Boise State University
ScholarWorks

Optimizing Scientific Computations with the Sparse Polyhedral

 FrameworkAnna Rift
Boise State University

BOISE STATE UNIVERSITY

COLLEGE OF ENGINEERING
Anna Rift
adaipt

1. Problem Statement

- Scientific applications are computationally intensive, requiring expensive HPC resources
- optimizing scientific applications requires a balance of Performance, Productivity, and Portability

2. Motivation

Speedup of executor transformed for wavefront parallelism vs. library serial code.

3. The Polyhedral Model

- Represents the iteration of each statement of a computation in a loop nest as lattice points in a polyhedron
- Only supports affine data accesses -- does not work for sparse computations

```
for (i = 1; i <= 3; ++i)
    for (j = 1; j <= 3; ++j)
    S1(i, j
        j
    123456 i
```

4. Sparse Data

5. Sparse Polyhedral Framework (SPF)
\square Extends the polyhedral model

- Provides a mathematical framework for representing and transforming irregular computations (uninterpreted functions)
- Suitable for non-affine loop bounds present in irregular applications
for (i = 0; i < N; i++)
for ($k=$ index[i]; $k<i n d e x[i+1] i k++1$ product[i] $+=\mathrm{A}[\mathrm{k}]$ * $\mathrm{x}[\mathrm{col}[\mathrm{k}]]$;

$$
\sqrt{2}
$$

$\{[i, k]: i \geq 0 \& \& i<N \& \& k \geq$ index $(i) \& \& k<\operatorname{index}(i+1)\}$

7. spf-ie

- Can be thought of as the compiler frontend of the project
- Extracts SPF representation of original source code, entering it into the Computation IR
- Implemented as a Clang tool that recursively traverses the abstract syntax tree
- Enforces polyhedral model restrictions on code (no goto statements, etc.)

6. Optimization Overview

Composable Transformations

8. Intermediate Representation

Data Writes

product: \{[i,k]->[i]

9. Future Development

- Currently only have an identity transformation, need to write more
Algorithmically manipulating data layout to meet execution requirements
- Inlining computations that call others
- Synthesize IR to facilitate conversion from one sparse format to another

10. Acknowledgements

CHiLL-I/E: Ravi Shankar and Tobi Popoola Boise State's Research Computing Department. 2017. R2: Dell HPC Intel E5v4 (High Performance Computing Cluster). Boise, ID: Boise State University. DOI: $10.18122 / B 2$ S41H

11. Collaborators

