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Abstract

Multi-guide particle swarm optimization (MGPSO) is a novel metaheuristic for multi-

objective optimization based on particle swarm optimization (PSO). MGPSO has

been shown to be competitive when compared with other state-of-the-art multi-

objective optimization algorithms for low-dimensional problems. However, to the

best of the author’s knowledge, the suitability of MGPSO for high-dimensional multi-

objective optimization problems has not been studied. One goal of this thesis is

to provide a scalability study of MGPSO in order to evaluate its efficacy for high-

dimensional multi-objective optimization problems. It is observed that while MGPSO

has comparable performance to state-of-the-art multi-objective optimization algo-

rithms, it experiences a performance drop with the increase in the problem dimen-

sionality. Therefore, a main contribution of this work is a new scalable MGPSO-based

algorithm, termed cooperative co-evolutionary multi-guide particle swarm optimiza-

tion (CCMGPSO), that incorporates ideas from cooperative PSOs. A detailed empir-

ical study on well-known benchmark problems comparing the proposed improved ap-

proach with various state-of-the-art multi-objective optimization algorithms is done.

Results show that the proposed CCMGPSO is highly competitive for high-dimensional

problems.
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Chapter 1

Introduction

Many real-life problems involve two or more (usually conflicting) objectives. Such

problems, referred to as multi-objective optimization problems, are observed in many

real-life instances, such as space missions [97] or cloud computing [52]. In these

problems, the existing objectives are often conflicting, meaning that optimizing one

objective would typically result in a less optimal value for at least one of the others.

For example, in [97], the cost and the time of a space mission were modeled as a

multi-objective optimization problem, such that a mission with low cost would take

longer to complete and vice versa.

Population-based multi-objective evolutionary algorithms (MOEAs) have gained

a lot of popularity for solving multi-objective optimization problems. There is a

plethora of different MOEAs available for multi-objective optimization [18, 54, 69,

87, 94, 95]. Needless to say, different MOEAs use different approaches for solving

multi-objective optimization problems. Some algorithms such as the non-dominated

sorting genetic algorithm (NSGA-II) [18] are based on Pareto-dominance1, or some

algorithms such as MOEA/D [87] use an aggregated value of all objectives as the

fitness measure. Although there is no formal definition, some papers have defined

large-scale multi-objective problems as problems that have more than 100 decision

variables [75] [47]. Unfortunately, with the increase in the number of decision vari-

ables, most MOEAs lose performance. In fact, some papers have empirically shown

that the majority of existing MOEAs cannot solve large-scale multi-objective opti-

mization problems efficiently [47] [75] [88]. As the number of decision variables in

multi-objective optimization problems increases, MOEAs are less likely to explore

the larger search spaces efficiently due to either premature convergence or converging

to a region that is too large to explore [55].

1The concept of Pareto-dominance is discussed in Section 2.3.1

1
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It must be added that the aforementioned performance deterioration over large-

scale problems with many decision variables is not exclusive to multi-objective op-

timization, or any specific algorithm. In fact, Van den Bergh and Engelbrecht [77]

described this phenomenon as the “curse of dimensionality” [77], from which most

stochastic optimization algorithms (regardless of the number of objectives) suffer. As

the search space gets bigger, a bigger volume is added on top of an already complex

optimization problem. When solving these problems, optimization algorithms update

their guides by which they control their individuals based on fitness improvements of

some kind. However, due to a phenomenon known as “two steps forward, one step

back” [77], this update in variable vectors could put some dimensions in the correct

direction, while moving the other decision variables in a less optimal one (two steps

forward, one step back). Therefore, the performance of optimization algorithms is

gradually lost as the number of decision variables increases.

In order to tackle large-scale problems, different methods have been proposed over

the years. The idea of cooperative coevolution (CC) for large-scale single-objective

optimization was first introduced by Potter and De Jong [60] in the form of a new

algorithm termed the cooperative coevolutionary genetic algorithm (CCGA). This

algorithm divides the decision variables into smaller subgroups where each subgroup

is optimized by an independent genetic algorithm (GA) [82]. Inspired by the CC

framework, Van den Bergh and Engelbrecht [77] proposed two major cooperative ap-

proaches based on particle swarm optimization (PSO) [37], termed cooperative split

particle swarm optimization (CPSO-Sk) and cooperative hybrid particle swarm opti-

mization (CPSO-Hk). In CPSO-Sk, the decision variables are classified into k groups,

where each group is optimized using PSO and a context vector is used to construct

full-dimensional solutions out of the smaller groups. In CPSO-Hk, in addition to the

aforementioned k groups of decision variables, a full-dimensional swarm is also used,

such that the full-dimensional swarm and the low-dimensional subswarms cooperate

with each other by exchanging solutions.

Looking to add some dynamic elements into the CPSO-Sk, the the cooperative

coevolutionary particle swarm optimization (CCPSO) algorithm [43] introduced the

frequent regrouping of the decision variables throughout the search, as opposed to

CPSO-Sk where the variables are randomly grouped only once at the beginning. The

main motivation behind CCPSO was to constantly regroup the decision variables, in

hopes of optimizing the interacting ones together as a group at some point during the

search. Looking to improve upon CCPSO’s success, CCPSO2 [44] was proposed. In

addition to the previously discussed constant regrouping, CCPSO2 also continuously
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changes the size of each decision variable group.

The CC framework, in spite of its success in solving large-scale problems, can

be very expensive in terms of the computational cost (the number of function eval-

uations). More recently, contribution based-approaches have gained popularity [58]

[56] [83] [84]. The focal idea of these approaches is to save computational budget by

allocating more function evaluations to variable groups that have contributed more to

the search, rather than equally distributing this budget among all groups as in regular

CC-based approaches. Experimental results [58] have shown that using contribution

data (both historical and dynamic) can save computational budget especially on im-

balanced problems where different dimensions affect the objective value in unequal

amounts.

Moreover, many different approaches have been proposed in hopes of improv-

ing the performance of multi-objective evolutionary algorithms (MOEAs) on large-

scale problems. Similar to a lot of the previously discussed algorithms, some meth-

ods are based on decomposition and classify the decision variables into different

groups [47] [88] [6]. For example, the work in [88] uses a k-means method for clas-

sifying different variables and optimizing them separately. On the other hand, some

approaches do not rely on decomposition and optimize the large-scale variables of a

problem as they are. For example, the large-scale multi-objective optimization algo-

rithm based on the competitive swarm optimizer (LMOCSO) was proposed by Tian

et al. [75]. This algorithm is heavily inspired by the competitive swarm optimizer

(CSO) [7], where competitions are used to improve the overall diversity by pair-

ing different solutions together and making the worse solution learn from the better

one. Some non-decomposition approaches for large-scale multi-objective problems

(LSMOPs) propose novel offspring generation methods which can be incorporated

into all applicable MOEAs that produce new offspring (such as the genetic algo-

rithm) instead of constantly updating a single population (such as the particle swarm

optimization). For example, He et al. [24] proposed an adaptive offspring generation

framework, termed DGEA. DGEA uses two kinds of direction vectors2 for offspring

generation, one for convergence and the other for diversity improvement. Experi-

mental results in [24] showed competitive performance of the DGEA framework on

large-scale problems, when compared with five state-of-the-art approaches.

There has also been a growing interest in large-scale multi-objective optimization

methods based on problem reformulation in recent years. Such approaches typically

involve deriving a lower-dimensional problem out of a large-scale one, such that solv-

2A direction vector is used for guiding new solutions
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ing the former would result in optimizing the latter. For example, Zille et al. [91]

proposed the weighted optimization framework (WOF). WOF uses a transformation

function for converting an arbitrary LSMOP into a low-dimensional problem, and

then optimizes both the original problem and the transformed one for predefined in-

tervals. As another example, He et al. [25] proposed the large-scale multi-objective

optimization framework based on problem reformulation, termed LSMOF. LSMOF

locates some reference directions that are controlled by a set of weight variables.

This results in a reformulated single-objective3 problem with fewer decision variables.

This is done in hopes of eventually locating the global best by optimizing the weight

variables associated with different reference directions.

As discussed before, CC-based approaches can be quite costly, especially if the

problems are classified into many small subgroups. As a result, some researchers

have proposed novel ways of utilizing the CC framework for solving LSMOPs. For

example, Antonio et al. [2], proposed the operational decomposition (OD) framework

which aims to improve the crossover operations in MOEAs that have them. In OD,

decision variables are still divided into smaller subgroups, but these groups are only

used during the crossover phase. Instead of using two full-dimensional solutions as

parents in a crossover operation, OD uses low-dimensional parts of large-scale solu-

tions, utilizing the CC framework with no additional function evaluations.

Multi-guide particle swarm optimization (MGPSO) [64] [63] is a novel metaheuris-

tic that adapts the particle swarm optimization [37] for multi-objective optimiza-

tion. In MGPSO, each objective is optimized using a single-objective PSO and these

subswarms interact with each other using an external archive of trade-off solutions.

In its original paper, MGPSO showed competitive performance on the WFG [30]

and ZDT [92] test suites when put up against other MOEAs such as NSGA-II [71],

SMPSO [54], and OMOPSO [69]. However, there experiments were all conducted

on low-dimensional problems. Therefore, the performance of MGPSO on large-scale

problems has to be further investigated. Recently, Steenkamp and Engelbrecht [70]

studied the scalability of MGPSO to many objectives and observed a competitive

performance from MGPSO when compared with other state-of-the-art approaches

for many-objective optimization. On the other hand, and to the best of the author’s

knowledge, MGPSO’s scalability to many decision variables remains unexplored. Due

to this lack of study with reference to MGPSO and many decision variables, MGPSO’s

potential weaknesses in solving large-scale problems have also not been addressed

3LSMOF also reduces the number of objectives, as well as the number of dimensions by assigning
a fitness measure to a set of multi-objective solutions.
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properly. With this in mind, the contributions of this thesis are presented in the

following section.

1.1 Main Contributions

The main contributions of this thesis are as follows:

• Perform a literature review of the previously proposed approaches for large-scale

single objective optimization, PSO-based approaches for multi-objective opti-

mization, evolutionary approaches for large-scale multi-objective optimization,

and finally other relevant recent advances in evolutionary algorithms for single-

and multi-objective optimization.

• Perform a scalability study of MGPSO and four other state-of-the-art PSO-

based approaches for multi-objective optimization on the WFG test suite for

24, 50, 100, 500, and 1000 decision variables to detect the potential weaknesses

of MGPSO in solving large-scale problems.

• Propose a new MGPSO-based algorithm, incorporating cooperative strategies,

for large-scale multi-objective optimization termed cooperative co-evolutionary

multi-guide particle swarm optimization (CCMGPSO).

• Perform a detailed empirical study on well-known benchmark problems com-

paring the proposed improved MGPSO approach with various state-of-the-art

multi-objective optimization algorithms to determine the competitiveness of the

proposed CCMGPSO.

1.2 Thesis Structure

The structure of this thesis is outlined below:

• Chapter 2 covers background information on the basics of particle swarm

optimization (PSO), PSO-based approaches for large-scale single-objective op-

timization, the basics of multi-objective optimization, benchmark suites for

multi-objective optimization, large-scale multi-objective optimization and some

evolutionary algorithms proposed for large-scale multi-objective problems.
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• Chapter 3 is dedicated to a scalability study of PSO-based approaches for

large-scale multi-objective optimization as a main contribution of this the-

sis. More specifically, a scalability study involving MGPSO and four more

PSO-based approaches, namely optimized multi-objective particle swarm op-

timization (OMOPSO) [69], speed-constrained multi-objective particle swarm

optimization (SMPSO) [54], multi-objective particle swarm optimization with

multiple search strategies (MMOPSO) [45], and competitive mechanism-based

multi-objective particle swarm optimization (CMOPSO) [89] is conducted on

the Walking Fish Group (WFG) [30] [31] test suite for 24, 50, 100, 500, and

1000 decision variables for two to three objectives to see how well each one of

the algorithms scales as the number of decision variables is increased.

• Chapter 4 proposes a new MGPSO-based algorithm for large-scale multi-

objective optimization, termed cooperative co-evolutionary multi-guide parti-

cle swarm optimization (CCMGPSO) and inspired by previous algorithms for

large-scale single- and multi-objective optimization, to address the shortcomings

of MGPSO as detected in the scalability study of Chapter 3.

• Chapter 5 is dedicated to a comparative empirical study involving CCMGPSO,

and six state-of-the art algorithms including the best-performing algorithm as

detected in the scalability study given in Chapter 3. The results indicate that

CCMGPSO is highly competitive.

• Chapter 6 includes the concluding remarks of this thesis and some potential

avenues of future work.



Chapter 2

Background

This section covers the necessary background information for this thesis.

2.1 Particle Swarm optimization

Particle swarm optimization, introduced by Kennedy and Eberhart in 1995 [37], is

a stochastic population-based single-objective optimization algorithm that aims to

simulate the social behavior of birds in a flock. Let ns and nx be the swarm size

and the number of dimensions respectively. In a run of PSO, ns different particles are

first initialized inside an nx-dimensional search space representing the objective that is

being optimized. Each particle contains a memory of a personal best position (found

by itself) and a neighborhood best position (found by the particle’s neighborhood

according to predefined structure of neighbors) and during each iteration updates its

velocity and position. Later in 1998, Shi and Eberhart [67], in order to enhance the

trade-off between PSO’s exploration and exploitation, incorporated the inertia weight

ω into the initial velocity update formula which resulted in the following:

vi(t+ 1) = ωvi(t) + c1r1i(t)(yi(t)− xi(t)) + c2r2i(t)(ŷi(t)− xi(t)) (2.1)

After updating the particle’s velocity, the position is updated using:

xi(t+ 1) = xi(t) + vi(t+ 1) (2.2)

where t is the time step (the number of iteration), i is the index of the particle, ω

is the inertia weight, r1 and r2 are random vectors sampled from [0, 1]nx , c1 and c2

are cognitive and social acceleration coefficients respectively. The position, velocity,

7
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personal best position, and neighborhood best position vectors of particle i are indi-

cated by xi, vi, yi and ŷi respectively. Moreover, the amount of influence that the

current velocity, the personal best position and the global best position have on the

next velocity is controlled by ω, c1, and c2 respectively.

2.2 Particle Swarm Optimization for Large-Scale

Single-Objective Optimization

This section covers some PSO-based approaches for large-scale single-objective opti-

mization since some of these algorithms inspired the proposed algorithm in this thesis

(fully discussed in Chapter 4).

2.2.1 Cooperative Coevolution

The idea of cooperative coevolutionary evolutionary algorithms (CCEAs) was first

proposed by Potter and De Jong [60] in the form of a new algorithm termed coop-

erative coevolutionary genetic algorithm (CCGA). In their algorithm, Potter and De

Jong divided an nx-dimensional problem to nx one-dimensional problems, where each

problem was optimized by a GA subpopulation. The fitness of each one-dimensional

individual was calculated by forming an nx-dimensional vector using its value and

other values from other subpopulations.

2.2.2 Cooperative Particle Swarm Optimization

Proposed by Engelbrecht and Van den Bergh [77], cooperative particle swarm op-

timization (CPSO) aims to address the shortcomings of the stochastic optimization

algorithms (such as PSO) in solving large-scale problems. Also referred to as the

“curse of dimensionality”, this phenomenon is a limitation of these algorithms in

large-scale environments. This means that, since in these algorithms decision vectors

are evaluated once all decision variables are updated, the optimizer can be deceived

by an objective value obtained by improvements in two decision variables but a worse

value for another decision variable (“two steps forward, one step back”). In order to

address this issue, CPSO proposes a decomposition framework to optimize different

decision variables separately. CPSO splits any given nx-dimensional problem to nx

one-dimensional problems. Also referred to as split-CPSO (CPSO-S), this algorithm

uses a context vector for evaluating the one-dimensional solutions. A context vector
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Algorithm 1 CPSO-S [77]

1: procedure CPSO-S
2: Initialize nx one-dimensional swarms
3: Randomly initialize an nx-dimensional context vector
4: Define b(j, z) = (P1.ŷ, P2.ŷ, . . . , Pj−1.ŷ, z, Pj+1.ŷ, . . . , Pnx .ŷ)
5: for each sub-swarm j = 1, . . . nx do
6: for each particle i = 1, . . . , ns do
7: if f(b(j, Pj.xi) < f(b(j, Pj.yi) then
8: Pj.yi ←− Pj.xi
9: end if

10: if f(b(j, Pj.yi) < f(b(j, Pj.ŷ) then
11: Pj.ŷ←− Pj.yi
12: end if
13: end for
14: for each particle i = 1, . . . , ns do
15: Update particle’s velocity using Eq. (2.1)
16: Update particle’s position using Eq. (2.2)
17: end for
18: end for
19: end procedure

is an nx-dimensional vector that is initialized randomly and later used to combine

the best positions found by different subswarms. The context vector holds the best

values found for each dimension by its corresponding subswarm, and is used to eval-

uate low-dimensional solutions by putting them in their corresponding dimensions of

the context vector. The context vector is then updated if this results in an improved

fitness value.

The pseudo-code of CPSO-S is presented in Algorithm 1. b(j, z) is a function

for evaluating the low-dimensional solutions. This function builds an nx-dimensional

vector using the global best vectors of all subswarms except the j-th one. For the

j-th subswarm, the vector z (a prospective low-dimensional position vector) is used.

2.2.3 CPSO-Sk and CPSO-Hk

Within the same paper [77], Engelbrecht and Van den Bergh also proposed CPSO-Sk

and CPSO-Hk. These algorithms are extensions to CPSO-S, CPSO-Sk is CPSO-S

with k groups of decision variables. Therefore, CPSO-Sk has k subswarms, each

having nx
k

decision variables, compared to CPSO’s nx and one respectively. CPSO-

Hk is an extension to CPSO-Sk, where an nx-dimensional swarm is also added to

the algorithm. The nx-dimensional and nx
k

-dimensional swarms cooperate with each
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Algorithm 2 CCPSO [43]

1: procedure CCPSO
2: Initialize k nx

k
one-dimensional swarms;

3: Randomly initialize an nx-dimensional context vector
4: while the stopping criterion is not met do
5: for each sub-swarm j = 1, . . . nx do
6: for each particle i = 1, . . . , ns do
7: if f(b(j, Pj.xi) < f(b(j, Pj.yi) then
8: Pj.yi ←− Pj.xi
9: end if

10: if f(b(j, Pj.yi) < f(b(j, Pj.ŷ) then
11: Pj.ŷ←− Pj.yi
12: end if
13: end for
14: for each particle i = 1, . . . , ns do
15: Update particle’s velocity using Eq. (2.1)
16: Update particle’s position using Eq. (2.2)
17: end for
18: end for
19: Initialize a k-dimensional PSO for weight optimization;
20: Optimize ŷ for a few iterations using the weight population, update ŷ if

possible;
21: end while
22: end procedure

other in different ways; for example, before each iteration, one of the nx-dimensional

particles is replaced by the context vector.

2.2.4 Cooperative Coevolving Particle Swarm Optimization

Proposed by Li and Yao [43], cooperative coevolving particle swarm optimization

(CCPSO) aims to improve CPSO-Sk’s performance by constantly regrouping the de-

cision variables, in hopes of optimizing interacting variables (if any) together as a

group. In CPSO-S, CPSO-Sk, and CPSO-Hk, the random grouping is employed once

at the very beginning, and the resulting groups are kept the same for the entirety

of the optimization process. However, CCPSO constantly regroups the decision vari-

ables before each iteration. Due to its previous success [85] [86], CCPSO also pairs

random grouping with adaptive weighting.

The pseudo-code of CCPSO is presented in Algorithm 2. Every CCPSO iteration

starts with a random permutation of the decision variables followed by a run of the

CPSO-Sk. After this, a dynamic weighting mechanism is employed. In this scheme, a
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k-dimensional population is initialized as a set of weight vectors to further optimize

the context vector. This is done by multiplying each decision variable in each of the k

groups by a weight variable that represents the group. The weight values are chosen

such that, if multiplied by them, none of the decision variables of a group will exceed

their lower or upper bounds. This scheme is applied in hopes of further improving

the best found solution.

2.2.5 Cooperative Coevolving Particle Swarm Optimization

2

In hopes of improving CCPSO’s performance, Li and Yao [44] proposed CCPSO2.

CCPSO2 no longer uses the adaptive weighting scheme as in CCPSO. Instead, it uses

a different decision variable grouping approach in the form of dynamic values for k.

Unlike CCPSO’s random regrouping before every iteration, CCPSO2 only regroups

the decision variables if the fitness value of the context vector has not improved.

For each random regrouping, the value s is randomly selected from the set S =

{2, 5, 50, 100, 200}. Until the next regrouping, each group has s decision variables

assigned to it, forming k = nx
s

groups of decision variables in total. Instead of the

traditional velocity-based position update mechanism, CCPSO2 updates the position

using the following equation:

xi(t+ 1) =

{
yi(t) + C(1)|(yi(t)− ŷi(t)| if r < p

ŷi(t) +N (0, 1)|(yi(t)− ŷi(t)| otherwise
(2.3)

where r is a random number in [0, 1], with C(1) and N (0, 1) being two numbers sam-

pled by Cauchy and Gaussian distributions respectively. Particle i’s neighbourhood

best is denoted by ŷi and is determined based on the fitness values of the particle

itself, and its immediate left and right neighbours in a ring topology.

2.2.6 Adaptive Multi-Context Cooperative Coevolving Par-

ticle Swarm Optimization

Using CCPSO2 as a starting point, Tang et al. [72] proposed the adaptive multi-

context cooperative coevolving PSO (AM-CCPSO). AM-CCPSO aims to improve

CCPSO2’s performance on non-separable and multi-modal problems. Unlike CPSO-

S, CPSO-Sk, CPSO-Hk, CCPSO, and CCPSO2 which use a single context vector, AM-

CCPSO uses a pool of context vectors. The motivation behind using multiple context
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vectors is to evolve a set of context vectors over the duration of the optimization

process. AM-CCPSO uses a roulette selection scheme to choose a context vector

from this set based on their respective fitness values.

2.3 Multi-Objective Optimization

A vast majority of optimization problems consist of more than one objective [13]

[50]. These objectives are usually conflicting with each other. In other words, multi-

objective optimization problems (MOOPs) involve finding a set of optimal trade-offs

between two or three problems or objectives [73]. If an optimization problem has more

than three objectives, it is referred to as a many-objective optimization problem. The

goals of a multi-objective optimization algorithm were defined by Zitzler [93] as:

1. finding solutions which are close to the true solutions,

2. finding solutions that are evenly spread out, and

3. maximizing the extent of the found solutions.

Generally speaking, MOOPs that have more than 100 decision variables are referred

to as large-scale MOOPs [47] [75].

Multi-objective optimization problems are often encountered in real life. As an

example, the work in [97] proposed an approach to optimize the (conflicting) objec-

tives space mission cost and time as a multi-objective optimization problem. Midya et

al. [52] proposed the hybrid adaptive particle swarm optimization (HAPSO) algorithm

for solving a multi-objective problem related to task scheduling in the field of cloud

computing. In the field of finance, multi-objective optimization has been used to op-

timize the accuracy and the length of market predictions [28,62,73]. Multi-objective

optimization has been also been applied to the field of mechanics to minimize the

equipment cost and the energy consumption [16,36,66].

2.3.1 Formal Definitions

More formally and in the context of a minimization problem, a MOOP is formulated

as:

minf(x) = (f1(x), f2(x), . . . , fnm(x)) (2.4)
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where nm is the number of objectives and x is an nx-dimensional vector called the

decision vector, such that:

x = (x1, x2, . . . , xnx) (2.5)

f(x) is also referred to as the objective vector.

Definition 1. Pareto-dominance: Decision vector x1 is said to dominate decision

vector x2 (denoted by x1 ≺ x2) if and only if fm(x1) ≤ fm(x2) ∀m ∈ [1, nm] and

∃m ∈ [1, nm] such that fm(x1) < fm(x2) [64].

Definition 2. Pareto-optimal: In a given set S of decision vectors, decision vector

x1 is said to be Pareto-optimal if there exists no x2 ∈ S such that x2 ≺ x1 [64].

Definition 3. Pareto-optimal set: A given set S of decision vectors is called a

Pareto-optimal set if it only contains Pareto-optimal decision vectors [64].

Definition 4. Pareto-optimal front: A given set F of objective vectors is called

a Pareto-optimal front (POF) if it only contains the corresponding objective vectors

of a Pareto-optimal set [64].

2.4 Multi-Objective Benchmark Suites

In order to evaluate an optimization algorithm and find out about its strengths and

weaknesses, there exists a need for benchmark suites. Deb [14] noted that, for creating

problems that are used to evaluate the performance of an algorithm, one needs to

take certain characteristics into account. For example, these problems should make

convergence difficult by adding deception and multi-modality, and they should make

diversity challenging by adding convexity or non-convexity into the Pareto-optimal

front. Three well-known benchmark suites were used in this thesis, namely the Zitzler-

Deb-Thiele (ZDT) test suite [92], the Deb-Thiele-Laumanns-Zitzler (DTLZ) [19] test

suite, and the Walking Fish Group (WFG) test suite [30] [31]. These test suites are

all discussed in more detail in Appendix A.

2.5 Multi-Objective Optimization Performance Mea-

sures

In order to compare different multi-objective optimization algorithms, the existence

of performance metrics is necessary. This section covers some of the commonly used
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performance measures in the field of multi-objective optimization.

2.5.1 Spread

First introduced in [18], the spread measure quantifies the distances between the

solutions in the POF. For a given set of objective vectors, spread (S) can be formulated

as:

∆ =
dl + df +

∑N−1
i=1 |di − d̄|

dl + df + (N − 1)d̄
(2.6)

where

d̄ =
1

N − 1

N−1∑
k=1

dk (2.7)

where N is the number of solutions in the obtained front. To calculate the spread

measure, first the true POF and the obtained POF (obtained by the multi-objective

optimization algorithm) are sorted lexicographically. When sorted lexicographically,

the first and the last solutions in the obtained POF are called the extreme solutions.

Moreover, dl and df are the distances between the extreme solutions in the true POF

and their counterparts in the obtained POF. d̄ is the average distance between each

of two solutions in the sorted obtained POF (there are N − 1 consecutive distances)

and di is the distance between solutions i and i+ 1. Ideally and if the obtained POF

contains the extreme solutions of the true POF and the solutions are equally spaced,

∆ = 0, otherwise ∆ > 0.

2.5.2 Inverted Generational Distance

Inverted Generational Distance (IGD) was introduced by Coello Coello and Reyes-

Sierra [12] [68] and is defined as the following:

IGD =

√∑|Qtrue|
k=1 d2k

|Qtrue|
(2.8)

where |Qtrue| is the number of solutions inside the true POF and dk is the distance

between the kth solution in the true POF and its closest counterpart in the obtained

POF. Smaller values for IGD indicate a closer POF to the true front and hence a

better performance.
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2.5.3 Hypervolume

The hypervolume measure (HV), introduced by Zitzler and Thiele [96], is used to

measure the space covered by hypervolumes between each solution in the obtained

POF and a predefined reference vector. The work in [96] uses the all-zero vector as the

reference vector. In that case, if the problem is a minimization one, a smaller value for

HV indicates a closer solution to the all-zero vector and hence a better performance.

However, recent studies all use the nadir vector (consisting of the worst objectives in

the Pareto-optimal front for each of the nm objectives [64]) as the reference point.

HV can potentially be deceiving when the Pareto-optimal front is not convex [78].

Additionally, picking an appropriate reference point for HV is not always easy. It has

been shown that the results of HV comparisons between different algorithms depend

on the location of the reference vector [35] [33]. Ishibuchi et al. [34] noted that some

studies use a point slightly worse than the nadir vector so that the selected reference

point dominates every point in the obtained front. This is particularly necessary

when the optimization problem is more difficult to solve, and the obtained fronts are

further away from the true fronts. As an example, Seada and Deb [65] used a point

1.01 times, Maltese et al. [49] used a point 1.1 times, and Wagner et al. [79] used

a point 1.4 times worse than the nadir vector respectively. Ishibuchi et al. [34] also

showed that when the problem has more than three objectives or the algorithm has

a small population of individuals, a slightly worse point than the nadir vector may

not always be suitable.

2.6 Particle Swarm Optimization for Multi-Objective

Optimization

The original PSO algorithm was developed to solve single-objective optimization

problems. However, a number of PSO variants have been developed to solve multi-

objective optimization problems. This section presents a brief description of each of

the five PSO-based multi-objective approaches studied in this paper.

2.6.1 Optimized Multi-Objective Particle Swarm Optimiza-

tion

Coello and Sierra [69] proposed the optimized multi-objective particle swarm opti-

mization (OMOPSO). OMOPSO uses a combination of Pareto-dominance and crowd-
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ing distance [18] to update the external archive of non-dominated solutions. This

algorithm splits the swarm into three parts, where one part is mutated by uniform

mutation, the second part is mutated by non-uniform mutation, and the last part

is not mutated at all. Uniform and non-uniform mutations are used to promote

exploration and exploitation respectively. Unlike the majority of PSO algorithms,

OMOPSO does not fix the values of ω, c1 and c2. Instead, ω is chosen randomly from

[0.1, 0.5], and c1 and c2 are randomly chosen from [1.5, 2].

2.6.2 Speed-Constrained Multi-Objective Particle Swarm Op-

timization

Using OMOPSO as a stating point, Nebro et al. [54] proposed the speed-constrained

multi-objective particle swarm optimization (SMPSO). SMPSO aims to solve the

problem of particles’ velocities becoming too high in multi-modal problems by adopt-

ing the constriction factor in [11] to limit the particles’ velocities. SMPSO also differs

from OMOPSO in the values for c1 and c2; in SMPSO these values are chosen ran-

domly from [1.5, 2.5].

2.6.3 Multi-Objective Particle Swarm Optimization with Mul-

tiple Search Strategies

Lin et al. [45] proposed the multi-objective particle swarm optimization with multiple

search strategies (MMOPSO). MMOPSO uses the boundary intersection method [87]

for the aggregation of all the objective values to select the personal best. MMOPSO

has two search strategies, meaning that it uses the control parameter δ to choose

between two velocity update equations, transforming (2.1) into:

vi(t+ 1) =

{
ωvi(t) + c1r1i(t)(yi(t)− xi(t)) if r3 < δ

ωvi(t) + c2r2i(t)(ŷi(t)− xi(t)) otherwise
(2.9)

where δ is a parameter to control the exploration-exploitation trade-off, and r3 is a

number randomly chosen from [0, 1]. It is recommended to use δ ∈ [0.5, 0.9] to put

more focus on exploitation [45]. Moreover, ω is chosen randomly from [0.1, 0.5], with

c1 and c2 being two numbers randomly chosen from [1.5, 2]. The global best position

is chosen randomly from the archive.
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2.6.4 Competitive Mechanism-Based Multi-Objective Parti-

cle Swarm Optimization

The competitive swarm optimizer was proposed by Cheng and Jin [7] for large-scale

single-objective optimization. As its name suggests, CSO relies on competitions be-

tween different particles for optimization. In order to avoid premature convergence,

CSO aims to improve the swarm diversity by randomly pairing two particles in a

competition. In this competition, the particle with the worse fitness value is labeled

as the loser and learns from the better-performing particle (the winner), which is

directly transferred to the next generation’s population. Looking to adapt the CSO

concepts for multi-objective optimization, Zhang et al. [89] proposed the competitive

mechanism-based multi-objective particle swarm optimization (CMOPSO). Unlike

the majority of MOEAs, CMOPSO does not use any external archive and it relies

solely on the local front.

The pseudo-code of CMOPSO is provided in Algorithm 3. In CMOPSO, first ns

particles are initialized as the Swarm. Then, during each iteration, the competitive

process (Algorithm 4) is performed to create Swarm
′

which also has ns particles.

The competitive mechanism first selects γ (control parameter) elite particles by a

combination of non-dominated sorting rankings and crowding distance [18] from the

current swarm. Then, for each particle pi, i ∈ {1, . . . , ns} in Swarm, two particles

are randomly selected from the elite set of size γ and the elite particle whose objective

vector has a smaller angle with pi’s objective vector is the winner and pi is the loser.

For each winner-loser pair, the following equations are applied to create a new particle

p
′
i:

v
′

i = r1ivi + r2i(xw − xi) (2.10)

x
′

i = xi + v
′

i (2.11)

where r1 and r2 are two vectors randomly selected from [0, 1]nx , w is the index for

the winner (the selected elite particle). The ordinary particles are indexed using

i, i
′ ∈ {1, . . . , ns}. Polynomial mutation is then applied to x

′
i. Finally, the resulting

2ns particles are truncated using the environmental selection from the strength Pareto

evolutionary algorithm 2 (SPEA2) [95] to make up the ns particles for the next

iteration. This environmental selection fills up the next population by starting from

the first non-dominated front and continuing to the others in a successive manner.

When this approach reaches a non-dominated front that cannot be fit entirely inside
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the population, it keeps removing overcrowded solutions from that front until the

next population is full.

Algorithm 3 General framework of CMOPSO [89]

1: procedure CMOPSO
2: Initialize N particles’ position and velocity vectors as P and V respectively
3: while stopping condition not satisfied do
4: P

′ ←− CompetitionBasedLearning(P, V )
5: P ←− EnvironmentalSelection(P, P

′
)

6: end while
7: end procedure

Algorithm 4 CompetitionBasedLearning(P, V ) [89]

1: procedure CompetitionBasedLearning
2: Input: P (Current position vectors), V (current velocity vectors), L (elite

particles set), γ (size of elite particle set)
3: Output: P

′
(new position vectors)

4: L←− Select γ particles from P according to the front index and the crowding
distance of each particle

5: for each particle pi ∈ P do
6: Choose particles a and b from P at random
7: Between a and b, choose one particle whose objective vector has a smaller

angle with that of pi’s as the winner (pw)
8: v

′
i ←− the updated velocity of pi Eq. (2.10)

9: p
′
i ←− the updated position of pi Eq. (2.11)

10: P
′ ←− P

′ ∪ p′i
11: end for
12: P

′ ←− PolynomialMutation(P
′
)

13: end procedure

2.7 Multi-Guide Particle Swarm Optimization

The multi-guide particle swarm optimization (MGPSO) [63, 64] is a new PSO-based

approach for multi-objective optimization. As seen in Algorithm 5, in MGPSO each

objective has its own separate subswarm and is optimized independently, meaning

that the global best and personal best positions in each subswarm refer to the best

values found for that specific objective. Because of this independence, a new guide,

namely the archive guide, is introduced in MGPSO (hence the term multi-guide) and

is used to establish communications between different subswarms through a bounded
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archive. As a result, the velocity update equation in (2.1) is updated as:

vi(t+ 1) = ωvi(t) + c1r1i(t)(yi(t)− xi(t))+

λic2r2i(t)(ŷi(t)− xi(t)) + (1− λi)c3r3i(âi(t)− xi(t))
(2.12)

where âi and λ are referred to as the archive guide and the archive balance coef-

ficient respectively. The archive guide, âi, is chosen by a tournament selection on

the archive. During each velocity update two or three solutions are chosen from the

archive at random and the one with the biggest crowding distance value wins the

tournament. Positive coefficient c3 controls the amount of the archive guide’s influ-

ence. The values of λ and r3 are chosen randomly from [0, 1] and [0, 1]nx respectively.

The archive balance coefficient, λ, is initialized once for each particle at the very be-

ginning and remains unchanged for the entire duration of the search. Recently, Erwin

and Engelbrecht [20] explored dynamic adjustments of the archive balance coefficient.

Contrary to the static λ in [64] (which was used in this paper as well), the work in [20]

introduced five different dynamic approaches including updating λ randomly at each

iteration, linearly decreasing λ from 1 to 0 and linearly increasing λ from 0 to 1. The

results of [20] showed that the linearly increasing (LI) method outperformed all other

methods on the 2-objective problems, enabling the MGPSO to obtain a highly diverse

swarm at the early stages of the optimization process and exploit these regions slowly

as λ increased. All particles are considered for entry to the archive, because MGPSO

optimizes different objectives using separate subswarms and even if a particle fails to

update its personal best, it might still be Pareto-optimal due to having good values

for other objectives (it could be a boundary point of the Pareto-optimal set). The

original MGPSO implementation used a crowding distance-based bounded archive.

2.8 Large-Scale Multi-Objective Optimization

Generally speaking, MOOPs that have more than 100 decision variables are referred

to as large-scale MOOPs [47] [75]. Multi-objective optimization evolutionary algo-

rithms (MOEAs) typically face many difficulties when solving large-scale problems.

This can lead to a situation where a MOEA fails to explore the larger search space

efficiently due to either premature convergence or converging to a region that is too

large to explore [55]. In fact, it has been shown that the majority of MOEAs are

incapable of solving large-scale MOOPs efficiently [47] [75] [88]. Therefore, in recent

years many approaches have been proposed for large-scale multi- and many-objective
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Algorithm 5 Multi-Guide Particle Swarm Optimization [64] [63]

1: procedure MGPSO(a, b)
2: for each objectivem = 1, . . . , nm do
3: create and initialize a swarm, Sm, of nsm particles uniformly within a

predefined hypercube of dimension nx;
4: Let fm be the objective function;
5: Le Sm.yi represent the personal best position of particle Sm.xi, initialized

to Sm.xi(0);
6: Let Sm.ŷi represent the neighborhood best position of particle Sm.xi, ini-

tialized to Sm.xi(0);
7: Initialize Sm.vi(0) to 0;
8: Initialize Sm.λi ∼ U(0, 1);
9: end for

10: Let t = 0;
11: while stopping condition is not true do
12: for each objective m = 1, . . . , nm do
13: for each particle i = 1, . . . , Sm.ns do
14: if fm(Sm.xi) < fm(Sm.yi) then
15: Sm.xi = Sm.xi(t)
16: end if
17: for particles î with particle i in their neighborhood do
18: if fm(Sm.yi) < fm(Sm.ŷî) then
19: Sm.ŷî = Sm.yi
20: end if
21: end for
22: Update the archive with the solution Sm.xi;
23: end for
24: end for
25: for each objective m = 1, . . . , nm do
26: for each particle i = 1, . . . , Sm.ns do
27: Select a solution, Sm.âi(t) from the archive using the tournament

selection;
28: Update particle i’s velocity using Eq. 2.12;
29: Update particle i’ position using Eq. 2.2;
30: end for
31: end for
32: t = t+ 1
33: end while
34: end procedure
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optimization. This section covers some of these approaches.

2.8.1 Weighted Optimization Framework

Proposed by Zille et al. [91], the weighted optimization framework is a novel approach

for large-scale multi-objective optimization. WOF is a general framework and can be

paired with any population-based algorithm for MOOP. WOF uses a transformation

function to reduce the many decision variables of a large-scale MOOP into a small

group of weight variables. Then, both the weight variables and the original decision

variables of the problem are optimized by the population-based algorithm that WOF

is paired with (such as SMPSO [54] or NSGA-II [18]).

Similar to many CC-based approaches, the main goal of WOF is to reduce the

number of decision variables; however, unlike the CC-based approaches, WOF does

not rely on co-evolution. Instead, WOF is based on weighting different decision

variables with reference to different objectives. This approach indeed brings up the

questions of how to group the decision variables, and what transformation functions

to use. The original paper of WOF [91] covered some grouping methods and trans-

formation functions, which are discussed in the following subsections.

Transformation Functions

Let Z be an optimization problem, nx the number of decision variables, w an arbitrary

weight vector, x an arbitrary decision vector, γ the number of decision variable groups,

and l the size of each group (such that γ × l = nx). The transformation function

ψ(w,x) is defined as:

ψ(w,x) = (

w1︷ ︸︸ ︷
w1x1, . . . , w1xl, . . . ,

wγ︷ ︸︸ ︷
wγxnx−l+1, . . . , wγxnx) (2.13)

Therefore, the large-scale MOOP is transformed into a smaller problem, with γ < nx

decision variables (weight variables). Let g1, g2, . . . , gγ denote γ different groups of

decision variables, such g(xi) = gj is the group that the i-th decision variable (xi)

belongs to. Below are some of the existing transformation functions:

• Product Transformation (ψ1): This is a simple function that only multiplies

the value of each decision variable in a group by its respective weight:

xi,new = wj.xi,old, wj ∈ [0, 2] (2.14)
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One obvious disadvantage of this method is not taking the decision variable

bounds into account. As mentioned in [91], in problems where decision variables

can accept both positive and negative values, the product transformation only

produces values of the same sign (positive or negative) as the original decision

variable before transformation. In order to address this issue the following

transformation functions were introduced:

• p-Value Transformation (ψ2): This transformation method was proposed to

address the shortcomings of the product transformation and in order to make

more parts of the decision space accessible to the weight optimizer:

xi,new = xi,old + p.(xi,max − xi,min).(wj − 1.0), wj ∈ [0, 2], p ∈ [0, 1] (2.15)

where xi,max and xi,min denote the upper and lower bounds of the i-th variable

respectively. Parameter p controls the amount of change, in terms of a percent-

age of the width of the original decision variable centered around the original

value of the decision variable (xi,old).

• Interval-Intersection Transformation (ψ3): One major disadvantage of the

last two transformation functions is the use of variable repairs. The variable

repair mechanism sets the value of the transformed decision variable to the

upper bound or the lower bound of the decision variable if its value becomes

greater than the upper bound or less than the lower bound respectively. This

could put WOF at an unfair advantage over other algorithms when tested on

problems where the global best is found near the boundary values of the decision

variables. This is more specifically the case in the ZDT problems. Therefore,

inspired by [43], ψ3 is formulated as:

xi,new = wj.xi,old, wj ∈ [minxh∈g(xi)(xh,min/xh),maxxh∈g(xi)(xh,max/xh)]

(2.16)

A closer look at Eq. 2.16 reveals that the main body of ψ3 is similar to ψ1, only

the domains of the weight variables are altered. This alteration is done so that

no decision variable in a group exceeds its upper and lower bounds.

Grouping Methods

This section covers some possible decision variable grouping methods for WOF.



CHAPTER 2. BACKGROUND 23

• Random Grouping: As its name suggests, this method randomly assigns each

decision variables to one of the groups.

• Linear Grouping: This method groups the decision variables based on their

natural order. Given nx decision variables and γ decision variable groups, the

linear grouping method assigns the first nx
γ

decision variables to the first group,

the second nx
γ

decision variables to the second group and so on.

• Ordered Grouping: The ordered grouping method first sorts the decision

variables (in a given decision vector) based on their values and then classifies

them into γ groups by applying linear grouping to these sorted decision variable

indices.

Algorithm 6 The main body of WOF [91]

1: procedure WOF
2: Input: Z (optimization problem), A (optimization algorithm), G (grouping

mechanism), ψ (transformation function)
3: Output:S (population of individuals)
4: S ←− RandomInitialization(N)
5: while number of evaluations used is less than δ.total number of evaluations

do
6: S ←− A(Z, S, t1). Optimize Z using algorithm A for t1 evaluations with S

as a starting population
7: {x′1, . . . ,x

′
q} ←− Select q solutions from the first non-dominated front of S

using crowding distance values
8: for k= 1 to q do
9: Wk ←− WeightingOptimization(x

′

k,Z,A,G, ψ)
10: end for
11: S ←− updatePopulation(W1, . . . ,Wq, S)
12: end while
13: Keep optimizing Z on S using A until all evaluations are used.
14: return S;
15: end procedure

The pseudo-code of WOF is presented in Algorithm 6. During the first δ.maxIter

iterations, first the MOOP is optimized using S as a starting population for a maxi-

mum of t1 function evaluations. Then, q solutions are chosen from S using crowding

distance values. This is done by selecting the solutions with the greatest crowding dis-

tance values from the first non-dominated front. On each of these selected solutions,

the weighting optimization (Algorithm 7) is carried out. The weighting optimization

first groups the decision variables of the solution using the chosen grouping method,
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Algorithm 7 WeightingOptimization [91]

1: procedure WeightingOptimization
2: Input: x

′

k (solution), Z (optimization problem), A (optimization algorithm),
G (grouping mechanism), ψ (transformation function)

3: Output:Wk (population of weights)
4: Divide the nx variables into γ groups using G
5: Apply the transformation function ψ to the solution x

′

k for a transformed
problem

6: Randomly initialize a population of weights Wk

7: With Wk as a starting weight population, optimize the transformed problem
for t2 function evaluations

8: return Wk;
9: end procedure

Algorithm 8 UpdatePopulation [91]

1: procedure UpdatePopulation
2: Input: W1, . . . ,Wq (weight populations), S (population)
3: Output:Wk (population of weights)
4: for k = 1 to q do
5: wk ←− Select one individual from Wk

6: S
′

k ←− Apply wk to population S
7: end for
8: S ←− Perform non-dominated sorting on S ∪ {S ′k}k=1,...,q

9: end procedure
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then produces a random population of weights, and finally returns the weight popula-

tion after optimizing it for t2 function evaluations. After the weighting optimization

is done for q times, the population is updated using Algorithm 8. In Algorithm 8, one

weight vector is selected from each of the q weight populations (the solution with the

greatest crowding distance value from the first non-dominated front) and applied to

all nx-dimensional solutions of the main population (S). All of the resulting solutions

along with the original population (S) then go through the non-dominated sorting

algorithm to make up the new population for the next iteration.

2.8.2 Large-Scale Many-Objective Optimization Problems by

Covariance Matrix Adaptation Evolution

Diversity (position)-related variables are variables that when perturbed, generate

solutions that are non-dominated with reference to each other. On the other hand,

convergence (distance)-related variables generate solutions that are dominated one by

one when perturbed. Please note that a decision variable can be both convergence-

and diversity-related. More information regarding these two types of variables is

found in Appendix A (Section A.1). Based on this classification of decision variables,

Ma et al. [47] proposed the multi-objective evolutionary algorithm based on decision

variable analyses (MOEA/DVA). MOEA/DVA uses a sample set of solutions (of a

predefined sample size NCA) to classify the decision variables. For all of the solutions

in the sample set, the variable xi (1 ≤ i ≤ nx) is perturbed, the resulting solutions

(from this perturbation) go through a non-dominated sorting after being evaluated.

If all of the new solutions are non-dominated with reference to each other, xi is a

diversity-related parameter. On the other hand, if all non-dominated fronts have

exactly one solution (solutions are dominated one by one), xi is a convergence-related

variable. If none of the aforementioned conditions is satisfied, xi is a mixed variable.

In MOEA/DVA, mixed variables are added to the set of diversity-related variables.

Once the decision variables are classified into these two sets, MOEA/DVA further

classifies the convergence-related variables into smaller groups on the basis of the

interactions between them.

The Covariance Matrix Adaptation Evolution Strategy

The covariance matrix adaptation evolution strategy (CMA-ES) [23] is a novel evo-

lutionary algorithm that uses a multivariate normal distribution to update position
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vectors using the following equation:

x
(g+1)
k = m(g) + σ(g)N

(
0,C(g)

)
for k = 1, 2, · · · , λ (2.17)

where g is the generation index, m(g) denotes the mean values of the decision variables

at generation g, σ(g) is the step size, λ is the population size, and N
(
0,C(g)

)
is a

multivariate normal distribution with mean of zero and covariance matrix C(g). The

mean of the decision variables is updated using:

m(g+1) = m(g) +

µ∑
i=1

wi

(
x
(g+1)
i:λ −m(g)

)
(2.18)

where µ ≥ λ is the number of solutions to be selected from the population, wi denotes

the positive weight coefficient for the i-th selected solution, x
(g+1)
i:λ denotes the i-th

best solution in the new population, as created by the position update equation. The

covariance matrix is updated using:

C(g+1) =

(
1− c1 − cµ

λ∑
i=1

wi

)
C(g)

+ c1p
(g+1)
c p(g+1)T

c + cµ

λ∑
i=1

wiy
(g+1)
i:λ

(
y
(g+1)
i:λ

)T (2.19)

where y
(g+1)
i:λ =

(
x
(g+1)
i:λ −m(g)

)
/σ(g), c1 = 2/n2

x, and cµ = min (1− c1, 1/ (n2
x

∑µ
i=1w

2
i )).

S3-CMA-ES

In order to adapt CMA-ES for large-scale many-objective optimization, Chen et al. [6]

proposed S3-CMA-ES. S3-CMA-ES uses the decision variable grouping approach of

MOEA/DVA to classify the variables into convergence- and diversity-related vari-

ables. Then, similar to MOEA/DVA, the convergence-related variables (as detected

in the previous step) are classified into smaller subgroups based on their interactions.

This step returns one set of non-separable variables and a number of groups with in-

teracting separable variables. Each group of the separable variables has a predefined

size and includes a subset of all variables of a large-scale problem. The interact-

ing variables are determined in the following way: For an nm-objective minimization

problem F = {f1, f2, . . . , fnm}, decision variables xi and xj are interacting if scalars

a, b, c, and d, a decision vector x, and at least one objective function fk can be found
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such that:

fk(x)|xi=a,xj=c > fk(x)|xi=b,xj=c (2.20)

, and:

fk(x)|xi=a,xj=d < fk(x)|xi=b,xj=d (2.21)

where fk(x)|xi=a,xj=c is the k-th objective value of decision vector x when the i-th

and the j-th decision variables are replaced by a and c respectively.

After the decision variables are classified, M subpopulations are initialized in S3-

CMA-ES. Each subpopulation is controlled by an independent CMA-ES, where all

subpopulations have access to the diversity-related variables and optimize each group

of convergence-related variables one by one. Using the sum of all objective values

as the fitness measure, S3-CMA-ES uses the convergence threshold ∆ to determine

whether a subpopulation has converged. When all subpopulations have converged,

the diversity-related variables are optimized. Then, the global best value of each sub-

population is set to infinity (so that the convergence threshold is no longer satisfied),

and the convergence-related variables are optimized again. This process is repeated

until all function evaluations have been consumed.

2.8.3 Large-Scale Multi-Objective Optimization Using The

Competitive Swarm Optimizer

Tian et al. [75] proposed a large-scale multi-objective optimization algorithm based

on the competitive swarm optimizer [7]. Similar to CMOPSO, LMOCSO relies on

the competitions between particles where a particle with the worse fitness value

learns from another particle with the better fitness value. Based on this competi-

tion, LMOCSO proposes the following velocity and equation equations:

vl(t+ 1) = r0vl(t) + r1 (xw(t)− xl(t)) (2.22)

xl(t+ 1) = xl(t) + vl(t+ 1) + r0 (vl(t+ 1)− vl(t)) (2.23)

where l and w are the indices for the loser and the winner particles respectively, with

r0 and r1 being two random numbers from [0, 1].

In order to compare different particles to determine the winners and the losers

in a multi-objective context, there exists a need for an objective aggregation score.

LMOCSO uses the the shift based density estimation (SDE) [42] method to achieve

this. Using the SDE method, the fitness score of an arbitrary particle p belonging to
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a set P is calculated as:

Fitness (p) = min
q∈P\{p}

√√√√ M∑
i=1

(max {0, fi(~q)− fi(~p)})2 (2.24)

where f is the optimization problem, and fi(p) denotes the i-th objective value of

p. The SDE fitness, which is to be maximized, calculates each individual’s fitness

relative to other individuals belonging to the same set. The SDE fitness measure has

been used in other multi-objective evolutionary algorithms before [46] [41]. When

doing pairwise comparisons between p and some other particle q ∈ P , SDE shifts the

i-th objective value of q (denoted by fi(q)) to its counterpart in p (denoted by fi(p))

if fi(q) < fi(p) for density estimations.

The pseudo-code of LMOCSO is listed in Algorithm 9. The general format of

LMOCSO is similar to that of CMOPSO’s, the main difference being the use of the

environmental selection of RVEA [8] which is discussed in the next section. The

pseudo-code of LMOCSO’s competition-based learning method is provided in Algo-

rithm 10. This algorithm first selects two particles at random, removes them from

the current set, and determines the winner and the loser based on SDE (Eq. (2.24)).

Then, based on Eq. (2.22) and Eq. (2.23), new offspring are generated and put in a

new set named P
′
. The population for the next iteration will be made up of P ∪ P ′

after undergoing RVEA’s environmental selection.

The Environmental Selection of RVEA

As mentioned above, LMOCSO uses RVEA’s environmental selection. This selection

is based on uniformly distributed reference vectors in the objective space. At the

beginning of the algorithm, N vectors are uniformly initialized in an nm-dimensional

vector space (line 5 in Algorithm 9) and put in a set named R. Then, during each

selection, first each particle in P ∪ P ′ is assigned to the closest reference vector to it

(according to the angles between them). Each reference vector is therefore allocated a

set of individuals, and chooses only one (assuming it is assigned to at least one) with

the minimum angle-penalized distance (APD). For particle p and reference vector ~r,

the APD is formulated as:

APD(p, ~r) =

(
1 +M ·

(
t

tmax

)α
· 〈~f(~p), ~r〉

min~s∈R,~s 6=~r〈~s, ~r〉

)
· ‖~f(~p)‖ (2.25)
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where ~f(~p) is the objective vector of p, 〈~s, ~r〉 is the angle between ~s and ~r, α is a

penalty parameter, and t and tmax denote the current iteration and maximum number

of iterations respectively. Finally, M is the number of objectives.

Algorithm 9 The general framework of LMOCSO [75]

1: procedure LMOCSO
2: Input: N (population size)
3: Output:P (final population)
4: P ←− RandomInitialization(N)
5: R←− UniformRandomReferenceV ector(N)
6: while stopping condition not satisfied do
7: P

′ ←− CompetitionBasedLearning(P )
8: P ←− RV EA EnvironmentalSelection(P ∪ P ′ , R)
9: end while

10: return P;
11: end procedure

2.8.4 Large-scale Multi-objective Optimization using Prob-

lem Reformulation

He et al. [25] proposed the large-scale multi-objective optimization framework based

on problem reformulation termed LSMOF. Similar to WOF, LSMOF’s goal is to

turn the large-scale problem into a low-dimensional one with completely new weight

variables that indirectly optimize the original problem. LSMOF selects r reference

solutions from the current population. For each reference solution, two direction

vectors and two weight variables are defined. Let s1 be an nx-dimensional decision

vector transformed into a new bi-objective decision space. Furthermore, let o and

t be the lower and upper bounds of the nx-dimensional search space respectively.

Direction vectors vl (from o to s1) and vu (s1 to t) are formulated as:

vl = s1 − o

vu = t− s1
(2.26)

Now let lmax = ‖t− o‖ be the maximum length of the decision space, with p1 and p2

denoting the respective intersections between vl and vu and the Pareto-optimal set.
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Algorithm 10 LMOCSO’s competition-based learning [75]

1: procedure CompetitionBasedLearning
2: Input: P (current population)
3: Output: P

′
(new population)

4: Fitness←− CalculatethefitnessofeachparticleusingEq.
5: P

′ ←− ∅
6: while |P | > 1 do
7: {p, q} ←− Randomly select two particles from P ;
8: P ←− P − {p, q}
9: if Fitness(p) < Fitness(q) then

10: xl ←− p
11: xw ←− q
12: end if
13: if Fitness(q) < Fitness(p) then
14: xl ←− q
15: xw ←− p
16: end if
17: Update xl by learning from xw by Eq. (2.23)
18: Mutate xl and xw by polynomial mutation
19: P

′ ←− P
′ ∪ {xl, xw}

20: end while
21: return P

′
;

22: end procedure
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The values of p1 and p2 can be formulated as:

p1 = o + λ11
vl
‖vl‖

lmax

p2 = t− λ12
vu
‖vu‖

lmax,
(2.27)

where λ11, λ12 ∈ [0, 0.5] are two weight variables. Therefore, for r reference solutions,

2r subproblems are created. More formally, for each reference solution j ∈ {1, . . . , r},
the following subproblems are generated:

zj1 (λj1) = F

(
o + λj1

vl
‖vl‖

lmax

)
zj2 (λj2) = F

(
t− λj2

vu
‖vu‖

lmax

)
,

(2.28)

This leads to a new set of subproblems:

Z ′(Λ) = {z11 (λ11) , z12 (λ12) , . . . , zr1 (λr1) , zr2 (λr2)} (2.29)

where Λ is the set of weight vectors:

Λ = {λ11, λ12, . . . , λr1, λr2} (2.30)

Since the aforementioned 2r subproblems are all single-objective optimization prob-

lems, there exists a need for a single-objective optimization algorithm. The work

in [25] used the differential evolution (DE) as the single-objective optimization algo-

rithm and the HV measure of all obtained solutions from an arbitrary set of weight

vectors as their collective fitness value. Unlike WOF, LSMOF does not use any

grouping technique; instead, it assigns some weight variables to reference directions

in hopes of reaching the true Pareto-optimal front.

2.8.5 Adaptive Offspring Generation for Evolutionary Large-

Scale Multi-Objective Optimization

In a lot of multi-objective evolutionary algorithms (MOEAs) such as RVEA [8] and

IBEA [94], offspring generation plays an important role. Generating offspring with

the goal of improving the overall convergence and diversity is specifically of high

importance in large-scale environments. He et al. [24] proposed an adaptive offspring

generation framework, termed DGEA. DGEA is a general framework, into which a lot
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of MOEAs that are based on offspring generation can be embedded. One interesting

aspect of DGEA is its use of direction vectors for offspring reproduction. DGEA

uses two kinds of direction vectors, the first kind that utilizes dominated solutions

to aim for the Pareto optimal set (convergence improvement), whilst the second type

takes advantage of non-dominated solutions to further spread the solutions (diversity

improvement). The general framework of DGEA is listed in Algorithm 11. During

each iteration, a preselection strategy is conducted to generate the parent population

Q0. Then, a reproduction mechanism is applied to Q0 and the offspring from the

previous iteration (Q). Finally, an algorithm-specific environmental selection is used

to select N (population size) solutions from the current population P and the new

offspring Q.

Preselection

DGEA’s preselection strategy is listed in Algorithm 12. The preselection has two main

parts that concentrate on convergence and diversity enhancements. First, the solu-

tions go through a non-dominated sorting producing different non-dominated fronts

Fi 1 ≤ i ≤ m where m is the index of the first non-dominated front that, if considered,

would make the number of selected solutions exceed the number of reference vectors

(
∑m−1

i=1 | Fi| ≤ |V | and
∑m

i=1 | Fi| > |V |). If the number of non-dominated solutions is

greater than the number of direction vectors, the first m−1 non-dominated fronts are

preselected and the m-th one is placed into P ; otherwise, all non-dominated solutions

are preselected. Then, the diversity enhancement phase is applied, which is based

on RVEA’s [8] environmental selection that uses uniformly distributed reference vec-

tors (see Section 2.8.3). The ideal vector z is an objective vector that contains the

minimum objective value for each objective in the current population. The vector

between each solution’s objective vector and the ideal vector is used for APD cal-

culations (see Eq. (2.25)) as it could be a metric for convergence, while the use of

APD aims to improve diversity among solutions. The main goal of this preselection

strategy is to avoid ending up in a local optimum in large-scale environments by se-

lecting well-converged solutions (non-dominated) and selecting well-distributed but

less-converged solutions for reproduction.

Reproduction

The reproduction strategy of DGEA is listed in Algorithm 13. In this part, r di-

rection vectors (from each solution to a group of selected promising solutions) are



CHAPTER 2. BACKGROUND 33

constructed. First, the solutions are classified into two groups; the solutions that are

non-dominated and the ones that are dominated by at least one solution. Then, ps

is randomly selected from the set of non-dominated solutions as the starting point.

Next, the endpoints (a total of r solutions) are selected as in lines 8 to 11 in Algo-

rithm 13. Because DGEA uses an environmental selection strategy to select the next

population, when there are a lot of non-dominated solutions, the solutions are mostly

well-distributed (good diversity) as this is usually ensured in environmental selection

approaches. Therefore, if the number of dominated solutions is less than the number

of direction vectors, all dominated solutions are selected as endpoints. Moreover,

when the number of dominated solutions is greater than average, the non-dominated

region is controlled by a few solutions which in turn results in poor diversity.

When the endpoints are determined, direction vectors are calculated (from the

starting point to each end point). Then, Nsub = bN/rc different solutions are gener-

ated towards each direction vector, making up N new offspring. As seen in Algorithm

13, in lines 15 to 18 the distances between the non-dominated solutions and the start-

ing point along each direction vector is calculated, and the variance of these values

(σ2) is used in the normal distribution γ = N (0, σ2), forming the following offspring

generation equation:

xj = γ · dj + ps (2.31)

where ps is the starting point, dj is the direction vector, and xj is the new solution.

Algorithm 11 The general framework of DGEA [24]

1: procedure DGEA
2: Input: N (population size), r (number of direction vectors)
3: Output:P (final population)
4: P,Q←− RandomInitialization(N)
5: V ←− UniformRandomReferenceV ector(N)
6: while stopping condition not satisfied do
7: Q0, F1 ∪ F2 ∪ . . .←− Preselection(P )
8: Q←− Reproduction(Q0, F1 ∪ F2 ∪ . . . , r, N)
9: P ←− EnvironmentalSelection(P ∪Q,N)

10: end while
11: return P;
12: end procedure
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Algorithm 12 The preselection of DGEA [24]

1: procedure Preselection
2: Input: P (population), r (number of direction vectors), V (uniform reference

vectors)
3: Output:Q0 (preselected population), Fi (solutions on the ith front).
4: . Convergence based selection
5: F1, F2, . . . , Fm ←− ND SORT (P )
6: Nd ←− |F1|
7: if Nd ≥ r then
8: Q0 ←− F1 ∪ F2 ∪ · · · ∪ Fm−1
9: P ←− Fm

10: else
11: Q0 ←− F1 . Non-dominated solutions
12: P ←− F2 ∪ · · · ∪ Fm . Other solutions (dominated ones)
13: end if
14: . Now select based on diversity
15: z←− The ideal point of P (the minimum of each objective)
16: for i←− 1 : |P | do
17: f

′

i ←− fi − z
18: for j ←− 1 : |V | do

19: cosθi,j ←−
f
′
i .vj

||f ′i ||
20: end for
21: k ←− argmaxj∈{1,...,|V |}cosθi,j
22: Sk ←− pk
23: end for
24: for j ←− 1 : |V | do
25: for i←− 1 : |P | do
26: di,j ←− APD(θi,j, f

′

i )
27: end for
28: k ←− argmini∈{1,...,|Sj |}di,j
29: Q0 ←− Q0 ∪ {pk}
30: Update the front members of Q0

31: end for
32: return P;
33: end procedure
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Algorithm 13 The reproduction of DGEA [24]

1: procedure Reproduction
2: Input: P (population), N (population size), r (number of direction vectors),
V (uniform reference vectors)

3: Output:Q (offspring population)
4: Pn ←− F1 . Non-dominated solutions
5: Pd ←− F2 ∪ . . . . Other solutions (dominated solutions)
6: Randomly select ps from Pn
7: Nsub ←− bN/rc
8: if |Pd| < r then
9: Select r − |Pd| solutions at random from Pn \ ps and put them in Q0

10: Q←− Pd ∪Q0

11: else
12: Q←− Randomly select r solutions from Pn
13: end if
14: for i←− 1 : r do
15: di ←− ps−qi

||ps−qi||
16: for k ←− 1 : |Pn| do
17: λk ←− (pnk − ps).d

T
i

18: end for
19: σ2 ←− the variance of {λ1, . . . , λ|Pn|}
20: for j ←− 1 : Nsub do
21: γ ←− N (0, σ2)
22: sj ←− γ.dj + ps
23: end for
24: Qi ←− {s1, s2, . . . , sNsub , }
25: end for
26: Q←− Q1 ∪Q2 ∪ · · · ∪Qr

27: end procedure
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2.8.6 Multi-Objective Orthogonal Opposition-Based Crow Search

Algorithm

Crow Search Algorithm

Proposed by Askarzadeh [3], the crow search algorithm (CSA) is a novel evolution-

ary algorithm for single-objective optimization. CSA aims to simulate the social

behaviour of crows. Crows are known to follow other birds to where they hide their

food in order to steal it. Crows that steal foods from other birds or crows will be more

careful in protecting their own food, using their past experience of thievery to predict

other crows’ plans [10]. Based on this interesting information, the CSA proposes the

following position update equation:

xi, iter +1 =

{
xi, iter + ri × fli,iter ×

(
mj , iter − xi, iter

)
rj > AP j , iter

a random position otherwise
(2.32)

where mj , iter is crow j’s hiding place at iteration iter, xi. iter is the i-th crow’s

position at iteration iter, i is the index of the crow that is following, j is the index

of the crow that is being followed by the i-th crow, fli,iter is the flight length of the

i-th crow at iteration iter, AP j , iter is the awareness probability of the j-th crow

at iteration iter, and ri and rj are two numbers randomly chosen from [0, 1]. Put

another way, the above equation describes a situation where the j-th crow is being

followed by the i-th one. If crow j notices that it is being followed, it will change its

position to a random one to fool crow i. Otherwise, it will keep heading to its hiding

place, also revealing this position to crow i. Please note that from an implementation

point of view, the hiding place of a crow could be interpreted as the personal best

position found by the crow up to any point in the optimization process. Moreover,

each crow randomly picks one of the crows and moves towards it, unlike in PSO where

the global best is directly used for all particles.

Crow Search Algorithm for Large-Scale Multi-Objective Optimization

Looking to adapt the CSA for large-scale multi-objective optimization, Rizk-Allah

et al. [61] proposed the multi-objective orthogonal opposition-based crow search al-

gorithm (M2O-CSA). This algorithm uses the same position update of CSA, with

a solution selected from the archive acting as the hiding place of each crow. M2O-

CSA also uses a novel method, namely the orthogonal opposition strategy (OOS) (a

combination of orthogonal arrays and opposition-based learning [76]), for improved
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performance on large-scale problems.

Orthogonal Arrays and Orthogonal Crossover

Let S be a system with K factors (variables), where each factor can get one of

the total Q levels (values). To find the best value for S and since trying out all

QK combinations is not efficient, orthogonal arrays are some of the most popular

methods for selecting a small and efficient subset of all possible combinations. For K

factors, Q levels and M combinations (experiments), an orthogonal array is denoted

by LM(QK) [81]. For example, L9(3
4) is shown below:

.L9

(
34
)

=



1 1 1 1

1 2 2 2

1 3 3 3

2 1 2 3

2 2 3 1

2 3 1 2

3 1 3 2

3 2 1 3

3 3 2 1


(2.33)

where each row represents an experiment or a combination, and factors are the as-

signed values. M2O-CSA also uses L9(3
4), but doing crossover between two parent

solutions. During this crossover, two nx-dimensional solutions are randomly gener-

ated. Then, from these two solutions, three different levels are generated and decision

variables are divided into four groups. Finally, nine new solutions are generated ac-

cording to L9(3
4), where each decision variable is a factor (variable).

2.8.7 Large-Scale Many-Objective Particle Swarm Optimizer

Based on Alpha-Stable Mutation and Logistic Function

Cheng et al. [9] proposed the large-scale many-objective PSO based on Alpha-stable

mutation (LMPSO). LMPSO draws inspiration from previous work in [22], where the

Levy flight was successfully integrated into the PSO, enabling the particles to do long

jumps and escape premature convergence. LMPSO uses the Alpha-stable distribution,

which is a more general family that includes the Levy flight. The Alpha-distribution

is used to mutate each individual around either its own position, its assigned global
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best position, or the middle point between its position and its assigned global best

(from the external archive), selecting between these three mutation operators based

on predefined probabilities.

Dynamic Parameter Adjustment

LMPSO uses a dynamic parameter adjustment approach which aims to emphasize

exploration at the beginning of search, and gradually shift the focus to exploitation by

dynamically changing the values of the parameters related to PSO (c1, c2, and ω), and

the ones related to the Alpha-stable distribution (α and β). In order to dynamically

change the values of these variables, the work in [9] utilizes the distribution properties

of Logistic function, dynamically updating the value of each parameter using the

following equation:

f(x) =
max (LIni, LFinal )−min (LIni , LFinal )

1 + exp (−k (x− x0))
+ min (LIni , LFinal ) (2.34)

where LIni and LFinal denote the initial and final values of parameter L respectively.

Moreover, x0 = c×maxIter and k = d× LFinal −LIni

maxIter
, where c and d are two constants

and maxIter denotes the maximum number of iterations. The values of LIni and

LFinal are parameter-specific; for example, the values of c1 and c2 in [75] started with

2.5 and ended up with 0.75.

Dominance Resistance Solutions

LMPSO also addresses the issue of dominance resistance solutions (DRSs). The

DRSs, which are typically observed in many-objective problems, are defined as non-

dominated solutions that have very poor values for at least one objective, and opti-

mal values for others [1] [29]. For example, in an external archive based on Pareto-

dominance for a two-objective problem, objective vectors (0.1, 2) and (0, 100) both

remain unaffected they are non-dominated with reference to each other. Even when

the crowding distance is used as a secondary measure to remove the extra solutions,

such solutions can stay in the archive as they are often isolated in the POF, thus hav-

ing a preferable crowding distance score. In order to address this, LMPSO normalizes

the objective values of the archive solutions in [0, 1], sets the objectives values less

than σ (the dominance resistance error) to zero, and finally remove the dominated

solutions. The value 1e-6 was recommended for σ in [9].
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2.8.8 A Center-Based Mutation for the Third Generalized

Differential Evolution

The differential evolution (DE) [71] is an evolutionary algorithm for single-objective

optimization. DE uses mutation and crossover operators to produce new individuals.

For each gene j, the mutation operator is formulated as:

vj,i = xj,i1 + F · (xj,i2 − xj,i3) (2.35)

where xj,i1 , xj,i2 and xj,i3 are three distinct individuals randomly selected from the

current population and F is the mutation factor. The resulting vector from the above

equation goes into a crossover (which is typically a binary crossover) with the original

individual based on a predefined crossover rate (Cr), producing a new target vector

that replaces the original individual if it has a better fitness.

Similar to PSO, DE has also been adapted to solve multi-objective problems.

Generalized differential evolution (GDE) [40], GDE2 [38] and GDE3 [39] [4] are some

examples of multi-objective optimization algorithms based on DE. GDE was proposed

to solve multi-objective optimization problems with K constraints, using constraint-

domination concepts. Looking to extend GDE, GDE2 incorporated the crowding dis-

tance measure into GDE. In GDE3, each individual in the set of offspring is generated

using three randomly selected solutions. Looking to improve GDE3’s performance on

large-scale problems, Hiba et al. [27] proposed a center-based mutation for the third

generalized differential evolution (CGDE3). This novel center-based mutation ap-

proach, which replaces the traditional GDE3 mutation for a pre-defined number of

iterations, randomly picks three individuals from the current population, and uses

the mean of these individuals for the mean of a Gaussian distribution as formulated

below:

xcenter =

(
xi1 + xi2 + xi3

3

)
(2.36)

xNcenter = N (xcenter , σ) (2.37)

The standard deviation of this Gaussian distribution (σ) is calculated as
maxj−minj

6

where maxj and minj refer to the maximum and the minimum values of the j-th

decision variable (in the current population) respectively. Finally, the new mutation

operator is formulated as:

vi = xNcenter + F · (xi4 − xi5) (2.38)
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where xi4 and xi5 are also two randomly selected distinct individuals.

2.8.9 Coevolutionary Operations for Large Scale Multi-objective

Optimization

Proposed by Antonio et al. [2], operational decomposition (OD) is a novel framework

intended to improve the crossover operations in MOEAs while using no additional

function evaluations. A motivation of OD is to reduce the computational cost, by

stating the multiple subpopulations of the CC-based algorithms which consume ad-

ditional functional evaluations as a drawback of such approaches. In OD, decision

variables are randomly classified into S groups, thus forming S subcomponents. OD

uses set X consisting of N full-dimensional individuals (X = {x1, . . . , xN}). To pro-

duce offspring, and for each solution xi ∈ X, T closest decision vectors are selected

and put in a set named B(i). Then, for each of the S subcomponents of xi, two solu-

tions are randomly selected from B(i) and go through a crossover operation (the work

in [2] used the simulated binary crossover (SBX) [15] for this purpose). The vector

resulting from this crossover is the subvector corresponding to the appropriate sub-

component. Therefore, OD utilizes the CC framework not by using nx
S

-dimensional

individuals, but by using full-dimensional individuals and generating offspring based

on smaller subcomponents of them.

2.9 Other Advances in Evolutionary Algorithms

This section covers other advances in recent years in evolutionary computation for

regular and large-scale single- and multi-objective optimization.

2.9.1 Contribution-Based Approaches

The cooperative coevolutionary (CC) framework, as discussed in previous sections,

has shown competitive performance in solving large-scale problems. However, the

algorithms that use this framework are typically costly in terms of the computation

budget (which is usually the number of function evaluations). Moreover, a lot of

CC-based approaches divide the computation budget between the subpopulations

equally, whereas there might be subpopulations that contribute more to the search.

Therefore, in recent years, contribution-based approaches have been developed to

address this issue by defining contribution metrics, and allocating more computation
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budget to subpopulations that have better scores. The main goal of such approaches

is to dynamically allocate computational resources.

Contribution-Based Cooperative Coevolution

Proposed by Omidvar et al. [58], contribution-based CC selects the subpopulation

with the most contribution to undergo evolution during each iteration. Both CBCC1

and CBCC2 accumulate the contribution scores from the beginning of the optimiza-

tion process. In their original experiments, both CBCC1 and CBCC2 outperformed

the original CC algorithms, especially on imbalanced problems where subpopulations

had different contributions to the objective value. The main disadvantage of CBCC1

and CBCC2 is that they accumulate the contributions from the beginning of search.

Since the changes in the objective value are usually more significant early on, CBCC’s

contribution score could be overwhelmed by initial changes in the fitness value with-

out taking into account real-time objective improvements or adapting to them. In

order to address these issues, CBCC3 [56] was proposed which forgoes the historical

contribution information in favor of real-time changes.

CCFR

CCFR is another contribution-based CC [83]. CCFR calculates the contribution of

each subpopulation using both historical data and real-time changes, as an average:

∆Fi =
∆F̂i + |f (x̂best )− f (xbest )|

2
(2.39)

For the i-th subpopulation (Pi), ∆F̂i is the last contribution of the subpopulation, and

∆Fi is initially equal to zero. Similarly, x̂ and x denote the best overall solution before

and after Pi’s coevolutionary cycle. Eq. (2.39) takes both real-time and historical

objective improvement data into account, with the former having a greater effect

on the contribution score. During each coevolutionary iteration, CCFR selects the

subpopulation with the best contribution score to undergo coevolution. Given M

subcomponents and a population size of N , CCFR spends N×M function evaluations

early on to:

• Initialize the contribution score of each subpopulation, and
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• calculate the best overall solution using:

argmin
x∈Z

f(x) =

(
argmin
x1∈P1

f (x1, . . .) , . . . , argmin
xM∈PM

f (. . . ,xM)

)
(2.40)

where Z is a set containing all possible combinations of the individuals in all

subpopulations.

CCFR2

Looking to improve CCFR’s performance, Yang et al. [84] proposed CCFR2. In

light of the fact that the decomposition strategy in the CC framework could divide

the decision variables into unequal groups where some groups are assigned more

variables, CCFR2 allocates more individuals to subpopulations with more variables,

unlike CCGA [60], CCFR [83], CBCC [58] and many other CC-based approaches

that assume an equal number of individuals for all subpopulations. More specifically,

to subpopulation Pi with Di assigned decision variables, CCFR2 allocates Di + d

individuals where d is a positive integer. CCFR2 also modifies CCFR’s contribution

score as:

∆Fi = w ·∆F̂i +
|f (x̂best )− f (xbest )|

ni
(2.41)

where ni is the number of function evaluations spent by Pi during the coevolutionary

cycle and w ∈ [0, 1]. Eq. (2.41) takes the number of fitness evaluations into account,

since it uses subpopulations of different size. This equation also introduces control

parameter w, which controls the influence of the historical data on the contribution

score.

2.9.2 Information Feedback Models

In most metaheuristic algorithms, a lot of search information from previous iterations

is not considered when updating individuals. Recently, Wang and Tan [80] proposed

the idea of using information feedback models (IFMs) in metaheuristic algorithms to

make use of potential useful information from previous iterations. In their model,

Wang and Tan proposed three different sets of feedback models, based on the number

of previous individuals to consider. More formally, in their models k ≥ 1 previous in-

dividuals can be considered, but they only used k ∈ {1, 2, 3} to avoid over-complicated

models. In a run of the single-objective PSO, let ns be the swarm size, and xti the

i-th particle at iteration t with xi and f ti denoting its position and fitness value re-

spectively. Moreover, let yt+1
i be the updated particle (by the vanilla PSO) with f t+1

i
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being its fitness value. The proposed models are the following:

• R1 and F1: These models update the i-th particle (xt+1
i ) using the j-th one as:

xt+1
i = αyt+1

i + βxtj (2.42)

Weight parameters α and β satisfy α + β = 1 and are formulated as:

α =
f tj

f t+1
i + f tj

, β =
f t+1
i

f t+1
i + f tj

(2.43)

The model in Eq. (2.42) is called F1 if j = i, and called R1 if j is a random

integer from {1, . . . , ns}.

• R2 and F2: These models update the i-th particle (xt+1
i ) using the following:

xt+1
i = αyt+1

i + β1x
t
j1

+ β2x
t−1
j2

(2.44)

Weight parameters α, β1, and β2 satisfy α+ β1 + β2 = 1 and are formulated as:

α =
1

2
•

f t−1j2
+ f tj1

f t+1
i + ft−1 + f tj1

β1 =
1

2
•

f t−1j2
+ f t+1

i

f t+1
i + f t−1j2

+ f tj1

β2 =
1

2
•

f t+1
i + f tj1

f t+1
i + f t−1j2

+ f tj1

(2.45)

The model in Eq. (2.44) is called F2 if j1 = j2 = i, and called R2 if j1 and j2

are random integers from {1, . . . , ns}.

• R3 and F3: These models update the i-th particle (xt+1
i ) using the following:

xt+1
i = αyt+1

i + β1x
t
j1

+ β2x
t−1
j2

+ β3x
t−2
j3

(2.46)

Weight parameters α, β1, β2, and β3 satisfy α + β1 + β2 + β3 = 1 and are
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formulated as:

α =
1

3
•

f tj1 + f t−1j2
+ f t−2j3

f t+1
i + f tj1 + f t−1j2

+ f t−2j3

β1 =
1

3
•

f t+1
i + f t−1j2

+ f t−2j3

f t+1
i + f tj1 + f t−1j2

+ f t−2j3

β2 =
1

3
•

f t+1
i + f tj1 + f t−2j3

f t+1
i + f tj1 + f t−1j2

+ f t−2j3

β3 =
1

3
•

f t+1
i + f tj1 + f t−1j2

f t+1
i + f tj1 + f t−1j2

+ f t−2j3

(2.47)

The model in Eq. (2.46) is called F3 if j1 = j2 = j3 = i, and called R3 if j1, j2,

and j3 are random integers from {1, . . . , ns}.

More recently, Gu and Wang [21] incorporated the IFMs into NSGA-III [17] (another

state-of-the-art reference-point-based approach for many-objective optimization pro-

posed by Deb and Jain [17]) for large-scale many-objective optimization. In their

experiments, they observed that NSGAIII-F1 and NSGAIII-R1 were the best vari-

ants1. For large-scale many-objective optimization using IFMs and MOEA/D [87],

Zhang et al. [90] proposed MOEA/D-IFM.

1Their experiments were conducted on NSGAIII, NSGAIII-F1, NSGAIII-F2, NGSAIII-F3,
NSGAIII-R1, NSGAIII-R2, and NSGAIII-R3.



Chapter 3

A Scalability Study

Particle swarm optimization has been adapted to solve multi-objective optimization

problems. However, these PSO-based multi-objective optimization algorithms typi-

cally face difficulties when the number of decision variables is increased and the prob-

lems turn into large-scale multi-objective problems (LSMOPs). This chapter presents

a decision space scalability study of five PSO-based algorithms, namely optimized

multi-objective particle swarm optimization [69], speed-constrained multi-objective

particle swarm optimization [54], multi-objective particle swarm optimization with

multiple search strategies [45], multi-guide particle swarm optimization [64] [63], and

competitive mechanism-based multi-objective particle swarm optimization [89] for 24,

50, 100, 500, and 1000 decision variables to see how well each one of the algorithms

scales as the number of decision variables is increased. This study is a part of a

bigger one on developing scalable PSO-based algorithms for large-scale MOOPs. As

previously used in [30], the 24-dimensional WFG problems (with 20 distance-related

parameters) were used as the starting point of these experiments. The goal is to show

how some of the state-of-the-art algorithms are prone to performance deterioration

when the dimensionality of the problems is increased.

3.1 Experimental Setup

This section describes the empirical process followed to study the scalability of the

selected MOPSO algorithms.

45
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3.1.1 Benchmark Suites

This chapter uses the nine functions in the Walking Fish Group set [30]. The number

of position-related parameters (k as explained in Appendix A) was set to 4, 10, 20,

100, and 200 for 24, 50, 100, 500, and 1000 dimensions respectively. In this test

suite a series of transition and shape functions are used to create unique POF shapes.

WFG1 has a convex front, WFG2 and WFG3 have disconnected convex and linear

fronts respectively, while WFG4 to WFG9 all have concave fronts. More information

about the WFG test suite can be found in [31] and Appendix A.

3.1.2 Performance Measures

The following performance measures were used in this work:

• Inverted Generational Distance: The inverted generational distance (IGD)

[12] [68] was used to measure the closeness of the obtained fronts to the true

fronts. The true fronts in the jMetal framework [53] were used as the reference

fronts for the 2- and 3-objective WFG1 to WFG9.

• Hypervolume: The hypervolume (HV) measure [96], was used to measure the

space covered by the obtained fronts. The nadir point was used as the reference

vector.

3.1.3 Control Parameters

The total number of particles for all algorithms was set to 50, and all of the algorithms

were allocated a maximum of 105 function evaluations. For MGPSO, these 50 particles

were split between the subswarms in the same way as [64] and listed in Table 3.31. For

all algorithms except CMOPSO (which does not have an external archive), the archive

size was set to 50. As suggested in [89], the value of γ was set to 10 for CMOPSO and

similar to [45], the value of δ was set to 0.9 for MMOPSO. For all algorithms, if the

value of one dimension of the position vector became greater than the upper bound

or less than the lower bound, it was assigned the upper bound and the lower bound

respectively; additionally, for OMOPSO and SMPSO, the corresponding dimension of

the velocity vector was multiplied by −1 and 0.001 respectively (this was mentioned

in [54]). For all algorithms with external archives, the crowding distance was used as

1The values in this table were empirically obtained by the author [64]
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a measure to remove the overcrowded solutions in the case of the archive being full

upon the arrival of a new Pareto-optimal solution. As previously used in [31], the

24-dimensional WFG problems were used here. Table 3.1 and Table 3.2 provide a

summary of the used OMOPSO and SMPSO parameters respectively.

Table 3.1: OMOPSO parameters

Parameter Value

Mutation Probability 1
number of dimensions

Uniform Mutation Perturbation 0.5

Nonuniform Mutation Perturbation 0.5

η 0.0075

Leaders Archive Size 50

Archive Deletion Metric The Crowding Distance

Swarm Size 50

Table 3.2: SMPSO parameters

Parameter Value

Mutation Probability 1
number of dimensions

Mutation Distribution Index 20

Mutation Operator Polynomial Mutation

Archive Size 50

Archive Deletion Metric The Crowding Distance

Swarm Size 50

3.1.4 Statistical Methods

The algorithms were compared using the Mann-Whitney U test [51] with a confidence

level of 95%. For each pair of algorithms, if the difference was deemed statistically

significant, the algorithm with the better mean over the 30 independent runs was

given a win and the algorithm with the worse mean was given a loss. The difference

between wins and losses (wins− losses) was then used for ranking the algorithms.

3.2 Results

Tables 3.4 and 3.5 provide the IGD rankings for WFG1 to WFG5 and WFG6 to

WFG9 respectively, whereas the HV rankings are provided in Tables 3.6 and 3.7.
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Table 3.3: MGPSO parameters

Problem Objectives |S1| |S2| |S3| T ω c1 c2 c3

WFG1 2 45 5 - 3 0.275 1.65 1.80 1.75

WFG2 2 24 26 - 2 0.750 1.15 1.70 1.05

WFG3 2 31 19 - 2 0.600 1.60 1.85 0.95

WFG4 2 2 48 - 2 0.100 0.80 1.65 1.70

WFG5 2 50 0 - 2 0.600 0.80 1.60 1.85

WFG6 2 19 31 - 2 0.525 0.65 0.60 1.65

WFG7 2 29 21 - 2 0.450 1.20 1.85 1.55

WFG8 2 37 13 - 3 0.750 1.00 1.65 1.05

WFG9 2 13 37 - 2 0.275 1.00 0.50 1.70

WFG1 3 37 4 9 2 0.125 1.20 1.30 1.75

WFG2 3 24 25 1 2 0.275 1.25 1.40 1.70

WFG3 3 29 10 11 2 0.525 1.65 1.75 0.75

WFG4 3 29 21 0 2 0.275 1.75 0.50 1.05

WFG5 3 2 48 0 3 0.575 0.60 1.85 1.75

WFG6 3 5 30 15 3 0.300 0.90 0.90 1.90

WFG7 3 10 22 18 2 0.425 1.45 1.50 1.40

WFG8 3 4 23 23 3 0.425 0.95 1.75 1.85

WFG9 3 4 45 1 2 0.275 1.25 0.75 1.50

Fig. 3.1 depicts a summary of the overall IGD and HV rankings.

3.2.1 24 Dimensions

MGPSO had the best IGD performance on the 2-objective WFG2, WFG3, WFG6,

and WFG7. MGPSO also had the best overall aggregated IGD scores (Table 3.5)

for the 2- and 3-objective functions, followed by SMPSO and CMOPSO respec-

tively. In terms of HV (Tables 3.6 and 3.7), MMOPSO had the best performance

on the 2-objective functions followed by MGPSO; however, MGPSO managed to

beat MMOPSO to become the best-performer on the 3-objective functions. SMPSO

had the best IGD and HV performance on the 2-objective WFG9, obtaining the best

possible score (+4). Moreover, MMOPSO obtained the best possible IGD and HV

scores for the 2- and 3-objective WFG1. Despite MGPSO’s good overall performance
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Table 3.4: IGD rankings for WFG1 to WFG5

Algorithm (2-Objective) Algorithm (3-Objective)
Problem Dimension Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO

WFG1

24
Difference −2 −4 4 2 0 Difference −4 −2 4 0 2

Rank 4 5 1 2 3 Rank 5 4 1 3 2

50
Difference −2 −4 4 1 1 Difference −3 −3 4 1 1

Rank 3 4 1 2 2 Rank 3 3 1 2 2

100
Difference −3 1 4 1 −3 Difference −1 −1 4 −4 2

Rank 3 2 1 2 3 Rank 3 3 1 4 2

500
Difference 0 4 2 −2 −4 Difference −2 1 4 −4 1

Rank 3 1 2 4 5 Rank 3 2 1 4 2

1000
Difference −1 2 4 −1 −4 Difference −2 1 4 −4 1

Rank 3 2 1 3 4 Rank 3 2 1 4 2

WFG2

24
Difference 2 −1 −1 4 −4 Difference −1 −1 −4 4 2

Rank 2 3 3 1 4 Rank 3 3 4 1 2

50
Difference 2 −1 0 3 −4 Difference 3 −1 −3 −2 3

Rank 2 4 3 1 5 Rank 1 2 4 3 1

100
Difference 2 −2 2 2 −4 Difference 4 1 1 −4 −2

Rank 1 2 1 1 3 Rank 1 2 2 4 3

500
Difference 3 −2 2 −1 −2 Difference 3 −1 3 −4 −1

Rank 1 4 2 3 4 Rank 1 2 1 3 2

1000
Difference 2 2 −2 −1 −1 Difference 2 2 2 −3 −3

Rank 1 1 3 2 2 Rank 1 1 1 2 2

WFG3

24
Difference 0 0 −4 4 0 Difference −1 −4 2 4 −1

Rank 2 2 3 1 2 Rank 3 4 2 1 3

50
Difference −1 −1 2 −4 4 Difference 0 −2 2 4 −4

Rank 3 3 2 4 1 Rank 3 4 2 1 5

100
Difference 0 −2 3 −4 3 Difference −1 3 −1 3 −4

Rank 2 3 1 4 1 Rank 2 1 2 1 3

500
Difference 4 −2 1 −4 1 Difference 1 1 4 −2 −4

Rank 1 3 2 4 2 Rank 2 2 1 3 4

1000
Difference 2 −4 −1 −1 4 Difference 2 −2 4 0 −4

Rank 2 4 3 3 1 Rank 2 4 1 3 5

WFG4

24
Difference 1 1 4 −4 −2 Difference 2 −2 −2 4 −2

Rank 2 2 1 4 3 Rank 2 3 3 1 3

50
Difference 0 2 4 −4 −2 Difference 2 2 2 −3 −3

Rank 3 2 1 5 4 Rank 1 1 1 2 2

100
Difference 0 3 3 −4 −2 Difference 0 4 2 −4 −2

Rank 2 1 1 4 3 Rank 3 1 2 5 4

500
Difference 0 2 4 −4 −2 Difference 0 4 2 −4 −2

Rank 3 2 1 5 4 Rank 3 1 2 5 4

1000
Difference 0 2 4 −4 −2 Difference 0 4 2 −4 −2

Rank 3 2 1 5 4 Rank 3 1 2 5 4

WFG5

24
Difference 1 4 −2 1 −4 Difference −2 −2 −2 4 2

Rank 2 1 3 2 4 Rank 3 3 3 1 2

50
Difference 3 3 0 −4 −2 Difference 0 −4 4 1 −1

Rank 1 1 2 4 3 Rank 3 5 1 2 4

100
Difference 2 −1 4 −4 −1 Difference 0 −3 4 −3 2

Rank 2 3 1 4 3 Rank 3 4 1 4 2

500
Difference 0 −2 4 −4 2 Difference 0 −2 4 −4 2

Rank 3 4 1 5 2 Rank 3 4 1 5 2

1000
Difference 0 −2 4 −4 2 Difference 0 0 4 −4 0

Rank 3 4 1 5 2 Rank 2 2 1 3 2

on the 24-dimensional problems, it had the worst IGD and HV performance on the

2-objective WFG4 and the 2-objective WFG8.

3.2.2 50 Dimensions

MGPSO’s IGD and HV performances dropped noticeably compared with 24 dimen-

sions. MGPSO ranked last and third overall in IGD for the 2- and 3-objective func-

tions respectively, having had the best overall IGD scores for the 24-dimensional

problems. The transition from 24 to 50 dimensions particularly turned MGPSO into

the worst IGD and HV performer on the 2-objective WFG6 and WFG7, having had

the best performances on the same functions for 24 dimensions. On the contrary,

MMOPSO rose to the top as the problems were scaled up to become the best IGD
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Table 3.5: IGD rankings for WFG6 to WFG9

Algorithm (2-Objective) Algorithm (3-Objective)
Problem Dimension Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO

WFG6

24
Difference −4 2 −2 3 1 Difference −4 0 −2 3 3

Rank 5 2 4 1 3 Rank 4 2 3 1 1

50
Difference 1 4 −2 −4 1 Difference 1 4 1 −3 −3

Rank 2 1 3 4 2 Rank 2 1 2 3 3

100
Difference 2 4 0 −4 −2 Difference 1 4 1 −4 −2

Rank 2 1 3 5 4 Rank 2 1 2 4 3

500
Difference 4 2 0 −4 −2 Difference 2 4 −1 −4 −1

Rank 1 2 3 5 4 Rank 2 1 3 4 3

1000
Difference 2 4 0 −4 −2 Difference 3 3 0 −3 −3

Rank 2 1 3 5 4 Rank 1 1 2 3 3

WFG7

24
Difference 2 0 −4 4 −2 Difference 0 −3 −3 3 3

Rank 2 3 5 1 4 Rank 2 3 3 1 1

50
Difference 4 −3 2 −3 0 Difference 1 −2 3 2 −4

Rank 1 4 2 4 3 Rank 3 4 1 2 5

100
Difference 2 −2 4 −4 0 Difference −1 2 4 −1 −4

Rank 2 4 1 5 3 Rank 3 2 1 3 4

500
Difference −1 4 0 −4 1 Difference 2 2 2 −4 −2

Rank 4 1 3 5 2 Rank 1 1 1 3 2

1000
Difference −4 1 −2 1 4 Difference 0 3 3 −3 −3

Rank 4 2 3 2 1 Rank 2 1 1 3 3

WFG8

24
Difference 4 0 0 −4 0 Difference 0 −4 0 0 4

Rank 1 2 2 3 2 Rank 2 3 2 2 1

50
Difference −2 2 2 −4 2 Difference 2 −4 4 −1 −1

Rank 2 1 1 3 1 Rank 2 4 1 3 3

100
Difference 0 −2 2 −4 4 Difference 2 2 2 −3 −3

Rank 3 4 2 5 1 Rank 1 1 1 2 2

500
Difference 0 −4 3 −2 3 Difference 3 3 0 −4 −2

Rank 2 4 1 3 1 Rank 1 1 2 4 3

1000
Difference −1 −4 −1 4 2 Difference 4 2 0 −4 −2

Rank 3 4 3 1 2 Rank 1 2 3 5 4

WFG9

24
Difference −3 4 −2 0 1 Difference −2 0 −4 2 4

Rank 5 1 4 3 2 Rank 4 3 5 2 1

50
Difference 0 4 −2 −4 2 Difference −2 −1 0 −1 4

Rank 3 1 4 5 2 Rank 4 3 2 3 1

100
Difference 0 4 2 −4 −2 Difference −1 3 3 −4 −1

Rank 3 1 2 5 4 Rank 2 1 1 3 2

500
Difference 1 4 1 −4 −2 Difference 1 4 1 −2 −4

Rank 2 1 2 4 3 Rank 2 1 2 3 4

1000
Difference 2 4 0 −2 −4 Difference 2 4 0 −2 −4

Rank 2 1 3 4 5 Rank 2 1 3 4 5

Overall (WFG1-9)

24
Difference 1 6 −7 10 −10 Difference −12 −18 −11 24 17

Rank 3 2 4 1 5 Rank 4 5 3 1 2

50
Difference 5 6 10 −23 2 Difference 4 −11 17 −2 −8

Rank 3 2 1 5 4 Rank 2 5 1 3 4

100
Difference 5 3 24 −25 −7 Difference 3 15 20 −24 −14

Rank 2 3 1 5 4 Rank 3 2 1 5 4

500
Difference 11 6 17 −29 −5 Difference 10 16 19 −32 −13

Rank 2 3 1 5 4 Rank 3 2 1 5 4

1000
Difference 2 5 6 −12 −1 Difference 11 17 19 −27 −20

Rank 3 2 1 5 4 Rank 3 2 1 5 4

performer on the 2- and 3-objective functions, having finished fourth and third in

the 24-dimensional 2- and 3-objective problems respectively. CMOPSO’s IGD per-

formance on the 3-objective problems also dropped compared with 24 dimensions.

MMOPSO was also the best HV performer on the 2- and 3-objective functions, tak-

ing over MGPSO’s spot for the latter. Moreover, SMPSO continued its IGD and

HV dominance for the 2-objective WFG9 and despite CMPSO’s relatively poor IGD

performance, it still managed to rank first in IGD for the 2-objective WFG8, together

with SMPSO and MMOPSO.
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Table 3.6: HV rankings for WFG1 to WFG5

Algorithm (2-Objective) Algorithm (3-Objective)
Problem Dimension Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO

WFG1

24
Difference −2 −4 4 2 0 Difference −4 −2 4 0 2

Rank 4 5 1 2 3 Rank 5 4 1 3 2

50
Difference −2 −4 4 1 1 Difference −4 −2 4 0 2

Rank 3 4 1 2 2 Rank 5 4 1 3 2

100
Difference −2 1 4 1 −4 Difference −2 1 4 −4 1

Rank 3 2 1 2 4 Rank 3 2 1 4 2

500
Difference 0 2 4 −2 −4 Difference 0 2 4 −4 −2

Rank 3 2 1 4 5 Rank 3 2 1 5 4

1000
Difference −1 2 4 −1 −4 Difference 0 2 4 −4 −2

Rank 3 2 1 3 4 Rank 3 2 1 5 4

WFG2

24
Difference 2 0 −2 4 −4 Difference 2 −4 −1 −1 4

Rank 2 3 4 1 5 Rank 2 4 3 3 1

50
Difference 2 −2 1 3 −4 Difference 4 0 1 −4 −1

Rank 2 4 3 1 5 Rank 1 3 2 5 4

100
Difference 2 −2 2 2 −4 Difference 3 1 2 −4 −2

Rank 1 2 1 1 3 Rank 1 3 2 5 4

500
Difference 2 2 2 −3 −3 Difference 2 2 2 −3 −3

Rank 1 1 1 2 2 Rank 1 1 1 2 2

1000
Difference 1 4 −2 −2 −1 Difference 2 4 0 −3 −3

Rank 2 1 4 4 3 Rank 2 1 3 4 4

WFG3

24
Difference −2 −3 2 4 −1 Difference 0 −2 2 4 −4

Rank 4 5 2 1 3 Rank 3 4 2 1 5

50
Difference −1 −1 2 −4 4 Difference 0 −2 3 3 −4

Rank 3 3 2 4 1 Rank 2 3 1 1 4

100
Difference 1 −2 4 −4 1 Difference −2 3 2 1 −4

Rank 2 3 1 4 2 Rank 4 1 2 3 5

500
Difference 3 −4 0 −2 3 Difference 0 −2 3 3 −4

Rank 1 4 2 3 1 Rank 2 3 1 1 4

1000
Difference 1 −4 −2 4 1 Difference 2 −2 0 4 −4

Rank 2 4 3 1 2 Rank 2 4 3 1 5

WFG4

24
Difference 0 −1 4 −4 1 Difference −2 1 4 1 −4

Rank 3 4 1 5 2 Rank 3 2 1 2 4

50
Difference 0 2 4 −4 −2 Difference 0 3 3 −4 −2

Rank 3 2 1 5 4 Rank 2 1 1 4 3

100
Difference 0 2 4 −4 −2 Difference 0 4 2 −4 −2

Rank 3 2 1 5 4 Rank 3 1 2 5 4

500
Difference 0 2 4 −4 −2 Difference 0 4 2 −4 −2

Rank 3 2 1 5 4 Rank 3 1 2 5 4

1000
Difference 0 2 4 −4 −2 Difference 1 4 1 −4 −2

Rank 3 2 1 5 4 Rank 2 1 2 4 3

WFG5

24
Difference 0 2 4 −4 −2 Difference −1 −1 4 2 −4

Rank 3 2 1 5 4 Rank 3 3 1 2 4

50
Difference 2 −1 4 −4 −1 Difference 2 −1 4 −1 −4

Rank 2 3 1 4 3 Rank 2 3 1 3 4

100
Difference 2 −2 4 −4 0 Difference 2 −2 4 −4 0

Rank 2 4 1 5 3 Rank 2 4 1 5 3

500
Difference 2 0 4 −4 −2 Difference 2 −1 4 −4 −1

Rank 2 3 1 5 4 Rank 2 3 1 4 3

1000
Difference 2 0 4 −4 −2 Difference 1 1 4 −4 −2

Rank 2 3 1 5 4 Rank 2 2 1 4 3

3.2.3 100 Dimensions

MMOPSO was once again the best overall (Table 3.4) IGD performer on the 2- and

3-objective functions, achieving a noticeably better overall score than its competi-

tors for two objectives. MMOPSO took OMOPSO and SMPSO’s spot as the best

IGD performer on the 2-objective WFG5. Despite CMOPSO being the best IGD

performer on the 2-objective WFG8, MGPSO and CMOPSO were the worst overall

IGD performers on the 2- and 3-objective functions, having obtained notably worse

overall scores than their counterparts. At 100 dimensions, MMOPSO managed to

achieve the best IGD performance on the 2-objective WFG7 and WFG5 for the first

time since 24 dimensions. Despite poor overall scores, CMOPSO and MGPSO had

the best IGD performances on the 2- and 3-objective WFG3, respectively. A similar
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Table 3.7: HV rankings for WFG6 to WFG9

Algorithm (2-Objective) Algorithm (3-Objective)
Problem Dimension Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO Result OMOPSO SMPSO MMOPSO MGPSO CMOPSO

WFG6

24
Difference −3 2 −3 2 2 Difference −4 2 −2 4 0

Rank 2 1 2 1 1 Rank 5 2 4 1 3

50
Difference 3 3 −1 −4 −1 Difference 0 4 2 −3 −3

Rank 1 1 2 3 2 Rank 3 1 2 4 4

100
Difference 3 3 0 −4 −2 Difference 2 4 0 −3 −3

Rank 1 1 2 4 3 Rank 2 1 3 4 4

500
Difference 2 4 0 −2 −4 Difference 2 4 −2 0 −4

Rank 2 1 3 4 5 Rank 2 1 4 3 5

1000
Difference 2 4 0 −2 −4 Difference 2 4 −2 0 −4

Rank 2 1 3 4 5 Rank 2 1 4 3 5

WFG7

24
Difference 2 −2 0 4 −4 Difference 0 −4 2 4 −2

Rank 2 4 3 1 5 Rank 3 5 2 1 4

50
Difference 2 −2 4 −4 0 Difference 1 −2 4 1 −4

Rank 2 4 1 5 3 Rank 2 3 1 2 4

100
Difference 2 −2 4 −4 0 Difference 0 2 4 −2 −4

Rank 2 4 1 5 3 Rank 3 2 1 4 5

500
Difference −2 3 −3 −1 3 Difference 3 3 0 −3 −3

Rank 3 1 4 2 1 Rank 1 1 2 3 3

1000
Difference −3 2 −3 4 0 Difference 2 4 0 −2 −4

Rank 4 2 4 1 3 Rank 2 1 3 4 5

WFG8

24
Difference 4 0 0 −4 0 Difference 0 −4 4 2 −2

Rank 1 2 2 3 2 Rank 3 5 1 2 4

50
Difference −1 1 3 −4 1 Difference 1 −2 4 1 −4

Rank 3 2 1 4 2 Rank 2 3 1 2 4

100
Difference 0 −2 4 −4 2 Difference 1 1 4 −2 −4

Rank 3 4 1 5 2 Rank 2 2 1 3 4

500
Difference −2 −4 2 0 4 Difference 3 3 0 −2 −4

Rank 4 5 2 3 1 Rank 1 1 2 3 4

1000
Difference −1 −4 −1 4 2 Difference 4 2 0 −2 −4

Rank 3 4 3 1 2 Rank 1 2 3 4 5

WFG9

24
Difference −3 4 −3 0 2 Difference −4 2 −1 2 1

Rank 4 1 4 3 2 Rank 4 1 3 1 2

50
Difference −1 4 2 −4 −1 Difference −1 0 4 −4 1

Rank 3 1 2 4 3 Rank 4 3 1 5 2

100
Difference 0 3 3 −4 −2 Difference 0 2 4 −4 −2

Rank 2 1 1 4 3 Rank 3 2 1 5 4

500
Difference 2 4 −1 −1 −4 Difference 2 4 0 −2 −4

Rank 2 1 3 3 4 Rank 2 1 3 4 5

1000
Difference 2 4 −2 0 −4 Difference 2 4 0 −2 −4

Rank 2 1 4 3 5 Rank 2 1 3 4 5

Overall (WFG1-9)

24
Difference −2 −2 6 4 −6 Difference −13 −12 16 18 −9

Rank 3 3 1 2 4 Rank 5 4 2 1 3

50
Difference 4 0 23 −24 −3 Difference 3 −2 29 −11 −19

Rank 2 3 1 5 4 Rank 2 3 1 4 5

100
Difference 8 −1 29 −25 −11 Difference 4 16 26 −26 −20

Rank 2 3 1 5 4 Rank 3 2 1 5 4

500
Difference 7 9 12 −19 −9 Difference 14 19 13 −19 −27

Rank 3 2 1 5 4 Rank 2 1 3 4 5

1000
Difference 3 10 2 −1 −14 Difference 16 23 7 −17 −29

Rank 2 1 3 4 5 Rank 2 1 3 4 5

pattern to IGD was observed for HV, where MMOPSO finished first and MGPSO and

CMOPSO were the worst performers. SMPSO managed to continue its HV domi-

nance for the 2-objective WFG9, finishing first together with MMOPSO. Interestingly,

MMOPSO managed to outperform SMPSO on the 3-objective WFG9.

3.2.4 500 Dimensions

With reference to IGD, MMOPSO once again had the best overall scores (Table 3.5)

for the 2- and 3-objective functions. However, this time the margin was closer com-

pared with 50 dimensions, with OMOPSO and SMPSO as the second best algorithms

for the 2- and 3-objective functions respectively. MGPSO had the worst overall scores

(Table 3.5) for the 2- and 3-objective functions by noticeable margins, followed by
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CMOPSO as the second worst. In fact, MGPSO had the worst IGD performance

on 13 out of the 18 500-dimensional functions. On the 2-objective WFG8, CMOPSO

once again had the best performance together with MMOPSO. With reference to HV,

although MMOPSO had the best overall score (Table 3.7) for the 2-objective func-

tions, its spot was overtaken by SMPSO and OMOPSO as the best and the second

best performing algorithms on the 3-objective functions respectively. Particularly, for

the 3-objective functions, the transition from 100 to 500 dimensions made MMOPSO

lose its number one spot (HV) for WFG7, WFG8 and WFG9 to SMPSO. MGPSO and

CMOPSO once again had the worst overall HV scores for the 2- and 3-objective func-

tions respectively. CMOPSO, after showing positive signs of IGD scalability on the

2-objective WFG8 (see Table 3.5), had the best HV performance on the 2-objective

500-dimensional WFG8, taking zero losses and winning against all other algorithms.

3.2.5 1000 Dimensions

With reference to IGD, MMOPSO had the best overall scores for the 2- and 3-

objective functions (Table 3.5) followed by SMPSO, although the margin was much

closer for 1000 dimensions compared with 500 or 100 dimensions. For the 2-objective

WFG7, CMOPSO gained the best possible score (+4), becoming the best IGD per-

former on this function. Despite MGPSO’s poor overall scalability, it had the best

IGD performance on the 2-objective WFG8. With reference to HV, SMPSO had

the best overall scores (Table 3.7) for the 2- and 3-objective functions, followed by

OMOPSO and MMOPSO. SMPSO continued its good scalability for the 2- and 3-

objective WFG9, WFG2, WFG6 and the 3-objective WFG4. Moreover, MMOPSO

was once again the algorithm with the best HV scalability on the 2- and 3-objective

WFG5 and the 2-objective WFG4. Similar to the IGD measure (Table 3.5), MGPSO

had the best HV performance on the 1000-dimensional 2-objective WFG8 despite its

overall poor performance. Additionally, MGPSO had the best HV performance on

the 2- and 3-objective WFG3 and the 2-objective WFG7.

3.2.6 Summary

A summary of the overall IGD and HV rankings of the selected algorithms for dif-

ferent dimensions based on the aggregated scores is depicted in Fig. 3.1. With

reference to IGD, MMOPSO had the best overall performance for dimensions greater

than 50 on the 2- and 3-objective functions. With reference to HV, SMPSO had

the best overall performance on the 500-dimensional 3-objective functions and the
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Figure 3.1: Overall rankings of the algorithms as a function of the number of dimen-
sions with reference to IGD (upper left and upper right for two and three objectives
respectively) and HV (lower left and lower right for two and three objectives respec-
tively).

1000-dimensional functions. MMOPSO had the best overall HV scalability for up

to 500 dimensions (two objectives) and 100 dimensions (three objectives); then, it

was outperformed by SMPSO and OMOPSO as the best and second best performing

algorithms respectively. Except for the 500-dimensional 2-objective functions where

OMOPSO had the better overall IGD performance, SMPSO outperformed OMOPSO

in both HV and IGD for dimensions greater than 500. As seen in Fig. 3.1, MGPSO

and CMOPSO were the worst-performing algorithms for dimensions greater than 100.

MGPSO had the best IGD performance on the 24-dimensional functions, the best and

the second best HV performances on the 24-dimensional 3 and 2-objective functions

respectively. However, it showed poor scalability, constantly obtaining the worst or

the second worst (behind CMOPSO) overall IGD and HV scores from 50 to 1000

dimensions.

Regarding individual problems, MMOPSO was a regular top IGD and HV performer

on the 2- and 3-objective WFG1, the 2-objective WFG4 and the 2- and 3-objective

WFG5, as well as earning some number one rankings in WFG7, WFG2 and WFG9.

SMPSO had the best IGD and HV scalability for the 2- and 3-objective WFG6 and

WFG9. In spite of its good overall scalability, MMOPSO failed to register a sin-

gle number one ranking in IGD or HV for the 2- and 3-objective WFG6. WFG6
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was MMOPSO’s most significant weak point, where it was constantly outperformed

by SMPSO and sometimes OMOPSO and even MGPSO. OMOPSO in particular

showed scalable IGD and HV performances on the 2- and 3-objective WFG2 and the

3-objective WFG8, constantly ranking as the best performing algorithm. In terms

of the overall aggregated HV scores, MMOPSO was outperformed by OMOPSO and

SMPSO on the 500-dimensional 3-objective and 1000-dimensional functions. This

was mostly a result of MMOPSO’s HV performance drop on the 3-objective WFG7

to WFG9 (from 100 to 1000 dimensions) and the 2- and 3-objective WFG2 (from

500 to 1000 dimensions). OMOPSO showed good signs of IGD and HV scalability

on the 2- and 3-objective WFG2 and the 3-objective WFG8, but it did not dominate

any functions as significantly as MMOPSO and SMPSO did with WFG5 and WFG9

respectively. MGPSO showed poor scalability as the dimensionality of the problems

was increased. MGPSO particularly struggled with the 2- and 3-objective WFG4

to WFG6 and the 3-objective WFG1. There were some positive signs of MGPSO

scalability, such as the best IGD and HV performances on the 1000-dimensional 2-

objective WFG8, the best HV performance on the 2-objective WFG7 and the best

HV performance on the 1000-dimensional 2- and 3-objective WFG3. However, MG-

PSO’s overall performance on the high-dimensional problems was not on par with

its performance on the low-dimensional ones. Similar to MGPSO, CMOPSO only

showed minor signs of scalability. Particularly, CMOPSO had the best scalability on

the 2-objective WFG8, achieving the best IGD scores for 50, 100 and 500 dimensions

and the best HV score for 500 dimensions.

3.3 Conclusion & Future Work

This chapter presented a decision space scalability study of five PSO-based algorithms

for multi-objective optimization, namely optimized multi-objective particle swarm op-

timization (OMOPSO), speed-constrained multi-objective particle swarm optimiza-

tion (SMPSO), multi-objective particle swarm optimization with multiple search

strategies (MMOPSO), multi-guide particle swarm optimization (MGPSO), and com-

petitive mechanism-based multi-objective particle swarm optimization (CMOPSO)

for 24, 50, 100, 500 and 1000 dimensions (decision variables). These algorithms were

tested on 18 problems (the 2- and 3-objective WFG1 to WFG9) from the Walking

Fish Group (WFG) problems. Inverted generational distance (IGD) and hypervol-

ume (HV) were used as the measures to compare the algorithms. The results showed
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that, despite a few exceptions involving WFG3, WFG7, and WFG8, MGPSO and

CMOPSO showed the worst scalability despite the fact that MGPSO showed com-

petitive performance on the low-dimensional problems. MMOPSO showed the best

overall IGD scalability (up to 1000 dimensions) and the best overall HV scalability

(for up to 500 dimensions), showing dominant performances on WFG1, WFG5 and

the 2-objective WFG4. SMPSO and OMOPSO both showed scalability on different

functions, with SMPSO having the more significant highlights (dominating WFG6,

WFG9 and the 3-objective WFG4). Additionally, SMPSO had the best overall HV

performance on the 1000-dimensional and the 500-dimensional 3-objective functions.

In the following chapters, a new MGPSO-based algorithm is proposed to address the

shortcomings of MGPSO in dealing with large-scale problems as discussed in this

study.



Chapter 4

A New Scalable MGPSO-Based

Approach

This chapter provides the details of a proposed improved MGPSO algorithm that

incorporates ideas from cooperative PSOs, termed cooperative co-evolutionary multi-

guide particle swarm optimization (CCMGPSO).

4.1 Introduction

The scalability study in Chapter 3 showed that the performance of MGPSO quickly

drops with the increase in the number of decision variables. Therefore, this chapter

proposes a new scalable multi-objective optimization algorithm based on MGPSO,

termed cooperative co-evolutionary multi-guide particle swarm optimization (CCMG-

PSO).

A motivation behind CCMGPSO is to efficiently tackle large-scale multi-objective

optimization problems, while preserving computational budget. Since a lot of ap-

proaches based on the CC framework use k dimension groups (and nx
k

-dimensional

individuals) for optimizing the objective value, an important task when incorporating

cooperative approaches into multi-objective optimization is determining an efficient

way of cooperatively optimizing the objective values. Using an independent CPSO

per objective could increase the total number of individuals and consequently the

computational cost of the algorithm. Therefore, the optimization of the problem

would become impractical under such circumstances. For example, in a cooperative

MOO approach where each objective is optimized separately and the decision vari-

ables are divided into 200 groups with 200 individuals, there would be a need for 400

and 600 individuals for two and three objectives respectively. The proposed CCMG-

57
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PSO, which is discussed in greater detail in the following sections, aims to share a

single CPSO between different objectives in cycles of equal length.

4.2 The Proposed Approach

The proposed CCMGPSO adds a single CPSO on top of the MGPSO, meaning that

the CCMGPSO consists of nx- and nx
k

-dimensional individuals, inspired by the CPSO-

Hk [77]. The pseudo-code for CCMGPSO is provided in Algorithm 14. At the be-

ginning of the algorithm, CCMGPSO randomly initializes nc context vectors in the

decision space. For each context vector, the objective vector is also kept track of

to save computational budget (the set of context vector objective values is denoted

by Ĉ in Algorithm 14). Every run of the nx-dimensional subswarms is followed by

a single run of the CPSO (the nx
k

-dimensional subswarms). These nx
k

-dimensional

individuals optimize different objectives depending on the iteration number. This is

controlled through a control parameter named iterations per objective (γ) (Line 21 in

Algorithm 14). For example, for a bi-objective optimization problem with γ = 10, in

the first 10 iterations every run of the nx-dimensional subswarms is followed by a run

of the nx
k

-dimensional subswarms on the first objective. For the next 10 iterations,

every run of the nx-dimensional subswarms is followed by a run of the nx
k

-dimensional

subswarms on the second objective. When all objectives have had one cooperative

cycle (γ iterations) and after nm × γ iterations, the decision variables are regrouped

and the particles are randomly reinitialized according to the new dimension indices

(lines 14 to 16 in Algorithm 14).

It is worth mentioning that when the CPSO is switching1 objectives, the personal

best values of the nx
k

-dimensional particles are reset (set to +∞) (line 18 in Algorithm

14). Moreover, before the CPSO starts optimizing a specific objective, it is randomly

assigned a context vector from the pool of context vectors (line 19 in Algorithm

14). The CPSO then holds onto this context vectors for the next γ iterations, and

it will update this context vector based on improvements in the assigned objective

(Algorithm 16).

1Here, “switching” means when a specific objective has had its allowed amount of time (γ itera-
tions) and the next objective is chosen.
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4.2.1 Velocity and Position Update Equations

The CCMGPSO also utilizes the original MGPSO velocity and position update equa-

tions. For the particles representing a smaller subset of dimensions, the global best

is extracted from the assigned context vector (Cl in Algorithm 14 and Algorithm 16)

based on the corresponding decision variables. The archive guide for these particles

is also selected from the archive using tournament selection and trimmed into the

correct decision variables. An example of the archive guide implementation for the
nx
k

-dimensional particles is depicted in Figure 4.1 through an arbitrary 9-dimensional

problem whose decision variables are classified into three different groups.

Many PSO-based approaches for multi-objective optimization (such as SMPSO

[54] and OMOPSO [69]) use random values for parameters such as c1, c2, and ω. Sim-

ilarly, and contrary to MGPSO, in CCMGPSO the values of c1, c2, c3 are randomly

selected from [1.5, 2] and the value of ω is sampled from [0.1, 0.5]. This randomization

is done for every particle at every iteration. This was done to deal with the difficul-

ties associated with tuning the CCMGPSO parameters on every test instance. The

aforementioned ranges for c1, c2 and ω have been successfully used in other MOPSO-

based approaches, such as OMOPSO [69] and MMOPSO [45]. Therefore, for c3 in

CCMGPSO the same range of possible random values was used.

Note that in CCMGPSO the particles’ position vectors are randomly re-initialized

after each decision variable regrouping (lines 14 to 16 in Algorithm 14). The reasoning

behind this is that in some large-scale problems (such as DTLZ6), the values of some

decision variables tend to get stuck at specific values. This means that if the particles

representing specific decision variables fail to update the corresponding dimensions

in the context vectors, they will gradually be driven towards the same values because

the context vectors are also used as the global best guides for the nx
k

-dimensional

particles. Moreover, because a lot of solutions are added to the archive on the basis

of small modifications to the context vectors (line 19 in Algorithm 16), in these

situations the archive could get replete with solutions that have the same values for the

aforementioned decision variables. Therefore, there may be cases where the current

position, the personal best position, the global best position, and the archive guide

position vectors all have the exact same or very similar values in some dimensions,

making the velocity smaller and smaller over time causing premature convergence in

those specific decision variables. Hence, the random re-initialization of the position

vectors generally showed effectiveness in helping the particles avoid these situations

and was used in CCMGPSO.
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Algorithm 14 The pseudo-code of CCMGPSO

1: procedure CCMGPSO
2: Input: nx (number of decision variables), nm (number of objectives), nA

(archive size), k (the number of decision variable groups), nc (the number of
context vectors), γ (the number of CPSO iterations per objective), f (the opti-
mization problem)

3: Output: non-dominated front (F ).
4: Randomly initialize nc context vectors in the decision space in a set called C;
5: P ←− Initialize nm subswarms each having nx decision variables;
6: Initialize a crowding distance-based archive of size nA;
7: l←− a randomly selected context vector index from the set C;
8: For each context vector Cl′ , 1 ≤ l

′ ≤ nc, initialize an objective vector Ĉl′ of

size nm, set all objective values of Ĉl′ to +∞
9: for iteration = 0 : maxIterations− 1 do

10: for each objective i = 1 : nm do
11: Randomly select a particle from P [i], replace it with Cl;
12: Optimize P [i] using MGPSO;
13: end for
14: if iteration%(nm × γ) = 0 then
15: S ←− Randomly group the decision variables into k groups, initialize

subswarms with nx
k

decision variables;
16: end if
17: if iteration%γ = 0 then
18: For all particles in the subswarms of S, set the pBest value to +∞;
19: l←− a randomly selected context vector index from the set C;
20: end if
21: o←− (b iteration

γ
c%nm) + 1; . o is the objective number that the CPSO is

currently optimizing
22: Optimize o using Cl and the subswarms in S, update Cl if needed;
23: end for
24: end procedure

Algorithm 15 The modified context vector replacement of the CCMGPSO

1: procedure B
2: Input: C (set of context vector decision vectors), l (the current context vector

index),j (the subswarm index), z (an arbitrary nx
k

-dimensional vector belonging
to the j-th subswarm;

3: Return (Cl1 , Cl2 , . . . , Clj−1
, z, Clj+1

, . . . , Clk)
4: end procedure
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Algorithm 16 The cooperative part of the CCMGPSO

1: procedure Cooperative
2: Input: C (the set of context vector decision vectors), Ĉ (the set of context

vector objective vectors), l (the current context vector index), o (the objective
that is currently being optimized by the CPSO), S (the set of the nx

k
-dimensional

subswarms), f (the optimization problem)
3: for each sub-swarm j = 1, . . . k do
4: for each particle i = 1, . . . , ns do
5: X ←− f(B(C, l, j, Sj.xi))
6: if Xo < Sj.pBesti then . Xo is the o-th objective value of the

objective vector X
7: Sj.yi ←− Pj.xi
8: Sj.pBesti ←− Xo

9: end if
10: if Xo < Ĉlo then
11: Ĉl ←− X
12: Cl ←− B(C, l, j, Sj.xi)

13: else if Xo = Ĉlo then
14: if Ĉl does not dominate X then
15: Ĉl ←− X
16: Cl ←− B(C, l, j, Sj.xi)
17: end if
18: end if
19: AddToArchive(B(C, l, j, Sj.xi), X)
20: end for
21: end for
22: end procedure
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Figure 4.1: The archive guide implementation of CCMGPSO for nx
k

-dimensional par-
ticles explained through an arbitrary 9-dimensional problem whose decision variables
are divided into three subpopulations.

4.3 Supplementary Experiments on CCMGPSO

In order to empirically verify some of the design choices made for CCMGPSO, and

to further discuss some parts of this proposed approach, a small set of experiments

was conducted. These supplementary experiments are fully discussed in Appendix B.



Chapter 5

Experimental Results

This chapter presents a comparative study involving the proposed CCMGPSO and

six other multi-objective optimization algorithms from the literature on three well-

known benchmark suites, namely WFG1 to WFG9, ZDT1 to ZDT6, and DTLZ1 to

DTLZ7 that were used for this study.

5.1 Experimental Setup

The experimental setup of this study is provided in this section.

5.1.1 Implementation Details

The CCMGPSO was compared with MGPSO [64] [63], MMOPSO [45] (the algo-

rithm with the best scalability from the previous scalability study found in Chapter

3), WOF-NSGAII [91], LMOCSO [75], S3-CMA-ES [6], and D-IBEA [24] (four ap-

proaches proposed for large-scale multi-objective optimization). For all algorithms

except WOF-NSGAII and S3-CMA-ES, we rely on our own Java implementations.

For WOF-NSGAII, the source code was obtained from the authors’ website 1 and for

S3-CMA-ES, the implementation in the PlatEMO framework [74] (as made available

online by the authors) was used. The PlatEMO framework was also used for verify-

ing the Java implementations of LMOCSO and D-IBEA against the ones provided by

their respective authors. All plots were drawn using Matplolib [32] in Python. For

algorithms implemented in Java, the benchmark suites of the jMetal [53] framework

were used. For all algorithms, if the value of one dimension of the position vector

1https://www.ci.ovgu.de/Research/Codes.html
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became greater than the upper bound or less than the lower bound, it was assigned

the upper bound and the lower bound respectively.

5.1.2 Parameters

All parameters in all algorithms were set to their recommended values as per their

respective authors. For S3-CMA-ES [6], the sample size for variable classification was

set to 50, and the subpopulation size was set to 5. IBEA was embedded into the

DGEA framework, (referred to as D-IBEA) as it had previously shown competitive

results in [24] and the number of direction vectors in D-IBEA was set to 10. The

value of δ in MMOPSO was set to 0.9 as recommended in [45]. In LMOCSO [75],

the penalty parameter α was set to 2. For WOF-NSGAII, t1 (the number of function

evaluations for the original problem) and t2 (the number of function evaluations for

the transformed problem) were set to 1000 and 500 respectively, and the p-value

transformation with p = 0.2 was used as the transformation function. Moreover, in

WOF-NSGAII, the number of selected solutions (q) and the number of groups (γ)

were set to 3 and 4 respectively.

For MGPSO on the WFG and ZDT problems, the same parameters as in [64]

and [63] were used. For the DTLZ problems, MGPSO showed better performance

when the tournament size was equal to 2 or 3; therefore, and for the ease of parameter

tuning, the tournament size of MGPSO was set to 3 on the DTLZ problems. Other

MGPSO parameters (c1, c2, c3, and ω) were tuned on the 2000-dimensional DTLZ

problems (the highest number of DTLZ dimensions in these experiments). For this,

5000 random combinations of these parameters were picked for each test instance

and the best one was picked based on the IGD measure (the best mean over three

independent runs). These 5000 combinations for c1, c2, c3, and ω were picked from

the same sets as previously defined in [64]:

• c1, c2, c3 ∈ {0.50, 0.55, 0.6, . . . , 1.9}, and

• w ∈ {0.05, 0.075, 0.1, . . . , 0.95}.

The resulting parameters are listed in Table 5.1.

The number of individuals was set to 300 in all algorithms. For MGPSO, these

300 particles were split evenly between subswarms, {150, 150} and {100, 100, 100} for

two and three objectives respectively. For CCMGPSO, these 300 particles were split

between the subswarms in the following way:

• 10 nx-dimensional particles per objective,
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• k = 280 nx
280

-dimensional particles for two objectives and k = 270 nx
270

-dimensional

particles for three objectives.

When applicable, the size of the external archive was also set to 300 in algorithms.

The maximum number of function evaluations was used as the computational budget,

the values of the maximum function evaluations used for each test instance are listed

in Tables 5.2, 5.3, 5.5, 5.6, and 5.8 and were obtained using empirical observations.

Regarding the CCMGPSO parameters, the tournament size (for archive guide

selection) was set to 2 on all test instances. The number of context vectors was set

to nm on DTLZ and ZDT problems and 10 on WFG problems. The value of γ was

set to 10 for ZDT and DTLZ problems and 20 for WFG problems, this is discussed

in more detail in the following sections.

5.1.3 Benchmark Suites

Three benchmark suites (a total of 21 functions) were used in this study, WFG, ZDT,

and DTLZ. With reference to the WFG problems, 500- and 1000-dimensional 2- and

3-objective problems (as used in the previous scalability study) were used; moreover,

an additional dimension level (750 dimensions) was added to the test instances. The

number of position parameters (k) in WFG problems was set to 100, 150, and 200 for

500, 750, and 1000 dimensions respectively. With reference to the DTLZ and ZDT

problems, the 1000-, 1500-, and 2000-dimensional problems were used. For DTLZ

problems, two and three objectives were used; however, for ZDT problems only two

objectives were used as the ZDT problems are not scalable objective-wise.

5.1.4 Performance Measures

The inverted generational distance (IGD) [12] [68] was used as the performance mea-

sure. This measure calculates the distance between the obtained front and a reference

front, this work used the reference fronts provided in the jMetal framework [53] for

this purpose. Please note that the hypervolume measure (HV) was excluded from this

study due to the difficulties of selecting an appropriate reference point. As previously

mentioned in [9], using the HV measure when the number of decision variables is

relatively big might not be beneficial since on problems of such kind MOEAs usually

fail to converge to the true front. This is more specifically the case on the large-scale

instances of some DTLZ problems, such as DTLZ1, DTLZ3, and DTLZ6. Therefore,

only IGD is used in this study for performance evaluation.
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5.1.5 Statistical Significance

All algorithms were run 30 times on each test instance. The algorithms were compared

using the Mann-Whitney U test [51] with a confidence level of 95%. For each pair of

algorithms, if the difference was deemed statistically significant, the algorithm with

the better mean over the 30 independent runs was given a win and the algorithm with

the worse mean was given a loss. The difference between wins and losses (wins −
losses) was then used for ranking the algorithms, as shown in Tables 5.2 to 5.9.

5.1.6 The Sensitivity Analysis of CCMGPSO Parameters

CCMGPSO has three main parameters, the tournament size (T ), the number of

context vectors (nc), and the number of CPSO iterations per objective (γ). On all

problems, competitive performance was observed when at least nm context vectors

were used. On ZDT and DTLZ problems, better performance was observed when

exactly nm context vectors were used. On most WFG problems, more than nm

context vectors (5 or 10) were required for competitive performance. An example

depicting this for the multi-modal WFG2 is provided in Figure 5.1. As seen in the plot,

CCMGPSO with 10 context vectors ended up with and spent most of the optimization

process with better IGD values. It may be worth noting that, since the CCMGPSO

assigns context vectors for γ iterations, using too many context vectors could hurt the

overall convergence as some context vectors could not get enough iterations under a

limited computational budget. Therefore, nc was set to 10 on all WFG test instances.

Regarding the γ parameter, γ = 10 produced competitive performance on all

DTLZ and ZDT problems. On WFG problems, γ = 10 or γ = 20 resulted in good

performance; however, slightly better performance was observed with γ = 20 on

some functions. Two examples of this for the 2-objective 2000-dimensional DTLZ6

and the 2-objective 1000-dimensional WFG6 are depicted in Figure 5.2. As seen

in the plot, on both functions, γ = 1 iteration per objective was not enough for

satisfactory convergence, only improving the IGD for the first few iterations over

a completely random initial population. On DTLZ6, slightly better results were

observed with γ = 10. As for the WFG6 problem in Figure 5.2, γ = 10 had better

IGD performance than γ = 20 until the 900-th iteration possibly due to having shorter

and thus more CPSO cycles per objective; however, in the long run, CCMGPSO with

γ = 20 caught up with it and ended up with better IGD values. Similar to nc,

one must be careful with using γ values that are too big as such values could result

in objectives and context vectors not getting enough CPSO cycles under a limited
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Figure 5.1: The sensitivity of the nc parameter demonstrated on the 2-objective
1000-dimensional WFG2.

computational budget. Hence, the value of γ was set to 20 on all WFG problems.

5.2 Results of The Experimental Study

The experimental results of this study are listed in Tables 5.2 to 5.9 and discussed in

the following subsections.

5.2.1 The WFG Test Suite

The results related to the WFG test suite are provided in Tables 5.2, 5.3, and 5.4.

Tables 5.2 and 5.3 list the results for WFG1 to WFG4 and WFG5 to WFG9 re-

spectively, whereas Table 5.4 provides overall results on the WFG suite based on

aggregated scores.

Generally speaking, CCMGPSO had the best performance on most WFG prob-

lems, including WFG1, WFG3, WFG4, WFG5, and WFG7. On the other hand,

S3-CMA-ES had the worst possible performance on all functions. This is due to

the fact that this algorithm uses a lot of function evaluations prior to the optimiza-

tion process for decision variable analysis, and thus could be left with very few or

no function evaluations when the variables are classified. Under a limited compu-

tational budget, algorithms such as WOF-NSGAII and CCMGPSO that (perhaps

indirectly) take variable interactions into account while still working towards a better
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Figure 5.2: The sensitivity of the γ parameter demonstrated on the 2-objective 1000-
dimensional WFG6 and the 2-objective 2000-dimensional DTLZ6.
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Table 5.1: The MGPSO parameters tuned for the DTLZ problems

Parameter
Problem Objective c1 c2 c3 ω

DTLZ1
2 0.80 1.35 1.90 0.80
3 1.30 1.55 1.90 0.75

DTLZ2
2 0.95 0.55 0.80 0.25
3 1.30 0.70 0.50 0.25

DTLZ3
2 0.65 1.80 1.50 0.55
3 1.80 1.65 1.75 0.70

DTLZ4
2 1.75 0.50 0.55 0.15
3 1.30 0.50 0.65 0.15

DTLZ5
2 1.35 0.75 0.50 0.15
3 1.45 0.65 0.50 0.15

DTLZ6
2 1.55 1.70 1.90 0.80
3 1.90 1.60 1.75 0.80

DTLZ7
2 1.55 1.50 1.95 0.65
3 1.75 1.85 0.60 0.80

POF could outperform the ones that use separate function evaluations for decision

variable analysis.

On WFG1, CCMGPSO had the best performance on all 2- and 3-objective test in-

stances; however, despite not being statistically outperformed, CCMGPSO achieved

a worse mean than that of WOF-NSGAII’s on the 3-objective 1000-dimensional

WFG1. After CCMGPSO, WOF-NSGAII, MMOPSO and LMOCSO were the best-

performing algorithms. MGPSO and D-IBEA both showed poor scalability on WFG1,

constantly being outperformed by LMOCSO, WOF-NSGAII, and CCMGPSO. MMOPSO

again showed good scalability on WFG1 similar to the previous scalability study. Pre-

vious studies [49] had also shown the efficiency of algorithms using the penalty-based

boundary intersection method (PBI) (such as MOEA/D [87] or MMOPSO [45]) in

solving biased multi-objective optimization problems with mixed POF geometries

(such as WFG1).

On the non-separable multi-modal WFG2, CCMGPSO had the best performance

for two objectives; however, it was outperformed by WOF-NSGAII and MMOPSO

for three objectives. This could be indicative of a potential weakness of the context

vector-based approaches for multi-objective optimization. Because a limited number

of context vectors are used to guide the individuals, there is a probability that all of

these context vectors could end up in a local optimum that is far from the global one.

On WFG2, this performance drop happened when the objective space got bigger (from
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two to three objectives). LMOCSO showed poor scalability on WFG2, constantly

being outperformed by other algorithms including D-IBEA and MGPSO. D-IBEA

outperformed MGPSO on the 2-objective test instances of WFG2, however; similar

to CCMGPSO, it suffered from a performance drop from two to three objectives.

On WFG3 and the multi-modal WFG4, CCMGPSO was the best-performing al-

gorithm on all test instances except the 500-dimensional 2-objective WFG3. Similar

to WFG2, D-IBEA had a loss in relative IGD performance from two to three ob-

jectives and LMOCSO had poor dimension-wise scalability. LMOCSO outperformed

D-IBEA and MGPSO on the 2- and 3-objective WFG4. It may be worth mentioning

that using big values for k (number of dimension groups) and dividing the large-scale

problems into smaller subproblems resulted in improved performances on the sepa-

rable and multi-modal WFG4. An example demonstrating this on the 2-objective

1000-dimensional WFG4 is provided in Figure 5.3. With k = 1 subswarm having 280

particles, CCMGPSO obtained a POF similar to that of the MGPSO’s, which ranked

fifth in Table 5.2 with reference to IGD. However, with the increase in the value of k,

the obtained POFs visibly got better.

With few exceptions, CCMGPSO had the best performance on most test in-

stances of WFG5 to WFG7. D-IBEA and MGPSO showed poor scalability on WFG5,

LMOCSO showed poor scalability on WFG5 for two objectives but outperformed D-

IBEA and MGPSO for three objectives. On the 2-objective 1000-dimensional WFG6

(a non-separable function), MMOPSO, WOF-NSGAII, and CCMGPSO had the best

(and statistically similar) performances, although WOF-NSGAII obtained the best

mean over 30 runs. On WFG6, D-IBEA was the best algorithm after CCMGPSO,

WOF-NSGAII, and MMOPSO, constantly outperforming MGPSO, LMOCSO, and

S3-CMA-ES.

On WFG7, CCMGPSO was the best-performing algorithm on all test instances,

obtaining the maximum possible score (+6) in all of them. D-IBEA and LMOCSO

failed to show competitive performance on WFG7, as they were often outperformed

by all algorithms except S3-CMA-ES. On the non-separable WFG8, CCMGPSO

and WOF-NSGAII had the best performances. CCMGPSO outperformed WOF-

NSGAII on the 500-dimensional 2- and 3-objective WFG8, but was outperformed by

it on the 750- and 1000-dimensional 2-objective WFG8. Besides S3-CMA-ES, MG-

PSO and LMOCSO were the worst-performing algorithms on WFG8. Interestingly

enough, MMOPSO was outperformed by D-IBEA on the 750- and 1000-dimensional

2-objective WFG8.

Finally, the worst CCMGPSO performance on an individual problem was observed
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Figure 5.3: The efficiency of dividing a large-scale multi-objective optimization prob-
lem into smaller subproblems demonstrated on the 2-objective 1000-dimensional
WFG4. The figures are all Pareto-optimal fronts.

on WFG9, which with different properties such as multi-modality, non-separability

and a deceptive fitness landscape2 is considered to be a rather difficult problem.

CCMGPSO ranked fourth overall on the 750- and 1000-dimensional 2-objective WFG9,

after being outperformed by WOF-NSGAII, MMOPSO, and D-IBEA which were the

best-performing algorithms in the aforementioned order. WOF-NSGAII was signif-

icantly the best-performing algorithm on WFG9, ranking first on all test instances

and only failing to outperform MMOPSO on the 500-dimensional 3-objective WFG9

while still obtaining the better mean. Similar to CCMGPSO, MGPSO, and S3-CMA-

ES, LMOCSO also showed poor scalability on almost all test instances of WFG9.

A visual comparison of these algorithms on the 1000-dimensional 3-objective WFG3

is depicted in Figure 5.4. As seen in Figure 5.4, CCMGPSO showed both better

convergence and diversity on WFG3, followed by WOF-NSGAII. MMOPSO found a

relatively well-converged POF; however, the diversity was not on par with CCMGPSO

or WOF-NSGAII.

2As defined in [30], in a deceptive objective function the majority of the search space leans
towards a deceptive optimum instead of the true one.
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Figure 5.4: A visual comparison of the obtained POFs by the algorithms on the
1000-dimensional 2-objective WFG3.
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Table 5.2: IGD rankings for WFG1 to WFG4. The highest-ranking algorithm is
highlighted in grey background. If two or more algorithms were ranked first, all
of them were marked using “≈” and the one with the best mean IGD score over
30 independent runs was highlighted in grey background. The ranking scheme is
explained in Section 5.1.5.

Algorithm

Problem(1) Objectives Dimensions FEs Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

WFG1 (S, U)

2

500 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

750 3.00e+5
Difference 2 4 -2 -6 -1 -3 6
Rank 3 2 5 7 4 6 1

1000 3.00e+5
Difference 2 4 -2 -6 -2 -2 6
Rank 3 2 4 5 4 4 1

3

500 3.00e+5
Difference 2 4 -4 -6 0 -2 6
Rank 3 2 6 7 4 5 1

750 3.00e+5
Difference 2 4 -4 -6 0 -2 6
Rank 3 2 6 7 4 5 1

1000 3.00e+5
Difference 2 5≈ -4 -6 0 -2 5≈

Rank 2 1≈ 5 6 3 4 1≈

WFG2 (NS, U-M)

2

500 3.00e+5
Difference 3 0 -2 -6 1 -2 6
Rank 2 4 5 6 3 5 1

750 3.00e+5
Difference 1 4 -1 -6 -4 0 6
Rank 3 2 5 7 6 4 1

1000 3.00e+5
Difference 1 3 -2 -6 -4 2 6
Rank 4 2 5 7 6 3 1

3

500 3.00e+5
Difference 4 6 -1 -6 -3 -2 2
Rank 2 1 4 7 6 5 3

750 3.00e+5
Difference 4 6 0 -6 -2 -4 2
Rank 2 1 4 7 5 6 3

1000 3.00e+5
Difference 3 6 0 -6 -2 -4 3
Rank 2 1 3 6 4 5 2

WFG3 (NS, U)

2

500 3.00e+5
Difference 2 6 -4 -6 -2 0 4
Rank 3 1 6 7 5 4 2

750 3.00e+5
Difference 2 4 -3 -6 -3 0 6
Rank 3 2 5 6 5 4 1

1000 3.00e+5
Difference 2 4 -2 -6 -4 0 6
Rank 3 2 5 7 6 4 1

3

500 3.00e+5
Difference 3 3 -1 -6 -1 -4 6
Rank 2 2 3 5 3 4 1

750 3.00e+5
Difference 2 4 0 -6 -3 -3 6
Rank 3 2 4 6 5 5 1

1000 3.00e+5
Difference 2 4 0 -6 -3 -3 6
Rank 3 2 4 6 5 5 1

WFG4 (S, M)

2

500 3.00e+5
Difference 4 2 -2 -6 0 -4 6
Rank 2 3 5 7 4 6 1

750 3.00e+5
Difference 4 2 -2 -6 0 -4 6
Rank 2 3 5 7 4 6 1

1000 3.00e+5
Difference 4 2 -2 -6 0 -4 6
Rank 2 3 5 7 4 6 1

3

500 3.00e+5
Difference 2 4 -1 -6 -1 -4 6
Rank 3 2 4 6 4 5 1

750 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

1000 3.00e+5
Difference 2 4 -1 -6 -1 -4 6
Rank 3 2 4 6 4 5 1

(1)S: Separable, NS: Non-separable, U: Uni-modal, M: Multi-modal, U-M: Both
uni-modal and multi-modal (on different objectives), and D: Deceptive.
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Table 5.3: IGD rankings for WFG5 to WFG9. The highest-ranking algorithm is
highlighted in grey background. If two or more algorithms were ranked first, all
of them were marked using “≈” and the one with the best mean IGD score over
30 independent runs was highlighted in grey background. The ranking scheme is
explained in Section 5.1.5.

Algorithm

Problem(1) Objectives Dimensions FEs Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

WFG5 (S, D)

2

500 3.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

750 3.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

1000 3.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

3

500 3.00e+5
Difference 2 6 -2 -6 0 -4 4
Rank 3 1 5 7 4 6 2

750 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

1000 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

WFG6 (NS, U)

2

500 3.00e+5
Difference 2 2 -4 -6 -2 2 6
Rank 2 2 4 5 3 2 1

750 3.00e+5
Difference 3 4 -4 -6 -2 0 5
Rank 3 2 6 7 5 4 1

1000 3.00e+5
Difference 4≈ 4≈ -4 -6 -2 0 4≈

Rank 1≈ 1≈ 4 5 3 2 1≈

3

500 3.00e+5
Difference 0 6 -2 -6 -4 3 3
Rank 3 1 4 6 5 2 2

750 3.00e+5
Difference -1 4 -4 -6 -1 3 5
Rank 4 2 5 6 4 3 1

1000 3.00e+5
Difference 0 5≈ -2 -6 -4 2 5≈

Rank 3 1≈ 4 6 5 2 1≈

WFG7 (S, U)

2

500 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

750 3.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

1000 3.00e+5
Difference 2 4 0 -6 -4 -2 6
Rank 3 2 4 7 6 5 1

3

500 3.00e+5
Difference 2 4 -1 -6 -3 -2 6
Rank 3 2 4 7 6 5 1

750 3.00e+5
Difference 2 4 0 -6 -4 -2 6
Rank 3 2 4 7 6 5 1

1000 3.00e+5
Difference 2 4 -1 -6 -4 -1 6
Rank 3 2 4 6 5 4 1

WFG8 (NS, U)

2

500 3.00e+5
Difference 2 4 -2 -6 -4 0 6
Rank 3 2 5 7 6 4 1

750 3.00e+5
Difference 0 6 -2 -6 -4 2 4
Rank 4 1 5 7 6 3 2

1000 3.00e+5
Difference 0 6 -2 -6 -4 2 4
Rank 4 1 5 7 6 3 2

3

500 3.00e+5
Difference 2 4 -4 -6 -2 0 6
Rank 3 2 6 7 5 4 1

750 3.00e+5
Difference 2 5≈ -2 -6 -4 0 5≈

Rank 2 1≈ 4 6 5 3 1≈

1000 3.00e+5
Difference 2 5≈ -2 -6 -4 0 5≈

Rank 2 1≈ 4 6 5 3 1≈

WFG9 (NS, M, D)

2

500 3.00e+5
Difference 2 6 -4 -6 -2 2 2
Rank 2 1 4 5 3 2 2

750 3.00e+5
Difference 3 6 -2 -6 -4 2 1
Rank 2 1 5 7 6 3 4

1000 3.00e+5
Difference 3 6 -2 -6 -4 2 1
Rank 2 1 5 7 6 3 4

3

500 3.00e+5
Difference 5≈ 5≈ -3 -6 -3 0 2
Rank 1≈ 1≈ 4 5 4 3 2

750 3.00e+5
Difference 4 6 -3 -6 -3 0 2
Rank 2 1 5 6 5 4 3

1000 3.00e+5
Difference 4 6 -2 -6 -4 0 2
Rank 2 1 5 7 6 4 3

(1)S: Separable, NS: Non-separable, U: Uni-modal, M: Multi-modal, U-M: Both
uni-modal and multi-modal (on different objectives), and D: Deceptive.
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Table 5.4: The overall performance of each algorithm on the WFG test suite, based
on the aggregated scores. The best-performing algorithms were highlighted in grey
background. The ranking scheme is explained in Section 5.1.5.

Algorithm
Overall Objectives Dimensions Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

WFG1 to WFG9

2

500
Difference 21 32 -22 -54 -11 -14 48
Rank 3 2 6 7 4 5 1

750
Difference 19 38 -16 -54 -22 -11 46
Rank 3 2 5 7 6 4 1

1000
Difference 20 37 -16 -54 -26 -6 45
Rank 3 2 5 7 6 4 1

3

500
Difference 22 42 -19 -54 -17 -15 41
Rank 3 1 6 7 5 4 2

750
Difference 19 41 -17 -54 -17 -16 44
Rank 3 2 5 6 5 4 1

1000
Difference 19 43 -14 -54 -22 -16 44
Rank 3 2 4 7 6 5 1

5.2.2 Summary of Results on The WFG Test Suite

The overall IGD rankings of the algorithms (based on the aggregated scores) on the

WFG test suite are listed in Table 5.4. As seen in Table 5.4, CCMGPSO had the

best overall score on all test instances expect the 500-dimensional 3-objective prob-

lems, where WOF-NSGAII had the best overall score. CCMGPSO was followed by

WOF-NSGAII and MMOPSO as the second- and third-best performing algorithms

respectively. S3-CMA-ES was always the worst-performing algorithm due to the

reasons discussed in the previous section, mostly as a result of spending too many

function evaluations on variable analysis prior to the optimization process and leaving

little or no computational budget for the main search. As seen in Tables 5.2, 5.3, and

5.4, LMOCSO, MGPSO, and D-IBEA all showed poor scalability on the WFG suite.

LMOCSO’s velocity update mechanism based on the competitive swarm optimizer

(CSO) that was proposed to improve diversity, showed unsatisfactory convergence

on the large-scale instances of the WFG problems. However, this approach showed

minor signs of scalability on the multi-modal WFG4, with LMOCSO outperforming

all algorithms except the first three (CCMGPSO, WOF-NSGAII, and MMOPSO) on

most test instances. D-IBEA managed to outperform MGPSO and LMOCSO (on

WFG3, WFG6, and WFG9), MMOPSO on the 750-dimensional 3-objective WFG6,

and CCMGPSO on some instances of WFG9; however, it showed really poor perfor-

mance on other problems such as WFG4, WFG5, and WFG7, resulting in an overall

mediocre performance.

Regarding CCMGPSO, it had the best overall scores for all experiments except one

as discussed above and listed in Table 5.4. With reference to individual problems and
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the different types of them, CCMGPSO showed extremely competitive performance

on separable and uni-modal problems, achieving the best performance on all exper-

iments involving them (WFG1 and WFG7). The experiments in which CCMGPSO

was outperformed all involved problems that were multi-modal (such as being outper-

formed by WOF-NSGAII on some instances of WFG2, and all instances of WFG9),

deceptive (such as being outperformed by WOF-NSGAII on one instance of WFG5,

and by MMOPSO and D-IBEA on some instances of WFG9) or non-separable (such

as being outperformed on some instances of WFG6, WFG8, and WFG9). Perhaps

unsurprisingly, CCMGPSO’s worst performance on an individual optimization prob-

lem was observed on WFG9, a problem which has all of the aforementioned properties

simultaneously (multi-modal, non-separable and deceptive). When an optimization

problem is multi-modal or deceptive, using a relatively small set of context vectors to

guide the search could potentially hurt the diversity of particles if all or some of these

context vectors end up in a local optimum which is far away from the global one. In

the case of non-separable problems, the use of many dimension groups (280 and 270

for 2- and 3-objective functions respectively in these experiments) into which decision

variables are classified could hurt the overall performance as all decision variables in

problems of such kind interact with each other and have to be optimized together.

Another interesting observation was on WFG4 (separable and multi-modal), where

CCMGPSO had the best performance in all experiments.

5.2.3 The DTLZ Test Suite

The results related to the DTLZ test suite are provided in Tables 5.5, 5.6, and 5.7.

Tables 5.5 and 5.6 list the results for DTLZ1 to DTLZ4 and DTLZ5 to DTLZ7

respectively, whereas Table 5.7 provides overall results on the DTLZ suite based on

aggregated scores.

On DTLZ1, CCMGPSO had the best performance, outperforming its counter-

parts in most experiments. On the 2000-dimensional 3-objective DTLZ1, CCMG-

PSO, WOF-NSGAII, LMOCSO, and D-IBEA had statistically similar results, despite

CCMGPSO obtaining the best mean over 30 independent runs. MGPSO showed poor

performance on the multi-modal DTLZ1, constantly being outperformed by all other

algorithms except S3-CMA-ES.

Similar to DTLZ1, CCMGPSO also had the best performance on DTLZ2, obtain-

ing the best possible score (+6) in all experiments. D-IBEA and MGPSO both showed

poor scalability on DTLZ2, whereas WOF-NSGAII and MMOPSO were the second-
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and third-best performing algorithms after CCMGPSO on DTLZ2 respectively. On

the multi-modal DTLZ3, D-IBEA and CCMGPSO showed relatively better scalability

compared with other algorithms, although CCMGPSO ranked third behind D-IBEA

and LMOCSO (also in that order) on the 2000-dimensional 2-objective DTLZ3. Sim-

ilar to DTLZ1 (another multi-modal problem), MGPSO showed poor scalability on

DTLZ3. Despite competitive performance on almost all problems, WOF-NSGAII

was often outperformed on the test instances of DTLZ3; for example, WOF-NSGAII

ranked fourth on the 1000-dimensional 3-objective DTLZ3 behind CCMGPSO and

D-IBEA (tied at first), LMOCSO, and MMOPSO.

With reference to DTLZ4, CCMGPSO was outperformed by WOF-NSGAII for

two objectives, but had the best performance for three objectives. On the 2-objective

DTLZ4, CCMGPSO was outperformed mainly due to some bad runs, despite having

some good runs as well. As depicted in Figure B.1, a bad run of CCMGPSO on the

2-objective DTLZ4 typically involved a POF that only covered a very specific (and

small) portion of the true POF. The reason behind this could be the existence of bias

in DTLZ4 [31]. As previously defined in [31], in an optimization problem with bias an

evenly distributed set of decision vectors does not map onto an evenly distributed set

of objective vectors resulting in a highly non-uniform POF in DTLZ4 [9]. In order to

visually illustrate this, 5000 vectors were randomly distributed in the decision spaces

of the 2000-dimensional 2-objective DTLZ2, DTLZ4, DTLZ5, and DTLZ6. These

5000 vectors were then evaluated and plotted as depicted in Figure 5.6. As seen in

Figure 5.6, DTLZ4 had a more non-uniform set of objective vectors compared with

DTLZ2, DTLZ5, and DTLZ6, where one specific area of the plot (close to f2 = 0)

was more crowded with vectors. As seen in Figure B.2, in bad runs of CCMGPSO

on the 2-objective DTLZ4 only one Pareto-optimal solution was found in the same

region (close to f2 = 0). This could be a result of all context vectors ending up

in one specific area of the objective space where f2 is close to zero; in such cases,

CCMGPSO will keep optimizing f1 until it is equal or very close to 1, producing

only one Pareto-optimal point. The same phenomenon was also observed on the 3-

objective DTLZ4 (as shown in Figure 5.7); however, it did not happen as often and

therefore CCMGPSO was able to statistically outperform all other algorithms on the

3-objective DTLZ4.

On DTLZ5, CCMGPSO was the best-performing algorithm in all experiments,

whereas D-IBEA and MGPSO both showed poor scalability. CCMGPSO and WOF-

NSGAII were the best-performing algorithms on DTLZ6 and DTLZ7. On the 2-

objective DTLZ6, CCMGPSO and WOF-NSGAII had statistically similar perfor-
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Table 5.5: IGD rankings for DTLZ1 to DTLZ4. The highest-ranking algorithm is
highlighted in grey background. If two or more algorithms were ranked first, all
of them were marked using “≈” and the one with the best mean IGD score over
30 independent runs was highlighted in grey background. The ranking scheme is
explained in Section 5.1.5.

Algorithm

Problem(1) Objectives Dimensions FEs Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

DTLZ1 (S, M)

2

1000 3.00e+5
Difference 3 3 -4 -6 0 -2 6
Rank 2 2 5 6 3 4 1

1500 4.50e+5
Difference 2 2 -4 -6 2 -2 6
Rank 2 2 4 5 2 3 1

2000 6.00e+5
Difference 1 4 -4 -6 1 -2 6
Rank 3 2 5 6 3 4 1

3

1000 3.00e+5
Difference -1 -1 -4 -6 3 3 6
Rank 3 3 4 5 2 2 1

1500 5.10e+5
Difference 1 1 -4 -6 1 1 6
Rank 2 2 3 4 2 2 1

2000 6.00e+5
Difference -2 3≈ -4 -6 3≈ 3≈ 3≈

Rank 2 1≈ 3 4 1≈ 1≈ 1≈

DTLZ2 (S, U)

2

1000 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

1500 4.50e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

2000 6.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

3

1000 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

1500 5.10e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

2000 6.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

DTLZ3 (S, M)

2

1000 3.00e+5
Difference 0 0 -4 -6 3 1 6
Rank 4 4 5 6 2 3 1

1500 4.50e+5
Difference 0 0 -4 -6 4≈ 2 4≈

Rank 3 3 4 5 1≈ 2 1≈

2000 6.00e+5
Difference -1 3 -4 -6 3 4 1
Rank 4 2 5 6 2 1 3

3

1000 3.00e+5
Difference 0 -2 -4 -6 2 5≈ 5≈

Rank 3 4 5 6 2 1≈ 1≈

1500 5.10e+5
Difference -1 -1 -4 -6 2 5≈ 5≈

Rank 3 3 4 5 2 1≈ 1≈

2000 6.00e+5
Difference -1 -1 -4 -6 3 6 3
Rank 3 3 4 5 2 1 2

DTLZ4 (S, U)

2

1000 3.00e+5
Difference 2 6 0 -6 -3 -3 4
Rank 3 1 4 6 5 5 2

1500 4.50e+5
Difference 2 6 0 -6 -3 -3 4
Rank 3 1 4 6 5 5 2

2000 6.00e+5
Difference 2 6 0 -6 -3 -3 4
Rank 3 1 4 6 5 5 2

3

1000 3.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

1500 5.10e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

2000 6.00e+5
Difference 1 4 1 -6 -2 -4 6
Rank 3 2 3 6 4 5 1

(1)S: Separable, NS: Non-separable, U: Uni-modal, M: Multi-modal, U-M: Both
uni-modal and multi-modal (on different objectives), and D: Deceptive.
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Table 5.6: IGD rankings for DTLZ5 to DTLZ7. The highest-ranking algorithm is
highlighted in grey background. If two or more algorithms were ranked first, all
of them were marked using “≈” and the one with the best mean IGD score over
30 independent runs was highlighted in grey background. The ranking scheme is
explained in Section 5.1.5.

Algorithm

Problem(1) Objectives Dimensions FEs Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

DTLZ5 (S, U)

2

1000 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

1500 4.50e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

2000 6.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

3

1000 3.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

1500 5.10e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

2000 6.00e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

DTLZ6 (S, U)

2

1000 3.00e+5
Difference 0 5≈ -2 -6 2 -4 5≈

Rank 3 1≈ 4 6 2 5 1≈

1500 4.50e+5
Difference 0 5≈ -3 -6 2 -3 5≈

Rank 3 1≈ 4 5 2 4 1≈

2000 6.00e+5
Difference 0 5≈ -3 -6 2 -3 5≈

Rank 3 1≈ 4 5 2 4 1≈

3

1000 3.00e+5
Difference 0 4 -2 -6 2 -4 6
Rank 4 2 5 7 3 6 1

1500 5.10e+5
Difference 0 4 -2 -6 2 -4 6
Rank 4 2 5 7 3 6 1

2000 6.00e+5
Difference 0 6 -3 -6 2 -3 4
Rank 4 1 5 6 3 5 2

DTLZ7 (S, U-M)

2

1000 3.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

1500 4.50e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

2000 6.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

3

1000 3.00e+5
Difference 2 6 0 -6 -2 -4 4
Rank 3 1 4 7 5 6 2

1500 5.10e+5
Difference 2 5≈ 0 -6 -2 -4 5≈

Rank 2 1≈ 3 6 4 5 1≈

2000 6.00e+5
Difference 2 5≈ 0 -6 -2 -4 5≈

Rank 2 1≈ 3 6 4 5 1≈

(1)S: Separable, NS: Non-separable, U: Uni-modal, M: Multi-modal, U-M: Both
uni-modal and multi-modal (on different objectives), and D: Deceptive.
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Figure 5.5: Examples of a good and a bad run of CCMGPSO on the 2000-dimensional
2-objective DTLZ4

Figure 5.6: The effect of bias demonstrated by sampling 5000 random vectors in the
decision spaces of the 2-objective 2000-dimensional DTLZ2, DTLZ5, DTLZ6, and
DTLZ4
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Figure 5.7: Examples of a good and a bad run of CCMGPSO on the 2000-dimensional
3-objective DTLZ4

mances, with the latter obtaining the best mean over 30 independent runs. On the

3-objective DTLZ6, CCMGPSO statistically outperformed WOF-NSGAII for 1000

and 1500 dimensions but was outperformed for 2000 dimensions. Similar to DTLZ5,

MGPSO and D-IBEA showed poor performances on DTLZ6 and were constantly out-

performed by CCMGPSO, WOF-NSGAII and LMOCSO. LMOCSO also managed to

outperform MMOPSO on the 3-objective DTLZ6.

Finally, on DTLZ7, CCMGPSO and WOF-NSGAII again were the best perform-

ers. CCMGPSO outperformed all algorithms for two objectives but had a statis-

tically similar performance to WOF-NSGAII for three objectives. MGPSO showed

relatively good scalability on DTLZ7, outperforming both LMOCSO and D-IBEA.

A visual comparison of these algorithms on the 2000-dimensional 3-objective DTLZ7

is depicted in Figure 5.8. As seen in Table 5.6 and Figure 5.8, CCMGPSO and

WOF-NSGAII were the best performers on this problem, with the best convergence

and diversity in their obtained POFs. Moreover, it can be seen that the solutions in

LMOCSO’s obtained POF were more equally-spaced than those of CCMGPSO’s or

MMOPSO’s, with LMOCSO having fewer solutions in its obtained POF. The reason

behind this is the use of a reference vector-based selection strategy in LMOCSO;

where ns (swarm size) uniformly-distributed reference vectors in the objective space

are used to select the next population, such that for each reference vector up to one

solution is selected. This means that, if some solutions are clustered in area of the

POF, most of them are discarded. Since LMOCSO does not use an external archive,
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Table 5.7: The overall performance of each algorithm on the DTLZ test suite, based
on the aggregated scores. The best-performing algorithms were highlighted in grey
background. The ranking scheme is explained in Section 5.1.5.

Algorithm
Overall Objectives Dimensions Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

DTLZ1 to DTLZ7

2

1000
Difference 11 26 -14 -42 0 -20 39
Rank 3 2 5 7 4 6 1

1500
Difference 10 25 -15 -42 3 -18 37
Rank 3 2 5 7 4 6 1

2000
Difference 8 30 -15 -42 1 -16 34
Rank 3 2 5 7 4 6 1

3

1000
Difference 7 19 -14 -42 3 -12 39
Rank 3 2 6 7 4 5 1

1500
Difference 8 21 -14 -42 1 -14 40
Rank 3 2 5 6 4 5 1

2000
Difference 4 25 -14 -42 4 -10 33
Rank 3 2 5 6 3 4 1

discarding solutions based on diversity can potentially hurt the overall performance

when the solutions are not well converged yet.

5.2.4 Summary of Results on The DTLZ Test Suite

The overall results on the DTLZ suite (based on aggregated scores) are provided

in Table 5.7. As seen in Table 5.7, CCMGPSO achieved the best overall scores on

DTLZ1 to DTLZ7 in all six experiments, followed by WOF-NSGAII and MMOPSO

at second and third respectively. LMOCSO mostly ranked fourth; however, on the

2000-dimensional 3-objective DTLZ problems, it was tied with MMOPSO at third,

possibly due to its superiority on DTLZ6.

MGPSO and D-IBEA both failed to show competitive performance on most

DTLZ problems. D-IBEA showed scalable performance on fully multi-modal prob-

lems (DTLZ1 and DTLZ3), whereas MGPSO managed to outperform LMOCSO and

D-IBEA on DTLZ7. D-IBEA showing promising results on multi-modal could imply

the efficiency of its proposed offspring generation approach based on direction vectors

in maintaining both convergence and diversity in large-scale environments. On the

other hand, MGPSO performed poorly on DTLZ1 and DTLZ3, one reason of which

could be a false sense of the global best position as discussed in the previous chapter

(see Section B.1 in Appendix B). For example, on DTLZ1, at the very early stages

of optimization a decision vector whose corresponding objective vector has the mini-

mum value for one objective but poor values for the others could be set to the global

best of that specific objective. If such a decision vector is found for all objectives

early on, the overall performance of MGPSO can be damaged to the point that even
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the archive guide can become obsolete, as these global best positions are never up-

dated. On the other hand, CCMGPSO constantly shares different global best vectors

(context vectors) between objectives, and constantly resets the personal best vectors,

resulting in the best performance on DTLZ1 as well as competitive scalability on

DTLZ3. This is mainly effective because a context vector that already has a good

value for one objective, can be optimized from the perspective of another objective,

avoiding the stagnant global best problem to some degree.

5.2.5 The ZDT Test Suite

The IGD rankings for the ZDT test suite are provided in Table 5.8, whereas Table

5.9 lists the overall rankings based on aggregated scores.

One interesting observation was that MGPSO showed promising scalability on

ZDT1 to ZDT3, outperforming both LMOCSO and D-IBEA. Moreover, CCMGPSO

had the best performance on all experiments involving ZDT1 to ZDT3, only failing

to statistically outperform WOF-NSGAII on the 1000-objective ZDT3 despite having

the best mean over 30 runs.

CCMGPSO experienced a major performance drop on the multi-modal ZDT4,

ranking third on the 1500- and 2000-dimensional ZDT4, having had the best perfor-

mance for 1000 dimensions. LMOCSO was the best-performing algorithm on ZDT4,

followed by WOF-NSGAII as the second-best performing one. Similar to the multi-

modal DTLZ1 and DTLZ3, MGPSO did not show competitive performance on ZDT4

and it was outperformed by all algorithms except D-IBEA.

On the multi-modal ZDT6, CCMGPSO was the best-performing algorithm for

1000 and 1500 dimensions, but it was outperformed by WOF-NSGAII for 2000 dimen-

sions. With reference to ZDT6, MGPSO was tied with LMOCSO for 1000 dimensions;

however, it was outperformed by it for 1500 and 2000 dimensions.

5.2.6 Summary of Results on The ZDT Test Suite

The overall results on the ZDT suite (based on aggregated scores) are provided in

Table 5.9.

Similar to the DTLZ suite, CCMGPSO had the best overall (aggregated) scores

in all experiments on the ZDT suite as well, with WOF-NSGAII and MMOPSO

finishing second and third respectively. Despite being outperformed by MGPSO on

ZDT1 to ZDT3, LMOCSO obtained better overall scores than MGPSO as a result
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Figure 5.8: A visual comparison of the obtained POFs by the algorithms on the
2000-dimensional 3-objective DTLZ7.
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Table 5.8: IGD rankings for ZDT1 to ZDT6. The highest-ranking algorithm is high-
lighted in grey background. If two or more algorithms were ranked first, all of them
were marked using “≈” and the one with the best mean IGD score over 30 indepen-
dent runs was highlighted in grey background. The ranking scheme is explained in
Section 5.1.5.

Algorithm
Problem Dimensions FEs Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

ZDT1 (S, U)

1000 3.00e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

1500 4.50e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

2000 4.50e+5
Difference 1 4 1 -6 -2 -4 6
Rank 3 2 3 6 4 5 1

ZDT2 (S, U)

1000 3.00e+5
Difference -1 4 2 -6 -1 -4 6
Rank 4 2 3 6 4 5 1

1500 4.50e+5
Difference 0 4 2 -6 -2 -4 6
Rank 4 2 3 7 5 6 1

2000 4.50e+5
Difference 0 4 2 -6 -2 -4 6
Rank 4 2 3 7 5 6 1

ZDT3 (S, U-M)

1000 3.00e+5
Difference 2 5≈ 0 -6 -2 -4 5≈

Rank 2 1≈ 3 6 4 5 1≈

1500 4.50e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

2000 4.50e+5
Difference 2 4 0 -6 -2 -4 6
Rank 3 2 4 7 5 6 1

ZDT4 (S, U-M)

1000 3.00e+5
Difference -2 3 -4 -6 3 0 6
Rank 4 2 5 6 2 3 1

1500 4.50e+5
Difference -2 4 -4 -6 6 0 2
Rank 5 2 6 7 1 4 3

2000 4.50e+5
Difference -2 4 -4 -6 6 0 2
Rank 5 2 6 7 1 4 3

ZDT6 (S, M)

1000 3.00e+5
Difference 2 4 -1 -6 -1 -4 6
Rank 3 2 4 6 4 5 1

1500 4.50e+5
Difference 2 4 -2 -6 0 -4 6
Rank 3 2 5 7 4 6 1

2000 4.50e+5
Difference 2 6 -2 -6 0 -4 4
Rank 3 1 5 7 4 6 2

(1)S: Separable, NS: Non-separable, U: Uni-modal, M: Multi-modal, U-M: Both
uni-modal and multi-modal (on different objectives), and D: Deceptive.

Table 5.9: The overall performance of each algorithm on the ZDT test suite, based
on the aggregated scores. The best-performing algorithms were highlighted in grey
background. The ranking scheme is explained in Section 5.1.5.

Algorithm
Overall Dimensions Result MMOPSO WOF-NSGAII MGPSO S3-CMA-ES LMOCSO D-IBEA CCMGPSO

ZDT1 TO ZDT6

1000
Difference 3 20 -3 -30 -3 -16 29
Rank 3 2 4 6 4 5 1

1500
Difference 4 20 -4 -30 0 -16 26
Rank 3 2 5 7 4 6 1

2000
Difference 3 22 -3 -30 0 -16 24
Rank 3 2 5 7 4 6 1
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of its superiority on ZDT6 and the big difference in performance between them on

ZDT4.

Just like the DTLZ suite, D-IBEA did not perform well on the ZDT suite. In

fact, D-IBEA’s performance on the 1000-dimensional ZDT4 (where it finished third

behind CCMGPSO and LMOCSO) was its best performance on an individual ZDT

problem. MGPSO managed to outperform both D-IBEA and LMOCSO on ZDT1 to

ZDT3, but due to its poor performance on ZDT4 and ZDT6, it accumulated a worse

overall score than LMOCSO.



Chapter 6

Conclusion & Future Work

This thesis explored the vast area of large-scale multi-objective optimization, and

the difficulties associated with it. First, a literature review of some of the past and

recent proposed approaches for large-scale single- and multi-objective optimization

was provided. This included a brief history of particle swarm optimization (PSO)

and its applications to multi-objective optimization and large-scale single-objective

optimization. Then, some evolutionary approaches for large-scale multi-objective

optimization were discussed. These approaches used different concepts for scalable

performance. Some used competitions between individuals, some used novel repro-

duction approaches, while others proposed problem transformation methodologies.

Next, a scalability study of five well-known PSO-based algorithms for multi-

objective optimization was conducted. More specifically, optimized multi-objective

particle swarm optimization (OMOPSO), speed-constrained multi-objective particle

swarm optimization (SMPSO), multi-objective particle swarm optimization with mul-

tiple search strategies (MMOPSO), multi-guide particle swarm optimization (MG-

PSO), and competitive mechanism-based multi-objective particle swarm optimization

(CMOPSO) were compared with each other on the Walking Fish Group (WFG) test

suite for 24, 50, 100, 500, 1000 dimensions, and two and three objectives. MMOPSO

and SMPSO showed the best scalability in this study, with the latter specifically

performing well on multi-modal problems. MGPSO and CMOSPO showed the worst

scalability, despite MGPSO being off to a good start on low-dimensional problems.

In order to address the shortcoming of MGPSO, a scalable MGPSO-based ap-

proach for large-scale multi-objective optimization, termed cooperative co-evolutionary

multi-guide particle swarm optimization (CCMGPSO), was proposed. CCMGPSO

drew inspiration from AM-CCPSO [72] in using multiple context vectors, and sharing

them between different objectives in cycles of equal length. A small set of experiments
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was conducted to study the effects of each part of the proposed CCMGPSO. For ex-

ample, it was shown that using multiple context vectors and sharing them between

objectives could specifically be of use in multi-modal problems.

Finally, an empirical study was done in order to compare CCMGPSO with six

other algorithms from the literature, namely MGPSO [64] [63], MMOPSO [45], WOF-

NSGAII [91], LMOCSO [75], S3-CMA-ES [6], and D-IBEA [24] on the WFG, ZDT,

and DTLZ benchmark suites. CCMGPSO scaled exceptionally well on separable and

uni-modal problems. However, it was outperformed on some instances including prob-

lems that were either multi-modal, deceptive, or non-separable. In fact, CCMGPSO’s

worst performance on an individual problem was observed on WFG9, a problem pos-

sessing all of the aforementioned properties simultaneously. Moreover, CCMGPSO

was also outperformed on the 2-objective DTLZ4 due to the existence of bias, where

in some runs all context vectors got stuck in an area of the POF towards which

DTLZ4 was biased. However, with reference to overall scores, CCMGPSO was only

outperformed once on the 3-objective 500-dimensional WFG problems. Therefore, it

can be concluded that the proposed CCMGPSO is highly competitive.

In the final set of experiments, some interesting observations were also made re-

garding other algorithms. For example, on some instances of the DTLZ test suite,

LMOCSO obtained fewer, more equally-spaced, and less-converged Pareto-optimal so-

lutions compared with the better-performing algorithms. The hypothesis was made

as to whether using a reference vector-based selection strategy in the absence of an

external archive could potentially hurt the convergence in LMOCSO. Moreover, al-

though D-IBEA’s proposed offspring generation approach that was designed to evade

local optima showed promising signs on some multi-modal and deceptive functions

such as WFG2, WFG8, and DTLZ3, it did not obtain satisfactory convergence on

most of the large-scale instances of uni-modal problems.

With reference to future work, different considerations can be made. First, more

algorithms could be compared with CCMGPSO on more benchmark suites. More-

over, CCMGPSO’s susceptibility to performance loss on multi-modal, non-separable,

deceptive, or biased problems can be further studied in different ways such as using

other benchmark suites or using the current ones with more decision variables. More

studies can also be conducted on the order in which CCMGPSO optimizes different

objectives. For example, in some problems such as ZDT3 or DTLZ7 the last objective

is multi-modal with the rest being uni-modal. Future work could study the potential

effects of optimizing different objectives in different orders on problems of such kind.

Finally, CCMGPSO can be modified with other approaches for objective swapping.
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For example, instead of allocating co-evolutionary cycles of equal length to all objec-

tives, contribution-based approaches could be considered where an objective that has

contributed more to the search would undergo co-evolution during each iteration.

Moreover, the experiments of Chapter 5 can be further expanded with more per-

formance measures. As previously mentioned, the hypervolume measure (HV) was

excluded from the experiments of Chapter 5 due to the difficulties of selecting an

appropriate reference vector in the presence of a high variance in the obtained POFs

by different algorithms. As potential future work, other different measures, based on

which different algorithms are assessed from varying perspectives, can be included.

Finally, this thesis only considered two- and three-objective problems. Future

studies could involve the analysis of the proposed CCMGPSO for large-scale many-

objective problems that have four or more objectives. It is worth noting that on

such problems, the performance of the proposed CCMGPSO could potentially drop

due to the high consumption of the computational budget. Since in CCMGPSO the

objectives of a problem are optimized in a successive manner (starting from the first

objective), when the number of objectives is not limited to two or three, CCMGPSO

has the potential to consume all its computational budget at the early stages of the

optimization process. Therefore, for many-objective optimization other alternatives

can be considered for the order in which the objectives of a problem are optimized.
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Appendix A

Benchmark Suites

This section fully discusses three well-known benchmark suites, namely the Zitzler-

Deb-Thiele (ZDT) test suite [92], the Deb-Thiele-Laumanns-Zitzler (DTLZ) [19] test

suite, and the Walking Fish Group (WFG) test suite [30] [31].

A.1 Position Variables and Distance Variables

Before discussing the test suites, it is necessary to cover the concept of position

and distance variables. The existence of these variables in multi-objective problems

is what makes them different from their single-objective counterparts. In fact, one

reason that decision variable grouping algorithms for large-scale single-objective op-

timization (such as differential grouping (DG)-based approaches [57] [59]) might not

work well on multi-objective problems is this property of the MOO problems. For

example, the multi-objective evolutionary algorithm based on decision variable anal-

yses (MOEA/DVA) [47] proposed a decision variable grouping scheme for large-scale

multi-objective optimization. This proposed algorithm classifies the variables into

three categories, namely position variables, distance variables and mixed variables.

Based on their interactions, distance variables are further classified into subgroups.

Simply put, position variables are related to diversity, distance variables control

convergence, while mixed variables affect both [5]. More specifically, a decision vari-

able is:

• position-related if perturbing the variable generates solutions that are non-

dominated with reference to each other,

• distance-related if the solutions generated by perturbing it are dominated one

by one,
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• mixed otherwise.

In a multi-objective optimization problem, the number of position-related param-

eters should be divisible by nm − 1, where nm is the number of objectives. In order

to further illustrate this, the work in [5] used the following problem as an example:{
f1(x) = x1 − cos (2.2πx2) + x2 (x3 + x4)

f2(x) = 1− x1 + sin (2.2πx2) + x2 (x3 + x4)

s.t. xi ∈ [0, 1], i = 1, 2, 3, 4

(A.1)

Since perturbing only x1 generates solutions that are non-dominated with respect to

each other, x1 is a position-related variable. Perturbing x3 or x4 generates solutions

that are dominated one by one, so these are distance-related variables. Finally, since

perturbing x2 affects both diversity and convergence, x2 is a mixed variable.

A.2 Zitzler-Deb-Thiele Test Suite

Zitzler, Deb, and Thiele proposed six multi-objective problems in a test suite termed

the Zitzler-Deb-Thiele (ZDT) test suite (ZDT1 to ZDT6) [92]. Since ZDT5 is a

binary-encoded problem, it was excluded from this thesis and its experiments. All

ZDT problems are of the following general form:

minimize f1(x)

minimize f2(x) = g(x)h (f1(x), g(x))
(A.2)

The different ZDT functions differ in their definitions of f1(x), h(x), and g(x) as

listed below:

A.2.1 ZDT1

f1(x) = x1

g(x) = 1 +
9

nx − 1

nx∑
i=2

xi

h (f1, g) = 1−

√
f1
g
, xi ∈ [0, 1]

(A.3)
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A.2.2 ZDT2

f1(x) = x1

g(x) = 1 + 9
nx∑
i=2

xi
nx − 1

h (f1, g) = 1−
(
f1
g

)2

, xi ∈ [0, 1]

(A.4)

A.2.3 ZDT3

f1(x) = x1

g(x) = 1 + 9
nx∑
i=2

xi
nx − 1

h (f1, g) = 1−

√
f1
g
−
(
f1
g

)
sin (10πf1) , xi ∈ [0, 1]

(A.5)

A.2.4 ZDT4

f1(x) = x1

g(x) = 1 + 10(nx − 1) +
nx∑
i=2

(
x2i − 10 cos (4πxi)

)
h (f1, g) = 1−

√
f1
g
, x1 ∈ [0, 1], x2, . . . , xnx ∈ [−5, 5]

(A.6)

With 109 local bests, ZDT4 is a multi-modal and rather difficult problem to solve.

A.2.5 ZDT6

f1(x) = 1− e−4x1 sin6 (6πx1)

g(x) = 1 + 9

(∑nx
i=2 xi

nx − 1

) 1
4

h (f1, g) = 1−
(
f1
g

)2

, xi ∈ [0, 1]

(A.7)

All ZDT problems have only one position variable. As mentioned in [31], the biggest

disadvantages of the ZDT suite are having only two objectives, and only having one

deceptive problem which is a binary-encoded one (ZDT5).
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A.3 Deb-Thiele-Laumanns-Zitzler Test Suite

Looking to address the ZDT suite’s weaknesses, Deb et al. [19] proposed the Deb-

Thiele-Laumanns-Zitzler (DTLZ) test suite which is scalable to any number of ob-

jectives, as well as decision variables. The DTLZ suite has nine functions, DTLZ1

to DTLZ9, where DTLZ8 and DTLZ9 have side constraints and therefore have been

excluded from this thesis. All decision variables in all DTLZ functions have a domain

of [0, 1].

A.3.1 DTLZ1

f1 = (1 + g)0.5
nm−1∏
i=1

yi

fm=2:nm−1 = (1 + g)0.5

(
nm−m∏
i=1

yi

)
(1− ynm−m+1)

fnm = (1 + g)0.5 (1− y1)

g = 100

[
k +

k∑
i=1

(
(zi − 0.5)2 − cos (20π (zi − 0.5))

)]
(A.8)

A.3.2 DTLZ2

f1 = (1 + g)
nm−1∏
i=1

cos (yiπ/2)

fm=2:nm−1 = (1 + g)

(
nm−m∏
i=1

cos (yiπ/2)

)
sin (ynm−m+1π/2)

fnm = (1 + g) sin (y1π/2)

g =
k∑
i=1

(zi − 0.5)2

(A.9)

A.3.3 DTLZ3

Similar to DTLZ2, the only difference being the use of DTLZ1’s g function.

A.3.4 DTLZ4

Similar to DTLZ2, the only difference being the use of yαi , α > 0 instead of yαi .
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A.3.5 DTLZ5

Similar to DTLZ2, the only difference being the replacement of y2, . . . , ynm−1 ∈ y by
1+2gyi
2(1+g)

.

A.3.6 DTLZ6

Similar to DTLZ5, the only difference being the replacement of g by g =
∑k

i=1 z
0.1
i .

A.3.7 DTLZ7

fm=1:nm−1 = ym

fnm = (1 + g)

(
M −

nm−1∑
i=1

[
fi

1 + g
(1 + sin (3πfi))

])

g = 1 + 9
k∑
i=1

zi/k

(A.10)

where k = nx − (nm − 1) is the number of distance-related variables.

A.4 Walking Fish Group Test Suite

Despite the DTLZ problems being scalable both objective- and dimension-wise, the

number of position variables in them is fixed (nm − 1). Therefore, Huband et al. [30]

proposed the walking fish group (WFG) test suite. This suite, which consists of nine

functions (WFG1 to WFG9), offers a greater level of customizability, allowing the

users to change the number of position variables and consequently the difficulty of

the problems. The WFG problems are all of the following general format:

given z = {z1, . . . , zk, zk+1, . . . , znx}

minimize fm(x) =DxM + Smhm (x1, . . . , xnm−1)∀m ∈ [1, nm]

where x = {x1, . . . , xnm}

=
{

max
(
tpnm , A1

)
(tp1 − 0.5) + 0.5, . . . ,

max
(
tpnm , Anm−1

) (
tpnm−1 − 0.5

)
+ 0.5, tpnm

}
tp =

{
tp1, . . . , t

p
nm

}
← tp−1 ← . . .↔ t1 ← z[0,1]

z[0,1] =
{
z1,[0,1], . . . , znx,[0,1]

}
=

{
z1

z1,max

, . . . ,
znx

znx,max

}

(A.11)
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where:

• nm is the number of objectives,

• x is a set of parameters, where {x1, . . . , xnm−1} and xnm are position and dis-

tance parameters respectively,

• k is the number of position parameters, l is the number of distance parameters,

such that k + l = nx ≥ nm,

• Consequently, z is a set of k + l = nx working parameters;

• D > 0 is a scaling constant, A1:nm−1 ∈ {0, 1} and S1:nm > 0 are degeneracy

and shape constants respectively. The number of the dimensions of the POF is

decreased by one for each Ai = 0,

• h1:nm are shape functions,

• and t1:p is a set of transition vectors. The symbol ”←−” represents the creation

of each transition vector from another one using transformation functions.



Appendix B

Supplementary Experiments on

CCMGPSO

This section provides the details of some supplementary CCMGPSO experiments that

were conducted to further study the different parts of this proposed approach.

B.1 Multiple Context Vectors: The Seesaw Effect

One problem with the original MGPSO implementation is the use of individual ob-

jective values to update the personal best and the global best position vectors. In

single-objective minimization problems where the ultimate goal is to minimize one ob-

jective, this is usually effective. However, in multi-objective optimization, this may

not always be advantageous. For example, in the 2-objective WFG4 the objective

vector (0, 4) is a boundary point of the true front. However, if a particle in the first

subswarm (that is optimizing the first objective) finds the objective vector (0, 7), it

will never update its personal best position afterwards. Moreover, the global best

position in that subswarm will also remain unchanged until the end of the optimiza-

tion process because 0 is the best possible value for the first objective. Despite the

archive guide being proposed to address this issue, on multi-modal problems it might

still not be enough for competitive performance. In this section, the motivation

behind multiple context vectors alongside objective switching is discussed through

some experimental data. The main inspiration for using multiple context vectors was

drawn from AM-CCPSO [72], where multiple context vectors were used for large-

scale single-objective optimization. Moreover, Maltese et al. [48] proposed CVEPSO

by incorporating the vector-evaluated particle swarm optimization (VEPSO) [26] into

the cooperative framework. Although the work in [48] used separate context vectors
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per objective, the context vectors were shared between different subswarms through

a knowledge transfer strategy (KTS), enabling the different objectives of a problem

to share context vectors.

B.1.1 Experimental Setup and Results

In this section, a small study is conducted to analyze the effects of using multiple

context vectors alongside objective swapping. For this study, the 1500-dimensional

DTLZ problems were used. Two experiments were conducted on each test instance,

the first experiment used nm context vectors and each objective was tied1 to one con-

text vector. The second experiment used nm context vectors where each objective had

access to all context vectors by choosing between them randomly. Each experiment

was run 20 times on each test instance, the number of maximum function evaluations

was set to 4.5× 105. The total number of particles and the archive size were both set

to 300 in all experiments, and these 300 particles were split between the subswarms

in the following way:

• 10 nx-dimensional particles per objective,

• k = 280 nx
280

-dimensional particles for two objectives and k = 270 nx
270

-dimensional

particles for three objectives.

For each experiment, the number of iterations where the corresponding objective

value of the context vector was equal to zero was recorded as a percentage of the total

number of iterations. The goal was to show how long a simple cooperative MGPSO

(with a fixed context vector per objective) would go without ever updating the context

vectors, because the objective values in the DTLZ problems are all non-negative.

Results

The relevant results for 1500-dimensional 2- and 3-objective DTLZ functions are listed

in Tables B.1 and B.2 respectively. Without any exceptions and on all test instances,

CCMGPSO with dynamic context vectors (CCMGPSO (2)) had fewer iterations

where the corresponding value of the context vector was equal to zero compared with

CCMGPSO with fixed context vectors (CCMGPSO (1)). In the multi-modal DTLZ1

1Here, “tied” means when for each objective, a specific context vector is used. Even when the
CPSO swaps objectives, the new objective will not randmoly choose its context vector; instead, it
uses the one assigned to it at the very beginning.
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this was more noticeable, CCMGPSO (1) on average spent 98.34% and 99.23% of

the entire duration of the search without updating the context vectors for two and

three objectives respectively. It should be noted that for CCMGPSO (1), lines 13-17

in Algorithm 16 were also excluded to study the effect of not updating the context

vectors. Performance wise, having big numbers in Tables B.1 and B.2 could have

several impacts. On multi-modal problems, CCMGPSO (1) could get trapped in a

local optimum, where the objective values are way worse than those of the true POF.

On uni-modal problems, this impact could range from not being significant at all to

achieving good objective values but clustered around specific areas of the POF, rather

than obtaining a well-distributed one.

A few examples depicting the effects of using CCMGPSO (1) on the quality of

the obtained fronts for DTLZ1 (multi-modal), DTLZ2 (uni-modal) and DTLZ7 (uni-

modal on all objectives except the last one which is multi-modal) are provided in

Figures B.1, B.2, and B.3 respectively. As seen in Figure B.1, the objective values

obtained by CCMGPSO (1) were noticeably worse than those of CCMGPSO (2),

and a lot of the solutions were clustered in hyperplanes where individual objective

values were close or equal to zero. Judging by Figure B.1 and the numbers in Table

B.1 and Table B.2, one could surmise that, on DTLZ1, CCMGPSO (1) found nm

objective vectors where the value of at least one objective was equal to zero (with

bad values for other objectives), set them as context vectors, and never updated them

until the end of the optimization process. For DTLZ2 (Figure B.2) which is a uni-

modal problem, CCMGPSO (1) obtained good objective values, but with a visibly

inferior distribution of solutions. As seen in Figure B.2, a large set of the obtained

solutions was clustered around the hyperplane where f1 has a value close to zero. In

the 3-objective DTLZ7, the third objective is multi-modal, and as seen in Figure B.3,

CCMGPSO (1) had visibly worse distribution on the third objective compared with

its counterpart.

Now the real reason behind smaller numbers for CCMGPSO (2) in Tables B.1 and

B.2 is explained. Let f̂ be an arbitrary bi-objective minimization problem, where the

minimum possible value for each objective is zero. Moreover, suppose after γ CPSO

iterations on the first objective, the objective vector of the first context vector (Ĉ1)

is equal to (0,2). Moreover, suppose in the next γ iterations Ĉ1 is assigned to the

second objective and C1 is updated based on an improvement in the second objective,

making Ĉ1 equal to (1, 1.5). Because Ĉ11 is no longer equal to zero, more opportunities

arise the next time C1 is assigned to the first objective. As previously explained

and seen in Tables B.1 and B.2, and Figure B.1, this could specifically be of use
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Table B.1: The effect of multiple context vectors with objective swapping on the
2-objective 1500-dimensional DTLZ problems, the listed values are the mean (over
20 independent runs) percentage of the total number of iterations where the corre-
sponding objective of the assigned context vector was equal to zero

Experiment
Problem (Two Objectives) CCMGPSO (1) CCMGPSO (2)
DTLZ1 98.34% 36.26%
DTLZ2 49.62% 16.13%
DTLZ3 49.33% 16.34%
DTLZ4 49.93% 11.93%
DTLZ5 49.86% 20.33%
DTLZ6 49.13% 11.93%
DTLZ7 49.06% 19.26%

(1) CCMGPSO nm context vectors, where each objective only had access to one
context vector,
(2)CCMGPSO nm context vectors, where each objective had access to all context
vectors by randomly choosing between them.

on multi-modal problems. In order to further address this issue, a dominance-based

update mechanism is also incorporated into CCMGPSO (lines 13-17 in Algorithm 16).

Inspired by the personal best update approach in OMOPSO [69], if the corresponding

value of the new vector is equal to that of the context vector’s, the context vector is

replaced by the new solution if its objective vector does not dominate that of the new

solution’s. The possible effects of using this approach are studied in the next section.

B.2 Spending Computational Budget on Accurate

Values: A Worthwhile Investment?

In a lot of PSO-based approaches for cooperative co-evolution, the personal best

value is calculated at every iteration, to ensure the accuracy of results. To explain this

further, the relevant lines from the pseudo-code of CPSO-S (Algorithm 1) are given in

Algorithm 17. A closer look at Algorithm 17 reveals that CPSO-S uses four function

evaluations for each particle per iteration, because function f is invoked four different

times. From an implementation point of view, this number can be reduced to two if

the values are saved inside temporary variables. Moreover, in a regular nx-dimensional

PSO, this number can be reduced to only one function evaluation per particle per

iteration, if the personal best value (in addition to position) of each particle is saved.
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Table B.2: The effect of multiple context vectors with objective swapping on the
3-objective 1500-dimensional DTLZ problems, the listed values are the mean (over
20 independant runs) percentage of the total number of iterations where the corre-
sponding objective of the assigned context vector was equal to zero

Experiment
Problem (Three Objectives) CCMGPSO (1) CCMGPSO (2)
DTLZ1 99.23% 52.33%
DTLZ2 65.46% 18.86%
DTLZ3 66.13% 25.64%
DTLZ4 65.73% 23.26%
DTLZ5 33.13% 7.19 %
DTLZ6 32.93% 12.53%
DTLZ7 65.33% 28.26%

(1) CCMGPSO nm context vectors, where each objective only had access to one
context vector,
(2)CCMGPSO nm context vectors, where each objective had access to all context
vectors by randomly choosing between them.

Figure B.1: The effect of sharing multiple context vectors between objectives on the
1500-dimensional 3-objective DTLZ1
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Figure B.2: The effect of sharing multiple context vectors between objectives on the
1500-dimensional 3-objective DTLZ2

Figure B.3: The effect of sharing multiple context vectors between objectives on the
1500-dimensional 3-objective DTLZ7
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However, in a nx
k

-dimensional context, keeping track of the personal best values to

save computational budget without losing search accuracy is not possible. In a regular

nx-dimensional PSO, once the personal best value is updated, its value will always

remain accurate because it is a result of evaluating a full nx-dimensional decision

vector. On the other hand, in nx
k

-dimensional PSO, the personal best position of each

particle only represents a part of the context vector (a full-dimensional vector), and

its objective value might change depending on what particles from other subswarms

have done to the other parts of the context vector.

As mentioned above, a lot of PSO-based approaches for cooperative co-evolution,

such as CCPSO [43], CCPSO2 [44], and AM-CCPSO [72], use the same approach

regarding updating the personal best position of each particle. The question remains

as to whether spending double the amount of computational budget on accurate values

is always the best approach. A closer look at the snippet in Algorithm 17 and lines 6

to 9 in Algorithm 16 reveals that, CCMGPSO does not recalculate the personal best

values at every iteration. In other words, CCMGPSO saves the personal best value

and neglects the changes made to the other parts of the context vector (since the last

pBest update) for the sole purpose of saving computational budget. The effect of

this approach is studied in the following section.

B.2.1 Experimental Setup and Results

In this section, a small set of experiments is conducted to study the effects of saving

function evaluations per iteration by using less accurate personal best values.

Experimental Setup

In this study, the ZDT problems with 1000, 1500, and 2000 dimensions were used.

Three experiments were conducted on each test instance, the first experiment used the

accurate personal best update mechanism (Algorithm 17), and the second experiment

used the less accurate personal best update approach but without the dominance-

based update approach (lines 13-17 in Algorithm 16). Finally, the third experiment

was based on the CCMGPSO as listed in the pseudo-codes and discussed in previous

sections. Each experiment was run 30 times on each test instance, the number of

maximum function evaluations was set to 3 × 105 and 4.5 × 105 for 1000 and more

than 1000 decision variables respectively. The total number of particles and the

archive size were both set to 300 in all experiments, and these 300 particles were split

between the subswarms in the following way:
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Algorithm 17 The personal best update of CPSO-S

1: procedure CPSO-S

2:
...

3:
...

4:
...

5: if f(b(j, Pj.xi) < f(b(j, Pj.yi) then
6: Pj.yi ←− Pj.xi
7: end if
8: if f(b(j, Pj.yi) < f(b(j, Pj.ŷ) then
9: Pj.ŷ←− Pj.yi

10: end if

11:
...

12:
...

13:
...

14: end procedure

• 10 nx-dimensional particles per objective,

• k = 280 nx
280

-dimensional particles.

Finally, the Mann-Whitney U test with a confidence level of 95% was used to check

for statistical significance.

Results

The mean and standard deviation of the IGD values obtained by the aforementioned

three experiments (over 30 independent runs) are listed in Table B.3. As seen in

Table B.3, CCMGPSO (3) had better mean IGD values than both CCMGPSO (1)

and CCMGPSO (2). For CCMGPSO (1), this difference in performance was al-

ways statistically significant. CCMGPSO (2) only had statistically similar results to

CCMGPSO (3) on the 1000- and 1500-dimensional ZDT6. These results could have

several implications:

• The fact that CCMGPSO (3) and CCMGPSO (2) always had better IGD val-

ues than CCMGPSO (1) (where for the former this was always statistically

significant) could imply that spending more computational budget only to ob-

tain the most up-to-date values might not always be the best approach, at least

when the computational budget is not infinite.

• CCMGPSO (3) statistically outperforming CCMGPSO (2) on most test in-

stances could imply the aforementioned difference in designing context vector-
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Table B.3: The effect of using less accurate personal best values to save computational
budget, in terms of the mean and standard deviation values obtained for the IGD
measure for three different experiments over 30 independent runs

Experiment
Problem Dimension CCMGPSO (1) CCMGPSO (2) CCMGPSO (3)

ZDT1
1000 1.02E-4(3.24e-05)- 5.47E-05(6.49E-06)- 4.93E-5(3.37E-06)
1500 6.77E-05(1.40E-05)- 4.70E-05(1.38E-06)- 4.60E-05(8.39E-07)
2000 8.31E-05(1.98E-05)- 5.11E-05(5.22E-06)- 4.68E-05(1.39E-06)

ZDT2
1000 1.53E-4(4.81E-05)- 6.41E-05(1.05E-05)- 5.42E-05(4.83E-06)
1500 1.03E-4(4.28E-05)- 5.71E-05(8.43E-06)- 5.12E-05(3.08E-06)
2000 1.29E-4(4.19E-05)- 6.19E-05(1.02E-05)- 5.47E-05(8.69E-06)

ZDT3
1000 2.17E-4(3.69E-05)- 1.28E-4(2.89E-05)- 8.06E-05(1.12E-05)
1500 1.58E-4(2.79E-05)- 8.25E-05(1.21E-05)- 6.38E-05(3.94E-06)
2000 1.79E-4(2.85E-05)- 1.09E-4(2.49E-05)- 6.83E-05(5.43E-06)

ZDT4
1000 6.62E+1(4.08E+0)- 4.95E+1(3.39E+0)- 3.02E+1(2.78E+0)
1500 1.38E+2(5.11E+0)- 1.03E+2(6.23E+0)- 7.43E+1(6.96E+0)
2000 2.48E+2(1.17E+1)- 1.87E+2(1.18E+1)- 1.50E+2(1.26E+1)

ZDT6
1000 7.12E-4(1.83E-3)- 1.75E-4(4.72E-4)= 5.33E-05(2.37E-05)
1500 3.91E-4(8.22E-4)- 3.17E-4(1.15E-3)= 4.43E-05(1.29E-05)
2000 1.43E-3(2.58E-3)- 4.41E-4(1.10E-3)- 1.17E-4(3.82E-4)

(1) CCMGPSO with accurate personal best calculations (more function evalua-
tions per iteration).
(2) CCMGPSO with less accurate personal best calculations (fewer function eval-
uations per iteration) but without the dominance-based update mechanism (lines
13-17 in Algorithm 16).
(3) CCMGPSO with less accurate personal best calculations (fewer function eval-
uations per iteration) and the dominance-based update mechanism
The experiment with the best mean IGD over 30 independent runs is highlighted
in grey. “=” means statistically similar to CCMGPSO (3), “-” means statistically
worse than CCMGPSO (3), and “+” means statistically better than CCMGPSO
(3)
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based approaches for single- and multi-objective optimization. As mentioned in

previous sections, updating the context vector based on only one objective value

might lead to performance loss especially on multi-modal problems. Therefore,

in CCMGPSO, when the corresponding objective value of the context vector

and the particle are equal, the context vector is replaced if its objective vector

does not dominate that of the particle’s. Inspired by OMOPSO’s [69] personal

best update approach, the motivation behind this approach is to consider objec-

tive vectors that do not update the assigned objective value, but have valuable

improvements for other objectives.

Therefore, in CCMGPSO personal best values are not recalculated at every iteration

to save computational budget. It may be worth noting that CCMGPSO (1) and

CCMGPSO (3) could have statistically similar results under a computational budget

which is large enough, but in this proposed version pBest is kept track of at all times

since the condition of having an infinite computational budget is not always satisfied.


