
Adaptive Q-learning-supported Resource
Allocation Model in Vehicular Fogs

Md Tahmid Hossain

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

©Md Tahmid Hossain, 2021

Abstract

Urban computing has become a significant driver in supporting the delivery and

sharing of services, being a strong ally to intelligent transportation. Smart vehicles

present computing and communication capabilities that allow them to enable many

autonomous vehicular safety and infotainment applications. Vehicular Cloud Com-

puting (VCC) has already proven to be a technology shifting paradigm harnessing the

computation resources from on board units from vehicles to form clustered computing

units to solve real world computing problems. However, with the rise of vehicular

application use and intermittent network conditions, VCC exhibits many drawbacks.

Vehicular Fog computing appears as a new paradigm in enabling and facilitating effi-

cient service and resource sharing in urban environments. Several vehicular resource

management works have attempted to deal with the highly dynamic vehicular en-

vironment following diverse approaches, e.g. MDP, SMDP, and policy-based greedy

techniques. However, the high vehicular mobility causes several challenges compro-

mising consistency, efficiency, and quality of service. RL-enabled adaptive vehicular

Fogs can deal with the mobility for properly distributing load and resources over Fogs.

Thus, we propose a mobility-based cloudlet dwell time estimation method for accu-

rately estimating vehicular resources in a Fog. Leveraging the CDT estimation model,

we devise an adaptive and highly dynamic resource allocation model using mathe-

matical formula for Fog selection, and reinforcement learning for iterative review and

feedback mechanism for generating optimal resource allocation policy.

Acknowledgements

I would like to thank my family for supporting me along my studies, my supervi-

sor, Dr. De Grande, for his guidance, and friends and colleagues for helping and

accompanying me along my MSc thesis studies. I am grateful to Brock University

for providing me with Dr. Raymond and Mrs. Sachi Moriyama Graduate Fellowship

and DGS Spring Research Fellowship.

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objective . 3

1.3 Contribution . 3

1.3.1 Dwell time and Resource Availability Estimation model 3

1.3.2 RL based dynamic resource allocation model 4

1.4 Outline . 4

2 Background 6

2.1 Vehicular Cloud Computing (VCC) 6

2.2 VCC Architecture . 7

2.3 Vehicular Cloud Computing Applications 8

2.3.1 Traffic signal and route optimization 8

2.3.2 Shopping mall data center . 9

2.3.3 Road safety messages . 9

2.3.4 Evacuation management . 9

2.4 Vehicular Edge Computing (VEC) . 10

2.5 Vehicular Fog Computing (VFC) . 11

2.6 Mobile Vehicular Cloudlet (MVC) 12

2.7 Advantages of Fog/Edge Computing 13

2.7.1 Reduced response time . 13

2.7.2 Scalability . 13

2.7.3 Security and Privacy . 14

2.7.4 Controlling Cloud Outages . 14

2.8 Similarities between VEC, VFC and MVC 14

2.9 Differences between VEC, VFC and MVC 14

2.10 Resource Management and Allocation 15

2.11 Reinforcement Learning . 15

3 Related Works 17

3.1 Cloudlet Dwell Time Estimation . 17

3.2 Computation offloading . 18

3.3 Resource Allocation . 20

3.4 Remarks . 21

4 Problem Formulation 23

4.1 Dwell Time Estimation . 24

4.2 Resource allocation policy . 25

4.2.1 RL-based Cloudlet/Fog selection 25

4.2.2 Parameters . 26

5 Cloudlet Dwell Time Estimation Model 28

5.1 Traffic Flow Characterization . 28

5.1.1 Entry and exit point calculation 31

5.2 Traffic Analysis in the RSU . 32

5.2.1 Filtered Dissemination . 32

5.2.2 Collecting and Classifying Vehicles 33

5.2.3 Real Time Flow Estimation 33

5.3 Vehicular Cloudlet Dwell Time Estimation 34

6 RL based dynamic resource allocation 37

6.1 Application Requests Overview . 38

6.1.1 Application Profiler . 38

6.1.2 Network Profiler . 39

6.1.3 Resource Manager . 39

6.2 Fog Selection Method . 40

6.2.1 Analytic Hierarchy Process (AHP) 40

6.2.2 Influence factors and calculations 40

6.3 Q-learning Method . 42

6.3.1 State and Action Space . 43

6.3.2 The Rewards . 43

6.3.3 The Q-Values . 44

6.3.4 Bellman equation for State-value Function 45

7 Performance Analysis 49

7.1 Simulation Environment . 49

7.2 Traffic Network Topology . 49

7.3 Performance analysis of CDT estimation 50

7.3.1 Scenario and Methodology . 51

7.3.2 Parameter Settings . 52

7.3.3 Performance Metrics . 52

7.3.4 Results . 54

7.4 Performance analysis for RL based resource allocation model 57

7.4.1 Parameter Settings . 58

7.4.2 Performance Metrics . 58

7.4.3 Scenario and Methodology . 61

7.4.4 Convergence . 62

7.4.5 Results . 62

7.4.6 Statistical Significance . 65

7.4.7 Remarks . 66

8 Conclusion 70

8.1 Summary . 70

8.2 Future Research Directions . 71

Bibliography 75

List of Tables

3.1 Summary of Related Works . 22

6.1 Weights of each influence factor. 41

7.1 Simulation parameter settings . 51

7.2 Q-learning Parameters . 59

List of Figures

2.1 Vehicular Cloud Computing Hypothetical Scenario 7

2.2 A hypothetical Vehicular Edge Computing environment 11

2.3 Vehicular Fog Computing. 12

2.4 Mobile vehicular cloudlet . 13

2.5 Reinforcement Learning. 16

4.1 Path trajectories crossing RSU range in urban centre. 24

4.2 Reinforcement Learning based resource allocation model 26

7.1 Cologne metropolitan area used in the simulation analysis. 50

7.2 Difference of predicted and actual results with continuous connection

for the number of vehicles (Snapshots of RSU 24). 51

7.3 Difference of predicted and actual results with disrupted connections

for the number of vehicles (Snapshots of RSU 24). 52

7.4 Difference of predicted and actual results for dwell time (Snapshots of

RSU 24). 53

7.5 MSE analysis in estimations in two periods of simulation (0s − 500s

and 500− 1000s) for # of vehicles with continuous connectivity . . . 54

7.6 MSE analysis in estimations in two periods of simulation (0s − 500s

and 500− 1000s) for # of vehicles with disrupted connectivity 55

7.7 MSE analysis in estimations in two periods of simulation (0s − 500s

and 500− 1000s) for dwell time estimation 56

7.8 MSE analysis (general, over and under estimations) for the number of

vehicles (Continuous connection 0s-500s) 57

7.9 MSE analysis (general, over and under estimations) for the number of

vehicles (Continuous connection 0s-500s) 58

7.10 MSE analysis (general, over and under estimations) for the number of

vehicles (Continuous connection 0s-1000s) 59

7.11 MSE analysis (general, over and under estimations) for the number of

vehicles (Disrupted connection 0s-500s) 60

7.12 MSE analysis (general, over and under estimations) for the number of

vehicles (Disrupted connection 500s-1000s) 61

7.13 MSE analysis (general, over and under estimations) for the number of

vehicles (Disrupted connection 0s-1000s) 62

7.14 WSM sent and received in comparison with vehicle number 63

7.15 Comparison of percentage of applications served. 64

7.16 Comparison of percentage of applications failed 66

7.17 Comparison of percentage of applications denied 67

7.18 Application assignment error rate for different segment of time 67

7.19 Convergence of the Q-learning algorithm over time 68

7.20 Control overhead . 68

7.21 Types of application requests . 69

Chapter 1

Introduction

Vehicular networking has gained significant interest as vehicles are being equipped

with computerized modules and wireless devices, carrying and distributing infor-

mation among other vehicles and stationary roadside units (RSU), and exploiting

advanced wireless technologies. Vehicular ad-hoc networks (VANET) [7] allow ex-

changing sensitive information among nearby vehicles and roadside control nodes,

e.g. weather conditions and accidents, to improve vehicle traffic efficiency building

up towards intelligent transportation systems (ITS).

With the recent surge in the number of smart vehicles, traditional VANETs face

several challenges due to poor connectivity, scalability, and its nature of inflexibil-

ity [31]. Vehicular Cloud computing (VCC) is developing fast, as it can overcome the

drawbacks of VANETs by providing low-cost services to vehicles, and it is capable

of managing road traffic efficiently by instantly using onboard units. VCC can be

considered as a group of autonomous vehicles collaboratively sharing resources for

computing, sensing, and communication [24]. Collaboration in VCC can be imple-

mented following a service-oriented fashion/paradigm, e.g. network as a service [23],

storage as a service [3], cooperation as a service [23], and computing as a service [10].

Such services enable a series of vehicular and ITS applications, e.g. traffic route

optimization [15], parking lot data centres, and safety messaging [24].

In vehicular Cloud computing, the mobility of the nodes is very high, and the

network topology frequently changes, in addition to the intermittent wireless network

connection. As a result, issues appear, for example, authentication problems, service

delays, and poor system integrity, which cause low quality of service (Qos) or denial of

service (Dos). With the widespread use of vehicular networks and the rapid increase

in vehicles with onboard computational units, the amount of data that vehicles must

process, e.g. entertainment, traffic, and driving safety details, is surging rapidly. As

1

CHAPTER 1. INTRODUCTION 2

most vehicles are equipped with limited computation power, with increased data-

and computation-heavy applications, vehicles need to transmit to and receive back

data from Cloud computing systems for processing. As a result, effectively improving

the vehicular Cloud computing resource utilization to improve the overall processing

efficiency has gained much research interest.

The shortcomings of VCC in high mobility and intermittent network conditions

have ushered new technologies, e.g. vehicular edge computing (VEC) [11], vehic-

ular Fog computing (VFC) [13], and mobile vehicular cloudlet (MVC) [37], which

enable unlocking the full potential of VCC. With high-level mobility support, de-

vice heterogeneity, flexible location, and low latency, a few VCC drawbacks can be

overlooked [26]. VFC follows the same paradigm of Fog computing [8] in the vehicu-

lar environment. Vehicles are grouped according to proximity to form cloudlets [30]

which serves as Fogs, and AP Edge computing nodes that deal with the connectivity

with the Cloud. A mobile cloudlet follows a peer-to-peer communication model [16]

termed as a group of mobile devices in close proximity connected by short-range com-

munications. Advantages of Fog/edge computing include improved response time [29],

scalability [29], security and privacy [2], and Cloud outage control.

Resource management has been dealt with in several recent works with differ-

ent approaches. Some works have focused on architectural aspects, e.g. P2P resource

scheduling [21,22]. Other works have directly targeted resource allocation. For exam-

ple, game theory approaches [41] have attempted to aid in the resource allocation pro-

cess. Markov decision process (MDP) has been utilized to formulate a reinforcement

learning-based resource allocation problem [28]. Similarly, Semi-Markov decision

process (SMDP) model has been used to solve the resource allocation problem [18].

Through new VEC network architectures [19], SMDP and Q-learning-based reinforce-

ment learning methods were utilized for optimal offloading and resource allocation

process. Optimization models have been proposed to deal with the allocation problem

where some works explored resource allocation policies [25] based on influence factors

and assigned weights in vehicular Fog environment. However, the influence factors

and their weights are pre-defined and fixed. They also may not perform well in het-

erogeneous application environments. In addition, much of the works mainly assumed

ideal scenarios in the vehicular environment and proved their results on pre-recorded

vehicle data.

CHAPTER 1. INTRODUCTION 3

1.1 Motivation

One of the most important issues a vehicular cloud system faces is the latency caused

by limited computation power and bandwidth. While technologies e.g. Fog com-

puting helps reduce the latency and brings the power of cloud computing near the

mobile nodes, the necessity of instantaneous decision making is still a major issue

to solve in vehicular environment. Whenever an application request arises within a

fog computing node, the node then has to process that request within minimal delay

to improve the quality of service. On the other hand, the delay in decision making

causes service denial for latency prone applications.

1.2 Objective

We propose a reinforcement learning based dynamic resource allocation model based

on an estimation method of cloudlet dwell time and corresponding available resources

for vehicular Fog computing. To accomplish this, we design a precise estimation model

for predicting the trajectory of vehicles relative to Fogs/RSU/destination. Based on

the possible trajectory, the model estimates vehicles’ future location and determines

the possibility of the presence of the vehicle within a Fog nearby. From this estimation

the model can create a possible available resource pool for applications to serve in the

future. The Fog selection policy follows a simple analytic hierarchy process (AHP)

calculation to make an initial decision. We then design an adaptation method for

adjusting AHP to better accommodate the changes in the highly dynamic vehicular

environment. The model constantly updates itself based on the decision made on the

previous iterations, therefore reducing latency when an application request arises. In

this work, we focus on designing and developing a resource allocation model in VFC

paradigm to improve the application QoS and reduce DoS.

1.3 Contribution

The contributions of this work are split in two major parts: a light-weight cloudlet

dwell time estimation model and a RL-based dynamic resource allocation model/system.

1.3.1 Dwell time and Resource Availability Estimation model

The cloudlet dwell time estimation model helps to estimate the number of vehicles

that might be connected to the Fog and that can provide sufficient resources to sustain

CHAPTER 1. INTRODUCTION 4

vehicular applications. The model relies on following parts:

• Mobility-based trajectory estimation using simple and light weight linear re-

gression model.

• Application of multiple linear regression (MLR) for estimating vehicles location

with time.

• Based on vehicles predicted location and resource availability, prediction of pos-

sible available resources that a Fog might hold to sustain a vehicular application.

Predicting resource availability in advance helps the fog computing node to allo-

cate resources instantaneously to application requests, thus improving the QoS and

reducing DoS.

The results of the performance of the CDT and resource availability estimation

model have been presented on the 25th International Symposium on Distributed

Simulation and Real Time Applications (IEEE/ACM DS-RT 2021) [12].

1.3.2 RL based dynamic resource allocation model

We extensively test and measure the error rates of the CDT estimation model and

found that the model tends to overestimate for resource availability. Hence, to mit-

igate the effects of overestimation rate of the CDT estimation model, we employ a

Q-learning based dynamic resource allocation policy. Each resource allocation deci-

sion taken by the model is reviewed on each episode and appropriate feedback is given

by a RL agent, ultimately converging to an optimal resource allocation policy. The

Q-learning based method relies on following parts:

• Analytic hierarchy process (AHP) for finding a possible set to Fogs to allocate

resources from.

• Estimated resource availability data for choosing optimal Fogs.

• Realtime accurate data on application status to evaluate the outcome of the

decisions taken and receive appropriate feedback to update the R and Q values.

1.4 Outline

The remainder of this work is organized as follows. Chapter 2 presents the background

of this work. Various approaches and methods applied to works related to this re-

search, e.g. resource allocation and CDT estimation, are reviewed and discussed in

CHAPTER 1. INTRODUCTION 5

Chapter 3. Chapter 4 describes the problems that persist and can be solved in the

field of vehicular environment. We also formulate the problems we deal with in our

model in this chapter. A novel cloudlet dwell time estimation model is introduced in

Chapter 5, and we elaborat on the methodology, mathematics and algorithms used

for the CDT estimation. In chapter 6 we discuss the fog selection method and the

implementation of reinforcement learning for resource allocation. We present the

performance analysis of the CDT estimation model and RL based resource allocation

model in chapter 7. Finally, Chapter 8 concludes the thesis work and provides future

research directions.

Chapter 2

Background

Although VCC has introduced novel strategies and methods in organizing vehicles re-

sources in highly dynamic environments, many shortcomings of this paradigm have al-

ready been identified. Many works have investigated the feasibility of various subsets

of technologies leveraging VCC and/or connected vehicles, supporting and improving

the management of the infrastructure. It is important to study and investigate the

core architecture of such technologies like VEC, VFC and cloudlets. As a result, it is

worth observing the main aspects and technological advancements in support of the

architecture, their similarities and their advantages, and applications in VCC, VEC,

VFC and MVC.

2.1 Vehicular Cloud Computing (VCC)

The vehicular Cloud computing can be defined as follows [24]:

A group of largely autonomous vehicles whose corporate computing, sens-

ing, communication and physical resources can be coordinated and dy-

namically allocated to authorized users.

Vehicular networks are a prominent feature of a smart city environment, as most

of today’s vehicles are equipped with on board computation units, most of which

remain unexploited throughout the day. This makes them the perfect resources to

form a cloud computing network acting as nodes leveraging the onboard resources.

In the Cloud computing paradigm, local resources can be offloaded to a shared pool,

which can become and ideal solution for problems that are compute and memory

intensive.

6

CHAPTER 2. BACKGROUND 7

Figure 2.1: Vehicular Cloud Computing Hypothetical Scenario

2.2 VCC Architecture

VCC architecture generally comprises of three layers: inside vehicle, communica-

tion infrastructure, and back-end Cloud. The inside-vehicle layer consists of various

mechanical and environmental sensors, navigational instruments, cameras, smart ap-

plications, wireless communication apparatus and more. The data generated and

collected from the inside-vehicle layer then can be transmitted using the communi-

cation infrastructure to the back-end cloud system for storage and performing com-

putation heavy tasks within the cloud. The communication layer is responsible for

exchanging the operational data among vehicles, infrastructures and the cloud over

advanced wireless networks, e.g. 4G, satellite or internet. Figure 2.1 shows a high

level architecture of VCC where vehicles are connected with each other through V2V

communication. By using road side infrastructures through V2I communication, ve-

hicles are connected to the cloud server.

One advantage of vehicular Cloud computing is that the data aggregated over

various scenarios within the network can be stored in the cloud. Then it can be used

to perform various studies, analysis and decision making processes, as the cloud can

use massive data sets to perform complex computation in minimal time.

There are various components in the cloud primary application services layer,

which are called vehicular cloud computing services, and are described as follows:

• Network as a service (NaaS) [23]

• Storage as a service (STaaS) [3]

CHAPTER 2. BACKGROUND 8

• Cooperation as a service (CaaS) [23]

• Computing as a service [10]

• Pictures on a wheel as a service

• Information as a service (INaaS) and entertainment as a service (ENaaS)

Several VC formation scenarios are:

• Stationary VC formation:

A VC formed by stationary parked vehicles e.g. in a parking lot. Mostly acts

as a conventional cloud in static environment.

• Linked with a fixed infrastructure:

A VC formed in an area instrumented and deployed by some form of a static

infrastructure.

• Dynamic formation:

Using a unique vehicle as a broker tasked with authorization to accumulate

computing resources to form a large computing entity similar to a supercom-

puter.

2.3 Vehicular Cloud Computing Applications

Various driving applications and traffic management services have emerged due to

recent technological advances, e.g. flow control of traffic, monitoring and hazard de-

tection, and infotainment services. All these applications can greatly benefit by utiliz-

ing the vehicular cloud computing infrastructures, which can cooperatively propagate

and process information through connected vehicles and utilize highly capable and

scalable cloud servers for resource intensive computations.

2.3.1 Traffic signal and route optimization

Traffic signals use pre-defined cycle lengths for red and green phases. Although the

signal cycle can be changed depending on the time of the day or the week, it is not

always practical, as the behaviour and congestion of traffic on the road cannot always

be predicted. Using the aggregated data from a vehicular network regarding the

volume of traffic in a direction, traffic signals can become more efficient by changing

CHAPTER 2. BACKGROUND 9

the signal cycle dynamic [15]. Also, by using the congestion data over the cloud, any

on-board routing and navigation application can make decisions to a better route for

the vehicle to reach the destination.

2.3.2 Shopping mall data center

A recent study performed on teens shopping at malls showed that 95 percent of

shoppers spent more than 1 hour at the mall, while 68 percent of them spent more

than 2 hours [1]. Thus, thousands of cars and their on board computing resources

remain idle for hours, which can be utilized for computing resources through the

internet [3]. A business model can be setup by the mall management to use these

resources in return of discounts, free parking for example. However, it has to be

highly dynamic, as the arrival and departure of cars happen quickly and the time to

use their resource is limited.

2.3.3 Road safety messages

Now-a-days most cars are embedded with sensing devices for proficient and safe op-

eration. The on-board high definition cameras tracks the lane marks and help the

vehicles to stay in the lane. Thus, cars have a sensor node, and a vehicular cloud

can form dynamically with a large wireless sensor network. Other vehicles in close

proximity can obtain data from sensors of another car and obtain valuable insights

about road conditions and hazards that lay ahead. They can then act accordingly,

which would otherwise be impossible [24].

2.3.4 Evacuation management

Transportation agencies need to strategize potential evacuation scenarios in urban

areas. They can achieve this by intensive traffic modeling in metropolitan areas. A

VC can help the authorities for evacuation by providing data in regards to travel

time, bottlenecks for example. Exploiting intelligent transportation system, vehic-

ular network, and mobile and cloud computing technology, an intelligent disaster

management system can be built.

CHAPTER 2. BACKGROUND 10

2.4 Vehicular Edge Computing (VEC)

A prominent portion of future intelligent transportation systems will comprise of ve-

hicular networks. Already in 2021, various mobility aware services are in use in some

forms. Cloud computing provides centralized computation and storage services using

either a cloud server or a number of remote servers, and vehicular ad-hoc networks

(VANETs) depend predominantly on cloud computing. Cloud computing provides the

users with virtual servers, storage and computing capacity without much user inter-

vention. Using cloud computing, the stored data can be accessed from anywhere from

any vehicle, without large storage and computational power. With rising demand of

computationally intensive and latency prone applications, the delay in transferring

data from vehicles to cloud with ever increasing numbers of vehicles, and hight mo-

bility is a challenge in VCC paradigm. Today’s real world applications require low

latency and uninterrupted service. Whereas, the communication and computation

overhead is increasing day by day and consumption of energy on wireless devices are

also increasing. This in turn increases the bandwidth cost massively. To assure the

quality of service (QoS) on vehicular applications, vehicular edge computing (VEC)

comes into play [11].

In the edge computing (EC) paradigm, data processing, computation and analysis

is taken place at the edge of the network, in close proximity to the end devices acting

as an agent in between the cloud and end users. With mobility, latency and commu-

nication overhead being the main issues of VCC and VANETs, edge computing can

be a game changing solution in vehicular environments [11]. While traditional cloud

computing is a centralized system, vehicular edge computing deploys its application

in a distributed environment. Edge nodes having high computational power, and

storage are deployed in close proximity to the vehicular networks. Hence, better QoS

can be offered to the user. Wireless sensors on board the vehicles can directly com-

municate with the edge servers to collect, process and store data seamlessly, ensuring

low latency at the application level and better context awareness. As opposed to

VCC where most of the application level decision making might take place remotely,

in VEC it can take place locally. Safety applications can benefit from this low la-

tency. Although the development cost of VEC is much lower than VCC systems, the

storage capacity and computational capabilities are expected to be lower than that of

VCC. With high level of mobility support, device heterogeneity, flexible location and

low latency, a few drawbacks can be overlooked [26]. Figure 2.2 shows a high level

architecture and key components of VEC leveraging roadside cloudlets and AP edge

CHAPTER 2. BACKGROUND 11

Figure 2.2: A hypothetical Vehicular Edge Computing environment

computing nodes at the edge of the network.

2.5 Vehicular Fog Computing (VFC)

The term Fog Computing was first coined by Bonomi et al. [8] from Cisco referring the

extension of Cloud Computing to the edge of a network. A Fog exists in-between the

cloud data center and IoT devices. More and more vehicles are now having on-board

computational units. By utilizing these vehicles as the infrastructures for communi-

cation and computation, Vehicular Fog Computing (VFC) shows great promise. A

VFC architecture is formed [13] by utilizing a collaborative multitude of vehicles’ on-

board units connected wirelessly or near-user edge devices to carry out communication

and computation. The cumulative computation and storage resources of individual

vehicles helps enhance the quality of services and applications. Figure 2.3 shows a

high level architecture of VFC where vehicles are grouped according to proximity to

form cloudlets which serve as Fogs, and AP edge computing nodes that deal with the

connectivity with the cloud.

CHAPTER 2. BACKGROUND 12

Figure 2.3: Vehicular Fog Computing.

2.6 Mobile Vehicular Cloudlet (MVC)

The term cloudlet was first proposed by Satyanarayanan et. al [30]. A mobile cloudlet

is a peer-to-peer communication model [16] termed as a group of mobile devices in

close proximity connected by short range communications. The particular model

of cloudlet can be applied to a vehicular environment, where a collection of smart

vehicles can connect to form a mobile vehicular cloudlet (MVC) to provide cloud

computing service locally. Each smart vehicle in a MVC [37], termed as a node, can

be a computing service provider and also act as a client. As computation service is

provided locally, the communication latency and the cost can be greatly reduced, and

the computation can be sped up, conserving energy by dividing the tasks among MVC

Nodes. Figure 2.4 shows a high level architecture and key components of MVC, where

vehicles are grouped as individual cloudlets within the range of RSUs, and RSUs are

linked to the remote cloud through wired links.

CHAPTER 2. BACKGROUND 13

Figure 2.4: Mobile vehicular cloudlet

2.7 Advantages of Fog/Edge Computing

2.7.1 Reduced response time

In Fog/edge computing, the cloudlets or the fog nodes are closer to the IoT devices

than the centralized Cloud is. In the traditional Cloud computing architecture, data

originated to and from either of end user device or the cloud server have to go through

multiple wireless hops to reach one another, which causes latency and execution delay.

Whereas, usually in Fog computing, there exists only one wireless hop to reach fog

nodes. It can be processed with very low latency and produce fast response time [29].

2.7.2 Scalability

In Fog/edge Computing, not every segment of data needs to be sent to the centralized

cloud, as many of the tasks are accomplished by individual cloudlets in different

regions. As in Fog computing setup, the centralized cloud receives less data and

requires less computation capacity for each request, it can cater to a large number

of users without requiring a large amount of bandwidths. If more users are being

connected and require services, the system can create additional cloudlets instead

of pressuring the central cloud server. It can reduce the amount of cloudlets in an

CHAPTER 2. BACKGROUND 14

opposite scenario, giving the system more scalability [29] than a traditional cloud

setup.

2.7.3 Security and Privacy

The cloudlet based Fog computing solution provides accurate control to end users,

to control the access to their sensitive data [2]. As the data is not stored in a single

centralized cloud, the security and privacy of user data is much more reliable in Fog

systems.

2.7.4 Controlling Cloud Outages

In a traditional centralized cloud system, any catastrophic failure on the central server

immediately requires the system to seize service and stop all operations. If the user

data is stored in decentralized cloudlets, failure in one cloudlet or network outage

does not cause a denial of service for end users, as they can be redirected to another

nearby cloudlet to receive service.

2.8 Similarities between VEC, VFC and MVC

• Although vehicular Cloud vomputing is a paradigm shifting idea, researchers

quickly found the drawbacks of centralized cloud systems in vehicular environ-

ments. All of these models (VEC, VFC and MVC) were proposed to remedy

the shortcomings of VCC.

• All of these models perform computing tasks at close proximity to the end user

devices as opposed to VCC.

2.9 Differences between VEC, VFC and MVC

• Although all of these models have close similarities, they were proposed to solve

different sorts of problems and have different methodologies.

• MVC is formed incorporating vehicle on-board devices to act as micro data

centers, whereas VFC extends cloud computing and emphasizes on device prox-

imity. VEC emphasizes processing the computation at the proximity of the

source of data.

CHAPTER 2. BACKGROUND 15

2.10 Resource Management and Allocation

Due to the rapid increase in vehicles and number of applications running on a vehic-

ular network, the information processing requirements e.g. entertainment, traffic and

driving safety information is increasing, which requires large computing and storage

resources. Due to the lack of ability to process large scale data on vehicle on board

computational unit, vehicles need to transmit most of the information to the cloud for

processing. Hence, improving the processing efficiency of vehicular cloud systems by

effectively utilizing the cloud computing resources has become an interesting research

topic in the field of vehicular networks. Recent years saw a large increase in studies

and experiments for optimal resource allocation schemes for vehicular cloud comput-

ing. For example Lin et. al. [18] proposed an SMDP model for resource allocation in

the VCC framework that takes into account heterogeneous vehicles and incorporates

V2V and V2I.

In their work [21] Meneguette et. al. proposed a Cooperative and Adaptive RE-

source Scheduling Scheme (CARESS) for managing and scheduling resources with-

out the necessity for roadside infrastructure. The technique takes into consideration

the high dynamic topology and high mobility pattern of the vehicular cloud and

uses a caching mechanism for resource registration to achieve high QoS. Meneguette

et.al. [22] proposed a scheme for resource search and management in vehicular cloud

connected network, named as SMART. The work leverages peer to peer protocol

based on Gnutella [35] concepts to create cooperation among vehicles and establish

connections to provide resource parameters in the vehicular network.

2.11 Reinforcement Learning

Reinforcement learning is described as follows:

Reinforcement learning (RL) is an area of machine learning concerned with

how software agents ought to take actions in an environment in order to

maximize the notion of cumulative reward. Reinforcement learning is one

of three basic machine learning paradigms, alongside supervised learning

and unsupervised learning. Reinforcement learning differs from supervised

learning in not needing labelled input/output pairs be presented, and in

not needing sub-optimal actions to be explicitly corrected. Instead the

focus is on finding a balance between exploration (of uncharted territory)

and exploitation (of current knowledge). [14]

CHAPTER 2. BACKGROUND 16

Figure 2.5: Reinforcement Learning.

In the standard reinforcement learning model [34], an agent is connected to its

environment through perception and its corresponding action. On each step of in-

teraction, the agent receives an input from the environment as a form of indication

of the state S of the environment, therefore deciding on an action a to get as out-

put. The action changes the state of the environment depending on the action. The

environment then produces a reward signal r, which the agent receives as an input

on the next iteration along with the new state. The overall goal of the system is

to maximize the total sum of rewards after all the iterations. Guided by various

reinforcement algorithms, the system can learn to produce maximum rewards over

time.

There have been many research works utilizing machine learning with the vehicular

networks, and recently reinforcement learning had some breakthroughs in vehicular

environments regarding computation offloading and resource allocation problems and

is promising more good results. Distributed machine learning has also been used in

solving many complex problems.

Chapter 3

Related Works

Reinforcement learning can serve as a vital tool to improve service offloading and re-

source allocation solutions in mobile vehicular environments. Prominent recent ideas

have been proposed to deal with resource allocation and service/computation offload-

ing using reinforcement learning techniques. These works have a focus on improving

the application feasibility and quality of service in Vehicular Edge, Cloudlets and Fog

vehicular computing paradigms. Table 3.1 summarizes the approaches related to this

work.

3.1 Cloudlet Dwell Time Estimation

Cloudlet dwell time (CDT) is defined as the longest period of time a certain amount

of vehicles remains connected to a computation node e.g. a Fog/RSU while sharing

their resources to accumulate a resource pool to sustain a vehicular application.

Peng et. al. [33] have proposed a cloudlet dwell time estimation method by mathe-

matically calculating the vehicular cloudlet existence probability according to different

traffic situations, using historical traffic data to assist vehicular edge tasks. Relying

on these derived results, based on the specified requirements on computational capac-

ity, the RSU can determine the feasibility of a given VEC-related application within

the given road segment in advance.This allows the system to reduce latency for im-

plementing the VEC application caused by the reactive-based feasible determination

procedure. The inter-arrival of external vehicles to the test road follows the Poisson

distribution with average arrival rate λ. It is assumed that all the on road vehicles

have identical communication range Rc. By using Burke’s theorem [9], they have

calculated the average number of on-road vehicles and the average time consumed

by each vehicle travelling through the road segment. Using the average of number

17

CHAPTER 3. RELATED WORKS 18

of vehicles and speed information, they have calculated the external vehicle arrival

rate and vehicle density within the road segment. As the road segment consists of

multiple fictitious queues, if there exists an empty slot of road where no vehicle is

connected to another, it divides the vehicles into two isolated groups. Mathemati-

cally they have presented the formula to calculate the probability of the existence of a

cloudlet containing NVc vehicles on a given road, and demonstrated the performance

of the proposed work with a simulation.

3.2 Computation offloading

Computation offloading is the task of sending computation intensive application com-

ponents for remote execution on a remote server using wireless a network. The first

step of computation offloading is application partitioning, which involves granulating

each application into offloadable and non offloadable components. The preparation

step takes care of the processes required for offloaded components to be used in the

mobile application, including remote server selection, data and code transfer. The fi-

nal step in the offloading process is the offloading decision, which is to decide whether

to offload and execute a component remotely or not. Works described in this sec-

tion tackled the computation offloading problem in the vehicular environment using

multiple techniques, e.g. empirical, SMDP, Q-learning etc.

Ashok et. al. proposed dynamic computation offloading [4] by selectively offload-

ing parts of the applications instead of the whole application. A dynamic computation

offloading system should ensure that the response time of embedded vehicular appli-

cations are within their deadlines, where, response time is the total execution time

of the application from initiation to completion, and deadline is defined as the maxi-

mum time within which the execution must be completed. The proposed framework

is based on a service-based offloading technique. Each application is divided into

various modules based on computation requirements. Each module is a specific set of

function, the model definition of which is already available in the cloud. The system

has to identify which modules should be offloaded and which should be executed on

the on-board CPU. Once identified, the data corresponding to the module is then

sent to the cloud. The cloud already having the model definition can then complete

the computation and return back the output. Software controllers are used both in

client and cloud machine to handle the offloading process. The client includes an

application profiler that records input, output data size of modules, and execution

time. A network profiler, interfaced with the TCP socket module, keeps track of the

CHAPTER 3. RELATED WORKS 19

network bandwidth represented as the round trip time measurement. To do this,

the network profiler sends probes of packets to the server and measures the average

RTT. It is done on a parallel thread so that the actual offloading is not hampered.

The client-server communication is done using a wireless network. The model defini-

tions of the offloadable modules are dynamically shared with the cloud server at the

beginning, and updated whenever necessary at run time.

Liu et. al. [19] proposed a vehicle-assisted offloading mechanism for user devices by

considering the task execution delay and limited computation capabilities. They have

formulated the problem as a SMDP process and used Q-learning-based reinforcement

learning methods to determine the optimal offloading and resource allocation policies.

The states of the reinforcement learning algorithm is defined by the communication

and computation model between the user equipment (UE) and the Vehicular Edge

Server (VES) and fixed edge server (FES). For FES computation, the UE offloads

its computation tasks via small-cell BS to its associated FES. For VES computa-

tion, UEs can offload the computation task to the VES through wireless connection

between users and vehicles using one-hop ad-hoc network. For VES and FES offload-

ing, the system measures the spectrum efficiency for the communication link between

VES/FES and UE. For VES communication, there is interference from the vehicles

reusing the same channel with the transmitting vehicle. As the UEs are considered to

be using an orthogonal spectrum in each small cell, for FES communication there are

no interference caused among UEs in one small cell. Rather, the interference is from

the neighboring small cells. The action space of the model is to decide the compu-

tation task offloading strategy for selecting VES, FES or local computing methods.

For both VES and FES computation, the time costs for executing the task is the sum

of communication and computation time. Whereas, if local computation is chosen,

there are no communication time involved, however the computation is much higher.

They have formulated the transition of the number of available VESs for one UE as

a Markov chain. The gain of the reward function is determined by the action of the

system. In the proposed network, vehicles can provide computation services to user

equipment as well as the traditional edge server.

In many cases, traditional computation offloading methods fail to incorporate the

high mobility of dynamic environments and variable network conditions. Any offload-

ing policies pre-set by any models may not perform well in a variety of environments.

Reinforcement learning based models leveraging techniques like MDP, SMDP or Q-

learning tends perform better in comparison with traditional works.

CHAPTER 3. RELATED WORKS 20

3.3 Resource Allocation

This section provides a high level overview on several works related to resource al-

location and management in vehicular environment. We discuss various approaches

to solve the resource allocation problem using MDP, deep reinforcement learning,

analytic hierarchy process etc in highly mobile and dynamic scenarios.

Salahuddin et. al. [28] investigated resource management in vehicular cloud,

and demonstrated the benefits of reinforcement-learning-based techniques for resource

provisioning by integrating various proposed vehicular cloud models. The resource

allocation problem in this paper is designed as a Markov decision process (MDP),

where all possible configurations of the allocated resources are stored as a set of

states and the transition from one state to another is defined as actions. They have

dealt the management of virtual resources (communication, computation, and stor-

age resources) as a software as a service model. The ultimate goal of the work is to

tackle the resource allocation problem in VC by reinforcement learning, by dynam-

ically provisioning resources to maximize long term reward and avoid near sighted

decision making. MDP is a discrete time stochastic process denoted by a quad-tuple

< S,A, P,R > with S representing the set of states and A representing the set of

acts. The transition from state m to state n is based on the action a ∈ A, defined by

the probability P(m, n,a), with corresponding reward R(m, n, a). Q-learning, policy

iteration, value iteration, and linear programming are some of the methods that can

be used to solve the MDP. The authors used the policy iteration method to achieve

the optimal policy. The MDP converges to the optimum policy when the overall

incentive cannot be improved any further on the following iterations. MDP always

chooses the best settings to optimise long-term reward by allocating resources in such

a way that long-term allocations are reduced.

Ye et. al. [40] proposed a deep reinforcement learning based decentralized multi-

agent resource allocation scheme for vehicle-to-vehicle communication. For latency

prone applications, every link from a V2V environment is considered as an agent

that learns to make own optimal decisions minimizing the interference by refining

its resource sharing strategy through interacting with the unknown vehicular envi-

ronment. The effects of other agents’ behaviour on the environment is observable

throughout the system and a co-ordination system is implemented by encouraging

agents to share their activities with their neighbours and to make decisions in turns.

By selecting the actions jointly, rather than independently, the agents in turn bring

improvements to the system. The main issue of using DRL in vehicular environment

CHAPTER 3. RELATED WORKS 21

is the computational complexity. Although in the proposed system the time required

for each iteration is very minimal, it was achieved using GPU processing. In larger

urban environments, the time delay for DRL system may increase even further. The

model requires an initial training, and then it adapts in real time.

Rickson et. al. [25] proposed a resource allocation and management policy for

vehicular cloud, formulated based on mathematical methods in which it allowed for

optimal decision making to based on various influence factors derived using analytic

hierarchy process (AHP) to maximize resource utilization in the cloud. They have

used processing power, storage, service time and bandwidth as influence factors by

using AHP and mathematically derived decisions of which Fogs to choose to perform

a specific service request or whether to drop or block the service. The AHP provides

a structured technique for the decision making of problems with multiple criteria in-

volved, by using pairwise comparison between the numerical values of each parameter

and their relative degrees of importance, in order to adjust their weights at runtime.

When a vehicle connects to the Fog, it adds its resources to the pool and when it

leaves, the resource amount must be deducted from the pool. Moreover, the system

has to reallocate any resources to other vehicles that was allocated to the leaving

vehicle. When vehicles connect to the fog, it can also do service requests. The fog

in turn have to allocate resources to serve that request, either by providing resources

from its own pool, or allocate resources from another selected fog. If the selected

fog does not have enough resources, the algorithm keeps the application on hold and

pick another Fog. If the requested service cannot be served by any of the fogs in the

system, it denies the service. The number of service requested and number of service

denied is one of the important performance metrics used by the authors.

3.4 Remarks

Various methods and techniques, for example Markov decision process (MDP), semi-

Markov decision process (SMDP), deep reinforcement learning (DRL), and Q-Learning,

have proven to be useful in vehicular scenarios in recent years. While many of the

works we have reviewed produce good results in ideal scenarios, many other fail to in-

corporate variable change in vehicular environment. Due to this fact, under-utilization

of resources is a common problem. Although, resource allocation models for vehicular

environment show promising results, after reviewing several approaches, it is evident

that there still persists many drawbacks and problems that need to be addressed.

This includes issues e.g. adaptability to intermittent network conditions and high

CHAPTER 3. RELATED WORKS 22

mobility of vehicular nodes, support of application heterogeneity, and reduction of

under-utilization of vehicular resources. Improving these issues helps unlock the full

potential of vehicular clouds.

Table 3.1 summarizes a few works closely related to the scope of this thesis.

Table 3.1: Summary of Related Works

Work Environment Context Approach

[4] VCC Computation Offloading Empirical
[28] VCC Resource provisioning MDP
[17] VCC Resource allocation SMDP
[40] V2V Resource allocation DRL
[19] VEC Resource allocation and offloading Q-learning
[33] VEC, MVC Dwell time estimation Probabilistic Model
[25] VCC, VFC Resource allocation AHP

Chapter 4

Problem Formulation

Most of the works that we have reviewed so far assume that there already exists a

Fog or a cloudlet, using which, service offloading and resource allocation decisions can

be taken. In almost all cases, the location and capacity of the Fogs or cloudlets are

known. Peng et. al. [33] formulated a mathematical way to calculate the probability

of forming a Cloudlet within a fixed segment of road, which in turn helps the RSU

to determine the feasibility of a VEC related application. They did not address

what the system does if the framework decides that its not feasible to run a VEC

application. Also, they calculated the probability on a historic data which might not

always provide the best results. In this work, they have used only one road segment

and their framework finds out if a VEC application is feasible on that segment or

not. However, in real life, it is possible that their pre-defined segment of road does

not meet the threshold to form a cloudlet, but there is a probability of a cloudlet

formation nearby, which this system fails to incorporate.

Rickson et. al. [25] used various influence factors and assigned weights to them to

formulate a method for finding optimal policies for resource allocation on Fog based

vehicular environment. The influence factors and their weights are pre defined and

fixed and may not perform very well in heterogeneous application environments.

As depicted in Figure 4.1, we assume that an urban centre is composed of a set of

moving vehicles. Each vehicle contains a set of resources that can be shared/exchanged

among other vehicles or the Cloud. Our goal is to provide flexible and adaptable re-

source management solutions in a vehicular Fog environment.

For a vehicular network system, determining the feasibility of a related application

within a given road segment in advance can reduce latency significantly. By knowing

the probability of a cloudlet formation within a region by CDT estimation in ad-

vance, the system can initiate the application procedure faster than a reactive-based

23

CHAPTER 4. PROBLEM FORMULATION 24

Figure 4.1: Path trajectories crossing RSU range in urban centre.

feasibility estimation system. Existing CDT estimation systems can be extended to

take into account multiple segments of road at the same time reacting to updated

traffic flow data in real time. Coupled with an optimal resource allocation policy

system which evolves its policies automatically based on available computing and

communication resources, the system can outperform any other resource allocation

framework currently in existence. Hence, we propose a mobility-based dwell time

estimation method for accurately estimating vehicular resources in a Fog, leveraging

which we can design an adaptive and highly dynamic resource allocation model using

reinforcement learning techniques.

4.1 Dwell Time Estimation

The first part of the proposed system is to be a dynamic Cloudlet dwell time estima-

tion method. In this part, we first define the regions and divide them into multiple

segments. A dynamic approach is applied for identifying the cloudlet existence proba-

bility for each of these segments by feeding the system with real-time traffic data. As

flowing traffic moves from one segment to another, the probability of cloudlet forma-

tion for each segment is expected to be changing rapidly. The goal of this segment of

the system is to keep the estimations for each segment updated at all time so that the

CHAPTER 4. PROBLEM FORMULATION 25

VEC system can take the values and do proper calculations for the following steps.

4.2 Resource allocation policy

As we have multiple segments and the vehicular applications have multiple options

to receive resources, the network and computational parameters for each of those

segments also differ. To this end, we want to implement a resource allocation model

based on influence factors. Based on the calculations and CDT estimations from the

first segment, the system decides how to allocate resources efficiently. For making

decisions, the system needs to know the resource details from each of the cloudlets

and the requested service overheads e.g., bandwidth, storage, computation power,

information regarding the produced data. At the start of run time, each resource has

an influence factor attached to them. We measure the performance of the influence

factors’ weights over time and make them reactive to the service requested. For

example, for a critical security related application, the execution time delay should be

of utmost importance, whereas for an entertainment application the storage resource

could be vital. The goal of the system is to learn from the application request type

and update itself according to necessity.

4.2.1 RL-based Cloudlet/Fog selection

As this system could be potentially elastic in nature and we want to ensure hetero-

geneity in terms of devices and applications, we don’t want our system to be static.

Rather, we want it to evolve over time. We employ reinforcement learning algorithms

to learn the outcomes of the decisions made in first two segments of the system and

try to improve the result in the next iteration. The RL agent has knowledge about

which Fog was chosen with what probability, and which influence factors had what

weights. Based on the output reward function, it takes proper actions to ultimately

maximize the overall system reward. As the influence factors’ weights may largely

vary depending on the type of application service requested, the RL agent also knows

the characteristics of the application. In turn, the system learns to correlate between

applications requested, and choices made, and the reward of those choices, which

helps make optimal educated decisions on heterogeneous applications.

CHAPTER 4. PROBLEM FORMULATION 26

Figure 4.2: Reinforcement Learning based resource allocation model

4.2.2 Parameters

• CDT estimation: We consider the CDT estimation as a parameter of the

RL algorithm as it is one of the vital influence factor in our system. Machine

learning algorithms often act like black boxes and we cannot always predict the

outcome, i.e the future reward for a decision. Any linear decision algorithm

would choose the Fog with highest amount of available resources to allocate

resources from. However, it might be the case that choosing the Fog that

barely meets the resource requirement could result in maximizing overall system

reward. Analysing these outcomes, we are be able to find correlations between

CDT estimation and optimal resource allocation decision, which in turn could

contribute to come up with a better CDT estimation method that incorporates

CHAPTER 4. PROBLEM FORMULATION 27

other fewer factors into account.

• Computation power: Computation power required for an application and

computation power available from a Fog is important to take into account to

make a decision about resource allocation. If a fog does not have enough com-

putation resources to spare, it is an easy choice not to choose that fog.

• Storage Space: Each application request might come with some data that

needs to be stored while processing the request. The application profiler needs

to know all necessary information regarding the application and communicate

to the fog selection method with the requirements.

• Bandwidth: A network profiler keeps track of available bandwidth, to and

from the application source Fog and the selected Fog to allocate resource from.

Even if the selected fog has abundant resources, it is vital for the network profiler

to decide whether the application can be executed and receive the returned

result in time, keeping the bandwidth constraint in consideration.

Chapter 5

Cloudlet Dwell Time Estimation

Model

Cloudlet dwell time (CDT) is defined as the longest time that the number of intercon-

nected vehicles in a cloudlet remains greater than the VEC-task required value while

preserving the connection with an arbitrary RSU [33]. In our CDT estimation model,

we assume that the position of arbitrary RSUs can be anywhere in the given scenario

and the number of available RSUs and their corresponding co-ordinates are unknown

to all vehicles at the beginning. In the beginning, the RSUs start broadcasting their

position and the information is disseminated throughout the urban region; thus, all

the vehicles become aware of all the RSUs’ locations. Moreover, the movement di-

rection of the vehicles in the scenario is arbitrary, and vehicles move independently,

not sharing a single direction. We devise a vehicle trajectory prediction method that

takes place as a distributed computing process to generate the required parameters

for the CDT estimation.

In Section 5.1 we discuss a cloudlet dwell time estimation method leveraging

Linear Regression for traffic flow characterization. We also discuss the protocols used

for V2V and V2I communication in an urban scenario.

5.1 Traffic Flow Characterization

We assume that the communication range of RSUs and vehicles are rr and rv respec-

tively, and the current timestamp is ti. Although the RSUs are already deployed in

the urban environment and are static, we do not assume that all the vehicles in the

environment are aware of their coordinates. The RSUs transmit their coordinates

at predefined intervals, and their coordinates are disseminated through the vehicles

28

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 29

using multiple hops. The intersection of each vehicle’s trajectory and the range of

the RSUs determines if a vehicle will be in range of that RSU. Each vehicle in the

scenario acts as a computing node and keeps track of the vehicle’s past coordinates,

speed, and timestamp independently. Vehicles also keep track of all the RSUs’ loca-

tions that they receive. As the dissemination of location information happens with

only 2 hop neighbors, we assume that the information the vehicles receive is from a

nearby RSU.

We incorporate a linear regression model for each vehicle based on its past po-

sition coordinates - x and y to predict the direction towards which the vehicle is

moving. This estimated direction allows us to project it against the urban road seg-

ment topology. Linear regression suits this direction estimation because it is a simple,

lightweight method to model the relationship between two variables. After training

the regression model with historic data points from the vehicle’s movement, we iden-

tify a linear equation of the regression line and two points on the line. The trained

model is periodically updated for each vehicle after a predefined random amount of

time. The update period can be simply set to 20-30 seconds. However, in real sce-

nario, vehicles can remain idle for 30 seconds or travel a prominent distance by that

time. Therefore, we resorted to a random selection method of the simulation time

where the vehicles’ timestamp is divisible by a number between 13 and 19, generated

randomly. Hence, the location reading intervals are completely random and represent

the real world movement pattern more accurately. With each training instance, it is

expected to project the vehicles’ trajectory more accurately as the data points used

while training increase with each iteration. The equation has the form Y = a + bX,

where Y is the dependent variable, X is the independent variable, b is the slope of

the line, and a is the y-intercept. We find the values of a and b from n data points

using Equations 5.1 and 5.2.

a =
(
∑
y)(

∑
x2)− (

∑
x)(

∑
xy)

n(
∑
x2)− (

∑
x)2

(5.1)

b =
n(
∑
xy)− (

∑
x)(

∑
y)

n(
∑
x2)− (

∑
x)2

(5.2)

The vehicle’s trajectory is a straight line given by the regression model. Using

the oldest and latest known x-coordinates for the vehicle, we identify two points

(x1, y1) and (x2, y2) on the regression line. The Y values are not the actual recorded

y-coordinates. Instead, the pair is on the regression line which more precisely mimics

the trajectory of the vehicle. Following the assumed rr communication range of

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 30

ALGORITHM 1: Estimate of RSU contact
Data: R; posi
Result: rsuc; rsun

1 rsuc = ∅; rsun = ∅;
2 while tint AND (posi − posi−1 > ∆s) do
3 for r ∈ R do
4 if dr < rr then
5 rsuc = r;
6 Calculatepx,i;
7 Calculate ∆td,i;
8 wsm = (t,∆td,i);

9 else
10 if Vehicle trajectory crosses any RSU range then
11 rsun = r;
12 Calculate pe,i, px,i;
13 Calculate ∆tr,i,∆td,i;
14 wsm = (t, ∆tr,i, ∆td,i)

an RSU, we identify the possible case scenarios where the estimated trajectory of

the vehicle might intersect the RSU’s range, allowing a possible communication to

happen. We thus simply determine the possible intersections of the circle and a

straight line containing points (x1, y1) and (x2, y2). We have three possible scenarios

to consider in regards to the vehicular path and the RSU range circle depicted in Fig

4.1:

• The estimated trajectory of vehicle misses the RSU range.

• The estimated path of vehicle is a tangent to RSU range.

• The estimated path intersects the RSU range circle in two points, where the

closer intersection is the entry point and the further intersection is the exit

point.

There are also possibilities that the path of a moving vehicle crosses multiple RSU

ranges, but we consider the closest RSU for our calculation as the traffic direction

is determined as a probability and the vehicle can change its direction at any time

before reaching RSUs further away. The projected path may also denote that a

certain vehicle is already in the range of an RSU and moving out towards another or

none. Algorithm 1 summarizes the estimation each vehicle conducts to determine if

its trajectory goes through the range of any known RSU.

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 31

5.1.1 Entry and exit point calculation

The trajectory of the vehicle is represented as an (infinite) line determined by two

points (x1, y1) and (x2, y2). This trajectory might pass across the communication

range rr of an RSU in two points or meet the range at only one point. The intersection

thus can be simply a tangent to the range or a secant to the range, or may not

intersect at all. Mathematically, we calculate two co-ordinates at which the trajectory

intersects the range circle. We assume the nearest and farthest point as the entry

point pe,i and exit point px,i, respectively. We can then calculate the linear distance

between pe,i and px,i and get the probable dwell distance dd,i of the vehicle under the

range of the next RSU. The linear distance between current location and pe,i gives

distance to entry point de,i.

The vehicle uses a multiple linear regression (MLR) model to predict the time

required for it to reach the RSU range and corresponding dwell time within its range.

For this, we use at least 5 data points from the vehicle’s time series location and speed

data. However, simply dividing the linear distance by the average speed of the vehicle

does not provide an accurate estimation of the time required to travel that distance

in urban topology. For two data points pn,i and pn+1,i, we calculate the average speed

Sa,i = (sn,i + sn+1,i)/2 and linear distance dn,n+1, which we use as the explanatory

variables in the MLR model. We use the time difference between two points as the

response variable. From a total of n data points, we get n−1 training data. After the

training is done, we plug the MLR model with the average speed from n data points

and de,i, which returns the time required to reach the entry point ∆tr,i. Also, by

receiving the average speed and dd,i, the model returns the dwell time for the vehicle

∆td,i. The calculated data is then sent to the corresponding RSU using a WAVE short

message (WSM). We are using WSM because of the underlying communication system

being based on WAVE protocols. The vehicles store the RSU information once, but

they transmit vehicle information periodically through WSMs, and the messages are

disseminated using other vehicles to reach the range of the RSU. We use WSM for

data dissemination as these messages are targeted to an RSU, having their destination

address indicating an RSU. Each RSU has an unique ID in the environment which the

vehicle use to target the WSM towards that particular RSU. We can use h amount of

hops for the WSM to reach the RSU. We use a pure flooding dissemination protocol,

in which every node of the network relays the information once they receive it from its

one-hop neighbors. To keep the flooding in the system to a minimum, vehicles drop

any messages that they already disseminated in the past. To accomplish this, we keep

track of vehicle ids which already disseminated this message in the message header.

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 32

ALGORITHM 2: Classification of vehicles in RSU
Data: R; vi; wsm;

1 if wsm[target] = r then
2 if d(vi,rc) < rr then

3 vi −→ vo;
4 tx = t+ ∆td;

5 else
6 if (d(vi,rc) > rr) AND (d(vi,rc) < rr*3) then

7 vi −→ vf ;
8 te = t+ ∆tr;
9 tx = te + ∆td;

10 end

11 end
12 vi −→ dbi;

13 end

If the distance between a vehicle and the destination is greater than the distance

between the source and destination, we also discard the message for dissemination.

Here, we adopt to 4 hops for limiting the amount of flooding in the environment

and mitigate a broadcast storm problem. Please note that we adopt an extremely

simple, but effective, dissemination protocol since dissemination is not the scope of

the work, but just a tool.

5.2 Traffic Analysis in the RSU

For our proposed approach to properly determine the load of arriving, residing, and

departing vehicles, it requires RSUs to receive, filter, process, and store relevant

information sent by nearby vehicles.

5.2.1 Filtered Dissemination

In our scenario where multiple RSUs are placed, the computation process is not cen-

tralized and can run in parallel. We consider a vehicle and an RSU can communicate

bi-directionally only when the vehicle reaches the range of the RSU. Each vehicle in

the scenario keeps a timestamp t to denote the state it is currently in. The message

sent from vehicle i of its state vsitj can hop multiple times through other vehicles

to reach the RSU. For this reason, the particular RSU can receive the same message

originated from the same vehicle, and multiple times through multiple vehicles. We

discard the message of the same state for a vehicle in the RSU. If a new message

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 33

comes in for the same vehicle for a new state vsitj+1
we update the previous state

information with the new one in the RSU database.

5.2.2 Collecting and Classifying Vehicles

With the information sent from each vehicle, the RSUs can calculate necessary values

for CDT estimation. Algorithm 2 describes the classification process of vehicles in

the RSU and necessary calculations to store vehicle data in the database. We discard

the vehicle information that is too far away from the range of the RSU. The vehicles

that are already inside the range of RSUs are classified as outgoing vehicles vio and

incoming vehicles as vif . Along with all necessary information for a vehicle, the RSU

receives the timestamp t when the message was sent by a vehicle, the amount of time

to reach the entry point of the range of the RSU (∆tr), the amount of time the vehicle

can be in the range (dwell time) (∆td). Therefore, for an incoming vehicle vif , we

calculate the entry time te = t + ∆tr and exit time tx = te + ∆td from the range of

the RSU. For an outgoing vehicle vio , we calculate the exit time tx = t+ ∆td.

Upon receiving the information from vehicles and calculating necessary values, the

system stores them in a known vehicle database. For an incoming vehicle the system

needs to know the time required to reach the RSU and the corresponding dwell time

to calculate the entry and exit time. For a vehicle already inside the range of the

RSU, we simply calculate the exit time by using the current timestamp and predicted

dwell time.

5.2.3 Real Time Flow Estimation

Whenever a vehicle is in range of an RSU, it sends a message to the RSU with the

relevant information, e.g. position and speed. These WSMs are sent every second

and the RSUs receive the messages without the necessity of any dissemination as

the vehicles are already in range. Upon receiving the message, the RSU stores the

information in the database with the timestamp as key values. As a result, the

database has all the vehicles’ records for each particular timestamp. From this data,

we can calculate the average traffic density ρ for a given period of time and the

maximum traffic density ρmax. The RSU also stores the vehicle’s speed information,

from which we can calculate the average vehicle speed v. In the database for each

second, the RSU stores all the vehicle IDs that are in range. When we have sufficient

data points built up in the database, we can compare the vehicle IDs of a certain

timestamp with the vehicle record of previous timestamp. We find out which vehicle

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 34

ALGORITHM 3: Maximum CDT Calculation

Data: R; Nvc; t; totalSimTime ; rr; ∆td = 0

Result: ∆Tdmax ;

1 while ∆td <= (totalSimTime− t) do
2 Nt+∆td =

∑n
i=1 Vi,t+∆td(dvi,rc>rr)

3 if Nt+∆td >= Nvc then
4 ∆td + + ;
5 else
6 break;
7 end

8 end
9 ∆Tdmax = ∆td

IDs are new to the RSU and which vehicle IDs are missing from the previous data

point. We denote the new vehicles as the newly arrived and the missing vehicles as

the departed vehicles. From this approach, we then calculate the number of vehicles

that arrived and departed between two particular points in time. After doing the

calculation for a certain number of times, we can then find out the average external

vehicle arrival rate (λ) and the average vehicles departure rate (µ) in terms of (veh/s).

5.3 Vehicular Cloudlet Dwell Time Estimation

Algorithm 3 shows the calculation process inside an RSU for maximum dwell time

estimation. When the estimation method is triggered at t, it is given a value of Nvc,

the minimum amount of vehicles that needs to be within the range of the RSU. We

assume the maximum dwell time of Nvc vehicles cannot exceed the amount of time

between current time and total simulation time. Starting from t and for each dwelling

second ∆td, we proceed to calculate the number of vehicles (Nt+∆td) that are within

the range of the RSU. If Nt+∆td ≥ Nvc we decide that the cloudlet persists at t+ ∆td.

We continue this process for each additional ∆td until Nt+∆td ≤ Nvc and conclude as

∆Tdmax = ∆td.

We assume that an application request arrives in the system periodically in the

future. We want to be able to calculate the feasibility of the application by deter-

mining the cloudlet dwell time and resource availability for that application through

a certain amount of time. From the known vehicles database, we are able to calcu-

late the number of vehicles within the cloudlet and the time the cloudlet formation

persists. Application cases and requirements to consider are the following:

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 35

1. The application needs certain amount of resources for certain amount of time

and needs continuous connection with the same vehicles (continuous connectiv-

ity).

2. The application needs certain amount of resources for certain amount of time

but continuous connection with same vehicle is not needed (disrupted connec-

tivity).

To reduce the latency in a VEC application, we want to proactively determine

the feasibility of the application beforehand by predicting the possibility of a cloudlet

formation with sufficient vehicles with available resources connected within the range

of the RSU. In this work, we determine the possibility of a cloudlet formation by

identifying when n ≥ Nvc. Here, Nvc is the total number of vehicles required to be

connected to the RSU with available resources necessary to complete an application

request, and n is the total number of vehicles that are actually connected.

For an application starting at ta with execution time ∆ta, we determine the

cloudlet formation possibility for the two application cases mentioned above. We

mathematically define the possible amount of vehicles φc(n) that will be within the

range of the RSU with continuous connectivity from an application’s start time and

throughout its execution time from Equation 5.3. Equation 5.4 denotes the calcu-

lation of possible amount of vehicles φd(n) that can be present within the range

throughout the application’s execution time. In this case, we also consider disruptive

connectivity, which means connection with the same vehicle is not necessary as there

are be other vehicles that may come in.

φc(n) =
n∑

i=1

Vi

[
(te ≤ ta) && ((ta + ∆ta) ≤ tx)

]
(5.3)

φd(n) =
n∑

i=1

Vi

[
(te ≤ ta)

]
+ Vi

[
((ta + ∆ta) ≤ tx)

]
(5.4)

If a RSU has the possibility of having n vehicles within its range and each vehicle

has a probable dwell time of ∆tdi , then we can calculate the average dwell time as:

D̄ =

∑n
i=1 ∆tdi
n

(5.5)

We consider the RSUs in our model as individual Fogs which maintains their own

resource pools. When the vehicles enter into the range of a RSU, it adds to the

CHAPTER 5. CLOUDLET DWELL TIME ESTIMATION MODEL 36

cumulative resource pool of that Fog. When a vehicle looses its connection with

the RSU, the RSU deducts the amount of resource from the pool. Subsequently a

vehicle can do a service request for an on board application to the RSU. The RSU

then allocates available resources for that application from the resource pool. The

resource pool estimation is done in advance using the predicted number of vehicles and

their respective dwell time. Therefore, latency can be decreased when an application

request arises as there is no additional calculation involved to estimate the resource.

Chapter 6

RL based dynamic resource

allocation

The overall goal of this work is to better the Quality of Service (Qos) for applications

in a vehicular environment. To accomplish such a goal, our system works towards

reducing the service delays and application denials by intelligently allocating resources

within all the Fogs formed within the region. When a service request comes from a

vehicle to the RSU, the RSU tries to allocate its own available resources to complete

the process. If there are not enough resources to allocate, then it chooses some

other Fogs based on metrics resource requirements and availability and the weights

for each factor. In traditional approaches [25], these calculations and decisions takes

place after when a service request has been made, with possible delays in decision

making. Our work focuses to diminish this latency by completing the calculations

and decision-making process before the service request comes, so that the fog can

allocate the resources with minimal latency. Of course, as we are predicting the

available resources with our MLR model much earlier, there is a margin of error.

Therefore, by only reducing the latency, we cannot be definitive in assuming that our

resource allocation model performs better than any established work. To this end,

we incorporate a reinforcement learning model in making these decisions so that,

over time, our model learns by itself and the performance becomes better with each

iteration to gradually improve its allocation decisions. We use a simple AHP method

to find possible solutions to the Fog selection problem but do not actually select the

Fog with best priority score. Rather, we use an iterative Q-learning algorithm to

evaluate those possible Fogs with higher AHP rankings to make decisions based on

feedback from previous iterations. This enables us to make the resource allocation

model even more accurate than the established works using only AHP.

37

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 38

The vehicles that are within the range of a Fog can generate random application

requests periodically. Each request presents independent and particular resource re-

quirements and deadlines. When an application request arrives within any of the Fogs,

we put the application in a queue of apps waiting to be executed. Our model then

determines the feasibility of the applications beforehand by predicting the amount of

resources the fog may hold. We linearly select the most feasible applications by com-

paring the amount of resources the fog has and the required amount, and determining

if the application execution can be completed with the available resources before the

deadline.

6.1 Application Requests Overview

To accomplish seamless resource allocation and delivery, we couple the resource al-

location model with multiple profilers and managers that are tasked with separate

functions within the system. As the core goal of our resource allocation model is

to improve the QoS, dividing the model functions into separate methods which can

run independently can reduce latency to great extent. Therefore, these profilers and

managers play a vital role in the overall performance of the resource allocation model.

6.1.1 Application Profiler

The proposed model is coupled with an application profiler built on-the-fly. The

purpose of the application profiler is to keep track of all the application requests that

are coming in to the RSU from the vehicles within its range. We keep track of the

processing power and storage requirement that each application requires within the

application profiler. For each of the RSUs, we deploy individual profilers that can

run independently, resulting in prevention of overloading of the profilers. Application

profilers constantly monitor requests. Therefore, whenever any vehicle generates an

application request, the AP is the first to start processing that request.

Each application request has a header attached to it with the requirement infor-

mation. The application profiler receives the computation and storage requirements

from the app request and communicates to the fog selection method. The profiler

also keeps building a database of the application requests and their status. In our

model, we resorted to three types of initial statuses for each application: initiated,

denied, and assigned. The assignment decision is made by the fog selection method

discussed in Section 6.2.

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 39

After the deadline is over for the application, the profiler receives notification from

the selected Fog, in which it reports the final execution status: success or failure.

These two statuses are trivial in our model as we later use them to train our Q-

learning algorithm.

6.1.2 Network Profiler

Each RSU is coupled with a network profiler (NP) that periodically monitors the

network conditions among each RSUs. For our model, we resort to a star network

topology among the fogs. The network profiler periodically updates the round-trip

time (RTT) between each of the RSUs and feeds into the Fog selection method. To

keep the data overhead to a minimum, the network profiler only records the most

recent RTT value between two Fogs.

6.1.3 Resource Manager

Each RSU has a resource manager (RM) attached to it. The primary objective of the

resource manager is to keep track of the available resource pool for each fog. As our

model uses a look ahead resource estimation method, the resource manager needs to

be able to store information in two stages. In part, the RM works closely with the

CDT estimation model. The RSUs periodically receives WSMs from nearby vehicles

regarding the possibility of being in range and the amount of resources the vehicle

can contribute to the resource pool. Therefore, the RM can calculate an estimation

of the resource available for a certain time in the future, which is then propagated to

all the other RSUs nearby. When an application request comes to a RSU, it can then

use the information from the resource manager to assign an application to a certain

fog.

Apart from the probable resource estimation, the RM is also tasked with calcu-

lating a real-time resource pool. Whenever a vehicle enters into the range, it sends

a WSM to the RSU with information regarding the available resources, which gets

added to the resource pool for the fog, maintained by the RM. Accordingly, whenever

the vehicle disconnects from the RSU, the RM deducts the available resource from the

resource pool. Also, whenever an application is assigned to a RSU, the amount of re-

source needed to execute the application needs to be reserved and deducted from the

resource pool. Therefore, the resource manager plays an important role in managing

and maintaining information regarding all resources within a fog.

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 40

6.2 Fog Selection Method

6.2.1 Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) is a decision-making method that is used to

analyze and make a wide array of complex decisions having multiple criteria. It was

primarily developed by Thomas L. Saaty [27] considering many variables in the system

and having prioritization of metrics over one another to make optimal decisions. While

dealing with a problem, the AHP method generally solves it in three major segments.

The first segment is to understand the problem that needs to be resolved. The

second segment is to find the alternate solutions to the problem. The most important

segment is the third one, which is the evaluation process of the alternate solutions

that it undertakes based on various criteria. Therefore, for a problem that may have

multiple potential solutions, the AHP process assigns weights on each of the criteria

that it is assessing on. While it is easier to find a solution for problems with less

criteria, AHP proves to be one of the best mathematical methods to solve problems

with multiple solutions with various criteria.

6.2.2 Influence factors and calculations

In a vehicular resource management and allocation scenario, where there exists multi-

ple probable sources of resources, the employed model has to choose the most optimal

source with chances of providing the best possible result. In our proposed model we

have application requests coming from vehicles to a RSU, and the RSU has to choose

the best possible Fog from a pool of Fogs that it is connected to, to best serve the

application. In a heterogeneous environment with intermittent network connection

and variable resource requirement, the problem of choosing the best optimal Fog can

be perceived as a multi-variable single goal problem. The goal is to choose the best

fog where the application has the best chance of being served keeping the resource

requirements, e.g. computing power, storage space, and bandwidth in consideration.

Therefore, we incorporate an AHP based resource allocation policy [25] which allows

for optimal decision making based on individual weights we assign for each criteria:

computation power, storage space, service time and bandwidth. Table 6.1 summa-

rizes the weights of the influence factors [25] used in this work. We then go ahead

and transform the set of pairwise comparison values into a priority based ranking of

the alternative choices. To achieve this, we first divide each element of the weight

matrix by the sum of its own column to calculate the normalized relative weight and

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 41

Table 6.1: Weights of each influence factor.

Factor Computation Storage Service time Bandwidth

Computation 1 2 3 4
Storage 1/2 1 3 4
Service Time 1/3 1/3 1 4
Bandwidth 1/4 1/4 1/4 1

obtain the following matrix:

RW =


0.48 0.56 0.41 0.31

0.24 0.28 0.41 0.31

0.16 0.09 0.14 0.31

0.12 0.07 0.04 0.07

 (6.1)

The sum of each column of RW is equals to 1. We can then obtain the normalized

principal Eigen-vector also called as the priority vector by averaging each of the rows,

resulting in the following matrix:

W =


0.44

0.31

0.17

0.08

 (6.2)

Therefore, from the priority matrix we obtain the priority scores for each of the

influence factors while selecting a Fog as follows:

• Computation power (Wcp): 0.44

• Storage space (Wss): 0.31

• Service time (Wst): 0.17

• Bandwidth (Wbw): 0.08

When an application request arises through the application profiler, the Fog com-

puting node then proceeds to calculate the weight based score for each of the available

Fogs f ∈ F in the system using the resource profiler. For a Fog fi with available re-

source Icp, Iss, Ist, and Ibw we calculate the fog selection score as:

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 42

Sfi = (Wcp ∗ Icp) + (Wss ∗ Iss) + (Wst ∗ Ist) + (Wbw ∗ Ibw); (6.3)

The conventional method of taking any decision using AHP is to choose the option

that has the highest score achieved from Equation 6.3. While this method shows

some good results in choosing optimal Fogs for better serving application requests

over greedy approach, we have to set the influence factors on each of the variables

beforehand. As all application requests are not identical and one application may

prioritize one requirement over another, it is possible that the Fog selection method

does not always provide optimal results. As the weights of the influence factors does

not change over time, the Fog selection mechanism may be biased based on the weight

distribution for each of the factors. Therefore, we do not simply use AHP as the main

fog selection method in this work. We rather use AHP to obtain a set of probable

Fogs that may be able to fulfill an application request.

To this end, we employ a Q-learning based reinforcement learning method on the

Fog selection function to obtain more accurate results. Using an evolving Q-learning

algorithm helps offset the bias that the Fog selection method may have depending on

the weights of the influence factors. Even if a bias happens in the system and the

model makes a few wrong decisions, the Q-learning agent evaluates the feedback on

each iteration and tries to correct itself on the next decision making episodes. The Fog

where the application request happens is treated as a state, and all the possible Fogs

determined from the AHP process are treated as actions in the algorithm. The overall

goal of this RL agent is to evaluate the decisions taken by the fog selection method

and provide feedback to the model so that it can correct itself on the next decision

making process, and therefore reach to a converging point where most of the decisions

taken by the model can be considered as optimal. The overall optimization problem of

optimal resource allocation is granulated into finite sub-problems. By making optimal

choices on each of these sub-problems, the model ultimately contribute to the overall

optimality of the solution to the problem.

6.3 Q-learning Method

Q-learning is perceived as an off-policy reinforcement learning algorithm which works

to find the best possible action for a given current state. Q-learning was first in-

troduced by Chris Watkins in 1989 [38] and a theorem was presented to prove the

convergence of the algorithm by Watkins and Peter Dayan in 1992 [39]. It is termed

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 43

an off-policy algorithm mainly because of the fact that it does not have a policy to

start with for choosing its actions. Rather, it learns the best policy to maximize the

overall system reward. For a state s ∈ S in the system, there can be a finite number

of actions a ∈ A. On each iteration of the algorithm, for each state, the RL agent

tests the outcome of choosing each of the actions available. For each decision made,

there can be a reward feedback or a penalty feedback to the algorithm. Over the next

iterations, the RL agent tends to choose the actions that have high reward values

over the states that have low reward values. In an iterative manner, the actions that

have high possibility of reaching the goal gain more reward points, and the actions

that produces negative results have less reward points. Ultimately, the algorithm

converges to a point where it can simply choose the actions that have the highest

rewards values for each state and reach the system goal.

6.3.1 State and Action Space

The states of the algorithm in our model are defined as the Fogs that have formed

within the region S = (F1, F2, F3, F4, F5, F6). Each application request comes through

the application profiler from each Fog. We denote the Fog where the application

request happened as the current state (Sc). The action space of the Q-learning model

is the set of Fogs available A = (F1, F2, F3, F4, F5, F6). While all the Fogs in the

system are considered as an action space, for each current state Sci , it is possible that

all the actions are not available for the current state. In the proposed model, Fogs

are chosen using the fog selection method, which can provide multiple possible Fogs.

These probable Fogs act as the available actions for the model to choose from.

6.3.2 The Rewards

The most important part of the Q-learning algorithm is providing rewards for each

action taken by the RL agent. For each state Si there are six possible actions, and

therefore six reward values. For six possible states S and six available actions A for

each, we simply construct a 6x6 reward matrix R. To kick start the learning process,

we provide an initial reward value of 100 for each state-action.

R =


100 100 100 100 100 100

...
...

...
...

...
...

100 100 100 100 100 100

 (6.4)

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 44

In traditional Q-learning based applications, like a path finding robot, the R-

matrix is pre-defined. In a highly dynamic mobile vehicular environment, with inter-

mittent network condition and multitude of applications with variant demands, we

simply cannot pre-define the reward values for choices the model make beforehand.

Hence, we need to periodically update the R-matrix taking into account the previous

action and the outcome of it. We provide the agent with a high positive reward (+1)

for each of the successful application assignments. In addition, we penalize the agent

with a negative reward (-1) for selecting a fog for application assignment where the

application failed to execute. In this manner, the R-matrix of our proposed model

also evolves with real-time feedback from the system. The periodical feedback based

update of the R-values adds to the already adaptive Q-learning algorithm’s perfor-

mance to great extent and make the model more adaptive to variable changes in the

vehicular scenario.

6.3.3 The Q-Values

The whole process of reinforcement learning with Q-learning algorithm revolves around

finding the Q-values for each state-action pair. We use temporal differences (TD) for

the Q-learning algorithm as the agent has no prior knowledge of the environment

but learns and evolves on each episodes. For each state in the system and for each

available actions of each state, the model stores and updates the q-value for the cor-

responding pair. Therefore, the information has a shape of [state, action]. While

taking decisions on each episode, the agent of the RL model looks at the Q-values

for current state and chooses the action based on the maximum value available. We

build a 6x6 matrix called the Q-matrix to hold the Q-values. Initially we put zeros

for all the state-action pair.

Q =


0 0 0 0 0 0
...

...
...

...
...

...

0 0 0 0 0 0

 (6.5)

After getting the feedback for each action taken by the agent, we then update

the Q-matrix using values from R-matrix. We use Bellman’s optimality equation

for iteratively updating Q-values for each state-action pair until to the point the Q-

function converges to an optimal policy. The process is termed as value-iteration and

the Bellman equation is at the center of this process.

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 45

6.3.4 Bellman equation for State-value Function

Dynamic programming method is used to solve problems by solving sub-problems

whose solutions are found and stored and then using these solutions to form solutions

to the problems. In cases when the problems are optimization problems, the principle

of optimality needs to hold in order for the method to find the optimal solution by

solving and combining the solutions to the sub-problems. In 1954, Richard Bellman

coined one of the key formulas that are used in reinforcement learning techniques

today, stated as the Bellman Equation [6]. The purpose of the Bellman equation is

to use the reward value for a state-action pair and update the corresponding Q-value

in the Q-matrix. For a state s and action a, using the Bellman equation we can

therefore calculate the q-value Q(s, a) as:

Q(s, a) = (1− α)×Q(s, a) + α× [r + γ ×max
a′

Q(s′, a′)] (6.6)

α is the learning rate of the algorithm. It defines the importance factor that

the old Q-value holds while calculating a new Q-value for a state-action pair and

determines how fast we want the Q-learning agent to learn about the system and

controls the rate of learning for the agent. r is the reward value obtained from the

R-matrix. maxa′ Q(s′, a′) denotes the maximum Q-value for a state s and all available

actions derived from the Q-matrix. On each iterations of the algorithm, for each of the

actions, the agent searches for the largest Q-value for all possible state-action pair. γ

is used as a discount factor for reward calculation. For each episode of calculating the

new q-value we choose the maximum q-value for that state and all available actions.

However, during the learning process, the model cannot be conclusive that the action

with maximum value has the best possible chance of providing optimal solution, and

hence can be mistaken in choosing that action and calculating the q-value. Therefore,

we can offset the error factor by using γ which helps in determining the importance

the previous maximum value holds in calculating the new state-action value.

Algorithm 4 summarizes the whole process of the fog selection method using Q-

learning. When an application request arrives at a Fog, we consider that Fog as a

state of the Q-learning algorithm. We conduct the same process for all the states

in the system. Initially the set of available actions (Aav) is empty (line 1). The

resource manager continuously keeps track of the resource estimation for each of the

Fog provided by the CDT estimation model. The core contribution of the CDT

estimation model goes to the resource manager (RM). As the CDT estimation model

predicts the number of vehicles and the time they are in range, the resource manager

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 46

can record the resource estimation from these factors. Whenever the Fog selection

method calls for resource information, the RM therefore is ready to provide it without

delay. Using the information from the RM, the algorithms progresses to find a set

of available actions/Fogs (Aav) using AHP (line 3). The AHP-based Fog selection

method leverages Equation 6.3 to find Aav, which represents a subset of all available

actions/Fogs (A) with higher ranking scores. For the current state, the algorithm now

can have multiple actions to choose from. We choose the Fog that has the maximum

Q-value to allocate resources from. For the current state, the algorithm thus searches

for the highest state-action value pair from the Q-matrix and select it as the chosen

Fog (asel), from which resources can be allocated (lines 4 and 15). As the Q-learning

model trains iteratively, we need to update the reward for the previous decision that

has been made. Therefore, we evaluate the outcome/status of the decision taken

by the algorithm for the previous application requests appk from the information

provided by the application profiler (line 6). We provide a positive reward of 1 if the

application was a success (line 8) and -1 if failed (line 11) and update the R-matrix

accordingly. We consider only the application that have completed their execution,

successfully and unsuccessfully. After these applications are considered, they are

removed from the set of application executions. Finally, for the current state-action

pair we calculate the Q-value using Bellman equation, as described in Equation 6.6,

and update the Q-matrix (line 13-14).

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 47

ALGORITHM 4: Q-learning algorithm for fog selection

Data: S; A; R; Eapp; γ; α

1 Av = ∅;
2 for ai ∈ A do

3 Aav ∪ AHP (S, aj);

4 asel = maxQ(S,Aav);

5 for si ∈ S do

6 for appk in Eapp(si, A) do

7 if appk = success then

8 R[si][ak]+ = 1;

9 Eapp − appk;

10 else if appk = fail then

11 R[si][ak]− = 1;

12 Eapp − appk;

13 for aj in Aav do

14 Q(si, aj) = (1− α)×Q(si, aj) + α× [R[si][aj] + γ ×maxQ(si, Aav)];

15 return asel;

We resort to an online and off-policy Q-learning algorithm because we want our

model to be adaptive to unpredictable variable changes in the vehicular scenarios.

Off-policy algorithms do not have a pre-defined policy to start with and develop an

optimal policy over time, which is suitable to dynamic vehicular conditions. Poten-

tially, a pre-trained offline model could perform better from the start than an online

training approach. However, it leaves the model vulnerable to dynamic conditions

where mobility and network conditions are unpredictable and cant change rapidly.

Therefore, the proposed online training method caters best in highly changing envi-

ronments adapting over time based on a feedback based mechanism.

Principle of Optimality

For a policy to be optimal, it is vital that it comprises of a property that no matter

what the initial state and initial decisions are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first decision [5]. The

proposed resource allocation model can be considered to be an optimization problem

as the goal of the model is to optimize the resource allocation decisions and reach

an optimal Fog selection policy. Therefore, the principle of optimality needs to hold

CHAPTER 6. RL BASED DYNAMIC RESOURCE ALLOCATION 48

in order to provide the justification of using the Q-learning based algorithm. The

principle of optimality holds if every optimal solution to a problem is composed of

a sequence of sub-problem decisions where the final result is optimal. In case of our

proposed model, the sub-problems are fog selection decisions on each iteration of

the algorithm. The solution to each of this sub-problem relies on the feedback from

previous state, and therefore are more efficient and returns higher reward than the

previous decision. On each iteration of the algorithm, for each state, the agent chooses

the action with highest Q-value among all possible actions. Each of the solution to

the sub-problems can thus be perceived as a greedy approach by the Q-learning

algorithm. However, according to the convergence theorem for Q-learning [39], the

model converges to the optimum action-values with probability 1 as long as each state-

action pair is be visited infinitely often and sampled discretely. For this theorem to

hold, the probability of each action to be selected by the policy must have a non-zero

value. As the model follows an off-policy algorithm and does not have a Fog selection

policy to start with, the probability of being chosen to allocate resources from is never

zero in any iteration of the algorithm. Also, on each of the iterations, each of the

possible actions are sampled to determine a selection decision, and hence follows the

Q-learning convergence theorem. Therefore, while the overall outcome of the model

is a optimal solution, the solutions to the consisting sub-problems are also optimal.

Therefore, we conclude that the principle of optimality holds in our proposed model.

Chapter 7

Performance Analysis

7.1 Simulation Environment

For the implementation and simulation of this project we have used VEINS along

with SUMO and OMNet++. VEINS is a Open Source vehicular network simulation

framework. It ships as a simulation suite for vehicular networking [32]. VEINS

models are supported and executed by OMNet++. For this experiment we have used

Veins-5.0. VEINS serves as the basis of simulation. Simulation of Urban Mobility or

SUMO [20] is an open source and highly portable microscopic road traffic simulation

package designed to handle large road networks. For this simulation we are using

SUMO version: 1.2.0. OMNet++ models are based on modules which communicate

by exchanging messages [36]. It is mainly used for network simulation. The active

components of the models are programmed using C++. It also requires the Microsoft

.Net framework. Version 5.0 has been used in this simulation. It communicates with

SUMO using TCP sockets. The whole ITS scenario stands on WAVE short message

(WSM) as the supporting communication protocol. Network nodes (e.g. Vehicles,

RSUs) communicate through both V2V and V2I.

7.2 Traffic Network Topology

We use the map of Cologne metropolitan area as our urban center, projecting a

recorded data set of real world traffic movement onto it, as depicted in Figure 7.1. The

region comprises of dense urban area with standard grid layout as well as highways

allowing variable mobility pattern across the whole region. We placed 6 RSUs in the

scenario in such a way that the range of each does not overlap with each other. Each

49

CHAPTER 7. PERFORMANCE ANALYSIS 50

Figure 7.1: Cologne metropolitan area used in the simulation analysis.

vehicle starts their journey at a predefined time, and moves through the urban center

until its journey ends. Vehicles communicate with the nearby RSUs from time to

time and send information regarding their current and future positions. We compare

the estimated values with actual positions after the simulation ends.

7.3 Performance analysis of CDT estimation

We have presented the theoretical mathematical modeling process of the proposed

vehicular CDT estimation method. As a result, we have conducted performance

analyses to evaluate the contribution of our proposed approach.

CHAPTER 7. PERFORMANCE ANALYSIS 51

Table 7.1: Simulation parameter settings

Parameter Value

Urban Area 35000× 35000m2

Number of vehicles 1000 - 3000
RSU Density 6
PHY Model IEEE 802.11p
Vehicle comm. range 400m
RSU comm. range 400m
Transmission power 120mW
Noise floor -98dBm

175

275

375

475

575

675

775

875

975

Simulation time

0

1

2

3

4

5

6

Di
ffe

re
nc

e
of

 n
um

be
r o

f v
eh

icl
es 2000

2500
3000

Figure 7.2: Difference of predicted and actual results with continuous connection for
the number of vehicles (Snapshots of RSU 24).

7.3.1 Scenario and Methodology

The application request comes to a RSU a certain amount of time before the actual

application launch. For simplicity of calculation, we always generate an application

request 45s in the future with an execution time of 5 seconds. We then calculate and

predict the number of vehicles that will be in range of the RSU throughout the entire

execution time and record it into a database. We log the vehicles positions from when

they enter into a RSU’s range until they go out of the range. For this, the vehicles

that are in the range, send WSM messages to the RSU. Upon receiving the WSM the

RSU logs the vehicles’ location.

Once the whole simulation scenario is complete we have the predictions and the

CHAPTER 7. PERFORMANCE ANALYSIS 52

175

275

375

475

575

675

775

875

975

Simulation time

0

2

4

6

8

Di
ffe

re
nc

e
of

 n
um

be
r o

f v
eh

icl
es 2000

2500
3000

Figure 7.3: Difference of predicted and actual results with disrupted connections for
the number of vehicles (Snapshots of RSU 24).

actual positions of vehicles with timestamps. We can then analyze the accuracy of

the prediction model with the real data. We have adapted this performance analysis

methodology because comparing with the actual results gives us the best possible

accuracy in error rate measurement. Also, as the vehicles can directly communicate

with the RSU without any necessity of data dissemination, the logging method can

easily be extended to create a real time logging system which can in turn help correct

the prediction model in real time.

7.3.2 Parameter Settings

For simplicity of calculation, we assume the communication range for the RSU and all

vehicles is 400m. We have used 1000, 1500, 2000, 2500, and 3000 cars in simulations of

total 1000 seconds. Table 7.1 summarizes the parameter settings used in the scenario.

7.3.3 Performance Metrics

We compared the predicted values with the actual results as one of the key perfor-

mance metrics for our model. Moreover, we want to achieve efficient performance

keeping the amount of messages in the system as low as possible. Therefore, the

control overhead is another major performance metric for our analysis.

CHAPTER 7. PERFORMANCE ANALYSIS 53

200

300

400

500

600

700

800

900

1000

Simulation time

0

50

100

150

200

250

Di
ffe

re
nc

e
of

 d
we

ll
tim

e

2000
2500
3000

Figure 7.4: Difference of predicted and actual results for dwell time (Snapshots of
RSU 24).

Estimation/Prediction Accuracy

• Number of vehicles within a certain period of time. Our model estimates

the amount of vehicles that will be present within the Fog for certain period of

time. From there, we can also calculate the amount of available resources. The

metric is split into two views:

– Continuous connectivity. It represents the number of same vehicles

traversing the region.

– Disrupted connectivity. It represents the total number of vehicles

within the region.

• Corresponding dwell time. The model also predicts the continuous amount

of time where there are at least Nvc vehicles within the Fog.

We measure the accuracy of our model by comparing the estimates against the

actual simulation readings. The accuracy of these predictions are highly significant

in this work as we use this model to determine the possible resource availability for

each Fog and the feasibility of an application maintaining high quality of service.

Control Overhead

We measure the number of control messages sent through WSM from vehicles and

RSUs necessary to disperse data throughout the scenario for the system to work

CHAPTER 7. PERFORMANCE ANALYSIS 54

1000 1250 1500 1750 2000 2250 2500 2750 3000
Density of Vehicles

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
SE

0s - 500s
501s - 1000s
Total

Figure 7.5: MSE analysis in estimations in two periods of simulation (0s− 500s and
500− 1000s) for # of vehicles with continuous connectivity

efficiently. We measure how the number of WSMs vary depending on the number of

vehicles and total communication overhead. We also measure the number of WSMs

that fails to reach their destination and the effects of total number of messages on

message delivery failures.

7.3.4 Results

Number of vehicles prediction

Figure 7.2 and Figure 7.3 shows the visual comparison between prediction and actual

results. To be compatible with the later part of our work, we generate random appli-

cation requests on each of the Fogs every 50 seconds. For simplicity of calculation,we

assume the deadline for each service request is 5 seconds. We then calculate the pos-

sible amount of vehicles that might be in range of the RSU and therefore able to share

their resources during the application execution time. The x-axis of Figure 7.2 and

Figure 7.3 depicts the application time and the y-axis shows the difference between

the estimate and the actual values in terms of number of cars. For various amounts

of vehicles we saw that the RSU shows a similar pattern in the prediction deviation.

For continuous connectivity, RSU 24 tends to converge to zero at the end of the ex-

periment. Among the 6 RSUs placed within the scenario, we pick this particular RSU

as it is close to the urban center and have larger vehicles cluster around it. As our

model is driven by training the vehicle trajectory to estimate the results, we attained

best results for the RSUs that has more vehicles within its range or nearby. We also

CHAPTER 7. PERFORMANCE ANALYSIS 55

1000 1250 1500 1750 2000 2250 2500 2750 3000
Density of Vehicles

1

2

3

4

5

6

7

8

M
SE

0s - 500s
501s - 1000s
Total

Figure 7.6: MSE analysis in estimations in two periods of simulation (0s− 500s and
500− 1000s) for # of vehicles with disrupted connectivity

observed the estimates are less deviant for 2000 vehicles.

The result in Figure 7.2 and Figure 7.3 allows us to visualize the accuracy of the

model in estimating the status of vehicles as they move through the region. Thus, it

only serves to exemplify/illustrate through a snapshot. For us to show precision, we

have used mean squared error (MSE) estimator to measure the average of the squares

of the errors for the predictions. For n number of predictions and predicted amount

of p and actual value of a we determine the MSE as:

MSE =
1

n

n∑
i=1

(|pi − ai|)2 (7.1)

Figure 7.5 and Figure 7.6 shows the error measurement for both variation for

vehicle estimation. For better understanding of the behaviour of our model, we have

split the analysis into three curves. We measured the error for the first half of the

simulation, the second half of the simulation and the average of whole simulation

time. For continuous connectivity, the overall performance of the system is better

at the later half of the simulation. We have also analysed our results for over and

underestimation as shown from Figure 7.8 to Figure 7.13. It can be concluded from

the results that the model tends to overestimate in most cases and the deviation

of over estimation is much higher than the underestimation. The overestimation is

partially caused by the topology of the urban environment. The model does not

consider the topological driving distance and congestion in the scenario. As a result,

CHAPTER 7. PERFORMANCE ANALYSIS 56

1000 1250 1500 1750 2000 2250 2500 2750 3000
Density of Vehicles

0

10

20

30

40

50

60

RM
SE

0s - 500s
501s - 1000s
Total

Figure 7.7: MSE analysis in estimations in two periods of simulation (0s− 500s and
500− 1000s) for dwell time estimation

vehicles estimated to be in range are in fact not arriving the RSU range within the

time window of the prediction. This finding gives us the opportunity to adapt our

model accordingly in our future works.

Based on six RSUs placed in different locations and vehicle densities of 1000, 1500,

2000, 2500 and 3000, we achieved an MSE of 2.288 for continuous connectivity and

3.865 for disrupted connectivity.

Dwell Time estimation

Figure 7.4 shows the difference between the dwell time estimation from the model and

the actual dwelltime for a particular RSU. The x-axis denotes the simulation time

when the prediction was made, and y-axis shows the difference in seconds between the

estimation and the actual value of the dwell time. We can observe that the difference

drastically decreases as time passes for any density of vehicles. Figure 7.7 shows the

error measurement for the dwell time estimation on the first half, second half, and

the whole of the simulation time. We can see a general trend of getting more errors

with the increase of number of vehicles. However, for any density of vehicles, we can

notice that the system tends to be more precise in 500 - 1000s than 0 - 500s mostly

because the second simulation period accumulates a longer history, facilitating a more

precise estimation. We conducted the experiment for only 1000 seconds and from the

achieved result, we concluded that the longer we keep training the model the more

accurate it becomes and performs with more precision over time.

CHAPTER 7. PERFORMANCE ANALYSIS 57

1000

1250

1500

1750

2000

2250

2500

2750

3000

Density of vehicles

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

Average MSE
Over Estimation MSE
Under Estimation MSE

Figure 7.8: MSE analysis (general, over and under estimations) for the number of
vehicles (Continuous connection 0s-500s)

Number of control messages (WSM)

Figure 7.14 shows the amount of sent and received WSMs as well as the total along

with their confidence intervals in comparison with the amount of vehicles in the

system. The number of WSMs sent increases linearly with the growth in the number

of vehicles. The number of received WSMs is lightly affected by the number of

vehicles.

7.4 Performance analysis for RL based resource

allocation model

In this work we have theoretically presented our proposed model and discussed the

possible contribution it may provide in resource allocation problems in vehicular Fog

computing. Running extensive simulations and measuring the results for performance

analysis is therefore the cornerstone in proving the contributions of our work. This

section describes the parameters, metrics, and the performance analysis for the RL

model.

CHAPTER 7. PERFORMANCE ANALYSIS 58

1000

1250

1500

1750

2000

2250

2500

2750

3000

Density of vehicles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
SE

Average MSE
Over Estimation MSE
Under Estimation MSE

Figure 7.9: MSE analysis (general, over and under estimations) for the number of
vehicles (Continuous connection 0s-500s)

7.4.1 Parameter Settings

We carry over the same features and parameters for the simulation environment from

the resource estimation model. Additionally, for the RL model, we assume the Fogs

in which an application request arises is a state and all the other available RSUs are

actions. Table 7.2 summarizes the parameters for the Q-learning algorithm. We want

the training period of our model as minimal as possible to start producing intelligent

decisions but not to the point where is continuously makes mistake. We choose a

learning rate of 0.75 and discount factor of 0.85 by the method of trial and error.

We use VEINS, SUMO and OMNET++ as described in 7.1 to simulate the pro-

posed RL model for resource allocation. We use the map of the metropolitan area

of Cologne, Germany for the simulation. We use a pre-recorded vehicle movement

data to simulate real world traffic scenario. We place 6 RSUs on the simulation grid

randomly. We placed the RSUs based on a visual inspection of the map determining

where the vehicle clusters are more prominent. Figure 7.1 shows the map of Cologne

and the positions of the RSUs while running the simulation. Table 7.1 shows the

parameters used for this simulation environment.

7.4.2 Performance Metrics

In this section we describe the metrics we have used to analyse the performance of

the RL based resource allocation model leveraging the CDT estimation. Creating

CHAPTER 7. PERFORMANCE ANALYSIS 59

1000

1250

1500

1750

2000

2250

2500

2750

3000

Density of vehicles

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

Average MSE
Over Estimation MSE
Under Estimation MSE

Figure 7.10: MSE analysis (general, over and under estimations) for the number of
vehicles (Continuous connection 0s-1000s)

Table 7.2: Q-learning Parameters

Parameter Value

Reward Matrix (R) 6× 6
Q Matrix (Q) 6× 6
Learning Rate (α) 0.75
Discount Factor (γ) 0.85

appropriate performance metrics enables us to prove the accuracy of our model.

Success of application requests

The key performance metric for the analysis of our proposed model is the success

rate of application service by the Fogs. There can be three possible states of each

application in the system: denied due to lack of resource, assigned to a particular

Fog, and assigned but failed to execute. As our model makes decision based on future

resource availability estimation, it is possible that the model over or underestimate

the amount of resources for each Fog. Therefore, for an under estimation the RSU

could deny an application request, whereas on an overestimation, the RSU can assign

an application resources that might not exist in the short-term future. Therefore,

it is of utmost importance to measure the ratio of success and failure of application

service to understand the performance of the model. We also compare the results

with established vehicular resource allocation model to further establish the accuracy

CHAPTER 7. PERFORMANCE ANALYSIS 60

1000

1250

1500

1750

2000

2250

2500

2750

3000

Density of vehicles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

Average MSE
Over Estimation MSE
Under Estimation MSE

Figure 7.11: MSE analysis (general, over and under estimations) for the number of
vehicles (Disrupted connection 0s-500s)

of our proposed model.

Convergence

We want the RL algorithm to come to a point where most of the decisions taken by

the model are optimal and from the given parameters of the environment it is evident

that more better result is not possible. The performance of an RL algorithm can

be measured by the time it converges. The faster the algorithm converges the less

computation it needs and thereby is proven to be a better algorithm.

Comparison with established methods

In order to show the advantage of using reinforcement learning for resource allocation

we show the performance improvements for our model over simple Analytic Hierar-

chy Process (AHP) based resource allocation model. A part of our model uses an

AHP process to determine priority scores for available fogs while allocating resources.

Although in our model we don’t just select the Fog with highest score, we are able

to record the result of the AHP method. Therefore, after the simulation is com-

plete we can then compare the results of the RL based model with the AHP method.

This helps us clearly show the performance improvement in using a Q-learning based

method for choosing Fogs over AHP.

CHAPTER 7. PERFORMANCE ANALYSIS 61

1000

1250

1500

1750

2000

2250

2500

2750

3000

Density of vehicles

0
1
2
3
4
5
6
7
8

M
SE

Average MSE
Over Estimation MSE
Under Estimation MSE

Figure 7.12: MSE analysis (general, over and under estimations) for the number of
vehicles (Disrupted connection 500s-1000s)

Control Overhead

While running the simulation we keep a record of WSM messages exchanged between

the vehicles and the the RSU. It is important to understand the control overhead

requirement of the system to understand the scalability and sustainability of the

model.

7.4.3 Scenario and Methodology

As our model is based on real time values and we need to train the RL agent peri-

odically, we need to update the R-matrix repeatedly. Therefore, the RSUs holds the

information regarding all the application requests and their service status creating

a large application log over time. The RSUs are able to acquire these information

through the application profiler, which records all information regarding any applica-

tion generated within the system. The RSU can also learn the actual resource avail-

ability through the resource manager. Subsequently, the RSUs also hold the data for

initial fog selection using the simple AHP method. After the simulation is completed

we can then simply conduct the necessary analysis to measure the performance of our

RL model and compare the performance with AHP model.

CHAPTER 7. PERFORMANCE ANALYSIS 62

1000

1250

1500

1750

2000

2250

2500

2750

3000

Density of vehicles

1

2

3

4

5

6

M
SE

Average MSE
Over Estimation MSE
Under Estimation MSE

Figure 7.13: MSE analysis (general, over and under estimations) for the number of
vehicles (Disrupted connection 0s-1000s)

7.4.4 Convergence

One of the key metrics of a Q-learning based model is the measurement of the perfor-

mance converge of the algorithm. The convergence is defined as the learning point of

a model when it is no longer producing substantially better results than the previous

iterations. To update the reward matrix while running the experiment we have cou-

pled the model with an update function. In addition to updating the R and Q-values,

the method also keeps track of the running error rates of the decisions made by the

model. On an episode Epochi, we compare the average error rate from Epochi−5 to

Epochi−3 and average error from Epochi−2 to Epochi. We set a threshold of 3 percent

error to decide the convergence of the algorithm. When the difference between the

two measurements no longer exceeds the threshold, we conclude that the model has

converged to an optimal result. If the algorithm produces erratic results and does not

converge by the end of the simulation, we conclude it as a failed experiment.

7.4.5 Results

Status of application service

Figure 7.15 shows a visual comparison of the number of application served for various

amounts of vehicles using simple AHP method and reinforcement learning technique.

For any number of vehicles we can see that the amount of applications served by the

CHAPTER 7. PERFORMANCE ANALYSIS 63

1000 1250 1500 1750 2000 2250 2500 2750 3000
Density of vehicles

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f W
SM

s

Sent WSM
Received WSM
Total WSM

Figure 7.14: WSM sent and received in comparison with vehicle number

RL model is higher than that of AHP model and appears to provide better results for

higher number of vehicles. Similar behaviour can be observed in terms of number of

application denials depicted in Figure 7.16. It is evident from the figure that with the

increase of vehicles, simple AHP model tends to fail a larger number of applications

in our scenario than the employed RL model does. Figure 7.17 shows the number of

applications denied for both AHP and RL model. We can see that the application

denial is much higher for 1000 and 1500 vehicles. This occurrence is due to the fact

that when there are fewer vehicles, the amount of resources available is also less,

resulting in immediate denial of service whenever the application request comes in.

The overall goal of our proposed reinforcement learning based resource allocation

model is to aid vehicular fog in choosing the right source for resource allocation to

application service requests. The aforementioned results show a good comparison

with an established resource allocation model, and it can be concluded that using Q-

learning technique produces better results than using simple AHP based fog selection

technique. However, the mentioned figures only illustrates the upside of using our

proposed model. Therefore, to measure the performance and accuracy of our model,

we have calculated the error rate for all the decisions taken by the RL agent. For a

decision of Fog selection by the RL model, there can be two outcomes: application

served and application failed to execute. When an application is assigned but it

failed to execute we count that an error from the system. For 6 of the Fogs, we can

mathematically calculate the average error rate considering 1000, 1500, 2000, 2500,

and 3000 vehicles as follow:

CHAPTER 7. PERFORMANCE ANALYSIS 64

1000

1250

1500

1750

2000

2250

2500

2750

3000

Number of vehicles

55

60

65

70

75

80

85

90

Pe
rc

en
ta

ge
 o

f a
pp

lic
at

io
ns

 se
rv

ed

AHP
RL

Figure 7.15: Comparison of percentage of applications served.

AER =
1

6

3000∑
i=1000

(
f

T
× 100) (7.2)

Where f is total failed applications and T is the total number of decisions made.

After running simulations for each variations of vehicle density extensively, we could

achieve an error rate of 9.27 percent. Figure 7.18 shows the error rate for different

amount of vehicles in different segments of time 0s-500s, 501s-1000s and the whole

time 0s-1000s. It is clear from the illustration that the error rate in the second segment

of the simulation is much lower than that of the first segment. As an RL agent learns

over time to make optimal decisions, it is evident that the learning capability of our

proposed RL model is evident and it makes more accurate decisions over time. The

error rate is higher for fewer vehicles, which can be attributed to the over estimation of

resources discussed in 7.3.4. However, the error rate appears to drop as the number

of vehicles increases, which shows the adaptability and scalability of our proposed

model. When there are more number of vehicles, there are more available resources

within each of the Fogs. Therefore, the Fog selection method has more fogs to choose

from and the possibility of the application of the successful is higher which results in

the decrease in error rates.

Figure 7.19 shows the convergence of the Q-learning algorithm. The x-axis of the

CHAPTER 7. PERFORMANCE ANALYSIS 65

figure represents the simulation time and the y-axis represents the error rates. We

have plotted 5 curves for 5 variations of vehicle density. We can observe from the

figure that the convergence happens at around 800 seconds into the simulation. For

certain lower vehicle densities, we can see that the algorithm is still evolving and

improving. As we have conducted the experiment for only 1000 seconds, we have set

a rather high threshold of convergence to 3 percent. Also as the simulation time is

short, we have set a high learning rate of 0.75 for the model. Setting a high learning

rate can sometime produce worse result in a short period of time, which is not the

case in this scenario. However, it is to be noted that it is always ideal to use a low

learning rate and running the training process for longer period of time. It is evident

from the figure that by giving more time into the experiment, the model has the

potential to improve even further.

Number of control messages (WSM)

Figure 7.20 shows the amount of sent and received WSMs as well as the total along

with their confidence intervals in comparison with the amount of vehicles in the

system. The number of WSMs sent increases linearly with the growth in the number

of vehicles and is evidently more than that of CDT estimation model. The extra

amount of messages are the result of application requests and the status message sent

back to the vehicles. The number of received WSMs is lightly affected by the number

of vehicles as the packet collision in the wireless network increased with the amount

of message exchange.

Type/size of service requests

We have classified the application requests into demanding applications and light

applications based on their resource requirements. Fig 7.21 shows the amount of

applications for each type and the total number of application requests generated

per density of vehicles. The x-axis denotes the density of vehicles and the y-axis

shows the corresponding numbers. We can observe from the figure that the number

of application requests increases with the number of vehicles in the scenario.

7.4.6 Statistical Significance

We have also conducted statistical significance test for the performance of RL model

with the simple AHP based method. We have used p-value estimation for hypothesis

testing and used the simple AHP based model as a null hypothesis and the RL model

CHAPTER 7. PERFORMANCE ANALYSIS 66

1000

1250

1500

1750

2000

2250

2500

2750

3000

Number of vehicles

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Pe
rc
en

ta
ge

 o
f a

pp
lic
at
io
ns
 fa

ile
d

AHP
RL

Figure 7.16: Comparison of percentage of applications failed

as the alternate hypothesis. For the estimation, the lower the p-value is, the lower

the probability of the results being purely by chance. Before starting the testing we

have set a p-value threshold of 0.05. Considering all variations of vehicle density from

1000 to 3000 we have obtained a p-value of 0.0023. Therefore, by rejecting the null

hypothesis we conclude that the performance enhancement we have observed by the

RL model for resource allocation is statistically significant and not by chance.

7.4.7 Remarks

Extensive analysis of the data regarding the resource availability and application ser-

vice shows that our proposed model is able to provide optimal solution to the resource

allocation problem in highly dynamic vehicular environment. We have conducted the

experiment for only 1000 seconds which is not quite sufficient for a reinforcement

learning model to converge. However, in this limited time we could show that the

more time passes the model tends to improve in selecting the correct fogs to assign

resources from for successful application service. Therefore, we conclude that our

model is capable of handling large scale application requests and evolve over time to

produce the best possible resource allocation policy.

CHAPTER 7. PERFORMANCE ANALYSIS 67

1000

1250

1500

1750

2000

2250

2500

2750

3000

Number of vehicles

5

10

15

20

25

Pe
rc

en
ta

ge
 o

f a
pp

lic
at

io
ns

 d
en

ie
d

AHP
RL

Figure 7.17: Comparison of percentage of applications denied

1000

1250

1500

1750

2000

2250

2500

2750

3000

Number of vehicles

4

6

8

10

12

14

16

Ap
pl

ica
tio

n
as

sig
nm

en
t e

rro
r r

at
e

0-500
500-1000
0-1000

Figure 7.18: Application assignment error rate for different segment of time

CHAPTER 7. PERFORMANCE ANALYSIS 68

200

300

400

500

600

700

800

900

Simulation Time

10

20

30

40

50

60

Ap
pl

ica
tio

n
as

sig
nm

en
t e

rro
r r

at
e

1000
1500
2000
2500
3000

Figure 7.19: Convergence of the Q-learning algorithm over time

1000 1250 1500 1750 2000 2250 2500 2750 3000
Density of vehicles

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f W
SM

s

Sent WSM
Received WSM
Total WSM

Figure 7.20: Control overhead

CHAPTER 7. PERFORMANCE ANALYSIS 69

1000

1250

1500

1750

2000

2250

2500

2750

3000

Number of vehicles

50

75

100

125

150

175

200

225

250

Nu
m

be
r o

f a
pp

lic
at

io
ns

Demanding applications
Light applications
Total applications

Figure 7.21: Types of application requests

Chapter 8

Conclusion

8.1 Summary

This work has handled the problem of precisely estimating the amount of available

resources in range for building and serving applications in a vehicular Fog. With the

increase in number of heterogeneous applications with limited computation power

of on-board vehicular computation units, optimal resource allocation mechanism in

vehicular scenario is a key factor to unlock the full potential of vehicular networks.

The proposed mobility-oriented model described in Chapter 6 targets the accurate

prediction of number of connected vehicles and their corresponding dwell time under

the coverage of an RSU. Accurate estimation of the dwell time for each vehicle with

available resources to share is important to estimate the highest and lowest possible

vehicular resource pool that can be accumulated within a certain period of time. To

accomplish this, we have implemented a real time vehicle trajectory predictor using

LR and MLR to model traffic flow in the environment. In a highly dynamic scenario,

we are able to predict the amount of connected vehicles to a Fog and the longest

time they can provide resources to the resource pool. From these estimations, an

estimation of possible vehicular resources within a Fog can be calculated. Results have

demonstrated that the estimates could be leveraged to assess vehicular applications’

feasibility in advance. A reactive-based system only asses vehicular applications’

feasibility only when a request comes in. Therefore, completing all the necessary

calculations and estimations in advance, our proposed model largely reduce latency

and improves application service performance.

Solely relying on CDT estimation limits the appropriate management of vehicular

applications since the only aspect that is considered in the allocation problem is mo-

bility. Experimental analyses have demonstrated that the CDT model presents a few

70

CHAPTER 8. CONCLUSION 71

performance issues with the increasing number of vehicles in the scenario and tend to

over and under estimate available resources due to high mobility of the environment.

Consequently, we incorporated characteristics of applications and resources/services

in the process of assigning resources from available Fogs. Due to the high dynam-

icity of the vehicular environment, such a process requires adaptability where needs

and availability constantly change. Therefore, in Chapter 7 we have introduced a

reinforcement learning based dynamic resource allocation model based on CDT es-

timation and resource availability for vehicular Fog computing. We have taken the

estimation model that have already shown good results and extended it further using

Q-learning technique and employed an optimal policy selection method for application

service. We have used AHP to determine a possible set of Fogs to allocate resources

from, and choose the best fog according to the feedback given in previous iterations.

This iterative process keeps improving the model and ultimately evolves to be an

optimal policy selection mechanism. We have conducted experiments and analysed

the results to show the accuracy of our model and compared it with established work

on tackling resource allocation problems.

8.2 Future Research Directions

Even though the simulation of the proposed model has shown promising results in

terms of accurately predicting resource amount and assignment and execution of

applications by selectively choosing best suited fogs, there are several issues that can

be improved to obtain more precise results.

The direction and mobility of vehicles in an urban scenario is highly dynamic and

accurately predicting the vehicle trajectory based on limited mobility data proved

to be challenging. We have used geometric analysis and multiple linear regression

method to model the vehicle trajectory, whereas the topology on the urban centers

are often complex and proved to be a challenging factor in trajectory estimation. Al-

though we have used reinforcement learning method in the later part of our model to

choose best possible fog for application assignment, the application of RL in cloudlet

dwell time and resource estimation method appears to be a great solution to over-

come the challenges and improve the overall results. We also want to experiment

on dynamic weights of the influence factors which can keep changing over time. Im-

provement on some of the key steps of the proposed model can produce even better

results and is a major research goal for us in the future.

Bibliography

[1] Scarborough-research. teen mall shopping attitudes and usage survey. 2005.

[2] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng. Fog computing for the internet

of things: Security and privacy issues. IEEE Internet Computing, 21(2):34–42,

2017.

[3] S. Arif, S. Olariu, J. Wang, G. Yan, W. Yang, and I. Khalil. Datacenter at the

airport: Reasoning about time-dependent parking lot occupancy. IEEE-T on

Parallel and Distributed Systems, 23(11):2067–2080, 2012.

[4] A. Ashok, P. Steenkiste, and F. Bai. Vehicular cloud computing through dynamic

computation offloading. Comp. Comms., pages 125–137, 2018.

[5] R. Bellman. On the theory of dynamic programming. Proceedings of the National

Academy of Sciences, 38(8):716–719, 1952.

[6] R. E. Bellman. Dynamic Programming. Dover Publications, Inc., USA, 2003.

[7] S.K. Bhoi and P.M. Khilar. Vehicular communication: A survey. Networks IET,

vol. 3, pages 204–207, 2014.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in

the internet of things. Proceedings of the first edition of the MCC workshop on

Mobile cloud computing, pages 13–16, 2012.

[9] P. J. Burke. The output of a queuing system. Oper. Res., 4(6):699–704, December

1956.

[10] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and

C. Lin. Edge of things: The big picture on the integration of edge, iot and the

cloud in a distributed computing environment. IEEE Access, 6:1706–1717, 2018.

72

BIBLIOGRAPHY 73

[11] J. Feng, Z. Liu, C. Wu, and Y. Ji. Ave: Autonomous vehicular edge computing

framework with aco-based scheduling. IEEE TVT, 66(12):10660–10675, 2017.

[12] Md T. Hossain and R. de Grande. Cloudlet dwell time model and resource avail-

ability for vehicular fog computing [accepted]. In proceedings of the International

Symposium on Distributed Simulation and Real Time Applications, 2021.

[13] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen. Vehicular fog computing: A

viewpoint of vehicles as the infrastructures. IEEE TVT, 65(6):3860–3873, 2016.

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A

survey. CoRR, cs.AI/9605103, 1996.

[15] W. Kim and M. Gerla. Navopt: Navigator assisted vehicular route optimizer. In

2011 Fifth International Conference on Innovative Mobile and Internet Services

in Ubiquitous Computing, pages 450–455, 2011.

[16] Emmanouil Koukoumidis, Dimitrios Lymberopoulos, Karin Strauss, Jie Liu, and

Doug Burger. Pocket cloudlets. SIGARCH Comput. Archit. News, 39(1):171–184,

2011.

[17] H. Liang, X. Zhang, J. Zhang, Q. Li, S. Zhou, and L. Zhao. A novel adaptive

resource allocation model based on smdp and reinforcement learning algorithm

in vehicular cloud system. IEEE TVT, 68(10):10018–10029, 2019.

[18] C. Lin, D. Deng, and C. Yao. Resource allocation in vehicular cloud computing

systems with heterogeneous vehicles and roadside units. IEEE Internet of Things

Journal, 5(5):3692–3700, 2018.

[19] Y. Liu, H. Yu, S. Xie, and Y. Zhang. Deep reinforcement learning for offloading

and resource allocation in vehicle edge computing and networks. IEEE TVT,

68(11):11158–11168, 2019.

[20] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Flötteröd, R. Hilbrich,

L. Lücken, J. Rummel, P. Wagner, and E. Wiessner. Microscopic traffic simula-

tion using sumo. In 21st International Conference on Intelligent Transportation

Systems, pages 2575–2582, 2018.

[21] R. I. Meneguette and A. Boukerche. A cooperative and adaptive resource schedul-

ing for vehicular cloud. In 2017 IEEE Symposium on Computers and Commu-

nications (ISCC), pages 398–403, 2017.

BIBLIOGRAPHY 74

[22] R. I. Meneguette, A. Boukerche, and R. de Grande. Smart: An efficient resource

search and management scheme for vehicular cloud-connected system. In IEEE

Global Communications Conference, pages 1–6, 2016.

[23] H. Mousannif, I. Khalil, and S. Olariu. Cooperation as a service in vanet: Im-

plementation and simulation results. Mobile Information Systems, 8:153–172,

2012.

[24] S. Olariu, M. Eltoweissy, and M. Younis. Towards autonomous vehicular clouds.

ICST Trans. Mobile Comms. Apps., 11:e2, 09 2011.

[25] R. S. Pereira, D. D. Lieira, M. A. C. da Silva, A. H. M. Pimenta, J. B. D. da

Costa, D. Rosário, and R. I. Meneguette. A novel fog-based resource allocation

policy for vehicular clouds in the highway environment. In IEEE Latin-American

Conference on Comms., pages 1–6, 2019.

[26] Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao. Knowledge-driven

service offloading decision for vehicular edge computing: A deep reinforcement

learning approach. IEEE TVT, 68(5):4192–4203, 2019.

[27] T.L. Saaty. Fundamentals of Decision Making and Priority Theory With the

Analytic Hierarchy Process. AHP series. RWS Publications, 2000.

[28] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani. Reinforcement learning for

resource provisioning in the vehicular cloud. IEEE Wireless Communications,

23(4):128–135, 2016.

[29] M. K. Saroa and R. Aron. Fog computing and its role in development of smart

applications. In proceedings of the IEEE International Conference on Big Data

and Cloud Computing, pages 1120–1127, 2018.

[30] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

[31] R Shrestha, R. Bajracharya, and S. Y. Nam. Challenges of future vanet and

cloud-based approaches. Wireless Communications and Mobile Computing, 2018.

[32] C. Sommer, R. German, and F. Dressler. Bidirectionally coupled network and

road traffic simulation for improved ivc analysis. IEEE-T on Mobile Computing,

10(1):3–15, 2011.

BIBLIOGRAPHY 75

[33] P. Sun, A. Boukerche, and R. W. L. Coutinho. A novel cloudlet-dwell-time

estimation method for assisting vehicular edge computing applications. In IEEE

Global Comms. Conference, pages 1–6, 2019.

[34] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The

MIT Press, second edition, 2018.

[35] I. J. Taylor and A. B. Harrison. Gnutella, pages 181–196. Springer London,

London, 2009.

[36] A. Varga and R. Hornig. An overview of the omnet++ simulation environment.

ICST, 2010.

[37] C. Wang, Y. Li, D. Jin, and S. Chen. On the serviceability of mobile vehicular

cloudlets in a large-scale urban environment. IEEE-T on Intelligent Transporta-

tion Systems, 17(10):2960–2970, 2016.

[38] C. Watkins. Learning from delayed rewards. 01 1989.

[39] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279–292,

May 1992.

[40] H. Ye, G. Y. Li, and B. F. Juang. Deep reinforcement learning based resource

allocation for v2v communications. IEEE TVT, 68(4):3163–3173, 2019.

[41] R. Yu, X. Huang, J. Kang, J. Ding, S. Maharjan, S. Gjessing, and Y. Zhang.

Cooperative resource management in cloud-enabled vehicular networks. IEEE-T

on Industrial Electronics, 62(12):7938–7951, 2015.

