial streams have
garnered increasing attention in recent years (e.g.
Leigh et al 2016, Allen et al 2020, Shanafield et al 2020,
2021).

Recent efforts have quantified spatial patterns of
stream intermittency at regional (Datry et al 2016,
Allen et al 2019, Jaeger et al 2019), national (Snelder
and Booker 2013, Beaufort et al 2018, Hammond
et al 2021, Sauquet et al 2021), and global (Messager
et al 2021) scales. These studies provide a useful
framework for classifying and understanding spa-
tial patterns in stream intermittency during a par-
ticular study period. However, temporal changes in
stream intermittency are inadequately studied, des-
pite documented widespread change in the peren-
nial flow regime including low flows (Ficklin et al
2018, McCabe and Wolock 2002, Dudley et al 2020,
Rodgers et al 2020). Given the strong influence of
stream intermittency on aquatic biodiversity (Jaeger
et al 2014, Datry et al 2014b) andwater quality (Datry
et al 2018b,Gómez-Gener et al 2020), a pressing ques-
tion thus remains: is stream intermittency changing at
regional to continental scales, and if so, what are the
characteristics and causes of this hydrologic change?

Non-perennial streams are rarely considered in
water management (Acuña et al 2014) despite their
widespread nature and the numerous ecosystem ser-
vices they provide. Open questions about the loca-
tions, functions, and connectivity of non-perennial
streams to downstream waters have become a cent-
ral focus of U.S. litigation and agency rulemak-
ing to clarify a basis for protecting these ecologic-
ally important headwaters (Walsh and Ward 2019)

as they can be disproportionately important to
downstream water quality (Dodds and Oakes 2008).
Thus, improved understanding of both current non-
perennial flow regimes, as well as how they are chan-
ging, is critical to proactive and effective manage-
ment (Sills et al 2018, Sullivan et al 2020). Potential
increases in stream intermittency deeply affect our
ability to meet both agricultural and domestic water
requirements, especially in arid regions (Cudennec
et al 2007). As such, understanding the large-scale
trends and drivers of change in stream intermittency
is a critical need to anticipate management priorities,
guide water policy, and sustain both ecosystems and
society.

We investigated the trends and drivers of change
in non-perennial streamflow across the continental
United States (CONUS) to meet these critical needs.
Specifically, we asked: (1) How have different aspects
of stream intermittency changed through time across
CONUS?, and (2) What are the drivers of spati-
otemporal variability in stream intermittency? We
answered these questions using all 540 non-perennial
U.S. Geological Survey gages in CONUS with at least
30 years of daily streamflow data within the period
1980–2017. We used these data to explore trends
and the magnitude of change for three intermit-
tency signatures: the number of no-flow days per
year (a signature for no-flow duration), the num-
ber of days from peak flow to no-flow (a signature
for dry-down period), and the date of the first no-
flow observation (a signature for no-flow timing).We
also developed random forest models to identify the
watershed climate, land/water use, and physiographic
characteristics that best predicted spatiotemporal
variability for each of these intermittency signa-
tures to identify potential drivers of change. Finally,
we summarized the societal and environmental
importance of these ongoing changes to stream
intermittency.

2. Methods

2.1. Gage selection
Our data incorporated 540 gages (figure 1) from
the US Geological Survey (USGS) GAGES-II data-
set, which encompasses 9322 stream gages that have
at least 20 years of data and/or are currently active
(Falcone 2011). Since the focus of our analysis was
trends in non-perennial streams, we selected all
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Figure 1.Map of USGS gages used in analysis, colored by region.

streams with at least 30 years of data between the
1980 and 2017 climate years (April 1–March 31)
and had an average no-flow fraction of at least
1.4% (corresponding to 5 d year−1) but no greater
than 98.6% (corresponding to 360 d year−1). These
criteria retained a sample of 540 gages, in water-
sheds ranging from 0.95 to 49 264 km2 (figure
S1, available online at stacks.iop.org/ERL/16/084033/
mmedia).We grouped gages into six ecoregions based
on modified US Environmental Protection Agency
level 1 ecoregions: (1) Eastern Forests (n= 136 gages),
(2) Mediterranean California (n = 87 gages), (3)
North Great Plains (n = 56 gages), (4) South Great
Plains (n = 157 gages), (5) Western Deserts (n = 40
gages), and (6) Western Mountains (n = 64 gages).
More details on regions are found in supplemental
information (section SI1).

2.2. Intermittency signatures
Hydrologic signatures are metrics extracted from
hydrographs that isolate particular types of hydro-
logical processes (Olden and Poff 2003, McMil-
lan 2020). We focused on three hydrologic signa-
tures (referred to as ‘intermittency signatures’) that
describe: (1) the annual no-flow duration, calculated
as the number of days with zero discharge per year;
(2) the dry-down period, calculated as the number
of days from a local peak (exceeding 25th percent-
ile of long-term mean daily flow) to a zero dis-
charge measurement; and (3) the no-flow timing
conditions, calculated as the first day of the cli-
mate year at which a zero discharge measurement
occurred. Each intermittency signature was calcu-
lated on an annual basis from raw streamflow data
rounded to one decimal place in order to reduce
noise in low-flow conditions. For the dry-down
period, the days from peak to no-flow were calcu-
lated for each no-flow event, and averaged to an

annual value based on the climate year of the no-flow
date.

2.3. Change analysis
Weused the non-parametricMann-Kendall trend test
to estimate the trend in each intermittency signature
and climate metric at each gage. Mann-Kendall tests
were only calculated where there are at least 10 years
of data, which included 540 gages (the entire sample)
for the climate metrics and annual no-flow days, but
was only possible with 473 gages (87.6%) for the days
from peak to no-flow signature and 475 gages (88%)
for the day of first no-flow. These two intermittency
signatures have fewer data points than annual no-
flow days because they can only be calculated in years
where flow ceases. Since the Mann–Kendall test only
provides information about the trend, but not the
magnitude of change, we complemented the Mann–
Kendall test with a Mann–Whitney test, in which
data for each gage were split into two halves (1980–
1998 and 1999–2017; figure S6). We also tested the
sensitivity of Mann-Whitney results to the split year
(section SI2.4). TheMann–Whitney test evaluates the
probability of the mean of one group being higher
than the mean of the other. Mann–Whitney tests
were only calculated where there are at least 10 total
years of data and at least 5 years of data within each
group. Like the Mann–Kendall tests, this included all
gages (n = 540) for the climate metrics and annual
no-flow days, but fewer gages for peak to no-flow
(n = 425) and the day of first no-flow (n = 428).
For both Mann–Kendall and Mann–Whitney tests,
we used a significance level of p < 0.05. Some gages
exhibited very large, non-linear changes within the
study period (figure S3), justifying our use of the
Mann–Kendall and Mann–Whitney approaches to
characterize trends and magnitudes of change rather
than a simple linear or Sen’s slope.
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2.4. Drivers analysis
We developed random forest models (Breiman 2001)
to quantify drivers of change by predicting each
intermittency signature as a function of climate,
land/water use, and physiographic properties of the
watershed. Random forest models, a type of non-
parametric machine learning approach, are well-
suited for hydrological prediction due to their ability
to handle numerous predictors with potentially non-
linear and interacting relationships, relatively low risk
of overfitting to an anomalous subset of the sample
data, and ease in interpreting the importance of each
input variable (Eng et al 2017, Addor et al 2018,
Miller et al 2018). We developed a total of 21 sep-
arate random forest models, based on a combina-
tion of the three intermittency signatures and seven
regions (i.e. a national model including all gages, and
a regional model for each of the six regions shown
in figure 1). For each random forest model, we fol-
lowed the same approach, which is described in detail
in Section SI3. In brief, we used an 80% training
and 20% testing data split, stratified by region and
whether a gage was classified as reference or non-
reference in the GAGES-II dataset. For each intermit-
tency signature, there were a total of 85 candidate pre-
dictor variables, representing climate, land/water use,
and physiographic characteristics (table 1).We used a
systematic approach to eliminate candidate predictor
variables with near-zero variance and highly correl-
ated variables (r > 0.9), leaving a set of 56 candidate
predictor variables, which are noted in the ‘Retained
after predictor screening’ column of table 1.

We then constructed an initial random forest
model for each intermittency signature using all 56
predictor variables retained after predictor screening
(table 1) and extracted conditional variable import-
ance for each candidate predictor variable (Strobl et al
2008), which accounts for collinearity among candid-
ate predictor variables. This generated a ranked list of
all predictor variables for each model. We then built
final random models for each intermittency signa-
ture using the number of most important predictor
variables that minimizes out-of-bag mean squared
error (MSE). To estimate the relative importance of
different predictor variables in our final model (i.e.
figure 6), we used the permutation-based increase in
MSE for each predictor variable, expressed as a per-
centage of the overall model MSE. A higher MSE
increase indicates that the predictor variable has a
greater influence on model predictors for the out-of-
bag sample used in model training.

We calculated model fit based on the test sample
that was not used for model training (table S2). We
used four different statistical measures of model per-
formance: R2; root mean squared error (RMSE); nor-
malized RMSE, which is the RMSE divided by the
range of observed values; and Kling–Gupta Efficiency
(KGE), which is a performance metric that accounts
for bias, correlation, and variability (Gupta et al

2009). Using regional submodels slightly improved
overall model performance compared to the national
models (figure S14), but the improvement was mar-
ginal, so for our results and analysis we focused on
the national models to better understand large-scale
variability and drivers of change across all of CONUS.

3. Results

3.1. Changing stream intermittency
Half the CONUS non-perennial gage network had
a significant trend in no-flow duration, dry-down
period, and/or no-flow timing over the study period
(figure 2). Mann–Kendall tests indicated significant
(p < 0.05) trends in the number of annual no-
flow days for 41% of gages (26% longer duration,
15% shorter duration; figure 2(a)). Significant trends
were less common for the dry-down period (17%
of gages; figure 2(b)) and no-flow timing (15% of
gages; figure 2(c)), but gages with significant trends in
these signatures were primarily shifting towards drier
conditions, as characterized by a shorter dry-down
period (10% of gages) and an earlier onset of no-flow
conditions (12% of gages).

Shifts towards more intermittent flow dominated
the southern half of CONUS, while decreased inter-
mittency indicating wetter conditions was prevalent
in the northern half of CONUS (figure 3). Trends
for duration and timing were closely related, where
a longer no-flow duration corresponded to an earlier
onset of no-flow conditions (r = −0.64; figure S2).
For both annual no-flow days and timing of first
no-flow day, we found drying trends in the Medi-
terranean California, Southern Great Plains, Western
Mountains, andWesternDesert ecoregions and at low
latitudes, while wetting trends were more common
in the Northern Great Plains ecoregions and at high
latitudes (figure 3). The Eastern Forests ecoregion,
which spans most of the eastern half of the United
States (figure 1), demonstrated both positive and neg-
ative trends for the no-flow duration and timing, but
drying trends were still concentrated in the south and
wetting trends in the north (figures 2 and 3). By con-
trast, there was less spatial coherence in trends for the
dry-down period (figures 2(b) and 3(b)).

To complement the trend analysis, which only
reflects the direction and significance of change, we
estimated the magnitude of change at each gage using
the Mann–Whitney test. As with the trends analysis,
we found that half the gage network had a signific-
ant change (p < 0.05) in at least one intermittency
signature between the first half (1980–1998) and the
second half (1999–2017) of the study period: 38% of
gages had a significant change in the annual num-
ber of no-flow days (27% drier, 11% wetter), 21%
of gages had a significant change in the days from
peak to no-flow (12% fewer, 9% more), and 21%
of gages had a significant change in no-flow timing
(16% earlier, 5% later). A sensitivity analysis found
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Figure 2.Mann–Kendall trends in (a) annual no-flow days, (b) days from peak to no-flow, and (c) first no-flow day. In all
Mann-Kendall plots, red indicates drier conditions (longer no-flow duration, shorter dry-down period, earlier first no-flow day).

that these results are robust to the choice of year used
to split the data into two groups. Regardless of the year
used to split the data there were widespread signific-
ant changes in the intermittency signatures, particu-
larly the annual number of no-flow days, with dry-
ing more common than wetting (see supplemental
information, section SI2). These changes exhibit a
similar spatial pattern to the results of the trend ana-
lysis, with drying in the south and wetting in the
north (figure 4). The magnitude of change during
the period varied widely, with significant changes in
no-flow duration ranging from −214 d to +262 d,
and smaller ranges for the dry-down period (−57 to
+145 d) and timing (−124 to +163 d) of no-flow
(figures 4(a)–(c)).

3.2. Drivers of stream intermittency variability and
change
Trends in the ratio of annual precipitation to poten-
tial evapotranspiration, P/PET (commonly known as
the aridity index) were significantly correlated with
trends in the annual no-flow days (r = − 0.42;

p < 0.001; figure 5(a)) and the no-flow timing
(r = 0.27; p < 0.001; figure 5(c)). A negative P/PET
trend indicating drier climatic conditions is asso-
ciated with a decrease in precipitation and/or an
increase in PET. Thus, trends toward a longer dura-
tion and earlier onset of annual no-flow conditions
are accompanied, and potentially caused, by drier cli-
matic conditions. However, trends in peak to no-
flow days were not associated with P/PET trends
(r = 0.05; p = 0.3; figure 5(b)). The lack of a rela-
tionship suggests that climatic drying was not a not-
able driver of long-term change in dry-down period.
Furthermore, at the regional scale, observed trends in
annual no-flow days and timing (figure 3) are con-
sistent with regional-scale trends in P/PET (figures
S4 and S5), though there are regional differences in
the strength of the relationship between the P/PET
trend and the intermittency signature trends. In con-
trast to the other intermittency signatures, we found
less regional coherence between aridity and changes
in the dry-down period compared to no-flow tim-
ing or duration, providing additional support of
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Figure 3.Mann-Kendall trends summarized as violin plots by (left) region and (right) latitude for (a) annual no-flow days,
(b) days from peak to no-flow, and (c) first no-flow day, with median of distribution marked. For left column, the number along
the x-axis indicates the number of gages in that sample. For latitude plots, y-axis label corresponds to the center of a 3◦ band.

Figure 4. Stacked histograms (a)–(c) and maps (d)–(f) showing Mann–Whitney change test results for (a), (d) annual no-flow
days, (b), (e) days from peak to no-flow, and (c), (f) first no-flow day. Change tests compare the second half of the period of
record (1999–2017) to the first half of the period of record (1980–1998), and units for all plots are days. Only gages with
significant changes (p < 0.05) shown on maps. In all plots, red indicates drier conditions (longer no-flow duration, shorter
dry-down period, earlier first no-flow day) and blue indicates wetter conditions.
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Figure 5. Comparison of Mann-Kendall trends for
(a) annual no-flow days, (b) days from peak to no-flow,
(c) first no-flow day, against the Mann-Kendall trend
for the ratio of annual precipitation to potential
evapotranspiration (P/PET). Black line shows a linear best
fit with 95% confidence interval shaded. Pearson
correlations are (a) r =− 0.42, (b) r = 0.05, (c) r = 0.27.

the Mann-Kendall and Mann-Whitney test results
(figures 3(b) and 4(e)).

The importance of changes in P and PET to
P/PET trends varies across regions. In the Northern
Great Plains, for instance, there is a positive (dry-
ing) median PET trend but it is weaker in magnitude
than the positive (wetting)median P trend, and there-
fore the region-wide median P/PET trend indicates
wetting conditions (figure S4). A similar dynamic
is present to a lesser degree for the Eastern Forests
region, in which positive trends in P and PET approx-
imately cancel out so that the median P/PET trend is
0. By contrast, the regions in the western US (Western
Mountains, Western Deserts, Mediterranean Califor-
nia) have both negative P trends and positive PET
trends, both of which contribute to an overall drying

P/PET trend. Since the PET product we used is cal-
culated using the ASCE Penman–Monteith approach
(Abatzoglou 2013), increases in PET may be driven
by a variety of factors including increases in the vapor
pressure deficit associatedwithwarmer temperatures,
increased turbulent transport due to greater wind
speed, and/or greater incoming solar radiation. Fur-
thermore, our analysis does not measure potential
changes in the timing of P and PET within the year,
apart from the inclusion of seasonal indicators as part
of our random forest analysis (table 1).

We used random forest regression models to fur-
ther explore drivers of spatiotemporal variability in
each intermittency signature. These models provided
annual-resolution predictions of no-flow days, days
from peak to no-flow, and the timing of the first
no-flow day for each gage as a function of climate,
land/water use, and physiography within the contrib-
utingwatershed.Model performance, evaluated using
independent test data not used for model develop-
ment (seeMaterials andMethods section), was strong
for all intermittency signatures and regions (table S2
and figure S12), with the best fit for no-flow duration
(R2 = 0.77, KGE = 0.71), followed by no-flow tim-
ing (R2 = 0.52, KGE = 0.52), and dry-down period
(R2 = 0.35, KGE = 0.39). These performance scores
exceed typical benchmarks for identifying behavioral
hydrological models (KGE > 0.3; Knoben et al 2019)
indicating they are adequate tools to identify the relat-
ive influence of different watershed variables on pre-
dicted intermittency signatures.

The number of annual no-flow days was sensit-
ive to a combination of climatic and physiographic
variables. The most influential predictor variable was
P/PET of the preceding climate year, followed by the
gage’s drainage area and P/PET for the current cli-
mate year (figure 6(a)). By contrast, the dry-down
period was primarily sensitive to land/water use and
physiography, with wetland cover, drainage area, and
forest cover as the most influential predictor vari-
ables (figure 6(b)). Predictions of the no-flow tim-
ing were highly sensitive to climate conditions from
the preceding year. Themost influential predictor was
P/PET for the preceding climate year, followed by
P/PET for the end of the preceding climate year (Janu-
ary, February, and March) (figure 6(c)). Notably,
for both the no-flow duration and timing, preceding
year climate conditions had a stronger influence on
annual intermittency signatures than climate condi-
tions in the year of interest, indicating that there are
time lags between climatic drivers and stream inter-
mittency response. These time lags suggest that cli-
mate controls on stream intermittency aremoderated
by watershed properties that control the storage and
release of water from the landscape, which is further
supported by the strong influence of physiographic
variables such as drainage area, bedrock depth, soil
permeability, and slope in the random forest models
(figure 6). Human impacts are substantial for many
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Figure 6. Top nine predictor variables for (a) annual no-flow days, (b) days from peak to no-flow, (c) first no-flow day. For
climatic variables, (−1) indicates conditions from the preceding year. The ‘MSE Increase [%]’ is the change in mean squared error
(MSE) when that variable is randomly permuted, expressed as a percentage of overall model MSE, and a higher value is
interpreted as a more important variable. Variable names are defined in table 1.

of the gages in our sample. For instance, 64% of
gages are downstream of at least one dam and there is
at least 10% human-modified land use (agricultural
or developed) in the watersheds for more than half
of gages. Despite these widespread human impacts,
variables associated with human modification of the
water cycle (such as irrigation extent, water use, and
dam storage; table 1) were not identified as highly
influential predictor variables over any of the inter-
mittency signatures.

4. Discussion

4.1. Hydrological change in context
Our study revealed widespread and primarily dry-
ing trends in stream intermittency across CONUS,
indicating a temporal and potential spatial expan-
sion of non-perennial flow regimes. Intermittency
trends showed spatial coherence, with most south-
ern gages demonstrating an increase in no-flow dur-
ation, primarily associated with increasing trends in
aridity (figures 5 and 6). Aridity is a strong pre-
dictor of annual stream intermittency in regional,
national, and international studies (Jaeger et al 2019,
Hammond et al 2021, Messager et al 2021, Sauquet
et al 2021), and here we demonstrate that changes
in aridity through time are also contributing to sig-
nificant and widespread changes in multiple aspects
of stream intermittency. Only a subset of gages loc-
ated in the Northern Great Plains (15% of gages)
had trends towards fewer annual no-flow days dur-
ing the period of analysis. The cold-season intermit-
tency (Eng et al 2016), decreasing seasonal freezing,
and increasing precipitation in the region (figure S4)

could drive the observed reduction in no-flow condi-
tions.

The significant changes in stream intermittency
we observed during the 1980–2017 period provide
a multi-decadal window into a long-term traject-
ory of change. Since our dataset does not include
any hydrologic change that happened prior to 1980,
our analysis likely underestimates long-term changes
in stream intermittency relative to pre-development
conditions. Irrigation expanded rapidly across much
of CONUS during the 1940–1980 period (Kustu et al
2010), leading to substantial reductions in peren-
nial stream length prior to 1980 in some regions
(Perkin et al 2017). Looking forward, projected cli-
mate and land/water use change may lead to fur-
ther changes in stream intermittency across much
of CONUS. For instance, much of the western US
and Great Plains regions are projected to experi-
ence drier climate throughout the 21st century (Ryu
and Hayhoe 2017, Seager et al 2017a, 2017b, Cook
et al 2020), continuing or potentially exacerbating the
observed trend of increasing stream intermittency we
document in these regions. Given the role of water-
shed storage as a buffer against climate variability, as
evidenced by the importance of physiographic vari-
ables in the random forest models (figure 6), cli-
mate change-induced future shifts in stream intermit-
tency may be most immediately felt in regions with
relatively little watershed storage (i.e. smaller head-
water catchments; Costigan et al 2015, Zimmer and
McGlynn 2017) and/or locations with ongoing stor-
age losses (i.e. due to pumping-induced groundwater
and streamflow depletion; Perkin et al 2017, Zipper
et al 2019, 2021, Compare et al 2021).
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Our analysis identified significant and quantifi-
able predictors of no-flow at broad spatial scales.
The clear regional and latitudinal patterns we iden-
tified (figure 3) contrast with continental-scale work
in Europe that showed little spatial correlation in
stream intermittency trends (Tramblay et al 2021).
This may be due to greater regional coherence of
historical P/PET trends in CONUS (figure S4) com-
pared to Europe, where regional-scale atmospheric
circulation indicators were not strongly associated
with stream intermittency (Tramblay et al 2021). The
regional P/PET trends appear to contribute to the
regional trends we observed in the intermittency sig-
natures (figures 5 and 6), and in particular climate
seems to drive the difference in stream intermit-
tency between the northern and southern CONUS.
By contrast, human activities such as water with-
drawals and dam storage have modest influences on
nationwide spatiotemporal variability in the inter-
mittency signatures studied here. The lack of signific-
ant human impacts may reflect the fact that anthro-
pogenic disturbances can have a variety of effects
that could either increase or decrease stream inter-
mittency (Gleeson et al 2020), and these impacts
may be more localized and therefore less evident as
a driver of change in our nationwide analysis. Altern-
ately, the datasets and variables we used to quantify
these activities may not adequately represent their
potential impact on non-perennial flow regimes. The
importance of climate as a potential driver of change
also corroborates previous work focused on peren-
nial hydrological signatures. For instance, Ficklin et al
(2018) found widespread climate-driven decreases in
streamflow in the southern CONUS and increases
in streamflow in the northern CONUS, which were
primarily associated with climate change and present
in both natural and human-impacted watersheds.
Similarly, other work at regional to global scales has
also demonstrated that climate change is the domin-
ant forcing associated with long-term change in per-
ennial hydrological systems, though anthropogenic
water and land management also have a signific-
ant and widespread effect (Rodgers et al 2020, Gud-
mundsson et al 2021).

Our results provide evidence that no-flow dur-
ation, no-flow timing, and dry-down period are
more predictable than indicated by previous efforts.
Although others have found correlations between
stream intermittency and climatic signatures such as
effective precipitation or aridity at a site to regional
scale (Blyth and Rodda 1973, Jaeger et al 2019, Ward
et al 2020, Compare et al 2021), hydrologic sig-
natures related to low-flow and no-flow conditions
are among the most challenging to predict at con-
tinental scales (Eng et al 2017, Addor et al 2018).
Our random forest models (described in detail in
section SI3) compared favorably to previous studies,

with a R2 of 0.77 for no-flow days (table S2) com-
pared to an R2 of ∼0.3 for predictions of no-flow
frequency from Addor et al (2018). We also found
that the different intermittency signatures studied
had diverse drivers, but both annual no-flow days and
the timing of no-flow showed a strong dependence
on antecedent (prior year) climate conditions. The
importance of local factors, such as geology, soil char-
acteristics and river network physiography (Snelder
et al 2013, Costigan et al 2017, Trancoso et al 2017),
indicates that some intermittency signatures (e.g. dry-
downperiod) could be harder to predict at large scales
than others (e.g. no-flow days), perhaps due to the
controls of local surficial geology and perched water
table dynamics on dry-down period (Costigan et al
2015, Zimmer and McGlynn 2018).

4.2. Human and environmental implications
Widespread trends towards more intermittent flow
in southern CONUS have significant implications
for society and water management. Non-perennial
streams provide numerous ecosystem services (Datry
et al 2018a, Kaletová et al 2019, Stubbington et al
2020) and shifts towards more frequent dry con-
ditions may enhance some ecosystem services (e.g.
reducing flood risk by enhancing infiltration capa-
city; Shanafield and Cook 2014) while decreasing
others (e.g. decreasing food production and recre-
ation through reduced fish habitat; Perkin et al 2017).
By contrast, decreased cold-season intermittency in
northern CONUS could lead to negative outcomes
such as increased rain-on-snow driven spring flood-
ing across the US Midwest (Li et al 2019), while
improving some ecosystem services associated with
water-related recreation. Effects of changing stream
intermittency can also be non-local: the gages exhib-
iting stream intermittency we studied occurred most
often in relatively small headwater catchments (figure
S1), and therefore increasing stream intermittency
could lead to decreases in downstream surface water
availability for municipal, industrial, and agricultural
needs. Ultimately, the implications of these trends for
society will depend on the relative values of compet-
ing ecosystem services and the degree to which these
services are replaceable (Datry et al 2018a).

The observed widespread trends in no-flow dur-
ation, dry-down period, and no-flow timing also
have diverse and potentially significant implications
for aquatic ecosystems, biogeochemical cycling, and
water quality. These temporal and spatial trends in
intermittency could inform and refine the biome-
specific approach to characterizing freshwater ecosys-
tem function (Dodds et al 2019), perhaps through the
more explicit representation of the different stream
drying regimes (Price et al 2021). Intermittency is a
key aspect of stream ‘harshness’ for organisms inhab-
iting intermittent waters (Fritz and Dodds 2005),
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and we found that the duration of no-flow signi-
ficantly increased at 26% of non-perennial gages
indicating widespread harsher conditions for aquatic
ecosystems. Stream invertebrate communities typic-
ally become less biodiverse as the duration of the
no-flow period increases (Datry et al 2014a), and
the annual no-flow duration is the most import-
ant hydrologic signature in explaining diversity in
streams (Leigh and Datry 2017). This suggests that
the widespread drying trends we found may be
associated with decreasing biological diversity for
most aquatic taxonomic groups. In settings where
drying has historically been less common, such as
humid regions, increased drying may trigger shifts
to more desiccation-resistant communities (Drum-
mond et al 2015) and therefore these settings may
experience greater ecological changes in response to
changes in drying than more arid regions where dry-
ing has been historically common. No-flow dura-
tion also affects biogeochemistry and therefore has
potential water quality implications. Longer no-flow
duration has been found elsewhere to contribute
to decreased gross primary productivity (Colls et al
2019), increased ammonia oxidation activity, and
increased sediment nitrate content (Merbt et al 2016).
Therefore, regionally distinct shifts in ecological and
biogeochemical processes may be associated with
longer/shorter no-flow duration in southern/north-
ern CONUS, respectively.

We also observed trends for a shorter dry-down
period and an earlier no-flow timing for 10% of the
streams investigated. Drying rate acts as an import-
ant environmental cue for stream invertebrate com-
munities (Drummond et al 2015), and the no-flow
timing controls habitat connectivity during critical
spring spawning periods for fish in non-perennial
river networks (Jaeger et al 2014). While some spe-
cies have adapted to migrate to perennial reaches
as flow rates decline (Lytle et al 2008), more rapid
drying could disrupt such responses (Robson et al
2011). Furthermore, spring is the high-flow season in
the southwestern US where we observed widespread
trends towards earlier no-flow conditions (figures 1
and 4). Earlier drying during this periodmay decrease
primary productivity, which is often greatest in spring
prior to leaf-out of riparian ecosystems (Myrstener
et al 2021), while concurrently enhancing leaf litter
decompositionwithin streams (Gonçalves et al 2019).
Given the widespread changes in stream intermit-
tency and associated societal, ecological, and biogeo-
chemical implications of these changes, water man-
agement and policy around non-perennial streams
needs to be responsive not just to whether a stream is
non-perennial or not, but also the regional patterns
and drivers of changes in duration, timing, and dry-
down period.

4.3. Monitoring and uncertainty in non-perennial
streams
While our analyses revealed widespread trends in
stream intermittency and investigated watershed-
scale potential drivers, we acknowledge that some
reach-scale factors could not be resolved (Zimmer
et al 2020). While USGS streamflow data under-
goes extensive quality assurance before release (Sauer
2002, Sauer and Turnipseed 2010), low flow is partic-
ularly challenging to measure, leading to uncertainty
associated with stage-discharge relationships and the
stage corresponding to no-flow. For example, we are
unable to distinguish no-flow conditions where pon-
ded surface water remains from no-flow readings
where the channel is completely dry, despite differ-
ing ecological, biogeochemical, and societal impacts
of these two conditions (Kaletová et al 2019, Stub-
bington et al 2020). Furthermore, in some settings
theremay be subsurface flow that bypasses the stream
gage and emerges downstream, particularly where the
subsurface is highly transmissive (Costigan et al 2015,
Zimmer et al 2020). Since some of our gages are
within the same watershed, there may be correlated
intermittency dynamics that propagate up- or down-
stream within a watershed. We found that poten-
tial redundancy among gages within the same water-
shed did not impact our results or conclusions (sup-
plemental information, section SI4), and therefore
our results provide the most complete possible pic-
ture of changing intermittency overCONUSgiven the
current distribution of gaged non-perennial streams
(figure 1).

Considering these uncertainties, our study high-
lights the critical need for adequate non-perennial
stream gage coverage in the US hydrometric net-
work by documenting stream intermittency trends
across large portions of CONUS. Typically, river gages
are installed to support human-oriented water needs,
including allocation of water resources, flood haz-
ard mitigation, and riverine navigation (Ruhi et al
2018). Because of this priority in gage placement,
stream reaches that experience low-flow conditions
are underrepresented in gage networks, with wide
swaths of the CONUS that do not have any long-term
gaging on non-perennial streams (Zimmer et al 2020)
(figure 1(a)). Thus, our analysis paints an incom-
plete and potentially conservative picture of chan-
ging stream intermittency across CONUS. Our find-
ings illustrate clear regional patterns in intermittency
despite the relatively low coverage of non-perennial
streams in the existing US gage network. Place-
ment of additional gages in non-perennial streams
in a variety of ecoregions would improve our abil-
ity to understand drivers of change and inform
management and policy related to non-perennial
streams.
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4.4. Policy andmanagement of non-perennial
streams
Recent U.S. policy debate has centered on the ques-
tion of whether waters that dry on a regular basis—
non-perennial streams andwetlands—are sufficiently
critical to the integrity of downstream perennial
waters that they should receive the same federal pro-
tections (Alexander et al 2018, Sills et al 2018, Walsh
and Ward 2019, Sullivan et al 2020). The Rapanos v.
US (2006) Supreme Court decision addressed which
waters would receive federal protections under the
Clean Water Act and urged regulatory agencies to
issue clear guidance. In response, the US EPA pro-
mulgated the Clean Water Rule (2015), which was
then repealed and replaced by the Navigable Waters
Protection Rule (2020), and is currently (as of 2021)
under further review. Our finding that stream inter-
mittency is changing over much of CONUS leads to
the conclusion that binary classifications into ‘per-
ennial’, ‘intermittent’, and ‘ephemeral’ used in these
US policies may not be valid as non-perennial flow
dynamics can change through time. Given the pre-
dictable drivers of flow intermittency we identify,
the time period over which these classifications are
determined should faithfully reflect the mechanisms
driving local intermittency, such as climate change. In
addition, the regional nature of change we observed
(figure 4) and the degree to which stream inter-
mittency is predictable based on climate, land/wa-
ter use, and physiography (figure 6) hints that future
policy may be able to target different aspects of non-
perennial flow for improved management. Our work
here is one possible basis for assessing flow frequency
to determine the jurisdictional status of a river or
stream, consistent with the procedures set forth in
the Navigable Waters Protection Rule. Critically, fur-
ther work is needed to understand how the hydrolo-
gic change we document here may cascade to impact
physical, chemical, and biological functions of both
non-perennial streams and downstream perennial
water bodies, and to understand the broader implic-
ations of changing stream intermittency for society.

5. Conclusions

Our study revealed dramatic and widespread changes
in stream intermittency across CONUS. Half of the
non-perennial gage network has experienced a signi-
ficant change in the no-flow duration, no-flow tim-
ing, and/or dry-down period over the past 40 years,
with distinct regional patterns. Streams are experien-
cing longer no-flow conditions and an earlier onset
of no-flow in the southern CONUS, while the oppos-
ite is true in the northern CONUS. By contrast,
changes in the dry-down period are less prevalent
and less spatially consistent. We developed predictive
models for these intermittency signatures and found
that spatiotemporal variability is driven by a mix-
ture of climate, land/water use, and physiographic

characteristics. Changes in no-flow duration and
especially timing are primarily driven by climate,
while land/water use and physiography have a larger
influence over the dry-downperiod.Human activities
such as reservoirs or water use did not show up as sig-
nificant drivers of variability for any of the intermit-
tency signatures. This indicates that watershed-scale
management interventions may struggle to modify
the timing, duration, or dry-down period of no-
flow, which are more strongly driven by regional to
global climate change. The changes we document are
likely to have substantial ecological, biogeochemical,
and societal implications and their consideration will
improve watershed management and policy.
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