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Abstract: Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical
and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based
treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of
injury or wear. Cell–cell and cell–matrix interactions have been shown to drive cell differentiation
pathways. Biomaterials for clinically relevant applications can be generated from decellularized
porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and
grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to
create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in
tissue culture conditions. Results presented here evaluate the decellularization process histologically
and molecularly. We identified new and novel biomarker profiles that may aid future cartilage
decellularization efforts. Additionally, the resulting scaffold was characterized using scanning
electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized
scaffold was evaluated by quantitative real-time PCR for gene expression analysis.

Keywords: cartilage; chondrocytes; decellularized; scaffold; proteomics; real time quantitative PCR;
histology; scanning electron microscopy; C28/I2 cells; porcine auricular cartilage

1. Introduction

Osteoarthritis (OA) is defined as a chronic, debilitating, and painful disease. It is
estimated to be one of the leading causes of disability worldwide [1–4]. Sports, recreational
activities, and even daily movements can contribute to the formation of cartilage lesions.
Lesions or chondral defects, when left untreated, can lead to degenerative joint disease that
may include an inflammatory response [4,5].

Knee OA is the most common type of OA and accounts for 70% of arthritis-related
hospital admissions and 23% of clinical visits [2]. Given the anatomical position of the knee,
it acts as a shock absorber by withstanding both tension and compression [6]. Hyaline carti-
lage within articular joints is located at the ends of long bones. Cartilage lacks nerve fibers
and is avascular. It is tough, but flexible, and contains large amounts of glycosaminoglycans
(GAGs) such as chondroitin sulfate and hyaluronic acid (HA), which interact with type
II/IX/XI heterotypic collagen fibrils. Proteoglycans, such as aggrecan, are predominant
molecular constituents of articular cartilage [2,4,7].
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The precisely organized architecture of the extracellular matrix (ECM) provides the
normal structural integrity of tissues. The function of the articular cartilage is to protect the
subchondral bone from mechanical forces by distributing the load equally while maintain-
ing low friction across the joint surfaces [2,4,7]. While normal healthy cartilage supports
tissue homeostasis and chondrocyte function, osteoarthritic cartilage does not effectively
carry out the functions of maintaining cartilage homeostasis and cellular differentiation [4].

Chondrocytes are the predominant cell type in growing cartilage. These cells produce
new ECM until the skeleton stops growing at adolescence. Mature chondrocytes rarely
divide and have limited ability to proliferate. Chondrocytes have been shown to decrease
with age, which may explain, in part, why cartilage lesions do not spontaneously heal [4,6,8].
Older adults, aged 50 and older, are at an increased risk for knee OA and this may be due in
part to hormonal changes that are associated with biological aging in the chondrocytes [2].
Osteoarthritic cartilage does not effectively carry out the functions of normal healthy
cartilage and treatment options are limited [2,4]. Articular cartilage degeneration begins at
the surface and leads to the onset of fibrillation, which disrupts the molecular framework
of the ECM [9,10]. These changes may be triggered by mechanical damage or wear and
tear of the tissue [11]. The collagen fibrils disorient beneath the surface and a decrease
in HA and aggrecan have been reported [12,13]. A better understanding of the cartilage
degeneration and regeneration mechanisms would be useful to help develop new potential
treatment strategies to repair damaged cartilage. Currently, the primary treatment option
for knee OA is full knee replacement [2].

Cell-based strategies provide an alternative to full knee replacement; however, the
major limitation to current recellularization approaches through cell therapy is that the out-
come is often the formation of fibrocartilage rather than the desired hyaline cartilage [14–16].
Additionally, cell retention within the target area is a challenge, and in some cases, cells
move to other parts of the body [2,6,8]. A suitable scaffold may alleviate this problem.
Current scaffolds used for cartilage regeneration include synthetic and natural materials.
Natural materials include agarose, alginate, chitosan, collagen, fibrin, and hyaluronan. Syn-
thetic polymers include polylactic acid (PLA), polyglycolic acid (PGA), and their copolymer
polylactic-co-glycolic acid (PLGA). Scaffolds used in tissue engineering approaches for
cartilage regeneration have recently been reviewed in Huang et al. [17]. Hybrid approaches
have been used in which cartilage insets are placed within a 3D-printed scaffold [18], show-
ing promising results histologically. Biomaterials designed with improved cell adhesion
that can promote differentiation leading to healing in the damaged tissue can supplement
cell-based approaches for the treatment of cartilage lesions and OA treatment [2,4,5].

In this study, decellularization strategies for cartilage were evaluated based on their
ability to remove DNA and other cellular material while preserving extracellular matrix
components of the original tissue. We performed decellularization using a combination of
chemical and physical methods. Surfactants, acid and bases, and enzymes were included in
the chemical and enzymatic treatment to remove cells [19–21]. Following decellularization,
C28/I2 human chondrocytes, which were established by transfection of primary cultures of
juvenile costal chondrocytes [22], were seeded onto the scaffold and the cellular response
to the scaffold was evaluated.

2. Results

After removal of all tissue from the surface of the cartilage, the cartilage tissue was
revealed as shown in Figure 1a. Discs of 8 mm diameter and 1.08 mm thickness were
created from the larger cartilage (Figure 1b).
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Figure 1. Cartilage scaffold resulting from decellularization process: (a) porcine auricular cartilage
after dissection and initial processing; (b) 8 mm diameter cartilage disc after decellularization process
was complete. Discs of decellularized cartilage were formed using an 8 mm diameter biopsy punch.
Scale bars: (a) 30 mm; (b) 2 mm.

After a subsequent 24 h hyaluronidase treatment [23], followed by a 24 h 37 ◦C DNase
and RNase treatment [19,23], we evaluated the tissues by histology and scanning electron
microscopy. Freeze–thaw cycles were repeated followed by DI water incubation, and SDS
treatment at 37 ◦C, with subsequent DNase digestion for 72 h at 37 ◦C with agitation. The
overall decellularization process is depicted in Figure 2. Results from histological analysis
are shown in Figure 3a,b. Histological analysis showed a decrease in cellular structures
with the preservation of the extracellular matrix. Hoechst staining showed DNA content to
be reduced (Figure 3c,d).

Figure 2. Flowchart for decellularization process.
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Figure 3. Visualization of cartilage tissue by histology. (a) Nondecellularized porcine cartilage stained
with H&E, 10× transverse image. (b) H&E stain on final decellularized cartilage, transverse image.
(c) Hoechst stain to fluorescently visualize DNA (blue). Arrows indicate nuclei. (d) Hoechst stain
shows absence of DNA after decellularization process (see absence of blue). Scale bar = 100 µm for
(a,b); scale bar = 50 µm for (c,d).

To quantify the depletion of DNA in the samples, samples were subjected to a DNA
extraction process before and after decellularization. We found that the decellularization
process removed 98.8% of the DNA associated with cells (Figure 4).

Figure 4. DNA content before, during sequential stages, and after decellularization process. DNA
was extracted and quantified spectrophotometrically. Quantitative measurements of DNA within
scaffolds before, during, and after decellularization process indicated that residual DNA was at
approximately 24.76%, 2.63%, 0.66%, and finally 0.22% of the original content. Error bars: Mean ±
standard error of the mean. N = 6.
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Scanning electron microscopy was performed to monitor tissue throughout the decellu-
larization process. Surface features are visualized in Figure 5. Prior to the decellularization
process, cells, although present within the tissue, are not visible at the surface of the
cartilage samples at either low (Figure 5a) or high magnification (Figure 5b). The sur-
face features revealed by the decellularization process and scanning electron microscopy
demonstrate an increase in surface complexity and exposure of the collagenous fibrillar
matrix existing within the tissue (Figure 5c,d).

Figure 5. Visualization of cartilage by scanning electron microscopy. (a) Cartilage prior to treatment;
(b) higher magnification of cartilage prior to treatment, where the tissue appears smooth and intact;
(c) final decellularized cartilage disc; (d) higher magnification of decellularized cartilage disc. Ap-
pearance after decellularization indicates a rough surface with increased surface area and exposed
collagen fibrillar networks. Scale bars = 20 µm.

To complement the analysis of DNA depletion after treatment, we carried out mass
spectrometry to analyze the protein content of the scaffold before and after treatment
for decellularization. Nuclear proteins were considered for their potential as suitable
biomarkers for decellularization. We investigated a profile of 20 nuclear proteins that
included APTX, UIMC1, DMRT1, H3F3A, MX1, ISG20, IREB2, MYOCD, NFATC1, NROB1,
PTBP1, POU5F, SORBS2, SRPK3, SREBF1, HISTONE H4, STAT5A, HNF1B, DHX16, and
RAG1. Of these, 15 were depleted to a level that rendered them no longer detectable by
mass spectrometry. Five of these (HISTONE H4, STAT5A, HNF1B, DHX16, and RAG1)
were depleted by 83–96%, indicating that there may be biochemical interactions mediating
molecular interactions independent of the cellular compartment. We propose a nuclear
protein profile of 15 proteins that may be used to assess and evaluate the efficiency of the
decellularization process. The nuclear proteins comprising this profile are listed in Table 1.
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Table 1. Proteomic analysis of proteins removed by decellularization.

Nuclear Proteins Depleted by Decellularization Process % Depletion Gene Symbol

Aprataxin 100 APTX
BRCA1-A complex subunit RAP80 100 UIMC1

Doublesex- and mab-3-related transcription factor 1 100 DMRT1
Histone H3.3 100 H3F3A

Interferon-induced GTP-binding protein Mx1 100 MX1
Interferon-stimulated gene 20 kDa protein 100 ISG20
Iron-responsive element-binding protein 2 100 IREB2

Myocardin 100 MYOCD
Nuclear factor of activated T-cells, cytoplasmic 1 100 NFATC1
Nuclear receptor subfamily 0 group B member 1 100 NR0B1

Polypyrimidine tract-binding protein 1 100 PTBP1
POU domain, class 5, transcription factor 1 100 POU5F1

Sorbin and SH3 domain-containing protein 2 100 SORBS2
SRSF protein kinase 3 100 SRPK3

Sterol regulatory element-binding protein 1 100 SREBF1
Histone H4 96 Histone H4

Signal transducer and activator of transcription 5A 89 STAT5A
Hepatocyte nuclear factor 1-beta 85 HNF1B

Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 85 DHX16
V(D)J recombination-activating protein 1 83 RAG1

In addition to nuclear biomarkers, we also analyzed organellar cellular proteins
including those associated with mitochondria, Golgi, and endoplasmic reticulum. We
investigated five Golgi-specific proteins, 29 mitochondrial proteins, and 20 endoplasmic
reticulum proteins that were depleted as a result of the decellularization process. We
found that the Golgi proteins B3GALNT1, MAN1A1, FUT2, and MGAT4C represented a
protein profile that may be suitable to monitor cellular depletion during decellularization
processes, however the Golgi protein B3GNT5 was not fully depleted in our experiments
potentially due to secondary interactions. Golgi proteins and the extent to which depletion
was observed are listed in Table 2.

Table 2. Proteomic analysis of Golgi protein depletion by decellularization.

Golgi Proteins % Depletion Gene Symbol

UDP-GalNAc:beta-1,3-N-acetylgalactosaminyltransferase 1 100 B3GALNT1
Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA 100 MAN1A1

Galactoside 2-alpha-L-fucosyltransferase 2 100 FUT2
Alpha-1,3-mannosyl-glycoprotein

4-beta-N-acetylglucosaminyltransferase C 100 MGAT4C

Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase 66 B3GNT5

We investigated mitochondrial proteins to determine a protein profile of mitochon-
drial biomarkers that may serve as a reference set to provide more reliable indicators
of decellularization. We measured the protein content of 29 mitochondrial proteins and
found that 19 of these (ACO2, AKAP10, GOT2, CPT1B, CYP11A1, ATC4D, CYBB, COX17,
CYP11B1, GPAM, GATM, MUT, RHOT2, UCP2, UCP3, MT-ND5, SDHA, CUCLG1, and
VARS2) were efficiently depleted through the decellularization process. In contrast, some
mitochondrial proteins were detected after the decellularization process, indicating that
they may not be reliable indicators of decellularization. Mitochondrial proteins and their
extent of depletion are listed in Table 3.
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Table 3. Mitochondrial proteins depleted during decellularization.

Mitochondrial Proteins % Depletion Gene Symbol

Aconitate hydratase, mitochondrial 100 ACO2
A-kinase anchor protein 10, mitochondrial 100 AKAP10
Aspartate aminotransferase, mitochondrial 100 GOT2

Carnitine O-palmitoyltransferase 1, muscle isoform 100 CPT1B
Cholesterol side-chain cleavage enzyme, mitochondrial 100 CYP11A1

Cysteine protease ATG4D 100 ATG4D
Cytochrome b-245 heavy chain 100 CYBB

Cytochrome c oxidase copper chaperone 100 COX17
Cytochrome P450 11B1, mitochondrial 100 CYP11B1

Glycerol-3-phosphate acyltransferase 1, mitochondrial 100 GPAM
Glycine amidinotransferase, mitochondrial 100 GATM
Methylmalonyl-CoA mutase, mitochondrial 100 MUT

Mitochondrial Rho GTPase 2 100 RHOT2
Mitochondrial uncoupling protein 2 100 UCP2
Mitochondrial uncoupling protein 3 100 UCP3

NADH-ubiquinone oxidoreductase chain 5 100 MT-ND5
Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 100 SDHA

Succinate-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial 100 SUCLG1
Valine-tRNA ligase, mitochondrial 100 VARS2

Amine oxidase [flavin-containing] B 91 MAOB
Mitochondria-eating protein 91 SPATA18

Nicotinamide phosphoribosyltransferase 91 NAMPT
Hexokinase-2 OS=Sus scrofa 87 HK2

Kynurenine 3-monooxygenase 85 KMO
NADP-dependent malic enzyme 83 ME1

Cytochrome P450 3A29 78 CYP3A29
Glyceraldehyde-3-phosphate dehydrogenase 66 GAPDH

Hydroxymethylglutaryl-CoA synthase, mitochondrial 66 HMGCS2
Creatine kinase U-type, mitochondrial 55 CKMT1

We investigated endoplasmic reticulum proteins by mass spectrometry before and
after decellularization and found that a protein profile comprising 16 prevalent endoplas-
mic reticulum proteins may be considered as reliable biomarkers for decellularization
processes. These include RPS13, RPS3, CYP8B1, RPL14, RPL6, CRYBB1, RPN2, HSPA5,
FOLH1, HSPA1A, HSPA1B, HSPA1L, HMOX1, GANAB, ATP2A2, and VCP. Other endo-
plasmic reticulum proteins detected by mass spectrometry were not as efficiently removed
from the tissue by the decellularization process and may indicate non-specific interactions
that would render these proteins unreliable as indicators of decellularization. Endoplasmic
reticulum proteins and the extent to which they were depleted during the decellularization
process are listed in Appendix A, Table A1.

We investigated 65 membrane proteins to analyze the extent to which they were
depleted during the decellularization process and found 38 that were reliably serve as
indicators of decellularization. The biomarker profile of membrane proteins include ARF6,
ALOX15, CAPN1, CXCR4, CYSLTR2, DSG1, EDNRA, GJA1, RABGGTA, GGT1, GHR,
GNAQ, ITGB1, IFNAR1, IL4R, IL6R, LDLR, KIT, STEAP1, NTRK3, PTH1R, PDZD11,
ATP2B1, PECAM1, PCDH11X, RAMP1, SAG, SIGLEC1, SLA-DQCA, SLA-DQCB, SLA-
DQDB, KCNN3, SLC5A1, SLC22A6, SLC22A7, TPO, TLR9, and TGFBR3. Membrane
protein biomarkers that may serve as suitable indicators of cellular depletion are listed in
Appendix A, Table A2.

Analysis of cytosolic proteins showed that decellularization depleted the samples
of these proteins as well. As shown in Appendix A, Table A3, we identified 40 cytosolic
proteins that were depleted to a level exceeding 78%. These profiles may be useful to others
that desire to track the efficiency of the decellularization process.

We utilized mass spectrometry to characterize the composition of the scaffold resulting
from our process. We quantified extracellular matrix proteins before and after decellu-
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larization. As expected, we found that many of the noncollagenous extracellular matrix
proteins were significantly depleted during the process, as shown in Table 4. However,
collagens were retained within the scaffold, as shown in Figure 6.

Table 4. Noncollagenous extracellular matrix proteins after decellularization.

Extracellular Matrix Noncollagenous Proteins % Depleted Gene Symbol

Fibromodulin 100 FMOD
Dystroglycan 100 DAG1

Fibrillin-1 100 FBN1
Aggrecan core protein 100 ACAN

Decorin 100 DCN
Lactadherin 98 MFGE8

Hyaluronan and proteoglycan link protein 1 90 HAPLN1
Tenascin 70 TNC
Biglycan 57 BGN

Figure 6. Collagenous composition of the decellularized scaffold. Blue bars show the collagens
present in cartilage prior to the decellularization process, and red bars show composition of the
scaffold after the decellularization process. The length of the bars to the left and right corresponds
to abundance of the specific collagens. Collagen alpha chains are listed in the order of decreasing
prevalence within native cartilage. The resulting decellularized scaffold (red) contained COL2A1,
COL1A1, COL6A3, COL1A2, COL11A2, COL11A1, COL4A5, COL3A1, COL5A2, COL16A1, COL5A1,
COL4A2, COL4A3, COL5A3, COL27A1, COL13A1, COL4A1, COL12A1, and COL17A1. Minor
contributions of COL7A1, COL22A1, COL28A1, COL4A4, COL9A2, COL6A2, COL14A1, COL8A2,
COL18A1, COL23A1, COL6A6, and COL20A1 were detected after decellularization. Horizontal axes
values represent the sum of peptide spectrum matches (PSM), the total number of identified peptides
for each collagen as an indication of quantity.

Collagen alpha chains were analyzed before and after decellularization to assess
collagenous composition of the resulting decellularized scaffold. The collagen alpha chains
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were detected in native cartilage by mass spectrometry prior to decellularization. After the
decellularization process, nine of these were no longer detectable as shown in Figure 6. Blue
horizontal bars indicate the composition of cartilage before the decellularization process,
and red bars show the composition of the scaffold after the decellularization process. The
resulting decellularized scaffold (red) contained COL2A1, COL1A1, COL6A3, COL1A2,
COL11A2, COL11A1, COL4A5, COL3A1, COL5A2, COL16A1, COL5A1, COL4A2, COL4A3,
COL5A3, COL27A1, COL13A1, COL4A1, COL12A1, and COL17A1. Minor contributions
by COL7A1, COL22A1, COL28A1, COL4A4, COL9A2, COL6A2, COL14A1, COL8A2,
COL18A1, COL23A1, COL6A6, and COL20A1 were detected in the final decellularized
cartilage scaffold (Figure 6). The final decellularized cartilage scaffold did not contain
detectable levels of COL5A1, COL10A1, COL8A1, COL21A1, COL25A1, COL9A1, COL6A5,
COL15A1, and COL26A1.

To test the biocompatibility of our scaffold, we seeded C28/I2 human chondrocyte
cells onto the scaffold and maintained these constructs in culture. After one week, we
observed cells associated with the surface of our scaffold, as shown in Figure 7. Scanning
electron micrographs showed that the cells were maintained on the surface of the scaffold.
Cellular clusters were observed after 8 months as shown in Figure 7b.

Figure 7. Scanning electron micrographs of C28/I2 chondrocyte cells on decellularized scaffold. (a) Cells attached to
scaffold after 1 week in culture. (b) Cells on scaffold after 8 months in culture. Scale bar = 20 µm.

Cellular response was evaluated using quantitative real-time PCR to monitor the
expression of genes related to chondrogenic differentiation. Five candidate housekeeping
genes were compared for all experimental conditions used in this study to identify those
that remain constant and may therefore serve as appropriate housekeeping genes. GAPDH
and HPRT1 were selected as the housekeeping gene for normalization in these experiments
based on comparison to three other candidate housekeeping genes and were found to be
stably expressed independent of experimental conditions based on minimal variance as
shown in Figure 8.

The expression levels of genes related to chondrogenic differentiation were determined
relative to housekeeping genes and these relative abundance values were reported as mean
plus/minus standard deviation. Correlation analysis of gene expression was carried out
to compare gene expression over time on conventional tissue culture plastic (Figure 9a)
comparing day 7 to day 0 in culture. Correlation analysis was also carried out to compare
gene expression of cells grown on the scaffold to the gene expression levels on tissue culture
plastic after 7 days in culture (Figure 9b). The diagonal line indicates the trend expected
if there is no change between the cartilage scaffold and plastic. Data points above the
line reflect genes expressed at higher levels on the cartilage scaffold compared to plastic
(Figure 9b). Data points below the diagonal line indicate genes that were expressed at
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higher levels on tissue culture plastic compared to the cartilage scaffold. Data points that
fall on the line were not changed based on culture conditions.

Figure 8. Analysis of variance of difference to determine most suitable housekeeping genes. Candidate
housekeeping genes were considered in a pairwise fashion to determine which ones were the most
consistently expressed independent of experimental condition within this study. GAPDH and HPRT1
displayed the minimum variance of difference over all experimental conditions and timepoints.

Figure 9. Correlation analysis of gene expression during growth on tissue culture plastic and cartilage scaffold. C28/I2
cells were grown under conventional conditions on tissue culture plastic for one week (a) and compared to cells grown
on cartilage scaffold for 7 days (b). The diagonal line in (a,b) indicates the trend expected if there was no change between
conditions; day 0 versus day 7 on tissue culture plastic in (a) and day 7 on tissue culture plastic versus day 7 on cartilage
scaffold in (b). Data points above the line reflect genes expressed at higher levels on the cartilage scaffold compared to
plastic. Data points below the line indicate genes that were expressed at higher levels on plastic compared to the cartilage
scaffold. Data points that fall on the line were not changed.

A total of 77 genes were analyzed during C28/I2 chondrocyte cell culture and differ-
entiation for 7 days. We identified 52 genes that were upregulated from day 0 to day 7 on
standard tissue culture plastic and therefore serve as indicators of chondrocyte phenotype.
Of those 52 genes, 33 genes also showed an increase in expression when cells were cul-
tured on decellularized 3D porcine scaffold. A total of 19 genes were upregulated in cells
maintained on tissue culture plastics but were not upregulated significantly during the
same time period by cells cultured on decellularized porcine cartilage scaffold. A total of
25 genes were upregulated in cells grown on decellularized scaffold that were not observed
to be upregulated on tissue culture plastic under standard 2D culture conditions and these
are summarized in Table 5 and Figure 10.
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Table 5. Genes unique to scaffold compared to growth on tissue culture plastic.

Gene Symbol Name Function Reference

CLEC3B C-type lectin domain family 3,
member B

Encodes tetranectin. Cellular response to
transforming growth factor stimulus.

Steinberg 2017 [24]
Valdes 2011 [25]

Karlsson 2010 [26]
Mazzoni 2020 [27]

COL12A1 Collagen, type XII, alpha 1

Encodes the alpha chain of type XII collagen.
Modifies the interactions between collagen

fibrils and the surrounding matrix. A
component of cartilage ECM.

Johnson 2015 [28]
Zeggini 2012 [29]

Manon-Jensen 2016 [30]
Luo 2017 [31]

Agarwal 2012 [32]

COL15A1 Collagen, type XV, alpha 1

Encodes the alpha chain of type XV collagen.
Strongest expression in basement membrane

zones; may function to adhere basement
membranes to underlying connective tissue.

Karlsson 2010 [26]
Zhou 2010 [33]

Valdes 2011 [25]

CTGF Connective tissue growth factor

Modulates signaling pathways leading to cell
adhesion and migration, along with ECM

deposition and remodeling, which together lead
to tissue remodeling.

Tang 2018 [34]
Ivkovic 2003 [35]
Shi-Wen 2008 [36]
Lipson 2012 [37]

ECM1 Extracellular matrix protein 1
Inhibits chondrocyte hypertrophy, matrix

mineralization, and endochondral
bone formation.

Kong 2016 [38]
Mongiat 2003 [39]

Frahs 2019 [40]
Kong 2010 [41]

ICAM1 Intercellular adhesion molecule 1 Encodes cell surface glycoprotein.
Yatabe 2009 [42]

Gromova 2018 [43]
Rangkasenee 2013 [44]

ITGA3
Integrin, alpha 3 (antigen CD49C,

alpha 3 subunit of
VLA-3 receptor)

Involved in cell adhesion and collagen binding. Zhang 2019 [45]

ITGA4
Integrin, alpha 4 (antigen

CD49D, alpha 4 subunit of
VLA-4 receptor)

Functions in cell surface adhesion and signaling,
ECM receptor interaction.

Djouad 2007 [46]
Weeks 2012 [47]

Zhu 2017 [48]

ITGA6 Integrin, alpha 6 Functions in cell surface adhesion
and signaling.

Tu 2020 [49]
LaPointe 2013 [50]

LAMA1 Laminin, alpha 1
Major component of the basement membrane.
Associated with cell adhesion, differentiation,

migration, and signaling.

Zhang 2019 [45]
Wang 2019 [51]
Soki 2018 [52]

Adapala 2016 [53]
Grogan 2013 [54]
Mann 2019 [55]

MMP10 Matrix metallopeptidase 10
(stromelysin 2)

Involved in the breakdown of extracellular
matrix in normal physiological processes, such

as tissue remodeling.

Dehne 2010 [56]
Gohring 2010 [57]

MMP12 Matrix metallopeptidase 12
Involved in the breakdown of extracellular

matrix in normal physiological processes, such
as tissue remodeling.

Dehne 2010 [56]
Lv 2016 [58]

MMP9
Matrix metallopeptidase 9

(gelatinase B, 92 kDa gelatinase,
92 kDa type IV collagenase)

Involved in the breakdown of extracellular
matrix in normal physiological processes, such

as tissue remodeling.

Challa 2010 [59]
Yang 2015 [60]
Miao 2004 [61]

SELP Selectin P (granule membrane
protein 140 kDa, antigen CD62)

This protein redistributes to the plasma
membrane during platelet activation

and degranulation.

Weeks 2012 [47]
Gari 2016 [62]

Rouillard 2016 [63]
Bonn 2010 [64]
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Table 5. Cont.

Gene Symbol Name Function Reference

THBS3 Thrombospondin 3 Mediates cell-to-cell and cell-to-matrix
interactions. Found in developing cartilage.

Vos 1992 [65]
Adolph 1995 [66]
Djouad 2007 [46]
Posey 2008 [67]

Hankenson 2005 [68]

VCAN Versican
Major component of the ECM; involved in cell

adhesion and proliferation
during chondrogenesis.

Kamiya 2006 [69]
Choocheep 2010 [70]
Sztrolovics 2002 [71]

VTN Vitronectin ECM markers that promote cell adhesion
and spreading.

Luo 2017 [72]
Vieira 2015 [73]

Pei 2013 [74]

Figure 10. Gene expression of markers in C28/I2 cells. Gene expression for extracellular matrix, cell
adhesion molecules, and cell–cell attachment proteins was measured by quantitative real-time PCR.
The venn diagram clusters genes with respect to upregulation in cells grown on conventional tissue
culture plastic shown in yellow, in cells grown on the decellularized cartilage scaffold shown in pink.
Genes that were upregulated under both conditions are shown in the orange overlap region of the
Venn diagram.

3. Discussion and Conclusions

In this study, we used decellularization to create an extracellular matrix scaffold that
supports chondrocyte cell attachment and growth. We evaluated the decellularization
process histologically and molecularly. Our conclusions identify new and novel biomarker
profiles that may aid future cartilage decellularization efforts. The resulting scaffold was
characterized using scanning electron microscopy, fluorescence microscopy, and proteomics.
Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR
and mass spectrometry for gene expression and proteomic analysis to analyze collagen
content. Our approach demonstrated effective decellularization of a porcine cartilage
scaffold by monitoring DNA content before and after decellularization.

Osteoarthritis is one of the leading causes of disability worldwide [1–4]. Many studies
have investigated the use of various scaffolds as provisional chondro-inductive matri-
ces [1,2,5]. In addition to biocompatibility, criteria for tissue engineering composites
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include (1) resorbability, (2) the ability to resist mechanical stresses, and (3) clinical rele-
vance. Scaffolds must support cell differentiation and maintenance of a mature cartilage
phenotype. However, there is no standard decellularization method to date. Previously
published approaches include chemical, physical, or combinative methods [6–8,19].

The ultimate goal of decellularization is to remove all native genetic information and
cellular components from the ECM. Surfactants, acid and bases, and enzymes make up
the chemical and enzymatic portion of the process. Mechanical agents are also under
study to determine the effectiveness for decellularization of a tissue or organ. These agents
typically work by lysing cells through disrupting the phospholipid bilayer of the cell
membrane. Ionic surfactants are widely used to remove cells and genetic material [19,20].
Treatments should be applied with continuous shaking [75,76]. Sodium dodecyl sulfate
(SDS) currently meets the standard requirements of complete cell removal and elimination
of at least 90% DNA [23]. SDS has been shown to damage structural properties if used
at high concentration for long durations [6,7,20,21,23]. A comparison of five different
decellularization treatments showed that several methods resulted in a significant reduction
of DNA. Treatment with 2% SDS for eight hours resulted in the greatest decrease of DNA;
with only minor decreased collagen content [6,7,20].

Some conflicting information exists in the literature regarding the duration of 1%
SDS washes. The time to reach desired decellularization results range from 24 h to seven
days [23,75,77]. The reported results indicate that the number of cells could be significantly
reduced from engineered constructs. Higher or lower levels of DNA are most likely related
to the thickness of tissue and the concentration and duration of specific detergents [20,23,77].

Only a few studies have explored decellularization of whole cartilage scaffolds for
joint regeneration [23,75]. In this study, we used ethanol to defat samples and guanidine
hydrochloride and sodium acetate to denature and remove noncollagenous components
from cartilage dissected from the ear. Guanidine hydrochloride and sodium acetate have
been shown to be effective for denature and remove noncollagenous components [75].

In this study, sodium hydroxide (NaOH) was used to inactivate cellular proteins and
pathogens and denature DNA and RNA. Previous studies have shown that NaOH is an
effective means of inactivating cellular proteins and pathogens and denaturating DNA and
RNA. NaOH treatment removes cells and helps increase the porosity of the tissue [23,75].

Our study included the use of freeze–thaw cycles to help increase the porosity by
forming more pores Freeze–thaw cycles have been shown to result in the formation of
pores after ice crystal formation in addition to contributing to the disruption of resident
chondrocytes. These cycles are often conducted in phosphate-buffered saline (PBS) solution
to maintain physiological pH and osmolality, which additionally helps remove the residual
reagents [7,19,20,23,76–79].

In this study, DNase and RNase treatments were used to remove DNA and RNA.
DNase and RNase may require as many as three cycles to accomplish complete depletion
of native genetic material [7,19,20,23,76–79]. Removal of 99% of genomic material was
observed after a six-day wash cycle in our studies [23]. To quantify the DNA present in car-
tilage samples before and after decellularization, we used a DNA extraction process [21,79].
The DNA content of the sample was also assessed using Hoechst stain [21,23]. We con-
cluded that the decellularization wash cycles successfully resulted in decellularizing the
porcine cartilage scaffold. Traditionally, laboratories have monitored DNA content to
determine if cells have been removed since all cells contain DNA. However, DNA may be
present even when cells no longer exist due to potential interaction between the matrix
and the DNA. Therefore, mass spectrometry was used to measure the removal of cellular
proteins including those from the nucleus, mitochondria and Golgi, cytosol, rough endo-
plasmic reticulum, and plasma membrane. These additional measures more thoroughly
demonstrated that the cells were removed at least to a level below the threshold of detection.
In this study, lyophilization was used to help with cell disruption and removal of cellular
components [78,79]. All samples were sterilized before using for cell culture.
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To our knowledge, this study represents the first demonstration of biomarker analysis
for decellularization of porcine ear for cartilage regeneration. Additionally, PCR was
used to quantify mRNA expression of key chondrogenic differentiation markers expressed
by cells after seeding on the scaffold. Chondrogenic marker genes were analyzed for
significant changes between control cells grown on tissue culture plastic and those grown
under conditions provided by the decellularized scaffold [76]. The cells expressed genes, as
shown in PCR and proteomic data. There have been limited proteomic studies of cartilage,
which may be because of the difficulty in determining the amount of protein contribution
by the cells relative to the total protein contributed by the ECM [80]. The collagen fibers of
the ECM were maintained during the process. Characterization of the scaffold showed that
thirty-nine collagen alpha chains were detected in the cartilage prior to decellularization
by mass spectrometry. After the decellularization process, nine of these were decreased
below the limit of detection. While most of the collagens were maintained throughout
the decellularization process, nine were depleted to the extent that they were no longer
detectable by mass spectrometry.

SEM was used to visualize the surface topology of the decellularized scaffold [19,23,75,81].
The scaffold was shown to be less smooth and displayed exposed collagenous fibrillar
networks after decellularization in SEM and more porous by histology when compared to
the original material. SEM images showed cells could attach and proliferate on the surface
of the scaffold.

Previous work has not fully analyzed what is left behind after decellularization.
Future work should be carried out to better understand the material remaining after
decellularization as it is important when evaluating laboratory-generated cartilage for
patient-specific biocompatibility. This study is novel because it generates new knowledge
by analyzing the protein profile of the decellularized tissue and contributes biomarkers
other than well-established COL2A1 and ACAN. It provides an improved approach to
monitoring decellularization and insight into acceptable markers for decellularization by
looking at the protein profile of markers instead of just one or two proteins. The use of
patient-specific MSCs or pre-chondrocytes will advance this line of research. A limitation
of this study was that it focused on short-term changes. The scaffolds grown up to eight
months showed an increase in cellular adhesion and proliferation. Future experiments in
cell culture should extend duration as well as monitor protein synthesis and accumulation
over time by proteomics, since protein expression does not always follow RNA expression.
In this case, we will identify newly synthesized human proteins based on the number of
unique peptides for human proteins for quantification. Additionally, it will be important
to test biocompatibility. Another limitation may be the dense nature of native cartilage
which restricts cell migration into the matrix. To address this limitation, future studies will
include introduction of pores to allow penetration of cells into the center of the scaffold.
An alternative approach that will be considered for future studies is devitalized cartilage
to deliver higher concentrations of endogenous growth factors that may aid in cellular
differentiation. In our procedure, soluble growth factors were removed due to the harsh
conditions used.

Overall, this novel research shows promise that laboratory-generated cartilage may
be a future alternative treatment option for individuals suffering from OA. Cartilage discs
can be made to fit specific cartilage lesions. This approach aims to restore the patient’s
natural anatomy and prevent the need of a joint replacement. Using decellularization to
create biomaterials can generate biocompatible scaffolds. Patient-specific chondrocytes
may promote formation of a tissue that has superior compatibility for replacement or
healing of damaged tissue.

4. Materials and Methods
4.1. Materials

Four pig ears were acquired from Wakefield Meats in Melba, Idaho. The pigs were
estimated to be one year of age and of adult size.
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4.2. Methods

The pig ears were shaved to remove hair, and a scalpel was used to remove remaining
skin without damaging the underlying cartilage layer. Samples were placed in a 0.5 M
NaOH bath overnight.

Tissue was transferred to a 1.0 M NaOH solution for three hours followed by transfer
to a 70% ethanol solution and incubated at 40 ◦C with heating for three hours.

Pig ear cartilage was converted into 8 mm circular discs using a tissue punch. Twenty
8 mm punches were frozen to be used for characterization of the cartilage-derived scaffold
before decellularization.

4.2.1. Decellularization

Three hundred and twenty 8 mm cartilage discs with a thickness of 1.08 mm under-
went a decellularization cycle. Then, 1 M guanidine hydrochloride and 0.05 M sodium
acetate were used to incubate with agitation at 4 ◦C for 96 h as described in Schwarz et al.
2012 [75]. Samples were subjected to three freeze–thaw cycles in 1% PBS [19,23,76–79]. Sam-
ples were washed in 10 mM Tris hydroxymethyl aminomethane (Tris)–HCl, 2 mM ethylene-
diaminetetraacetic acid (EDTA), 5 mM MgCl2, 100 mM dithiothreitol (DTT), 1% SDS, and
1% Triton-X100, pH of 8.0, for 39 h with agitation at 22 ◦C, as described [19,23,74,76,81]. To
remove HA and proteoglycans, the cartilage discs were incubated in PBS with 21 U/mL
of hyaluronidase at 37 ◦C for 24 h as described in Luo et al. 2016 [23]. Subsequently,
the samples were treated with DNase and RNase for 24 h at 37 ◦C to degrade DNA and
RNA [19,23].

Residual cells were identified based on H&E staining. SEM was performed on the
nondecellularized and decellularized tissues at this intermediate step. A second series of
washes was carried out to remove the residual cells. Samples underwent another freeze–
thaw cycle in DI water and 2% SDS with agitation. Samples were treated with DNase for
72 h at 37 ◦C with agitation, and samples were analyzed by histology, Hoechst staining,
and SEM.

A third series of decellularization washing cycles was carried out followed by lyophiliza-
tion. DNA removal was confirmed by extraction and purification of total DNA using
DNeasy Kit for purification of total DNA from animal tissue (Qiagen).

4.2.2. Histology

The cartilage samples were fixed in 4% paraformaldehyde (PFA) for 1 h and then stored
in 35% ethanol at 4 ◦C and then dehydrated, cleared in Histoclear, and embedded in paraffin.
The tissue block was sectioned to achieve both transverse and cross-section configuration
on the slide and stained with H&E and Hoechst stain. Hoechst stain (1 µg/mL) was placed
on the sample for 5 min, then rinsed 3 times with PBS. The samples were then imaged on a
Zeiss Confocal LSM 510 Meta microscope.

4.2.3. SEM Preparation and Imaging

Cartilage discs were fixed in 2.5% glutaraldehyde and 1% osmium tetroxide in Nanop-
ure water. After fixation, samples underwent dehydration with 50%, 70%, 90%, and 100%
ethanol. Critical point drying was performed for 10 cycles at 5 ◦C then heated to 35 ◦C.
Samples were positioned onto an aluminum stub and sealed under vacuum. Gold sput-
tering was performed at 0.15 megabar (mbar) and 10 milliamp (mA) for 15 cycles of 60 s
sputtering and 60 s of rest. Prepped samples were examined at an accelerating voltage of
15 kilovolts (kV) using the secondary electron detector.

4.2.4. PCR

RNA from cells seeded on cartilage scaffold or from cells grown on conventional
tissue culture plastic was extracted using TRIzol. Complementary DNA (cDNA) synthesis
was carried out using the RT2 First Strand Kit (Qiagen) followed by qRT-PCR in a 96-well
plate using a Roche LightCycler96®. The samples underwent one cycle for 10 min at
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95 ◦C and then 45 cycles of 15 s at 95 ◦C and 1 min of 60 ◦C. Analyzed genes included
extracellular matrix proteins, matrix remodeling enzymes, and cell adhesion molecules.
PCR primers were purchased from Qiagen (Cat. no. 330231 PAHS-013ZA). Relative gene
expression levels, mean of three replicates plus/minus standard deviation, were expressed
with respect to housekeeping genes determined empirically for this study.

4.2.5. Protein Concentration Determination

The total protein concentration of the homogenate for all samples was determined
using PierceTM BCA (Bicinchoninic Acid) Protein Assay Kit, Thermo Scientific®.

4.2.6. Mass Spectrometry and Proteomics

Proteins from nondecellularized, decellularized, and recellularized scaffolds were
homogenized and extracted using RIPA buffer (Millipore, Billerica, MA, USA) Twenty mi-
crograms of total protein from each sample was digested with Trypsin/Lys C mix (Promega,
Madison, WI, USA) following the manufacturer’s instruction. Resulting peptide mixtures
were chromatographically separated on a reverse-phase C18 column (10 cm × 75 µm,
3 µm, 120 Å) and analyzed on a Velos Pro Dual-Pressure Linear Ion Trap mass spectrometer
(Thermo Fisher Scientific).

Peptide spectral matching and porcine and human protein identification were achieved
by database search using Sequest HT algorithms in a Proteome Discoverer 2.2 (Thermo
Fisher Scientific). Raw spectrum data were searched against the UniProtKB/Swiss-Prot
and TrEMBL porcine protein databases and Swiss-Prot human protein database (25 May
2019). The main search parameters included trypsin, maximum missed cleavage site of
two, precursor mass tolerance of 1.5 Da, fragment mass tolerance of 0.8 Da, and variable
modification of oxidation/hydroxylation of methionine, proline, and lysine (+15.995 Da).
A decoy database search was performed to calculate a false discovery rate (FDR). Proteins
containing one or more peptides with FDR ≤ 0.05 were considered positively identified and
reported. For all proteins, the total number of peptide spectral matches (PSMs) reported
by the Protein Discoverer 2.2 was used for quantification. The mass spectrometry analysis
used three samples at each condition and time point.

4.2.7. Recellularization of Decellularized Scaffold

Final decellularized cartilage scaffold was sterilized in 70% ethanol and rehydrated in
10% PBS for 24 h at 4 ◦C followed by incubation in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin).

Twenty-four-well plates were prepared with 300 µL of agarose gel in the bottom of
each well and sterilized cartilage scaffold discs were seeded with 500,000 C28/I2 cells each.
Characterization took place at seven days for PCR analysis and one week and 8 months for
SEM analysis.

4.2.8. Statistical Analysis

Selection of housekeeping genes for qRT-PCR was based on pairwise analysis of
variance for differences between cycle threshold values for five candidate housekeeping
genes from 15 samples within this study. Relative expression of genes of interest was
analyzed relative to average values for GAPDH and HPRT1 and expressed as mean
plus/minus standard deviation. Log-transformed gene expression data were subject to a
paired T-test to determine if the differences in mean values for relative gene expression
were statistically significant with p < 0.05.
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Appendix A

Table A1. Endoplasmic reticulum proteins depleted during decellularization.

Endoplasmic Reticulum % Depletion Gene Symbol

40S ribosomal protein S13 100 RPS13
40S ribosomal protein S3 100 RPS3

5-beta-cholestane-3-alpha,7-alpha-diol 12-alpha-hydroxylase 100 CYP8B1
60S ribosomal protein L14 100 RPL14
60S ribosomal protein L6 100 RPL6

Beta-crystallin B1 100 CRYBB1
Dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit 2 100 RPN2

Endoplasmic reticulum chaperone BiP 100 HSPA5
Glutamate carboxypeptidase 2 100 FOLH1
Heat shock 70 kDa protein 1A 100 HSPA1A
Heat shock 70 kDa protein 1B 100 HSPA1B

Heat shock 70 kDa protein 1-like 100 HSPA1L
Heme oxygenase 1 100 HMOX1

Neutral alpha-glucosidase AB 100 GANAB
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 100 ATP2A2

Transitional endoplasmic reticulum ATPase 100 VCP
Microsomal triglyceride transfer protein large subunit 85 MTTP

Dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit 1 78 RPN1
Dual oxidase 1 78 DUOX1

Heat shock protein HSP 90-alpha 78 HSP90AA1

Table A2. Membrane proteins depleted during decellularization.

Membrane Proteins % Depletion Gene Symbol

ADP-ribosylation factor 6 100 ARF6
Arachidonate 15-lipoxygenase 100 ALOX15

Calpain-1 catalytic subunit 100 CAPN1
C-X-C chemokine receptor type 4 100 CXCR4
Cysteinyl leukotriene receptor 2 100 CYSLTR2

Desmoglein-1 100 DSG1
Endothelin-1 receptor 100 EDNRA

Gap junction alpha-1 protein 100 GJA1
Geranylgeranyl transferase type-2 subunit alpha 100 RABGGTA
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Table A2. Cont.

Membrane Proteins % Depletion Gene Symbol

Glutathione hydrolase 1 proenzyme 100 GGT1
Growth hormone receptor 100 GHR

Guanine nucleotide-binding protein G(q) subunit alpha 100 GNAQ
Integrin beta-1 100 ITGB1

Interferon alpha/beta receptor 1 100 IFNAR1
Interleukin-4 receptor subunit alpha 100 IL4R
Interleukin-6 receptor subunit alpha 100 IL6R

Low-density lipoprotein receptor 100 LDLR
Mast/stem cell growth factor receptor Kit 100 KIT

Metalloreductase STEAP1 100 STEAP1
NT-3 growth factor receptor 100 NTRK3

Parathyroid hormone/parathyroid hormone-related peptide receptor 100 PTH1R
PDZ domain-containing protein 11 100 PDZD11

Plasma membrane calcium-transporting ATPase 1 100 ATP2B1
Platelet endothelial cell adhesion molecule 100 PECAM1

Protocadherin-11 X-linked 100 PCDH11X
Receptor activity-modifying protein 1 100 RAMP1

S-Arrestin 100 SAG
Sialoadhesin 100 SIGLEC1

SLA class II histocompatibility antigen, DQ haplotype C alpha chain 100 SLA-DQCA
SLA class II histocompatibility antigen, DQ haplotype C beta chain 100 SLA-DQCB
SLA class II histocompatibility antigen, DQ haplotype D beta chain 100 SLA-DQDB
Small conductance calcium-activated potassium channel protein 3 100 KCNN3

Sodium/glucose cotransporter 1 100 SLC5A1
Solute carrier family 22 member 6 100 SLC22A6
Solute carrier family 22 member 7 100 SLC22A7

Thyroid peroxidase 100 TPO
Toll-like receptor 9 100 TLR9

Transforming growth factor beta receptor type 3 100 TGFBR3
Beta-1 adrenergic receptor 94 ADRB1

Zonadhesin 94 ZAN
Glutathione S-transferase alpha M14 94 GSTAM14

Activin receptor type-2B 93 ACVR2B
Solute carrier family 22 member 1 91 SLC22A1

Low-density lipoprotein receptor-related protein 2 89 LRP2
Orexin receptor type 2 89 HCRTR2

Glutamate decarboxylase 2 89 GAD2
Ectonucleotide pyrophosphatase/phosphodiesterase family member 6 85 ENPP6

Tyrosine-protein kinase SYK 85 SYK
Hormone-sensitive lipase 85 LIPE

V-type proton ATPase catalytic subunit A 85 ATP6V1A
Potassium-transporting ATPase alpha chain 1 82 ATP4A

Electrogenic sodium bicarbonate cotransporter 1 81 SLC4A4
Alpha-2A adrenergic receptor 78 ADRA2A

Calcium-activated chloride channel regulator 1 78 CLCA1
Gastrin/cholecystokinin type B receptor 78 CCKBR

Hepatocyte growth factor receptor 78 MET
Leptin receptor 78 LEPR

Extracellular calcium-sensing receptor 70 CASR
Scavenger receptor class B member 1 70 SCARB1

ATP-binding cassette sub-family G member 2 66 ABCG2
Major facilitator superfamily domain-containing protein 6 66 MFSD6

H(+)/Cl(−) exchange transporter 5 63 CLCN5
Prolactin receptor 55 PRLR

Beta-3 adrenergic receptor 55 ADRB3
Lutropin-choriogonadotropic hormone receptor 55 LHCGR
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Table A3. Cytosolic proteins depleted during decellularization.

Cytosolic Proteins % Depletion Gene Symbol

1-acylglycerol-3-phosphate O-acyltransferase ABHD5 100 ABHD5
4-hydroxyphenylpyruvate dioxygenase 100 HPD

Actin, cytoplasmic 1 100 ACTB
Alcohol dehydrogenase [NADP(+)] 100 AKR1A1

Antileukoproteinase 100 SLPI
ATP-dependent 6-phosphofructokinase, muscle type 100 PFKM

Autophagy protein 5 100 ATG5
Bifunctional epoxide hydrolase 2 100 EPHX2

Biogenesis of lysosome-related organelles complex 1 subunit 5 100 BLOC1S5
Calponin-1 OS = Sus scrofa 100 CNN1

Calponin-2 100 CNN2
Cas scaffolding protein family member 4 100 CASS4

Coatomer subunit beta 100 COPB1
Diacylglycerol kinase alpha 100 DGKA

Dihydropyrimidine dehydrogenase [NADP(+)] 100 DPYD
FAST kinase domain-containing protein 4 100 TBRG4

Gastrotropin 100 FABP6
Growth factor receptor-bound protein 10 100 Grb10

Integrin beta-1-binding protein 2 100 ITGB1BP2
L-dopachrome tautomerase 100 DCT

L-lactate dehydrogenase A chain 100 LDHA
Myosin light chain 4 100 MYL4

Myosin-1 100 MYH1
Myosin-2 100 MYH2

Nucleoside diphosphate kinase B 100 NME2
Perilipin-3 100 PLIN3

Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform 100 PIK3CG
Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform 100 PPP2R1B

Suppressor of cytokine signaling 2 100 SOCS2
Thimet oligopeptidase 100 THOP1

Triosephosphate isomerase 100 TPI1
Tubulin alpha-1A chain 100 TUBA1A

Tubulin beta chain 100 TUBB
Vinculin 100 VCL

Serine/threonine-protein kinase WNK1 95 WNK1
L-lactate dehydrogenase B chain 94 LDHB

UTP-glucose-1-phosphate uridylyltransferase 92 UGP2
Eukaryotic initiation factor 4A-III 89 EIF4A3

Triokinase/FMN cyclase 85 TKFC
Acylphosphatase-1 83 ACYP1

Glycine N-methyltransferase 78 GNMT
N-acetylneuraminate lyase 78 NPL

Phosphatidylinositol 3-kinase catalytic subunit type 3 78 PIK3C3
Serine/threonine-protein phosphatase 1 regulatory subunit 10 64 PPP1R10
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