Synthesis of Cyclopropenium-Appended Organocatalysts and Applications

Ivor Smajlagic

Department of Chemistry

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Faculty of Mathematics and Science, Brock University

St. Catharines, Ontario

© 2021

Abstract

Enclosed within this dissertation is the development and application of multiple cyclopropenium-containing compounds formally belonging to two closely-related classes of organocatalysts, namely thioureas and squaramides. The former catalyst, coined as a thiourea-cyclopropenium, is deployed in pyranylation reactions of alcohols and phenols, as well as Friedel–Crafts alkylation, while the latter—a squaramide-cyclopropenium catalyst—targets oxime ether bond formation. Accompanying these innovative synthetic methodologies are comprehensive experimental and computational mechanistic studies that work in synergy to delineate numerous key features, all of which provide valuable information with respect to understanding the multifaceted nature of catalysis. Experimental and spectral data are provided for all new compounds.

Acknowledgements

I express the utmost gratitude to my supervisor, mentor and friend, Professor Travis Dudding. Professor Dudding's keen eye recognized in me, some years ago, a premature sense of curiosity that I later found out is an indispensable quality inherent to all scientists. Since then, Professor Dudding has positively contributed to multiple aspects of my life, one of which involves the evolution of my chemical knowledge and dexterity from a superficial level to being well-versed in both theoretical and experimental chemistry, ultimately helping me reach my true potential. Throughout my journey, Professor Dudding provided me with freedom in the laboratory allowing me to quench any curiosities or questions that I had, even if the chemistry was outside the scope of my thesis. I will definitely miss our daily fruitful conversations and discussions. It has truly been a pleasure working along your side.

I also must extend my gratitude to my supervisory committee, Professor Art van der Est and Professor Paul Zelisko. Your insight, rooted in your respective area of expertise, provided me with an educational learning experience, and for that I am appreciative.

Special thanks goes to Razvan Simionescu for providing NMR assistance with numerous types of experiments time and time again, as well as Professor Melanie Pilkington for her guidance and wisdom throughout my graduate studies, and for refining multiple single-crystal samples.

A very special thanks is owed to my parents, Emir and Tanya Smajlagic. It is because of their unconditional love and support that allowed me to successfully complete my Doctoral studies. Not only did they provide emotional and mental support, but they allowed me to part from my (under)graduate studies debt free. The life lessons they taught me are invaluable that, in essence, are rooted in being kind, respectful and determined all qualities they irradiate, which helped them become successful upon immigrating to Canada. Another family member that played a key role in helping raise me and shape my personality was my grandmother, Ajsa Terzin. She was there for me through most important stages throughout my life, and even managed to see me graduate from my undergraduate studies. I know she would be proud of me today, and I wish she could see me graduate.

I would also like to thank Azemina Sliskovic, who was very much like a grandmother to me. Her wisdom, guidance and love were all integral elements helping me succeed in my Ph.D. studies, as well as in life.

Last, but not least, I would like to give a joint thanks to members from both the Dudding group (Brenden Carlson, Matt Guest, Richard Le Sueur, Lea Milkin, Srini Vemulapalli, Rozhin Rowshanpour, Roya Mir, Brandon White and Oyindamola Azeez), and the Zelisko group (Zach Raczywolski, Julio Trevino, Paria Azadi and Laura Voigt). You have all independently played a key role throughout my graduate studies that enriched my experience at Brock University, spanning from enjoyable moments that took place in the laboratory to social gatherings elsewhere. I am grateful that I had the opportunity to be surrounded by and work with such wonderful people.

Table of Contents

Abstract	<i>ii</i>
Acknowledgements	iii
List of Tables	vii
List of Schemes	. ix
List of Figures	. xi
List of abbreviations	xv
1.0 Introduction	1
2.0 Historical	5
2.1 The emergence of organocatalysis	5
2.1.1 Covalent catalysis	7
2.1.2 Noncovalent catalysis	8
2.1.3 Hydrogen bond catalysis	8
2.1.4 Brønsted acid catalysis	12
2.1.5 Thiourea and squaramide organocatalysis	16
2.2 Evolution of cyclopropeniums and congeners	20
2.2.1 Aminocyclopropeniums: synthesis and stability	22
2.2.2 Applications of cyclopropenium-appended molecules as catalysts	25
2.2.3 The first example of a cyclopropenium compound exhibiting XB donor character.	33
3.0 Disclaimer	36
4.0 Results and Discussion	38
4.1 Introduction	38
4.2 Thiourea-cyclopropenium as a Brønsted acid organocatalyst	38
4.2.1 Exploratory studies centered around structure determination, optimizations and substrate scope	40
4.2.2 Mechanistic studies	48
4.2.3 2-Deoxyglycosylation	61
4.3 Thiourea-cyclopropenium as a hydrogen bond donor organocatalyst	63
4.3.1 Optimizations and establishment of synthetic utility	63
4.3.2 Mechanistic studies	67
4.4 Second-generation squaramide-cyclopropenium as a Brønsted acid organocatalyst	72
4.4.1 Optimization studies and demonstration of reaction practicality	72

4.4.2 Mechanistic studies	76
5.0 Summary and future directions	
6.0 Experimental section	
7.0 Spectra	119
8.0 Appendix A	
9.0 Appendix B	
10.0 Appendix C	
11.0 Computational section	
12.0 Vita	
13.0 References	

List of Tables

Table 1. Optimization of reaction conditions
Table 2. ¹ H NMR data comparing N–H chemical shifts for thiourea catalysts $4 \cdot BF_4^- \& 4 \cdot Cl^-$ in CDCl ₃
Table 3. Pyranylation of primary alcohols
Table 4. Pyranylation of higher-substituted alcohols and phenols
Table 5. Optimization of reaction conditions. ^a
Table 6. Effect of the change in reaction variables for the formation of an oxime ether linkage. ^a
Table 7. Scope of oxime ether formation ^a
Table 8. Integration values denoted for the peaks of interest at 100% conversion153
Table 9. Integration values denoted for the peaks of interest at 2% conversion
Table 10. Summary of Crystal data for $4 \cdot BF_4^-$
Table 11. Selected geometric parameters for $4 \cdot BF_4^-$
Table 12. NBO values for selected atoms
Table 13. ¹ H NMR data probing the potential for product inhibition or catalyst deactivation. 235
Table 14. ¹ H NMR data for probing the potential for product inhibition or catalyst deactivation. 236
Table 15. ¹ H NMR data corresponding to 10 mol% catalyst loading for determining the order in catalyst. 238
Table 16. ¹ H NMR data corresponding to 5 mol% catalyst loading for determining the order in catalyst. 238
Table 17. Data for the determination of the potential product inhibition or catalyst deactivation. 240
Table 18. Data for the determination of the reaction order in catalyst. 242
Table 19. Data for the determination of the reaction order in the oxime component245

Table 20. Data for the determination of the reaction order in the vinyl ether component.
Table 21. Select Crystallographic Parameters for 11c BF ₄
Table 22. Selected geometric parameters for 11c·BF ₄ ⁻ (Å, °)
Table 23. Summary of H-bonding interactions present in 11c·BF ₄
Table 24. Energy for all structures at TZVP and 6-311G(d,p) basis sets with thermal corrections and quasi-harmonic approximation adjustments to both TZVP and 6-311G(d,p) energies. All values are in kcal mol ⁻¹
Table 25. Gibbs free energy, enthalpies and entropies for all optimized structures414
Table 26. Single-point energies of all structures calculated at the SMD_(DMSO)M06-2X/6-311++G(2df,2p) level of theory and thermal correction to Gibbs Free Energy and GibbsFree Energy calculated at the B3LYP/6-31+G(d) level of theory. All energies are reported in Hartrees.430
Table 27. Single-point energies of all structures calculated at the $IEFPCM_{(DCM)} \oplus B97X$ - D/6-311++G(d,p)/def2-TZV level of theory and thermal correction to Gibbs Free Energy and Gibbs Free Energy calculated at the $\omega B97X$ -D/6-31G(d)/def2-TZV level of theory. All energies are reported in Hartrees

List of Schemes

23
Scheme 2. Synthesis of pentachlorocyclopropane and tetrachlorocyclopropene23
Scheme 3. Presumed mechanism for accessing bis- or tris-substituted aminocyclopropenium compounds
Scheme 4. Reported pK_{R^+} values for various cyclopropenium compounds
Scheme 5. A cyclopropenium-based phase-transfer catalyst exhibiting ion pair strain applied in benzylation and fluorination. 26
Scheme 6. A range of reported strong organic bases. Their corresponding pK _{BH+} values are in parentheses
Scheme 7. (A) Cyclopropenimine-catalyzed Michael addition. (B) Chiral guanidine catalyst
Scheme 8. Five new classes of higher-order cyclopropenimine superbases
Scheme 9. O-Silyl ether deprotection (top) and benzylic fluorination (bottom) mediated by
a phase-transfer cyclopropenium catalyst.
a phase-transfer cyclopropenium catalyst. 32 Scheme 10. Pathway 1: dual hydrogen bond activation catalyzed by charged thiourea conformer Z,Z-4. 55
a phase-transfer cyclopropenium catalyst. 32 Scheme 10. Pathway 1: dual hydrogen bond activation catalyzed by charged thiourea conformer Z,Z-4
a phase-transfer cyclopropeniumcatalyst.32Scheme 10. Pathway 1: dual hydrogen bond activation catalyzed by charged thiourea conformer Z,Z-4
a phase-transfer cyclopropenium catalyst. 32 Scheme 10. Pathway 1: dual hydrogen bond activation catalyzed by charged thiourea conformer Z,Z-4
a phase-transfer cyclopropenium catalyst. 32 Scheme 10. Pathway 1: dual hydrogen bond activation catalyzed by charged thiourea conformer Z,Z-4

Scheme 16. Investigating the stereochemistry of addition using methanol-d ₄ and 4-(ter butyl)-3,4-dihydro-2H-pyran	rt- 25
Scheme 17. Probing the possibility for alkoxide exchange	27
Scheme 18. Investigating the stereochemistry of addition using phenyl $(O, 1-{}^{2}H_{2})$ methan and a mixture of syn and anti product isomers (methyl adduct)	ol 28
Scheme 19. Probing the potential for product inhibition or catalyst deactivation wirespect to trans- β -nitrostyrene concentration	th 35
Scheme 20. Investigating the order in catalyst for thiourea $4 \cdot BF_4^{-}$	37

List of Figures

Figure 1. Non-benzenoid aromatic ions
Figure 2. General conditions for the pyranylation of alcohols and phenols using thiourea catalyst 4 ·BF4 ⁻
Figure 3. General conditions for Friedel–Crafts alkylation using thiourea catalyst 4 ·BF4 ⁻ .
Figure 4. General conditions for oxime ether formation using thiourea catalyst 11 ·BF4 ⁻ .
Figure 5. First organic catalyzed reaction
Figure 6. Four classifications of covalent organocatalysis7
Figure 7. General representation of commonly encountered hydrogen bonds
Figure 8. Electrophilic activation mode comparison between enzymatic catalysis and organocatalysis
Figure 9. Representative depiction of intermediates involved in hydrogen bond catalysis vs. Brønsted acid catalysis. 13
Figure 10. First reported BINOL-derived Brønsted acid (20) with other developments highlighted.
Figure 11. Representative H-bonding interaction with a colorimetric sensor for assessing H-bond strength
Figure 12. Evolution of H-bonding catalysts
Figure 13. Landmark thiourea catalysts reported by Jacobsen, ⁷¹ Schreiner ^{9f} and Takemoto. ⁷⁵
Figure 14. Rawal's first reported chiral squaramide catalyst (left-hand side) and squarate ester ((thio)squaramide catalyst precursor (right-hand side)).
Figure 15. Outlined differences comparing thioureas and squaramides (left-hand side), and depiction of ditopic binding as an inherent property of squaramides (right-hand side).
Figure 16. Factors contributing to cyclopropene instability

Figure 17. (A) X-ray structure of 54 ·2B cyclopropenium-based strong	F ₄ ¹⁰² (B) Hydroamination mediated by a Brønsted acid.
Figure 18. Ring-opening polymerization Cooperative mode of substrate	using benzyl alcohol as the initiator (top). activation (bottom). 33
Figure 19. An anionic iodocyclopropenium	halogen bonding interaction35
Figure 20. (A) Cyclopropenium as a new cha with isodensity value 0.0001 au (left-hand atoms of thiourea 4 at the B3LYP/6-31G+(d, General conditions for the pyranylation of al $4 \cdot BF_4^-$.	urged domain for (thio)urea catalysts. (B) ESP side) and computed NBO charges of select (p) level of theory (right-hand side). (C) cohols and phenols using thiourea catalyst
Figure 21. (a) Thermal ellipsoid plot of the n labelling scheme. Thermal ellipsoids are plot Short N-H···F contacts are shown as red dash of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _a values of $4 \cdot BF_4^-$ highlighting the computed pK _b values of $4 \cdot BF_4^-$ highlighting the computed pK _b values of $4 \cdot BF_4^-$ highlighting the computed pK _b values of $4 \cdot BF_4^-$ highlighting the computed pK_b^-	nolecular structure of 4 ·BF ₄ ⁻ with appropriate ted at 50%. Only selected H-atoms are shown. hed lines. (b) Two-dimensional representation lues in DMSO
Figure 22. Mechanistic proposal for the that alcohols.	iourea-catalyzed (4) pyranylation of primary 49
Figure 23. (A) General depiction of thiourea reactivity for pyranylation reactions using th pyranylations using thiourea $4 \cdot BF_4^-$	a conformers. (B) Previous reported modes of nioureas. (C) Computational investigation of 50
Figure 24. A) Correlations between hydrog experiments with atoms labelled. B) Variab thiourea $4 \cdot BF_4^-$ conformers frozen	gen atoms for 4·BF4 [–] based on 1D NOESY le temperature ¹ H NMR spectra with select 58
Figure 25. ¹ H NMR spectra depicting no inte	eractions between thiourea $4 \cdot BF_4^-$ and DHP.
Figure 26. (A) ¹³ C kinetic isotope effect. (B alcohol from a reaction taken to	 ¹³C isotopic composition of THP protected 2% product conversion. 60
Figure 27. 2-Deoxygalactosylation of 3,4,6-t 4 ·BF ₄ ⁻ (top). Comparison of α - vs β -stereofa of conformers within 10 kJ/mol of	ri-O-benzyl-D-galactal facilitated by thiourea acial alcohol addition (bottom) (Superposition the global minima).
Figure 28 . Employment of thiourea $4 \cdot BF_4^-$	for Friedel–Crafts alkylation ^[a] 66

Figure 30. Plot of time (h) vs. concentration (M) for two independent starting concentrations of thiourea $4 \cdot BF_4^-$ (blue triangle - 0.168 M; red square - 0.084 M) performed under synthetically relevant conditions (top left). Plots of normalized time scale (t[cat]o γ) vs. concentration (M) for the determination of the order in catalyst (top right and bottom).

Figure 38. Rate constants (M⁻¹s⁻¹) plotted against the corresponding concentration of DHP (M) with error on fit (Note: error is reported as standard deviation). The mean value of k is

Figure 40. ¹H NMR spectra at 300 MHz in 0.5 mL CDCl₃ at room temperature of thiourea $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) following subsequent addition of benzyl alcohol aliquots. From this, a noticeable downfield shift of the O–H peak of benzyl alcohol was observed. 216 **Figure 41.** (A) Comparison ¹H NMR spectra at 300 MHz in 0.5 mL CDCl₃ at room temperature of thiourea $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) vs. (B) titrations with benzoic acid (1.0 equiv.), and (C) (2.0 equiv.). 217

Figure 42. Variable temperature ¹H NMR spectra at 600 MHz in 0.5 mL CDCl₃ of thiourea $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) with benzoic acid (A) (1.0 equiv. at 295.1 K), (B) 312.9 K, (C) 284.2 K, and (D) 273.3 K. 218

Figure 46. ¹H NMR spectra at 300 MHz in 0.5 mL CDCl₃ at room temperature of thiourea $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) following subsequent additions of trans- β -nitrostyrene aliquots. From this, a noticeable downfield shift, that being, 0.04 ppm of the N–H hydrogen atom belonging to the thiourea moiety was observed. 234

Figure 47. Plot depicting the absence of catalyst deactivation and product inhibition. .239

Figure 48. Normalized time scale plot displaying a 0.8-order dependence in catalyst. . 242

Figure 51. ORTEP plot of the molecular structure of $11c \cdot BF_4^-$ with appropriate atomic labelling scheme. Thermal ellipsiods are plotted at 50%. For clarity only select H atoms are shown, and only one orientation of the disordered CF₃ groups are shown. Short contacts from F(10) of the BF₄-counterion to H(41) and H(31) are shown as red dashed lines...251

List of abbreviations

AEXB	anti-electrostatic halogen bond
BHB	three-centered hydrogen bond
BINOL	1,1'-bi-2-napthol
CsF	caesium fluoride
DCM	dichloromethane
DEPT	distortionless enhancement by polarization transfer
DFT	density functional theory
DHP	3,4-dihydro-2 <i>H</i> -pyran
DMSO	dimethyl sulfoxide
dr	diastereomer ratio
er	enantiomer ratio
ESP	electrostatic potential surface
H-bond	hydrogen bond
H-bonding	hydrogen bonding
НОМО	highest occupied molecular orbital
KF	potassium fluoride
KIE	kinetic isotope effect
LUMO	lowest unoccupied molecular orbital
MCCS	Monte Carlo conformational searches
MeCN	acetonitrile
MTP	2-methoxytetrahydropyran
NBO	natural bond order
NBO	natural bond order

- NCI non-covalent interaction
- NMR nuclear magnetic resonance
- NOESY nuclear Overhauser enhancement spectroscopy
- SOMO singularly-occupied molecular orbital
- THF tetrahydrofuran
- TLC thin layer chromatography
- TOF turnover frequency
- RPKA reaction progress kinetic analysis
- VTNA variable time normalization analysis
- vtNMR variable temperature nuclear magnetic resonance
- XB halogen bond

1.0 Introduction

The field of catalysis has significantly contributed to the development of innovative technologies enabling the sustainable production of bulk and fine chemicals.¹ The prospect of developing an efficient catalyst comes with mechanistic understanding. After a well-devised catalyst is realized, various empirical methods, and/or physical organic parameters, are routinely employed for gaining insight and probing the mechanistic underpinnings of catalysis. Moreover, classical kinetics, Reaction Progress Kinetic Analysis (RPKA)² and Variable Time Normalization Analysis (VTNA)³ serve as indispensable kinetic techniques to provide a better understanding of the catalyzed reaction pathway(s), which is of use in both industrial and academic settings. This spans from metal- to metal-free-catalyzed, i.e., organocatalyzed, approaches.⁴

Organocatalyzed processes offering broad chemical scope, chemo-, regio-, and/or stereoselectivity, and rapid reaction rates, is a major theme of modern-day catalysis.⁵ The impetus supporting this burgeoning field being the attractive non-metal feature,^{5d} functional group tolerance,⁶ and eco-friendliness.^{5d} In this context, thiourea organocatalysis has gained widespread popularity and with it broad utility,^{5e,7} such as in host–guest (catalyst–substrate) applications involving attractive interactions facilitating chemical transformations. This includes uses in anion-binding catalysis,⁸ H-bond donor/Brønsted acid catalysis,^{5e,9} charge-enhanced catalysis,¹⁰ and multifunctional catalysis.¹¹ Alternatively, squaramides have appeared in the literature as superior counterparts to thioureas, wherein their aromatic nature plays an influential role in promoting organic reactions.¹²

As synthetic organic chemistry evolves over time so do the approaches taken to reach the target compounds. Despite the utility and common use of conventional neutral catalysts to accelerate reactions, the expectations of catalyst performance continues to increase,^{5a} e.g., turnover frequency (TOF), reaction rates, catalyst stability etc. In spite of this, as a putative solution, many efforts have been focused towards pursuing charged catalysts as, arguably, superior alternatives to access desired reactivity.^{8c,10,13} In particular, non-benzenoid systems, such as aromatic aminocyclopropenium ions, have attracted attention from both experimental- and theoretical chemists owing to its remarkable properties, including high cation stability, low oxidation potential and an atypical reactivity profile.¹⁴ Below follows generic examples of non-benzenoid structures (**1–3**) that have been found to promote organic reactions (Figure 1).

Figure 1. Non-benzenoid aromatic ions.

The focal point of this thesis will be placed upon the innovative discoveries centered around cyclopropenium-appended (1) molecules as organocatalysts targeting various applications. The discussion will begin with the discovery of the thiourea-

cyclopropenium organocatalyst, where it was found to efficiently catalyze the pyranylation of phenols, primary, secondary and tertiary alcohols under operationally simple and mild reaction conditions (Figure 2).¹⁵ Accompanying this synthetic work is a comprehensive mechanistic investigation¹⁶ revealing several salient features that govern the mechanism at hand, ultimately leading to the proposal of a most probable reaction pathway.

Figure 2. General conditions for the pyranylation of alcohols and phenols using thiourea catalyst 4.BF4⁻.

Next, the synthetic utility and multifunctional nature of catalyst 4·BF4⁻ will be underscored by presenting a novel Friedel–Crafts alkylation method¹⁷ (Figure 3). This section leads to an interesting discussion since the reactivity taking place at the catalyst's active site was found to shift from one end of the substrate activation continuum to the other—a true dichotomy!

Figure 3. General conditions for Friedel–Crafts alkylation using thiourea catalyst 4·*BF*4⁻*.*

As a final component to conclude the results and discussion section, a secondgeneration catalyst bearing a cyclopropenium component, namely a squaramidecyclopropenium organocatalyst ($11 \cdot BF4^-$), will be discussed in detail. This congener was found to be superior relative to other (thio)urea and squaramide organocatalysts for the formation of a novel bond between an oxime and DHP, and, in doing so, adds to the portfolio of oxime ether bond types (Figure 4).

Figure 4. General conditions for oxime ether formation using thiourea catalyst 11 BF₄⁻.

The next section will cover the historical aspect, as well as provide pertinent background information for each of the above-mentioned undertakings.

2.0 Historical

The coming sub-sections will address various aspects of catalysis, with the overarching objective being to become more familiar with the content presented in the results and discussion section of this dissertation. As such, the sub-sections to be discussed are as follows: 1) the emergence of organocatalysis, 2) thiourea and squaramide organocatalysis and 3) evolution of cyclopropeniums and congeners.

2.1 The emergence of organocatalysis

Catalysis, as we know today, appears to have emerged as a relatively new discipline of chemistry given the recent coined terminology by chemists', with a pertinent example being "organocatalysis."¹⁸ However, the term "catalysis" was introduced some centuries ago, when Jöns Jacob Berzelius used this word to rationalize certain chemical phenomena, such as wine and beer fermentation, and the breakdown of starch to common sugars in the presence of acid.¹⁹ Though this was not the *true* inception of catalysis, Berzelius was among the first to bring this concept to fruition, as supported by his remarkable documented observation(s). Being a man of science, he sought to provide an explanation for these phenomena in which he elegantly stated the following:

"I will therefore call it the 'catalytic force' and I will call 'catalysis' the decomposition of bodies by this force, in the same way that we call by 'analysis' the decomposition of bodies by chemical affinity."

In contemporary times, emphasis is still placed on catalysis for enabling large-scale manufacturing, fine chemical production, pharmaceutical synthesis, renewable energies, and countless other important processes.¹

Although some organic catalysts employed nowadays in industry are rather complex, the first reported example of an organic catalyst was among the simplest of structures—an aldehyde consisting of a two-carbon chain length, namely acetaldehyde. In 1860, Justus von Liebig used aqueous acetaldehyde as an organic catalyst to assist in the conversion of cyanogen (14) to oxamide (15)²⁰ (Figure 5). Therein, this aldehyde served the role of a catalyst to facilitate a clean reaction scenario—owing to its ability to form a hemiacetal—where only hydrolysis of nitriles was observed. In fact, it is hypothesized that this type of reactivity was prevalent during the prebiotic period²¹—preceding the advent of life on Earth.

Figure 5. First organic catalyzed reaction.

This seminal report by von Liebig enticed the chemical community during the twentieth century to further explore metal-free-catalyzed transformations. This led to an explosive era, during which chemists were moving on different fronts conducting investigatory studies revealing the function of various classes of organic catalysts, including cinchona alkaloids,²² amino acids,²³ onium salts,²⁴ and others. It was not until the mid-twentieth century that Wolfgang Langenbeck made parallels between the catalytic action of enzymes and organic small-molecules.²⁵ With the number of reports using organic

small-molecules as catalysts steadily increasing, Langenbeck coined the term "organic catalysis" to describe this area of chemistry, and classified the different modes of organic catalysis as being either covalent or non-covalent .²⁶ Although many chemists helped pioneer this field of "organic catalysis," MacMillan truly revitalized the field upon introducing the term "organocatalysis" in the year 2000.²⁷ Since then, organocatalysis remains a vital pillar of catalysis. Henceforth, the term "organocatalysis" will be used throughout this dissertation.

2.1.1 Covalent catalysis

Organocatalytic methodologies typically fall under two main types of substrate activation modes, namely covalent- and non-covalent organocatalysis. Since the work presented within this dissertation will be centered around non-covalent organocatalysis, its covalent counterpart will only briefly be touched upon. As the name implies, covalent organocatalysis involves a catalyst–substrate interaction through formation of covalent bonds. Efforts towards the establishment of covalent organocatalysis have led to four main classes, including (i) enamine, (ii) iminium ion, (iii) *N*-heterocyclic carbene and (iv) SOMO²⁸ (Figure 6).

Figure 6. Four classifications of covalent organocatalysis.

The structures above represent reactive intermediates consisting of a representative catalyst (black) and substrate (blue), from which then the desired reactivity can be channeled.

2.1.2 Non-covalent catalysis

Within the last two decades, arguably, there has been a paradigm shift in the way that catalytic systems are being designed. This transition from covalent- to non-covalent catalysis was indisputably influenced by the knowledge acquired from the advancements in enzymatic catalysis. In fact, small-molecule organic catalysts that exploit non-covalent interactions, such as H-bonding,²⁹ electrostatic interactions,³⁰ π - π ,³¹ cation- π ,³² hydrophobic³³ and Van der Waals forces³⁴ are sometimes referred to as "artificial enzymes."³⁵ These attractive non-covalent interactions, in conjunction with steric directing effects, are crucial for lowering the activation barrier of reactions and enabling stereocontrol, respectively.³⁶ However, since these interactions are generally weaker and less dependent on distance and direction than covalent interactions, it is of the utmost importance to judiciously design an organocatalyst that has multiple sites tailored to engaging in non-covalent interactions. Having covered some rudimentary aspects that contribute to transition state stabilization, the next section of this dissertation will delve into more specific types of non-covalent interactions, namely H-bond catalysis and Brønsted acid catalysis.

2.1.3 Hydrogen bond catalysis

The hydrogen bond, in and of itself, is a remarkable topic of discussion. Not only is there a rich and fascinating history associated with this subject, but the fine details are a contentious subject marred in ambiguity. It is generally accepted that the discovery of the hydrogen bond took place in 1920,³⁷ where Latimer and Rodebush were the first to describe this phenomenon in the context of water; however, the first reported instance actually dates back to 1912.³⁸ Though this "hydrogen bond" terminology was not used throughout the manuscript, their findings involving the states of various amines in aqueous solutions suggested that there are apparent attractive intermolecular forces that "join the molecules together" when an alkyl group was switched out for a hydrogen atom.

Since then, H-bonding has been shown to be omnipresent. Moreover, this concept plays a key role in sustaining life, as supported by its active presence in biomolecules, such as proteins, carbohydrates and nucleic acids, as well as other inorganic molecules, e.g., H₂O that serve a plethora of purposes. In fact, enzymes exert many of their prominent catalytic functions through the help of H-bonding, which takes place in aqueous media; in essence, an ocean-wide H-bond network.

The forces that constitute a formal hydrogen bond have been and continue to be a topic of investigation. A significant contribution to H-bond stability, however, has been ascribed to Coulombic forces (electrostatic interactions). The polarity of a hydrogen bond donor (D–H), wherein D is an electronegative atom, e.g., O or N creates a partial positive charge on the proton allowing for an attractive electrostatic interaction with an in-coming acceptor (Lewis base (A)). Working in concert, or being alternative driving forces for H-bond formation, are polarization and charge transfer. The latter involving a process, in which $n \rightarrow \sigma^*$ transfer of electron density from the non-bonding orbitals of a Lewis base (A) to an antibonding orbital of the D–H hydrogen atom. Collectively, these two forces contribute to the "covalency" of the newly formed H-bond.³⁹

The percentage of covalency in hydrogen bonding affects the magnitude of bond directionality. Bond directionality arises from efficient atomic orbital overlap and the spatial arrangement of atoms with respect to neighbouring bonds. As such, covalent bonds are highly directional, whereas ionic bonds are nondirectional.⁴⁰ According to this concept, hydrogen bonds can be classified based on their strength, i.e., weak vs. strong H-bonds spanning from ~ 0.2 –40 kcal mol⁻¹.⁴¹ The stronger the H-bond, the more covalent, and, thus, directional they are.⁴² Most notably, hydrogen bonds can also be classified based on other facets or phenomena, such as cooperative hydrogen bonding⁴³ and types of hydrogen bond engagement for electrophilic substrate activation.

As mentioned above, there is plenty of room for discussion centered around the hydrogen bond and its intricacies. However, I would like to shed light on one final aspect of hydrogen bonding, namely a few major types of hydrogen bonds that are frequently encountered for electrophilic substrate activation (Figure 7). Until 1939, the hydrogen atom was thought to participate in only one covalent bond and one H-bond. It was that year that Albrecht and Corey were the first to propose the notion that a hydrogen atom can engage in a three-centered hydrogen bond (BHB), otherwise known as a bifurcated hydrogen bond.⁴⁴ The term "bifurcated H-bond" has since evolved from its original definition involving one hydrogen atom and two acceptors, and extends to two hydrogen atoms and one acceptor—though BHB remains confined to its original configuration.⁴⁵ A close relative to the bifurcated hydrogen bond is the dual or two-point hydrogen bond (two hydrogen atoms and two acceptors).

Figure 7. General representation of commonly encountered hydrogen bonds.

The electrophilic activation of a molecule by the simultaneous donation of two hydrogen bonds is a common theme in enzymatic catalysis and organocatalysis. In fact, these strategies were found to exhibit increased strength and directionality relative to single H-bond donors.⁴⁶ These small-molecule H-bond donor organic catalysts activate substrates through LUMO-lowering mechanisms. A classic example depicting this mode of activation is *via* thiourea catalysis that parallels enzymatic pockets inherent to serine proteases, wherein amide carbonyls are susceptible towards serine nucleophilic attack (Figure 8).

Figure 8. Electrophilic activation mode comparison between enzymatic catalysis and organocatalysis.

The dual H-bond mode of activation, as seen in the mock serine protease example (left-hand side) and organocatalytic example (right-hand side) proceed through a so-called "oxyanion hole." Therein, the incipient negative charge of the tetrahedral intermediate is stabilized by the two adjacent, partially positive hydrogen atoms.²⁸ An abundance of reports^{5e,28,46} exist that disclose various catalysts operating through this mechanism; however, the focus of this dissertation will be placed mostly on (thio)urea and squaramide organocatalysts. Prior to covering the relevant aspects surrounding these catalysts, a brief discussion of Brønsted acids will be presented.

2.1.4 Brønsted acid catalysis

Our discussion of Brønsted acids begins with what is todays common commodity; vinegar, otherwise known as acetic acid. The correlation between sour taste and acidity was attributed to this acid, and remains a common descriptor in the context of acids. It is rather interesting that acetic acid has even deeper roots than mineral acids (sulfuric, hydrochloric and nitric)! Nevertheless, the discovery of mineral acids and oxygen kept chemists busy during the eighteenth century. It was during this time that a direct correlation between a hydrogen atom and acidity was made.⁴⁷ This concept was further developed by Arrhenius, who recognized that acids dissociate in aqueous solutions generating a high concentration of H⁺ ions, whereas alkaline solutions are comprised of an excess of OH⁻ ions. In 1923 Johannes Nicolaus Brønsted and Thomas Martin Lowry advanced a theory, namely the Brønsted-Lowry theory, extending beyond aqueous solutions—a Brønsted-Lowry acid donates a proton, while a Brønsted-Lowry base accepts a proton.⁴⁸

Differentiating between H-bond catalysis and Brønsted acid catalysis is not a simple task.⁴⁹ Usually, to some extent, a pre-equilibrium, wherein H-bonding precedes the

transfer of a proton takes place.²⁸ A key distinctive feature, however, is the presence of an ion pair in Brønsted acid catalysis, as opposed to sole H-bonding interactions. (Figure 9). From a mechanistic standpoint, Brønsted acid catalysis can be further categorized as either specific acid catalysis or general acid catalysis. The former involves reversible proton transfer in the presence of a "specific acid," meaning a protonated solvent, e.g., hydronium prior to the rate-limiting step. In contrast, general acid catalysis refers to a process, where proton transfer of a "general acid," any acid that will impact the rate of the reaction, is involved in the rate-determining step.⁵⁰

Hydrogen bond catalysis

Brønsted acid catalysis

X = O, NR'D = Donor

Figure 9. Representative depiction of intermediates involved in hydrogen bond catalysis vs. Brønsted acid catalysis.

Irrespective of the mechanism, Brønsted acid catalysis has obtained a revered status in organic synthesis owing to its contribution to the efficient formation of carbon–carbon and carbon–oxygen bonds.⁵¹ What is more, this realm of non-covalent catalysis has shown tremendous promise in terms of advancing total synthesis⁵² by adding to the synthetic chemists' toolbox. The archetypal Brønsted acid that triggered a renaissance in the field of Brønsted acid organocatalysis was BINOL-derived phosphoric acid (**20**), as independently brought to fruition by Akiyama⁵³ and Terada⁵⁴ in 2004 (Figure 10). This pioneering work led to the development of other axially chiral, BINOL-derived Brønsted acids, where stereoinduction hinges upon a catalyst–substrate interaction within the chiral cavity.⁵⁵

Figure 10. First reported BINOL-derived Brønsted acid (20) with other developments highlighted.

One of the key factors that quantifies the strength of a Brønsted acid is pK_a , which is a term that refers to the willingness of a Brønsted acid to donate a proton and stabilize its conjugate base. However, strictly relying on the pK_a of the catalyst at hand will only provide a modicum of mechanistic information. Moreover, employing other empirical methods and/or physical organic parameters are imperative for gaining insight and probing the mechanistic underpinnings of catalysis. In particular, kinetic studies,^{3,4} nucleophilicity and electrophilicity parameters,⁵⁶ and colorimetric assays⁵⁷ are often used to provide insight into reaction profiles. With respect to the latter, Kozlowski introduced pyrazinone sensor **21** to determine the effectiveness of H-bonding catalysts (Figure 11). In theory, a better understanding of secondary catalyst–substrate interactions, such as sterics and Hbonding directionality could be assessed.

Figure 11. Representative H-bonding interaction with a colorimetric sensor for assessing H-bond strength.

Likewise, modern-day computational tools offer a powerful means for acquiring mechanistic understanding and, as such, continue to gain popularity. This is evidenced by numerous reports in drug design,⁵⁸ method development, and material applications.⁵⁹ Further to this point, key in advancing chemical discovery has been the use of DFT computational calculations as an effective and versatile resource for examining reactivity, e.g., H-bond orchestrated catalyst–substrate interactions and catalysis.⁶⁰

With a variety of methods available to assess catalyst performance and reactivity, it is becoming less difficult to hone particular catalytic features. For instance, there has been a direct correlation between charge and acidity leading to higher catalytic performance. This has been observed in electrostatically enhanced thioureas,¹⁰ as well as other well-established cationic H-bond donors, including amidinium,⁶¹ ammonium,⁶² guanidinium,⁶³ pyridinium,⁶⁴ and quinolinium ions.⁶⁵ Furthermore, Lambert has demonstrated that aromaticity is a pivotal acidifying element in the field of Brønsted acid catalysis.⁶⁶

Having a deeper understanding of non-covalent H-bond- and Brønsted acid catalysis, the following section will shift focus to two distinct, yet related, popular classes of organocatalysts, namely (thio)ureas and squaramides.

2.1.5 Thiourea and squaramide organocatalysis

In search of new Brønsted acid catalysts, chemists' stumbled upon neutral smallmolecule organic thioureas and squaramides that paradoxically fit more of the description of being H-bonding catalysts, rather than Brønsted acids.⁵¹ Preceding their discovery, several research groups made significant contributions in the chemistry community that set the stage for future developments (Figure 12). In 1990, Kelly and co-workers were the first group to advance biphenylene diols (**22**) as capable molecular recognition and substrate activation agents *via* bifurcated H-bonding targeting a Diels–Alder reaction.⁶⁷ The same year, Etter and co-workers discovered that electron-deficient diaryl ureas (**23**) have a predilection for forming co-crystals with various carbonyl-containing compounds.⁶⁸ It was from these precedent works that Curran and Kuo, for the first time, employed a novel electron-deficient (trifluoromethyl group), yet soluble (octyl ester) urea (**24**) for the radicalmediated allylation of α -(phenylseleno)-sulfoxides,⁶⁹ as well as the Claisen rearrangement.⁷⁰

Figure 12. Evolution of H-bonding catalysts.

A truly ground-breaking report was put forth in 1998 by Jacobsen and Sigman.⁷¹ They were the first to demonstrate that chiral (thio)ureas (**25**) function as competent catalysts to induce stereoselectivity (Figure 13). This inspired others, such as Schreiner and

Takemoto, who eventually became key players, to further add to the field of thiourea catalysis; a strong impetus being the enhanced differences in acidities, i.e., pK_a thiourea = 21.0; pK_a urea = 26.9.⁷² Schreiner demonstrated that the strategic positioning of two trifluoromethyl groups in the 3,5-positions on the aromatic rings of a thiourea (26) proved to be the most effective in terms of catalytic activity.^{9f,73} In fact, thanks to the joint effort of four trifluoromethyl groups, the experimental pK_a of thiourea 26 was determined to be 8.5 in DMSO.⁷⁴ This catalyst is the most acidic neutral thiourea to date. Takemoto, however, was interested in pursuing a different avenue; one in which he is highly recognized for his efforts. Of course, he decided to incorporate the 3,5-bistrifluoromethyl aryl moiety as a design element, as a result of Schreiner's seminal work. Moreover, he and his group were the first to introduce the concept of bifunctionality into thiourea catalysis (27) in 2003.⁷⁵ These types of catalysts are comprised of three components: (1) a domain with an amine or phosphine group that functions as either a base or nucleophile, (2) a thiourea hydrogen bond domain for further substrate activation and (3) a chiral skeleton that establishes a chiral environment.⁷⁶

Figure 13. Landmark thiourea catalysts reported by Jacobsen,⁷¹ Schreiner^{9f} and Takemoto.⁷⁵

Although (thio)urea catalysts continue to be used, and their reactivity further finetuned, e.g., replacement of four CF₃ groups with two charged centers led to a 400 fold increase in reactivity,^{10b} the use of squaramides (derived from squaric acids) as alternatives has attracted considerable attention. In 2010, Rawal and co-workers left a sizable footprint in the organocatalysis community by disclosing a report, wherein enantioselective Michael addition reactions enabled by a chiral squaramide catalyst (**28**) were not only possible, but highly efficient,⁷⁷ and since, has been recognized as a prominent figure in the context of squaramide catalysis (Figure 14). This report clearly piqued interest, as attested to by various groups across the globe rushing to develop efficient methods for accessing this class of catalyst, as well as deploying them in search of novel bond disconnections.⁷⁸ Rawal, again, demonstrated his efforts by providing facile access to a wide-range of thiosquaramides and squaramides from common intermediate **29** in 2018.⁷⁹

Figure 14. Rawal's first reported chiral squaramide catalyst (left-hand side) and squarate ester ((thio)squaramide catalyst precursor (right-hand side)).

The squaramido functionality offers five main differences relative to (thio)urea motifs that, ultimately, impact reactivity. A few of these differences are highlighted in Figure 15. The first difference stems from binding capability. It is well-established that (thio)ureas engage in tight anion-binding; however, the same cannot be said regarding cations.³⁰ In contrast, the squaramido functionality can simultaneously bind an anion and cation—a process formally referred to as ditopic binding. A theoretical study from 2002 suggested that the squaramido functionality becomes more aromatic upon complexation to

a cation.⁸⁰ What is more, squaramides harbour more bifunctional character with respect to different H-bonding patterns owing to their structure, which features two H-bond donors (N–H) and two H-bond acceptors (C=O).^{78b} Another difference that sets squaramides apart from (thio)ureas is rigidity. Although electron delocalization, which restricts the rotation of the C-N bond occurs in both (thio)ureas and squaramides, the latter are more rigid due to the additional delocalization throughout the cyclobutenedione system. As a result, the carbonyl and amine groups become coplanar.⁸¹ Two additional structural differences between thioureas and squaramides are the distances between the two N-H groups, as well as geometry. The former was investigated by both Takemoto⁸² and Rawal,⁸³ where they ascertained bond distances of ~ 2.13 Å and ~ 2.72 for generic thiourea and squaramide N– H groups, respectively. Furthermore, the squaramide N-H groups are tilted slightly inward by $\sim 6^{\circ}$ because of the square geometric structure.⁸³ The final major difference arises from pK_a . The above-mentioned structural and physical differences have a direct influence on the p K_a of squaramides. In 2014, Li and Cheng determined the experimental p K_a values of various squaramide catalysts in DMSO and compared these values to their thiourea counterparts.⁸⁴ It was found that the analogous squaramide structures were more acidic up to 2 pK_a units. This result alone helps support the notion that squaramides are stronger Hbond donors, when compared to thioureas. One way to further augment the pK_a of thioureas and squaramides is through the introduction of charge.

Figure 15. Outlined differences comparing thioureas and squaramides (left-hand side), and depiction of ditopic binding as an inherent property of squaramides (right-hand side).

This brings us to the last topic of discussion with respect to the introduction. This final section will encompass a brief overview and history of cyclopropeniums—the smallest member of the Hückel aromatic systems. Hopefully, this will help evoke an appreciation for these non-benzenoid carbocycles, and further, *deepen* the understanding of how they can be used to promote catalysis.

2.2 Evolution of cyclopropeniums and congeners

Organic chemists have been, and continue to be, enticed by the notion of exploring the depth and breadth of molecular structure and function ever since the advent of organic synthesis in 1828, when Wöhler synthesized urea.⁸⁵ There is definitely something alluring about the ability to successfully make molecules, especially if these molecules are non-existent in Nature. A particular area of interest that has captivated the chemical community for centuries is that of highly strained molecules. In fact, Adolf von Baeyer sparked this surge of interest in 1885 after he announced his presumption that three- and four-membered
rings were not as pervasive as other structures in Nature due to the possibility of having deformed carbon–carbon bond angles, thus, contributing to their instability.⁸⁶ The race among chemists to directly correlate reactivity with strain and stability then began in the early 1900s.

Special attention was paid to Dem'yanov and Doyarenko, as they were the first to report the synthesis of cyclopropene in 1922 *via* thermal decomposition (~ 300 °C) of trimethylcyclopropylammonium hydroxide.⁸⁷ However, because obtaining this type of molecule was considered to be an arduous task at the time, it wasn't until the 1950's that truly sparked chemists' curiosities in terms of investigating these strained systems. The reasoning was two-fold: (1) accessing these unsaturated carbocycles became easier over time, thanks to advancements in carbene chemistry,⁸⁸ and (2) in 1952, Roberts and co-workers revealed that the cyclopropenyl cation abides to Hückel's $4n+2\pi$ -rule, where n = 0.⁸⁹ As such, exploratory studies centered around cyclopropene and the cyclopropenium ion then began.

With respect to cyclopropene, Baeyer was correct to assume that three-membered rings suffered from severe strain owing to bond deviations. The increased reactivity of such systems is attributed to three main factors that ultimately perturb the σ - and π -orbital framework: (1) angle strain, (2) twisting and (3) pyramidalization (Figure 16). The first point arises from the presence of one or more trigonal centers leading to deviations from ideal bond-angles of 120°, whereas the latter two distort the alkene π -bond forcing the p-orbitals out of co-planarity, which consequently increases reactivity. Further to this point, as a result of this weaker π -bond, the HOMO energy of the molecule is increased allowing for a more facile interaction with its reaction partner. Another well-known concept that has

been put forth is strain-release-driven reactivity, wherein favourable $sp^2 \rightarrow sp^3$ rehybridization takes place.⁹⁰

angle strain twisting pyramidalization

Figure 16. Factors contributing to cyclopropene instability.

2.2.1 Aminocyclopropeniums: synthesis and stability

The chemical community was well aware of the intricacies centered around the instability of cyclopropene, and, thus, it was uncertain whether the energetic penalty of high ring strain could be superseded by aromatic stability. However, a landmark disclosure by Breslow in 1957 cleared up any ambiguity associated with this theoretical curiosity by providing experimental verification of the first isolated cyclopropenium ion, namely striphenylcyclopropenyl cation⁹¹ **30** (Scheme 1). This synthesis commenced with a reaction between diphenyl acetylene (31) and phenyldiazoacetonitrile (32) to furnish 1,2,3triphenylcyclopropenyl cyanide (33). This intermediate was determined to be soluble in non-polar solvents and did not precipitate in the presence of ethanolic silver nitrate, meaning it is not ionic. Further treatment with a solution of boron trifluoride etherate with trace amounts of water (contains fluoroboric-, hydroxyfluoroboric- and boric acids) resulted in formation of s-triphenylcyclopropenyl cation **30** as a white crystalline solid. This compound was confirmed by elemental analysis, and further characterized after conversion to its picrate salt. Notably, a characteristic feature inherent to picrate salts is a bright yellow colour, which was observed for the cyclopropenium compound at hand.

Further evidence was seen by regenerating compound **33** upon reaction of compound **30** with potassium cyanide.

Scheme 1. First reported synthesis and isolation of the s-triphenylcyclopropenyl cation.

As mentioned above, the other primary impetus responsible for the burgeoning interest in cyclopropene chemistry was advancements of new carbene-based synthetic methods. To this end, Wagner indirectly laid the groundwork for the ability to access cyclopropenimine compounds after disclosing a new approach to the synthesis of dichlorocarbene (:CCl₂) in 1959.⁹² This reactive intermediate was formed *via* thermal decarboxylation of sodium trichloroaceteate (**34**) in 1,2-dimethoxyethane. Tobey and West quickly moved on this finding,⁹³ and exploited Wagner's method for the synthesis of pentachlorocyclopropane (**35**) and its congener tetrachlorocyclopropene (**36**) (Scheme 2). Compound **35** is accessed by reacting sodium trichloroaceteate (**34**) with trichloroethylene (**37**) in the presence of 1,2-dimethoxyethane at 90 °C for 5 days. Tetrachlorocyclopropene (**36**) can be obtained by subsequent dehydrohalogenation under extremely basic conditions. The Dudding laboratory employs Tobey and West's method to this day.

Scheme 2. Synthesis of pentachlorocyclopropane and tetrachlorocyclopropene.

The preparation of aminocyclopropenium compounds begins with either tetrachlorocyclopropene⁹⁴ or pentachlorocyclopropane.⁹⁵ Yoshida proposed a mechanistic rationale from tetrachlorocyclopropene⁹⁴ that involves a series of S_N2' steps terminating with an ionization step. The point where ionization actually takes place is a controversial topic, and cannot be easily pinpointed owing to this being a rapid process.¹⁴ Nonetheless, the mechanism for this process is provided in Scheme 3. Utilizing pentachlorocyclopropane as starting material *in lieu* of tetrachlorocyclopropene renders a similar mechanism, with the exception that tetrachlorocyclopropene is generated *in situ* by base-induced elimination.⁹³ This was demonstrated by Taylor and co-workers in 1994.⁹⁵ It is customary to employ at least 6 equivalents of amine in order to obtain a higher yield of the desired aminocyclopropenium product.

Scheme 3. Presumed mechanism for accessing bis- or tris-substituted aminocyclopropenium compounds.

Preceding the advent of tetrachlorocyclopropene, Breslow and co-workers showcased the thermodynamic stability of several cyclopropenium compounds with disparate aryl and alkyl substituents.⁹⁶ They managed to gauge their stability based on pK_{R+} , which is an empirical parameter corresponding to 50% conversion of a cation to its carbinol at a particular pH. From their findings, they noticed that there is a greater degree of carbocation stabilization in the presence of alkyl substituents, rather than aryl substituents. This prompted Yoshida to install alkylamino substituents (see the above scheme), as it was postulated that they would confer further stabilization.⁹⁷ In fact, the first advanced cyclopropenium of this kind tris-substituted was а (dialkylamino)cyclopropenium (43)—a sub-class of one of the most stable carbocations to date.¹⁴ This stability is attributed to conjugative effects; thus, compensating for the energetic penalty of its incomplete octet. To put this into perspective, a range of carbocations with their corresponding measured pK_{R+} values is offered in Scheme 4.⁹⁶

Scheme 4. Reported pK_{R+} *values for various carbocations.*

2.2.2 Applications of cyclopropenium-appended molecules as catalysts

The incorporation of aminoalkyl substituents extends even further than simply imparting stabilization, in that, an enhanced dispersion of positive charge is manifested when compared to other onium salts, including ammonium, phosphonium and guanidinium systems.⁹⁸ Paradoxically, this leads to an electron-excessive carbenium salt, as observed by Weiss and co-workers,⁹⁹ ultimately creating a repulsive interaction in the presence of an electron-rich counteranion. This interaction was coined as "ion pair strain," wherein a favourable electrostatic interaction was superseded by repulsion between the HOMO of the counteranion and the HOMO of the aminocyclopropenium ion (donor–donor ion pair strain). This phenomenon renders a "naked" ion, which has obvious implications in catalysis. In fact, Dudding and co-workers¹⁰⁰ observed ion pair strain with the help of Xray analysis and DFT calculations for a novel, hybrid cyclopropenium/guanidine system ($46 \cdot Cl^-$) (Scheme 5). They then used this as leverage to promote two phase-transfercatalyzed processes, namely benzylation and benzylic fluorination.

Scheme 5. A cyclopropenium-based phase-transfer catalyst exhibiting ion pair strain applied in benzylation and fluorination.

Shortly thereafter, Dudding and co-workers advanced a protonated dicationic variant that functioned as a strong Brønsted acid.¹⁰¹ To the best of my knowledge, this is the first instance of a cyclopropenium-based compound functioning as a Brønsted acid catalyst, where a proton is fully transferred and not just engaged in a H-bonding interaction. This reported catalyst (52.2BF₄⁻) exhibited two striking features: (1) a computed pK_a of 0.9 in MeCN, thus, falling in the realm of being classified as a superacid (sulfuric acid has a p K_a of 7.2 in MeCN)¹⁰² and (2) donor-donor ion pair strain with the two tetrafluoroborate counteranions residing at relatively distant points from the cyclopropenium-appended molecule, as opposed to engaging in electrostatic interactions or H-bonding with the hydrogen-containing nitrogen atom. An X-ray crystal structure of 52 · 2BF₄⁻ is offered in Figure 17 A. In addition to these remarkable features, they further demonstrated the synthetic utility of this catalyst by pursuing two different hydroamination routes (Figure 17 B). The first involves various phenylacetylenes with electron-poor anilines as reaction partners in the presence of a gold precatalyst complex (53), whereas the second solely relied on catalyst $52 \cdot 2BF_4^-$ to induce hydroamination of alkenes.

The disclosure described above functions as a direct antithesis to the original premise that cyclopropenimine compounds were *strong Brønsted bases*.¹⁴ In fact, theoretical studies revealing their strong basic character have been steadily gaining traction since 1999.¹⁰³ This basicity arises from the presence of a latent cyclopropenium ion.¹⁰⁴ The ability to aromatize, or rearomatize, serves as the driving force for chemical reactions,¹⁰⁵ making this class of non-benzenoid aromatic ions ideal candidates for promoting catalysis. This is, no doubt, a common theme to both Brønsted base- and Brønsted acid catalysis, wherein initiating reactivity of the former hinges upon accepting a proton to generate

aromaticity, and the latter on facile proton transfer owing to charge-enhanced acidity. Nevertheless, both strategies are, to some extent, based on aromatic cation activation involving shuttling between charged and neutral states.

Figure 17. (*A*) X-ray structure of $54 \cdot 2BF_4^{-102}$ (*B*) Hydroamination mediated by a cyclopropenium-based strong Brønsted acid.

Although it was well-accepted, early on, that cyclopropenimines feature strong basic character, it wasn't until 2012 that Lambert and co-workers demonstrated their utility in catalysis as strong, chiral organic Brønsted bases.¹⁰⁴ The impetus for this pursuit was manifold. Aside from numerous theoretical studies supporting their strong basicity,¹⁰³ Lambert and co-workers were the first to experimentally measure the acidity of the conjugate acid (pK_{BH+}) of cyclopropenimine **60** in MeCN.¹⁰⁴ They found that cyclopropenimine **60** (26.9) had a comparable pK_{BH+} to guanidine **61** (26.03) and phosphazene base **62** (26.98), thus, fitting the description of being classified as a so-called "superbase" (Scheme 6). A superbase is a chemical entity comprised of at least two bases¹⁰⁶ leading to a synergistic relationship, and, thus, an enhancement in basicity relative to the independent bases. Moreover, cyclopropenimine superbases come with two, key inherent advantages, including ease of synthesis and aromatic resonance stabilization upon protonation, whereas amidines and guanidines have limited basicity owing to their framework,¹⁰⁴ and phosphazenes suffer from complicated preparative routes.¹⁰⁷

Scheme 6. A range of reported strong organic bases. Their corresponding pK_{BH+} values are in parentheses.

With these characteristic basic traits in mind, Lambert and co-workers were prompted to deploy cyclopropenimine **65** as a catalyst for a Michael reaction between *tert*-butyl glycinate benzophenone imine (**66**) and a range of Michael acceptors (**67**) (Scheme

7 A).¹⁰⁴ They gauged the reactivity of this catalyst against a similar chiral guanidine catalyst (**68**), and found that catalyst **65**, using a catalyst loading of 10 mol%, outperformed catalyst **68** at 20 mol% employing neat conditions and in the presence of solvent (Scheme 7 B).

By analogy, the combination of multiple superbases renders a "higher-order superbase." In 2015, Nacsa and Lambert developed six new classes of higher-order superbases, with five that incorporate cyclopropenimine functionality.¹⁰⁸ A generic skeleton showcasing these five classes (**70–74**) is depicted in Scheme 8. They were able to fine-tune the basicity of these superbases by modulating either the core and/or substituents. Each class was comprised of either a cyclopropenimine-, guanidine- or phosphazene core. Notably, they were able to observe remarkable pK_{BH+} values in MeCN, spanning from high twenties-to-mid forties. (29–42.1). A striking observation of this work, however, is that superbases with a cyclopropenimine core proved to be less efficient in terms of imparting stronger basicity to the imino group (cyclopropenimine < guanidine < phosphazene). This trend was ascribed to the incipient cyclopropenyl cation being the least stabilized relative to the other cations.¹⁰⁹

Scheme 8. Five new classes of higher-order cyclopropenimine superbases.

cyclopropenimine core:

Since then, the cationic nature of cyclopropenium compounds has been leveraged to tap into other non-covalent interactions, such as H-bonding and its close relative halogen bonding. For instance, Dudding and co-workers published two back-to-back phase-transfer-catalyzed methodologies employing a bis(dialkylamino)cyclopropenium catalyst ($75 \cdot Cl^{-}$) (Scheme 9).¹¹⁰ It was posited that this would be an efficient phase-transfer catalyst due to three main factors: (1) presence of lipophilic alkyl groups, (2) a π -polarizable aromatic cation and (3) an acidic C–H moiety allowing for H-bonding interactions. With this in mind, they first exploited this catalyst's features for the *O*-silyl ether deprotection of various alcohols using solid KF as a mild fluoride source,^{110b} followed by benzylic fluorination using more reactive CsF.^{110a} A common theme among these reports was cyclopropenium-mediated fluoride shuttling from the solid phase to the organic phase *via* H-bonding.

Scheme 9. O-Silyl ether deprotection (top) and benzylic fluorination (bottom) mediated by a phase-transfer cyclopropenium catalyst.

Another recent addition contributing to H-bond catalysis was a report by the Guo Li and research groups, where they developed new type of а tris(monoalkylamino)cyclopropenium (80·Cl⁻) that exhibited ion pair strain.¹¹¹ Cyclopropenium 80 Cl⁻ was deployed in ring-opening polymerization of lactones operating through cooperative organocatalysis (Figure 18). This reactivity hinged upon a weakly coordinating cation to function as a strong H-bond donor and its corresponding "naked" anion as a strong H-bond acceptor. Supporting this mechanistic hypothesis was a large distance (>4 Å) between the cyclopropenium core and chloride counteranion, thus, revealing a "loose" interaction, as observed via X-ray analysis of the single-crystal. Furthermore, using a fluoride counteranion in lieu of a chloride proved to be inefficient, presumably due to the formation of a "tight" ion pair. Likewise, no reactivity was observed when the monoalkylamino groups were substituted out for dialkylamino groups, owing to loss of the H-bond donor domain.

Figure 18. Ring-opening polymerization using benzyl alcohol as the initiator (top). Cooperative mode of substrate activation (bottom).

2.2.3 The first example of a cyclopropenium compound exhibiting XB donor character

In 2020, Huber and Weiss entered uncharted territory after disclosing a report, in which an unconventional type of halogen bonding—a non-covalent interaction between a an electrophilic region on a halogen atom and a Lewis base—was observed using cyclopropenium-containing compounds.¹¹² The forces that govern halogen bonding have been under great scrutiny¹¹³ since its first reported occurrence in 1814, when Colin described a reaction between ammonia and iodine.¹¹⁴ Moreover, two generally accepted bonding contributions have been primarily attributed to charge transfer and/or electrostatic effects. The former theory was proposed as early as 1950 by Mulliken, and describes a $n \rightarrow \sigma^*$ -type orbital interaction,¹¹⁵ whereas the latter arises from a rationale centered around the σ -hole theory formulated by Politzer and co-workers in 1994.¹¹⁶ The σ -hole theory is

quite complex and consists of numerous mediating factors,¹¹³ but, in essence, the σ -hole is a positively charged region on a halogen atom that lies *trans* to the σ -bond, and arises from anisotropy of electron density.¹¹⁷ The ability to fine-tune the strength of the incipient halogen bond (XB) (by increasing the size of the σ -hole) traditionally involves neutral¹¹⁸ or cationic¹¹⁹ XB donors. Anionic XB donors can also engage in halogen bonding, though pinpointing this interaction on electrostatic reasoning is counterintuitive.

Halogen bonding involving anionic XB donors has been formally coined as "antielectrostatic" XBs (AEXBs).¹¹² Huber and Weiss were the first to demonstrate such an AEXB interaction between an anionic XB donor, namely an anionic iodocyclopropenium (84·TDA⁺), and a structurally different anion (Figure 19). Through the help of computational calculations, they realized that no positive electrostatic potential could be found on compound 84, albeit a slightly less negative electrostatic potential was seen in the elongation of the C–I bond. Further calculations in the presence of halides (X = Cl and I) revealed that halogen bonding was taking place. They came to this conclusion as a result of the I···I and I···Cl bond distances being shorter than the sum of the van der Waals radii.¹²⁰ To corroborate their computational findings, a co-crystal of 84 in the presence iodine was grown with the speculation that iodine would induce favourable polarization of the XB donor. They further base their argument in favour of $n\rightarrow\sigma^*$ -type orbital interactions, as opposed to the σ -hole theory. This case-in-point anionic XB donor has implications in catalysis, especially anion-binding catalysis.⁸

Figure 19. An anionic iodocyclopropenium halogen bonding interaction.

3.0 Disclaimer

Select publications have been included in this thesis that highlight some of my primary work throughout my 5-year duration in the Doctoral program at Brock University, which are listed in chronological order. Aspects of this thesis that were not performed by the candidate, Ivor Smajlagic, will be clarified below.

- (1) Adapted with permission from Smajlagic, I.; Durán, R.; Pilkington, M.; Dudding, T. Cyclopropenium Enhanced Thiourea Catalysis. *J. Org. Chem.* **2018**, *83*, 13973–13980. Copyright 2018 American Chemical Society. The candidate performed all of the experimental- and synthetic work. Dr. Melanie Pilkington performed X-ray diffraction studies on a single-crystal of $4 \cdot BF_4^-$, wherein the crystal was grown by the candidate. Rocio Durán determined the computed pK_a of thiourea **4**. Dr. Travis Dudding performed the remainder of the computations. Razvan Simionescu helped with the setup and analysis of NMR experiments. The writing of the manuscript was initiated by the candidate from which then a rigorous revision process took place between the candidate and supervisor, Dr. Travis Dudding, ultimately leading to publication.
- (2) No permission was required from Elsevier. Smajlagic, I.; Carlson, B.; Rosano, N.; Foy, H.; Dudding, T. Charge-Enhanced Thiourea Catalysts as Hydrogen Bond Donors for Friedel–Crafts Alkylations. *Tetrahedron* 2019, *75*, 130757–130763. The candidate performed the majority of experiments (~70%), including synthetic work and chemical kinetics. Brenden Carlson contributed his efforts to this work by helping establish the substrate scope. Nicholas Rosano synthesized all trans-β-nitrostyrene analogs, which

were used as starting material. Hayden Foy completed all computations. The writing of the manuscript was initiated by the candidate from which then a rigorous revision process took place between the candidate and supervisor, Dr. Travis Dudding, ultimately leading to publication.

(3) Adapted with permission from Smajlagic, I.; Guest, M.; Durán, R.; Herrera, B.; Dudding, T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. *J. Org. Chem.* 2020, *85*, 585–593. Copyright 2020 American Chemical Society. The candidate performed all of the experimental- and synthetic work. Matt Guest performed most computations (~80%) with assistance from Dr. Travis Dudding and Rocio Durán. Razvan Simionescu helped with the set-up and analysis of NMR experiments. The writing of the manuscript was initiated by the candidate from which then a rigorous revision process took place between the candidate and supervisor, Dr. Travis Dudding, ultimately leading to publication.

The last section of the Results and Discussion entitled "Second-Generation Squaramide-Cyclopropenium as a Brønsted Acid Organocatalyst" is not yet published. The contributions to the work that was chosen to be highlighted by the candidate follows below. The candidate performed majority of the experiments (~95%). Brandon White and Oyindamola Azeez assisted in the purification and characterization of products. Computational modeling was performed by the candidate. Dr. Melanie Pilkington performed X-ray diffraction studies on a single-crystal of $11 \cdot BF_4^-$, wherein the crystal was grown by the candidate.

4.0 Results and Discussion

4.1 Introduction

Having become more familiar with the content relating to the anticipated chemistry, *vide infra*, the next section of this dissertation will now be discussed. In a specific sense, these sub-sections are compartmentalized by varying modes of catalytic reactivity; however, aspects such as synthesis and other domains/techniques will also be discussed. In this way, it places emphasis on how molecular structure affects chemical reactivity; the intellectual basis of organic chemistry. The sub-sections are listed as follows:

- 1) Thiourea-cyclopropenium as a Brønsted acid organocatalyst
- 2) Thiourea-cyclopropenium as a hydrogen bond donor organocatalyst
- 3) Second-generation squaramide-cyclopropenium as a Brønsted acid organocatalyst

4.2 Thiourea-cyclopropenium as a Brønsted acid organocatalyst

As an in-coming graduate student in the Dudding laboratory (2016), there were frequent talks centered around achieving the arduous synthesis of a thioureacyclopropenium molecule, as envisioned by Dr. Dudding. Being overzealous, yet a novice in the field of synthesis, I volunteered to take on this task and assist in pioneering this idea by bringing it to fruition. In theory, combining the two components—thiourea and cyclopropenium—would lead to a charge-enhanced catalyst that is presumably more efficient in catalyzing reactions than neutral, achiral, state-of-the-art thiourea organocatalysts. Given this basis, as well as the established interest in developing novel cyclopropenium systems in the Dudding group, cyclopropenium-augmented thiourea **4** was explored (Figure 20A). Motivating this enterprise was the premise that **4** would exhibit both cationic H-bond donor (*domain A*) and electrostatically-enhanced character due to the presence of the cyclopropenium ring (*domain B*), in addition to a Lewis basic sulfur atom that could serve as a H-bond acceptor (*domain C*). A view supported by the computed NBO charges and the ESP of envisioned 4 (*Z*,*Z*-conformer), with positively charged N–H hydrogens and cyclopropenium ring carbon atoms (Figure 20B). Exploring this concept further, the first thiourea-cyclopropenium and its application as a Brønsted acid catalyst ($4 \cdot BF_4^-$) for the synthetically important pyranylation of alcohols and phenols was investigated (Figure 20C).

Figure 20. (*A*) Cyclopropenium as a new charged domain for (thio)urea catalysts. (*B*) ESP with isodensity value 0.0001 au (left-hand side) and computed NBO charges of select atoms of thiourea 4 at the B3LYP/6-31G+(d,p) level of theory (right-hand side). (*C*) General conditions for the pyranylation of alcohols and phenols using thiourea catalyst $4 \cdot BF_4^{-}$.

4.2.1 Exploratory studies centered around structure determination, optimizations and substrate scope

At the outset of this experimental investigation, the synthesis of this envisioned thiourea was pursued, ultimately leading to a short preparative route involving the treatment of phenyl isothiocyanate with 2,3-bis(diisopropylamino)cyclopropenimine in DCM affording 4·BF₄⁻ in 44% isolated yield. Subsequent X-ray diffraction studies on a single-crystal of 4·BF₄⁻ revealed several interesting features, *viz.*, a *Z*,*Z*-conformation and short intermolecular contacts between the thiourea N-H hydrogen atoms and BF₄⁻⁻ counterion, such that, N(4)-H(4)···F(1) = 2.312 Å and N(3)-H(3)···F(2) = 2.003 Å (Figure 21a). Furthermore, the phenyl and thiourea groups were co-planar ($\theta_{C(16)-N(4)-C(17)-C(22)} =$ 174.4(4)°), consistent with extended π -conjugation, while in contrast the orthogonal ($\theta_{C(16)}$ - $N(3)-C(3)-C(1) = 87.7(5)^{\circ}$ alignment of the cyclopropenium ring and the thiourea functionality was indicative of poor π -conjugation (see Appendix A for details). Supporting this bonding scenario was a slight lengthening (~ 0.03 Å) of the N(3)–C(16) bond distance when compared to the N(4)–C(16) distance of 1.352(4) Å. Meanwhile, the computed acidity of the N(3)–H(3) group ($pK_a = 5.42$ in DMSO) was considerably greater than the N(4)–H(4) group ($pK_a = 11.7$ in DMSO), presumably as a result of the electrostatically-enhanced Hbond donor capacity conferred by the adjacent positively charged cyclopropenium moiety (Figure 21b).

Figure 21. (a) Thermal ellipsoid plot of the molecular structure of $4 \cdot BF_4^-$ with appropriate labelling scheme. Thermal ellipsoids are plotted at 50%. Only selected H-atoms are shown. Short N-H…F contacts are shown as red dashed lines. (b) Two-dimensional representation of $4 \cdot BF_4^-$ highlighting the computed pK_a values in DMSO.

Having insight into the structural and physical properties of thiourea $4 \cdot BF_4^-$, we next explored its use as a catalyst for the pyranylation of alcohols (5) with DHP (6). The results are summarized in Table 1. Initial efforts to facilitate the pyranylation of alcohols consisted of using benzyl alcohol (5a) and 6 as substrates in dilute conditions (0.5 M in alcohol and 1.0 M in DHP), which led to poor conversion rates even after 12 hours (entries 1 and 2). A phenomenon presumably arising from the lack of interactions between the substrates and the catalyst, which speaks to the molecularity of the reaction. To circumvent this issue, we subjected the substrates of interest and catalyst to different reaction conditions that were more optimal involving low catalyst loading (1 mol%) and more concentrated reaction conditions (1.0 M in alcohol and 2.0 M in DHP) affording full conversion of **7a** in 3 h (entry 3). Furthermore, these conditions were then applied using reported electrostatically enhanced thiourea, 1-methyl-3-(3-phenylthioureido)pyridinium iodide^{10b} (1 mol%), which resulted in no conversion after 6 hours. Next, the use of solvent-free conditions and a 1:2 reagent stoichiometry provided a similar reaction outcome, though a slightly longer reaction time was required (entry 5). Notably, there was a three-fold rate acceleration in comparison to Schreiner's reported thiourea for the pyranylation of **5a** under the same solvent-free reaction conditions.^{9e}

Table 1. Optimization of reaction conditions.

entry	catalyst	loading (mol%)	conversion ^d (1 h)	conversion ^d (6 h)	conversion ^d (12 h)
1	$4 \cdot BF_4^{-a}$	1	3%	6%	11%
2	$4 \cdot \mathrm{BF_4}^{-\mathrm{a}}$	10	13%	20%	28%
3	$4 \cdot \mathrm{BF_4}^{-\mathrm{b}}$	1	35%	100%	100%
4	$4 \cdot \mathrm{BF_4}^{-\mathrm{b}}$	10	24%	100%	100%
5	$4 \cdot \mathrm{BF_4}^{-\mathrm{c}}$	1	28%	100%	100%
6	$4 \cdot \mathrm{BF_4}^{-\mathrm{c}}$	10	30%	100%	100%
7	4 ·Cl ^{− b}	1	0%	0%	0%
8	4 ·Cl ^{− b}	10	28%	50%	100%

Reactions were performed at room temperature using the following conditions: ^a0.5 mmol **5a**, 1.0 mmol **6** and 1.0 mL DCM. ^b0.5 mmol **5a**, 1.0 mmol **6** and 0.5 mL DCM. ^c1.0 mmol **5a**, 2.0 mmol **6** under neat conditions. ^dConversion was determined *via* ¹H NMR spectroscopic analysis of the crude reaction mixtures. This involved monitoring the disappearance of the signal at 6.37 ppm for **6** and appearance of the signal at 4.51 ppm for the THP protected product (**7a**).

Also apparent from the optimization studies was the observation of catalyst inhibition in the presence of a chloride counterion (entries 7 and 8) attributed to tight anion-binding in solution,⁸ as supported by a downfield shift of the N–H hydrogen atoms of thiourea $4 \cdot \text{Cl}^- \text{ vs } 4 \cdot \text{BF}_4^-$ (¹H NMR (CDCl₃) $\Delta \delta \text{N}(4)$ –H = 2.59 ppm and $\Delta \delta \text{N}(3)$ –H = 2.84 ppm), see Table 2. This data is consistent with the literature, in that, a strong thiourea-chloride complex is formed (thiourea $4 \cdot \text{Cl}^-$), and, thus, reduced reactivity is observed. On the other hand, tetrafluoroborate, being a weaker coordinating counteranion, was found to exhibit enhanced reactivity, albeit still possessing H-bond acceptor character, yet to a lesser extent. *Table 2. ¹H NMR data comparing N–H chemical shifts for thiourea catalysts* $4 \cdot BF_4^- \ll 4 \cdot Cl^-$ *in CDCl*₃.

^a A significant downfield shift is observed for both N(4)–H and N(3)–H atoms of thiourea 4·Cl⁻, respectively. It can be inferred that the protons are being deshielded by the chloride counteranion.

With the optimal conditions identified, $4 \cdot BF_4^-$ was applied to the reaction of various alkyl- and aryl-substituted primary alcohols (Table 3). For example, functionalized benzyl alcohols (**5a–g**) provided high yields in short reaction times, e.g., *p*-methyl substituted **5b** provided a 93% yield of product **7b** in 4 h. Likewise, methylene acetal protected substrate

5c afforded the pyranyl product 7c in 90% yield after 3 h, while the electron-rich *p*-methoxy and 3,5-dimethoxy substituted benzyl alcohols (5d and 5e) provided products 7d and 7e in high yields after slightly longer reaction times. Furthermore, compound 5f with an inductively withdrawing *m*-methoxy group and sterically demanding *o*-bromo substituent afforded the pyranyl product 7f in 85% yield. Benzyl alcohol substrate 5g bearing an electron deficient *p*-nitro group afforded product **7g** in 92% yield after 5.5 h. The reaction of 3-phenyl-1-propanol (5h), furnished product 7h in 70% yield after 48 h. In the case of the latter, the attenuated reactivity compared to benzyl alcohols may be ascribed to the loss of non-covalent interactions that include π - π -(aryl-aryl) stacking phenomena that subsequently impart transition state stabilization, though this does not rule out other possible modes of action that may account for this observed reactivity. Similarly, ethanol (5i), and electron-poor trifluoroethanol (5j) reacted sluggishly, albeit in high isolated yields. Conversely, primary alcohols bearing extended functionalized aliphatic side chains (5k and 5l) afforded the desired products (entries 7k and 7l) in good to excellent yields. Extending our catalytic methodology to sugar analogues, we reacted substrate 5m that furnished the pyranyl product 7m in 96% yield after 1.5 h.

Table 3. Pyranylation of primary alcohols.

^a 5.0 mmol of respective alcohols. ^b 10.0 mmol DHP. ^c The reaction was performed in 5.0 mL DCM at room temperature under an inert atmosphere. The yields provided are reported as isolated yields after flash chromatography. There was no conversion witnessed in the absence of $4 \cdot BF_4^-$.

The reaction of secondary alcohols was then probed using α -methyl benzyl alcohol (**5n**) as the substrate together with **6** under our optimized conditions (*vide supra*), which raised immediate concerns as product **7n** was produced in a low yield after 24 h. Nevertheless, the addition of benzoic acid (**85**) as a co-catalyst (10 mol%) remedied this lack of reactivity, as conferred by a 93% yield of the sterically congested pyranyl product **7n** after 5.5 h (Table 4). Employing these modified conditions, α -methyl benzyl/napthyl alcohols were also reacted with **6** to afford products **7o** and **7p** in good to excellent yields. The use of sterically hindered aliphatic substrates such as *iso*-propanol and menthol likewise afforded products **7q** and **7r** in high yields. The extension of our methodology to the reactions of tertiary alcohols also resulted in good yields of the desired products > 80%. Finally, the reactivity of phenols was explored using substrates **5u–w** all of which gave the desired pyranyl products (entries, **7u–w**) in moderate to excellent yields.

Table 4. Pyranylation of higher-substituted alcohols and phenols.

^a 5.0 mmol of respective alcohols or phenols (ROH). ^b 10.0 mmol DHP. ^c The reaction was performed in 5.0 mL DCM at room temperature under an inert atmosphere. The yields provided are reported as isolated yields after flash chromatography. There was no conversion witnessed in the absence of $4 \cdot BF_4^-$ with or without benzoic acid. ^d The diastereomeric ratio (d.r.) of compounds **7n–p** and **7r** is 1:1.

4.2.2 Mechanistic studies

Initial efforts to probe the mechanism of these reactions will now be discussed. A solution of catalyst $4 \cdot BF_4^-$ (1 equiv) was monitored by ¹H NMR as aliquots of benzyl alcohol (1-10 equiv) were added. This experiment resulted in a pronounced downfield shift of the alcohol O-H signal that was attributed to the presence of a H-bonding interaction between the thiocarbonyl sulfur atom and the alcohol that, based on DFT calculations, was computed be a favorable process (ΔE_{int} = -21.5 kcal/mol) linked to $S_{LP} \rightarrow \sigma_{(O-H)}^*$ donoracceptor interactions ($E_{NBO} = 4.94$ kcal/mol). The conspicuous lack of a change in the thiourea N-H signal, though unexpected, suggests the presence of weak or non-existent interactions between the alcohol oxygen atom and the thiourea N–H hydrogens. Further, kinetic studies revealed a first-order dependency with respect to both alcohol and DHP (see appendix A for details). Lastly, additional ¹H NMR titration experiments were performed to better understand the role of the co-catalyst (85) in the reactions of phenols, secondary and tertiary alcohols. Upon titration of 85 (1-2 equiv), it was observed that the thiourea N-H signals were participating in rapid proton exchange events with benzoic acid on the NMR timescale, thus, providing evidence for the formation of a thiourea-benzoic acid complex, as further supported by variable temperature NMR studies (see Appendix A for details). This is consistent with previous reports of Brønsted acids enhancing the catalytic activity of thioureas through a concept formally referred to as cooperative catalysis.¹²¹

From the above findings, a putative catalytic cycle is put forth for the thiourea-mediated pyranylation of primary alcohols (Figure 22). A pre-equilibrium establishing metastable catalyst–substrate H-bond complex 5.4 (step I) initiates the cycle. A subsequent reaction with DHP (6), *via* proton transfer transition state **TS1** (step II), then provides oxocarbenium

intermediate **6i** and **5**·**4**-**H**, corresponding to a tight or loose ion pair (solvent-separated vs. solvent-shared). Addition of alcohol then results in the formation of transient oxonium species **6i**' by transition state **TSII** (step III). Deprotonation of the latter by *in situ* derived thiourea conjugate base **4**-**H** then provides the pyranyl product **7** concomitant with regeneration of catalyst **4** (step IV).

Figure 22. Mechanistic proposal for the thiourea-catalyzed (4) pyranylation of primary alcohols.

This proposed cycle, however, does not take conformational dynamics into consideration and was constructed based on preliminary mechanistic information. Moreover, recent efforts in the literature investigating the putative role of thiourea *Z*,*Z*-, *E*,*Z*-, *Z*,*E*- and *E*,*E*-orientations, and their correlated conformational dynamics highlights the importance of these underappreciated, yet catalytically active conformers^{9d,h,122} (Figure 23A). In this respect, thiourea *Z*,*Z*-orientations have historically been widely invoked in

transition state models; however, contemporary examples in the literature suggest other thiourea rotamers are likely vital for reactivity (Figure 23B). Critical in this sense are environmental stimuli, e.g., solvent stabilization rigidifying catalyst conformation, and with it, influencing transition state organization.^{7a,b,122,123,124,125,126}

Figure 23. (*A*) General depiction of thiourea conformers. (*B*) Previous reported modes of reactivity for pyranylation reactions using thioureas. (*C*) Computational investigation of pyranylations using thiourea $4 \cdot BF_4^{-}$.

In light of these developments, it was obvious that further investigatory studies were imperative in order to get a better understanding of the mechanistic picture (Figure 23C). This uncertainty, along with the well-established dynamic nature of biomimetic thiourea catalysts, e.g., Schreiner's thiourea, as demonstrated by Schreiner,^{9d} Pápai and Varga,^{9h} and Baldauf,^{122b} provided a strong impetus to delineate the operative role of thiourea $4 \cdot BF_4^-$ in pyranylations and other transformations. Further, it was anticipated the knowledge acquired from this undertaking would offer insights into hydrogen bond catalysis, Brønsted acid catalysis, charge-enhanced catalysis, multifunctional catalysis, and conformational dynamics broadly applicable in organocatalysis.

To commence this experimental investigation, the rotamer distribution of $4 \cdot BF_4^-$ was explored by 1D NOESY and vtNMR (600 MHz, CD₂Cl₂) analysis (Figure 24). Irradiation of the adjacent cyclopropenium ring N(3)–H hydrogen atom (green) gave rise to NOE signals correlating to both the N(4)–H (blue) and *ortho*-aryl C(22)–H (grey) hydrogens with the latter signal being weaker in intensity. A similar trend emerged upon irradiation of the N(4)–H hydrogen, though a stronger correlation to the *ortho*-aryl C(22)–H (grey) hydrogen was observed. In contrast, correlation between the N(3)–H hydrogen and the hydrogens of the *N*-diisopropyl methyl groups was not observed, thus, suggesting a distal spatial relationship between the groups (Figure 24A). Evident from these NOE findings is a preferred solution-phase *Z*,*Z*-orientation of $4 \cdot BF_4^-$ that is consistent with the reported crystal structure, *vide supra*.

Prompted by these results, it was anticipated that VT analysis would reveal the presence of other rotamers of $4 \cdot BF_4^-$ at lower temperatures (Figure 24B). Initially, a well-resolved methine signal at 4.08–4.12 ppm, indicative of rapid conformer exchange at 295.1 K, was

observed that upon cooling to 230.4 K resulted in a broad signal at ~4.09 ppm, telling of restricted rotation about the C(3)–N(3) bond. Further cooling of the sample to 203.2 K led to splitting of this poorly resolved methine signal to a doublet (4.36–4.60 ppm) and a singlet at 3.74 ppm, supporting the presence of two or possibly more distinct rotamers. Consistent with this was the extrapolated activation barrier (ΔG^{\ddagger}) of 10.2 kcal/mol and rate constant $k_{\rm c} = 974.1 \, {\rm s}^{-1}$ for this exchange process at coalescence (230.4 K). The non-equivalency of these methine signals was attributed to anisotropic shielding by the π -polarizable cyclopropenium ring and π -electron system of the thiocarbonyl. Likewise, a 1D NOESY experiment conducted at 193.0 K revealed the presence of a Z,Z-orientation. Confirming this orientation was the observed N(3)–H and N(4)–H correlation that resulted in a strong NOE signal ascribed to interactions with the tetrafluoroborate counterion, hence rigidifying this conformation.⁸ Irrespective, all of these conformers would be accessible experimentally, as further supported by the computed 12.5 kcal/mol rotational barrier for conversion of conformer E,Z-4 to Z,Z-4 (see Appendix A). In attempting to freeze out additional rotamers, the sample was cooled to 182.1 K; however, no further signal separation was observed with respect to the *ortho*-aryl hydrogen atoms, thus, confirming C(17)-N(4) bond rotation was a low barrier process.

Figure 24. A) Correlations between hydrogen atoms for $4 \cdot BF_4^-$ based on 1D NOESY experiments with atoms labelled. **B**) Variable temperature ¹H NMR spectra with select thiourea $4 \cdot BF_4^-$ conformers frozen.

Having insight into the conformational dynamics of thiourea catalyst $4 \cdot BF_4^-$, the mechanism(s) involving pyranylation of alcohols using DFT were explored. Emerging from these efforts were mechanistic pathways centered around either rate-determining (1) alcohol addition by thiourea bifurcated *dual hydrogen bond activation* (Pathway 1, Scheme 10) or (2) alcohol addition by *Brønsted acid catalysis* (Pathway 2, Scheme 11).

Pathway 1 (dual hydrogen bond activation) proceeds from thiourea 4 in the Z,Z-rotamer geometry (as observed by NMR), wherein a bifurcated H-bond complex $Z_{,Z-4-INT_{1}}$ displaying N–H···O hydrogen bond distances of 2.09 Å and 1.89 Å occurs (Scheme 10). Encounter complex Z,Z-4-INT₂ then emerges, wherein the alcohol hydrogen atom resides directly atop the alkene of DHP at a distance of 2.31 Å. Inherent to this intermediate, and certainly linked to the cyclopropenium charge, was a large degree of charge polarization across the N(3)–H···O–H hydrogen bond subassembly (NBO charges N = -0.671 e, H = 0.459 e, O = -0.795 e, H = 0.510 e) setting the stage for proton transfer to the β -carbon of the vinyl ether of DHP. Rate-determining alcohol addition involving C–O bond formation, coupled with proton transfer, follows by transition state Z,Z-4-TS having a sizable Gibbs free energy activation barrier of 30.8 kcal/mol with respect to Z_{Z} -4-INT₂. In terms of both the energetic span model and TOF, Z_1Z_2 -4-INT₁ corresponds to the TOF-determining intermediate, while the TOF-determining transition state was Z_1 -4-TS, thus, resulting in an overall energy span of 34.6 kcal mol⁻¹ (TON = 7.2×10^{-11} , TOF = 2.7×10^{-13} s⁻¹).¹²⁷ The defining metrics of first-order saddle point Z,Z-4-TS entailed an elongated C···O bondmaking distance of 2.72 Å, as well as C···H and O···H proton transfer distances of 1.15 Å and 1.72 Å. Intermediate complex Z_1Z_2 -4-INT₃ then forms, where after separation of the

pyranylated product (MTP), an overall exergonic process, thiourea Z,Z-4 is liberated making it available for another reaction cycle.

Scheme 10. Pathway 1: dual hydrogen bond activation catalyzed by charged thiourea conformer Z,Z-4.

Pathway 1 - Dual Hydrogen Bond Catalysis

Alternatively, pathway 2 (*Brønsted acid catalysis*) initiates from *E*,*Z*-rotamer catalyst conformation *E*,*Z*-4 that, in the presence of methanol, forms H-bond complex *E*,*Z*-4-INT₁ featuring a S \cdots H–O hydrogen bond measuring 2.64 Å (Scheme 11). Next, complex *E*,*Z*-4-INT₂ follows in which the cyclopropenium N–H hydrogen is primed for protonation of the vinyl ether alkene of DHP, while the alcohol acts as a bridging element bringing the catalyst and DHP in close proximity. Proton transfer transition state *E*,*Z*-4-TS₁ then ensues

with a Gibbs free energy activation barrier of 21.4 kcal/mol with respect to the starting material.

Similarly, in terms of the energy span model, $E_1Z-4-TS_1$ was the TOF-determining transition state and E,Z-4-INT₁ was the TOF-determining intermediate leading to an energy span of 23.9 kcal mol⁻¹ for this cycle (TON = 8.3×10^{-4} , TOF = $1.7 \times 10^{-5} \text{ s}^{-1}$).¹²⁷ The defining features of this structure are proton transfer distances of 1.50 Å and 1.26 Å with the alcohol component residing 4.52 Å from the vinyl ether α -carbon atom. Alternatively, protonation by the anilino nitrogen hydrogen N(4)-H was disfavored by 4.5 kcal/mol relative to transition state E_{Z} -4-TS₁, thus, making this protonation process unlikely and further highlighting the significance of the cyclopropenium charge. Oxonium-thiourea anion ion pair E,Z-4-INT₃ follows on the reaction pathway, residing 4.4 kcal/mol below transition state E,Z-4-TS₁. Next, alcohol addition via E,Z-4-TS₂, displaying a C···O bond forming distance of 2.72 Å, followed by proton transfer provides ion pair E,Z-4-INT₄. Thiol-tonitrogen methanol-assisted proton tautomerization by 6-membered cyclic transition state E,Z-4-TS₄-MA with a barrier of 12.5 kcal/mol then furnishes complex E,Z-4-INT₅. The key metrics of this transition state structure being S…H and N…H distances of 1.75 Å and 1.60 Å, as well as corresponding O··H distances of 1.12 Å and 1.03 Å, respectively. Finally, this energetically favored pathway finishes with separation of the pyranylated product MTP and liberation of catalyst E,Z-4 for another catalytic cycle. From these findings, based on the energetic span model, pathway 2 is energetically favored among the proposed mechanisms. It is important to note that exploration of pathway 2 via cyclopropenium nitrogen protonation was performed for all conformations of thiourea 4; however, only a mechanism involving the E,Z-conformer was found to exist.

Scheme 11. Pathway 2: Brønsted acid catalysis by charged thiourea conformer E,Z-4.

To corroborate these computed findings, putative catalyst–substrate interactions were probed using ¹H NMR by sequentially adding DHP to thiourea catalyst $4 \cdot BF_4^-$ that resulted in no spectroscopic changes, and, by inference, the lack of any interaction (Figure 25). Conversely, the sulfur of the catalyst engages in H-bonding with alcohols, as mentioned above. This evidence suggests that thiourea catalyst $4 \cdot BF_4^-$ plays a key bifunctional role¹¹ in these reactions by initially forming a more reactive metastable alcohol–catalyst complex (function 1) primed for proton transfer to DHP (function 2).

Figure 25. ¹*H* NMR spectra depicting no interactions between thiourea $4 \cdot BF_4^-$ and DHP.

Next, the *anti/syn*-stereochemistry of alcohol addition to the alkene of DHP was investigated by reacting conformationally locked analogue 4-(*tert*-butyl)-3,4-dihydro-2*H*-pyran in methanol- d_4 in the presence of thiourea catalyst $4 \cdot BF_4^-$. Monitoring this reaction by ¹H NMR over a duration of 48 hours revealed the formation of a diastereomeric mixture of pyranylated products with a kinetically-controlled preference for *syn* product formation (*syn* : *anti* ratio of 70:30), consistent with a Brønsted acid mode of catalysis (Scheme 12A). In contrast, a concerted H-bond-mediated reaction mechanism for alcohol addition proceeding through a pivotal intermediate displaying a ridged host–guest (catalyst–substrate) interaction allowing for nucleophilic attack from only one face would give rise to a single stereoisomer, thus, opposing the likelihood of a concerted reaction mechanism under the employed conditions.

Subsequently, a series of control experiments using ethanol and benzyl alcohol were performed, wherein alkoxide exchange was observed (see Appendix A). Intrigued by the ability of thiourea catalyst $4 \cdot BF_4^-$ to induce alkoxide exchange, the reaction conditions were subjected to phenyl (O,1-²H₂) methanol (**89**) to distinguish between alkoxide exchange and epimerization (Scheme 12B). From this experiment was observed a *syn* : *anti* product ratio of 70:30 mirroring that seen with methanol- d_4 , which was ascribed to analogous mechanisms of alcohol addition. Based on this outcome, epimerization can be ruled out in favour of a catalyst-controlled stereoselective kinetic reaction scenario.

Scheme 12. Mechanistic investigation of alcohol addition using deuterium-labeled alcohols: (A) Investigating the stereochemistry of addition using methanol- d_4 and 4-(tert- Butyl)-3,4-dihydro-2H-pyran. (B) Investigating the stereochemistry of addition using phenyl (O,1-²H₂) methanol and a mixture of syn and anti product isomers (methyl adduct).

To gain further insight into the putative Brønsted acid-mediated mechanism, ¹³C KIE studies were pursued using Jacobsen's DEPT method¹²⁸ analyzing the product at low conversion at natural abundance (Figure 26). More specifically, the DEPT-55 method was employed under pseudo-first-order conditions measuring KIEs at 2% product conversion. From this study, substantial inverse kinetic isotope effects were observed at the α - and β - carbons with values of 0.892, and 0.898, respectively taking into account a 1.5% uncertainty in NMR integrations, thus, resulting in an uncertainty of 0.003¹²⁹ in the KIEs. These KIE findings are telling of two key features: (1) the observed large and inverse KIEs suggest that a multistep reaction involving a pre-equilibrium prior to the rate-determining step is plausible,¹³⁰ and (2) the observed similar KIEs at the β - and α -carbons are indicative of sp² \rightarrow sp³ rehybridization and negligible rehybridization, respectively at the rate-determining step. Though, this does not rule out other possible conclusions that can be drawn from these trends. Taken together, the experimental and computational findings support that thiourea-catalyzed (4) pyranylations is a stepwise Brønsted acid mechanism.

Figure 26. (*A*) ¹³*C* kinetic isotope effect. (*B*) ¹³*C* isotopic composition of THP protected alcohol from a reaction taken to 2% product conversion.

4.2.3 2-Deoxyglycosylation

Having established charge-enhanced thiourea catalyst $4 \cdot BF_4^-$ -induced diastereoselection, the use of 3,4,6-tri-*O*-benzyl-D-galactal (92) as a bio-relevant 2-deoxysugar glycosyl donor equivalent¹³¹ was investigated. In exploring this further application of catalyst $4 \cdot BF_4^-$, 92 was reacted at reflux to afford 2-deoxygalactosylated product 93 in 84% yield with exclusive α -facial selectivity (Figure 27, top). Inspired by this result, the origin of this selectivity was sought by performing molecular mechanics searches.

Thus, utilizing the optimized structure of $E,Z-4-TS_1$ as a template, *O*-benzyl functionality was appended and α - vs. β -stereofacial alcohol addition considered, resulting in two representative transition state models (Figure 27, bottom). These models were then imported into the program MacroModel.¹³² The internal coordinates of the atoms of the catalyst, alcohol and vinyl ether were frozen, and MCCS with the OPLS3 force field¹³³ performed to generate an array of conformers for α - and β -stereofacial alcohol addition.

Visible from the superposition of the conformers for α -stereofacial alcohol addition was an open cavity allowing for more accessible alcohol addition (Figure 27, bottom lefthand side), whereas alcohol addition to the more sterically shielded β -face was impeded by the presence of bulky benzyl groups steering the catalyst away from the site of reactivity (Figure 27, bottom right-hand side). While granted, these simple molecular mechanics models offer a preliminary basis for understanding α - vs. β -stereofacial alcohol addition a more thorough mechanistic investigation is required to unravel the fine details with respect to this transformation.

Figure 27. 2-Deoxygalactosylation of 3,4,6-tri-O-benzyl-D-galactal facilitated by thiourea $4 \cdot BF_4^-$ (top). Comparison of α - vs β -stereofacial alcohol addition (bottom) (Superposition of conformers within 10 kJ/mol of the global minima).

To conclude this section, experimental and computational studies of a cationic thiourea (4) for the successful pyranylation of various alcohols and phenols, and glycosylation of a 2-deoxy sugar were presented. Arising from these studies was the importance of conformational dynamics, which is especially relevant in molecules with many degrees of freedom, wherein structural- and catalytic features are interdependent.¹³⁴ Further, a distinct feature of the Brønsted acid catalytic reactivity examined was "charge-enhanced acidity,"¹³⁵ which is a timely concept gaining traction in the last decade for rational design of small-molecule-based organocatalysts.^{10,100,101,103b,110} The basis of this appeal stems from enhanced substrate activation relative to neutral catalysts, much like that found in more complex enzymatic counterparts. Further, the analysis discussed above demonstrates

judiciously designed organocatalysts having a charged moiety provide a general tool for improving catalytic reactivity. These works were published in 2018¹⁵ and 2020.¹⁶

4.3 Thiourea-cyclopropenium as a hydrogen bond donor organocatalyst4.3.1 Optimizations and establishment of synthetic utility

Having established thiourea **4** as an efficient catalyst in pyranylation, the next section of this dissertation will delve into the details regarding its potential as a multifunctional catalyst targeting Friedel–Crafts alkylation. Notably, these heterocyclic indole products are prevalent motifs in Nature, such as in natural products, offering broad-spectrum bioactivity, e.g., antibacterial, antifungal, and anti-inflammatory properties.¹³⁶

The majority of reported organocatalyzed approaches for this transformation, however, are limited by one, or more, of the following: (1) poor substrate scope, (2) use of costly reagents and/or expensive catalyst(s) often prepared by multi-step synthetic routes, (3) lack of scalability and (4) high catalyst loadings. From these precedents, it was postulated that thiourea catalyst **4** would serve as a viable H-bond donor organocatalyst for Friedel–Crafts alkylation reactions, as supported by the studies below.

Initial efforts involved the experimental use of thiourea **4** as a H-bond catalyst for Friedel–Crafts alkylation (Table 5). In this vein, an initial control reaction performed in the absence of catalyst led to essentially no conversion after 44 hours (entry 1), while sluggish reactivity was observed using neutral thiourea catalysts **94** and **26** (entries 2 and 3, respectively). Based on these results, and with the aim of improving reactivity, the use of various charged thiourea catalyst salts of **4** were investigated. The logic for doing this being possible tight anion-binding, i.e., very short intermolecular N–H… counteranion contacts as a possible source of attenuated reactivity.⁸ Corroborating this hypothesis, thiourea **4** with

an inexpensive and weakly coordinating tetrafluoroborate counteranion provided superior results relative to $4 \cdot \text{ClO}_4^-$, $4 \cdot \text{Cl}^-$, and $4 \cdot \text{CF}_3\text{SO}_3^-$ (entries 4–7). Next, various solvents were screened using thiourea $4 \cdot \text{BF}_4^-$ (entries 7–12) resulting in DCM as the solvent of choice affording an optimal conversion of 96% (entry 7). This finding comes as no surprise given solvents with expected H-bond acceptor character are prone to disrupt catalyst–substrate interactions. Lastly, reducing the catalyst loadings to 5 mol%, and even as low as 1 mol% attenuated conversion (entries 13 and 14).

Table 5. Optimization of reaction conditions.^a

entry	solvent	catalyst	catalyst load (mol%)	conversion ^[b]
1	CH_2Cl_2	-	-	<5%
2	CH_2Cl_2	94	10	<5%
3	CH_2Cl_2	26	10	34%
4	CH_2Cl_2	$4 \cdot ClO_4^-$	10	82%
5	CH_2Cl_2	4 •Cl ⁻	10	10%
6	CH_2Cl_2	$4 \cdot CF_3 SO_3^-$	10	46%
7	CH_2Cl_2	$4 \cdot BF_4^-$	10	96%
8	$C_6H_5CH_3$	$4 \cdot BF_4^-$	10	64%
9	THF	$4 \cdot BF_4^-$	10	36%
10	CHCl ₃	$4 \cdot BF_4^-$	10	90%
11	CH ₃ CH ₂ CN	$4 \cdot BF_4^-$	10	29%
12	MeCN	$4 \cdot BF_4^-$	10	58%
13	CH_2Cl_2	$4 \cdot BF_4^-$	5	50%
14	CH_2Cl_2	$4 \cdot BF_4^-$	1	18%

^[a]Reactions were performed at room temperature using the following conditions: 0.5 mmol **8a**, 1.5 mmol **9a**, 0.05 mmol catalyst, and 0.5 mL solvent for 44 h. ^[b]Conversion was determined *via* ¹H NMR spectroscopic analysis of the crude reaction mixtures. This involved monitoring the disappearance of the signal at 8.00 ppm for (**8a**) and appearance of the signal at 5.21 ppm for the FC alkylated product (**10a**).

With optimized reaction conditions in hand, the scope of this reaction with respect to indole was investigated (Figure 28). Unprotected indole **9b** reacted with *trans-\beta*-nitrostyrene to afford product **10b** in very good yield, while *N*-protected indoles¹³⁷ **9c** and **9d** resulted in no conversion, presumably owing to reduced indole nucleophilicity imparted by the electron withdrawing *N*-tosyl and *N*-acetyl groups. Next, the scope of this reaction with respect to the nitroalkene component was explored. Non-functionalized 2-furyl and 2-napthyl nitroalkenes (**8b** and **8c**) reacted to afford products **10e** and **10f** in good-to-excellent yields, while electron-rich alkoxy- and alkyl nitroalkenes (**8d–g**) provided variable yields. For instance, *trans-*4-methyl- β -nitrostyrene (**8d**) reacted smoothly to afford product **10g** in excellent yield, whereas alkoxy substituted *trans-\beta*-nitrostyrenes (**8e–g**) all led to poor conversions (**10h–j**). Further, halogenated *trans-\beta*-nitrostyrenes (**8h–**1) provided products **10k** and electron-poor **10o** is notable given the importance of organofluorine compounds in pharmaceuticals,¹³⁸ agrochemicals,¹³⁹ and material science¹⁴⁰ industries.

Scheme 13. Gram-scale reaction catalyzed by thiourea $4 \cdot BF_4^-$.

Following establishment of the scope, the practicality of this reaction was demonstrated by the gram-scale preparation of Friedel–Crafts alkylation product **10a** in excellent yield (97%, 1.8 g), Scheme 13.

Figure 28. Employment of thiourea $4 \cdot BF_4^-$ for Friedel–Crafts alkylation^[a].

^[a]Reactions were performed at room temperature using the following conditions: 0.5 mmol of respective nitroalkene, 1.5 mmol of respective indole, 0.05 mmol $4 \cdot BF_4^-$, and 0.5 mL DCM for 44 h. The yields of isolated products are reported after flash chromatography. ^[b]No reaction occurred using these *N*-functionalized indoles.

4.3.2 Mechanistic studies

Finally, to probe the underlying mechanism of this Friedel–Crafts reactivity, and thereby determine the reaction order and stability of catalyst $4 \cdot BF_4^-$, binding studies in conjunction with VTNA were performed. Addition of increasing equivalents of substrate *trans-* β -nitrostyrene (**8a**) to catalyst $4 \cdot BF_4^-$ in CDCl₃ resulted in a slight downfield shift of the N–H hydrogen atom (¹H NMR, $\Delta \delta = 0.04$ ppm), thus, consistent with a LUMOlowering mode of substrate activation, as opposed to a Brønsted acid mode of reactivity, see Appendix B. Next, the robustness of the catalyst was probed by VTNA (Figure 29).

Figure 29. Plot of time (h) vs. concentration (M) for two independent starting concentrations of trans- β nitrostyrene performed under synthetically relevant conditions for the determination of thiourea $4 \cdot BF_4^$ robustness.

Overlay of the two curves, as seen in Figure 29, is telling of steady-state catalyst concentration with catalytic turnover affected by neither catalyst deactivation nor product

inhibition (see Appendix B for further details). Further analysis revealed a 0.8-order dependency in catalyst indicative of a high proportion of the catalyst persisting as monomeric species in solution, much unlike that of previous thiourea-catalyzed^{10b,c} processes (Figure 30). This divergence, presumably arises from key structural differences, i.e., the bulky cyclopropenium diisopropylamine substituents abating formation of dimeric or higher-order aggregate complexes. Collectively, these kinetic results shed light on and speak to the value of incorporating cyclopropenium building blocks as core components to H-bond organocatalysts, such as thiourea catalysts.

Figure 30. Plot of time (h) vs. concentration (M) for two independent starting concentrations of thiourea $4 \cdot BF_4^-$ (blue triangle - 0.168 M; red square - 0.084 M) performed under synthetically relevant conditions (top left). Plots of normalized time scale (t[cat]_o^{γ}) vs. concentration (M) for the determination of the order in catalyst (top right and bottom).

On the basis of the above findings, the tentative DFT-supported catalytic cycle depicted in Figure 31 is offered. The cycle initiates in formation of complex **4**·**8a**, which subsequently reacts by rate-determining indole addition transition state **TS1** with a Gibbs free activation energy (ΔG^{\neq}) of 20.5 kcal/mol relative to the separate starting reagents and catalyst. Salient features of this transition state include a C…C bond-forming distance of 2.05 Å associated with a synclinal orientation of the styrene and indole substrates as defined by dihedral angle $\theta_{C(1)-C(2)-C(3)-C(4)}$ measuring -52.1°. Further was a slightly skewed double H-bond manifold with N–H…O distances of 1.84 Å and 1.75 Å linked to a *Z*,*Z*thiourea conformation. Though less obvious, was stabilizing charge-polarized π – π stacking between the indole ring and the nitroalkene, clearly visible from the green isosurfaces in the NCI plot of Figure 31. From **TS1**, zwitterionic nitronate-azocarbenium intermediate **4**·**10a**' ensues that, following a series of proton transfer events, leads to exergonic product (**10a**) formation and catalyst turnover.

Figure 31. Mechanistic proposal for thiourea-catalyzed (4) Friedel–Crafts alkylation. Reported relative Gibbs free energies in kcal/mol are enclosed in parentheses.

In closing, a charge-enhanced, thiourea-catalyzed Friedel–Crafts alkylation method was discussed as a second application for catalyst **4**. Inherent to the mechanism of these Friedel–Crafts alkylations is a steady-state concentration of a monomeric charged thiourea catalyst, much at odds with existing state-of-the-art reactivity patterns accessible using

thiourea catalysts. Additionally, DFT calculations and ¹H NMR binding studies revealed a dual hydrogen bond-mediated LUMO-lowering mode of substrate activation is pivotal to this reactivity, and, thus, the above work helps support the multifunctional- and dynamic nature of catalyst **4**. This work was published in 2019.¹⁷

4.4 Second-generation squaramide-cyclopropenium as a Brønsted acid organocatalyst4.4.1 Optimization studies and demonstration of reaction practicality

Although the work discussed hitherto showcased catalyst **4** as a robust alternative leading to enhanced reaction rates relative to commonly used thioureas, Professor Dudding and I yearned to further contribute to the field of strong Brønsted acid catalysts that are augmented by a cyclopropenium cation. Naturally, the latter aim of my thesis work turned towards pursuing squaramides as potentially more reactive counterparts.

In keeping a common theme with respect to the work reported above, oximes were employed *in lieu* of alcohols for the formation of oxime ether linkages using vinyl ethers as reaction partners. We sought to access this class of compounds by enabling an activation principle that would proceed through a key oxocarbenium intermediate. The logic at the core for this enterprise being rooted in the heavy surge of interest for the development of novel oxime ether bonds and its subsequent application as putative precursors in photochemical reactions through, for instance, nitrogen-centered radicals.¹⁴¹

To commence this experimental investigation, a range of (thio)urea- and squaramide organocatalysts were screened in the presence of acetophenone oxime (**12a**) and DHP (**6a**) as model substrates in DCM. The results are presented in Table 6. A rather interesting finding was that the use of highly acidic, neutral- and charged (thio)urea catalysts (10 mol%) led to sluggish reactivity, albeit the use of thiourea **4**·BF₄⁻ resulted in a marginal

improvement in product formation with a dr ratio of 1:2.7 of Z and E stereoisomers. These low-yielding trends were consistent at room temperature, at reflux conditions and in the presence of benzoic acid as a supposed co-catalyst. The seemingly facile thiourea-catalyzed synthetic protocol involving an alcohol and a vinyl ether proved to be ineffective when the alcohol was switched out for an oxime. This phenomena speaks to weak, or an absence of, attractive non-covalent interactions required for substrate activation,^{7a} presumably arising from less than ideal H-bonding, i.e., deviations in geometry (H-bond spacing and H-bond angle)^{78b} and/or p K_a .⁸⁴

In contrast, this reaction was promoted by squaramide **11b**·BF₄⁻⁻ (5 mol%), whose constituents parallel that of thiourea **4**·BF₄⁻⁻, functioning as a superior H-bond donor. At room temperature, a conversion of 35% was achieved with a poor dr ratio of 1:1.5 after 48 hours. The addition of benzoic acid appeared to slightly attenuate reactivity by possibly engaging in non-productive H-bonds with the catalyst, and, thus, tying up the squaramide N–H moiety—though maintaining the same selectivity. However, under reflux conditions, a conversion of 86% was reached hand-in-hand with an excellent dr ratio of 1:19 after 9 hours. The application of squaramide **11c**·BF₄⁻⁻ (5 mol%) was strongly responsive even at room temperature yielding the product in 90% conversion after 30 hours with an appreciable 1:3 diastereoselectivity. A similar event was observed in the presence of benzoic acid, however. Optimal conditions were realized once the reactants and catalyst **11c**·BF₄⁻⁻ were subjected to reflux, resulting in 90% conversion after only 3 hours and a 1:19 diastereomeric mixture. The identity and structure of squaramide **11c**·BF₄⁻⁻ was confirmed by single-crystal X-ray diffraction analysis, see Appendix C.

^{*a*}Reaction conditions: oxime (0.52 mmol), vinyl ether (1.03 mmol) and squaramide **11c**·BF₄⁻⁻ (5 mol%) in 0.5 mL DCM stirred for the indicated time. ^{*b*}Z/*E* ratios were assigned with the help of using 1D NOESY NMR. ^{*c*}nr: no reaction. ^{*d*}nd: not determined. ^{*e*}Conversion involved monitoring the disappearance of the signal at ~ 7.65 ppm for **12a** and appearance of the signal at ~ 7.71 ppm for product **13a**.

We then sought to test the generality of this squaramide-catalyzed oxime ether-forming protocol (Table 7). A panoply of oximes as substrates were found to be excellent reaction partners in the presence of DHP, resulting in moderate-to-excellent yields. Electron-poor ketoximes 12b and 12c reacted to afford the products in moderate-to-good yields with excellent selectivity (13b; 76% yield, 1:19 dr and 13c; 61%, 1:19 dr). In sharp contrast, phenyl-substituted aldoxime 12d, and electron-rich aldoximes 12e and 12f, furnished the products in good-to-excellent yields, albeit in $\sim 1:1$ diastereometric mixtures (13d; 97%) yield, 1:1 dr, 13e; 92% yield, 1:1 dr, 13f; 76%, 1:1.2 dr). Electron-rich aldoximes 12g and 12h having a sterically demanding bromine substituent at the *ortho* position were welltolerated solely providing the E stereoisomer (13g; 70% yield, E and 13h; 79% yield, E). Substrates 12i-k, with diverse positioning of the phenyl substituents—biphenyl, benzyl and $-CH_2Ph$ —all performed well in this reaction, and provided variable yields (13i to 13k; 48–74% yield, 1:1 to 1:>19 dr). Extending this method to other types of (hetero)aromatic aldoximes (121-o) manifested in moderate-to-good yields (131 to 130; 48-80% yield, 2:1 dr and 1:1.2 to 1:6 dr). These findings showcase that other systems, such as α,β -unsaturated oximes, as well as structurally diverse aromatic-based substrates, are tolerant of this protocol. A striking observation, however, was that benzyl protected indole product 13m was enriched in the Z stereoisomer (2:1 dr). This can be rationalized by invoking that a more stable transition state benefitting from $\pi - \pi$ and/or cation- π interactions between the substrates and catalyst takes place to provide a higher proportion of the less stable Zstereoisomer.

Additionally, a range of cyclic aliphatic substrates were surveyed (12p-v). Nonfunctionalized simple frameworks, such as cyclopentanone- and cycloheptanone oxime, reacted smoothly to afford products **13p** and **13q** in good-to-very good yields (89% and 72%, respectively), as did more complex substrates **12r** and **12s** (**13r**; 74% yield, 1:1 dr and **13s**; 92% yield, 1:2 dr). Employing more sterically encumbered oximes (**12t–v**), however, attenuated reactivity (**13t** to **13v**; 43–54% yield, 1:2 dr). Nonetheless, a salient strength of this protocol is preservation of the acid-labile protecting groups. Furthermore, open-chain aliphatic oxime **12w** reacted sluggishly to provide product **13w** (21% yield, 1:1.2 dr), whereas synthetically relevant OxymaPure¹⁴² **12x** furnished product **13x** in a very good yield as a single geometric isomer (83%, *E*). To further demonstrate the feasibility of this protocol, disparate vinyl ether substrates were examined in the presence of oxime **12a** that led to moderate-to-excellent yields, as well as excellent selectivity in a short duration of ~30 minutes (**13y** to **13ad**; 48–95% yield, 1:19 dr).

4.4.2 Mechanistic studies

Having insight into the substrate scope, we yearned to grasp a firm understanding of the underlying catalytic mechanism. As such, a rigorous mechanistic analysis delving into the details of this process was undertaken. These set of studies were initiated with VTNA— a contemporary research technique reported by Burés^{3,4} that utilizes concentration-against-time reaction profiles allowing one to extrapolate valuable kinetic information using the naked-eye (Figure 32A). Upon visual inspection, the conspicuous overlay of the two curves indicated that neither catalyst deactivation nor product inhibition persisted (Figure 32A, top-most). Further exploratory studies involved employing the normalized time scale method as a means to elucidate the order in catalyst, which revealed

^{*a*}Reaction conditions: oxime (0.52 mmol), vinyl ether (1.03 mmol) and squaramide $11c \cdot BF_4^-$ (5 mol%) in 0.5 mL DCM stirred for the indicated time. *Z/E* ratios were assigned with the help of using 1D NOESY NMR.

The yields provided are reported as isolated yields after flash chromatography. ^{*b*}An additional 0.5 mL of THF was added for solubility. ^{*c*}This product was further recrystallized from hexanes/chloroform.

that the reaction has a 0.8-order dependency on catalyst $11c \cdot BF_4^-$.

At first sight, this finding suggests that a majority of the catalyst is present as a monomeric species. However, given the steric complexity of catalyst **11c**, as well as the presence of a BF_4^- counterion, the possibility of other mediating-factors contributing to this order in catalyst cannot be rule out. Delineating the order of the starting material components was then carried out. The 0.8-order relationship in [oxime] points to a pre-equilibrium event between the catalyst and oxime. Meanwhile, a 1.2-order dependency in [vinyl ether] was observed.

To corroborate these findings that were arrived at using VTNA, ¹H NMR spectroscopy was exploited to hone in on each specific interaction by conducting titration experiments (Figure 32B). The first study was comprised of gradually increasing the concentration of catalyst **11c**·BF₄⁻⁻, as we were curious whether catalyst dimerization was in fact responsible for the assigned order in catalyst (Figure 32B, left-hand side). Upon inspection of these ¹H NMR spectra, an upfield shift was observed with respect to the nitrogen-bound hydrogen atom proximal to the cyclopropenium moiety. Therefore, this observation negates the idea of catalyst dimerization at higher concentrations, and instead, the 0.8-order in catalyst can be argued from the perspective of BF₄⁻⁻-induced shielding of the proton nucleus. A plausible rationale supporting this hypothesis is centered around concentration effects. With a higher concentration of the BF₄⁻⁻ counterion, there is a higher degree of N–H···F– BF₃⁻⁻ interactions, where the electronegative fluorine atom(s),

Figure 32. (a) VTNA plots depicting a robust catalyst profile, as well as the order in catalyst and substrates. (b) ¹H NMR spectra illustrating the absence of catalyst dimerization, rapid proton exchange involving catalyst **11c** and oxime, and an apparent lack of catalyst–substrate interactions in the presence of DHP. (c) 2D, and 3D images calculated at the IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV// ω B97X-D/6-31G(d)/def2-TZV level of theory showing a pre-equilibrium between catalyst **11c** and oxime, with the N– H_(aryl/cyclopropenium) pK_a's and H-bond distances highlighted.

presumably impart a build-up of electron density within the cyclopropenium/N–H moiety hemisphere. The nature of this shielding arises from a concept formally referred to as donor–donor ion pair strain.⁹⁹ Moreover, this electron excessive carbenium exhibits interionic repulsion with the BF_4^- counterion that, in turn, generates repulsion in the

electric field,¹⁴³ which is accompanied by electron redistribution.¹⁴⁴ This proposed interaction comes as no surprise when dealing with alkylamino cyclopropenium compounds.^{100,101,111} As a consequence, paradoxically, a higher concentration of catalyst renders a less efficient catalytic species owing to catalyst–counterion non-covalent interactions. Next, turning to host–guest binding studies, rapid proton exchange events were observed between the oxime and the acidic nitrogen-bound hydrogen atom proximal to the cyclopropenium cation. This was seen from the apparent broadening of the singlet with increasing equivalents of oxime, and is thus in line with the 0.8-order dependency on [oxime] (Figure 32B, middle). This pre-equilibrium exchange process is further supported by the computed low relative Gibbs free energy, where a putative binding mode is depicted in Figure 32C. Lastly, even after the addition of 230 equivalents of DHP, no significant catalyst–substrate interaction could be pinpointed. This is tell-tale of a mechanism that involves a trimeric complex, namely one that allows the vinyl ether component to interact with a catalyst–oxime adduct, and not solely the catalyst (Figure 32B, right-hand side).

As a concluding study to provide further insight into the working mechanistic proposal, a computational assessment at the IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV// ω B97X-D/6-31G(d)/def2-TZV level of theory taking a look at the three-dimensional reaction landscape of **12a**, **6a** and **11c** is put forth. Preceding this investigation, the p K_a of catalyst **11c** was computed in DMSO, abiding to the method of Xue and Ji,¹⁴⁵ providing a p K_a of 3.76. Notably, this obtained value is 1.77 pK units less acidic than sulfuric acid (p K_a (H₂SO₄)_{DMSO} = 1.99),¹⁴⁶ which is just outside the realm of quantifying catalyst **11c** as being a superacid.

With this in mind, a thorough investigation into the conformational space of this flexible catalyst¹⁴⁷ was undertaken. From these exploratory studies, a myriad of proton transfer first-order saddle points were located, ultimately revealing the structure depicted in Figure 33 (**TS1**) as being the most energetically favourable process, having a Gibbs free energy activation barrier (ΔG^{*}) of 5.5 kcal mol⁻¹ relative to the starting material components. This is in agreement with the NMR binding studies and 0.8-order in [oxime]. This transition state (**TS1**) was found to adopt a bowl-shaped structure, which is leveraged on the formation of a rigid H-bond network, thus enabling facile proton transfer to the nitrogen atom of the oxime functional group. Defining features of this transition state include a N···H bond-breaking distance of 1.32 Å and a N···H bond-forming distance of 1.24 Å. In bolstering this proposed binding mode, it is well-established that squaramides have exceptional H-bond acceptor properties owing to the increase in aromaticity upon binding.¹²

Following this event, delicate structural reorganization takes place, where a unique two-point binding-like mode emerges priming the charged oxime for yet another proton transfer event to DHP, with an O···H bond-breaking distance of 1.29 Å and a C···H bond-forming distance of 1.34 Å, as well as a barrier of 11.9 kcal mol⁻¹ (**TS2**, Figure 33). Further contributing to the stabilization of this transition state was a favourable cation– π interaction between the incipient oxocarbenium intermediate and the electron-deficient aryl moiety. No doubt, the more labile oxygen-bound proton, as a result of charge-enhanced acidity, also played a role in making this an unencumbered process. Unfortunately, a Hammet correlation to corroborate this key mechanistic step could not be determined, however, owing to low solubility of *para*-substituted electron-poor oximes in CD₂Cl₂ and CDCl₃.

Figure 33. (a) Calculated potential energy profile for the $11c \cdot BF_4^-$ -catalyzed formation of oxime ethers. (b) Calculated geometries of transition state structures, with key stabilizing interactions highlighted.

Further computational analysis revealed that oxime addition to DHP was a barrierless process. With respect to the last step, which involves furnishing the product and regenerating the catalyst, it is actively being pursued, and, thus, was not included as a part of the discussion herein.

To recap, this latter work involved the development and application of a novel squaramide-cyclopropenium as a catalyst enabling the formation of an oxime ether linkage. Salient features of this catalyst, including geometry, formation of a favourable H-bond network and low pK_a collectively played indispensable roles in lowering the kinetic barriers

through transition state stabilization—that the other examined catalysts lacked. The practicality of this method was established through the presentation of a wide-range of substrates. Finally, a Brønsted acid mode of reactivity was found to exist, as supported by NMR studies and computational modelling.

5.0 Summary and future directions

The body of work presented throughout this dissertation provides a compelling basis for the development and future use of cyclopropenium frameworks as charged constructs for enabling catalysis, seeing potential in the pharmaceutical and material science industries. The story began by disclosing a novel thiourea-cyclopropenium (4) that was found to exhibit enhanced reactivity relative to achiral, neutral state-of-the-art thiourea catalysts (26) and select charged thiourea catalyst (1-methyl-3-(3а phenylthioureido)pyridinium iodide) for the pyranylation of primary, secondary and tertiary alcohols, and phenols. Furthermore, the multifunctional character of this catalyst was demonstrated by showcasing its successful use in another application, namely Friedel-Crafts alkylation. These works encompass a manifold of theoretical and experimental studies that go hand-in-hand to unravel the fine details with respect to each mechanism. Notably, the former mechanism was found to operate through a Brønsted acid mode of reactivity, whereas in the latter case, a shift in the mechanism to two-point H-bonding was observed.

We then segued into a similar, yet chemically distinct class of organocatalysts, that being, squaramides. Therein, a squaramide-cyclopropenium organocatalyst (**11c**) was deployed to catalyze the formation of a novel oxime ether bond linkage using oximes and vinyl ethers as reaction partners. Accompanying this synthetic protocol was a comprehensive mechanistic investigation, revealing the order in catalyst and substrates, as well as a putative host–guest binding interaction that was corroborated by DFT studies collectively pointing to a Brønsted acid mode of reactivity. A notable feature of this work was that squaramide **11c** vastly outperformed catalyst **26**, as well as various charged cyclopropenium-bearing (thio)urea and squaramide catalysts.

Since the work reported in this dissertation adds to the library of (thio)urea and squaramide catalysts, and therefore is in its infancy with respect to this type of catalyst design, it is my view that the direction regarding (thio)urea and squaramide catalysts— bearing a cyclopropenium motif—is, in a sense, limitless. What I mean by this is that there is a tremendous amount of free-play. It is hoped that since the groundwork is laid out, the future generation of students can extend it to numerous areas. Below are listed three contemporary "hot topic" research areas that can be classified as being distinct, but, of course, can also overlay to some extent.

- (1) An obvious point of departure would be to synthesize a chiral variant (squaramide or (thio)urea) to target an application that is underdeveloped (low er or dr), or to pursue a novel bond disconnection—though the latter may be an arduous task. An example of a chiral squaramide variant is provided in Figure 34A. An aminoindanol chiral appendage was chosen for the following reasons: rigidity, possession of two stereogenic centers and the ability to coordinate to metals and/or act as H-bond donors/acceptors.¹⁴⁸
- (2) Taking advantage of the charged moiety, in conjunction with the enhanced H-bond donor capacity, makes these types of catalysts ideal candidates in the context of phasetransfer catalysis. A phase-transfer agent enhances the rate of the reaction by transporting one, or more, reactants across the interface between different phases¹⁴⁹

(extraction-type mechanism). In this case, the lipophilic cyclopropenium cation can be leveraged to help shuttle anions into the organic phase (Figure 34A, right-hand side).

(3) Fine-tuning the catalyst by introducing an appropriate light-absorbing platform capable of triggering photocatalysis is, no doubt, of topical interest (Figure 34B). This is especially relevant as it can build from the above-mentioned oxime ether formation protocol (demonstrating multifunctional character) by honing in on either light-induced oxime ether N–O scission or accessing diradicals that would reside on the oxime moiety or, conversely, on an alkene distal to the oxime. This type of reactivity is far-reaching, in that, a plethora of reactivities could be accessed, such as cycloadditions, radical additions and radical cascade reactions, among others.¹⁵⁰

Figure 34. (a) Plausible rationale for the design of future cyclopropenium-squaramide chiral and/or phasetransfer catalysts. (b) A rudimentary depiction of a cyclopropenium-squaramide compound with a photoactive component necessary for facilitating photocatalysis.

6.0 Experimental section

Materials and methods

All materials were obtained from commercially available suppliers and used as received unless otherwise stated. The solvents employed in the reactions were all dried using the following methods: DCM and MeCN were distilled from CaH₂, and THF was distilled from sodium/benzophenone. All reactions were conducted in oven-dried roundbottom flasks under an inert atmosphere (N_2) and monitored by TLC using silica gel 60 F254 EMD Merck, whilst visualized with a hand-held UV lamp. Flash column chromatography was performed over Silicycle ultrapure silica gel (230-400 mesh). NMR spectra were recorded on a Bruker DPX-300 spectrometer (¹H 300 MHz, ¹³C 75.5 MHz, ¹⁹F 292.4 MHz, ¹¹B 96.3 MHz) and Bruker Avance AV I 600 spectrometer (¹H 600 MHz) in CDCl₃. The observed chemical shifts are reported as δ -values (ppm) relative to tetramethylsilane (TMS). 1D NOESY NMR experiments were used to assist in isomer identification. ¹³C NMR KIE experiments were conducted to provide further support for the mechanistic hypothesis. Mass spectra were obtained on an MSI/Kratos concept IS Mass spectrometer. 4-(*tert*-butyl)-3,4-dihydro-2H-pyran,¹⁵¹ phenyl (O,1-²H₂) methanol,¹⁵² 1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranose,¹⁵³ 1-methyl-3-(3phenylthioureido)pyridinium iodide,^{10c} trans- β -nitrostyrene derivatives,¹⁵⁴ catalysts 94,¹⁵⁵ 26,¹⁵⁶ and indole derivatives 5a,¹⁵⁷ 5c,¹⁵⁸ 5d,¹⁵⁹ oximes,¹⁶⁰ and 29^{79} were prepared according to literature procedures and the spectra match accordingly.

Chloro[bis(diisopropylamino)]cyclopropenium (95)·BF4⁻¹⁶¹

To a stirred solution of tetrachlorocyclopropene (1.0 g, 5.62 mmol, 1.00 equiv.) in DCM (12.0 mL) at 0 °C was added diisopropylamine (4.0 mL, 28.1 mmol, 5.00 equiv.) dropwise. The solution stirred for 6 h while gradually warming to room temperature. Next, NaBF₄ (0.80 g, 7.31 mmol, 1.30 equiv.) was added in one portion and the resulting mixture stirred overnight. The solution was then extracted with water (5x 35.0 mL), dried over MgSO₄ and concentrated in vacuo to afford an orange solid. The crude material was then dissolved in DCM (5.0 mL), purified with diethyl ether ((15.0 mL washes) – 3x) and dried under high vacuum to obtain a white powder (1.51g, 76%). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.41-1.43$ (d, J = 6.78 Hz; 24H), 3.81–3.94 (m, 2H), 4.01–4.21 (m, 2H).

2,3-Bis(diisopropylamino)cyclopropenimine (96)·BF₄-

Ammonia gas (excess) was vigorously bubbled through a solution of (95) (1.51 g, 4.21 mmol, 1.00 equiv.) in DCM (16.0 mL) at 0 °C for 1 h. The solution was maintained at a temperature of ~ 0°C for the entire duration. After 15 minutes a white precipitate began to crash out indicating product formation. After completion of the reaction, as observed by TLC, the salt was filtered off and the filtrate collected. The filtrate was then concentrated and washed with diethyl ether to further purify 96 (3x 10.0 mL washed) affording a beige solid (1.36 g, 95%). Mp: 142–144 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.30–1.32$ (d, J = 6.78 Hz; 24 H), 3.71–3.84 (m, 4 H), 6.08 (s, 2H); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = -1.51.7$; ¹¹B {¹H} NMR (96.3 MHz, CDCl₃, 25 °C) $\delta = -1.0$; HRMS (FAB-DFS) m/z: [M – BF4]⁺ Calcd for C₁₅H₃₀N₃⁺ 252.2434; Found 252.2435.

2,3-Bis(diisopropylamino)cyclopropenimine (97)¹⁶²

Compound **96** (1.36 g, 4.01 mmol, 1.00 equiv.) was dissolved in DCM (15.00 mL) and the resulting solution was washed with 3 M NaOH (3 x 80.0 equiv.), dried over MgSO₄ and concentrated *in vacuo* affording an off-white solid (0.86 g, 80–85%). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.16-1.18$ (d, J = 6.60 Hz; 24 H), 3.53–3.67 (m, 4 H).

N-(2,3-Bis(diisopropylamino)cyclopropenium)-*N*[']-phenyl-thiourea (4)·Cl⁻

A solution of phenyl isothiocyanate (0.92 g, 6.82 mmol, 2.0 equiv.) in DCM (3.00 mL) was added dropwise to a solution of **97** (0.86 g, 3.41 mmol, 1.0 equiv.) in DCM (6.00 mL) at room temperature. After vigorously stirring for 1 hour, the reaction was extracted with 3 M HCl until disappearance of **97**, as visualized *via* TLC. The combined organic layers were dried over MgSO₄ and concentrated. The resulting residue was then washed with diethyl ether (3 x 15.0 mL) to afford a yellow solid (0.71 g, 49%). Mp: 159–161°C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.42-1.44$ (d, J = 6.63 Hz; 24 H), 4.14–4.18 (m, 4 H), 7.16–7.20 (t, J = 7.32 Hz; 1H), 7.33–7.38 (t, J = 7.62 Hz; 2H), 7.86–7.89 (d, J = 7.92 Hz; 2H), 11.8 (s, 1H), 12.1 (s, 1H); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 22.1$, 51.6, 107.4, 123.1, 125.0–125.5 (d, J = 32.4 Hz), 128.4, 138.7, 178.8; HRMS (FAB-DFS) m/z: [M – Cl]⁺ Calcd for C₂₂H₃₅N₄S⁺ 387.2566; Found 387.2570.

N-(2,3-Bis(diisopropylamino)cyclopropeniminyl)-*N*[']-phenyl-thione (98)

Thiourea 4·Cl⁻ (0.71 g, 1.67 mmol) was dissolved in DCM (10.00 mL) and washed with saturated bicarbonate (1 x 30.0 mL), dried over MgSO₄ and solvent evaporated resulting in a chartreuse solid (0.62 g, 96%). Mp: 165–167 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.34-1.36$ (d, J = 6.60 Hz; 24H), 4.01–4.10 (m, 4H), 6.91–6.95 (t, J = 7.2 Hz; 1H), 7.20–7.25 (t, J = 7.50 Hz; 2H), 7.56–7.59 (d, J = 7.8 Hz; 2H), 7.69 (s, 1H); ¹³C {¹H}

NMR (75.5 MHz, CDCl₃, 25 °C): δ = 22.0, 50.4, 119.5, 121.5–121.6 (d, *J* = 6.27 Hz), 124.0, 128.4, 141.0, 178.5; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₂₂H₃₄N₄S 386.2504; Found 386.2495.

N-[2,3-Bis(diisopropylamino)cyclopropenium]-*N*'-phenyl-thiourea (4)·ClO₄⁻.

Thiourea $4 \cdot \text{Cl}^-$ (100 mg, 0.24 mmol) was dissolved in DCM (2.00 mL) and washed with saturated bicarbonate (1 x 6.0 mL). The conjugate base was then acidified with a 3 M solution of 70% HClO_{4(aq)} (1 x 4.0 mL), dried over MgSO₄ and concentrated *in vacuo* to afford a viscous green oil. The oil was then triturated with diethyl ether (2 x 5.0 mL) to furnish thiourea $4 \cdot \text{ClO}_4^-$ as a pale-green solid (98 mg, 85%). Mp: 125–127 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.40-1.42$ (d, J = 6.8 Hz; 24H), 4.05–4.14 (m, 4H), 7.19–7.24 (t, J = 7.4 Hz; 1H), 7.35–7.40 (t, J = 7.6 Hz; 2H), 7.75–7.78 (d, J = 7.8 Hz; 2H), 9.30 (s, 1H), 9.75 (s, 1H); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 21.9$, 51.9, 106.2, 123.5, 126.1, 126.4 128.7, 138.2, 178.1.

N-[2,3-Bis(diisopropylamino)cyclopropenium]-*N*'-phenyl-thiourea (4)·CF₃SO₃⁻.

Thiourea $4 \cdot \text{Cl}^-$ (100 mg, 0.24 mmol) was dissolved in DCM (2.00 mL) and washed with saturated bicarbonate (6.0 mL). The conjugate base was then acidified with a 3 M solution of trifluoromethanesulfonic acid (1 x 2.0 mL), dried over MgSO₄ and concentrated *in vacuo* to afford a viscous green oil. The oil was then triturated with diethyl ether (2 x 5.0 mL) to furnish thiourea $4 \cdot \text{CF}_3\text{SO}_3^-$ as a pale-green solid (96 mg, 76%). Mp: 147–149 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.39-1.41$ (d, J = 6.8 Hz; 24H), 4.01–4.15 (m, 4H), 7.17–7.22 (t, J = 7.4 Hz; 1H), 7.34–7.39 (t, J = 7.6 Hz; 2H), 7.77–7.80 (d, J = 7.9 Hz; 2H), 9.84 (s, 1H), 10.1 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 21.9$, 51.9, 106.6, 123.4, 125.9, 126.8 128.6, 138.4, 178.3; ${}^{19}F{}^{1}H$ NMR (292.4 MHz, CDCl₃, 25 °C) $\delta = -78.3$.

N-(2,3-Bis(diisopropylamino)cyclopropenium)-*N*'-phenyl-thiourea (4)·BF₄⁻

Compound **98** (0.62 g, 1.60 mmol) was dissolved in DCM (10.00 mL) and washed with a 3 M solution of 50% HBF_{4(aq)} (1 x 30.0 mL), dried over MgSO₄ and concentrated *in vacuo* to afford a viscous green oil. The oil was then titrated with diethyl ether (1 x 15.0 mL) to furnish thiourea $4 \cdot BF_4^-$ as a lime-green solid (0.71 g, 93%). Mp: 121–123 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.38-1.40$ (d, J = 6.60 Hz; 24H), 4.02–4.15 (m, 4H), 7.18–7.23 (t, J = 7.50 Hz; 1H), 7.34–7.40 (t, J = 7.50 Hz; 2H), 7.75–7.78 (d, J = 8.1 Hz; 2H), 8.96 (s, 1H), 9.51 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 21.8$, 51.9, 106.1, 123.5, 126.1–126.4 (d, J = 23.2 Hz), 128.6, 138.2, 178.0; ¹⁹F{¹H} NMR (292.4 MHz, CDCl₃, 25 °C) $\delta = -149.2$; ¹¹B{¹H} NMR (96.3 MHz, CDCl₃, 25 °C) $\delta = -0.8$.

Representative procedure for the thiourea-catalyzed pyranylation of primary alcohols.

To an oven-dried 25.0 mL round-bottom flask charged with thiourea $4 \cdot BF_4^-$ (24 mg, 1 mol%); primary alcohols (5.0 mmol) and DHP (10.0 mmol) were combined and subsequently diluted in DCM (5.0 mL). The resulting solution was stirred at room temperature under an inert atmosphere. Reaction progress was monitored *via* TLC. After removal of the solvent, the crude material was subjected to flash chromatography using a hexanes/ethyl acetate solvent system to yield the THP-protected alcohol.

Characterization data of the products (7a–m). NMR data are consistent with the literature.

2-(Benzyloxy)tetrahydropyran (7a)¹⁶³

(0.91 g, 95%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.53–2.00 (m, 6H), 3.56– 3.63 (m, 1H), 3.94–4.02 (m, 1H), 4.53–4.58 (d, *J* = 12.1 Hz; 1H), 4.75–4.78 (t, *J* = 3.48 Hz; 1H), 4.83–4.87 (d, *J* = 12.1 Hz; 1H), 7.29–7.44 (m, 5H).

2-(4-Methylbenzyloxy)tetrahydropyran (7b)¹⁶⁴

(0.92 g, 89%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.52–1.96 (m, 6H), 2.37 (s, 3H), 3.54–3.61 (m, 1H), 3.92–4.00 (m, 1H), 4.48–4.51 (d, *J* = 11.8 Hz; 1H), 4.71–4.74 (t, *J* = 3.51 Hz; 1H), 4.76–4.80 (d, *J* = 11.8 Hz; 1H), 7.17–7.20 (d, *J* = 7.89 Hz; 2H), 7.28–7.30 (d, *J* = 7.95 Hz; 2H).

5-(Tetrahydro-2H-pyran-2-yloxy)methylbenzo[d][1,3]dioxole (7c)¹⁶⁵

(1.06 g, 90%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.49–1.92 (m, 6H), 3.53– 3.60 (m, 1H), 3.88–3.97 (m, 1H), 4.40–4.44 (d, *J* = 11.7 Hz; 1H), 4.68–4.72 (overlapping signals, 2H), 5.96 (s, 2H), 6.77–6.82 (m, 2H), 6.85–6.90 (m, 1H).

2-(4-Methoxybenzyloxy)tetrahydropyran (7d)¹⁶⁶

(1.01 g, 91%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.49-1.95$ (m, 6H), 3.53– 3.60 (m, 1H), 3.83 (s, 3H), 3.91–3.99 (m, 1H), 4.44–4.48 (d, J = 11.6 Hz; 1H), 4.70–4.72 (t, J = 3.54 Hz; 1H), 4.72–4.76 (d, J = 15.8 Hz; 1H), 6.88–6.93 (d, J = 11.6 Hz; 2H), 7.30– 7.33 (d, J = 8.64 Hz; 2H).

2-(3,5-Dimethoxybenzyloxy)tetrahydropyran (7e)

(1.11 g, 88%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.53-1.97$ (m, 6H), 3.53– 3.60 (m, 1H), 3.81 (s, 6H), 3.89–3.98 (m, 1H), 4.46–4.50 (d, J = 12.3 Hz; 1H), 4.71–4.73 (t, J = 3.60 Hz; 1H), 4.73–4.77 (d, J = 15.3 Hz; 1H), 6.40–6.41 (t, J = 2.22 Hz; 1H), 6.55– 6.56 (d, J = 2.20 Hz; 2H); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 19.4$, 25.5, 30.6, 55.3, 62.2, 68.7, 97.7, 99.5, 105.5, 140.7, 160.8; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₀O₄ 252.1362; Found 252.1358.

2-(2-Bromo-5-methoxybenzyloxy)tetrahydropyran (7f)¹⁶⁷

(1.28 g, 85%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.52-2.00$ (m, 6H), 3.56– 3.63 (m, 1H), 3.82 (s, 3H), 3.91–4.00 (m, 1H), 4.54–4.58 (d, J = 13.5 Hz; 1H), 4.78–4.81 (t, J = 3.45 Hz; 1H), 4.80–4.83 (d, J = 9.10 Hz; 1H), 6.70–6.74 (dd, J = 8.7, 3.09 Hz; 1H), 7.12–7.13 (d, J = 3.09 Hz; 1H), 7.42–7.45 (d, J = 8.7 Hz; 1H).

2-(4-Nitrobenzyloxy)tetrahydropyran (7g)¹⁶⁵

(1.09 g, 92%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.54–1.97 (m, 6H), 3.54– 3.61 (m, 1H), 3.86–3.94 (m, 1H), 4.60–4.64 (d, *J* = 13.5 Hz; 1H), 4.74–4.76 (t, *J* = 3.45 Hz; 1H), 4.88–4.92 (d, *J* =13.5 Hz; 1H), 7.53–7.56 (d, *J* = 8.67 Hz; 2H), 8.20–8.23 (d, *J* = 8.70 Hz; 2H).

2-(2-Phenylethoxy)tetrahydropyran (7h)¹⁶⁸

(0.72 g, 70%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.47-1.90$ (m, 6H), 2.92–2.96 (t, J = 7.26 Hz; 2H), 3.44–3.51 (m, 1H), 3.60–3.68 (dd, J = 16.9, 7.17 Hz; 1H), 3.75–3.82 (m, 1H), 3.94–4.02 (dd, J = 17.0, 7.35 Hz; 1H), 4.61–4.63 (t, J = 2.88 Hz; 1H), 7.19–7.34 (m, 5H).

2-Ethoxytetrahydropyran (7i)

(0.60 g, 93%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.20-1.25$ (t, J = 7.11 Hz; 3H), 1.47–1.87 (m, 6H), 3.41–3.53 (overlapping signals, 2H), 3.75–3.91 (overlapping signals, 2H), 4.57–4.60 (t, J = 2.76 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 15.2$, 19.8, 25.5, 30.8, 62.4–62.8 (d, J = 31.7 Hz), 98.7; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₇H₁₄O₂ 130.0994; Found 130.0985.
2-(2,2,2-Trifluoroethoxy)tetrahydropyran (7j)¹⁶⁹

(0.74 g, 80%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.55-1.93$ (m, 6H), 3.51– 3.61 (m, 1H), 3.80–3.81 (m, 1H), 3.84–3.96 (dq, J = 8.70 Hz; 1H), 3.99–4.10 (dq, J = 12.3 Hz; 1H), 4.76–4.78 (t, J = 3.15 Hz; 1H).

2-(5-(1,1,1,3,5,5,5-Heptamethyltrisiloxan-3-yl)-pentoxy)tetrahydropyran (7k)

(1.61 g, 82%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.011$ (s, 3H), 0.100 (s, 18H), 0.457–0.509 (m, 2H), 1.35–1.44 (m, 4H), 1.51–1.96 (m, 8H), 3.36–3.44 (m, 1H), 3.48–3.55 (m, 1H), 3.71–3.80 (m, 1H), 3.85–3.95 (m, 1H), 4.58–4.61 (t, J = 4.29 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = -0.303$, 1.84, 17.6, 19.7, 23.0, 25.5, 29.5–29.8 (d, J = 18.4 Hz), 30.8, 62.3, 67.6, 98.8; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₇H₄₀O₄Si₃ 392.2234; Found 392.2224.

6-(Chloro-hexyloxy)tetrahydropyran (7l)¹⁷⁰

(1.04 g, 94%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.33–1.65 (m, 10 H),
1.66–1.89 (m, 4H), 3.34–3.41 (m, 1H), 3.45–3.54 (m, 3H), 3.69–3.77 (m, 1H), 3.81–3.89 (m, 1H), 4.55–4.57 (t, J = 2.52 Hz; 1H).

2,2,7,7-Tetramethyl-5-(((tetrahydro-2*H*-pyran-2-yl)oxy)methyl)tetrahydro-3a*H*bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran (7m)¹⁷¹

(1.63 g, 96%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.25 (s, 3H), 1.26 (s, 3H), 1.36 (s, 3H), 1.46 (s, 3H), 1.51–1.85 (m, 6H), 3.38–3.45 (m, 1H), 3.52–3.66 (m, 1H), 3.69–3.85 (m, 2H), 3.91–3.97 (m, 1H), 4.16–4.19 (dd, J = 1.53, 7.95 Hz; 1H), 4.20–4.23 (m, 1H), 4.50–4.60 (m, 2H), 5.43–5.47 (t, J = 6.24 Hz; 1H).

Representative procedure for the thiourea-catalyzed pyranylation of highersubstituted alcohols and phenols.

To an oven-dried 25.0 mL round-bottom flask charged with thiourea $4 \cdot BF_4^-$ (24 mg, 1 mol%) and benzoic acid (61.0 mg, 10 mol%); alcohols, or phenols, (5.0 mmol) and DHP (10.0 mmol) were combined and subsequently diluted in DCM (5.0 mL). The resulting solution was stirred at room temperature under an inert atmosphere. Reaction progress was monitored *via* TLC. After removal of the solvent, the crude material was subjected to flash chromatography using a hexanes/ethyl acetate solvent system to yield the THP-protected product.

Characterization data of the products (7n–w). NMR data are consistent with the literature.

2-(1-Phenylethoxy)-tetrahydropyran (7n)¹⁷²

(0.96 g, 93%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): 1:1 diastereomeric mixture δ = 1.49–1.99 (overlapping signals, 18H), 3.40–3.47 (m, 1H), 3.50–3.57 (m, 1H), 3.71–3.79 (m, 1H), 3.97–4.05 (m, 1H), 4.45–4.48 (t, *J* = 3.21 Hz; 1H), 4.86–4.91 (m, 1H), 4.92–4.97 (overlapping signals, 2H), 7.26–7.48 (m, 10H).

2-(4-Methylphenylethoxy)-tetrahydropyran (70)

(1.04 g, 94%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): 1:1 diastereomeric mixture δ = 1.45–1.94 (overlapping signals, 18H), 2.38 (s, 6H), 3.38–3.46 (m, 1H), 3.47–3.54 (m, 1H), 3.69–3.77 (m, 1H), 3.95–4.02 (m, 1H), 4.41–4.43 (m, 1H), 4.80–4.85 (m, 1H), 4.86–4.92 (overlapping signals, 2H), 7.16–7.34 (m, 8H).; ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ =19.2, 19.9, 21.1, 21.9, 24.3, 25.5 (d, *J* = 1.81 Hz), 30.9, 61.9, 62.8, 72.9–73.0 (d, *J* = 11.9 Hz), 96.0–96.1 (d, *J* = 8.83 Hz), 126.0, 126.4, 128.9, 129.1, 136.5, 137.0, 140.6, 141.5.; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₀O₂ 220.1463; Found 220.1457.

2-(1-Napthalenylethoxy)-tetrahydropyran (7p)

(0.90 g, 70%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): 1:1 diastereomeric mixture δ = 1.49–2.02 (overlapping signals, 18H), 3.42–3.49 (m, 1H), 3.53–3.60 (m, 1H), 3.74–3.82 (m, 1H), 4.03–4.11 (m, 1H), 4.51–4.54 (t, *J* = 3.42 Hz; 1H), 5.02–5.04 (m, 1H), 5.07–5.18 (overlapping signals, 2H), 7.49–7.66 (m, 6H), 7.84–7.93 (m, 8H).; ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 19.4, 19.9, 22.2, 24.3, 25.6 (d, *J* = 3.40 Hz), 30.9–40.0 (d, *J* = 3.85 Hz), 62.1, 62.8, 73.4, 96.1, 96.5, 124.4 (d, *J* = 1.96 Hz), 124.8, 125.5–125.6 (d, *J* = 4.53 Hz), 125.8–125.9 (d, *J* = 8.91 Hz), 126.1, 127.7–127.8 (d, *J* = 5.06 Hz), 127.9–128.0 (d, *J* = 6.95 Hz), 128.1, 128.4, 132.8, 133.1, 133.3–133.4 (d, *J* = 6.57 Hz), 141.1, 142.1.; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₀O₂ 256.1463; Found 256.1458.

2-Isopropoxytetrahydropyran (7q)¹⁷³

(0.69 g, 96%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.05–1.07 (d, *J* = 6.12 Hz; 3H), 1.15–1.17 (d, *J* = 6.30 Hz; 3H), 1.44–1.55 (m, 4H), 1.57–1.68 (m, 1H), 1.71–1.83 (m, 1H), 3.38–3.45 (m, 1H), 3.80–3.92 (overlapping signals, 2H), 4.58–4.61 (t, *J* = 3.75 Hz; 1H).

2-(2-Isopropyl-5-methylcyclohexyloxy)-tetrahydropyran (7r)

(1.13 g, 94%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): 1:1 diastereomeric mixture δ = 0.769–1.09 (overlapping signals, 24H), 1.20–1.46 (m, 4H), 1.50–1.90 (overlapping signals, 16H), 2.06–2.20 (m, 3H), 2.32–2.42 (m, 1H), 3.28–3.37 (td, 10.6, 4.38, Hz; 1H), 3.45–3.53 (m, 3H), 3.86–4.02 (m, 2H), 4.59–4.62 (m, 1H), 4.80–4.82 (t, *J* = 3.51 Hz; 1H).; ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 15.6, 16.3, 19.7, 20.3, 21.2 (d, *J* = 3.55 Hz), 22.2, 22.4, 23.0, 23.3, 25.2, 25.5, 25.6 (d, *J* = 2.34 Hz), 31.2, 31.3, 31.4, 31.8, 34.4, 34.6, 40.1, 43.6, 48.2, 48.9, 62.4, 63.0, 74.1, 79.9, 94.4, 101.3; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₅H₂₈O₂ 240.2089; Found 240.2085.

2-tert-Butyloxy-tetrahydropyran (7s)¹⁶⁵

(0.70 g, 88%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.26 (s, 9H), 1.47–1.53 (m, 4H), 1.63–1.70 (m, 1H), 1.81–1.91 (m, 1H), 3.42–3.50 (m, 1H), 3.94–4.00 (m, 1H), 4.73–4.75 (t, *J* = 3.18 Hz; 1H).

2-(1,1-Dimethyl-propoxy)-tetrahydropyran (7t)¹⁷⁴

(0.72 g, 84%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 0.86–0.91 (t, *J* = 7.44 Hz; 3H), 1.18–1.20 (d, *J* = 4.38 Hz; 6H), 1.46–1.60 (m, 6H), 1.62–1.68 (m, 1H), 1.81–1.88 (m, 1H), 3.41–3.48 (m, 1H), 3.93–4.00 (m, 1H), 4.71–4.73 (t, *J*= 3.09 Hz; 1H).

2-Phenoxytetrahydropyran (7u)¹⁷⁴

(0.65 g, 73%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.59–1.81 (m, 3H), 1.88– 1.93 (m, 2H), 2.01–2.13 (m, 1H), 3.60–3.68 (m, 1H), 3.92–4.00 (m, 1H), 5.45–5.47 (t, *J* = 3.27 Hz; 1H), 6.99–7.05 (m, 1H) 7.08–7.11 (m, 2H), 7.28–7.35 (m, 2H).

2-(4-Bromophenoxy)-tetrahydropyran (7v)¹⁷⁴

(1.18 g, 92%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.58–1.77 (m, 3H), 1.85– 190 (m, 2H), 1.92–2.10 (m, 1H), 3.58–3.65 (m, 1H), 3.85–3.93 (m, 1H), 5.38–5.40 (t, *J* = 3.18 Hz; 1H), 6.93–6.99 (m, 2H), 7.38–7.40 (m, 2H).

2-(4-Methoxyphenoxy)-tetrahydropyran (7w)¹⁷⁴

(0.53 g, 51%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.58–1.78 (m, 3H), 1.85– 1.90 (m, 2H), 1.97–2.10 (m, 1H), 3.58–3.65 (m, 1H), 3.80 (s, 3H), 3.93–4.01 (m, 1H), 5.31–5.33 (t, *J* = 3.33 Hz; 1H), 6.82–6.88 (m, 2H), 7.00–7.05 (m, 2H).

Characterization data for the mixture of non-deuterated and deuterated *syn* and *anti* products: (NMR data are consistent with literature).^{9h}

syn isomer: ¹H NMR (300 MHz, CDCl₃, 25 °C) $\delta = 0.84$ (s, 9H), 1.43–1.44 (m, 1H), 1.62 (d, J = 3.42 Hz; 1H), 1.66–1.68 (t, J = 3.39 Hz; 1H), 1.72–1.76 (d, J = 12.4 Hz; 1H), 3.62–3.68 (ddd, J = 11.1, 4.9, 1.6 Hz; 1H), 3.69–3.78 (td, 12.1, 2.3 Hz; 1H), 4.76–4.77 (d, J = 3.4 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 26.7$, 26.8, 30.7–31.2 (t, J = 19.6 Hz), (non-deuterated: 31.3), 31.8, (non-deuterated: 38.7), 38.8, 60.0, 98.6. *anti* isomer: ¹H NMR (300 MHz, CDCl₃, 25 °C) $\delta = 0.86$ (s, 9H), 1.03–1.06 (m, 1H), 1.19–1.23 (t, J = 6.99 Hz; 1H), 1.25–1.32 (m, 1H), 1.53 (m, 1H), 3.36–3.44 (m, 1H), 4.05–4.12 (m, 1H), 4.21–4.25 (d, J = 9.18 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 26.4, 27.1, 32.0, 32.4-32.9$ (t, J = 18.5 Hz), (non-deuterated: 32.9), 44.6, 65.6, 103.6.

2-Methoxytetrahydropyran (99).¹⁷⁰

(0.53 g, 91%), Clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.49–1.90 (m, 6H), 3.41 (s, 3H), 3.49–3.56 (m, 1H), 3.83–3.90 (m, 1H), 4.51–4.53 (t, *J* = 2.97 Hz; 1H).

Characterization data for the mixture of non-deuterated and deuterated *syn* and *anti* products (benzyl adduct):

syn isomer: ¹H NMR (300 MHz, CDCl₃, 25 °C) $\delta = 0.87$ (s, 9H), 1.47–1.49 (m, 1H), 1.68– 1.71 (t, J = 3.51 Hz; 1H), 1.73–1.75 (t, J = 3.51 Hz; 1H), 1.77–1.83 (m, 1H), 3.68–3.74 (ddd, J = 11.0, 4.8, 1.7 Hz; 1H), 3.82–3.90 (td, 12.7, 2.3 Hz; 1H), 4.97–4.98 (d, J = 3.5 Hz; 1H), 7.37–7.40 (m, 5H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 21.9, 26.8, 26.9, 30.7–31.2$ (t, J = 19.8 Hz), (non-deuterated: 31.3), 31.9, (non-deuterated: 38.6), 38.7, 60.3, 96.6, 128.1, 128.3, 128.4, 128.5. *anti* isomer: ¹H NMR (300 MHz, CDCl₃, 25 °C) δ = 0.88 (s, 9H), 1.07–1.09 (m, 1H), 1.26– 1.29 (overlapping signals; 1H), 1.31–1.36 (m, 1H), 1.58 (m, 1H), 3.40–3.48 (m, 1H), 4.10– 4.16 (m, 1H), 4.43–4.46 (m; 1H), 7.28–7.36 (m, 5H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 26.5, 27.1, 32.1, 32.6–33.0 (t, *J* = 20.4 Hz), (non-deuterated: 33.1), 44.7, 65.7, 101.5, 127.0, 127.5, 127.6, 127.8.

Procedure for the thiourea-catalyzed 2-deoxygalactosylation (NMR data are consistent with literature).¹⁷¹

To an oven-dried 10.0 mL round-bottom flask charged with thiourea $4 \cdot BF_4^-$ (4.0 mg, 1 mol%) 3,4,6-tri-*O*-benzyl-D-galactal (0.400 mg ,0.960 mmol) (**92**) and benzyl alcohol (87 mg, 0.805 mmol) were combined and subsequently diluted in DCM (1.5 mL). The resulting solution was stirred until near full consumption of **92**, as determined by ¹H NMR spectroscopy analysis (~ 12 hours) at 40 °C under an inert atmosphere. Next, the crude material was subjected to flash column chromatography using hexanes:EtOAc (9:1) as a co-solvent system to furnish the title compound **93** as a clear and colourless oil (354 mg, 84%, α -anomer). ¹H NMR (300 MHz, CDCl₃, 25 °C) δ = 2.06–2.11 (dd, *J* = 12.7, 4.6 Hz; 1H), 2.25–2.35 (m, 1H), 3.58–3.69 (m, 2H), 3.99–4.06 (m, 3H), 4.45–4.73 (m, 7H), 4.96–5.00 (d, *J* = 11.6 Hz, 1H), 5.12–5.13 (d, *J* = 3.06 Hz; 1H), 7.28–7.39 (m, 20H).

Representative procedure for the thiourea-catalyzed Friedel–Crafts alkylation.

To an oven-dried 5.0 mL round-bottom flask charged with thiourea $4 \cdot BF_4^-$ (24 mg, 10 mol%); respective indole (1.5 mmol) and nitroalkene (0.5 mmol) were combined and subsequently diluted in DCM (0.5 mL). The resulting solution was stirred for 44 hours at room temperature under an inert atmosphere. Reaction progress was monitored *via* TLC.

After removal of the solvent, the crude material was subjected to flash chromatography using a hexanes/ethyl acetate solvent system to yield the Friedel–Crafts alkylated product.

Characterization data of the products (10a–o). NMR data are consistent with the literature.

1-Methyl-3-(2-nitro-1-phenylethyl)-1H-indole (10a).¹⁷⁵

(129 mg, 92%), pink solid. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.78 (s, 3H),
4.93-5.00 (dd, J = 12.3, 8.5 Hz; 1H), 5.05-5.12 (dd, J = 12.4, 7.4 Hz; 1H), 5.19-5.24 (t, J = 7.9 Hz; 1H), 6.89 (s, 1H), 7.07-7.13 (t, J = 6.9 Hz; 1H), 7.23-7.39 (m, 7H), 7.47-7.49 (d, J = 7.9 Hz; 1H).

3-(2-Nitro-1-phenylethyl)-*1H*-indole (10b).¹⁷⁵

(115 mg, 86%), brown solid. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 4.94–5.01 (dd, J = 12.3, 8.4 Hz; 1H), 5.06–5.13 (dd, J = 12.3, 7.6 Hz; 1H), 5.19–5.25 (t, J = 7.9 Hz; 1H), 7.05–7.13 (m, 2H), 7.20–7.39 (m, 7H), 7.46–7.49 (d, J = 7.9; 1H), 8.09 (br, 1H).

3-(1-(Furan-2-yl)-2-nitroethyl)-1-methyl-1H-indole (10e).¹⁷⁵

(124 mg, 92%) yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 3.78$ (s, 3H), 4.91–4.98 (dd, J = 12.5, 7.4 Hz; 1H), 5.05–5.12 (dd, J = 12.5, 8.1 Hz; 1H), 5.27–5.32 (t, J = 7.7 Hz; 1H), 6.22–6.23 (d, J = 3.3 Hz; 1H), 6.36–6.37 (dd, J = 3.1, 1.9 Hz; 1H), 7.03 (s, 1H), 7.16–7.21 (m, 1H), 7.28–7.38 (m, 1H), 7.43–7.44 (d, J = 1.1 Hz; 3H), 7.60–7.62 (d, J = 7.9 Hz; 1H).

1-Methyl-3-(1-(naphthalen-2-yl)-2-nitroethyl)-1H-indole (10f).¹⁷⁶

(101 mg, 61%) yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.5 (s, 3H), 5.11–5.14 (dd, *J* = 7.4, 1.3 Hz; 2H), 6.07–6.12 (t, *J* = 7.7 Hz; 1H), 6.86 (s, 1H), 7.07–7.12 (m, 1H), 7.23–7.34 (m, 2H), 7.39–7.60 (m, 5H), 7.80–7.83 (dd, *J* = 6.5, 2.8 Hz; 1H), 7.90–7.93 (m, 1H), 8.27–8.30 (d, *J* = 7.9 Hz; 1H).

1-Methyl-3-(2-nitro-1-p-tolylethyl)-1H-indole (10g).¹⁷⁶

(132 mg, 90%) colourless oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 2.34$ (s, 3H), 3.77 (s, 3H), 4.90–4.97 (dd, J = 12.4, 8.6 Hz; 1H), 5.03–5.10 (dd, J = 12.2, 7.3 Hz; 1H), 5.17–5.23 (t, J = 7.9 Hz; 1H), 6.88 (s, 1H), 7.08–7.17 (m, 3H), 7.22–7.33 (m, 4H), 7.48–7.50 (d, J = 7.9 Hz; 1H).

3-(1-(4-Methoxy)-2-nitroethyl)-1-methyl-1H-indole (10h).¹⁷⁶

(81 mg, 52%) colourless oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.77 (s, 3H), 3.82
(s, 3H), 4.93–4.97 (dd, J = 12.4, 8.6 Hz; 1H), 5.04–5.11 (dd, J = 12.3, 7.4 Hz; 1H), 5.17–5.23 (t, J = 7.9 Hz; 1H), 6.91–6.93 (d, J = 8.7 Hz; 3H), 7.12–7.18 (m, 1H), 7.28–7.37 (m, 4H), 7.51–7.54 (d, J = 7.9 Hz; 1H).

3-(1-(3,4-Dimethoxy)-2-nitroethyl)-1-methyl-1H-indole (10i).¹⁷⁷

(32 mg, 19%) yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.77 (s, 3H), 3.85 (s, 3H), 3.88 (s, 3H), 4.89–4.96 (dd, J = 12.2, 8.6 Hz; 1H), 5.03–5.09 (dd, J = 12.2, 7.2 Hz; 1H), 5.13–5.18 (t, J = 8.0 Hz; 1H), 6.83–6.93 (m, 4H), 7.08–7.13 (m, 1H), 7.23–7.34 (m, 2H), 7.48–7.50 (d, J = 7.9 Hz; 1H).

3-(1-(4-Benzyloxy)-2-nitroethyl)-1-methyl-1H-indole (10j).

(77 mg, 40%) colorless oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 3.77$ (s, 3H), 4.88–4.95 (dd, J = 12.3, 8.7 Hz; 1H), 5.03–5.09 (dd, J = 12.3, 7.8 Hz; 1H), 5.05 (s, 2H), 5.14–5.20 (t, J = 7.9 Hz; 1H), 6.88 (s, 1H), 6.95–6.99 (m, 2H), 7.09–7.14 (m, 1H), 7.24–7.45 (m, 10H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 32.8$, 40.9, 70.1, 79.8, 109.5, 113.1, 115.2, 119.1, 119.4, 122.2, 126.3, 126.5, 127.5, 128.0, 128.6, 128.8, 131.7, 136.9, 137.3, 158.2; HRMS (EI-DFS) *m/z*: [M+H]⁺ Calc'd for C₂₄H₂₂O₃N₂ 386.1636; Found 386.1627.

3-(1-(4-Fluorophenyl)-2-nitroethyl)-1-methyl-1*H*-indole (10k).¹⁷⁶

(137 mg, 92%) yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 3.78$ (s, 3H), 4.89–4.96 (dd, J = 12.4, 8.7 Hz; 1H), 5.04–5.10 (dd, J = 12.4, 7.2 Hz; 1H), 5.17–5.23 (t, J = 7.9 Hz; 1H), 6.88 (s, 1H), 7.01–7.14 (m, 3H), 7.25–7.36 (m, 4H), 7.43–7.46 (d, J = 8.0 Hz; 1H).

3-(1-(4-Chlorophenyl)-2-nitroethyl)-1-methyl-1H-indole (10l).¹⁷⁶

(141 mg, 82%) colorless oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.78 (s, 3H),
4.89–4.96 (dd, J = 12.5, 8.7 Hz; 1H), 5.03–5.10 (dd, J = 12.3, 7.2 Hz; 1H), 5.17–5.22 (t, J = 7.8 Hz; 1H), 6.89 (s, 1H), 7.10–7.16 (m, 1H), 7.26–7.36 (m, 6H), 7.44–7.47 (d, J = 7.9 Hz; 1H).

3-(1-(3-Chlorophenyl)-2-nitroethyl)-1-methyl-1H-indole (10m).¹⁷⁶

(136 mg, 79%) colorless oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.78 (s, 3H),
4.88–4.95 (dd, J = 12.5, 8.6 Hz; 1H), 5.02–5.09 (dd, J = 12.6, 7.4 Hz; 1H), 5.16–5.21 (t, J = 7.9 Hz; 1H), 6.90 (s, 1H), 7.09–7.14 (m, 1H), 7.24–7.29 (m, 4H), 7.32–7.35 (m, 2H),
7.44–7.47 (d, J = 8.0 Hz; 1H).

3-(1-(4-Bromophenyl)-2-nitroethyl)-1-methyl-1H-indole (10n).¹⁷⁶

(156 mg, 87%) colorless oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.79 (s, 3H), 4.90–4.97 (dd, J = 12.5, 8.7 Hz; 1H), 5.03–5.09 (dd, J = 12.5, 7.2 Hz; 1H), 5.14–5.20 (t, J= 7.7 Hz; 1H), 6.87 (s, 1H), 7.08–7.13 (m, 1H), 7.23–7.34 (m, 4H), 7.42–7.44 (d, J = 8.0 Hz; 1H), 7.46–7.49 (dd, J = 6.6, 1.8 Hz; 2H). 1-Methyl-3-(2-nitro-1-(4-(trifluoromethyl)phenyl)ethyl)-1H-indole (100).¹⁷⁵

(160 mg, 92%) yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 3.79$ (s, 3H), 4.95–5.02 (dd, J = 12.7, 8.8 Hz; 1H), 5.07–5.13 (dd, J = 12.7, 7.2 Hz; 1H), 5.26–5.31 (t, J = 7.9 Hz; 1H), 6.89 (s, 1H), 7.01–7.16 (m, 1H), 7.26–7.36 (m, 2H), 7.40–7.52 (m, 3H), 7.61–7.63 (d, J = 8.2 Hz; 2H).

N-(2,3-Bis(diisopropylamino)cyclopropenium)-N'-phenyl-urea (11a) BF₄-.

A solution of phenyl isocyanate (123 mg, 1.0 mmol, 1.0 equiv.) in DCM (1.00 mL) was added dropwise to a 10.0 mL flame-dried round-bottom flask containing a solution of 97 (260 mg, 1.0 mmol, 1.0 equiv.) in DCM (3.00 mL). The solution was vigorously stirred for 1 hour at room temperature under an inert atmosphere. Following this event, the solution was washed with 3 M HCl until disappearance of 97, as visualized *via* TLC. Next, the organic layer was first washed with saturated bicarbonate (1 x 30 mL) followed by a wash using a 3 M solution of 50% HBF_{4(aq)} (1 x 30.0 mL). The organic layer was then dried over MgSO₄ and concentrated *in vacuo* to afford a viscous, colorless oil. The oil was then triturated with diethyl ether (1 x 10.0 mL) to furnish urea **11a** BF_4^- as a white solid (225) mg, 47%). Mp: 171–173 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.38-1.40$ (d, J = 6.8Hz; 24H), 4.11–4.24 (m, 4H), 7.06–7.11 (t, J = 7.4 Hz; 1H), 7.29–7.34 (overlapping signals; 2H), 7.60–7.63 (d, J = 7.8 Hz; 2H), 8.48 (s, 1H), 8.91 (s, 1H); ¹³C{¹H} NMR (75.5) MHz, CDCl₃, 25 °C): $\delta = 21.7$, 51.0, 106.2, 119.6 (d, J = 6.6 Hz), 123.8, 128.8, 137.9, 149.8; ¹⁹F{¹H} NMR (292.4 MHz, CDCl₃, 25 °C) δ = -148.8; ¹¹B{¹H} NMR (96.3 MHz, CDCl₃, 25 °C) δ = -0.8; HRMS (FAB-DFS) m/z: [M – BF₄]⁺ Calcd for C₂₂H₃₅N₄O⁺ 371.2794; Found 371.2802.

3-((2,3-Bis(diisopropylamino)cyclopropenimine-4-(cyclopentyloxy)cyclobut-3-ene-1,2-dione (100).

To a flame-dried 50.0 mL round-bottom flask charged with **97** (3.62 g, 14.4 mmol, 3.0 equiv.) and **29** (1.20 g, 4.80 mmol, 1.0 equiv.) was added DCM (15.0 mL). The solution was vigorously stirred for 1 hour at room temperature under an inert atmosphere. Next, the solution was washed with 3 M HCl until disappearance of **97**, as visualized via TLC. The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The resulting residue was then triturated with ice-cold hexane to afford an off-white solid. (1.93 g, 97%). Mp: 171–173 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.39-1.41$ (d, J = 6.0 Hz; 24 H), 1.59–1.72 (m, 2H), 1.84–1.97 (m, 2H), 2.02–2.08 (m, 4H), 3.82–3.95 (m, 4H), 5.74–5.79 (m, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 21.9$, 23.7, 33.7, 50.7, 85.0, 123.0, 178.2, 182.5, 185.7, 197.0; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₂₄H₃₇O₃N₃ 415.2835; Found 415.2826.

3-((2,3-Bis(diisopropylamino)cyclopropenium-4-(phenylamino)cyclobut-3-ene-1,2dione (11b) · BF₄⁻.

To a flame-dried 25.0 mL round-bottom flask charged with **100** (300 mg, 0.722 mmol, 1.0 equiv) was added DCM (4.0 mL). Aniline (0.65 mL, 7.12 mmol, 10 equiv) was then slowly added to the solution. Next, the flask was equipped with a reflux condenser and heated in an oil bath to reflux, whilst stirred under an inert atmosphere for 7 days. The resulting solution was washed with 3 M HCl (2 x 50 mL), and the aqueous layer extracted with DCM (3 x 5 mL). Then, the combined organic fractions were washed with saturated bicarbonate (1 x 20 mL) followed by 3 M HBF₄ (1 x 20.0 mL), dried over MgSO₄ and concentrated down to a dark yellow residue. The residue was then subjected to vacuum

filtration, where it was washed multiple times with ethyl acetate until a light yellow powder was obtained. (136 mg, 37%). Mp: 213–215 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ =1.41–1.43 (d, *J* = 6.9 Hz; 24 H), 3.90–3.99 (m, 4H), 7.14–7.19 (t, *J* = 7.4 Hz; 1H), 7.36–7.41 (t, *J* = 8.4 Hz; 2H), 7.61–7.64 (d, *J* = 7.8 Hz; 2H), 8.88 (s, 1H), 9.02 (s, 1H); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 21.7, 52.2, 104.3, 119.9, 124.6, 124.9, 129.2, 137.4, 161.7, 169.4, 182.8, 184.0; ¹⁹F {¹H} NMR (292.4 MHz, CDCl₃, 25 °C) δ = -147.4; ¹¹B {¹H} NMR (96.3 MHz, CDCl₃, 25 °C) δ = -0.8; HRMS (FAB-DFS) *m/z*: [M – BF₄]⁺ Calcd for C₂₅H₃₅O₂N₄⁺ 423.2744; Found 423.2749.

3-((2,3-Bis(diisopropylamino)cyclopropenium-4-((3,5-

bis(trifluoromethyl)phenyl)amino)cyclobut-3-ene-1,2-dione (11c) BF₄-.

To a flame-dried 50.0 mL round-bottom flask charged with **100** (1.3 g, 3.13 mmol, 1.0 equiv) was added DCM (15.0 mL). 3,5-Bis(trifluoromethyl)aniline (2.70 mL, 17.3 mmol, 5.5 equiv) was then slowly added to the solution. Next, the flask was equipped with a reflux condenser and heated in an oil bath to reflux, whilst stirred under an inert atmosphere for 7 days. The resulting black solution was washed with 3 M HCl (2 x 200 mL), and the aqueous layer extracted with DCM (3 x 10 mL). Then, the combined organic fractions were washed with saturated bicarbonate (1 x 50 mL) followed by 3 M HBF₄ (1 x 50.0 mL), dried over MgSO₄ and concentrated down to a dark red residue. The residue was then subjected to vacuum filtration, wherein it was washed multiple times with ethyl acetate until an off-white powder was obtained. (1.02 g, 50%). Mp: 230–232 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.41-1.43$ (d, J = 6.8 Hz; 24 H), 3.87–3.99 (m, 4H), 7.63 (s, 1H), 8.14 (s, 2H), 9.01 (s, 1H), 9.28 (s, 1H); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 21.6$, 52.3, 103.6, 117.6, 119.7, 121.2, 124.8, 125.4, 132.5, 132.9, 139.2, 163.1, 168.6, 183.1,

183.3; ¹⁹F{¹H} NMR (292.4 MHz, CDCl₃, 25 °C) δ = -146.5, -63.1; ¹¹B{¹H} NMR (96.3 MHz, CDCl₃, 25 °C) δ = -0.8; HRMS (FAB-DFS) *m/z*: [M - BF₄]⁺ Calcd for C₂₇H₃₃O₂N₄F₆⁺ 559.2491; Found 559.2512.

Characterization data of oxime products (101–103).

(Z/E)-3-Methyl-2-((Z)-pent-2-en-1-yl)cyclopent-2-enone oxime (101).

(0.97 g, 89%), yellow-brown oil. ¹H NMR (300 MHz, CDCl₃, 25 °C) δ = 1.00 (m, 3H, *major* and *minor*), 1.89 (s, 3H, *major* and *minor*), 2.08–2.20 (m, 2H, *major* and *minor*), 2.41–2.45 (m, 2H, *major* and *minor*), 2.66–2.70 (m, 2H, *major* and *minor*), 2.97–2.99 (m, 2H, *major* and *minor*), 5.31–5.40 (m, 2H, *major* and *minor*), 8.52 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 14.2, 15.3, 21.6, 22.6, 24.5, 34.3, 125.1, 125.6, 132.0, 133.0, 151.6, 168.2; HRMS (EI-DFS) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₇NO 179.1310; Found 179.1301.

(Z/E)-3-(4-(*tert*-Butyl)phenyl)-2-methylpropanal oxime (102).

(0.98 g, 92%), yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.07-1.12$ (t, J = 9.2 Hz; 3H, *major* and *minor*), 1.34, (s, 9H, *major* and *minor*), 2.58–2.87 (m, 3H, *major* and *minor*), 6.62–6.64 (d, J = 7.4 Hz; 1H, *minor*), 7.11–7.16 (t, J = 9.2 Hz; 2H, *major* and *minor*), 7.32–7.35 (d, J = 8.2 Hz, 2H, *major* and *minor*), 7.42–7.44 (d, J = 5.9 Hz; 1H, *major*); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 16.8$, 17.3, 31.1, 31.4, 34.4, 36.1, 39.6, 40.4, 125.2–125.3 (d, J = 4.5 Hz), 128.7–128.8 (d, J = 6.8 Hz), 136.0, 149.1, 155.9, 156.7; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₁NO 219.1623; Found 219.1615.

(Z/E)-4-(4-Methylpent-3-en-1-yl)cyclohex-3-enecarbaldehyde oxime (103).

(0.58 g, 54%), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.62$ (s, 3H, *major* and *minor*), 1.70 (s, 3H, *major* and *minor*), 1.83–2.23 (m, 10H, *major* and *minor*), 2.42–2.54 (m, 1H, *major*), 3.18–3.27 (m, 1H, *minor*), 5.09–5.13 (m, 1H, *major* and *minor*), 5.41 (m, 1H, *major* and *minor*), 6.64–6.66 (d, J = 7.2 Hz; 1H, *minor*), 7.41–7.43 (d, J = 6.2 Hz; 1H, *major*), 8.78 (s, 1H, *major* and *minor*); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 17.7$, 23.8, 24.2, 25.2, 25.6, 25.7, 26.4, 26.6, 26.9, 27.3, 28.2, 28.8, 29.8, 30.2 31.1, 31.8 34.5, 35.0, 37.7 (d, J = 8.4 Hz), 118.8, 120.6 (d, J = 5.6 Hz), 124.2, 131.5, 135.8, 137.7, 155.4, 156.2; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₃H₂₁NO 207.1623; Found 207.1617.

Representative procedure for squaramide-catalyzed oxime ether formation.

To an oven-dried 5.0 mL round-bottom flask charged with vinyl ether (1.03 mmol) was added DCM (0.5 mL). The respective oxime (0.52 mmol) and catalyst $11c \cdot BF4^-$ (17 mg, 5 mol %) were then added to the solution. Next, the flask was equipped with a reflux condenser and heated in an oil bath to reflux, whilst stirred under an inert atmosphere. Reaction progress was monitored via TLC. After removal of the solvent, the crude material was subjected to flash chromatography using a hexanes/ethyl acetate solvent system to furnish the respective oxime ether product.

Characterization data of oxime ether products (13a-ad).

(Z/E)-Acetophenone O-tetrahydro-2H-pyran-2-yl oxime (13a).

(179 mg, 82%, 1:3 Z/E), clear oil.¹H NMR (300 MHz, CDCl₃, 25 °C): δ =1.53–1.95 (m, 6H, *E* and *Z*); 2.33 (s, 3H, *E* and *Z*), 3.50–3.57 (m, 1H, *Z*), 3.63–3.70 (m, 1H, *E*), 3.86–3.91 (m, 1H, *Z*), 3.93–4.00 (m, 1H, *E*), 4.97–5.00 (m, 1H, *Z*), 5.43–5.45 (m, 1H, *E*), 7.36–

7.38 (m, 3H, *E* and *Z*), 7.68–7.72 (m, 2H, *E* and *Z*), ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 13.0, 19.8-20.1$ (d, J = 22.6 Hz), 25.3–25.4 (d, J = 7.6 Hz), 29.1, 30.7, 63.1, 94.6, 101.1, 126.3, 129.2, 136.5, 156.3; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₇NO₂ 219.1259; Found 219.1252.

(E)-Acetophenone O-tetrahydro-2H-pyran-2-yl oxime (13a).

(179 mg, 82%, 1:19 Z/E), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.62–1.93 (m, 6H), 2.34 (s, 3H), 3.63–3.71 (m, 1H), 3.93–4.01 (m, 1H), 5.43–5.45 (m, 1H), 7.36–7.38 (m, 3H), 7.68–7.72 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 13.0, 20.1, 25.3, 29.2, 63.2, 101.1, 126.4, 128.3, 129.2, 136.5, 156.3.

(*E*)-1-(4-(Trifluoromethyl)phenyl)ethenone *O*-tetrahydro-2*H*-pyran-2-yl oxime (13b).

(113 mg, 76%, 1:19 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.64-1.92$ (m, 6H), 2.34 (s, 3H), 3.65–3.71 (m, 1H), 3.92–3.99 (m, 1H), 5.42–5.44 (m, 1H), 7.61–7.64 (d, J = 8.2 Hz; 2H), 7.80–7.83 (d, J = 8.1 Hz; 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 12.8$, 19.9, 25.2, 29.0, 63.1, 101.3, 125.2, 125.8, 126.6, 139.8, 154.9; HRMS (EI-DFS) m/z: [M + H]⁺ Calcd for C₁₄H₁₆F₃NO₂ 287.1133; Found 287.1129.

(*E*)-1-(4-(Trifluoromethoxy)phenyl)ethenone *O*-tetrahydro-2*H*-pyran-2-yl oxime (13c)

(96 mg, 61%, 1:19 *Z/E*), yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.62-1.92$ (m, 6H), 2.32 (s, 3H), 3.64–3.70 (m, 1H), 3.92–3.99 (m, 1H), 5.41–5.44 (m, 1H), 7.20–7.23 (d, J = 8.2 Hz; 2H), 7.72–7.75 (d, J = 8.9 Hz; 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 12.9$, 20.0, 25.2, 29.0, 63.1, 101.2, 118.7, 120.6, 122.1, 127.8, 135.1, 149.9, 155.0; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₆F₃NO₃ 303.1082; Found 303.1078.

(E)-Benzaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13d).

(52 mg, 98%, 1:1 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.58–1.93 (m, 6H), 3.62–3.70 (m, 1H), 3.94–4.01 (m, 1H), 5.40–5.42 (m, 1H), 7.37–7.39 (m, 3H), 7.63– 7.66 (m, 2H) 8.21 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) δ = 19.8, 25.2, 28.9, 62.9, 101.0, 127.4, 128.6, 130.0, 132.0, 150.4; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₅NO₂ 205.1103; Found 205.1095.

(Z)-Benzaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13d').

(51 mg, 96%), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.60-1.91$ (m, 6H), 3.65– 3.72 (m, 1H), 3.89–3.97 (m, 1H), 5.42–5.44 (m, 1H), 7.43–7.47 (overlapping signals, 4H), 7.93–7.96 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 19.7$, 25.2, 28.7, 62.6, 101.4, 127.4, 128.5, 130.2, 130.6, 131.0, 147.4.

(E)-4-Methylbenzaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13e).

(55 mg, 96%, 1:1 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.59–1.93 (m, 6H), 2.38 (s, 3H), 3.63–3.70 (m, 1H), 3.94–4.02 (m, 1H), 5.38–5.40 (m, 1H), 7.17–7.20 (d, *J* = 8.0 Hz, 2H), 7.52–7.55 (d, *J* = 8.1 Hz; 2H), 8.19 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 19.9, 21.5, 25.2, 29.0, 63.0, 101.0, 127.3, 129.3, 140.3, 150.5; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₇NO₂ 219.1259; Found 219.1252.

(Z)-4-Methylbenzaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13e').

(50 mg, 88%), clear oil. ¹H NMR (300 MHz, CDCl3, 25 °C): $\delta = 1.57-1.91$ (m, 6H), 2.41 (s, 3H), 3.64–3.71 (m, 1H), 3.89–3.97 (m, 1H), 5.41–5.43 (m, 1H), 7.24–7.28 (d, J = 8.1 Hz; 2H), 7.41 (s, 1H), 7.83–7.86 (d, J = 8.2 Hz; 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 19.7, 21.5, 25.2, 28.7, 62.6, 63.4, 98.5, 101.3, 98.5, 101.3, 128.0, 129.2, 131.1, 140.6, 147.4.$

(E)-4-Methoxybenzaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13f).

(58 mg, 95%, 1:1.2 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.57-1.93$ (m, 6H) 3.62–3.69 (m, 1H), 3.84 (s, 3H), 4.01–4.02 (m, 1H), 5.36–5.39 (m, 1H), 6.88–6.92 (d, J = 8.8 Hz; 2H), 7.57–7.61 (d, J = 8.8 Hz; 2H), 8.17 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 19.9$, 25.2, 29.0, 55.3, 63.0, 100.9, 114.1, 124.6, 128.9, 150.1, 161.1; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₇NO₃ 235.1208; Found 235.1205.

(Z)-4-Methoxybenzaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13f').

(35 mg, 57%), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.61-1.95$ (m, 6H), 3.65– 3.72 (m, 1H), 3.87 (s, 3H), 3.89–3.97 (m, 1H), 5.40–5.42 (m, 1H,), 6.94–6.97 (d, J = 8.9 Hz; 2H) 7.37 (s, 1H), 7.91–7.94 (d, J = 8.9 Hz; 2H); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 19.8$, 25.2, 28.8, 55.3, 62.7, 101.3, 113.8, 123.7, 133.0, 147.0, 160.8.

(*E*)-6-Bromobenzo[d][1,3]dioxole-5-carabaldehyde *O*-tetrahydro-2*H*-pyran-2-yl oxime (13g).

(119 mg, 70%, *E*), white solid. Mp: 92–94 °C; ¹H NMR (600 MHz, CDCl₃, 25 °C): δ = 1.63–1.94 (m, 6H), 3.63–3.70 (m, 1H), 3.94–4.02 (m, 1H), 5.37–5.40 (m, 1H), 6.02 (s, 2H), 6.71 (s, 1H), 7.45 (s, 1H), 8.52 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 19.6, 25.2, 28.8, 62.9, 101.1,102.1, 108.8, 112.6, 116.0, 124.8, 147.6, 149.5, 150.0; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₄BrNO₄ 327.0106; Found 327.0104.

(E)-2-Bromo-4,5-dimethoxybenzalehyde O-tetrahydro-2H-pyran-2-yl oxime (13h).

(140 mg, 79%, *E*), white solid. Mp: = 150–152 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.60–1.93 (m, 6H) 3.64–3.71 (m, 1H), 3.91 (s, 3H) 3.93 (s, 3H) 3.96–4.03 (m, 1H) 5.41–5.44 (m, 1H) 7.01 (s, 1H), 7.45 (s, 1H), 8.52 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25

°C) δ = 19.6, 25.2, 28.9, 56.1, 62.8, 101.0, 109.2, 115.1, 115.4, 123.5 148.5, 149.6, 151.2; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₈BrNO₄ 343.0419; Found 343.0415.

(*E*)-[1,1'-Biphenyl]-4-carbaldehyde *O*-tetrahydro-2*H*-pyran-2-yl oxime (13i). (70 mg, 96%, 1:1 *Z/E*), yellow solid. Mp: 76–78 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.60-1.96$ (m, 6H), 3.67–3.73 (m, 1H), 3.97–4.05 (m, 1H), 5.43–5.45 (m, 1H), 7.36– 7.42 (m, 1H), 7.45–7.50 (m, 2H), 7.62–7.65 (d, *J* = 8.1 Hz; 4H), 7.72–7.75 (d, *J* = 8.3 Hz; 2H), 8.27 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 19.8$, 25.2, 28.9, 63.0, 101.1, 127.1, 127.3, 127.7–127.9 (d, *J* = 9.6 Hz), 128.9, 130.9, 140.4, 142.8, 150.1; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₉NO₂ 281.1416; Found 281.1405.

Benzophenone*O*-tetrahydro-2*H*-pyran-2-yloxime(13j).(108 mg, 74%), white solid. Mp: 64–66 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.53$ –1.81 (m, 6H), 3.66–3.72 (m, 1H), 3.86–3.93 (m, 1H), 5.48–5.51 (t, J = 3.7 Hz; 1H), 7.34–7.39 (m, 3H), 7.45–7.46 (m, 5H), 7.55–7.58 (dd, J = 6.1, 1.9 Hz; 2H); ¹³C {¹H} NMR (75.5MHz, CDCl₃, 25 °C): $\delta = 19.5, 25.3, 28.8, 62.7, 101.1, 127.9, 128.1–128.3 (d, <math>J = 9.8$ Hz),128.8, 129.3–129.4 (d, J = 7.6 Hz), 130.1, 132.4, 133.5, 136.4; HRMS (EI-DFS) *m/z*: [M+ H]⁺ Calcd for C₁₈H₁₉NO₂ 281.1416; Found 281.1410.

(E)-1,2-Diphenylethanone O-tetrahydro-2H-pyran-2-yl oxime (13k).

(98 mg, 64%, 1:>19 Z/E), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.48–1.91 (m, 6H), 3.61–3.68 (m, 1H), 3.77–3.85 (m, 1H), 4.15–4.20 (d, *J* = 14.5 Hz; 1H), 4.32–4.36 (d, *J* = 14.5 Hz; 1H), 5.52–5.55 (t, *J* = 3.0 Hz; 1H), 7.20–7.24 (m, 1H), 7.29–7.31 (d, *J* = 4.4 Hz; 4H), 7.35–7.38 (m, 3H), 7.73–7.76 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) δ = 19.5, 25.3, 29.0, 33.2, 62.6, 100.9, 126. 3, 126.9, 128.4, 128.6 (d, *J* = 1.4 Hz), 129.3,

135.6, 137.0, 157.6; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₁NO₂295.1572; Found 295.1565.

(Z/E)-Furan-2-carbaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13l).

(81 mg, 80%, 1:6 *Z/E*), brown oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.56-1.95$ (m, 6H, *E* and *Z*), 3.64–3.71 (m, 1H, *E* and *Z*), 3.87–3.95 (m, 1H, *E* and *Z*), 5.36–5.39 (m, 1H, *Z*), 5.44–5.46 (m, 1H, *E*), 6.45–6.47 (m, 1H, *Z*), 6.54–6.56 (m, 1H, *E*), 6.67–6.68 (d, *J* = 3.4 Hz; 1H, *Z*), 7.27–7.29 (d, *J* = 3.4 Hz; 1H, *E*), 7.48–7.49 (d, *J* = 1.2 Hz; 1H, *E* and *Z*), 7.56 (s, 1H, *E*), 8.08 (s, 1H, *Z*); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 19.7$, 19.8, 25.1, 28.6, 28.8, 62.5, 63.1, 101.2, 111.6, 112.2, 113.1, 117.9, 137.5, 140.5, 143.5, 144.3, 145.2; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₃NO₃ 195.0895; Found 195.0892.

(Z)-6-(Benzyloxy)-1H-indole-3-carbaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13m').

(87 mg, 73%, 2:1 *Z/E*), white solid. Mp: 180–182 °C; flash chromatography (hexanes:EtOAc/DCM = 80:16:4) followed by recrystallization (hexanes/chloroform); ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.60-1.94$ (m, 6H), 3.66–3.72 (m, 1H), 4.00–4.01 (m, 1H) 5.15 (s, 2H), 5.44–5.46 (m, 1H), 6.97–7.01 (d J = 2.4, 8.8 Hz; 1H), 7.26–7.29 (m, 1H), 7.34–7.43 (m, 4H), 7.50–7.53 (d J = 7.1 Hz; 2H) 7.77–7.78 (d, J = 2.3 Hz; 1H), 8.32 (s, 1H), 8.41 (s, 1H); ¹³C{¹H} NMR (75.5 MHz, *d*₆-DMSO, 25 °C) $\delta = 20.0$, 25.4, 29.3, 62.2, 70.2, 100.5, 105.8 108.5, 112.6, 113.1, 125.1, 128.1 (d, J = 5.4 Hz), 130.7, 132.4, 138.1, 146.9, 153.7; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₂₁H₂₂N₂O₃ 350.1630; Found 350.1625.

(1(Z/E),2E)-Cinnamaldehyde O-tetrahydro-2H-pyran-2-yl oxime (13n).

(66 mg, 55%, 1:1.2 *Z/E*), clear yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.56– 1.92 (m, 6H, *E* and *Z*), 3.63–3.70 (m, 1H, *E* and *Z*), 3.93–4.01 (m, 1H, *E* and *Z*), 4.96–4.99 (m, 1H, *Z*) 5.30–5.32 (m, 1H, *E*), 6.81–6.99 (m, 1H, *E* and *Z*), 7.31–7.40 (overlapping signals, *E* and *Z*), 7.44–7.47 (dd, *J* = 6.7, 1.1 Hz; 2H, *E* and *Z*), 7.99–8.03 (d, *J* = 9.2 Hz; 1H, *E*); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 19.8, 25.1, 25.5, 28.8, 30.7, 63.1, 94.7, 100.9, 122.1, 127.0, 128.8 (d, *J* = 6.8 Hz), 135.9, 139.2, 152.2; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₇NO₂ 231.1259; Found 231.1256.

(*E*)-3-(4-(*tert*-Butyl)-phenyl)-2-methylpropanal *O*-tetrahydro-2*H*-pyran-2-yl oxime (130).

(80 mg, 77%, 1:2 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.08-1.11$ (d, *J* = 6.7 Hz; 3H), 1.34 (s, 9H), 1.59–1.85 (m, 6H), 2.55–2.64 (m, 1H), 2.70–2.91 (m, 2H), 3.57–3.67 (m, 1H), 3.85–3.99 (m, 1H), 5.21–5.25 (m, 1H), 7.11–7.14 (d, *J* = 8.0 Hz; 2H), 7.31–7.34 (m, 2H), 7.44–7.47 (dd, *J* = 5.4, 1.5 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 17.4$ (d, *J* = 7.6 Hz), 19.9, 20.1, 25.2, 28.9 (d, *J* = 5.5 Hz), 31.4, 34.4, 36.0 (d, *J* = 2.8 Hz), 40.3, 40.4, 62.9, 63.2, 100.3, 100.6, 125.2, 128.9 136.0 (d, *J* = 2.4 Hz), 149.0, 156.6; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₉NO₂ 303.2198; Found 303.2191.

Cyclopentanone O-tetrahydro-2H-pyran-2-yl oxime (13p).

(85 mg, 89%), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.54-1.85$ (m, 10H), 2.36–2.50 (m, 4H), 3.56–3.64 (m, 1H), 3.90–3.97 (m, 1H), 5.16–5.19 (m, 1H,); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 20.3$, 24.6, 25.1, 25.2, 27.8, 29.1, 31.1, 63.5, 100.7, 168.3; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₀H₁₇NO₂ 183.1259; Found 183.1252.

Cycloheptanone O-tetrahydro-2H-pyran-2-yl oxime (13q).

(79 mg, 72%), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.52-1.84$ (m, 14H), 2.40– 2.44 (m, 2H), 2.59–2.63 (m, 2H), 3.58–3.65 (m, 1H), 3.88–3.95 (m 1H), 5.18–5.20 (m, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 20.3$, 24.6, 25.3, 27.6, 29.2 (d, J = 6.5Hz), 30.4 (d, J = 4.6 Hz), 33.8, 63.3, 100.5, 165.5; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₂H₂₁NO₂ 211.1572; Found 211.1565.

(Z/E)-1,6,6-Trimethylbicyclo[3.1.1]heptan-3-one *O*-tetrahydro-2*H*-pyran-2-yl oxime (13r).

(97 mg, 74%, 1:1 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.802$ (s, 3H, *E* and *Z*), 0.907 (s, 3H, *E* and *Z*), 1.04, (s, 3H, *E* and *Z*), 1.18–1.29 (m, 1H, *E* and *Z*), 1.49–1.90 (overlapping signals, 10H, *E* and *Z*), 2.04 (s, 1H, *Z*), 2.11 (s, 1H, *E*), 2.51–2.60 (m, 1H, *E* and *Z*), 3.56–3.63 (m, 1H, *E* and *Z*), 3.82–3.97 (m, 1H, *E* and *Z*), 5.17–5.20 (m, 1H, *E*), 5.23–5.26 (m, 1H, *Z*); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 11.1$, 11.2, 18.5, 18.5, 19.5, 19.6, 19.9, 20.4, 25.3, 25.4, 27.2, 27.3, 29.3, 29.4, 32.7, 32.8, 33.8, 33.9, 43.6, 43.7, 48.0, 48.3, 51.8, 51.9, 62.6, 63.5, 100.0, 100.8, 170.8, 171.0; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₅H₂₅NO₂ 251.1885; Found 251.1883.

(*E*)-4-(4-Methylpent-3-en-1-yl)cyclohex-3-enecarbaldehyde *O*-tetrahydro-2*H*-pyran-2-yl oxime (13s).

(94 mg, 95%, 1:2 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.60 (overlapping signals, 5H) 1.69 (s, 3H), 1.80–2.23 (overlapping signals, 14H), 2.50–2.60 (m, 1H), 3.59–3.65 (m, 1H), 3.91–3.97 (m, 1H), 5.06–5.11 (m, 1H), 5.19–5.21 (m, 1H), 5.38–5.43 (m, 1H), 7.43–7.47 (dd, *J* = 7.3, 3.5 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 17.7, 20.1, 25.2, 25.7, 26.3, 26.8 (d, *J* = 5.6 Hz), 27.1 (d, *J* = 3.3 Hz), 28.9, 34.4 (d, *J* = 4.3

Hz), 34.9, 37.6, 63.3, 100.6, 118.5, 120.5 (d, *J* = 3.4 Hz), 124.2, 131.4, 135.8, 137.6, 156.3 (d, *J* = 3.1 Hz); HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₉NO₂ 291.2198; Found 291.2190.

(Z)-4-(4-Methylpent-3-en-1-yl)cyclohex-3-enecarbaldehyde *O*-tetrahydro-2*H*-pyran-2-yl oxime (13s').

(45 mg, 86%,), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.62 (overlapping signals, 5H), 1.70 (s, 3H), 1.77–2.23 (overlapping signals, 14H), 3.14–3.24 (m, 1H), 3.63–3.68 (m, 1H), 3.88–3.97 (m, 1H), 5.09–5.13 (m, 1H), 5.24–5.28 (m, 1H), 5.41–5.45 (m, 1H), 6.68–6.71 (d, J = 7.1 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 17.7, 19.9 (d, J = 6.4 Hz), 25.2, 25.7, 26.4, 27.0 (d, J = 2.2 Hz), 28.4, 28.8, 30.7 (d, J = 2.1 Hz), 37.7, 62.9, 63.2, 100.7, 118.8, 120.6, 124.2, 131.5, 137.7, 156.9 (d, J = 4.8 Hz).

(*Z/E*)-3-Methyl-2-((*Z*)-pent-2-en-1-yl)cyclopent-2-enone *O*-tetrahydro-*2H*-pyran-2-yl oxime (13t).

(59 mg, 43%, C.N.D.) clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.963-1.01$ (t, *J* = 7.5 Hz; 3H), 1.57–1.86 (m, 6H), 1.87 (s, 3H), 2.15–2.19 (m, 2H), 2.37–2.41 (m, 2H), 2.65–2.69 (m, 2H), 2.90–3.10 (qd, *J* = 14.7, 4.6 Hz; 2H), 3.57–3.64 (m, 1H), 3.91–3.98 (m, 1H), 5.24–5.26 (m, 1H), 5.35–5.38 (t, *J* = 4.8 Hz, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 14.2$ 15.4, 20.2, 20.5, 22.5, 25.1, 25.4, 29.4, 34.3, 63.2, 101.0, 125.9, 133.3, 151.4, 168.7; HRMS (EI-DFS) *m/z*: [M + H]⁺Calcd for C₁₆H₂₅NO₂263.1885; Found 263.1881. Note: the *Z/E* isomer configuration could not be determined (C.N.D.) for this compound.

(*Z/E*)-*tert*-Buty-l,4-((((tetrahydro-2*H*-pyran-2-yl)oxy)imino)methyl)piperidine-1carboxylate (13u).

(87 mg, 54% 1:2 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.44$ (s, 9H, *E* and *Z*), 1.51–1.84 (overlapping signals, 10H, *E* and *Z*), 2.39–2.50 (m, 1H, *E*), 2.73–2.81 (m, 2H, *E* and *Z*), 3.02–3.10 (m, 1H, *Z*), 3.56–3.63 (m, 1H, *E* and *Z*), 3.88–3.95 (m, 1H, *E* and *Z*), 4.05–4.09 (m, 2H, *E* and *Z*), 5.17–5.19 (m, 1H, *E*), 5.21–5.22 (m, 1H, *Z*) 6.59–6.61 (d, *J* = 6.9 Hz; 1H, *Z*), 7.37–7.39 (d, *J* = 6.5 Hz; 1H, *E*); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 20.0, 25.1, 28.4, 28.9, 29.2, 29.3, 36.9, 63.3, 79.5, 100.7, 154.8, 155.2; HRMS (EI-DFS)$ *m/z*: [M + H]⁺ Calcd for C₁₆H₂₉N₂O₄ 313.2127; Found 313.2119.

(Z/E)-2,2,7,7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b4',5'-d]pyran-5-

carbaldehyde*O*-tetrahydro-2*H*-pyran-2-yloxime(13v).(97 mg, 79%, 1:2, *Z/E*), yellow oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.33-1.36$ (t,J = 4.4 Hz; 6H, *E* and *Z*), 1.49 (s, 3H, *E* and *Z*), 1.56 (s, 3H, *E* and *Z*), 1.59–1.83 (m, 6H,*E* and *Z*), 3.60–3.70 (m, 1H, *E* and *Z*), 3.79–3.95 (m, 1H, *E* and *Z*), 4.29–4.40 (m, 1H, *E*and *Z*), 4.50–4.68 (overlapping signals, 2H, *E* and *Z*), 5.00–5.05 (td, *J* = 5.2, 1.9 Hz; 1H,*E*), 5.27–5.31 (m, 1H, *E*)5.38–5.41 (t, *J* = 2.9 Hz; 1H, *Z*), 5.55–5.59 (m, 1H, *E* and *Z*),6.87–6.91 (m, 1H, *E*), 7.51–7.56 (m, 1H, *Z*); ¹³C {¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta =$ 19.0, 19.3, 19.5, 19.7, 19.9, 24.3 (d, *J* = 5.0 Hz), 24.5, 24.8, 25.0 (d, *J* = 2.0 Hz), 25.1, 25.9,26.0 (d, *J* = 3.9 Hz), 26.1, 28.4, 28.6 (d, *J* = 4.7 Hz), 62.1, 62.3, 62.9, 63.5, 63.9, 66.5 (d, *J*= 3.2 Hz), 70.1, 70.2, 70.3, 70.6 (d, *J* = 4.4 Hz), 71.4, 71.5, 72.9, 73.6, 96.1, 96.2 (d, *J* =2.8 Hz), 100.2, 100.3, 100.7, 101.0, 108.9, 109.6, 109.7; HRMS (EI-DFS) *m/z*: [M + H]+Calcd for C_{17H27}NO₇ 357.1788; Found 357.1780.

(E)-3,7-Dimethloct-6-enal O-tetrahydro-2H-pyran-2-yl oxime (13w).

(28 mg, 39%, 1:1.2 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 0.923–0.952 (dd, *J* = 4.6, 2.1 Hz; 3H), 1.17–1.44 (m, 4H), 1.59 (s, 3H), 1.67 (s, 3H), 1.76–2.29 (overlapping signals, 9H), 3.56–3.64 (m, 1H), 3.89–3.96 (m, 1H), 5.05–5.10 (m, 1H), 5.19–5.22 (m, 1H), 7.47–7.52 (t, *J* = 6.5 Hz; 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 17.6, 19.4 (d, *J* = 6.6 Hz), 20.0 (d, *J* = 1.7 Hz), 25.2, 25.4 (d, *J* = 2.4 Hz), 25.7, 28.9, 31.0 (d, *J* = 6.6 Hz), 36.4 (d, *J* = 2.1 Hz), 36.6, 36.8, 63.1 (d, *J* = 4.2 Hz), 100.5 (d, *J* = 3.5 Hz), 124.3, 131.5, 152.2 (d, *J* = 2.1 Hz); HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₅H₂₈NO₂ 254.2120; Found 254.2000.

(E)-Ethyl-2-cyano-2-(((tetrahydro-2H-pyran-2-yl)oxy)imino)acetate (13x).

(98 mg, 83%, *E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.39-1.44$ (t, *J* = 7.1 Hz; 3H) 1.64–2.02 (m, 6H), 3.72–3.79 (m, 1H), 3.82–3.90 (td, *J* = 10.5, 2.9 Hz; 1H), 4.40–4.48 (dq, *J* = 7.1, 1.8 Hz; 2H), 5.70–5.71 (m, 1H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C) $\delta = 14.0$, 18.1, 24.6, 27.9, 62.6, 63.6, 104.7, 107.6, 157.8; HRMS (CI-DFS) *m/z*: [M + H]⁺Calcd for C₁₀H₁₅N₂O₄ 227.1032; Found 227.1027.

(E)-Acetophenone O-(1-ethoxyethyl) oxime (13y).

(99 mg, 92%, 1:19 Z/E), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.24–1.29 (t, J = 7.1 Hz, 3H), 1.51–1.53 (d, J = 5.4 Hz; 3H), 2.30 (s, 3H), 3.65–3.75 (m, 1H), 3.90–4.00 (m, 1H), 5.43–5.49 (q, J = 5.4 Hz; 1H), 7.38–7.41 (m, 3H), 7.68–7.71 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 12.9, 15.4, 20.4, 64.2, 103.8, 126.1, 128.4, 129.1, 136.7, 154.4; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₇NO₂ 207.1259; Found 207.1252.

(*E*)-Acetophenone *O*-(1-butoxyethyl) oxime (13z).

(116 mg, 95%, 1:19 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.95-0.97$ (m, 3H), 1.36–1.46 (m, 2H), 1.50–1.52 (d, J = 5.5 Hz; 3H), 1.60–1.66 (m, 2H), 2.30 (s, 3H), 3.60–3.67 (m, 1H), 3.86–3.93 (m, 1H), 5.42–5.47 (q, J = 5.4 Hz; 1H), 7.38–7.40 (m, 3H), 7.68–7.71 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 12.8$, 13.9, 19.3, 20.3, 32.0, 68.5, 104.0, 126.1, 128.3, 129.0, 136.8, 154.4; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₁NO₂ 235.1572; Found 235.1564.

(*E*)-Acetophenone *O*-(1-isobutoxyethyl) oxime (13aa). (109 mg, 89%, 1:19 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.929-0.964$ (q, *J* = 3.5 Hz; 6H), 1.50–1.52 (d, *J* = 5.4 Hz; 3H), 1.83–1.97 (m, 1H) 2.30 (s, 3H), 3.37– 3.42 (m, 1H), 3.63–3.68 (m, 1H), 5.40–5.45 (q, *J* = 5.4 Hz; 1H), 7.38–7.41 (m, 3H), 7.68– 7.71 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 12.9$, 19.4 (d, *J* = 6.8 Hz), 20.2, 28.7, 75.6, 104.1, 126.1, 128.4, 129.0, 136.8, 154.4; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₁NO₂ 235.1572; Found 235.1566.

(E)-Acetophenone O-(2-ethoxypropan-2-yl) oxime (13ab).

(75 mg, 65%, 1:19 *Z/E*), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 1.19-1.23$ (t, *J* = 7.1 Hz; 3H), 1.61 (s, 6H), 2.28 (s, 3H), 3.58–3.65 (q, *J* = 7.1 Hz; 2H), 7.38–7.40 (m, 3H), 7.73–7.76 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): $\delta = 12.5$, 15.7, 24.7, 57.0, 103.7, 126.2, 128.3, 128.9, 137.1, 154.1; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₉NO₂ 221.1416; Found 221.1408.

(E)-Acetophenone O-(1-(cyclohexyloxy)ethyl) oxime (13ac).

(65 mg, 48%, 1:19 Z/E), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.19–1.42 (m, 5H), 1.49–1.50 (d, J = 5.4 Hz; 3H), 1.53–1.58 (m, 1H), 1.74–1.79 (m, 2H), 1.91–2.00 (m, 2H), 2.28 (s, 3H), 3.78–3.87 (m, 1H), 5.53–5.59 (q, J = 5.4 Hz; 1H), 7.37–7.41 (m, 3H), 7.67–7.70 (m, 2H); ¹³C {1H} NMR (75.5 MHz, CDCl₃, 25 °C): δ = 12.9, 20.9, 24.2, 24.4, 25.7, 32.4, 32.5, 33.6, 76.3, 102.0, 126.0, 128.4, 129.0, 136.8, 154.3; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₃NO₂ 261.1729; Found 261.1725.

(E)-Acetophenone O-tetrahydrofuran-2-yl oxime (13ad).

(92 mg, 87%, 1:19 Z/E), clear oil. ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 1.89–2.17 (m, 4H), 2.26 (s, 3H), 3.96–4.09 (overlapping signals, 2H), 5.93–5.95 (t, *J* = 3.5 Hz; 1H), 7.36–7.38 (m, 3H), 7.69–7.72 (m, 2H); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, 25 °C): δ =12.9, 24.0, 30.9, 67.9, 106.5, 126.2, 128.3, 129.1, 136.5, 155.8; HRMS (EI-DFS) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₅NO₂ 205.1103; Found 205.1099.

7.0 Spectra

¹H NMR (300 MHz) Spectrum of **95**·BF₄⁻ in CDCl₃

114.676	50.789

22.296

$\frac{1^{3}C{}^{1}H}{NMR}$ (75.5 MHz) Spectrum of 96 BF₄ - in CDCl₃

19 F{¹H} NMR (292.4 MHz) Spectrum of **96**·BF₄⁻ in CDCl₃

¹H NMR (300 MHz) Spectrum of 7c in CDCl₃

¹H NMR (300 MHz) Spectrum of 7d in CDCl₃

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	- o - u - u - u - u - u - u - u	
000000000000000000000000000000000000000	110000040001	~ 心とるらす 4 ろくししのか	- M + M 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200000000000000000000000000000000000000	
LL000000444440000000	~~~~~~~~~~~~~~~~~		

¹H NMR (300 MHz) Spectrum of 7f in CDCl₃

¹H NMR (300 MHz) Spectrum of 7p in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of 7p in CDCl₃

006 006 006 006 006 006 006 006	351	06	91	00000047
	4	m	0 0	00000000000000000000000000000000000000
040000000000000000000000000000000000000				
4 4 M M M M M N N N N N N N N N N N N N	00	m	NN	00004000
	00	~	99	H H D D D D M M
	V		V	

¹H NMR (300 MHz) Spectrum of 7r in CDCl₃

¹H NMR (300 MHz) Spectrum of 7s in CDCl₃

¹H NMR (300 MHz) Spectrum of 7w in CDCl₃

<u>1D NOESY NMR Spectrum of Thiourea 4 BF₄⁻ with Irradiation at the Methine Signal (600 MHz, CD₂Cl₂, 297.8 K)</u>

<u>1D NOESY NMR Spectrum of Thiourea $4 \cdot BF_4^-$ with Irradiation at the N(3)–H Signal (600 MHz, CD₂Cl₂, 297.8 K)</u>

<u>1D NOESY NMR Spectrum of Thiourea $4 \cdot BF_4^-$ with Irradiation at the N(4)–H Signal (600 MHz, CD₂Cl₂, 297.8 K)</u>

<u>1D NOESY NMR Spectrum of Thiourea $4 \cdot BF_4^-$ with Irradiation at the N(4)–H Signal (600 MHz, CD₂Cl₂, 193.0 K)</u>

¹³C{¹H} NMR (75.5 MHz) Spectrum of a Deuterated Mixture - *syn* and *anti* Product Isomers (87, 87', 88) in CDCl₃

440,	タタト	99	0 00	ഹ	9	0	\sim	ωr	nΓ	~ 4	0 5	-, 't		9	\sim	Q	∞	00		ט יו) m	∞	\sim	ന്	ഹ	\sim	9	5	5 4		∞	∞		9	-	<u>н</u> і	50	0	4	
M N H G	001-	9 9	40	ı oʻ	4	∞	\sim		- 0	$\supset \sigma$	n o	5 -	L LO	m	-	0	5	ωı	r 4	ЪĽ	im	N	<u> </u>	$\circ \sigma$	∞	-	4	m	NO		0	5	5	-	i O	9 I	n c	\sim	-	0
0000	$\sigma \infty \omega$	00 00	$\infty \propto$	ഹ	ŝ	S	S	ы	лu	0 5	r <	7 7	· œ	00	∞	∞	r	r i	<u>г</u> г			-	- 1	- U) (O	Ö	Ó	6	00	i o	9	S	S	ŝ	5	ı م	ഗഗ	n n	S	S
		•••	•		•	•	•	•	•	•	•	•	•	•	•		•	•			• •	•	•						•		•	•	•	•		•			•	
ক ক ক ক					с.	e.	m.		n' c	n' r	n n	i m		i Li	÷	÷.	÷	÷.			- -	÷	÷.			Ļ.	÷	÷.			÷	÷	÷		÷.	÷.			÷	-
7770	 		é é é		ς. Έ	Ч. Ч	ς. Έ	ć.				i m				÷.	÷	÷	 			Ļ.	÷			Ë	Ë	Ę.		i -i	i.	÷	÷	÷	÷	i.		i ci	÷.	۲. ۲
ব ব ব ব			с С	 	ς. Γ	ς. Γ	т. Ч	с С		i c		i r				Ч. Ч	Ч. Ч	i.	i. 			-1.				- -	_ ⊥ .			1.1	// ¹.	: 2	į.		1				- -	ן. ר

H₃C−OTHP

¹H NMR (300 MHz) Spectrum of 99 (Minor), 5a, and 7a (Major) in CDCl₃

$\frac{^{13}C{^{1}H} NMR (75.5 MHz) Spectrum of Deuterated Mixture - syn and anti Product}{Isomers (90, 90', 91) in CDCl_3}$

2D HSQC NMR Spectrum of Deuterated Mixture - *syn* and *anti* Product Isomers (90, 90', 91) in CDCl₃

2D COSY NMR Spectrum of Deuterated Mixture - *syn* and *anti* Product Isomers (90, 90', 91) in CDCl₃

2D COSY NMR Spectrum of 7a in CDCl₃

2D HSQC NMR Spectrum 7a in CDCl₃

Table 8. Integration values denoted for the peaks of interest at 100% conversion.

Object	Integral [abs]	Integral [rel]	Peaks	Range (F1) from	Range (F1) to	(F1) [ppm]
Integral 1	413486340.5	0.7528	1	97.892	97.591	97.7418
Integral 2	549266376.3	1	1	62.316	61.931	62.1233
Integral 3	439738826.3	0.8006	1	30.74	30.45	30.5949
Integral 4	461883042.8	0.8409	1	25.868	25.272	25.5701
Integral 5	481648078.3	0.8769	1	19.68	19.09	19.3847

DEPT-55 NMR Spectrum of 7a (2% conversion to product) in CDCl₃

 Table 9. Integration values denoted for the peaks of interest at 2% conversion.

Object	Integral [abs]	Integral [rel]	Peaks	Range (F1) from	Range (F1) to	(F1) [ppm]
Integral 1	1450629516	0.8404	1	97.733	97.226	97.7556
Integral 2	1726021660	1	1	62.503	61.709	62.1059
Integral 3	1539357156	0.8919	1	30.954	30.16	30.5569
Integral 4	1452714348	0.8417	1	25.815	25.213	25.5137
Integral 5	1504962524	0.8719	1	19.74	19.07	19.405

¹H NMR (300 MHz) Spectrum of 93 in CDCl₃

¹H NMR (300 MHz) Spectrum of **10i** in CDCl₃

$\frac{19}{1}F{1} NMR$ (292.4 MHz) Spectrum of **11a** BF₄⁻ in CDCl₃

-148.80

¹H NMR (300 MHz) Spectrum of **101** in CDCl₃

172

¹H NMR (300 MHz) Spectrum of **102** in CDCl₃

¹H NMR (300 MHz) Spectrum of a 1:3 Z/E mixture of 13a in CDCl₃

¹H NMR (300 MHz) Spectrum of **13a** (*E* isomer) in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of **13a** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13b** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13c** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13d (Z isomer)** in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹H NMR (300 MHz) Spectrum of **13e** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13e** (Z isomer) in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of **13e** (*Z* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13g** (*E* isomer) in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of **13g** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13h** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13i** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13j** in CDCl₃

¹H NMR (300 MHz) Spectrum of **13k** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of a 1:~8 Z/E mixture of 13n in CDCl₃

¹H NMR (300 MHz) Spectrum of **130** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13p** in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of **13p** in CDCl₃

¹H NMR (300 MHz) Spectrum of **13q** in CDCl₃

¹H NMR (300 MHz) Spectrum of a 1:2 Z/E mixture of 13r in CDCl₃

¹H NMR (300 MHz) Spectrum of **13s (Z isomer)** in CDCl₃

¹H NMR (300 MHz) Spectrum of a 1:2 Z/E mixture of 13v in CDCl₃

¹H NMR (300 MHz) Spectrum of **13w** (*E* isomer) in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of **13w** (*E* isomer) in CDCl₃

<152.23 152.20			100.45 100.40	< 63.15 63.10 63.10	33.55 34.55 34.55 35.65 35.45 35.45 35.55 35.45 35.55 35.45 35.555
-------------------	--	--	------------------	---------------------------	--

¹H NMR (300 MHz) Spectrum of **13x** (*E* isomer) in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of **13x** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13y** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13z** (*E* isomer) in CDCl₃

205

¹H NMR (300 MHz) Spectrum of **13ab** (*E* isomer) in CDCl₃

¹H NMR (300 MHz) Spectrum of **13ac** (*E* isomer) in CDCl₃

208

¹H NMR (300 MHz) Spectrum of **13ad (E isomer)** in CDCl₃

¹³C{¹H} NMR (75.5 MHz) Spectrum of **13ad** (*E* isomer) in CDCl₃

8.0 Appendix A

Experimental determination of reaction order

Reaction order dependence on alcohol concentration

Three separate reactions were conducted in oven-dried 25.0 mL round-bottom flasks charged with 1 mol% catalyst (0.01 M, 0.05 mmol) ($4 \cdot BF_4^-$) to which was added benzyl alcohol (1.0, 2.0 or 3.0 M; 5.0, 10.0 or 15.0 mmol in 5.0 mL DCM) (**5a**) and DHP (1.0 M, 5.0 mmol) (**6**) at room temperature under an inert atmosphere. Reaction progress was determined by ¹H NMR (CDCl₃) spectroscopy analyses of aliquots taken periodically. This involved monitoring the disappearance of the signal at 6.37 ppm for DHP and appearance of the signal at 4.51 ppm for the THP-protected product (**7a**).

Scheme 14: Investigating reaction order in respect to alcohol concentration.

Figure 35: Plot of time (min) vs conversion (%) for three independent starting concentrations of benzyl alcohol performed under synthetically relevant conditions. The negligible difference in conversion times suggest that the reaction is first-order in benzyl alcohol.

Plotting the results from these analyses resulted in the curves depicted in Figure 35. As seen, regardless of the initial concentration of benzyl alcohol (1.0, 2.0 or 3.0 M) the reactions went to complete conversion in \sim 3 hours. To account for these similar rates of reaction, the catalyst must function nearly twice as fast with each incremental increase (i.e., doubling of concentration) in substrate concentration. From these trends a first-order dependence on substrate **5a** is inferred.

Reaction order dependence on DHP concentration

Three separate reactions were conducted in oven dried 25.0 mL round-bottom flasks charged with 1 mol% catalyst (0.01 M, 0.05 mmol) ($4 \cdot BF_4^-$) to which was added DHP (1.0, 2.0 or 3.0 M; 5.0, 10.0 or 15.0 mmol in 5.0 mL DCM) (**6**) and benzyl alcohol (1.0 M, 5.0 mmol) (**5a**) at room temperature under an inert atmosphere. Reaction progress was determined by ¹H NMR (CDCl₃) spectroscopy analyses of aliquots taken periodically. This involved monitoring the disappearance of the signal at 6.37 ppm for DHP and appearance of the signal at 4.51 ppm for the THP-protected product (**7a**).

Scheme 15. Investigating reaction order in respect to DHP concentration.

211

Figure 36. Plot of time (min) vs conversion (%) for three independent starting concentrations of DHP performed under synthetically relevant conditions.

An investigation of the reaction order in DHP revealed a significant decrease in overall reaction time (1.0, 2.0 & 3.0 M; ~ 3, 1.5 and 1.25 H, respectively) with increasing DHP concentration (Figure 36). Plotting the data from these initial rate studies provided first-order dependencies in DHP, as observed from the linear trends in Figure 37. From this, the rate constant (k) for each of these reactions was extrapolated. These rate constants were then plotted (k vs [DHP]), and were found to be within standard deviation (Figure 38); therefore, this is in agreement with a first-order reaction dependency on DHP concentration.

Figure 37. Rate constants (k) (top left: 1.0 M, top right: 2.0 M, bottom, 3.0 M) were determined from analysis of the initial rate by implementing first-order kinetics, which invokes taking the natural logarithm of the concentration of substrate plotted against time (min) as fitted to a linear trend.

Figure 38. Rate constants $(M^{-1}s^{-1})$ plotted against the corresponding concentration of DHP (M) with error on fit (Note: error is reported as standard deviation). The mean value of k is represented by the continuous grey line. The standard deviation is represented by the segmented lines above and below the mean value.

NMR binding studies

To further probe the reactivity with respect to alcohol, binding studies were performed. Upon addition of benzyl alcohol (**5a**) (10 equiv.) at room temperature, a minute downfield shift of the N–H hydrogens of the thiourea catalyst $4 \cdot BF_4^-$ was observed, thus consistent with weak or non-existent alcohol oxygen H-bonding with the N–H hydrogens (Figure 39). By comparison, a measurable downfield shift of the alcohol O–H hydrogen was observed (Figure 40). The large chemical shift in this case was ascribed to non-intermolecular alcohol association. From this, it is apparent that the sulfur of the catalyst engages in H-bonding by way of rapidly exchanging proton transfer, which is consistent with a first-order dependency in alcohol.

Figure 39. (A) Comparison ¹H NMR spectra at 300 MHz in 0.5 mL CDCl₃ at room temperature of $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) vs. (**B**) titrated variant with benzyl alcohol (10.0 equiv., 22 µL).

Figure 40. ¹H NMR spectra at 300 MHz in 0.5 mL CDCl₃ at room temperature of thiourea $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) following subsequent addition of benzyl alcohol aliquots. From this, a noticeable downfield shift of the O–H peak of benzyl alcohol was observed.

Next, ¹H NMR studies were conducted to investigate binding of the co-catalyst. This involved titration of thiourea $4 \cdot BF_4^-$ with benzoic acid (up to 2.0 equiv.), which led to broadening and eventual disappearance of the *N*-cyclopropenium hydrogen (Figure 41). This is suggestive of rapid proton exchange between benzoic acid and thiourea $4 \cdot BF_4^-$ N– H hydrogens. Therefore, this result shows a different binding mode is active relative to alcohol binding, *vide supra*.

Figure 41. (A) Comparison ¹H NMR spectra at 300 MHz in 0.5 mL CDCl₃ at room temperature of thiourea $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) vs. (*B*) titrations with benzoic acid (1.0 equiv.), and (*C*) (2.0 equiv.).

Variable temperature ¹H NMR experiments were proven to be effective in order to further explore the dynamic nature of the catalyst. Utilizing a 1:1 ratio of catalyst to benzoic acid led to the complete disappearance of the *N*-cyclopropenium hydrogen signal upon heating to 312.9 K. Conversely, this signal became sharper and more distinct after cooling the sample (Figure 42). From these events, it is inferred that dynamic low-barrier H-

bonding processes exist between the thiourea and benzoic acid. This renders the catalyst more electron deficient resulting in significantly enhanced reaction rates.

Figure 42. Variable temperature ¹H NMR spectra at 600 MHz in 0.5 mL CDCl₃ of thiourea 4·BF₄⁻ (10 mg, 0.02 mmol) with benzoic acid (A) (1.0 equiv. at 295.1 K), (B) 312.9 K, (C) 284.2 K, and (D) 273.3 K.

X-ray crystallographic analysis

Crystallogaphic data for 4.BF₄⁻

Single-crystals of the compound were mounted on a cryoloop with paratone oil and examined on a Bruker APEX II CCD X-ray diffractometer equipped with an Oxford Cryoflex Plus cooler used to maintain cryogenic temperatures for these studies. Data were collected using the APEX-II software,¹⁷⁸ integrated using SAINT¹⁷⁹ and corrected for absorption using a multi-scan approach (SADABS).¹⁸⁰ Final cell constants were determind from full least square refinements of all observed reflections. The structure was solved using intrinsic phasing (SHELX).¹⁸¹ The structure was refined with full least squares software on F² using SHELXTL.¹⁸² All hydrogen atoms were added at calculated positions and refined isotropically with a riding model. A summary of the key crystallographic data is presented in Table 10 and select geometries of bond lengths and angles are presented in Tables 11.

Chemical formula	$C_{22}H_{35}BF_4N_4S$		
Mr	474.41		
Crystal system, space group	Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁		
Temperature (K)	150		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.8710 (6), 12.4156 (8), 20.5950 (11)		
$V(\text{\AA}^3)$	2524.0 (3)		
Ζ	4		
Radiation type	Μο Κα		
$\mu (mm^{-1})$	0.17		
Crystal size (mm)	$0.2 \times 0.17 \times 0.17$		
Data collection			
Diffractometer	Bruker APEX-II CCD		

Table 10. Summary of Crystal data for 4. BF₄⁻

Absorption correction	Multi-scan Bruker SADABS		
T _{min} , T _{max}	0.647, 0.746		
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10784, 4399, 4069		
R _{int}	0.039		
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.594		
Refinement			
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.043, 0.086, 1.61		
No. of reflections	4399		
No. of parameters	297		
H-atom treatment	H-atom parameters constrained		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.28, -0.21		
Absolute structure	Flack x determined using 1533 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).		
Absolute structure parameter	0.01 (5)		

Computer programs: Bruker *APEX2*,¹⁷⁸ Bruker *SAINT*,¹⁷⁹ *SHELXS97* (Sheldrick 2008), *SHELXTL*, Bruker *SHELXTL*.^{181,182}

Table 11. Selected geometric parameters for $4 \cdot BF_4^-$

Bond	Length (Å)	Bond	Length (Å)
B1-F1	1.377 (5)	C17—C22	1.395 (4)
B1-F2	1.417 (5)	C18—C19	1.394 (5)
B1-F3	1.367 (4)	C19—C20	1.369 (5)
B1—F4	1.384 (4)	C20—C21	1.372 (5)
C1—C2	1.437 (4)	C21—C22	1.380 (5)
C1—C3	1.369 (4)	N1-C1	1.307 (4)
C2—C3	1.364 (4)	N1-C4	1.493 (4)
C4—C5	1.507 (4)	N1-C7	1.485 (4)

C4—C6	1.507 (5)	N2-C2	1.302 (4)
С7—С8	1.517 (5)	N2-C10	1.484 (4)
С7—С9	1.519 (5)	N2-C13	1.493 (4)
C10—C11	1.513 (5)	N3—C3	1.393 (4)
C10—C12	1.527 (5)	N3—C16	1.379 (4)
C13—C14	1.519 (5)	N4—C16	1.353 (4)
C13—C15	1.507 (4)	N4—C17	1.418 (4)
C17—C18	1.389 (5)	S1—C16	1.668 (3)

B1—F1	1.377 (5)	C17—C22	1.395 (4)
B1—F2	1.417 (5)	C18-C19	1.394 (5)
B1—F3	1.367 (4)	C19—C20	1.369 (5)
B1—F4	1.384 (4)	C20-C21	1.372 (5)
C1—C2	1.437 (4)	C21-C22	1.380 (5)
С1—С3	1.369 (4)	N1-C1	1.307 (4)
С2—С3	1.364 (4)	N1-C4	1.493 (4)
C4—C5	1.507 (4)	N1-C7	1.485 (4)
C4—C6	1.507 (5)	N2-C2	1.302 (4)
С7—С8	1.517 (5)	N2-C10	1.484 (4)
С7—С9	1.519 (5)	N2-C13	1.493 (4)
C10—C11	1.513 (5)	N3—C3	1.393 (4)
C10—C12	1.527 (5)	N3-C16	1.379 (4)
C13—C14	1.519 (5)	N4-C16	1.353 (4)
C13—C15	1.507 (4)	N4—C17	1.418 (4)
C17—C18	1.389 (5)	S1—C16	1.668 (3)
Bond	Angle (⁰)	Bond	Angle (⁰)
F3—B1—F1	111.5 (4)	N1-C4-C6	110.1 (3)

F3—B1—F4	111.5 (3)	N1-C4-C5	110.8 (2)
F1-B1-F4	108.4 (3)	C6—C4—C5	113.1 (3)
F3-B1-F2	109.3 (3)	N1-C7-C8	110.5 (3)
F1—B1—F2	107.7 (3)	N1-C7-C9	110.8 (3)
F4—B1—F2	108.3 (3)	С8—С7—С9	112.9 (3)
C1-N1-C7	122.2 (2)	N2-C10-C11	111.1 (3)
C1-N1-C4	118.5 (2)	N2-C10-C12	110.2 (3)
C7—N1—C4	119.1 (2)	C11-C10-C12	112.6 (3)
C2—N2—C10	122.9 (2)	N2-C13-C15	111.1 (2)
C2—N2—C13	118.1 (2)	N2-C13-C14	110.3 (3)
C10-N2-C13	119.0 (2)	C15-C13-C14	113.2 (3)
C16—N3—C3	120.1 (2)	N4-C16-N3	112.2 (3)
C16—N4—C17	132.3 (3)	N4-C16-S1	128.0 (2)
N1-C1-C3	150.7 (3)	N3-C16-S1	119.9 (2)
N1-C1-C2	151.2 (3)	C18-C17-C22	119.5 (3)
C3-C1-C2	58.1 (2)	C18-C17-N4	125.1 (3)
N2-C2-C3	150.7 (3)	C22-C17-N4	115.4 (3)
N2-C2-C1	150.8 (3)	C17—C18—C19	119.2 (3)
C3-C2-C1	58.5 (2)	C20—C19—C18	121.3 (3)
C2—C3—C1	63.4 (2)	C19-C20-C21	119.2 (3)
C2-C3-N3	148.0 (3)	C20-C21-C22	121.2 (3)
C1-C3-N3	148.5 (3)	C21-C22-C17	119.7 (3)

Examination of the crystal packing of $4 \cdot BF_4^-$ reveals that the molecules are backed as a head-to-tail arrangement of dimers that form a herringbone pattern along the *b*-axis. The BF_4^- counterions occupy the spaces in the crystal lattice, and form short contacts with aryl and alkyl hydrogen atoms from adjacent molecules (Figure 43).

Figure 43. Packing diagram for $4 \cdot BF_4^-$. View down the b-axis of the unit cell. Short contacts are shown as blue dashed lines.

Figure 44. ORTEP plot of the molecular structure of $4 \cdot BF_4^-$ with appropriate labelling scheme. Thermal ellipsoids are plotted at 50%. H-atoms are omitted for clarity.

Probing the stereochemistry of alcohol addition

It was found that the majority of the products were deuterated in position 3, while any minor byproducts (e.g., protonated products – **88**) arose from the non-deuterated catalyst (Scheme 16). Key to these findings is the kinetically-controlled preference for *syn* product formation over a duration of 48 hours (*syn* : *anti* ratio of 70:30) that is consistent with the computed Brønsted acid mode of catalysis.

*Scheme 16. Investigating the stereochemistry of addition using methanol-d*⁴ *and 4-(tert-butyl)-3,4-dihydro-*2*H-pyran.*

syn : anti = 70:30

Experiments investigating alkoxide exchange

Probing the stereochemistry of alcohol addition.

To probe the stereochemistry of alcohol addition, an experiment using methanol-d₄ was performed. This involved the use of a 10.0 mL round-bottom flask charged with thiourea $4 \cdot BF_4^-$ (115 mg, 10 mol%) to which methanol-d₄ (114 mg, 3.2 mmol) and 4-(*tert*-butyl)-3,4-dihydro-*2H*-pyran (340 mg, 2.4 mmol) were combined and subsequently diluted in DCM (2.0 mL). The resulting solution was stirred at 40 °C, while monitoring product

formation with ¹H NMR spectroscopy over a period of 72 hours (reaction completion). Next, all volatiles (DCM and any residual methanol-d₄) were removed *in vacuo*, and the crude product was extracted with diethyl ether, concentrated and analyzed with NMR spectroscopy.

To examine the potential for alkoxide exchange, intermediate **99** was exposed to ethanol, which was allowed to stir for 72 hours. Over the course of the reaction, a distinguishable triplet slowly evolved indicating formation of 2-ethoxytetrahydropyran (**7i**), and, thus, showing that alkoxide exchange had taken place as seen by a 3 : 1 / 2-methoxytetrahydropyran:2-ethoxytetrahydropyran ratio (Scheme 17 – path A). Inspired by the interconversion of alkoxide adducts, *vide infra*, benzyl alcohol (**5a**) was employed anticipating that the π -system of the benzene ring would impart additional non-covalent interactions upon contact with thiourea **4**·BF₄⁻⁻. The impetus for this pursuit arising from the proximal cyclopropenyl cation appended to the thiourea, which would presumably participate in catalyst–substrate π -stacking¹⁸³ or cation– π^{184} interactions.

To test this hypothesis, the same reaction parameters were implemented, with the exception of using benzyl alcohol (**5a**) as substrate (120 mg, 1.1 mmol), as opposed to ethanol, which resulted in nearly full interconversion yielding the benzyl adduct (**7a**) after 72 hours (Scheme 17 - path B). A computational study was then performed to examine this exchange process, wherein the stability of the pyranylated products were compared. These calculations demonstrated that both the ethyl and benzyl alkoxide products (**7i**) and (**7a**), respectively were lower in energy than the methyl adduct (**99**). These energetic trends are consistent with the observed experimental product distribution. Taken together, these

results suggest that pyranyl product formation is reversible in the presence of thiourea $4 \cdot BF_4^{-}$.

Scheme 17. Probing the possibility for alkoxide exchange.

path A

Experiments investigating epimerization.

The reaction conditions were then applied to phenyl $(O,1-^{2}H_{2})$ methanol to distinguish between alkoxide exchange and epimerization. This involved the use of a 5.0 mL round-bottom flask charged with thiourea $4 \cdot BF_{4}^{-}$ (49 mg, 10 mol%) to which phenyl $(O,1-^{2}H_{2})$ methanol (114 mg, 1.0 mmol) and the deuterated mixture of *syn* and *anti* product isomers (182 mg, 1.0 mmol) were combined and subsequently diluted in dichloromethane (0.75 mL). The resulting solution was stirred at 40 °C, while monitoring product formation with ¹H NMR spectroscopy over a period of 9 days. Next, DCM was removed *in vacuo* and the crude product was extracted with diethyl ether, concentrated and analyzed with NMR spectroscopy.

Finally, intrigued by the ability of thiourea catalyst $4 \cdot BF_4^-$ to induce alkoxide exchange, the reaction conditions were subjected to phenyl ($O, 1^{-2}H_2$) methanol (**89**) to distinguish between alkoxide exchange and epimerization (Scheme 18). Based on these experimental results, there is an obvious kinetic preference for *syn* product formation as observed from the *syn* : *anti* ratio of 70:30 upon completion of alkoxide interconversion. From this, epimerization is ruled out, and instead, the retention of stereochemistry is ascribed to analogous mechanisms of alcohol addition. Furthermore, the stereochemical outcome is governed by a catalyst-controlled stereoselective reaction scenario. This is in accordance with kinetic control.

Scheme 18. Investigating the stereochemistry of addition using phenyl $(O, 1-^2H_2)$ methanol and a mixture of syn and anti product isomers (methyl adduct).

syn : anti = 70:30

syn : anti = 70:30

Low temperature NMR experimental acquisition.

NMR spectra were recorded on a Bruker Avance AV I 600 spectrometer (¹H 600 MHz) in CD₂Cl₂. The observed chemical shifts are reported as δ -values (ppm) relative to tetramethylsilane (TMS). The peaks of interest are denoted by red squares, as determined upon cooling of the sample. This protocol provides experimental evidence demonstrating the conformational orientation of thiourea $4 \cdot BF_4^-$, which was then compared with the computed results. The equations used to calculate the barrier to interconversion are shown below. The rate constant k_c at the coalescence temperature (T_c) was found using the difference in Hz (Δv – equation 1). The free activation energy (ΔG^{\ddagger}) was determined using equation 2.

$$k_c = \frac{\pi \Delta v}{\sqrt{2}} \tag{1}$$

$$\Delta G^{\ddagger} = RT_c \left[22.96 + \ln \left(\frac{T_c}{\Delta v} \right) \right] \tag{2}$$

Procedure for ¹³C KIE experiments.

Two independent reactions were conducted at either stoichiometric (1:1) or pseudo-firstorder conditions to furnish the THP-protected product at high conversion (100%) or low conversion (2%), respectively. The products were analyzed using Jacobsen's DEPT-55 technique.¹²⁸ Equation 3 was applied to calculate the KIEs.

$$KIE_{PTD} = \frac{\ln (1-F)}{\ln \left[(1-F(R_{PDT}/R_0)) \right]}$$
(3)

(High conversion)

To an oven-dried 10.0 mL round-bottom flask charged with thiourea $4 \cdot BF_4^-$ (11 mg, 1 mol%); benzyl alcohol (2.3 mmol) and DHP (2.3 mmol) were combined and subsequently diluted in DCM (2.0 mL). The resulting solution was stirred at room temperature under an

inert atmosphere for 3 hours. After removal of the solvent, the crude material was triturated with diethyl ether (1 x 3.0 mL), and concentrated to yield the THP-protected alcohol.

(Low conversion)

To an oven-dried 10.0 mL round-bottom flask charged with thiourea $4 \cdot BF_4^-$ (~2 mg, 1 mol%); benzyl alcohol (0.37 mmol) and DHP (18.5 mmol) were combined and subsequently diluted in DCM (1.0 mL). The resulting solution was stirred at room temperature under an inert atmosphere for 3 hours. After removal of the solvent, the crude material was subjected to flash chromatography using a hexanes/ethyl acetate (9:1) solvent system to yield the THP-protected alcohol.

NBO studies

Table 12. NBO values for selected atoms.

Structure	Atom	NBO Charge (e)
Z,Z-1-INT ₂	N_3	-0.671
	(N ₃)-H	0.459
(N-H···O-H Bond)	0	-0.795
b/w catalyst and pyran	Н	0.510

Rotational energy barrier between *E*,*Z*- and *Z*,*Z*-conformers

Figure 45. Plot of energy versus steps in rotation from E,Z-conformer to Z,Z-conformer calculated in the absence of counterion.

Conformational search for α - vs. β -stereofacial alcohol addition

Computational methods and details:

Force Field = OPLS3 Dielectric constant = 1.0 Method = PRCG Convergence threshold = 0.05 Maximum interactions 2500 Mixed torsional/Low-mode sampling Maximum number of steps = 100 100 steps per rotatable bond Number of structures to save for each search = 100 Energy window for saving structures 21.0 kJ/mol Maximum atom deviation Cutoff = 0.5 angstrom Probability of a torsion rotation/molecule translation = 0.5 Minimum distance for low-mode move = 3.0Maximum distance for a low-mode move = 6.0From these searches (β) Bottom face 49 conformers

(α) Top face 27 conformers

9.0 Appendix B

NMR binding study

To probe the reactivity with respect to *trans-* β -nitrostyrene (**8a**), binding studies were performed. ¹H NMR titrations in CDCl₃ using catalyst **4**·BF₄⁻ and substrate **8a** (up to 20.0 equiv.) at room temperature revealed a downfield shift of the N–H hydrogen atom belonging to **4** ($\Delta\delta = 0.04$ ppm), thus, consistent with a LUMO-lowering mode of activation (Figure 46). This experimental data is congruent with the computational findings.

Figure 46. ¹H NMR spectra at 300 MHz in 0.5 mL CDCl₃ at room temperature of thiourea $4 \cdot BF_4^-$ (10 mg, 0.02 mmol) following subsequent additions of trans- β -nitrostyrene aliquots. From this, a noticeable downfield shift, that being, 0.04 ppm of the N–H hydrogen atom belonging to the thiourea moiety was observed.

VTNA

Exploiting this methodology can help provide key mechanistic facets of reactivity, including catalyst deactivation, the order in catalyst, as well as the order in substrates.^{3,4} The order in catalyst can be determined abiding to the normalized time scale method, which is approximated *via* the trapezoid rule, and, thus, removes the kinetic effect of that component from the reaction profile. Notably, VTNA can function to elucidate numerous reaction components irrespective of whether their concentration is constant or variable. To this end, the following equations were used to determine the order in catalyst (eq 4) and the order in substrates (eq 5). The value of " γ " and " β " that provides the greatest overlay of the generated curves is the order in the respective component.

$$\sum [\operatorname{cat}]^{\gamma} \Delta t = \sum_{i=1}^{n} \left(\frac{[\operatorname{cat}]_{i} + [\operatorname{cat}]_{i-1}}{2} \right)^{\gamma} (t_{i} - t_{i-1})$$
(4)

$$\sum [\text{component}]^{\beta} \Delta t = \sum_{i=1}^{n} \left(\frac{[\text{component}]_{i} + [\text{component}]_{i-1}}{2} \right)^{\beta} (t_{i} - t_{i-1})$$
(5)

Experimental determination for potential product inhibition or catalyst deactivation

Two separate reactions were conducted in oven-dried 25.0 mL round-bottom flasks charged with 10 mol% catalyst (0.168 M, 0.335 mmol) ($4 \cdot BF_4^-$) to which was added *trans-* β -nitrostyrene (1.68- or 1.00 M; 3.35-, or 2.00 mmol) (**8a**) and 1-methylindole (5.03- or 4.35 M; 10.1- or 8.70 mmol) (**9a**) diluted in 2.0 mL DCM at room temperature under an inert atmosphere. Reaction progress was determined by ¹H NMR (CDCl₃) spectroscopy analyses of aliquots taken periodically. This involved monitoring the disappearance of the signal at 8.00 ppm for (**8a**) and appearance of the signal at 5.21 ppm for the FC alkylated product (**10a**).

Scheme 19. Probing the potential for product inhibition or catalyst deactivation with respect to trans- β *-nitrostyrene concentration.*

Table 13. ¹*H* NMR data probing the potential for product inhibition or catalyst deactivation.

Experiment 1: standard conditions				
entry	t (h)	[8a] (M)	[10a] (M)	
1	0	1.68	0.00	
2	2	1.44	0.24	
3	3	1.31	0.37	
4	4	1.23	0.45	
5	6	1.06	0.62	

6	8	0.924	0.76
7	11	0.739	0.94
8	18	0.487	1.19
9	24	0.336	1.34
10	27	0.286	1.39
11	30	0.252	1.43
12	35	0.202	1.48

Table 14. ¹*H* NMR data for probing the potential for product inhibition or catalyst deactivation.

Experiment 2: reduced concentration				
entry	t (h)	time adjusted (h)	[8a] (M)	[10a] (M)
1	0	7	1.00	0.00
2	0.5	7.5	0.94	0.06
3	2	9	0.83	0.17
4	4	11	0.73	0.27
5	6	13	0.63	0.37
6	8	15	0.54	0.46
7	18	25	0.28	0.72
8	23	30	0.19	0.81
9	26	33	0.16	0.84
10	29	36	0.12	0.88

Experimental determination of the order in catalyst

Having established the robust nature of charged thiourea **4**, this insight was utilized to probe the kinetic order in catalyst. As such, two separate reactions were conducted in oven-dried 25.0 mL round-bottom flasks charged with either 5- or 10 mol% catalyst (0.084- or 0.168 M; 0.168- or 0.335 mmol) ($4 \cdot BF_4^-$) to which was added *trans-\beta*-nitrostyrene (1.68 M, 3.35 mmol) (**8a**) and 1-methylindole (5.03 M, 10.1 mmol) (**9a**) diluted in 2.0 mL DCM at room temperature under an inert atmosphere. Reaction progress was determined by ¹H NMR (CDCl₃) spectroscopy analyses of aliquots taken periodically. This involved
monitoring the disappearance of the signal at 8.00 ppm for (8a) and appearance of the signal at 5.21 ppm for the FC alkylated product (10a).

Scheme 20. Investigating the order in catalyst for thiourea $4 \cdot BF_4^-$.

The order in catalyst was elucidated using the normalized time scale method, wherein data points correlating to the formation of the alkylated product **10a** were plotted against a normalized time scale, $t[cat]_T^{n.4b}$ Since the concentration of the catalyst is constant throughout the course of the reaction, the equation used to determine the time scale is as follows: $t[cat]_o^{\gamma}$. The value of " γ " that is responsible for the overlay of the curves corresponds to the order in catalyst.

	Experiment 1: 10 mol%										
entry	t (h)		$tcat^{\gamma} (\gamma = 0$, 0.5, 0.8, 1)		$\left[4 \cdot \mathrm{BF}_{4^{-}}\right](\mathrm{M})$	[10a] (M)				
1	0	0	0.0000	0.0000	0.0000	0.168	0.0000				
2	2	2	0.8197	0.4800	0.3360	0.168	0.2352				
3	3	3	1.229	0.7200	0.5040	0.168	0.3696				
4	4	4	1.639	0.9600	0.6720	0.168	0.4536				
5	6	6	2.459	1.440	1.008	0.168	0.6216				
6	8	8	3.279	1.920	1.344	0.168	0.756				
7	11	11	4.508	2.640	1.848	0.168	0.9408				
8	18	18	7.377	4.320	3.024	0.168	1.1928				
9	24	24	9.837	5.760	4.032	0.168	1.344				
10	27	27	11.06	6.480	4.536	0.168	1.3944				
11	30	30	12.29	7.200	5.040	0.168	1.428				
12	35	35	14.34	8.400	5.880	0.168	1.4784				

Table 15. ¹*H NMR data corresponding to 10 mol% catalyst loading for determining the order in catalyst.*

Table 16. ¹*H NMR data corresponding to 5 mol% catalyst loading for determining the order in catalyst.*

			Exper	riment 2: 5 n	nol%		
entry	t (h)		$tcat^{\gamma} (\gamma = 0,$	0.5, 0.8, 1)		$[4 \cdot BF_4^-]$ (M)	[10a] (M)
1	0	0	0.0000	0.0000	0.0000	0.084	0.0000
2	3	3	0.8694	0.4135	0.2520	0.084	0.2184
3	6	6	1.738	0.8271	0.5040	0.084	0.3864
4	8	8	2.318	1.102	0.6720	0.084	0.4872
5	22	22	6.376	3.032	1.848	0.084	0.9912
6	26	26	7.535	3.584	2.184	0.084	1.092
7	29	29	8.404	3.997	2.436	0.084	1.142
8	46	46	13.33	6.341	3.864	0.084	1.3776

10.0 Appendix C

VTNA

Procedure for determining potential product inhibition or catalyst deactivation.

Two independent reactions were conducted in oven-dried NMR tubes. The first reaction was charged with 3,4-dihydro-2*H*-pyran (**6a**) (1.35 M) to which was diluted in 0.5 mL CDCl₃. Next, the addition of acetophenone oxime (**12a**) (0.68 M) and catalyst **11c** \cdot **BF**^{4⁻} (5 mol%; 0.034 M) were added to the solution. The next experiment followed the same protocol; however, with a consistent reduction in the initial concentrations of substrates by 0.16 M, i.e., **6a** = 1.19 M and **12a** = 0.52 M. Each respective experiment was placed in a ¹H NMR 300 MHz spectrometer and allowed to react for ~ 5 hours at 40 °C. Reaction progress was tracked by monitoring the disappearance of the signal at ~ 7.65 ppm for **12a** and appearance of the signal at ~ 7.71 ppm for product **13a**. Data points were recorded every six minutes.

Figure 47. Plot depicting the absence of catalyst deactivation and product inhibition.

expt 1: [12a] = 0 1,35	0.68 M, [6a] = M	expt 2: [12a] = 0.52 M, [6a] = 1.19 M						
time (min)	[12a] (M)	time (min)	[12a] (M)	time-shift	[12a] (M)			
0	0.68	0	0.52	80	0.52			
20	0.646	20	0.494	100	0 494			
26	0.6324	26	0.4836	106	0.4836			
32	0.6188	32	0.4732	112	0.4732			
38	0.6052	38	0.4628	118	0.4628			
44	0.5916	44	0.4576	124	0.4576			
50	0.578	50	0.4472	130	0.4472			
56	0.5644	56	0.4368	136	0.4368			
62	0.5508	62	0.4316	142	0.4316			
68	0.544	68	0.4212	148	0.4212			
74	0.5304	74	0.4108	154	0.4108			
80	0.5168	80	0.4056	160	0.4056			
86	0.5032	86	0.3952	166	0.3952			
92	0.4964	92	0.39	172	0.39			
98	0.4896	98	0.3796	178	0.3796			
104	0.4828	104	0.3744	184	0.3744			
110	0.4692	110	0.364	190	0.364			
116	0.4624	116	0.3588	196	0.3588			
122	0.4556	122	0.3484	202	0.3484			
128	0.4488	128	0.3432	208	0.3432			
134	0.4352	134	0.338	214	0.338			
140	0.4284	140	0.3328	220	0.3328			
146	0.4216	146	0.3276	226	0.3276			
152	0.4148	152	0.3224	232	0.3224			
158	0.408	158	0.3172	238	0.3172			
164	0.4012	164	0.3068	244	0.3068			
170	0.3944	170	0.3016	250	0.3016			
176	0.3876	176	0.2964	256	0.2964			
182	0.3808	182	0.2912	262	0.2912			
188	0.374	188	0.286	268	0.286			
194	0.3672	194	0.286	274	0.286			
200	0.3604	200	0.2808	280	0.2808			
206	0.3604	206	0.2756	286	0.2756			
212	0.3536	212	0.2704	292	0.2704			
218	0.3468	218	0.2704	298	0.2704			

Table 17. Data for the determination of the potential product inhibition or catalyst deactivation.

224	0.34	224	0.2652	304	0.2652
230	0.34	230	0.26	310	0.26
236	0.3332	236	0.2548	316	0 2548
242	0.3264	242	0.2548	322	0.2548
248	0.3196	248	0.2496	328	0.2496
254	0.3128	254	0.2444	334	0.2444
260	0.3128	260	0.2444	340	0.2444
266	0.306	266	0.2392	246	0.2444
272	0.306	272	0.234	250	0.2392
278	0 2992	278	0 2 3 4	352	0.234
284	0.2002	284	0.2288	358	0.234
204	0.2992	204	0.2288	364	0.2288
290	0.2924	290	0.2236	370	0.2236
296	0.2924	296	0.2236	376	0.2236
302	0.2856	302	0.2184	382	0.2184

Procedure for determining the order in catalyst.

Using the data obtained from the first experiment (see above), two additional independent reactions were conducted in oven-dried NMR tubes charged with 3,4-dihydro-2*H*-pyran (**6a**) (1.35 M) to which were diluted in 0.5 mL CDCl₃. Next, acetophenone oxime (**12a**) (0.68 M) and catalyst **11c**·**BF**^{4⁻} (2.5- or 7.5 mol%; 0.015- or 0.053 M, respectively) were added to the solutions. Each respective experiment was placed in a ¹HNMR 300 MHz spectrometer and allowed to react for ~ 3–4 hours at 40 °C. Reaction progress was tracked by monitoring the disappearance of the signal at ~ 7.65 ppm for **12a** and appearance of the signal at ~ 7.71 ppm for product **13a**. Data points were recorded every six minutes.

Figure 48. Normalized time scale plot displaying a 0.8-order dependence in catalyst.

	catalyst load	ding: 2.5 mol	%	catalyst loading: 5 mol%					catalyst loading: 7.5 mol%			
time	[13a]	[11c·BF4 ⁻]	tcat ^γ	time	[13a]	[11c BF ₄ -]	tcat ^γ	time	[13a]	[11c BF ₄ -]	tcat ^γ	
(min)	(M)	(M)	$\gamma = 0.8$	(min)	(M)	(M)	$\gamma = 0.8$	(min)	(M)	(M)	$\gamma = 0.8$	
0	0	0.015	0	0	0	0.034	0	0	0	0.053	0	
36	0.030464	0.015	0.72	20	0.034	0.034	1.34	32	0.0816	0.053	1.753	
42	0.03502	0.015	0.93	26	0.0476	0.034	1.74	38	0.0952	0.053	2.325	
48	0.041412	0.015	1.14	32	0.0612	0.034	2.14	44	0.1088	0.053	2.897	
54	0.0476	0.015	1.34	38	0.0748	0.034	2.54	50	0.1292	0.053	3.47	
60	0.053516	0.015	1.55	44	0.0884	0.034	2.94	56	0.1428	0.053	4.042	
66	0.05916	0.015	1.76	50	0.102	0.034	3.34	62	0.1564	0.053	4.614	
72	0.065144	0.015	1.97	56	0.1156	0.034	3.74	68	0.17	0.053	5.186	
78	0.0714	0.015	2.18	62	0.1292	0.034	4.15	74	0.1836	0.053	5.758	
84	0.0782	0.015	2.39	68	0.136	0.034	4.55	80	0.1972	0.053	6.331	
90	0.084116	0.015	2.59	74	0.1496	0.034	4.95	86	0.2108	0.053	6.903	
96	0.0918	0.015	2.8	80	0.1632	0.034	5.35	92	0.2176	0.053	7.475	
102	0.09826	0.015	3.01	86	0.1768	0.034	5.75	98	0.2312	0.053	8.047	
108	0.10472	0.015	3.22	92	0.1836	0.034	6.15	104	0.2448	0.053	8.62	
114	0.11084	0.015	3.43	98	0.1904	0.034	6.55	110	0.2516	0.053	9.192	
120	0.117844	0.015	3.64	104	0.1972	0.034	6.95	116	0.2652	0.053	9.764	
126	0.12444	0.015	3.85	110	0.2108	0.034	7.35	122	0.272	0.053	10.34	

 Table 18. Data for the determination of the reaction order in catalyst.

138 0.13804 0.015 4.26 122 0.2244 0.034 8.16 134 0.2924 0.0 144 0.14484 0.015 4.47 128 0.2312 0.034 8.56 140 0.2992 0.0	53 11.48 53 12.05
144 0.14484 0.015 4.47 128 0.2312 0.034 8.56 140 0.2992 0.0	53 12.05
	50
150 0.15096 0.015 4.68 134 0.2448 0.034 8.96 146 0.306 0.0	12.63
156 0.15844 0.015 4.89 140 0.2516 0.034 9.36 152 0.3128 0.0	53 13.2
162 0.16422 0.015 <u>5.1</u> 146 0.2584 0.034 <u>9.76</u> 158 0.3196 0.0	53 13.77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53 14.34
174 0.1768 0.015 <u>5.51</u> 158 0.272 0.034 <u>10.6</u> 170 0.3332 0.0	53 14.91
180 0.1836 0.015 5.72 164 0.2788 0.034 11 176 0.34 0.0	53 15.49
186 0.18836 0.015 5.93 170 0.2856 0.034 11.4	-
192 0.19312 0.015 <u>6.14</u> 176 0.2924 0.034 <u>11.8</u>	-
198 0.19856 0.015 6.35 182 0.2992 0.034 12.2 - -	-
204 0.20332 0.015 6.56 188 0.306 0.034 12.6	-
210 0.20944 0.015 6.76 194 0.3128 0.034 13	-
216 0.21352 0.015 6.97 200 0.3196 0.034 13.4	-
222 0.21828 0.015 7.18 206 0.3196 0.034 13.8	-
228 0.22304 0.015 7.39 212 0.3264 0.034 14.2	-
234 0.22814 0.015 7.6 218 0.3332 0.034 14.6	-
240 0.23188 0.015 7.81 224 0.34 0.034 15	-
246 0.23732 0.015 8.01 230 0.34 0.034 15.4	-
252 0.2414 0.015 8.22 236 0.3468 0.034 15.8	-
258 0.24412 0.015 8.43 242 0.3536 0.034 16.2	-
264 0.25092 0.015 8.64	-
270 0.25364 0.015 8.85	-
276 0.2584 0.015 9.06	-
282 0.26248 0.015 9.27	-
288 0.26724 0.015 _{9.47}	-
294 0.26928 0.015 9.68	-
300 0.27404 0.015 9.89	-
306 0.278664 0.015 10.1	-
312 0.28288 0.015 10.3	-
318 0.2856 0.015 10.5	-
324 0.29036 0.015 10.7	-
330 0.29308 0.015 10.9	-
336 0.29784 0.015 11.1	-
342 0.30056 0.015 11.3	-
348 0.30464 0.015 11.6	-
356 0.31008 0.015 11.8	-

Procedure for determining the oxime reaction order dependence

Using the data obtained from the first experiment (see above), two additional independent reactions were conducted in oven-dried NMR tubes charged with 3,4-dihydro-2*H*-pyran (**6a**) (1.35 M) to which were diluted in 0.5 mL CDCl₃. Next, acetophenone oxime (**12a**) (0.44- or 0.56 M) and catalyst **11c**·**BF**₄⁻ (5 mol%; 0.034 M) were added to the solutions. Each respective experiment was placed in a ¹H NMR 300 MHz spectrometer and allowed to react for ~ 4 hours at 40 °C. Reaction progress was tracked by monitoring the disappearance of the signal at ~ 7.65 ppm for **12a** and appearance of the signal at ~ 7.71 ppm for product **13a**. Data points were recorded every six minutes.

Figure 49. Plot revealing a 0.8-order dependence in oxime.

	[12a]	= 0.44 M			[12a]	= 0.56 M		[12a] = 0.68 M			
time	[13a]	[12a]	[12a] ^β	time	[13a]	[12a]	[12a] ^β	time	[13a]	[12a]	[12a] ^β
(min)	(M)	(M)	$\beta = 0.8$	(min)	(M)	(M)	$\beta = 0.8$	(min)	(M)	(M)	$\beta = 0.8$
0	0	0.44	0	0	0	0.56	0	0	0	0.08	0
32	0.04224	0.39776	8.79069	20	0.03416	0.5258	6.869	20	0.034	0.646	14.396
38	0.047872	0.392128	11.6442	26	0.042504	0.5175	10.43	26	0.0476	0.6324	18.59
44	0.05632	0.38368	14.4569	32	0.050232	0.5098	13.96	32	0.0612	0.6188	22.713
50	0.06556	0.37444	17.2183	38	0.05824	0.5018	17.43	38	0.0748	0.6052	26.764
56	0.07216	0.36784	19.9333	44	0.0672	0.4928	20.86	44	0.0884	0.5916	30.743
62	0.07832	0.36168	22.611	50	0.077	0.483	24.24	50	0.102	0.578	34.649
68	0.08448	0.35552	25.2524	56	0.086128	0.4739	27.57	56	0.1156	0.5644	38.482
74	0.09152	0.34848	27.8549	62	0.09408	0.4659	30.85	62	0.1292	0.5508	42.242
80	0.09944	0.34056	30.413	68	0.10416	0.4558	34.08	68	0.136	0.544	45.948
86	0.1056	0.3344	32.9293	74	0.11144	0.4486	37.26	74	0.1496	0.5304	49.597
92	0.11	0.33	35.414	80	0.1204	0.4396	40.39	80	0.1632	0.5168	53.173
98	0.1188	0.3212	37.8591	86	0.12992	0.4301	43.47	86	0.1768	0.5032	56.674
104	0.1276	0.3124	40.2512	92	0.1372	0.4228	46.51	92	0.1836	0.4964	60.119
110	0.1364	0.3036	42.59	98	0.14448	0.4155	49.5	98	0.1904	0.4896	63.526
116	0.1408	0.2992	44.8886	104	0.15344	0.4066	52.45	104	0.1972	0.4828	66.896
122	0.1452	0.2948	47.1603	110	0.15904	0.401	55.35	110	0.2108	0.4692	70.209
128	0.1496	0.2904	49.4051	116	0.168	0.392	58.21	116	0.2176	0.4624	73.466
134	0.15796	0.28204	51.6106	122	0.17584	0.3842	61.03	122	0.2244	0.4556	76.684
140	0.1628	0.2772	53.7753	128	0.18144	0.3786	63.8	128	0.2312	0.4488	79.864
146	0.1672	0.2728	55.9114	134	0.18816	0.3718	66.54	134	0.2448	0.4352	82.986
152	0.1716	0.2684	58.0201	140	0.19488	0.3651	69.24	140	0.2516	0.4284	86.051
158	0.17952	0.26048	60.0903	146	0.2016	0.3584	71.9	146	0.2584	0.4216	89.077
164	0.18436	0.25564	62.1205	152	0.2072	0.3528	74.52	152	0.2652	0.4148	92.064
170	0.187	0.253	64.127	158	0.21504	0.345	77.11	158	0.272	0.408	95.012
176	0.1936	0.2464	66.1044	164	0.2212	0.3388	79.65	164	0.2788	0.4012	97.921
182	0.198	0.242	68.0468	170	0.22568	0.3343	82.16	170	0.2856	0.3944	100.79
188	0.2024	0.2376	69.9612	176	0.23128	0.3287	84.64	176	0.2924	0.3876	103.62
194	0.20856	0.23144	71.8418	182	0.238	0.322	87.09	182	0.2992	0.3808	106.41
200	0.2134	0.2266	73.687	188	0.24192	0.3181	89.5	188	0.306	0.374	109.16
206	0.22	0.22	75.4953	194	0.2464	0.3136	91.88	194	0.3128	0.3672	111.88
212	0.22528	0.21472	77.265	200	0.252	0.308	94.24	200	0.3196	0.3604	114.55
-	-	-	-	206	0.25536	0.3046	96.57	206	0.3196	0.3604	117.2
-	-	-	-	212	0.2604	0.2996	98.87	212	0.3264	0.3536	119.83
-	-	-	-	218	0.26544	0.2946	101.1	218	0.3332	0.3468	122.42

 Table 19. Data for the determination of the reaction order in the oxime component.

-	-	-	-	224	0.2688	0.2912	103.4	224	0.34	0.34	124.98
-	-	-	-	-	-	-	-	230	0.34	0.34	127.51
-	-	-	-	-	-	-	-	236	0.3468	0.3332	130.02
-	-	-	-	-	-	-	-	242	0.3536	0.3264	132.49

Procedure for determining the vinyl ether reaction order dependence

Using the data obtained from the first experiment (see above), two additional independent reactions were conducted in oven-dried NMR tubes charged with 3,4-dihydro-2*H*-pyran (**6a**) (0.71- or 0.95 M) to which were diluted in 0.5 mL CDCl₃. Next, acetophenone oxime (**12a**) (0.68 M) and catalyst **11c**·**BF**⁴⁻ (5 mol%; 0.034 M) were added to the solutions. Each respective experiment was placed in a ¹H NMR 300 MHz spectrometer and allowed to react for ~ 4 hours at 40 °C. Reaction progress was tracked by monitoring the disappearance of the signal at ~ 7.65 ppm for **12a** and appearance of the signal at ~ 7.71 ppm for product **13a**. Data points were recorded every six minutes.

	[6a] =	= 0.71 M			[6a]	= 0.95 M		[6a] = 1.35 M			
time (min)	[13a] (M)	[6a] (M)	$[\mathbf{6a}]^{\beta}$ $\beta = 1.2$	time (min)	[13 a] (M)	[6a] (M)	$[\mathbf{6a}]^{\beta}$ $\beta = 1.2$	time (min)	[13 a] (M)	[6a] (M)	$[\mathbf{6a}]^{\beta}$ $\beta = 1.2$
0	0	0.71	0	0	0	0.95	0	0	0	1.35	0
70	0.0442	0.6658	18.701	33	0.0425	0.9075	12.785	20	0.034	1.316	28.2375
76	0.04692	0.66308	22.375	39	0.05066	0.89934	18.096	26	0.0476	1.3024	36.5276
82	0.050728	0.659272	26.027	45	0.059228	0.890772	23.349	32	0.0612	1.2888	44.7144
88	0.05644	0.65356	29.648	51	0.06902	0.88098	28.537	38	0.0748	1.2752	52.7982
94	0.059296	0.650704	33.24	57	0.07718	0.87282	33.662	44	0.0884	1.2616	60.7793
100	0.063784	0.646216	36.808	63	0.08636	0.86364	38.726	50	0.102	1.248	68.6577
106	0.068	0.642	40.347	69	0.096016	0.853984	43.724	56	0.1156	1.2344	76.4338
112	0.07616	0.63384	43.845	75	0.101456	0.848544	48.67	62	0.1292	1.2208	84.1078
118	0.07956	0.63044	47.306	81	0.106216	0.843784	53.58	68	0.136	1.214	91.7053
124	0.085	0.625	50.737	87	0.11152	0.83848	58.455	74	0.1496	1.2004	99.2265
130	0.087516	0.622484	54.142	93	0.117028	0.832972	63.293	80	0.1632	1.1868	106.646
136	0.09248	0.61752	57.523	99	0.122264	0.827736	68.093	86	0.1768	1.1732	113.964
142	0.095064	0.614936	60.879	105	0.12716	0.82284	72.859	92	0.1836	1.1664	121.207
148	0.09792	0.61208	64.218	111	0.1326	0.8174	77.588	98	0.1904	1.1596	128.399
154	0.101592	0.608408	67.535	117	0.13736	0.81264	82.282	104	0.1972	1.1528	135.54
160	0.10472	0.60528	70.83	123	0.1428	0.8072	86.941	110	0.2108	1.1392	142.606
166	0.108052	0.601948	74.104	129	0.14756	0.80244	91.565	116	0.2176	1.1324	149.597
172	0.11084	0.59916	77.357	135	0.153	0.797	96.153	122	0.2244	1.1256	156.537
178	0.11492	0.59508	80.589	141	0.15844	0.79156	100.7	128	0.2312	1.1188	163.428
184	0.117232	0.592768	83.8	147	0.161092	0.788908	105.23	134	0.2448	1.1052	170.243
190	0.11968	0.59032	86.996	153	0.167892	0.782108	109.72	140	0.2516	1.0984	176.983
196	0.12376	0.58624	90.17	159	0.1734	0.7766	114.17	146	0.2584	1.0916	183.673
202	0.12614	0.58386	93.323	165	0.176052	0.773948	118.59	152	0.2652	1.0848	190.314
208	0.129472	0.580528	96.458	171	0.17816	0.77184	122.99	158	0.272	1.078	196.905
214	0.132804	0.577196	99.572	177	0.18496	0.76504	127.37	164	0.2788	1.0712	203.446
220	0.135728	0.574272	102.66	183	0.19176	0.75824	131.69	170	0.2856	1.0644	209.937
226	0.13872	0.57128	105.74	189	0.19448	0.75552	135.99	176	0.2924	1.0576	216.379
232	0.14144	0.56856	108.79	195	0.19856	0.75144	140.26	182	0.2992	1.0508	222.771
238	0.14416	0.56584	111.83	201	0.2006	0.7494	144.51	188	0.306	1.044	229.114
244	0.14756	0.56244	114.85	207	0.20468	0.74532	148.74	194	0.3128	1.0372	235.408
250	0.15164	0.55836	117.85	213	0.211208	0.738792	152.94	200	0.3196	1.0304	241.652
256	0.153	0.557	120.82	219	0.2176	0.7324	157.09	206	0.3196	1.0304	247.871

 Table 20. Data for the determination of the reaction order in the vinyl ether component.

262	0.157012	0.552988	123.78	225	0.21896	0.73104	161.21	212	0.3264	1.0236	254.066
268	0.1598	0.5502	126.72	231	0.221	0.729	165.33	218	0.3332	1.0168	260.212
274	0.16524	0.54476	129.63	237	0.2278	0.7222	169.41	224	0.34	1.01	266.308
280	0.16864	0.54136	132.52	243	0.23256	0.71744	173.45	230	0.34	1.01	272.381
286	0.17476	0.53524	135.37	249	0.23528	0.71472	177.47	236	0.3468	1.0032	278.428
292	0.17612	0.53388	138.2	-	-	-	-	242	0.3536	0.9964	284.427
298	0.1802	0.5298	141.01	-	-	-	-	-	-	-	-

¹H NMR titration experiments

Catalyst dimerization study

Three stock solutions of catalyst $11c \cdot BF_4^-$ (3x 32.4 mg, 0.05 mmol, 50.1 mM) in CD_2Cl_2 (3x 1.0 mL) were prepared in oven-dried 1.0 mL volumetric flasks. A series of solutions at varying concentrations were then prepared in oven-dried NMR tubes by combining the appropriate amount of stock solution with CD_2Cl_2 totalling a volume of 0.5 mL. Each respective NMR sample was then recorded on a ¹H NMR 300 MHz spectrometer.

Host-guest binding study involving acetophenone oxime

A stock solution of catalyst $11c \cdot BF_4^-$ (32.4 mg, 0.05 mmol, 50.1 mM) in CD₂Cl₂ (1.0 mL) and two stock solutions of oxime 12a (2x 6.8 mg, 0.05 mmol, 50.3 mM) in CD₂Cl₂ (2x 1.0 mL) were prepared in oven-dried 1.0 mL volumetric flasks. A series of solutions containing 5 mM of catalyst $11c \cdot BF_4^-$ were combined with 0.1–6 equivalents of oxime 12a, and were further diluted in the appropriate amount of CD₂Cl₂ in separate oven-dried NMR tubes totalling a volume of 0.5 mL. Each respective NMR sample was then recorded on a ¹H NMR 300 MHz spectrometer.

Host–guest binding study involving 3,4-dihydro-2*H*-pyran

A stock solution of catalyst $11c \cdot BF_4^-$ (32.4 mg, 0.05 mmol, 50.1 mM) in CD₂Cl₂ (1.0 mL) was prepared in an oven-dried 1.0 mL volumetric flask. A solution containing 5 mM of catalyst $11c \cdot BF_4^-$ (0.5 mL of CD₂Cl₂) were titrated in 5–230 equivalents of 3,4-dihydro-*2H*-pyran (6a) sequentially in an oven-dried NMR tube. Each respective NMR titration sample was then recorded on a ¹H NMR 300 MHz spectrometer.

X-ray Crystallographic Analysis

Single-crystals of $11c \cdot BF_4^-$ were mounted on a cryoloop with paratone oil and examined on an APEX II CCD X-ray diffractometer using graphite-monochromated Mo-Ka radiation ($\lambda = 0.71073$ Å). An Oxford Cryostream cooler was used to maintain cryogenic temperatures. Data were collected using the APEX-II software,¹⁷⁸ integrated using SAINT¹⁷⁹ and corrected for absorption using the multi-scan approach (SADABS).¹⁸⁰ Final cell constants were determined from full least squares refinement of all observed reflections. The structures were solved using intrinsic phasing (SHELXT).¹⁸⁵ All structures were refined with full squares refinement on F² using the SHELXTL software.¹⁸⁶ All hydrogen atoms were added at calculated positions and refined isotropically with a riding model. Both CF_3 groups were highly disordered and successfully modelled over two and three positions, respectively. Disordered solvent was removed from the crystallographic model using PLATON/SQUEEZE.¹⁸⁷ A thermal ellipsoid plot of the complex with the appropriate atomic labelling scheme is given in Figure 51. A summary of the experimental crystallographic data for the complex is presented in Table 21. Select bond lengths and angles are provided in Table 22, and a summary of the H-bonding interactions are presented in Table 23.

Chemical formula	$C_{27}H_{33}BF_{10}N_4O_2$
$M_{ m r}$	646.38
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.9774 (7), 29.030 (2), 30.322 (3)
$V(\text{\AA}^3)$	7022.1 (10)
Ζ	8
Radiation type	Μο <i>Κ</i> α
$\mu (mm^{-1})$	0.11
Crystal size (mm)	$0.2\times0.05\times0.05$
Data collection	
Diffractometer	Bruker APEX-II CCD
Absorption correction	Multi-scan Bruker SADARS
T_{\min}, T_{\max}	0.435, 0.786
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28152, 6853, 4548
R _{int}	0.085
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.128, 0.337, 1.06
No. of reflections	6853
No. of parameters	413
No. of restraints	31
H-atom treatment	H-atom parameters constrained
	$w = 1/[\sigma^2(F_o^2) + (0.0963P)^2 + 55.5373P]$ where $P = (F_o^2 + 2F_c^2)/3$
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.69, -0.46

Table 21. Select Crystallographic Parameters for 11c·BF₄.

Computer programs: Bruker *APEX2*¹⁷⁸, Bruker *SAINT*¹⁷⁹, *SHELXT* (Sheldrick 2015),¹⁸⁵ *SHELXL2014*(Sheldrick 2014),¹⁸⁵ Bruker *SHELXTL*.¹⁸⁶

Figure 51. ORTEP plot of the molecular structure of $11c \cdot BF_4^-$ with appropriate atomic labelling scheme. Thermal ellipsiods are plotted at 50%. For clarity only select H atoms are shown, and only one orientation of the disordered CF₃ groups are shown. Short contacts from F(10) of the BF_4^- counterion to H(41) and H(31)are shown as red dashed lines.

Bond	Length (Å)	Bond	Length(Å)
F1A—C26	1.338 (12)	N3—C16	1.348 (7)
F2A—C26	1.386 (11)	N3—C1	1.375 (7)
F3A—C26	1.342 (10)	N4—C19	1.360 (8)
F1B—C26	1.327 (12)	N4—C20	1.405 (8)
F2B—C26	1.381 (10)	C1—C2	1.363 (8)
F3B—C26	1.318 (10)	C1—C3	1.369 (8)
F4A—C27	1.345 (11)	C2—C3	1.421 (8)
F5A—C27	1.327 (10)	C4—C6	1.511 (10)
F6A—C27	1.346 (11)	C4—C5	1.519 (10)
F4B—C27	1.311 (11)	С7—С9	1.507 (10)
F5B—C27	1.313 (12)	С7—С8	1.528 (10)
F6B—C27	1.383 (12)	C10—C12	1.494 (11)
F4C—C27	1.343 (15)	C10-C11	1.533 (11)
F5C—C27	1.390 (15)	C13—C14	1.526 (8)

Table 22. Selected geometric parameters for $11c \cdot BF_4^-$ (Å, °)

F6C—C27	1.334 (15)	C13—C15	1.528 (9)
F7—B1	1.398 (9)	C16—C19	1.386 (8)
F8—B1	1.371 (9)	C16—C17	1.476 (8)
F9—B1	1.343 (9)	C17—C18	1.514 (9)
F10—B1	1.391 (8)	C18—C19	1.479 (9)
O1—C17	1.209 (8)	C20—C21	1.386 (9)
O2—C18	1.221 (8)	C20—C25	1.414 (9)
N1—C2	1.302 (7)	C21—C22	1.390 (9)
N1—C7	1.484 (8)	C22—C23	1.383 (9)
N1—C4	1.496 (7)	C22—C27	1.494 (9)
N2—C3	1.323 (7)	C23—C24	1.388 (9)
N2—C13	1.472 (8)	C24—C25	1.389 (9)
N2—C10	1.497 (8)	C24—C26	1.488 (9)
Bond	Angle (°)	Bond	Angle (°)
F9—B1—F8	109.2 (6)	N4—C19—C18	139.4 (6)
F9—B1—F10	110.7 (7)	C16—C19—C18	91.8 (5)
F8—B1—F10	110.4 (6)	C21—C20—N4	123.3 (6)
F9—B1—F7	110.1 (6)	C21—C20—C25	120.3 (6)
F8—B1—F7	109.3 (6)	N4—C20—C25	116.3 (6)
F10—B1—F7	107.0 (6)	C20—C21—C22	119.1 (6)
C2—N1—C7	121.9 (5)	C23—C22—C21	121.8 (6)
C2—N1—C4	118.4 (5)	C23—C22—C27	119.5 (5)
C7—N1—C4	119.4 (5)	C21—C22—C27	118.6 (5)
C3—N2—C13	119.5 (5)	C22—C23—C24	118.8 (6)
C3—N2—C10	121.0 (5)	C25—C24—C23	121.2 (6)
C13—N2—C10	119.5 (5)	C25—C24—C26	119.1 (6)
C16—N3—C1	123.3 (5)	C23—C24—C26	119.5 (6)
C19—N4—C20	127.6 (5)	C24—C25—C20	118.8 (6)
C2—C1—C3	62.7 (4)	F3B—C26—F1B	109.8 (8)
C2—C1—N3	146.6 (5)	F1A—C26—F3A	108.7 (8)
C3—C1—N3	150.3 (5)	F3B—C26—F2B	104.8 (6)
N1—C2—C1	148.2 (6)	F1B—C26—F2B	103.5 (7)
N1—C2—C3	152.9 (6)	F1A—C26—F2A	104.2 (8)
C1—C2—C3	58.9 (4)	F3A—C26—F2A	104.6 (6)
N2—C3—C1	149.1 (6)	F3B—C26—C24	114.0 (6)
N2—C3—C2	152.5 (6)	F1B—C26—C24	115.2 (8)
C1—C3—C2	58.4 (4)	F1A—C26—C24	112.9 (9)
N1—C4—C6	111.4 (5)	F3A—C26—C24	116.1 (7)

N1—C4—C5	111.2 (5)	F2B—C26—C24	108.5 (7)
C6—C4—C5	113.5 (6)	F2A—C26—C24	109.3 (6)
N1—C7—C9	111.9 (6)	F4B—C27—F5B	109.7 (8)
N1—C7—C8	110.1 (5)	F5A—C27—F6A	106.7 (7)
С9—С7—С8	112.8 (6)	F6C—C27—F4C	106.3 (10)
C12—C10—N2	111.3 (6)	F5A—C27—F4A	106.4 (7)
C12—C10—C11	117.0 (7)	F6A—C27—F4A	105.4 (7)
N2-C10-C11	109.6 (6)	F4B—C27—F6B	104.7 (8)
N2-C13-C14	111.4 (5)	F5B—C27—F6B	104.5 (8)
N2—C13—C15	111.4 (5)	F6C—C27—F5C	102.7 (10)
C14—C13—C15	110.6 (5)	F4C—C27—F5C	102.1 (10)
N3—C16—C19	133.8 (5)	F4B—C27—C22	112.8 (7)
N3—C16—C17	132.9 (5)	F5B—C27—C22	114.6 (7)
C19—C16—C17	93.2 (5)	F5A—C27—C22	114.9 (6)
O1—C17—C16	135.6 (6)	F6C—C27—C22	115.3 (9)
O1—C17—C18	137.4 (6)	F6A—C27—C22	111.9 (6)
C16—C17—C18	87.0 (5)	F4C—C27—C22	113.7 (9)
O2—C18—C19	137.7 (7)	F4A—C27—C22	111.0 (6)
O2—C18—C17	134.2 (6)	F6B—C27—C22	109.8 (7)
C19—C18—C17	88.1 (5)	F5C—C27—C22	115.2 (9)
N4—C19—C16	128.9 (6)		

Table 23. Summary of H-bonding interactions present in 11c BF4.

Donor-HAcceptor	HA (Å)	DA (Å)	D-HA (°)
N3-H31F10	1.95	2.760(6)	153
N4-H41F10	2.02	2.867(7)	160
C4-H4F6C	2.43	3.373(19)	157
C13-H13F1B	2.51	3.287(14)	134
C14-H14AO1	2.47	3.086(8)	120
C15-H15BF7	2.49	3.238(7)	134
C21-H21O2	2.17	3.061(8)	156
C23-H23F5A	2.41	2.733(11)	100
C25-H25F7	2.28	3.216(7)	166

11.0 Computational section

Computational Methods, Cartesian Coordinates and Energies of Calculated Structures

The following DFT calculations were performed using the Gaussian 16 program.¹⁸⁸ The hybrid B3LYP¹⁸⁹ functional and the dispersion energy corrections by D3¹⁹⁰ version of Grimme's dispersion with the original D3 damping function were used. All the electronic properties were obtained with the 6-311+G(d,2p) basis sets. The solvent effects were taken into account using the Self-Consistent Reaction Field (SCRF) method grounded from the Solvation Model based on Density (SMD).¹⁹¹ The pKa calculation was performed using equation $pKa = \Delta G_{aq}^* / 2.303 RT$, where ΔG_{aq}^* was calculated directly from the aqueous Gibbs free energies of the acid and conjugate base in dimethyl sulfoxide (DMSO ε = 46.7), using the solvation corrections to construct the solute cavity made by Lian, P. et al.¹⁹² The interaction energy (E_{int}) was calculated using the B3LYP/6-311+G(d,2p) level of theory in chloroform (CHCl₃, ϵ = 4.81) (SMD model) using the following equation: E_{int} = $E_{alcohol-thiourea} - E_{alcohol} - E_{thiourea}$, which corresponds to the difference between the total energy of the supermolecular system (i.e. *alcohol -thiourea*), and the total energy of its fragments (i.e. *alcohol* and *thiourea* isolated). This property is used to determine the stability of an interaction. A negative value indicates that the molecular system is more energetically stable with respect to the isolated fragments, and thus the interaction is favorable. Conversely, if E_{int} is positive, it indicates that the isolated fragments are more stable than in the supermolecule, and therefore the interaction does not favor an increase in stability. Visualization and generation of molecular structures was performed with Chemcraft¹⁹³ graphical user interface software.

Stationary Points

Cartesian coordinates of B3LYP-D3/6-311+G(d,2p) geometries are given below in standard XYZ format. The first line indicates the total number of atoms.

Computed structure thiourea (crystal structure) (4)

Freq B3LYP/6-311+G(d,2p) nosymm int=(grid=ultrafine) scf=(maxcycles=200) EmpiricalDispersion=GD3 SCRF=(SMD,Solvent=DiMethylSulfoxide)

SCF Done: E(RB3LYP) =	-1476.49319421
Zero-point correction=	0.554438 (Hartree/Particle)
Thermal correction to Energy=	0.574640
Thermal correction to Enthalpy=	0.575584
Thermal correction to Gibbs Free Energy=	0.507016
Sum of electronic and zero-point Energies=	-1475.938757
Sum of electronic and thermal Energies=	-1475.918554
Sum of electronic and thermal Enthalpies=	-1475.917610
Sum of electronic and thermal Free Energies=	-1475.986178

S	6.368276000	10.403776000	6.348203000
Ν	5.148714000	8.153325000	2.765703000
Ν	2.736241000	8.039101000	5.592572000
Ν	6.351001000	7.765461000	6.240491000
Н	6.654041000	6.968876000	6.458592000
Ν	7.893839000	8.591595000	7.680699000
Н	8.058684000	7.729953000	7.747839000
С	4.884171000	8.044067000	4.040739000
С	3.953336000	8.000613000	5.134333000
С	5.297766000	7.885148000	5.336576000
С	6.530654000	7.837968000	2.295725000

Н	6.514860000	7.836727000	1.295425000
С	7.501960000	8.905710000	2.732133000
Н	7.212740000	9.773560000	2.380782000
Н	8.394298000	8.694645000	2.389020000
Н	7.528612000	8.941715000	3.711219000
С	6.928455000	6.456112000	2.745314000
Н	7.055791000	6.452387000	3.717397000
Н	7.765516000	6.197868000	2.306640000
Н	6.222678000	5.819192000	2.506412000
С	4.097452000	8.455024000	1.762108000
Ĥ	3.267301000	8.703336000	2.261331000
C	4 496241000	9 651887000	0.918331000
Ĥ	4 753874000	10 393099000	1 505495000
Н	3 739135000	9 923789000	0 358353000
н	5 254333000	9 408542000	0.345996000
\hat{C}	3 776645000	7 225879000	0.928835000
н	4 545596000	7.004882000	0.364532000
н	2 996836000	7.004002000	0.364532000
н	3 581199000	6 471011000	1 52/030000
\hat{C}	1 556657000	8 282447000	1.524050000
с u	1.802271000	8.282447000	3 801837000
Γ	0.788602000	0.504142000	5 182114000
	0.788093000	9.304142000	5.162114000
п	0.403/24000	9.550551000	0.00/28/000
п	0.070084000	9.093342000	4.343237000
П	1.393/39000	10.2/200/000	5.229070000
	0.082080000	/.032190000	4.002090000
п	1.233849000	0.258/04000	4.423806000
H	-0.015/94000	/.155110000	5.985132000
Н	0.266517000	6.8/8242000	5.535936000
C	2.525989000	7.795755000	7.050698000
Н	1.538889000	1.132436000	7.2020/1000
C	3.132068000	6.463561000	/.455390000
H	2.804351000	5.760838000	6.8560/5000
H	2.8/3448000	6.253/38000	8.378046000
Н	4.108310000	6.516948000	7.393605000
C	3.0323/1000	8.951648000	7.873263000
H	3.9888/1000	9.082011000	7.700470000
H	2.897139000	8.760447000	8.824958000
Н	2.542//0000	9.764869000	7.630447000
C	6.918584000	8.893294000	6.793673000
C	8.700299000	9.396126000	8.523035000
С	8.729912000	10.785432000	8.511296000
Н	8.167265000	11.273365000	7.920837000
C	9.594612000	11.454633000	9.376698000
H	9.613367000	12.404426000	9.374844000
C	10.416866000	10.769291000	10.229742000
Н	11.007152000	11.237360000	10.808256000
C	10.377382000	9.397368000	10.239628000
Н	10.942991000	8.919367000	10.835029000
С	9.530451000	8.700852000	9.401412000
Η	9.513670000	7.751059000	9.422213000

Computed structure conjugate base H (4) (4-H')

Freq B3LYP/6-311+G(d,2p) nosymm int=(grid=ultrafine) scf=(maxcycles=200) EmpiricalDispersion=GD3 SCRF=(SMD,Solvent=DiMethylSulfoxide)

SCF Done: $E(RB3LYP) =$	-1476.02344061
Zero-point correction=	0.539773 (Hartree/Particle)
Thermal correction to Energy=	0.559122
Thermal correction to Enthalpy=	0.560066
Thermal correction to Gibbs Free Energy=	0.493467
Sum of electronic and zero-point Energies=	-1475.483667
Sum of electronic and thermal Energies=	-1475.464319
Sum of electronic and thermal Enthalpies=	-1475.463375
Sum of electronic and thermal Free Energies=	-1475.529974

S	6.368276000	10.403776000	6.348203000
Ν	5.148714000	8.153325000	2.765703000
Ν	2.736241000	8.039101000	5.592572000
Ν	6.351001000	7.765461000	6.240491000
Н	6.654041000	6.968876000	6.458592000
Ν	7.893839000	8.591595000	7.680699000
С	4.884171000	8.044067000	4.040739000
С	3.953336000	8.000613000	5.134333000
С	5.297766000	7.885148000	5.336576000
С	6.530654000	7.837968000	2.295725000
Η	6.514860000	7.836727000	1.295425000
С	7.501960000	8.905710000	2.732133000
Н	7.212740000	9.773560000	2.380782000
Н	8.394298000	8.694645000	2.389020000
Η	7.528612000	8.941715000	3.711219000
С	6.928455000	6.456112000	2.745314000
Н	7.055791000	6.452387000	3.717397000
Н	7.765516000	6.197868000	2.306640000
Н	6.222678000	5.819192000	2.506412000
С	4.097452000	8.455024000	1.762108000
Н	3.267301000	8.703336000	2.261331000
С	4.496241000	9.651887000	0.918331000

Η	4.753874000	10.393099000	1.505495000
Н	3.739135000	9.923789000	0.358353000
Н	5.254333000	9.408542000	0.345996000
С	3.776645000	7.225879000	0.928835000
Н	4.545596000	7.004882000	0.364532000
Н	2.996836000	7.407147000	0.364532000
Н	3.581199000	6.471011000	1.524030000
С	1.556657000	8.282447000	4.726141000
Н	1.892271000	8.464956000	3.801837000
С	0.788693000	9.504142000	5.182114000
Н	0.403724000	9.336531000	6.067287000
Н	0.070084000	9.695342000	4.543257000
Н	1.395759000	10.272667000	5.229070000
С	0.682086000	7.032196000	4.662090000
Н	1.235849000	6.258704000	4.423806000
Н	-0.015794000	7.155110000	3.985132000
Н	0.266517000	6.878242000	5.535936000
С	2.525989000	7.795755000	7.050698000
Н	1.538889000	7.732436000	7.202071000
С	3.132068000	6.463561000	7.455390000
Н	2.804351000	5.760838000	6.856075000
Н	2.873448000	6.253738000	8.378046000
Н	4.108310000	6.516948000	7.393605000
С	3.032371000	8.951648000	7.873263000
Н	3.988871000	9.082011000	7.700470000
Н	2.897139000	8.760447000	8.824958000
Н	2.542770000	9.764869000	7.630447000
С	6.918584000	8.893294000	6.793673000
С	8.700299000	9.396126000	8.523035000
С	8.729912000	10.785432000	8.511296000
Н	8.167265000	11.273365000	7.920837000
С	9.594612000	11.454633000	9.376698000
Н	9.613367000	12.404426000	9.374844000
С	10.416866000	10.769291000	10.229742000
Н	11.007152000	11.237360000	10.808256000
С	10.377382000	9.397368000	10.239628000
Н	10.942991000	8.919367000	10.835029000
С	9.530451000	8.700852000	9.401412000
Н	9.513670000	7.751059000	9.422213000

Computed structure conjugate base H (3) (4-H)

Freq B3LYP/6-311+G(d,2p) nosymm int=(grid=ultrafine) scf=(maxcycles=200) EmpiricalDispersion=GD3 SCRF=(SMD,Solvent=DiMethylSulfoxide)

SCF Done: E(RB3LYP) =	-1476.03701651
Zero-point correction=	0.540103 (Hartree/Particle)
Thermal correction to Energy=	0.559961
Thermal correction to Enthalpy=	0.560905
Thermal correction to Gibbs Free Energy=	0.493377
Sum of electronic and zero-point Energies=	-1475.496914
Sum of electronic and thermal Energies=	-1475.477056
Sum of electronic and thermal Enthalpies=	-1475.476112
Sum of electronic and thermal Free Energies=	-1475.543639

S	6.368276000	10.403776000	6.348203000
Ν	5.148714000	8.153325000	2.765703000
Ν	2.736241000	8.039101000	5.592572000
Ν	6.351001000	7.765461000	6.240491000
Ν	7.893839000	8.591595000	7.680699000
Н	8.058684000	7.729953000	7.747839000
С	4.884171000	8.044067000	4.040739000
С	3.953336000	8.000613000	5.134333000
С	5.297766000	7.885148000	5.336576000
С	6.530654000	7.837968000	2.295725000
Н	6.514860000	7.836727000	1.295425000
С	7.501960000	8.905710000	2.732133000
Н	7.212740000	9.773560000	2.380782000
Н	8.394298000	8.694645000	2.389020000
Н	7.528612000	8.941715000	3.711219000
С	6.928455000	6.456112000	2.745314000
Η	7.055791000	6.452387000	3.717397000
Н	7.765516000	6.197868000	2.306640000
Н	6.222678000	5.819192000	2.506412000
С	4.097452000	8.455024000	1.762108000
Н	3.267301000	8.703336000	2.261331000
С	4.496241000	9.651887000	0.918331000

Н	4.753874000	10.393099000	1.505495000
Н	3.739135000	9.923789000	0.358353000
Н	5.254333000	9.408542000	0.345996000
С	3.776645000	7.225879000	0.928835000
Н	4.545596000	7.004882000	0.364532000
Н	2.996836000	7.407147000	0.364532000
Н	3.581199000	6.471011000	1.524030000
С	1.556657000	8.282447000	4.726141000
Н	1.892271000	8.464956000	3.801837000
С	0.788693000	9.504142000	5.182114000
Н	0.403724000	9.336531000	6.067287000
Н	0.070084000	9.695342000	4.543257000
Н	1.395759000	10.272667000	5.229070000
С	0.682086000	7.032196000	4.662090000
Н	1.235849000	6.258704000	4.423806000
Н	-0.015794000	7.155110000	3.985132000
Н	0.266517000	6.878242000	5.535936000
С	2.525989000	7.795755000	7.050698000
Н	1.538889000	7.732436000	7.202071000
С	3.132068000	6.463561000	7.455390000
Η	2.804351000	5.760838000	6.856075000
Η	2.873448000	6.253738000	8.378046000
Η	4.108310000	6.516948000	7.393605000
С	3.032371000	8.951648000	7.873263000
Η	3.988871000	9.082011000	7.700470000
Η	2.897139000	8.760447000	8.824958000
Η	2.542770000	9.764869000	7.630447000
С	6.918584000	8.893294000	6.793673000
С	8.700299000	9.396126000	8.523035000
С	8.729912000	10.785432000	8.511296000
Н	8.167265000	11.273365000	7.920837000
С	9.594612000	11.454633000	9.376698000
Н	9.613367000	12.404426000	9.374844000
С	10.416866000	10.769291000	10.229742000
Η	11.007152000	11.237360000	10.808256000
С	10.377382000	9.397368000	10.239628000
Н	10.942991000	8.919367000	10.835029000
С	9.530451000	8.700852000	9.401412000
Н	9.513670000	7.751059000	9.422213000

Computed structure alcohol ··· thiourea (OH···S) (5a•4)

opt B3LYP/6-311+g(d,2p) nosymm int=(grid=ultrafine) EmpiricalDispersion=GD3

--Link1--

Freq B3LYP/6-311+g(d,2p) SCRF=(SMD,Solvent=chloroform) nosymm geom=(check,newdefinition) guess=read int=(grid=ultrafine) EmpiricalDispersion=GD3

SCI	F Done: E(RB3L	(YP) =		-1823.78898963
Zei	ro-point correctio	n =		0.673512 (Hartree/Particle)
Thermal correction to Energy=		0.709757		
The	Thermal correction to Enthalpy=		0.710702	
The	rmal correction t	o Gibbs Free Ener	rgy=	0.604079
Sun	n of electronic an	d zero-point Ener	gies=	-1822.996778
Sun	n of electronic an	d thermal Energie	es=	-1822.960532
Sun	n of electronic an	d thermal Enthalp	oies=	-1822.959588
Sun	n of electronic an	d thermal Free Er	nergies=	-1823.066211
S	7 629644000	10 044777000	7 211364000)
N	5.366432000	8.354315000	2.967661000	
N	3 596522000	9 136647000	6 132514000	
N	7 006871000	7 638485000	6 166386000	
Ŧ	7 472639000	6 856689000	5 720622000	
N	8 629377000	7 597088000	7 761882000	
H	8 410129000	6 609006000	7 766656000	
2	5 330652000	8 403956000	4 279552000	
2	4.659604000	8.690069000	5.506008000	1
2	5.928852000	8.155323000	5.491324000	1
2	6.653096000	8.020415000	2.280319000	1
Ĥ	6.462354000	8.228404000	1.227432000	
С	7.794603000	8.931967000	2.738768000	1
H	7.497340000	9.980576000	2.706951000	
Ŧ	8.659072000	8,789457000	2.086640000	
Н	8.110957000	8.705553000	3.759849000	
2	6.986063000	6.531577000	2.415516000	1
H	7.168706000	6.254167000	3.458445000	
Н	7.893071000	6.299621000	1.852889000	
Н	6.179288000	5.902337000	2.036485000	
2	4.182172000	8.755669000	2.150661000	I
Н	3.368024000	8.849187000	2.869242000	
С	4.407739000	10.118743000	1.49055500)
Н	4.689490000	10.863096000	2.23703900	0
Н	3.491105000	10.443366000	0.99235600	0
Н	5.192487000	10.074280000	0.73075300	0
С	3.787235000	7.661788000	1.154639000	
Н	4.543697000	7.511802000	0.380712000	
Н	2.863855000	7.953691000	0.649581000	
Н	3.610223000	6.708867000	1.657933000	
С	2.517299000	9.826474000	5.357632000	
Η	2.978839000	10.071062000	4.40143000	0
2	2.113670000	11.153608000	6.00261200)
H	1.627368000	11.015018000	6.97060400	0
H	1.397200000	11.657241000	5.34945000	0
Н	2.978324000	11.806329000	6 12546200	0

С	1.324951000	8.893720000	5.121553000
Н	1.631013000	7.966653000	4.630044000
Н	0.588063000	9.388790000	4.484806000
Н	0.823199000	8.631876000	6.056293000
С	3.385250000	8.868720000	7.594666000
Н	2.308290000	8.983306000	7.727127000
С	3.738837000	7.423492000	7.954887000
Н	3.219759000	6.710902000	7.309563000
Н	3.435970000	7.227428000	8.985351000
Н	4.813508000	7.238195000	7.890208000
С	4.093604000	9.886226000	8.492173000
Н	5.177951000	9.804247000	8.409178000
Н	3.815486000	9.702091000	9.533113000
Н	3.813072000	10.909685000	8.243613000
С	7.784318000	8.393963000	7.068023000
С	9.668902000	7.987140000	8.665740000
С	10.641626000	8.914828000	8.295420000
Н	10.600405000	9.387702000	7.323675000
С	11.662118000	9.224703000	9.188294000
Η	12.417347000	9.947244000	8.903045000
С	11.723428000	8.605648000	10.435798000
Н	12.523888000	8.848840000	11.124006000
С	10.755615000	7.670482000	10.793336000
Η	10.796919000	7.183791000	11.760296000
С	9.723896000	7.361906000	9.911332000
Η	8.959689000	6.645315000	10.192865000
С	5.793173000	13.740522000	5.568048000
С	6.641401000	13.944310000	6.661111000
С	4.519101000	14.317819000	5.589706000
Н	7.641496000	13.521722000	6.651004000
Н	3.859182000	14.186296000	4.737856000
С	6.223552000	14.697352000	7.756477000
С	4.098645000	15.074771000	6.680512000
Н	6.894664000	14.852386000	8.593432000
Н	3.114151000	15.528897000	6.677588000
С	4.950158000	15.262592000	7.768460000
Н	4.627513000	15.857864000	8.614846000
0	5.864355000	11.500267000	4.548036000
Н	6.339353000	11.148373000	5.317411000
С	6.233105000	12.886321000	4.403152000
Н	7.316831000	12.970714000	4.261805000
Н	5.749088000	13.220151000	3.483766000

Computed structure benzyl alcohol (5a)

opt B3LYP/6-311+g(d,2p) nosymm int=(grid=ultrafine) EmpiricalDispersion=GD3

--Link1--

Freq B3LYP/6-311+g(d,2p) SCRF=(SMD,Solvent=chloroform) nosymm geom=(check,newdefinition) guess=read int=(grid=ultrafine) EmpiricalDispersion=GD3

SCF Done: $E(RB3LYP) =$	-346.902255328
Zero-point correction=	0.132707 (Hartree/Particle)
Thermal correction to Energy=	0.138986
Thermal correction to Enthalpy=	0.139930
Thermal correction to Gibbs Free Energy=	0.102312
Sum of electronic and zero-point Energies=	-346.769549
Sum of electronic and thermal Energies=	-346.763269
Sum of electronic and thermal Enthalpies=	-346.762325
Sum of electronic and thermal Free Energies=	-346.799944

\cap	0 174195000	-2 755652000	-1 198857000
0	0.1/4193000	-2.733032000	-1.198857000
С	-0.352459000	-3.795803000	-0.371659000
С	0.659199000	-4.872738000	-0.041411000
С	0.757068000	-5.391794000	1.251888000
С	1.504185000	-5.374262000	-1.038511000
Н	0.115305000	-5.004200000	2.033839000
Н	1.437752000	-4.967242000	-2.038714000
С	1.674254000	-6.401526000	1.546116000
С	2.424468000	-6.377506000	-0.745920000
Н	1.739557000	-6.793518000	2.552434000
Η	3.072545000	-6.757073000	-1.524843000
С	2.510410000	-6.896288000	0.547430000
Н	3.225390000	-7.675886000	0.773865000
Н	-0.774085000	-3.385167000	0.552459000
Н	-1.179101000	-4.218359000	-0.945853000
Н	0.954436000	-2.393663000	-0.768466000

Computed structure thiourea (optimized) (4)

opt B3LYP/6-311+g(d,2p) nosymm int=(grid=ultrafine) EmpiricalDispersion=GD3

--Link1--

Freq B3LYP/6-311+g(d,2p) SCRF=(SMD,Solvent=chloroform) nosymm geom=(check,newdefinition) guess=read int=(grid=ultrafine) EmpiricalDispersion=GD3

SCF Done: E(RB3LYP) =	-1476.84645588
Zero-point correction=	0.536665 (Hartree/Particle)
Thermal correction to Energy=	0.563687
Thermal correction to Enthalpy=	0.564631
Thermal correction to Gibbs Free Energy=	0.481163
Sum of electronic and zero-point Energies=	-1476.248772
Sum of electronic and thermal Energies=	-1476.221750
Sum of electronic and thermal Enthalpies=	-1476.220806
Sum of electronic and thermal Free Energies=	-1476.304274

С	-0.357796000	0.872463000	-1.449335000
S	-0.236832000	1.317198000	0.141963000
Ν	-1.543516000	0.282938000	-1.973811000
Н	-1.398146000	-0.537876000	-2.547762000
Ν	0.580804000	0.982847000	-2.418238000
Н	0.248615000	0.910875000	-3.369688000
С	1.941146000	1.400157000	-2.280704000
С	2.437760000	2.326103000	-3.199049000
С	2.770985000	0.860827000	-1.298047000
С	3.772490000	2.718376000	-3.130663000
Н	1.784776000	2.742266000	-3.955769000
С	4.099987000	1.268188000	-1.230730000
Н	2.382632000	0.140131000	-0.595384000
С	4.604705000	2.194627000	-2.143317000
Н	5.639128000	2.503135000	-2.086577000
С	-2.703350000	0.280947000	-1.240548000
С	-3.660283000	-0.436066000	-0.567622000
С	-3.753535000	0.982865000	-0.698789000
Н	4.743834000	0.853665000	-0.467579000
Н	4.155781000	3.435684000	-3.842785000

Ν	-4.371935000	2.119446000	-0.479581000
Ν	-4.071023000	-1.614421000	-0.148146000
С	-5.500523000	2.199790000	0.491278000
Н	-5.612264000	1.188140000	0.871413000
С	-3.947363000	3.362407000	-1.204602000
Н	-4.770303000	4.055809000	-1.044620000
С	-5.432695000	-1.860513000	0.409631000
Η	-5.554144000	-2.941377000	0.340372000
С	-3.136572000	-2.779627000	-0.269847000
С	-1.773554000	-2.487222000	0.358317000
Н	-1.217962000	-1.723865000	-0.184772000
Η	-1.882457000	-2.149007000	1.388118000
Η	-1.174614000	-3.397859000	0.357774000
С	-6.523704000	-1.233049000	-0.457501000
Η	-6.464377000	-0.148368000	-0.477434000
Η	-6.457658000	-1.597135000	-1.482815000
Η	-7.503179000	-1.501381000	-0.062453000
Н	-3.610260000	-3.565400000	0.317485000
С	-3.046296000	-3.250251000	-1.723371000
Н	-4.030875000	-3.493197000	-2.123025000
Н	-2.605391000	-2.480534000	-2.360171000
Η	-2.418576000	-4.138308000	-1.794047000
С	-5.498516000	-1.472943000	1.889143000
Н	-4.750623000	-2.018034000	2.465179000
Н	-5.317234000	-0.407887000	2.033271000
Η	-6.481368000	-1.708141000	2.297784000
С	-5.149333000	3.109783000	1.670951000
Н	-5.041303000	4.148230000	1.357463000
Н	-5.950934000	3.071497000	2.408909000
Н	-4.223176000	2.793658000	2.150139000
С	-6.809253000	2.607591000	-0.191951000
Н	-6.793510000	3.648953000	-0.513098000
Н	-7.018999000	1.985247000	-1.061728000
Н	-7.633418000	2.499420000	0.513338000
С	-2.675807000	3.979258000	-0.621416000
Н	-2.488407000	4.938961000	-1.104432000
Н	-2.766671000	4.148645000	0.449675000
Н	-1.812176000	3.339541000	-0.786514000
С	-3.836421000	3.102256000	-2.708133000
Η	-2.998477000	2.443084000	-2.938312000
Η	-4.750779000	2.657783000	-3.101790000
Н	-3.664802000	4.045381000	-3.226314000

Computational Methods

The following calculations were performed using the Gaussian 09¹⁹⁴ suite of programs at the DFT level employing the range-separated hybrid @B97X-D functional¹⁹⁵ with a 6-311G(d,p) basis set.¹⁹⁶ This functional was selected as it accounts for dispersion and has been shown to provide accurate thermochemical and kinetic energies. Single-point calculations were also performed at the SMD/ ω B97X-D/6-311G(d,p) level on ω B97X-D/6-311G(d,p) optimized geometries. Thermal corrections from the vibrational frequencies at the ω B97X-D/6-311G(d,p) were added to the electronic energies of the abovementioned methods to gain the free energies. All of the optimized geometries (minimum stationary points (reactants, intermediates and products)) were confirmed by frequency computations as minima (zero imaginary frequencies) or transition states (one imaginary frequency) using analytic second derivatives.¹⁹⁷ Intrinsic reaction coordinate calculations were performed to ensure that the transition states found were first-order saddle points connecting the reactants and the products.¹⁹⁸ Solvent dichloromethane (DCM - $\varepsilon = 8.93$) in these calculations was accounted for by the Self-Consistent Reaction Field (SCRF) method using the Solvation Model based on Density (SMD) model to gain a more accurate treatment of medium/long ranged attractive non-covalent interactions.¹⁹⁹ The Gibbs free energy differences (ΔG°) were taken with respect to the most stable conformer. The 3D images of all optimized geometries were generated with CYLview.²⁰⁰ GaussView²⁰¹ was used to construct all structures prior to geometrical optimization. Monte Carlo conformational searches (MCCS) with an OPLS3²⁰² force field were performed on the full catalyst systems using Macro-model program in Schrodinger.²⁰³

Thiourea Conformers, Methanol, DHP and MTP Optimized Structures

a. Methanol, DHP and MTP Optimized Structures

Optimiz	ed Structure of DF	IP.	
- Therm	ochemistry -		
(0 imagi Zero-poi Therma Therma Sum of Sum of Sum of Sum of	nary frequencies) int correction= l correction to Ene l correction to Ent l correction to Gib electronic and zere electronic and there electronic and there electronic and there	0 ergy= halpy= obs Free Energ o-point Energi rmal Energies= rmal Enthalpie rmal Free Ener	0.123525 (Hartree/Particle) 0.128718 0.129662 y= 0.095132 es= -270.403457 = -270.398264 es= -270.397320 rgies= -270.431850
Н	-0.64766000	2.41093800	0.09524600
C	0.91359900	1.05500200	-0.08177700
C	-0.3/391/00	1.36348800	0.06244200
C C	-0.86010300	-1 03348500	-0 32286700
Č	0.51897700	-1.21851700	0.29381700
Н	-1.84990000	0.22676900	1.14180100
Н	-2.28438100	0.58826600	-0.51726100
Н	-1.50547500	-1.86745600	-0.03494100
Н	-0.76026900	-1.05171300	-1.41256200
H	0.44481200	-1.19/41800	1.38949700
п	0.9/809200	-2.139/0300	-0.00/40900 -0.11544000
H	1.69287200	1.79932600	-0.19543900

Optimized Structure of Methanol.

- Thern	nochemistry -		
(0 imag	inary frequencies)		
Zero-po	oint correction=	0.05176	66 (Hartree/Particle)
Therma	al correction to Energy=	0.0	55076
Therma	al correction to Enthalpy=	0.0)56020
Therma	al correction to Gibbs Free E	energy=	0.029039
Sum of	f electronic and zero-point E	nergies=	-115.665488
Sum of	electronic and thermal Ener	rgies=	-115.662178
Sum of	electronic and thermal Enth	alpies=	-115.661234
Sum of	f electronic and thermal Free	Energies=	-115.688215
С	0.65848200 -0.01957	300 0.000	00800

C	0.65848200	-0.0195/300	0.00000800
Н	1.02945200	-0.54148000	-0.89234200
Н	1.02937400	-0.54356800	0.89115600
Н	1.08204600	0.98553300	0.00113000
0	-0.74534100	0.12146400	0.00001600
Н	-1.12903900	-0.75476300	-0.00011900

Optimized Structure of MTP.

- Thermochemistry -

- Thermoeneniistry -

(0 imaginary frequencies) Zero-point correction= 0.180759 (Hartree/Particle) Thermal correction to Energy= 0.188582 Thermal correction to Enthalpy= 0.189526 Thermal correction to Gibbs Free Energy= 0.148695 Sum of electronic and zero-point Energies= -386.104437 Sum of electronic and thermal Energies= -386.096615 Sum of electronic and thermal Enthalpies= -386.095670 Sum of electronic and thermal Free Energies= -386.136501

Н	-1.12543900	-1.45597400	1.44154200
С	0.56123200	-0.42583800	0.65141900
С	-0.61112100	-1.38264500	0.47788300
С	-1.57807300	-0.87401100	-0.59187500
С	-1.96737700	0.57307400	-0.28584000
С	-0.71565000	1.42114000	-0.10893100
Н	-1.08956000	-0.92351500	-1.56998500
Н	-2.46352900	-1.51358700	-0.63682200
Н	-2.58287100	0.99284100	-1.08724700
Н	-2.55599600	0.61161200	0.63782900
Н	-0.17049200	1.48610700	-1.05994100
Н	-0.95875900	2.43336700	0.21654500
Ο	0.13807400	0.89364700	0.90044400
Н	1.15984700	-0.68535700	1.53453400
Н	-0.22107200	-2.37168700	0.22820200
С	2.55432100	0.21829500	-0.41977700
Н	3.17600500	-0.13813300	0.41320900
Н	2.36634800	1.28794000	-0.28167800
Н	3.08788800	0.05930000	-1.35638400
0	1.35163200	-0.51402200	-0.50257900

b. Thiourea Conformers

Optimized Structure of Thiourea *E*,*E*-4 Conformer.

- Thermoch	nemistry -		
(0 imaginar	v frequencies)		
Zero-point	correction=	0	548404 (Hartree/Particle)
Thermal co	prrection to Ene	ergv=	0.578341
Thermal co	prrection to Ent	halpv=	0.579285
Thermal co	prrection to Gib	bs Free Energ	v = 0.488250
Sum of ele	ctronic and zer	o-point Energi	es = -1475.778161
Sum of ele	ctronic and the	rmal Energies=	-1475.748223
Sum of ele	ctronic and the	rmal Enthalpie	s= -1475.747279
Sum of ele	ctronic and the	rmal Free Ener	gies = -1475.838315
			0
С	-2.67507200	-0.90203300	-1.00755200
S	-3.91896400	-1.04556400	-2.07371300
Ν	-1.34767200	-1.08138300	-1.41388600
Н	-1.23730600	-1.54782700	-2.30246100
Ν	-2.81900800	-0.60337800	0.31032700
С	-1.94325200	-1.04565800	1.35934100
С	-1.63223700	-2.39601200	1.47994200
С	-1.44525200	-0.12513000	2.27477700
С	-0.80043600	-2.81980600	2.50740400
Η	-2.05036700	-3.10776900	0.77690300
С	-0.61691100	-0.55613800	3.30308900
Η	-1.70749900	0.92049000	2.17758400
С	-0.28809200	-1.90205300	3.41713000
Н	0.35092400	-2.23828800	4.22498900
Н	-3.78106200	-0.43535200	0.57130100
Н	-0.23905900	0.15916600	4.02441400
Н	-0.56661300	-3.87316400	2.60714300
С	-0.31516200	-0.32929500	-0.94774000
С	0.15094000	0.85577200	-0.43761600
С	1.02292000	-0.23408900	-0.65485700
Ν	-0.02814100	2.09222700	-0.03073300

Ν	2.21985400	-0.76353800	-0.64376300
С	1.07403300	2.76115300	0.70053800
С	-1.15988000	2.91153600	-0.54970300
С	3.39997000	0.03981100	-0.25429400
С	2.38492900	-2.18931800	-1.01966900
С	1.93430200	3.60406200	-0.23788800
Н	1.67807300	1.94612100	1.10620100
С	0.54976800	3.55816900	1.88973500
С	-2.40041100	2.84264100	0.33216900
Н	-0.77738900	3.93415200	-0.52526800
С	-1.47358200	2.57504100	-2.00373200
Н	3.02679600	1.05721800	-0.13664100
С	3.94994400	-0.43352400	1.08755900
С	4.45016800	0.06379300	-1.36017300
Н	3.43145100	-2.41666100	-0.81292200
С	1.51987500	-3.08989000	-0.14783400
С	2.13483400	-2.39060100	-2.51076800
Н	2.28902400	3.01577000	-1.08854100
Н	1.38098000	4.46156400	-0.62830400
Н	2.80374300	3.99163500	0.29742900
Н	-0.06609500	4.40456400	1.57724900
Н	-0.03734100	2.92517100	2.55797200
Н	1.39443900	3.95885800	2.45316500
Н	-2.83779900	1.84404200	0.29844700
Н	-2.17681100	3.09984700	1.36868800
Н	-3.14595100	3.55069000	-0.03577500
Н	-0.57361300	2.60474800	-2.62261600
Н	-1.94712400	1.59525000	-2.10794100
Н	-2.17815900	3.30988000	-2.39659300
Н	4.34903600	-1.44908700	1.02244900
Н	4.76506900	0.21909900	1.40683400
Н	3.17200400	-0.41785200	1.85469500
Н	4.02173400	0.41564700	-2.30101200
Н	5.25624700	0.74358500	-1.07734000
Н	4.89668600	-0.91955500	-1.52595400
Н	1.74670200	-4.13687900	-0.35822800
Н	1.69980900	-2.90073500	0.91218700
Н	0.45623400	-2.93260700	-0.34418000
Н	1.09453100	-2.17137200	-2.76948100
Н	2.78084200	-1.74988500	-3.11314000
Н	2.32767900	-3.42951400	-2.78460100

Optimized Structure of Thiourea E,Z-4 Conformer.

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.547610 (Hartree/Particle) 0.578095 Thermal correction to Energy= Thermal correction to Enthalpy= 0.579039 Thermal correction to Gibbs Free Energy= 0.484071 Sum of electronic and zero-point Energies= -1475.780215 Sum of electronic and thermal Energies= -1475.749730Sum of electronic and thermal Enthalpies= -1475.748786 Sum of electronic and thermal Free Energies= -1475.843754

С	-1.73719900	-1.38675100	-1.03634700
S	-0.79976900	-2.19786500	-2.13681300
Ν	-1.21476000	-0.46175700	-0.14531700
Н	-1.86118600	0.16475100	0.31816600
Ν	-3.07339900	-1.53079300	-0.93753000
С	-3.92666900	-0.73012100	-0.11125900
С	-4.14078900	-1.08578000	1.21703500
С	-4.51949400	0.41105100	-0.64596000
С	-4.95217400	-0.28889200	2.01503100
Н	-3.67861900	-1.98419500	1.60943000
С	-5.33450800	1.19896000	0.15675100
Н	-4.34493500	0.66500500	-1.68551400
С	-5.54742900	0.85074100	1.48583800
Н	-6.18558500	1.46527900	2.10946300
Н	-3.48582500	-2.14688800	-1.62202300
Н	-5.80708400	2.08132300	-0.25765700
Н	-5.12764000	-0.56347000	3.04816100
С	0.11063200	-0.15220100	-0.07447200
С	1.42313800	-0.50446600	0.12587500
С	1.04060200	0.84963700	-0.05786500
Ν	2.38319900	-1.36706500	0.33828100
Ν	1.31445100	2.12885200	-0.14159200
С	3.78141400	-0.86671400	0.36110200
С	2.09437000	-2.74991700	0.81377300
С	2.67232200	2.64355700	0.14263800
С	0.24591000	3.05570200	-0.58981300
С	4.20023400	-0.51277400	1.78620400
Н	3.76685300	0.04155600	-0.24520000
---	-------------	-------------	-------------
С	4.75281900	-1.82825300	-0.31206900
С	2.02712100	-3.75699900	-0.32879100
Н	2.94578000	-2.99548200	1.45353800
С	0.84136500	-2.78757400	1.68213600
Н	3.21072600	1.80220800	0.57963300
С	3.37503300	3.06260500	-1.14420000
С	2.63687700	3.75051400	1.19199100
Н	0.74685700	4.01238900	-0.74337200
С	-0.34237800	2.61496900	-1.92669900
С	-0.81253100	3.24033200	0.49378200
Н	3.49906500	0.19105600	2.24337400
Н	4.24810800	-1.40222200	2.41948100
Н	5.19209100	-0.05567000	1.78364100
Н	4.84382300	-2.77201500	0.22992100
Н	4.45307100	-2.03854500	-1.33971500
Н	5.74201300	-1.36691600	-0.33453500
Н	1.18746500	-3.52801300	-0.98533000
Н	2.94219500	-3.76555300	-0.92034500
Н	1.88248200	-4.75819500	0.08391900
Н	0.87739800	-2.03274500	2.47175400
Н	-0.06488500	-2.64533000	1.08891900
Н	0.76775600	-3.76820300	2.15499400
Н	2.87249600	3.91059600	-1.61720000
Н	4.40080100	3.36785300	-0.92776200
Н	3.40424600	2.23914600	-1.86168500
Н	2.14020000	3.41261400	2.10386600
Н	3.65898300	4.03708300	1.44683900
Н	2.12892900	4.64706000	0.82847900
Н	-1.04729000	3.36882300	-2.28253200
Н	0.43955900	2.49494100	-2.67890900
Н	-0.88406700	1.66911000	-1.84116800
Н	-1.34962200	2.30764600	0.68963600
Н	-0.36664500	3.58111100	1.42955600
Н	-1.54964000	3.97932500	0.17420200

Optimized Structure of Thiourea Z,Z-4 Conformer.

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= Thermal correction to Energy=

0.547201 (Hartree/Particle) 0.577826

Thermal correction to	• Enthalpy=	0.578770
Thermal correction to	Gibbs Free Energ	v = 0.483301
Sum of electronic and zero-point Energies= -1475 77186		
Sum of electronic and	thermal Energies	-1475.741236
Sum of electronic and	thermal Enthalpi	es = -1475740292
Sum of electronic and	thermal Free Ene	rgies = -1475 835761
C 1.863988	-0.31005200	0.05797100
S 1.625626	600 0.30685800	1.56955500
N 0.76360	300 -0.76800100	-0.72160900
Н 0.84943	900 -1.70703900	-1.08799000
N 3.00543	700 -0.48496400	-0.62887500
C 4.37426	500 -0.38255800	-0.26307100
C 4 83592	200 0 17170800	0 92696400
C 5 28314	800 -0 87334700	-1 20404000
C 6 20563	300 0 21929900	1 16246900
Н 4 14417	900 0 56412100	1 65472800
C 6 64338	200 -0.81272500	-0.95769400
Н 4 92393	900 -1 30941400	-2 13178800
C 7 11176	200 -0.26654100	0.23220200
Н 8.17586	000 = 0.2000 1100	0.42785600
Н 2.87654	600 -0.21702200	-1 59737600
Н 6.56122	400 -0.74291900	2 00011000
Н 7.33822	100 0.05154000	1 60558200
П 7.556220	000 -1.19490300	-1.09558200
C = -0.30324	000 -0.5/08/900	-0.43124000
C = -1.80/55	500 -0.70717900	-0.1/843000
C -1.40996	300 0.64604200	-0.25448800
N -2./2122	900 -1.632/1/00	-0.00505100
N -1./2956	400 1.91392500	-0.18051900
C -4.15346	600 -1.27767200	0.10001600
C -2.28481	500 -3.038/3800	0.16837700
C -3.10916	400 2.27581900	0.22813100
C -0.81938	100 2.96680400	-0.70787900
C -4.99892	900 -2.08580300	-0.87969500
Н -4.21357	500 -0.23285700	-0.20855400
C -4.63515	700 -1.39395100	1.54262400
C -1.27494	100 -3.16773500	1.30461000
Н -3.18480	500 -3.58249000	0.45831000
C -1.78191	400 -3.61950900	-1.14979100
Н -3.48063	000 1.40620700	0.77426900
C -3.12798	000 3.44982600	1.19985300
C -3.99060	800 2.51089200	-0.99581100
Н -1.48917	000 3.77412000	-1.01271500
C 0.13543	600 3.49540200	0.35674300
C -0.07959	500 2.49157300	-1.95438900
Н -4.62834	100 -1.97532100	-1.90089800
Н -5.01983	500 -3.14902400	-0.62867300
Н -6.02879	100 -1.72495500	-0.84963300
Н -4.57949	100 -2.42572800	1.89992500
Н -4.03295	200 -0.76999100	2.20760400
Н -5.67667	700 -1.07499100	1.61863500
Н -0.33340	000 -2.65919300	1.07894500
Н -1.67237	300 -2.74369900	2.22869500
Н -1 05010	200 -4.22151700	1.47941200
Н -2.54531	100 -3.55708300	-1.92694300
Н -0.89417	900 -3.08758000	-1.50631900

Н	-1.50832800	-4.66805500	-1.01861100
Н	-2.77688600	4.37448600	0.73643200
Н	-4.15488000	3.61899000	1.52942500
Н	-2.51703100	3.24284200	2.07988400
Н	-3.97558300	1.64805100	-1.66750200
Н	-5.02324500	2.68764500	-0.68738400
Н	-3.66184100	3.38620300	-1.56178600
Н	0.71626100	4.32325600	-0.05646800
Н	-0.39823100	3.86119200	1.23398300
Н	0.82758400	2.71452100	0.67585500
Н	0.67779100	1.74140200	-1.71440200
Н	-0.76822800	2.07833500	-2.69547000
Н	0.43613000	3.34004300	-2.40703800

Optimized Structure of Thiourea Z,E-4 Conformer.

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.547941 (Hartree/Particle) Thermal correction to Energy= 0.578206 Thermal correction to Enthalpy= 0.579150 Thermal correction to Gibbs Free Energy= 0.486208 Sum of electronic and zero-point Energies= -1475.771922 Sum of electronic and thermal Energies= -1475.741657 -1475.740712 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -1475.833654

С	-1.63146500	-1.76941200	-0.42887300
S	-2.43186200	-2.79788500	-1.42558100
Ν	-0.22422200	-1.81905600	-0.35961700
Н	0.16714300	-2.66589200	-0.74736500
Ν	-2.14163400	-0.84144700	0.41110000
С	-3.50495600	-0.44938500	0.53280800
С	-4.25399200	-0.10000800	-0.58550700
С	-4.04658900	-0.34179100	1.80817600
С	-5.55680500	0.34443200	-0.41741800
Н	-3.82742500	-0.18499300	-1.57602700
С	-5.34743400	0.11741900	1.96679000
Н	-3.45816300	-0.62691200	2.67423800

С	-6.10605500	0.45780800	0.85475400
Н	-7.12346800	0.80832700	0.97827100
Н	-1.54371900	-0.55189500	1.17180300
Н	-6.14535100	0.60690400	-1.28833900
Н	-5.77014000	0.19849800	2.96082700
С	0.62113500	-0.78081900	-0.17271000
С	0.95102900	0.55925200	-0.15213300
С	1.92846100	-0.42812900	0.06211600
Ν	0.66910000	1.84347100	-0.23602200
Ν	3.16683400	-0.80708200	0.28305000
С	1.75587500	2.80682400	0.07440100
С	-0.56677600	2.34443100	-0.89725200
С	4.27855000	0.17022000	0.27901100
С	3.44410300	-2.23866700	0.55545700
C	2.50464300	3.20815100	-1.19467900
Н	2,43437800	2.26369000	0.73559300
С	1.25237200	4.01236500	0.85943600
C	-1.68985600	2.59272400	0.10408800
Н	-0.27096500	3.30585000	-1.32322400
С	-0.99011600	1.45323700	-2.05895400
Н	3.84317300	1.09986800	-0.08608200
С	4.80756900	0.39713100	1.69137100
C	5.36962000	-0.23281100	-0.70874300
Н	4.48499900	-2.26661000	0.88088200
С	2.58977700	-2.76127400	1.70609600
C	3.32183900	-3.07460300	-0.71521000
Н	2.85801100	2.33133300	-1.74409700
Н	1.86836400	3.79222500	-1.86416700
Н	3.36896300	3.82602200	-0.94123200
Н	0.57559600	4.63590300	0.27105700
Н	0.74394600	3,70569500	1.77495500
Н	2.10650700	4.63292400	1.13751400
Н	-1.99251000	1.67019300	0.59707700
Н	-1.39632900	3.31423500	0.86623500
Н	-2.56705200	2.98511600	-0.41457900
Н	-0.16377600	1.28288200	-2.75286200
Н	-1.37371300	0.49046800	-1.71950300
Н	-1.79615100	1.94363100	-2.60727800
Н	5.25131500	-0.51230400	2.10476800
Н	5.58353800	1.16510100	1.68018500
Н	4.00981000	0.72397200	2.36290200
Н	4.95996500	-0.36950100	-1.71167000
Н	6.12447100	0.55445900	-0.75261100
Н	5.87677000	-1.15335600	-0.41007600
Н	2.90767000	-3.77211600	1.96785800
Н	2.69945700	-2.12968400	2.59015700
Н	1.52962400	-2.81195900	1.44357200
Н	2.31098000	-3.03151500	-1.13156100
Н	4.01265500	-2.72678600	-1.48459700
Н	3.54510200	-4.12136800	-0.50104400

Optimized Structure of *Z*,*Z*-**4**-**INT**₁.

- Thermochemistry -(0 imaginary frequencies)

Zero-point correction=	0.602340 (Hartree/Particle)
Thermal correction to Energy=	0.637014
Thermal correction to Enthalpy=	0.637958
Thermal correction to Gibbs Free E	Energy= 0.534908
Sum of electronic and zero-point En	nergies= -1591.465376
Sum of electronic and thermal Ener	-1591.430702
Sum of electronic and thermal Enth	alpies= -1591.429758
Sum of electronic and thermal Free	Energies= -1591.532808

С	1.69603800	-0.20427400	0.12460100
S	1.49794700	-1.23057500	-1.16348200
Ν	2.86733700	0.23386100	0.62066600
Н	2.83053100	0.93058900	1.35682800
Ν	0.60924300	0.34511600	0.80579100
Н	0.77172800	1.19848800	1.33993900
0	1.81316400	2.64542400	1.96899100
Н	1.85734100	3.03542800	2.84329900
С	2.11991900	3.63202200	0.98271400
Н	3.12323600	4.03906100	1.12968500
Н	2.07899900	3.12766100	0.01670500
Н	1.38581300	4.44186100	0.99132100
С	4.15111600	-0.03909400	0.05444900
С	4.71713100	-1.30140900	0.17299700
С	4.83810400	0.98977000	-0.57658900
С	5.97958700	-1.53310600	-0.35415300
Н	4.16582800	-2.09218400	0.66641000
С	6.10537100	0.75481800	-1.09352000
Н	4.37552200	1.96596800	-0.67222200
С	6.67484400	-0.50722800	-0.98435600
Н	7.66095800	-0.69257500	-1.39303300
Н	6.42443400	-2.51713800	-0.26824500
Н	6.64274300	1.55527600	-1.58775800
С	-0.67446200	0.01684100	0.49476200
С	-1.65736900	-0.92935100	0.33358900
С	-1.90724500	0.45131600	0.09803600
Ν	-2.06080200	-2.17422500	0.36328100
Ν	-2.65634500	1.47011900	-0.26312600
С	-3.36783000	-2.58520700	-0.19908300
С	-1.26892800	-3.25380400	1.01482600

С	-4.10785400	1.34249900	-0.50545200
С	-2.01512300	2.79969900	-0.40022900
Н	-3.31131500	-3.67469300	-0.23874000
С	-3.53405000	-2.10709900	-1.63660900
С	-4.50957200	-2.22643800	0.74865700
С	-0.28469400	-2.72364300	2.04655400
Н	-2.02338000	-3.83983600	1.55111900
С	-0.59689900	-4.14387000	-0.02512000
Н	-4.33242900	0.28992500	-0.34679900
С	-4.91072100	2.15266000	0.50785900
С	-4.45936900	1.68716200	-1.95021900
Н	-2.79677300	3.45025700	-0.79416100
С	-1.58748300	3.35822100	0.95478100
С	-0.87971000	2.76122000	-1.41845100
Н	-3.55229200	-1.02019900	-1.72275100
Н	-2.71233200	-2.47646300	-2.25343400
Н	-4.47149300	-2.48778600	-2.04664500
Н	-4.37171000	-2.71664200	1.71509100
Н	-4.57462000	-1.15175600	0.93128800
Н	-5.46323000	-2.55888400	0.33366700
Н	0.56781500	-2.23108200	1.57800400
Н	-0.76337700	-2.03458200	2.74666200
Н	0.10129200	-3.56841400	2.61960500
Н	-1.31431200	-4.53198700	-0.75203500
Н	0.17284000	-3.58465900	-0.55879300
Н	-0.13107900	-4.99904600	0.46949100
Н	-4.73549200	3.22610600	0.39784100
Н	-5.97753200	1.97860400	0.35375900
Н	-4.66050300	1.86288000	1.53095500
Н	-4.30184600	2.74637900	-2.16764000
Н	-3.86319000	1.10006100	-2.65206200
Н	-5.51435800	1.47179100	-2.13104500
Н	-1.24976200	4.39022000	0.83437800
Н	-2.41814600	3.35346300	1.66267800
Н	-0.76001100	2.79117900	1.38830100
Н	-0.06096900	2.11639600	-1.08851600
Н	-1.23325400	2.39093200	-2.38239400
Н	-0.47895900	3.76688400	-1.56352200

Optimized Structure of *Z*, *Z*-4-INT₂.

- Thermo	ochemistry -		
(0 imagir	nary frequencies)		
Zero-poi	nt correction=	0	728118 (Hartree/Particle)
Thermal	correction to Ene	ergv=	0.769320
Thermal	correction to Ent	halpv=	0.770265
Thermal	correction to Gib	bs Free Energ	v = 0.652003
Sum of e	electronic and zero	o-point Energi	$e_{s} = -1861.890966$
Sum of e	electronic and the	rmal Energies=	-1861.849764
Sum of e	electronic and the	rmal Enthalpie	s = -1861.848820
Sum of e	electronic and the	rmal Free Ener	rgies= -1861.967081
			0
С	-0.98931500	0.60747900	-0.79076700
S	-0.41947200	1.94552000	-1.59467300
Ν	-2.27069500	0.20504500	-0.70104400
Н	-2.47249500	-0.64654800	-0.18694000
Ν	-0.12814200	-0.26923400	-0.13671800
Н	-0.45042200	-1.23104500	0.02636800
С	-3.88047800	-2.42429900	1.84029600
С	-3.15692900	-2.66231600	2.93718000
С	-2.44342000	-1.56424800	3.67939300
С	-2.44504600	-0.27366200	2.85345400
С	-3.78882800	-0.10490900	2.16148500
Н	-2.93420800	-1.40030600	4.64497100
Н	-1.41816700	-1.86973000	3.90970400
Н	-2.24669700	0.59680400	3.48322200
Н	-1.65615900	-0.30250700	2.09488400
Н	-4.60032000	-0.06137000	2.89577200
Н	-3.83026600	0.78646100	1.53705600
0	-4.05363600	-1.20293800	1.27646900
Н	-4.39731200	-3.19960400	1.28514700
Н	-3.12549700	-3.67541500	3.32070000
0	-1.30467400	-2.73023100	0.26825200
Н	-1.83452300	-2.90146900	1.06094200
С	-1.79552200	-3.50722400	-0.81724600
Н	-2.85885200	-3.31661900	-0.99418800
Н	-1.23445200	-3.21059100	-1.70406800
Н	-1.64071800	-4.57486000	-0.64093800
C	-3.40997300	0.81939300	-1.29677400
C	-3.70297600	2.16121100	-1.08193600
C	-4.27023700	0.02086500	-2.04039800
C	-4.85519400	2.70398800	-1.63324000
H	-3.02934900	2.7/50/600	-0.498/6/00
C	-5.4258/300	0.56821800	-2.58011500
H	-4.03043100	-1.024/8500	-2.19731600
C	-5.71724200	1.911/8600	-2.38185300
H	-6.61532500	2.34119000	-2.80933400
H	-5.0/9/0/00	3./5184/00	-1.4/388300
H C	-0.09386900	-0.05464200	-5.16280000
C	1.200/5/00	-0.00343900	-0.01/8/100
C	2.209/1/00	0.823//100	0.40/3/400
U N	2.48590000	-0.40350900	-0.23380000
IN N	2.01119/00	1.92/90400	0.78176700
IN C	2.2001/800 2.02678700	-1.30340400	-0./01/0/00 0.94827800
~	$-\tau_{,0} \Delta_{0} / 0 / 00$	4.5571/100	0.7702/000

С	1.69071000	2.79323500	1.77346500
С	4.75524100	-1.22968900	-0.65244800
С	2.68082500	-2.45004000	-1.50423100
Н	4.00690200	3.38281700	1.32740200
С	4.54785800	2.43438300	-0.48240100
С	4.87439200	1.53674800	1.91630100
С	0.45711600	2.05142600	2.26807700
Н	2.28086600	3.07190800	2.65357600
С	1.33165900	4.05491400	0.99550200
Н	4.94859800	-0.32149300	-0.08589000
С	5.30211100	-2.40704100	0.14870200
С	5.42234600	-1.07937300	-2.01729700
Н	3.52691700	-2.97661800	-1.94762500
С	1.98278200	-3.40580600	-0.54104200
С	1.77976800	-1.97696600	-2.64059600
Н	4.55651000	1.46441800	-0.98069700
Н	3.92339000	3.10588700	-1.07496100
Н	5.56949000	2.81929100	-0.48510200
Н	4.51223100	1.66333100	2.93920200
Н	4.84508300	0.46934800	1.68791400
Н	5.91555600	1.86403500	1.88275700
Н	-0.24708300	1.85331100	1.45934900
Н	0.71725900	1.11014000	2.75879300
Н	-0.05288700	2.68149900	2.99924800
Н	2.22273100	4.59619500	0.66907800
Н	0.73852900	3.79705000	0.11677900
Н	0.74874000	4.72613800	1.63017000
Н	5.15056800	-3.35679300	-0.37065800
Н	6.37658600	-2.28169800	0.29703500
Н	4.82526100	-2.46934500	1.12956300
Н	5.31159400	-1.97807800	-2.62884000
Н	5.00346900	-0.23479000	-2.56870400
Н	6.49205000	-0.90601500	-1.88327000
Н	1.62699800	-4.28272600	-1.08706600
Н	2.66801200	-3.74705900	0.23713300
Н	1.11497300	-2.94676900	-0.06158600
Н	0.89173700	-1.45920900	-2.26964100
Н	2.31482200	-1.29810400	-3.30712700
Н	1.44647200	-2.83768700	-3.22446000

Optimized Structure of *Z*,*Z*-4-TS.

------- Thermochemistry -

(1 imag	nary frequency = -303 24 Hz)	
Zero-po	nt correction= 0 723846 (Hartree/Partic	cle)
Therma	correction to Energy= 0.763874	,
Therma	correction to Enthalpy= 0.764818	
Therma	correction to Gibbs Free Energy= 0.650166	
Sum of	electronic and zero-point Energies= -1861.840949)
Sum of	electronic and thermal Energies= -1861,800921	
Sum of	electronic and thermal Enthalpies = -1861.799977	/
Sum of	electronic and thermal Free Energies= -1861.91463	30
	C	
С	-1.03874800 0.63428600 -0.82301800	
S	-0.58966100 2.05376400 -1.56504700	
Ν	-2.27463700 0.09674500 -0.73579700	
Н	-2.26619900 -0.87776400 -0.37925000	
Ν	-0.11993600 -0.21790500 -0.21854500	
Н	-0.48773500 -1.20829100 -0.02925600	
С	-3.68981100 -2.04946500 1.90988600	
С	-2.58791800 -2.27772000 2.80384100	
С	-2.15130600 -1.06712200 3.61653400	
С	-2.29548500 0.18563700 2.75134900	
С	-3.70964000 0.31804400 2.23324000	
Н	-2.75644100 -0.97593100 4.52355900	
Н	-1.11569100 -1.19444200 3.93343200	
Н	-2.06549300 1.08976600 3.31936100	
Н	-1.60108500 0.14390600 1.90920000	
Н	-4.43761600 0.52237700 3.01960200	
Н	-3.81654100 1.04807400 1.43381400	
0	-4.19004600 -0.93184800 1.60687300	
Н	-4.14334000 -2.87466000 1.36394000	
Н	-2.71018700 -3.21673100 3.34588800	
0	-1.54265800 -2.32556400 0.26082900	
Н	-1.85486800 -2.50234000 1.94030300	
С	-1.69613700 -3.38421200 -0.63505900	
Н	-2.43504700 -4.12303400 -0.27868200	
Н	-2.04278000 -3.04086300 -1.62462200	
Н	-0.75952400 -3.93523500 -0.80251000	
С	-3.50010400 0.55129300 -1.26803500	
С	-3.87146500 1.89402500 -1.30063300	
С	-4.40177000 -0.42642400 -1.69160000	
С	-5.13253800 2.24373300 -1.76836100	
Н	-3.17526000 2.65639900 -0.98235200	
С	-5.65950500 -0.06617200 -2.14940500	
Н	-4.10342300 -1.47004100 -1.67110700	
С	-6.02990200 1.27297800 -2.19247900	
Н	-7.00892400 1.55666400 -2.55926400	
Н	-5.41019000 3.29076700 -1.80292800	
Н	-6.34847400 -0.83285700 -2.48393100	
С	1.19811500 0.05922900 -0.14336100	
С	2.24808000 0.89469500 0.16124300	
С	2.47175600 -0.42638100 -0.28810300	
Ν	2.71518700 2.05128400 0.58523600	
Ν	3.23389900 -1.44353300 -0.63469600	

С	4.14624700	2.39648400	0.45121700
С	1.89339100	3.00992400	1.36684400
С	4.70416200	-1.40265300	-0.52027100
С	2.58036200	-2.69998800	-1.07462600
Н	4.18845100	3.46760200	0.66050300
С	4.62946800	2.22279700	-0.98482900
С	4.98249800	1.69578000	1.52182000
С	0.67509900	2.35658000	2.00484600
Н	2.55911500	3.32174900	2.17998300
С	1.52726700	4.23757600	0.53927300
Н	4.93851800	-0.40179800	-0.16629400
С	5.21649200	-2.39624600	0.51838600
С	5.36690500	-1.57740300	-1.88403400
Н	3.40117300	-3.34530600	-1.39126000
С	1.86651400	-3.38554800	0.08862400
С	1.67793100	-2.47026800	-2.28237400
Н	4.54949000	1.19489400	-1.34070400
Η	4.03745000	2.85003200	-1.65418500
Н	5.67633300	2.52221800	-1.06466100
Η	4.67399800	2.02061300	2.51842500
Η	4.87403000	0.61018100	1.48431300
Η	6.04039200	1.93800000	1.40090100
Н	-0.07859600	2.11046400	1.25620900
Η	0.94687800	1.45412500	2.55938200
Η	0.23072500	3.06548800	2.70652500
Η	2.41121400	4.69908900	0.09293100
Η	0.83743500	3.96109900	-0.25798200
Η	1.04958800	4.98410000	1.17828200
Н	5.02975900	-3.43087400	0.21931700
Н	6.29543500	-2.27794200	0.63837800
Η	4.74353900	-2.22703600	1.48873400
Н	5.20525000	-2.57717500	-2.29408200
Н	4.98581700	-0.84705700	-2.60127900
Η	6.44514500	-1.43381700	-1.78753000
Η	1.52966300	-4.37745300	-0.22072000
Н	2.53935600	-3.50707200	0.93981200
Н	0.98242200	-2.82926500	0.41309900
Н	0.81008700	-1.85561200	-2.03311500
Н	2.22592100	-1.98352800	-3.09161900
Н	1.30509300	-3.42932900	-2.64830400

Optimized Structure of Z,Z-4-INT₃.

- Ther	mochemistry -		
(0 imag	ginary frequencies)		
Zero-p	point correction=	(0.731375 (Hartree/Particle)
Therm	al correction to Ene	ergy=	0.771006
Therm	al correction to Ent	halpy=	0.771951
Therm	al correction to Gib	bs Free Energ	y= 0.658826
Sum o	of electronic and zero	o-point Energi	es = -1861.908964
Sum o	of electronic and the	rmal Energies=	= -1861.869333
Sum o	of electronic and the	rmal Enthalpie	es = -1861.868389
Sum o	of electronic and the	rmal Free Ener	rgies = -1861.981514
С	-1.26281000	0.87192900	-0.58405400
S	-0.72057700	2.20617800	-1.41042800
Ν	-2.52067400	0.51367700	-0.27902800
Н	-2.61206800	-0.33679400	0.27717600
Ν	-0.34986700	-0.09165900	-0.11708400
Н	-0.64901000	-1.07216000	-0.14663700
С	-2.22449500	-3.06902800	0.82971900
С	-1.23625600	-3.54302300	1.88194800
С	-0.47786100	-2.38475900	2.53752700
С	-1.43977900	-1.25971900	2.98790900
С	-2.88203800	-1.59928200	2.64349100
Н	0.09127500	-2.77269900	3.38393000
Н	0.26057100	-1.98550000	1.83634500
Н	-1.36584600	-1.07936100	4.06296200
Н	-1.17932500	-0.32364300	2.48818200
Н	-3.27417900	-2.40599600	3.27138600
Н	-3.53780600	-0.73712700	2.76718100
0	-3.00107600	-1.96268200	1.26372700
H	-2.91540900	-3.87078700	0.54314000
H	-1.78977800	-4.10247800	2.64075600
0	-1.51461200	-2.66807500	-0.318/0100
H	-0.55401300	-4.25024900	1.40/10900
C	-2.28153900	-2.65//9800	-1.52154200
H	-2.63241800	-3.00090500	-1./5489600
П	-3.13430/00	-1.9//34400	-1.44905000
П	-1.01520000	-2.31391200	-2.312/0100
C	-3.78040400	1.03396200	-0.0/11//00
C	-3.97813300	2.20491000	0.36576100
C	-4.88027700	2 66146200	-1 61639000
ч	-3.1/008700	2.00140200	-1 52539700
n C	-6 16175700	0.63872400	-0.68899000
ч	-4 72354500	-0 726/3200	0.13028500
C II	-6 36465300	1 86076300	-1 32002800
н	-7 36648200	2 18521200	-1 57389900
Н	-5 41804600	3 61854200	-2 10310600
Н	-7 00405300	0.00183600	-0 44581800
Ċ	0.97959800	0.16620100	-0.05939500
č	2.00978400	0.98066500	0.34489000
Č	2.25610600	-0.21742200	-0.37091700
N	2.43710000	2.06938800	0.94061200
Ν	3.04107600	-1.09056500	-0.96532100

С	3.83556100	2.53490800	0.80754100
С	1.57676400	2.86943400	1.85282900
С	4.51225500	-1.02535000	-0.85716000
С	2.42215900	-2.21163600	-1.71295900
Н	3.81392900	3.55822800	1.18783900
С	4.26018100	2.62514300	-0.65357500
С	4.76815700	1.73587600	1.71543400
С	0.42537100	2.06200200	2.43324000
Н	2.24590900	3.12549600	2.68170300
С	1.10539100	4.15734900	1.18654200
Н	4.71753300	-0.13114100	-0.27284500
С	5.06812200	-2.22230100	-0.09168300
С	5.16190200	-0.84631700	-2.22696200
Н	3.25744300	-2.71355900	-2.20311100
С	1.75905200	-3.21186200	-0.77041200
С	1.48331000	-1.69791600	-2.79962000
Н	4.27320500	1.65597300	-1.15293700
Н	3.57636100	3.27426700	-1.20413900
Н	5.26519800	3.04612200	-0.72105400
Н	4.47503200	1.85273600	2.76138200
Н	4.75307900	0.66809200	1.48770000
Н	5.79514000	2.09205300	1.61153200
Н	-0.34842900	1.86835900	1.68919000
Н	0.77087300	1.11367900	2.85302000
Н	-0.03427300	2.63810700	3.23810400
Н	1.94100200	4.72848700	0.77524800
Н	0.40677900	3.93216800	0.37975400
Н	0.60069500	4.78840100	1.92155100
Н	4.90666200	-3.15930200	-0.63093900
Н	6.14493700	-2.10282700	0.04420300
Н	4.60537300	-2.30640400	0.89440700
Н	5.04815700	-1.73317700	-2.85498500
Н	4.73400600	0.00730100	-2.75699000
Н	6.23245400	-0.67151700	-2.10185700
Н	1.42452500	-4.08495800	-1.33535200
Н	2.45676100	-3.54846400	-0.00130200
H	0.87575800	-2.78893200	-0.28903900
H	0.61880600	-1.17786000	-2.37892700
H	2.00090100	-1.00743800	-3.46798600
Н	1.11407600	-2.53777100	-3.39206300

E,*E*-Conformation

Optimized Structure of *E*,*E*-4-An-INT₁.

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.602894 (Hartree/Particle) Thermal correction to Energy= 0.636314 Thermal correction to Enthalpy= 0.637258 Thermal correction to Gibbs Free Energy= 0.537826 Sum of electronic and zero-point Energies= -1591.464198 Sum of electronic and thermal Energies= -1591.430778 Sum of electronic and thermal Enthalpies= -1591.429834 -1591.529266 Sum of electronic and thermal Free Energies=

С	-1.70543000	2.14334800	-0.50602100
S	-2.81206300	2.97260100	-1.41891200
Ν	-0.81954300	2.77203700	0.30901300
Н	-0.85067700	3.77728200	0.21223000
Ν	-1.64481500	0.75966400	-0.53741500
С	-0.21201300	2.28230300	1.50170700
С	1.00870000	2.83030900	1.88298900
С	-0.82810900	1.33091200	2.31128700
С	1.63171500	2.40014300	3.04611900
Н	1.46052900	3.60261500	1.27166900
С	-0.18955800	0.89268200	3.46331000
Н	-1.80727800	0.94861200	2.05486100
С	1.04392100	1.41622700	3.83160600
Н	1.53056900	1.07918500	4.73863800
Н	-2.48346200	0.29438500	-0.92728300
С	-5.04871500	-0.27340500	-0.73967900
Н	-5.14040800	0.66378900	-0.18185500

Н	-4.84548300	-1.08906500	-0.04526000
Н	-5.98617100	-0.48226200	-1.26002100
0	-3.95549100	-0.22799900	-1.65437000
Н	-4.08651300	0.51402800	-2.25335400
С	-0.51993000	0.01666200	-0.40903100
С	0.83622200	-0.14865600	-0.52650200
С	0.01082400	-1.21859300	-0.13065000
Ν	2.02860800	0.32995500	-0.82605000
Ν	-0.17436100	-2.47215300	0.21359600
С	3.14149300	-0.65867900	-0.82936700
С	2.04498700	1.64668800	-1.52533700
С	0.97030800	-3.39417300	0.37478700
С	-1.54519500	-2.95067400	0.51595600
С	3.04910600	-1.61346000	-2.02201700
Н	2.99121400	-1.22701100	0.09297400
С	4.52547500	-0.03505300	-0.72477200
С	2.19528100	1.49251900	-3.03637000
Н	1.83716700	-2.84272000	0.01451600
С	1.19482700	-3.72056700	1.84883400
С	0.82093400	-4.63496000	-0.49895400
Н	-1.40435600	-3.93874800	0.95605300
С	-2.23156700	-2.07372400	1.55870200
С	-2.36614300	-3.10334800	-0.76063700
Н	2.04951300	-2.04480800	-2.12383700
Н	3.29249900	-1.10684700	-2.95695000
Н	3.75844400	-2.43455500	-1.89238400
Н	4.80591200	0.49706400	-1.63513500
Н	4.60485900	0.64209700	0.12528900
Н	5.25008800	-0.83950000	-0.58445200
Н	3.19525400	1.14629900	-3.30734600
Н	1.45929900	0.79436100	-3.44149400
Н	2.04308400	2.46235500	-3.51475100
Н	0.35666600	-4.27956200	2.27265300
Н	2.08950000	-4.33648400	1.96047900
Н	1.33069200	-2.80622600	2.43129800
Н	-0.01776300	-5.26109400	-0.18451500
Н	0.67633300	-4.36346500	-1.54684500
Н	1.72606300	-5.24102100	-0.42496100
Н	-3.15722900	-2.55209900	1.88490400
Н	-1.59298500	-1.92807400	2.43255800
Н	-2.49324100	-1.09510300	1.14909200
Н	-2.55574700	-2.14065700	-1.24283300
Н	-1.86114100	-3.75660300	-1.47424900
Н	-3.33651100	-3.54699300	-0.52578500
Н	2.57729400	2.84023700	3.33988000
Н	-0.67685600	0.15715500	4.09297400
Н	1.05023400	2.04954500	-1.32712400
С	3.04755100	2.64614300	-0.94784200
Н	4.04370600	2.53211800	-1.37406200
Н	2.70804700	3.65698600	-1.18647900
Н	3.11847400	2.55477900	0.13573900

Optimized Structure of *E*,*E*-4-An-INT₂.

- Thermochemistry -

(0 imaginary frequencies)

Zero-point correction=	0.727990 (Hartree/Particle)
Thermal correction to Energy=	0.769375
Thermal correction to Enthalpy=	0.770319
Thermal correction to Gibbs Free Ene	rgy= 0.650709
Sum of electronic and zero-point Ener	gies= -1861.880770
Sum of electronic and thermal Energie	es= -1861.839385
Sum of electronic and thermal Enthalp	bies= -1861.838441
Sum of electronic and thermal Free Er	nergies= -1861.958051

С	-0.99664100	-1.11551400	-1.52635600
S	-2.03686700	-1.40693500	-2.77055800
Ν	0.37244700	-0.98142500	-1.77052700
Н	0.67887500	-1.30420100	-2.67625300
Ν	-1.34853300	-0.99699500	-0.22212500
С	-0.57356700	-1.50528500	0.87058200
С	0.02437900	-2.75883500	0.77878100
С	-0.47540900	-0.77046100	2.04755100
С	0.74739500	-3.25944900	1.85258800
Н	-0.09175400	-3.34166400	-0.12819800
С	0.23981200	-1.28242600	3.12295400
Н	-0.96056000	0.19371000	2.11848500
С	0.86084400	-2.52206500	3.02526200
Н	1.41274400	-2.92177200	3.86755700
Н	-2.35560200	-1.02436300	-0.06787100
С	-4.66373300	-1.50926400	-0.02070200
С	-4.20580900	-1.71162800	1.21641600
С	-4.30783200	-0.66538300	2.29176300
С	-4.67239200	0.68437000	1.66965200
С	-5.73808100	0.49235400	0.60317600
Н	-5.06007100	-0.96319200	3.03063200
Н	-3.36040000	-0.59442600	2.83546600
Н	-5.03471400	1.38651600	2.42382500
Н	-3.79749600	1.13784900	1.19511700
Н	-6.64502800	0.04974000	1.02892200
Н	-5.99332500	1.42893900	0.11032900

0	-5.27725700	-0.37303900	-0.44520300
Н	-4.56956100	-2.23110900	-0.82274200
Н	-3.76215900	-2.67438300	1.44249500
С	-3.76269700	1.99274100	-2.86622600
Н	-4.83027300	2.17480200	-3.03473800
Н	-3.40719100	1.26625400	-3.60665900
Н	-3.23227600	2.93367400	-3.02465000
0	-3.49857700	1.56821300	-1.54389400
Н	-4.03131700	0.78094000	-1.37893800
Н	0.30491600	-0.71397000	4.04353900
Н	1.20698200	-4.23806800	1.77789700
C	1.21312700	-0.21092600	-1.03412100
С	1.44204500	0.89453500	-0.25219000
С	2.48574900	-0.00333000	-0.56587200
N	1.04880900	1.99079800	0.35349700
Ν	3.74464000	-0.36653800	-0.51467200
С	1.98626400	2.64188300	1.29860500
C	-0.14985800	2.74481500	-0.11853000
С	4.75201700	0.47764700	0.16351700
C	4.15332600	-1.65156800	-1.13139100
С	2.79256800	3.74121000	0.61001900
Н	2.66418800	1.84715100	1.61873200
С	1.26855600	3.13752900	2.54850700
C	-1.41320700	2.38568600	0.64911600
Н	0.10003500	3.78893600	0.08459000
С	-0.34588100	2.60155100	-1.62370200
Н	4.23440000	1.40608800	0.40340800
С	5.20953500	-0.17575600	1.46369900
С	5.90673800	0.83142900	-0.76857800
Н	5.19723000	-1.78468400	-0.84436500
С	3.35719600	-2.81897400	-0.56213700
С	4.08277500	-1.56964200	-2.65318500
Н	3.29237500	3.36487500	-0.28666100
Н	2.15700800	4.57932700	0.31449000
Н	3.55342700	4.12937900	1.29082700
Н	0.56942200	3.94641600	2.32567200
Н	0.72421700	2.32474000	3.03301800
Н	2.00572100	3.52444900	3.25474100
Н	-1.69696300	1.35820500	0.42636700
Н	-1.28790100	2.51701000	1.72519900
Н	-2.23703300	3.01410100	0.30833700
Н	0.58423200	2.78417500	-2.16795100
Н	-0.75045200	1.62319700	-1.89072400
Н	-1.08290100	3.33573200	-1.95112500
Н	5.73283600	-1.11717800	1.27595800
Н	5.89942800	0.48470900	1.99290100
Н	4.35797300	-0.38238700	2.11675500
Н	5.54215800	1.30452900	-1.68275600
Н	6.57501700	1.53246100	-0.26486400
Н	6.50016000	-0.04435900	-1.04198900
Н	3.75991900	-3.75894200	-0.94462000
Н	3.41112000	-2.83450000	0.52814900
Н	2.30424700	-2.76449300	-0.84906900
Н	3.05439200	-1.42067000	-2.99536800
Н	4.69067300	-0.74730400	-3.03391000
Н	4.44496300	-2.49902700	-3.09665200

Optimized Structure of *E*,*E*-**4**-An-**TS**₁.

⁻ Thermochemistry -

(1 imaginary frequency = -506.37 Hz)	
Zero-point correction=	0.722648 (Hartree/Particle)
Thermal correction to Energy=	0.763218
Thermal correction to Enthalpy=	0.764162
Thermal correction to Gibbs Free Ene	rgy= 0.648624
Sum of electronic and zero-point Ener	rgies= -1861.852291
Sum of electronic and thermal Energie	es= -1861.811721
Sum of electronic and thermal Enthal	pies= -1861.810777
Sum of electronic and thermal Free En	nergies= -1861.926315

С	-1.17845900	-0.87227500	-1.24766900
S	-2.36865700	-0.66931800	-2.44555200
Ν	0.16893600	-0.81907900	-1.68713600
Н	0.29593500	-0.93177100	-2.68322100
Ν	-1.42661500	-1.07680100	0.01709700
С	-0.47893800	-1.60310100	0.92723100
С	0.15970200	-2.81928600	0.67154100
С	-0.25444000	-0.96733900	2.14959600
С	1.03760900	-3.36028500	1.60061100
Н	-0.04067200	-3.33606300	-0.26042300
С	0.63174500	-1.50858700	3.07164100
Н	-0.77620900	-0.04610000	2.37090100
С	1.28865300	-2.70305900	2.79949900
Н	1.97002300	-3.13048200	3.52539200
Н	-2.83048400	-1.55225100	0.25078000
С	-4.70948600	-1.69662500	-0.49096500
С	-3.92840500	-1.99327800	0.64043300
С	-4.21947900	-1.20030500	1.90366900
С	-4.57815700	0.22654100	1.49298000
С	-5.71017800	0.23494400	0.49000600
Н	-5.03555800	-1.65871300	2.47073500
Н	-3.33756100	-1.20192000	2.54765900
Н	-4.88579200	0.82623600	2.35257200

Н	-3.71464400	0.71884900	1.04130800
Н	-6.66074300	-0.08328200	0.92238900
Н	-5.81511700	1.20280300	0.00884100
0	-5.47876800	-0.68371100	-0.62990800
Н	-4.67163100	-2.31223600	-1.38403300
Н	-3.70878300	-3.05566700	0.73967700
С	-4.07921300	2.81533500	-2.22066500
Н	-4.80093600	2.29647700	-2.86204700
Н	-3.21547600	3.10268100	-2.83329000
Н	-4.54719700	3.72301400	-1.83711000
0	-3.69850400	2.02900500	-1.10785300
Ĥ	-3.29940000	1.21678600	-1.45365800
Н	0.79566700	-1.00306600	4.01695500
Н	1.51983400	-4.30827200	1.39012200
C	1.11612100	-0.14342900	-0.99371700
Č	1 44710800	0 86893100	-0 12668800
Č	2 43690300	0.01570100	-0 65266900
N	1 12386300	1 89872700	0.62507300
N	3 69280200	-0 34021700	-0 78416600
C	2 12226000	2 41702500	1 58538500
Č	-0.09627600	2 70248600	0 32862500
Č	4 76864200	0.43893500	-0 13687700
C	4 02628100	-1 53251500	-1 59880500
C	2.87184100	3 62173100	1.02078600
н	2.87827900	1 59595400	1 73305700
C	1 48579400	2 70147100	2 94128200
C	-1 32966900	2 20974300	1 07028900
н	0.15073000	3 70206200	0.69373400
C	-0 34124300	2.81222900	-1 17293200
H	4 27355300	1 31028200	0 29257200
C	5 40525100	-0.36196100	0.99476200
C	5 78408700	0.94782100	-1 15565100
н	5.09669100	-1 68603700	-1 45403100
C	3 29755400	-2 77099700	-1 09308300
C	3 77272100	-1 26469600	-3 07943900
н	3 31849600	3 39202700	0.04962000
Н	2 21043000	4 48201200	0.89256200
н	3 66983600	3 92035700	1 70427500
Н	0 75984800	3 51631000	2 88862900
Н	0.98615300	1 81093500	3 32735800
H	2 26079900	2 99668300	3 65132200
н	-1 58039300	1 19840500	0.74762900
н	-1.17035200	2 21707300	2 15158200
и И	-1.17933200	2.21797300	0.82216100
н Ч	0.55038000	2.84495500	1 60013200
П Ц	0.53958900	1 87047000	-1.09913200
п	-0.08907000	1.8/04/900	-1.00381400
п	-1.12930100	5.54525500	-1.54950700
п U	5.710/3700	-1.2499/000	1 51620600
п	0.14482800	0.24919700	1.31020000
п u	4.04933300	-0.08348000	1./1348300
н	5.29493100	1.52/90300	-1.94112100
Ц	6 3/002200	0 1217//00	-0.03303000
Ц	3 65201700	-3 65760400	-1.02243000
п U	3.03391/00	-3.03200400	-1.029//000
п U	3.4/008000	-2.71011900	-0.0234/000
11	2.217/2200	-2.07120200	-1.234/0100

Н	2.70860600	-1.09769200	-3.27105300
Н	4.32490600	-0.38924100	-3.42524400
Н	4.08255800	-2.12534400	-3.67540800

Optimized Structure of *E*,*E*-4-An-INT₃.

- Thermochemistry -

(0 imaginary frequencies)

Zero-point correction=	0 728170 (Hartree/Particle)
Thermal competion to Energy	0.769004
I nermal correction to Energy-	0.768994
Thermal correction to Enthalpy=	0.769939
Thermal correction to Gibbs Free Energy	gy= 0.653515
Sum of electronic and zero-point Energy	gies= -1861.878500
Sum of electronic and thermal Energies	-1861.837676
Sum of electronic and thermal Enthalpi	es= -1861.836732
Sum of electronic and thermal Free End	ergies= -1861.953155

С	-1.15184100	-1.06528700	-0.90962800
S	-2.42445100	-0.76569000	-2.08346600
Ν	0.12775800	-0.99968500	-1.52077000
Н	0.27561300	-1.41320900	-2.42855900
Ν	-1.33105800	-1.24250500	0.32907500
С	-0.29108200	-1.66473500	1.18817900
С	0.31947200	-2.90495500	0.99598200
С	0.06448600	-0.89193500	2.29357200
С	1.29320200	-3.34787300	1.88046600
Н	0.01122000	-3.52677200	0.16273600
С	1.05579900	-1.33194500	3.16023900
Н	-0.43962200	0.04843700	2.46810200
С	1.67809600	-2.55863400	2.95742000
Н	2.43438700	-2.90887300	3.64952700
Н	-3.41457300	-2.55253500	0.14854500
С	-4.03195500	-0.94238200	-1.16128700
С	-4.25694700	-2.29470200	-0.49484500
С	-5.54963600	-2.21169700	0.32301900

С	-5.45784500	-1.10724400	1.39773200
С	-4.31383600	-0.14551900	1.09074100
Н	-6.38097500	-1.99987500	-0.35603100
Н	-5.75850500	-3.18091700	0.77815800
Н	-6.40230800	-0.56232500	1.45279700
Н	-5.28024200	-1.54035800	2.38583800
Н	-4 45539300	0.82393200	1 56767900
Н	-3 35146800	-0 55375300	1 40625600
0	-4 25489700	0.14658600	-0.31488800
н	-4 72231500	-0.83381400	-2 00435300
Н	-4 33048500	-3 05648800	-1 27291500
C	-5.05365100	3 45670200	-1 11621500
н	-5 79290500	3 26819700	-0.32771100
н	-5.45440600	3.08127700	-2.06593100
и И	-1 02002000	1 53512200	-1.20755600
0	3 70/20100	2 80402700	0.81205000
U U	-3.79430100	2.89402700	-0.81203900
н Н	-3.30210200	0.72264400	4 01502600
11 Ц	1.32314700	-0.72204400	4.01392000
П С	1.74933700	-4.31933400	0.06018300
C C	1.09423000	-0.22990000	-0.90918300
C C	2 /1000300	0.01365300	0.711/8100
C N	2.41900300	1.02202800	-0./1148100
IN N	1.08494200	0.301/8500	0.46559100
IN C	2 11200300	-0.30148300	-0.87333800
C C	2.11200300	2.50550000	0.22268200
C C	-0.20373000 4 74950100	0.57866600	-0.35117900
C C	4.74930100	-1 56335200	-1.56600300
C	2 75496400	3 76313700	0.65292800
н	2.75490400	1 79030600	1 49788600
C	1 54683300	2 90685600	2 71771200
C	-1 36136100	2.12088300	1 07147400
н	-0.00118400	3 67263400	0 54062400
C	-0 53768800	2 67368600	-1 25363500
н	4 23866600	1 48268500	-0.01831200
C	5 43209700	-0.06600100	0.85132200
C	5 72712200	0.98738200	-1 44865300
н	5 11157300	-1 66308700	-1 45025900
C	3 37461400	-2 76333500	-0.89586800
C	3 71244000	-1 46918100	-3.05515700
н	3 15803200	3 48868800	-0 32566000
Н	2 03475200	4 57152200	0.50563700
Н	3 57124300	4 15498500	1 26376000
Н	0 78076200	3 68360100	2 66289900
Н	1 11557900	2 02271300	3 19085400
Н	2 34998100	3 28075300	3 35577300
Н	-1 60441700	1 09132100	0.80351500
Н	-1 13993100	2 16946700	2 13943100
Н	-2 24478000	2.72737400	0.86310600
Н	0.26733800	3 13508000	-1 83119200
Н	-0 72695300	1 67258900	-1 64761600
Н	-1.46278400	3.23375000	-1.39880900
Н	5.95542500	-0.98354900	0.56920400
H	6.17053700	0.61817100	1.27440000
H	4.70163300	-0.31328400	1.62555100
H	5.20464400	1.45227400	-2.28735000

Н	6.43985300	1.71097200	-1.04811000
Н	6.30305600	0.13827400	-1.82463000
Н	3.74944600	-3.68609800	-1.34331900
Н	3.58931500	-2.78115800	0.17411800
Н	2.28855700	-2.74744800	-1.01822700
Н	2.63788800	-1.34034500	-3.21953800
Н	4.22866600	-0.62710100	-3.51906600
Н	4.01744500	-2.38499400	-3.56503700

Optimized Structure of E, E-4-An-TS₂.

------- Thermochemistry -

(1 imaginary frequency = -59.09 Hz)Zero-point correction= 0.724296 (Hartree/Particle) Thermal correction to Energy= 0.765235 Thermal correction to Enthalpy= 0.766179 Thermal correction to Gibbs Free Energy= 0.648126 -1861.848532 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -1861.807593 Sum of electronic and thermal Enthalpies= -1861.806649 Sum of electronic and thermal Free Energies= -1861.924702

С	-1.04354000	-0.62884500	-1.35539400
S	-2.11888000	-0.37418600	-2.66295200
Ν	0.32075400	-0.85995400	-1.71305000
Н	0.48344400	-1.16742700	-2.66086000
Ν	-1.38137400	-0.60392300	-0.10641600
С	-0.57507100	-1.10668000	0.92920000
С	-0.08506700	-2.41745100	0.89776700
С	-0.34681500	-0.33705000	2.07435200
С	0.65037800	-2.92288900	1.96066600
Н	-0.28994700	-3.03510200	0.03025400
С	0.40089600	-0.84367500	3.12867900
Н	-0.76413900	0.65994000	2.12535500
С	0.91216600	-2.13617300	3.07633900
Н	1.48261200	-2.53457400	3.90687400

Н	-3.18174800	-1.15143600	0.06541900
С	-5.01277300	-1.17531300	-0.81686700
С	-4.15111200	-1.70791100	0.21372400
С	-4.67195300	-1.53973100	1.63456600
С	-5.37385500	-0.18651600	1.73205200
С	-6.49596400	-0.11034900	0.72212700
Н	-5.36424700	-2.34789300	1.89042300
Н	-3.83752600	-1.59201700	2.33431000
Н	-5.80816500	-0.03155900	2.72198400
Н	-4.66078400	0.61537300	1.53127500
Н	-7.32713200	-0.77920300	0.95084100
Н	-6.87228700	0.89795900	0.56781900
0	-6.06863900	-0.51511100	-0.63358300
Н	-4.77521100	-1.33452500	-1.86727400
Н	-3.87813700	-2.73043100	-0.07073600
С	-4.45582900	2.40771700	-1.41529600
H	-4.90078400	1.99805800	-2.33016400
Н	-3.70930400	3.15814800	-1.69995800
Н	-5 23857100	2 90649800	-0 84074200
0	-3 89853400	1 39701200	-0 59939300
Ĥ	-3 22114500	0.94284300	-1 12834800
Н	0 57029200	-0 23044800	4 00735200
Н	1 01668900	-3 94283100	1.91778500
C	1 31303500	-0 22334800	-1.05741800
C C	1.71562500	0.84572800	-0.29536900
C C	2 61375500	-0 18743300	-0.61265900
N N	1 47360500	1 99940100	0.29499200
N	3 81224100	-0 72368700	-0 57051800
C	2 45385200	2 50051100	1 28114200
C C	0.43924000	2.30051100	-0 24390400
C C	4 92825600	-0.01920600	0.00101/00
C C	4.92823000	-2.04737600	-1 10502000
C C	4.03322800	2.04737000	-1.19392900
с u	2 00201000	1 61224000	1 61874000
П	2.99391900	2.09510600	2 50569100
C	1.73840300	2 75788000	2.30308100
C II	-0.92037400	2.73788900	0.40929800
П	0.82042600	3.91920000	0.00/38900
C II	0.35323000	2.84505900	-1./0522800
П	4.52690900	0.955/4200	0.308/3300
C	5.54215800	-0./484/400	1.30033300
C II	6.09011400 5.06286500	0.219/2500	-0.80/80000
П	5.06286500	-2.31285000	-0.94294400
C	3.11151000	-3.10399500	-0.603/9300
C	3.92536600	-1.95233500	-2./1511300
H	3.91/0/800	3.04/04500	-0.23690400
H	2.95146200	4.40688500	0.34896300
H	4.22519700	3.73755600	1.36625400
H	1.20016500	3.99269200	2.26335700
H	1.0/331900	2.35744400	2.94407300
Н	2.50711800	3.35049200	3.25478100
H	-1.36085700	1.78405500	0.18068500
H	-0.86812300	2.87538000	1.49282500
H	-1.60574700	3.52374800	0.02712500
H	1.33954400	2.93898700	-2.22667100
Н	-0.11560300	1.91778800	-2.10430400
Н	-0.26827400	3.66467100	-2.13092400

Н	5.75565800	-1.73659800	1.14768000
Н	6.11308500	-0.17903800	1.89020200
Н	4.48766000	-0.87417900	2.03584100
Н	5.75638100	0.75207000	-1.76111500
Н	6.85266600	0.82508200	-0.37350800
Н	6.56545000	-0.71420800	-1.17774100
Н	3.36887100	-4.08607100	-1.00607200
Н	3.20212400	-3.13581900	0.48350800
Н	2.06639000	-2.90133000	-0.85041400
Н	2.91085300	-1.67844600	-3.01952000
Н	4.61669500	-1.20848000	-3.11511500
Н	4.15532800	-2.91754600	-3.17050100

Optimized Structure of E, E-4-An-INT₄.

- Thermochemistry -

(0 imaginary frequencies)

Zero-point correction= 0.726287 (Hartree/Particle) Thermal correction to Energy= 0.766382 Thermal correction to Enthalpy= 0.767326 Thermal correction to Gibbs Free Energy= 0.651748 Sum of electronic and zero-point Energies= -1861.876862 Sum of electronic and thermal Energies= -1861.836766 Sum of electronic and thermal Enthalpies= -1861.835822 Sum of electronic and thermal Free Energies= -1861.951400

С	-1.02379400	-0.04235100	-1.28245700
S	-2.10352300	0.29164000	-2.62558800
Ν	0.23163100	-0.53994200	-1.71702900
Н	0.26205100	-1.22310800	-2.45833500
Ν	-1.33346200	0.17744800	-0.07597800
С	-0.61826900	-0.35278600	1.01486100
С	-0.45342200	-1.73267700	1.15197900
С	-0.17221300	0.48913200	2.03434000

С	0.18958700	-2.25337000	2.26685700
Н	-0.85475200	-2.39490900	0.39258700
С	0.48951900	-0.03664800	3.13465000
Н	-0.35664900	1.55162300	1.95805800
С	0.68132000	-1.40903000	3.25464900
H	1 17557600	-1 81859800	4 12737400
Н	-3 36285400	-1 47128200	0.03958900
C	-5 37515800	-0.94526100	-0.48859300
C	-4 32009800	-1 30847900	0.53929600
C C	-1 100/3000	-0.22366200	1 62287600
C C	5 54670500	0.48028700	1.02287000
C C	-5.54070500	0.48928700	1.03027300
U U	-0.70130900	-0.41008100	2 55162700
п	-5.83037700	-0.08/48000	2.33103700
H II	-3.4410/100	0.50043700	1.32539300
H	-5.6/049000	0.79712900	2.8//41200
H	-5.59105200	1.390///00	1.22016500
H	-6.70869200	-1.3210/200	2.065/8/00
Н	-7.66328800	0.08166500	1.56662100
0	-6.64412500	-0.80516200	0.06746500
Н	-5.47829300	-1.71410400	-1.26504800
Н	-4.62152800	-2.26385000	0.97848500
С	-5.86326300	0.73511400	-2.10071500
Н	-6.01183900	-0.01376500	-2.88962000
Н	-5.42701800	1.63673600	-2.53127800
Η	-6.82880600	0.97286800	-1.65170200
0	-4.95412000	0.26385400	-1.11882500
Н	-3.24921500	0.30280300	-1.87327600
Н	0.83168200	0.62889000	3.91952200
Н	0.29557000	-3.32747300	2.36876200
С	1.37088100	-0.17988200	-1.08682200
С	2.06780300	0.80134000	-0.42980900
С	2.62729200	-0.47662200	-0.61733600
Ν	2.16503200	2.02939600	0.03279800
N	3 62386100	-1 32092300	-0 49894500
C	3 24596600	2 33968800	0 99498200
Ĉ	1 41090300	3 14130800	-0.61082500
C	4 89356100	-0.89714300	0.12997900
C	3 47396700	-2 70347800	-1 00946800
C C	4 46495000	2 93716500	0.29623800
ч	3 51801100	1 37650900	1 /3/19000
II C	2 73/71000	3 21/26100	2 13457200
C C	0.03656600	3.21420100	0.00278000
U U	0.03030000	3.37870300	0.00278900
П	2.02010000	4.02328300	-0.41993200
C II	1.33000900	2.95628600	-2.12341900
Н	4.//831800	0.1/151500	0.31131900
C	5.08420600	-1.596/6500	1.4/190400
C	6.07609000	-1.07/19900	-0.816/0600
H	4.39372800	-3.21356400	-0.72026600
C	2.30887100	-3.42161300	-0.34175000
C	3.38332200	-2.71013900	-2.53264300
Н	4.81517900	2.29215000	-0.51431000
Н	4.24316700	3.91982400	-0.12729200
Н	5.28091200	3.06408800	1.01117700
Н	2.45052400	4.21147700	1.79033700
Η	1.87438500	2.75121600	2.62073000
Н	3.52463700	3.33702900	2.87808000

Н	-0.62890800	2.52967300	-0.16445900
Н	0.10579700	3.56827200	1.07482200
Н	-0.41642400	4.25723400	-0.46238300
Н	2.32475000	2.77211000	-2.55178600
Н	0.66900400	2.13697500	-2.40231500
Η	0.93411800	3.86345000	-2.57713300
Н	5.20606100	-2.67604300	1.34675000
Η	5.98299600	-1.21979500	1.96413300
Η	4.22788300	-1.41984700	2.12721200
Н	5.90528600	-0.55851400	-1.76249500
Н	6.97488800	-0.66159100	-0.35696100
Η	6.27629900	-2.13042800	-1.02840600
Н	2.29006500	-4.46724900	-0.65542300
Н	2.40044800	-3.38278500	0.74477700
Η	1.35120600	-2.97066800	-0.61376900
Н	2.48689300	-2.18661900	-2.87983200
Н	4.25284200	-2.22810500	-2.98266600
Н	3.32838700	-3.73585200	-2.90219200

Optimized Structure of *E*,*E*-4-An-TS₃-PA.

- Thermochemistry -

(1 imaginary frequency = -317.72 Hz)Zero-point correction= 0.728079 (Hartree/Particle) Thermal correction to Energy= 0.767512 Thermal correction to Enthalpy= 0.768456 Thermal correction to Gibbs Free Energy= 0.654958 Sum of electronic and zero-point Energies= -1861.859264 Sum of electronic and thermal Energies= -1861.819831 Sum of electronic and thermal Enthalpies= -1861.818887 Sum of electronic and thermal Free Energies= -1861.932384

С	-1.02513900	-0.07878800	-1.49616200
S	-2.03548400	0.34850800	-2.80577500
Ν	0.28796000	-0.52910000	-1.82186500
Н	0.42724000	-0.89749400	-2.75058200
Ν	-1.40289200	0.00230900	-0.26087300

С	-0.74871100	-0.65644500	0.79309100
С	-0.49908700	-2.03319100	0.74339900
С	-0.44930000	0.03024100	1.97390600
Ċ	0.06791800	-2.69008900	1.82646900
H	-0 76361400	-2 58481700	-0 15231200
Ĉ	0 12974100	-0 62933200	3 04940100
Н	-0.68222300	1 08468300	2 04075200
C	0 39931300	-1 99200600	2 98177700
н	0.83689000	-2 50721400	3 82844200
н	-3 28809500	-1 74646000	-0 50513700
n C	-5.03058300	-0 55118100	-0.70005300
C C	-4 27737600	-1.62713200	-0.06235900
C C	-4.20121700	-1 3/962300	1 1/19/18/100
C C	-4.20121700	-1.34902300	1.44946400
C C	6 57805000	-0.47378400	1.91555000
с u	-0.37803900	-0.03281700	1.00014100
п	-4.20211300	-2.30433400	1.97883000
п u	-3.23/38400	-0.83/81000	2 02870200
п	-5.00800500	-0./18/3900	2.938/0300
п	-3.0893/800	0.38083000	1.90980100
п	-0.92030900	-1.090/3900	1.00432400
П	-/.4109//00	-0.01080900	1.20000100
0	-0.2/342300	-0.28842000	-0.301/9900
п	-3.0393/100	-0.00203200	-1.8840/000
П	-4.8524/100	-2.348/2300	-0.20430000
C II	-4./3930900	1.93403/00	-1.221/1900
п	-4.81383000	1.78030900	-2.3004/400
п	-4.0914/000	2.73043000	-0.97742100
	-3.74348800	2.07947000	-0.78700000
Ч	-4.19337800	0.75571100	-0.39033900
11 Ц	-3.27844300	0.38849000	-0.98010800
11 Ц	0.33394800	3 75872800	1 76804200
II C	1 35280100	0.10716600	1.11265600
C C	1.00048600	0.85116500	0.30301600
C C	2 61848000	0.33110300	-0.30301000
C N	2.01040900	2 01640500	-0.01/54800
N	2 60778100	2.01049500	0.51157100
N C	2 85664000	-1.00446900	-0.34308300
C	2.83004000	2.30830000	1.55080900
C	1.02803700	5.12459000	-0.24303400
C	4.88031100	-0.38030700	1 17732000
C C	3.70143800	2 12740500	-1.1//32000
	4.02423400	3.12/49300	0.80931100
П	3.22023100	1.55025200	1.0/310400
C	2.21020000	2.93303200	2.3/08//00
C II	-0.3/801300	3.18810100	0.54150500
П	1.30333200	4.02843900	0.05/18500
C II	1.0030/500	5.09545000	-1./0803/00
П	4.07733300	0.43777200	0.42353000
C	5.04787800	-1.33431300	1.4770//00
с u	0.13623900	-0.01434800 2 86188400	-0.00043400
n C	4.04213400 2 56247000	-2.00100400	-0.00702400
C	2.30247000	-3.27003000	-0.05/04000
ч	J. /0140000 A A5720200	2.27002300	-2.07023000
и Ц	4.43/39200	2.03900100 1 13081200	0.07000900
H	2.71394200 4.80647400	3 21645200	1 56664900
11	-1.000+/+00	J.2104J200	1.50004900

Н	1.81654400	3.94932400	2.35180500
Н	1.39810000	2.33241700	2.95654800
Н	2.95695200	3.06824200	3.36539500
Н	-0.95306200	2.30039000	0.06753100
Н	-0.35665200	3.27753000	1.42874600
Н	-0.88819400	4.06899000	-0.05756000
Н	2.01063300	3.00516100	-2.18245900
Н	0.38359500	2.27915700	-2.15340400
Н	0.56733700	4.02328300	-2.13874600
Н	5.25450300	-2.41273600	1.31656400
Н	5.88777800	-0.94982600	2.07141400
Н	4.14445100	-1.28154600	2.10733900
Н	5.98286800	-0.05992600	-1.60818600
Н	6.96731900	-0.15241500	-0.14081200
Н	6.44157600	-1.63389800	-0.93123800
Н	2.65530500	-4.27980500	-1.06505800
Н	2.58205700	-3.32969500	0.43210300
Н	1.58961900	-2.87366000	-0.95732100
Н	2.77852200	-1.81044200	-3.05459100
Н	4.54438600	-1.67803100	-3.04555200
Н	3.76955200	-3.26573600	-3.15832200

Optimized Structure of *E*,*E*-4-An-TS₃-MA.

------- Thermochemistry -

(1 imaginary frequency = -707.17 Hz)0.596566 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.630160 Thermal correction to Enthalpy= 0.631104 Thermal correction to Gibbs Free Energy= 0.531491 Sum of electronic and zero-point Energies= -1591.442070 Sum of electronic and thermal Energies= -1591.408476 Sum of electronic and thermal Enthalpies= -1591.407532 Sum of electronic and thermal Free Energies= -1591.507145

С	-2.26647700	-0.66928200	-0.93660700
S	-3.46826900	-0.62304100	-2.18533000
Ν	-0.97781600	-1.04482600	-1.37376600
Н	-0.91740200	-1.59539800	-2.21720700
Ν	-2.50435100	-0.36939000	0.29683400
С	-1.59845600	-0.65107000	1.34855200
С	-1.15720500	-1.95482400	1.58184300
С	-1.21575000	0.36257300	2.22687100
С	-0.31120200	-2.22702000	2.64792700
Н	-1.49343500	-2.75334700	0.93002400
С	-0.35798900	0.08645200	3.28341000
Н	-1.59792400	1.36349300	2.07759800
С	0.10645600	-1.20677500	3.49444000
Н	0.76077400	-1.42395100	4.33023300
Н	-0.06927700	0.88266200	3,96060000
Н	0.01212100	-3 24659300	2 82456500
Ĉ	0 12701900	-0 39403500	-0.93423100
Č	0.68955700	0 76916400	-0 47477900
č	1 45949300	-0 40587100	-0 60032900
Ň	0.60645500	2 04475400	-0 16509500
N	2 60692400	-1 03444600	-0 52820800
C	1 71037400	2 66023800	0.60550600
C	-0.39651900	2.92001600	-0.83509700
Č	3 83379100	-0.31935800	-0.11513100
C	2 67747400	-2 47010500	-0.89004900
C	2 71715100	3 34902900	-0.31293600
н	2 19830500	1 82463400	1 11381400
C	1 17379600	3 58531700	1 69195900
C	-1 72223000	3.00215100	-0.08937100
н	0.06617400	3 90898400	-0.82027100
C	-0 58806900	2 52834000	-2 29722400
н	3 53364400	0.72163200	0.00384700
C	4 32318300	-0.83553300	1 23441000
C	4 90314300	-0.36789800	-1 20196100
н	3 70704800	-2 76302400	-0.68080800
C II	1 75850100	-3 31305500	-0.01644400
C C	2 /1072600	-2 66678300	-2 38089400
н	3.07905000	2.66760600	-2.38089400
н	2 27800700	4 21916500	-0.80703200
н	3 57558600	3 69826100	0.26512100
н	0.67236100	4 46146200	1 27415200
н Ц	0.07230100	3 05/35/00	2 33076000
н	2 00415500	3 94359800	2.33370000
н Ц	-2 22460600	2 03332500	-0.07653400
н Ц	-1.58386700	3 3/528000	0.03713800
и П	2 37615000	3 71/20/00	0.55715800
п u	-2.37013000	2 44020500	-0.39008700
	1 12050400	2.44029300	-2.81337300
п	-1.13930400	2 20826600	-2.40240400
л Ц	-1.1/433100	J.∠9030000	-2.00139200
н Н	5 18285000	-1.00000900	1.1/403300
н Ц	3.10203900	-0.23034700	1.30732200
н Ц	J.JJJJJJUUU A 51057400	-0.73701700	1.70007100
п Ц	4.3193/400	0.02301100	-2.1409/300
п U	5.75555500	0.24434/00	-0.9001/000
п	5.27421300	-1.30190300	-1.30940000

Η	1.91890800	-4.37218200	-0.22789000
Н	1.95463500	-3.13437600	1.04199600
Н	0.70703500	-3.08609400	-0.21002600
Н	1.39134200	-2.39972200	-2.64269900
Н	3.09664500	-2.05964800	-2.98441200
Н	2.56393600	-3.71489800	-2.64968000
Н	-4.60197700	-0.24767400	-1.07109000
0	-5.08091000	0.01570600	0.01612700
Н	-4.17991500	-0.00089100	0.45895000
С	-5.88713100	-1.06794800	0.51169900
Н	-6.08819900	-0.89940000	1.56856900
Н	-6.82122000	-1.05710300	-0.04515400
Н	-5.37588100	-2.02316400	0.37002800

Optimized Structure of E, E-4-An-INT₅.

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.730400 (Hartree/Particle) Thermal correction to Energy= 0.770169 Thermal correction to Enthalpy= 0.771113 Thermal correction to Gibbs Free Energy= 0.656411 Sum of electronic and zero-point Energies= -1861.900976 Sum of electronic and thermal Energies= -1861.861207 Sum of electronic and thermal Enthalpies= -1861.860263 Sum of electronic and thermal Free Energies= -1861.974965 С -0.85985200 -0.18939500 -1.90299800

S	-1.76340200	0.04318200	-3.26558200
Ν	0.49086900	-0.55828700	-2.00174400
Н	0.77542600	-0.91690000	-2.90135100
Ν	-1.31347600	-0.04019400	-0.64314400
С	-0.84683300	-0.74481100	0.50573500
С	-0.60804400	-2.11479700	0.44750900
С	-0.72801100	-0.06830100	1.71572400
С	-0.22145700	-2.79747300	1.59218100
Н	-0.74915300	-2.64334600	-0.48837900

С	-0.34833500	-0.75886100	2.85929700
Н	-0.95108500	0.98975400	1.75841700
С	-0.08564600	-2.12268800	2.79972800
Н	0.20102800	-2.66122600	3.69503700
Н	-3.42057700	-1.78416700	-0.71239800
С	-4.87211600	-0.20157300	-0.69886700
Ċ	-4 37512500	-1 55776200	-0 23192800
Č	-4 28359400	-1 63458500	1 30396300
C	-5 28537400	-0 66764900	1 95795500
Č	-6 49029700	-0.46088800	1.05387400
н	-4 48854900	-2 66150400	1.61734100
н	-3 27185200	-2.00130400 -1.40203800	1.6/169000
н	-5.62262700	-1.04692300	2 92557200
П Ц	-5.02202700	-1.04092300	2.92557200
п u	-4.81081300	1 41604200	2.12980000
п	-7.00291800	-1.41004500	0.0/994100
П	-/.20926400	0.22944600	1.495/1800
0	-0.13040100	0.10/5/200	-0.21000000
П	-4.94542600	-0.14/51600	-1./9016000
H	-5.0925/200	-2.29280300	-0.60660300
C	-4.21012100	2.08326400	-0./5/99/00
H	-4.119/0100	2.119/5300	-1.85004000
H	-3.48429/00	2.76192700	-0.30941900
Н	-5.21786900	2.37880200	-0.46141700
0	-3.91637700	0.77962500	-0.27645500
Н	-2.28400600	0.31085500	-0.56877100
Н	-0.27024700	-0.23207700	3.80334100
Н	-0.04819300	-3.86625400	1.54318200
С	1.43949800	-0.09842700	-1.14793600
С	1.87891700	0.87785600	-0.29067400
С	2.63629800	-0.29334600	-0.50240200
Ν	1.74102000	2.04290700	0.30450100
Ν	3.70595400	-1.02074600	-0.29509000
С	2.64837800	2.36679800	1.42957000
С	0.95064300	3.13575500	-0.32964000
С	4.80384700	-0.52360400	0.56301700
С	3.80922400	-2.35857900	-0.92726000
С	3.85694100	3.17433900	0.96034700
Н	2.98845500	1.39873200	1.80562100
С	1.89864100	3.04502000	2.57036100
С	-0.49431900	3.18960200	0.15029600
Н	1.45456300	4.04849500	-0.00417500
С	1.03953600	3.08239100	-1.85137400
Н	4.54656900	0.51144800	0.78797400
С	4.85396300	-1.30834300	1.87002700
Ċ	6.13518200	-0.50905900	-0.18172000
H	4.71301200	-2.80149000	-0.50703100
C	2 62925300	-3 24445900	-0 54893800
Č	3 99158600	-2 22997200	-2 43638600
H	4.36121900	2.68579500	0.12207300
Н	3 57008400	4 17917700	0.64077400
Н	4 57493100	3 28294700	1 77623500
Н	1 52335200	4 03068300	2 28549900
Н	1 05961400	2 43112600	2,90341600
H	2 57798100	3 18448600	3 41343400
Н	-1 03935600	2 30725000	-0 18585300
H	-0.56027300	3.25887100	1.23708200

Н	-0.98034900	4.07156500	-0.27335600
Н	2.07636700	3.01021200	-2.18848100
Н	0.46864200	2.24893300	-2.26862700
Н	0.61316500	3.99690000	-2.26685400
Н	5.09700800	-2.35988800	1.69601100
Н	5.62377800	-0.89671600	2.52591800
Н	3.89332700	-1.26023000	2.38867600
Η	6.05992100	0.05965100	-1.11095900
Η	6.89443800	-0.03824900	0.44577800
Н	6.48748100	-1.51616500	-0.41720500
Н	2.79391200	-4.25570000	-0.92603500
Н	2.50530900	-3.29143100	0.53449600
Н	1.69747100	-2.87383400	-0.98322200
Н	3.11278000	-1.77402600	-2.90239500
Н	4.86302000	-1.62023700	-2.68055900
Н	4.12566200	-3.21635800	-2.88438300

E,Z Conformation

Optimized Structure of E,Z-4-An-INT₁.

- Thermochemistry -

(0 imaginary frequencies)

Zero-point correction= 0.602056 (Hartree/Particle) Thermal correction to Energy= 0.636847 Thermal correction to Enthalpy= 0.637792 Thermal correction to Gibbs Free Energy= 0.533221 Sum of electronic and zero-point Energies= -1591.463325 Sum of electronic and thermal Energies= -1591.428534 Sum of electronic and thermal Enthalpies= -1591.427590 Sum of electronic and thermal Free Energies= -1591.532161

C -1.69895000 -0.94482800 0.27324700

S	-0.99553400	-2.23085900	1.08507800
Ν	-3.01681100	-0.77676700	0.14122900
Н	-3.60683100	-1.53307000	0.52637900
Ν	-0.93408200	0.06200400	-0.29718200
С	-3.63938800	0.33865000	-0.49887000
С	-4.22286400	0.17675200	-1.75073700
С	-3.66561100	1.57787200	0.13902300
С	-4.83174600	1.26219200	-2.36747600
Н	-4.19858900	-0.79593700	-2.22742500
С	-4.26368500	2.66225700	-0.49131600
Н	-3.23739200	1.67713300	1.13100800
С	-4.84653900	2.50419000	-1.74337300
Н	-5.32212000	3.34808700	-2.22849600
Н	-1.42075300	0.89740400	-0.59807400
С	-4.78758600	-2.80617500	2.59601100
H	-4.94501500	-3.77005200	3.08769600
Н	-5.75495700	-2.32220500	2.46552900
Н	-4.15372000	-2.17643200	3.23036000
0	-4.22801600	-2.97858200	1.29934800
Ĥ	-3.35675700	-3.37953400	1.39427400
C	0.42453100	0.13319900	-0.23865400
Č	1 67348900	-0 41492700	-0 39073400
Č	1 50506400	0 93744700	-0.00112600
N	2 46169300	-1 42407300	-0 66745600
N	1 96052600	2 11884400	0 34699200
C	3 91729000	-1 23151800	-0.42781500
C	1 81081600	-2 71318100	-1 04282000
C	3 40830700	2 38620300	0 48362800
Č	0.98217200	3 17044800	0 71614400
C	4 25341100	-1 41021200	1 05122800
н	4 10185900	-0 19008000	-0 70196300
C	4 81156100	-2 06422400	-1 33597200
C	2 13394000	-3 83331400	-0.06223100
н	3 90228200	1 47774800	0.14003600
C	3 84429800	3 53455800	-0.42056300
C	3 78492200	2 60113500	1 94679200
н	1 58620000	4 01518200	1.04944200
C	0.17937600	3 62270100	-0.49987500
C	0.10572400	2 73093400	1 88581400
н	3 61869900	-0 77841600	1 67887300
Н	4 11726300	-2.44593500	1 36601500
Н	5 29485500	-1 13421000	1 23240300
Н	4 73231600	-3 13324100	-1 13845100
Н	4 59870700	-1 88018400	-2 38930100
Н	5 84732600	-1 77505500	-1 14730700
Н	3 17542800	-4 15563700	-0 11657700
н	1 90498700	-3 52997500	0.96070000
Н	1.50996200	-4 69673000	-0.30310200
н	3 38519100	4.48154600	-0.12566600
н Ч	1 02621000	3 66356600	0.35275700
Н	3 58726500	3 33307200	-0.33273700
Н	3 32450600	3 50413400	2 35597700
Н	3 47894000	1 74967900	2.55577600
Н	4 86670700	2 71680500	2.00072000
н Н	-0.48608700	2.71000300 A AA202200	_0 22388000
Н	0.83860300	3 96640100	-1 29885100
11	0.0000000000	2.20040100	1.2/00/100

Н	-0.44472100	2.81779400	-0.89867100
Н	-0.54895100	1.89919800	1.61183600
Н	0.71507100	2.41971500	2.73639200
Н	-0.52749000	3.56173100	2.20372600
Н	-5.29514700	1.13674700	-3.33858300
Н	-4.29317900	3.62488000	0.00520000
Н	0.74765700	-2.50373600	-0.92336800
С	2.04426000	-3.09668600	-2.50256300
Н	3.03106700	-3.52417300	-2.67832600
Н	1.30664300	-3.85187600	-2.78318600
Н	1.91049200	-2.23666100	-3.16256700

Optimized Structure of E, Z-4-An-INT₂.

- Thermochemistry -

_____ (0 imaginary frequencies) Zero-point correction= 0.728291 (Hartree/Particle) Thermal correction to Energy= 0.769514 Thermal correction to Enthalpy= 0.770458 Thermal correction to Gibbs Free Energy= 0.651821 Sum of electronic and zero-point Energies= -1861.892083 Sum of electronic and thermal Energies= -1861.850859 Sum of electronic and thermal Enthalpies= -1861.849915 Sum of electronic and thermal Free Energies= -1861.968552 С -0.81167100 -0.47210700 -1.03059100 S -0.28714800 -0.66745700 -2.58947400 Ν -0.05114600 0.20500100 -0.05259600 Η -0.44847700 1.12687800 0.17979700 Ν -2.01255100 -0.89539900 -0.60429000 С -2.50666000 -1.13343300 0.71042800 С -3.13749900 -2.35942100 0.91823600 С -2.45137200 -0.19591700 1.73676300 С -3.71026900 -2.64823200 2.14797600 Η -3.17756900 -3.08452600 0.11252200 С 2.96953800 -3.01530600 -0.50171200 Η -2.01550600 0.77989900 1.57956400 С -3.64710800 -1.72015600 3.18045400 Η -4.09434700 -1.94279600 4.14156200 Η -2.58705200 -1.27434100 -1.34543700 С -4.23132500 0.77853200 -1.88194900

С	-5.23662600	-0.07361900	-2.05485700
Ċ	-6 28381100	-0 31052300	-1 00284800
Č	-5.83236100	0 27543100	0 33679500
Č	-5 17523700	1 62700700	0.1231/300
U U	7 22228000	0.12722800	1 22010700
11 Ц	-7.23238900	1 28244400	-1.32010700
п	-0.4/332800	-1.38244400	-0.89808100
H	-0.0/081000	0.39665300	1.01910000
H	-5.11855100	-0.39458300	0.82103800
Н	-5.88250600	2.34141100	-0.31403700
Н	-4.78148500	2.04099400	1.05202700
0	-4.04464100	1.53925700	-0.75995900
Н	-3.44991900	0.95165200	-2.61268400
Н	-5.29984400	-0.59493000	-3.00246300
С	-1.59797100	3.84847600	-0.23923700
Н	-2.51267600	4.36380300	0.06732400
Н	-1 45754900	3 97862600	-1 31726400
Н	-0 75586000	4 30180700	0 28224900
$\hat{0}$	-1 64371400	2 47582300	0.11864100
U	-1.043/1400	2.47502500	0.11604100
п	-2.4/002800	2.10301100	-0.22039700
H	-2.9/390400	0.23285200	3.76314900
H	-4.20190300	-3.601/4800	2.29886800
C	1.29250700	0.09305800	-0.06266400
С	2.40516800	-0.71180100	-0.10293600
С	2.52372800	0.67241800	0.09845500
Ν	2.98011900	-1.88900300	-0.22158300
Ν	3.24522600	1.75351200	0.30509300
С	4.45788300	-1.94766200	-0.29098200
С	2.20019500	-3.14269800	-0.05259600
Ċ	4.69819500	1.65391100	0.55148300
C	2 58913400	3 07733800	0 22250500
Č	5 06049700	-2 20861500	1.08766000
ч	1 76/03/00	-0.95616600	-0.63167000
II C	4.70493400	2 04199600	1 22082400
C C	4.94550100	-2.94188000	-1.33982400
C	1.62931200	-3.65093000	-1.3/21/900
H	2.92937700	-3.86832200	0.31570700
С	1.12407100	-2.99450800	1.01972800
Н	4.88892100	0.59234900	0.71389600
С	5.49094900	2.11336200	-0.66851400
С	5.09995400	2.38365000	1.83015600
Н	3.40502600	3.80123400	0.25263500
С	1.86126200	3.25156100	-1.10739400
С	1.69082500	3.31934000	1.43238800
Н	4 71203900	-1 47340100	1 81815400
Н	4 79544200	-3 20293300	1 45616500
н	6 15033500	-2 15447000	1.03820100
и П	4 70234100	2.1344/000	1.0738020100
п	4.70234100	-3.9/3/6400	-1.0/369200
П	4.51222800	-2.72237100	-2.31/89000
H	6.029/3000	-2.8/032400	-1.42168200
Н	0.896/3/00	-2.94772200	-1.7/258500
H	2.40934400	-3.79416200	-2.12026500
Н	1.13405400	-4.61142500	-1.21014000
Н	1.53585000	-2.58801500	1.94646200
Η	0.30238800	-2.35388500	0.69177900
Н	0.69854300	-3.97552700	1.23807800
Н	5.32851700	3.17539400	-0.87148200
Н	6.56004200	1.96975600	-0.49840400

Η	5.20311200	1.54786600	-1.55815300
Н	4.52917700	2.01870200	2.68648700
Н	6.15974900	2.21046100	2.02721700
Н	4.95630800	3.46380300	1.74965600
Н	1.48238500	4.27236300	-1.18951200
Н	2.53494800	3.06688800	-1.94634800
Н	1.00686800	2.57516500	-1.19826000
Н	0.82471200	2.65082600	1.42867600
Н	2.23792100	3.16974600	2.36467200
Н	1.31626300	4.34527700	1.42069400

Optimized Structure of *E*,*Z*-4-An-TS₁.

- Thermochemistry -

(1 imaginary frequency = -269.60 Hz)

Zero-point correction=	0.722611 (Hartree/Particle)
Thermal correction to Energy=	0.763382
Thermal correction to Enthalpy=	0.764326
Thermal correction to Gibbs Free Ene	ergy= 0.646270
Sum of electronic and zero-point Ener	rgies= -1861.849215
Sum of electronic and thermal Energie	es= -1861.808444
Sum of electronic and thermal Enthal	pies= -1861.807500
Sum of electronic and thermal Free En	nergies= -1861.925557

С	1.14159700	-0.37736600	-0.34932300
S	0.90770400	-1.89171500	0.41135700
Ν	0.01415800	0.43592700	-0.58539300
Н	0.20588400	1.41186600	-0.77358400
Ν	2.30468400	0.09947100	-0.66834400
С	2.46356600	1.35597000	-1.29317400
С	2.12747100	1.54449600	-2.63659500
С	3.01855600	2.41501000	-0.57128700
С	2.33464200	2.77784100	-3.24066300
Н	1.71288300	0.71464400	-3.19855800
С	3.22061400	3.64634900	-1.18160000
Н	3.29093100	2.25766800	0.46664200
С	2.87920100	3.83233100	-2.51624300
Н	3.04416600	4.79145700	-2.99209400

Н	3.46221300	-0.93373600	-0.69626800
С	4.15789700	-2.57787200	0.19253500
С	4.50373100	-1.57556600	-0.73782200
С	5.57137400	-0.58400200	-0.30323000
С	5.34565500	-0.28149200	1.17644100
С	5.33827400	-1.55007200	1.99954300
Н	6.57312100	-0.99061800	-0.47298700
Н	5.48531100	0.32996200	-0.89369300
Н	6.12001900	0.37720000	1.57555000
Н	4 37864300	0 20829500	1 31000300
Н	6 31811400	-2 02644300	2 06382400
Н	4 92183700	-1 38965500	2 98961200
0	4 45975100	-2.58547300	1 43076400
Ĥ	3 52170600	-3 41294900	-0.08564600
Н	4 52431200	-1 94086300	-1 76364300
C	1 91450800	0.64969100	2 97918600
н	0.92514000	0.50161500	3 43040200
Н	1 78161500	1 15215200	2 00947900
н	2 49110600	1 30893900	3 63051700
0	2.49110000	-0 55670900	2 85118600
н	2.02021000	-1 13395000	2.05110000
н	3 65287200	4 46223700	-0.61375700
н	2 07879600	2 91333600	-4 28524600
II C	-1 2669/200	0.1203/000	-4.28524000
C C	-1.20094200	0.12034900	-0.29042000
C C	-2.30329100	-0.70747700	-0.33731800
C N	-2.43370900	-1 82884200	0.20332400
N	-3 1252/200	1 58151600	0.75440900
C I	-/ 30/60300	-1.96596200	-0.20246800
C C	-4.39409300	-2 77910700	-0.20240800
C C	-2.44420200	1 50558700	0.0560/800
C	-4.38044300	2 77107100	1 22275100
C C	5 34854100	2.77107100	1.22373100
с u	-3.34834100	1 22/75600	-1.27937100
II C	-4.4/935/00	-1.33473000	0.084/4400
C	-4./33/0000	-3.38382400	1.01731800
U U	-1./2381900	-3.90/40900	-1.01/51600
П	-5.55291200	-3.14399700	-2.1/131000
U U	-1.309/0000	-2.00844200	-2.0/081000
П	-4.90343000	0.01055000	0.424/1400
C	-4.92180400	1.550/4200	2.45561900
C II	-3.30189800	2.09038700	0.51465700
П	-3.10481400	2 28066000	1.78303400
C	-1.25822300	2.38066000	2.18269600
C II	-1.89132200	3.01338300	0.04901700
П	-5.09528800	-0.43124/00	-1.58293900
H	-5.32106800	-2.08397200	-2.169/3000
H	-6.3/48/400	-1.4526/800	-0.90509900
H	-4./0251400	-4.09444000	-0.58911300
H	-4.05959300	-3./251/300	1.02469900
H H	-5./524/200	-5.59250400	0.05/84/00
П	-0.8349/400	-3.0300//00	-0.48808200
П	-2.30393000	-4.3105/200	-0.52500800
п	-1.421/5300	-4.00111400	-1.80342400
Н	-2.0/369400	-1.19856400	-3.103/8000
H	-0.61/44600	-1./5/41300	-2.24256500
п	-1.34/3/900	-2./023/400	-3.4891/100
Н	-4.61762400	2.21063500	3.01819600
---	-------------	------------	-------------
Н	-5.99920000	1.21437400	2.56491600
Н	-4.42317000	0.45786200	2.85135500
Н	-5.05462000	2.77174400	-0.74573500
Н	-6.38126500	2.55277900	0.40437600
Н	-5.05351500	3.63590800	0.80366300
Н	-0.80389700	3.27945200	2.60467500
Н	-1.64333600	1.77208100	3.00351200
Н	-0.46908200	1.81696400	1.67997200
Н	-1.17667800	3.06809000	-0.57246100
Н	-2.72300900	3.92240200	-0.58748300
Н	-1.38762400	4.51268300	0.41416600

Optimized Structure of *E*, *Z*-4-An-INT₃.

___ - Thermochemistry -

(0 imaginary frequencies)

0.726911 (Hartree/Particle)
0.768150
0.769094
rgy= 0.649656
gies= -1861.858585
es= -1861.817347
bies= -1861.816402
nergies= -1861.935840

С	1.41940200	0.08088000	-0.11322400
S	1.48062400	-1.40670100	0.82700000
Ν	0.17641100	0.74012600	0.04423000
Н	0.21633100	1.74755500	-0.04588000
Ν	2.38868200	0.59461800	-0.73680100
С	2.23477600	1.81158200	-1.43563100
С	1.35985300	1.93505500	-2.51813900
С	3.01977700	2.89941300	-1.05436800
С	1.26242200	3.14321000	-3.19580900
Н	0.77918900	1.07623600	-2.83759300
С	2.90456100	4.10754700	-1.72926100
Н	3.71965000	2.78189000	-0.23485100
С	2.02593100	4.23500000	-2.79887300
Н	1.94773900	5.17598200	-3.32967800

Н	3.15111600	-1.61072100	-1.62674000
С	3.01749500	-2.50524400	0.32884600
С	3.81927100	-2.04035100	-0.88072400
С	4.97074000	-1.07767300	-0.52609100
С	4.90517200	-0.64464100	0.93533000
С	4.77551100	-1.84299000	1.85414600
Н	5.92652100	-1.57700400	-0.70824800
Н	4.93016600	-0.20112200	-1.17243800
Н	5.80844100	-0.09872100	1.21794500
Н	4.06674800	0.03590700	1.09107200
Н	5 69780100	-2 43021300	1 86147800
Н	4.54610900	-1.53037100	2.87335400
0	3.73167500	-2.76370000	1.45565800
Ĥ	2 47185300	-3 41979500	0 09897400
Н	4 22646800	-2 96072600	-1 30996700
C	2 37918100	1 61521200	2,96316900
н	1 30894500	1 77422900	3 15555300
Н	2 57260800	1 77232500	1 89178800
Н	2 93533100	2 37049900	3 51910000
0	2.81942200	0 35428100	3 40773200
H	2 33840700	-0.31839000	2.91787900
Н	3 51500600	4 94957000	-1 42472200
Н	0 59197600	3 22891300	-4 04328400
C	-1 04931800	0.18250700	0.06913200
C	-1.96106800	-0.80204900	-0 24168100
C C	-2 36914300	0.38519000	0.38908800
N	-2.30914300	-1 97123700	-0 74571200
N	-3 28525500	1 18484700	0.89010600
C	-3 71470900	-2 39857000	-0 58273400
C C	-1 44503400	-2.59857000	-0.38273400
C C	-1.44505400	-2.08479400	0.70085200
C C	-2 85327500	2 / 3038100	1 550/3000
C C	-4 56204400	-1 93778700	1.55045000
с u	4.05001000	1 80550100	0 222/2200
II C	-4.03901000	3 80512500	0.32542500
C	-3.84308100	3 76005000	1.07/20000
с u	-0.39371900	-3.70995000	-1.07420900
П	-2.13399000	-3.101/3000	-2.41008100
С u	-0.00300400	-1.72048300	-2.30123300
П	-4.77913100	-0.03303700	0.17023300
C	-3.294/1200	1.05073200	2.17443300
U U	-3.49983700	2 84501200	0.08292100
П	-3./3083300	2.84301300	2.00730000
C	-1.83180900	2.10524100	2.00/40400
C II	-2.344/3100	5.45507000	0.52822400
П	-4.45598800	-0.86290100	-1.93884800
H	-4.2/629100	-2.45549500	-2.686/5/00
H	-5.6168/300	-2.15333900	-1.58360800
H	-3.53665200	-4.49051800	-1.1885/500
H	-3.25514800	-4.199/2000	0.54159000
H	-4.89077300	-4.12/69300	-0.12540300
H	0.08364700	-5.52554200	-0.34683200
П	-1.20811/00	-4.51365900	-0.30333600
П	-0.00659000	-4.28298800	-1.83843400
H	-1.21562400	-0.912/9/00	-2.9/402400
H	0.21516400	-1.2907/800	-1.98356700
Н	-0.15982100	-2.26491200	-3.39535400

Н	-5.25773600	1.38445100	2.84725000
Н	-6.34120300	0.22635900	2.08045300
Н	-4.74338800	-0.29765500	2.63826800
Н	-5.07480600	2.15921300	-0.90312900
Н	-6.53722300	1.64653600	-0.04973800
Н	-5.51169000	2.89230900	0.65241600
Н	-1.63865500	3.08807800	3.20690400
Н	-2.24851500	1.43543300	3.37812300
Н	-0.90366300	1.78248800	2.27873200
Н	-1.45830700	3.08789300	0.00100500
Н	-3.10715000	3.67665800	-0.21957700
Н	-2.06971900	4.38424800	1.02707600

Optimized Structure of *E*, *Z*-4-An-TS₂.

- Thermochemistry -

(1 imaginary frequencies = -283.97 Hz)				
Zero-point correction= 0.7	23228 (Hartree/Particle)			
Thermal correction to Energy=	0.762111			
Thermal correction to Enthalpy=	0.763056			
Thermal correction to Gibbs Free Energy=	= 0.650594			
Sum of electronic and zero-point Energies	-1861.852330			
Sum of electronic and thermal Energies=	-1861.813447			
Sum of electronic and thermal Enthalpies	-1861.812502			
Sum of electronic and thermal Free Energ	ies= -1861.924964			

С	1.06625800	-0.00601700	-0.73137300
S	1.12031800	-1.72901200	-0.43440800
Ν	2.09025700	0.68952800	-1.00298800
Ν	-0.20155500	0.60706500	-0.61768700
С	1.96502900	2.08966700	-1.10177800
С	1.88168900	2.71058100	-2.34887600
С	1.94300400	2.87068100	0.05898200
С	1.76268000	4.09214400	-2.42889200
Н	1.91515000	2.10074700	-3.24414100

С	1.82571800	4.25262500	-0.03230300
Н	2.03013300	2.37977100	1.02298800
С	1.73053800	4.86789600	-1.27478800
Н	1.64487800	5.94548000	-1.34593200
Н	6.08517700	-2.92092000	1.43492300
С	4.42571600	-1.56589700	1.41921000
С	5.89432100	-1.85791500	1.58637700
Ċ	6.75427400	-0.98458700	0.67847300
Ċ	6.31811800	0.47102800	0.83000700
Č	4 83519900	0 59261400	0 54130000
Ĥ	7 80930700	-1 10897300	0.92926900
Н	6 61952400	-1 30323900	-0 35892800
Н	6 52901300	0.82346700	1 84552800
Н	6 86253300	1 11993500	0.13965500
Н	4 45056000	1.58656600	0.76205300
Н	4 60194900	0.35332400	-0 49741700
0	4 04495200	-0.29238100	1 37159000
н	6 12089300	-1 64701100	2 63927200
C	4 00028400	-3 62197100	-0.21131600
н	2 97412900	-4.01813100	-0.19525600
H	4 53665900	-4.07423500	0.62934100
н Н	4.33003900	-3.0/423500	-1 13660000
0	3.008//100	2 21206700	0 14062000
U U	2 56541700	-2.21300700	-0.14902000
П	2.30341700	-1.82019200	-0.33709000
C	-1.3918/400	0.11310900	-0.23032300
C	-2.58110000	-0.83992300	-0.12408400
C N	-2.01240100	0.46515600	0.27322100
IN N	-2.83084100	-2.0/040300	-0.205/9800
IN C	-3.30823200	1.45450000	0.74013200
C	-4.19054000	-2.33458100	0.20944700
C	-2.06143100	-3.00331100	-1.12/44800
C	-4./93/3400	1.23485300	1.06528/00
C	-2.//196300	2.79866900	0.92930100
C	-5.29346600	-1.95161800	-0.72617400
Н	-4.27330300	-1.6/3/3400	1.13754700
C	-4.37496400	-3.75017400	0.8027/000
С	-2.85478000	-3.47236500	-2.34374500
H	-4.99041000	0.19483600	0.80871100
C	-5.05612900	1.41371900	2.55771600
C	-5.69395400	2.10525300	0.19336500
H	-3.55509900	3.39028600	1.40553800
C	-1.58375600	2.75841300	1.88627500
С	-2.44838600	3.45479600	-0.41155900
Н	-5.11482100	-0.96331400	-1.15882600
Н	-5.36341700	-2.66934400	-1.54396800
Н	-6.26108900	-1.93039200	-0.21822100
Н	-4.37129100	-4.49726900	0.00792700
H	-3.60360100	-4.00322000	1.53077700
Н	-5.34503400	-3.81030700	1.30046100
Н	-3.66413100	-4.15374000	-2.07410100
Н	-3.27289700	-2.62932000	-2.89734400
Н	-2.18241200	-4.01559100	-3.01096100
Н	-4.88486200	2.44423900	2.87956200
Н	-6.09717300	1.17171500	2.78128300
Н	-4.41452200	0.75716600	3.14956400
Н	-5.55290500	3.16957200	0.39883600

Н	-5.50012200	1.92901600	-0.86704000
Н	-6.74108000	1.86969300	0.39389700
Н	-1.24183600	3.77534400	2.08861100
Н	-1.86469000	2.29361200	2.83343800
Н	-0.73472900	2.20886700	1.47228300
Н	-3.34599700	3.55183100	-1.02501700
Н	-2.02906800	4.44973600	-0.25091000
Н	-1.71484400	2.88462600	-0.98864000
Н	1.69901400	4.56638900	-3.40146200
Н	1.81909600	4.84949100	0.87297400
Н	-1.23772900	-2.39167700	-1.49697100
С	-1.43426600	-4.16005500	-0.35259800
Н	-2.15250100	-4.94475200	-0.11475200
Н	-0.64911300	-4.60491500	-0.96874000
Н	-0.97487700	-3.80543300	0.57132700
Н	3.75494300	-2.12629900	2.06876500
Н	-0.14961300	1.61839500	-0.64799900

Optimized Structure of *E*, *Z*-4-An-INT₄.

------- Thermochemistry -

- Thermoeneniistry -

(0 imaginary frequencies)

Zero-point correction= 0.726802 (Hartree/Particle) Thermal correction to Energy= 0.766493 Thermal correction to Enthalpy= 0.767438 Thermal correction to Gibbs Free Energy= 0.652288 Sum of electronic and zero-point Energies= -1861.872595 Sum of electronic and thermal Energies= -1861.832904 Sum of electronic and thermal Enthalpies= -1861.831960 -1861.947109 Sum of electronic and thermal Free Energies=

С	-1.01664000	-0.04141400	1.07628000
S	-1.04115500	-1.79748600	0.94923800
Ν	-2.05557800	0.63777100	1.30669300
Ν	0.23268200	0.58292200	0.87851900
С	-1.97947500	2.04418900	1.21181000
С	-1.74291900	2.82935300	2.34052300
С	-2.15065300	2.65187000	-0.03575200
С	-1.66331300	4.21174000	2.21488500
Н	-1.63154000	2.34991700	3.30623700
С	-2.07069400	4.03382900	-0.14766300
Н	-2.36232500	2.02419800	-0.89529900
С	-1.82137100	4.81781800	0.97403000
Н	-1.76656200	5.89605800	0.88364700
Н	-5.75084800	-2.79031600	-2.16309900
С	-4.19444000	-1.51566100	-1.36159900
С	-5.59104800	-1.73380100	-1.93545500
C	-6.65552800	-1.18694000	-0.98664000
Č	-6.32388100	0.26700500	-0.65034500
Ċ	-4.90095800	0.37622100	-0.12665300
H	-7.64490200	-1.26678900	-1.44215200
Н	-6 67234000	-1 78212000	-0.06734900
Н	-6 42718200	0 88459300	-1 54936600
Н	-7 01226700	0.66416500	0 10050900
Н	-4 59697300	1 41564700	-0.01101200
Н	-4 79497100	-0 11765500	0.84319000
0	-3 95148300	-0 19202000	-1 04252700
Н	-5 62650000	-1 19690200	-2 88863100
C	-4 07208400	-3 68137700	-0 30588400
н	-3 50311200	-4 02833300	-1 17856100
Н	-5 11048900	-4 01222700	-0 40144300
Н	-3 64967600	-4 12643100	0.59591000
0	-3 98287000	-2 27963800	-0 15495500
н	-2 38829400	-1 85796400	0.59679300
n C	1 30300000	0.11757200	0.39132800
C C	2 30005100	0.80351500	0.1788/100
C C	2.39903100	-0.80551500	0.1/884100
U N	2.34900300	0.32301700	0.24173000
IN N	2.90000000	-2.01/31200	0.27703700
N C	3.22803800	1.31482000	-0.78304300
C C	4.21300000	-2.24310800	-0.39203000
C C	2.23919300	-2.96043600	1.19550500
C C	4.03339400	1.55995700	-1.20073200
C C	2.37307100	2.83010000	-0.93021700
	5.59522000	-1.80139200	0.50215500
н С	4.19439000	-1.30343100	-1.24906000
C	4.3639/300	-3.64593500	-0.9/203200
C	3.16096300	-3.46959800	2.30685700
H C	4.885/3/00	0.31125200	-0.94508000
C	4./8//5600	1.50518300	-2./0901300
C	5.5623/000	2.25230000	-0.40295200
H	3.29526300	3.44440900	-1.48343900
C	1.51416500	2.73797600	-1./9184800
U	2.33619000	3.50528800	0.41606300
H	5.24240100	-0.88237400	0.96542300
H	5.54810300	-2.59056700	1.29786100
H	6.30887500	-1.81881500	-0.09320800
Н	4.44881900	-4.40908400	-0.19742000

Η	3.53200600	-3.89901900	-1.63015500
Н	5.28366600	-3.67654500	-1.55991900
Н	3.94301600	-4.13526000	1.93680900
Н	3.62741600	-2.63529900	2.83420300
Н	2.56663700	-4.03597200	3.02672800
Н	4.56675000	2.52611600	-3.03135900
Н	5.81724800	1.28794700	-3.00171500
Н	4.12565600	0.82328100	-3.24778400
Н	5.37924300	3.30800500	-0.61922300
Н	5.43838700	2.09224000	0.67035800
Н	6.60143800	2.04052100	-0.66293900
Н	0.91559200	3.73765700	-1.97486600
Н	1.53455900	2.27155600	-2.75415300
Н	0.52195400	2.16449000	-1.30386300
Н	3.27532300	3.64401100	0.95463000
Н	1.87131100	4.48242400	0.27284200
Н	1.66986100	2.92247700	1.05816400
Н	-1.48355000	4.81696400	3.09594400
Н	-2.21406200	4.50040400	-1.11577100
Н	1.45685000	-2.38805700	1.66971000
С	1.54747200	-4.12548600	0.45689300
Н	2.24969900	-4.88461900	0.11261600
Н	0.84668100	-4.60943900	1.14149600
Н	0.98052500	-3.75152900	-0.39705700
Η	-3.42097500	-1.80373300	-2.08468600
Н	0.15661700	1.59378800	0.89160600

Optimized Structure of *E*,*Z*-4-An-TS₃-PA.

------- Thermochemistry -

(1 imaginary frequency = -273.08 Hz)

Zero-point correction=0.727902 (Hartree/Particle)Thermal correction to Energy=0.767538Thermal correction to Enthalpy=0.768482Thermal correction to Gibbs Free Energy=0.652541Sum of electronic and zero-point Energies=-1861.856001Sum of electronic and thermal Energies=-1861.816366Sum of electronic and thermal Enthalpies=-1861.815422

С	-0.90630700	0.12136600	-0.29647000
S	-0.86504100	-1.41997700	-1.06147700
Ν	0.31384400	0.70011700	0.12568400
Н	0.28341300	1.70114000	0.27357600
Ν	-2.00042900	0.78498200	-0.15919600
С	-2.03222300	2.03152800	0.49187800
С	-1.79846900	2.14672100	1.86708300
Ċ	-2.37519800	3,17464800	-0.23498500
Č	-1 89882400	3 38199600	2 49414200
Ĥ	-1 55091500	1 25709200	2 43695500
C	-2.46839300	4 40696400	0 39774200
н	-2 57076400	3 07612700	-1 29675400
C	-2 23111700	4 51680000	1 76333100
н	-2 31433900	5 47803400	2 25598400
н	-3 32110200	-0.98764900	1 13171200
C	-4 51192900	-1.91246000	-0.37724800
C	-4.37650600	-1.7240000 -1.17204300	0.02835300
C	-5 10384600	0 13173300	0.92855500
C	-3.19384000	0.13173300	0.94380400
C	-0.37320200	1 27144000	-0.03894300
U U	-0.82/30000	-1.3/144900	-0.23902100
П	-5.55457200	0.30621600	1.95954900
п	-4.545/6800	0.96836900	0.0830/000
H	-7.22108800	0.650/1/00	0.32213/00
H	-6.08695300	0.4/949/00	-1.00/1/400
H	-/.16151600	-1.81921400	0.70188200
H	-7.63370400	-1.45421000	-0.96603800
0	-5.76724900	-2.20348/00	-0.76943900
Н	-3.89133400	-2.80593400	-0.45711000
H	-4.73963200	-1.87361300	1.68638900
C	-3.92713800	-1.51263300	-2.80605300
Н	-3.31233500	-2.41233600	-2.84706400
Н	-3.52025500	-0.73851700	-3.45107500
Н	-4.96490000	-1.72446200	-3.04350600
0	-3.90856500	-0.97310800	-1.46045100
Н	-2.94985100	-0.77733900	-1.20136400
Н	-2.73512600	5.28606700	-0.17798900
Н	-1.72392200	3.45732000	3.56151100
С	1.53966500	0.14843700	0.03051800
С	2.44739700	-0.86584100	0.23887800
С	2.86166800	0.38738800	-0.24623300
Ν	2.79131000	-2.08083600	0.61230200
Ν	3.78210700	1.23690200	-0.65479400
С	4.20963600	-2.47193400	0.43223000
С	1.92300100	-2.90614700	1.49466100
С	5.21916500	0.90573400	-0.58358400
С	3.34983100	2.52932800	-1.23473000
С	5.02910100	-2.13119500	1.67665800
Н	4.56518700	-1.86988900	-0.40688600
С	4.36645100	-3.93038600	0.01929900
С	1.11496600	-3.94044000	0.71737300
Н	2.62492900	-3.42876900	2.15059000
С	1.03193300	-2.03915500	2.37873300
Н	5.27406500	-0.01983800	-0.01145800
С	5.79242800	0.65078500	-1.97452100

С	5.99655900	1.96400600	0.19426000
Н	4.25527800	2.96726600	-1.65796500
С	2.35808400	2.32458500	-2.37665400
С	2.82825000	3.47450500	-0.15518500
Н	4.90404100	-1.08232400	1.95957100
Н	4.73151800	-2.74758900	2.52864400
Н	6.09028200	-2.31366200	1.49242300
Н	4.04735100	-4.61844200	0.80528600
Н	3.80217200	-4.14605400	-0.88920200
Н	5.42195100	-4.12760200	-0.17914100
Н	0.40340100	-3.43949600	0.06076800
Н	1.75276500	-4.59011400	0.11860000
Н	0.56056400	-4.56689700	1.42100100
Н	1.60855400	-1.27175900	2.90175000
Н	0.23776400	-1.56399400	1.79910800
Н	0.55592900	-2.67353800	3.12877900
Н	5.75519700	1.55033400	-2.59471300
Н	6.83875200	0.34737200	-1.89799500
Н	5.23958900	-0.14073400	-2.48612200
Н	5.56703000	2.11337400	1.18714700
Н	7.03203500	1.63948600	0.31501800
Н	6.01476400	2.92533700	-0.32523100
Н	2.15870000	3.28111300	-2.86375200
Н	2.76031400	1.63596500	-3.12248500
Н	1.40280400	1.92706900	-2.02450800
Н	1.93407600	3.07578800	0.33241900
Н	3.58152000	3.64730100	0.61524900
Н	2.55918400	4.43632400	-0.59605300

Optimized Structure of *E*,*Z*-4-An-TS₃-MA.

- Thermochemistry -

(1 imaginary frequency = -725.18 Hz)Zero-point correction=0.596299 (Hartree/Particle)Thermal correction to Energy=0.630391Thermal correction to Enthalpy=0.631335

317

Thermal correction to Gibbs Free Energy=0.528663Sum of electronic and zero-point Energies=-1591.443262Sum of electronic and thermal Energies=-1591.409169Sum of electronic and thermal Enthalpies=-1591.408225Sum of electronic and thermal Free Energies=-1591.510897

С	1.92032800	1.02343500	0.08929100
S	1.35153500	2.57634200	0.63804100
Ν	0.96890900	0.03010300	-0.16349700
Н	1.36931700	-0.89259600	-0.28524400
Ν	3.16967000	0.74532100	-0.05046300
С	3.54614200	-0.56839100	-0.43426000
Ċ	3.67718000	-1.56477000	0.53548300
Č	3 78735500	-0.87162000	-1 77378400
Č	4 03445500	-2 85545900	0 16284100
Ĥ	3 50837200	-1 31545200	1 57770600
C	4 14653300	-2 16361200	-2 13675400
н	3 69477200	-0.09000700	-2 51893500
C	4 26723800	-3 15884500	-1 17313000
н	4 55387300	-4 16316400	-1 46104300
Н	4 33785000	-2 39111100	-3 17892400
н	4 14341000	-3 62129800	0.92223200
C	-0 37744700	0.06207000	-0.06378800
C	-1 62615100	0.63333400	-0.17206100
C	-1 47410000	-0 73541200	0.13217900
N	-2 38710700	1 67965900	-0.40106100
N	-1 91342100	-1 95060600	0.39295200
C	-1 78004300	2 94173900	-0.89224200
C	-3 85238800	1 61232400	-0.21164500
Č	-3 35324100	-2 27709400	0.44627400
C	-0.91933800	-3 02584100	0.62770600
C	-2 33510100	3 31970000	-2 26191900
н	-0.71652100	2 72937900	-0.99862400
C	-1 93404400	4 05273100	0.13949600
C	-4 20117700	1 23284800	1 22535700
н	-4 19709500	2 63687600	-0.35554800
C	-4 51281500	0.76100700	-1 29584200
н	-3 86912100	-1 33930800	0.25415600
C	-3 73717200	-3 25891600	-0.65616900
C	-3 75967800	-2 75171000	1 83877100
н	-1 51394300	-3 90408600	0.88171500
C	-0 13952300	-3 35826000	-0.64293600
C	-0.03032000	-2 71440600	1 82869400
н	-2 20008700	2 50909500	-2 98138700
н	-3 39713400	3 57668600	-2 22012400
н	-1 80297200	4 19684100	-2 63498800
н	-2 98077000	4 33241300	0 28822400
н	-1 50927100	3 75048100	1.09825400
н	-1.30727100	4 94266300	-0.20267200
н Ц	-3 79524700	0.26154600	1 51/77/00
н	-3 80283700	1 97739700	1.91748700
Н	-5 28487700	1 19273800	1 35128700
Н	-4 38426300	1 22680300	-2 27424100
Н	-4 08437700	-0 24142500	-1 35502400
Н	-5 58312600	0.66201000	-1 10356300
H	-3 25451700	-4 23050600	-0 52175100
**	5.45 151/00	1.2000000	0.041/0100

Н	-4.81631600	-3.42466300	-0.64182400
Н	-3.46317400	-2.86966800	-1.63952900
Н	-3.48026900	-2.01882600	2.59905900
Н	-4.84214100	-2.88927800	1.87738300
Н	-3.30009300	-3.70892600	2.09727600
Н	0.55732700	-4.17597000	-0.44983900
Н	-0.81534800	-3.66185200	-1.44446900
Η	0.44917100	-2.51376500	-1.01184900
Н	0.62236800	-1.85617100	1.65202400
Н	-0.63480100	-2.50699700	2.71391100
Н	0.61017600	-3.57210000	2.04373200
Η	2.84630000	3.10573400	0.67627000
0	4.11089100	3.12183200	0.60760100
Н	4.13678800	2.18974700	0.25582400
С	4.70982200	3.14506500	1.91212000
Η	5.77710200	2.94888700	1.81513400
Н	4.55965800	4.14137500	2.32246800
Н	4.24640400	2.39943900	2.56357800

Optimized Structure of E,Z-4-An-INT5.

- Thermochemistry -

(0 imaginary frequencies)

Zero-point correction= 0.729562 (Hartree/Particle) Thermal correction to Energy= 0.769857 Thermal correction to Enthalpy= 0.770801 Thermal correction to Gibbs Free Energy= 0.650830 Sum of electronic and zero-point Energies= -1861.900872 Sum of electronic and thermal Energies= -1861.860577 Sum of electronic and thermal Enthalpies= -1861.859633 Sum of electronic and thermal Free Energies= -1861.979604

С	0.66451700	0.01693500	0.46465900
S	0.40131600	-1.25430900	1.50945400
Ν	-0.38913800	0.66060200	-0.17667100
Н	-0.22831300	1.59397800	-0.53352800
Ν	1.87098100	0.53134000	0.21100700
С	2.20374500	1.52833600	-0.74569200
С	1.86552300	1.37893000	-2.09008300
С	2.96337700	2.61892900	-0.33124500

С	2.27339100	2.33466200	-3.01082100
Н	1.31481300	0.50286100	-2.41337400
С	3.38074500	3.56076500	-1.26169300
Н	3.23392700	2.71088000	0.71407700
С	3.03269800	3.42424600	-2.60042300
Н	3.36088900	4.15996600	-3.32454400
Н	3.39970000	-1.58123200	-0.70387100
С	4.63327300	-1.61193200	1.05164600
С	4.46378200	-1.61332700	-0.45743200
С	5.24361800	-0.46020900	-1.11891100
Ċ	6.44875600	-0.05163300	-0.25505900
Ċ	6.94957900	-1.23919700	0.55214500
Н	5.57981600	-0.78371500	-2.10749600
Н	4.59559300	0.40360800	-1.27781000
Н	7.26280000	0.33279600	-0.87405400
Н	6.15881300	0.74094800	0.43879100
Н	7.27033400	-2.04637700	-0.11972300
Н	7.80015000	-0.96673000	1.17753700
0	5.95923300	-1.75244900	1.44777600
Ĥ	4.08917500	-2.43800900	1.52273200
Н	4.84025200	-2.57723100	-0.81071500
C	4 02915900	-0 32434500	2 96267300
Н	3 36381600	-1 10170600	3 35508300
Н	3 62717600	0 65535800	3 22101600
Н	5 02697700	-0 43843100	3 39002300
0	4 08561000	-0 38844200	1 54473400
Н	2 65442500	0.14726800	0 76500600
Н	3 98034200	4 40346100	-0.93891700
Н	2 01905800	2 21311000	-4 05709700
C	-1 67902400	0 23200600	-0.08895100
C	-2.63164900	-0 73479200	-0 29718100
C	-2.97674400	0.54240900	0.21144900
N	-3 01928300	-1 92821800	-0.66776500
N	-3 85389000	1 41160100	0.65147000
C	-4 44344600	-2 29910900	-0 47683000
C	-2 13251200	-2 80871500	-1 47786600
C	-5 30645600	1 14594400	0 56727000
C	-3 36024900	2 65880900	1 28546700
C	-5 24638500	-2.01516900	-1 74412300
Н	-4 79948600	-1 64911700	0.32519900
C	-4 60623900	-3 73276200	0.01290500
C	-1 31876400	-3 76429800	-0.61251400
Н	-2.82034000	-3 38789200	-2.09900000
C	-1 24470200	-1 99279100	-2.41216400
н	-5 39968400	0 25245100	-0.05125300
C	-5 88725800	0.85106200	1 94624000
C	-6.03226000	2 27568700	-0.15756000
Н	-4 24543600	3 12429300	1 72135900
C	-2 38624000	2 35304600	2 41919700
C C	-2.38024000	3 61195900	0.24426200
н	-5 12623600	-0 97652900	-2.06444400
Н	-4 93282100	-2 66230600	-2 56717000
Н	-6 30803300	-2 19930900	-1 56599400
Н	-4 27803600	-4 46246500	-0 73050000
Н	-4 05381700	-3 89909000	0.93886900
Н	-5.66406200	-3.91890800	0.20855700
-	2.22.00-00		

Н	-0.63442900	-3.20503000	0.02715800
Н	-1.95597000	-4.38438300	0.01761300
Н	-0.73294900	-4.42483700	-1.25621700
Н	-1.82721500	-1.27650500	-2.99717400
Н	-0.46679100	-1.45904200	-1.86079700
Н	-0.74465700	-2.66997200	-3.10660800
Н	-5.80170100	1.71507600	2.61048000
Н	-6.94803000	0.60698100	1.85949500
Н	-5.37555500	0.00740300	2.41556500
Н	-5.59676300	2.45165600	-1.14339900
Н	-7.08170800	2.00644000	-0.29111400
Н	-6.00560400	3.21091100	0.40693300
Н	-2.13135500	3.27740400	2.94106800
Н	-2.82834600	1.66237000	3.13984300
Н	-1.45584700	1.91237800	2.05112800
Н	-1.89173300	3.18742000	-0.22965600
Н	-3.51087800	3.83698400	-0.53566500
Н	-2.48412300	4.54894300	0.71877100

Z,Z Conformation

Optimized Structure of Z,Z-4-An-INT₁.

(0 imaginary frequencies)

Zero-point correction= 0.603114 (Hartree/Particle) Thermal correction to Energy= 0.637273 Thermal correction to Enthalpy= 0.638217 Thermal correction to Gibbs Free Energy= 0.538294 Sum of electronic and zero-point Energies= -1591.457405 Sum of electronic and thermal Energies= -1591.423246 Sum of electronic and thermal Enthalpies= -1591.422301 Sum of electronic and thermal Free Energies= -1591.522225

C 1.46866000 -1.95857500 -0.23013700

⁻ Thermochemistry -

S	2.09035800	-3.11540300	0.77020300
Ν	2.13681200	-0.98878600	-0.87202100
Н	1.67062400	-0.53689100	-1.64584400
Ν	0.08600500	-1.93641900	-0.50050700
С	3.48011300	-0.57744400	-0.61713700
С	3.83310500	-0.11440200	0.64620600
С	4.39214300	-0.56826300	-1.66254900
С	5.11941200	0.35822800	0.85804500
Н	3.10486000	-0.11891400	1.44907000
С	5.67510700	-0.08178200	-1.44316100
H	4.10305500	-0.94658000	-2.63660300
C	6.03975900	0.37945000	-0.18496800
Н	7.04213200	0.75345700	-0.01510800
Н	-0.37420200	-2.80167400	-0.25472200
C	-0.58501600	-0.38449100	2.92995400
H	-1.32278200	-1.11259800	2.56539600
Н	-1 00070900	0 61824900	2 81023800
Н	-0 41629400	-0.55988500	3 99675500
0	0.61602200	-0 42778100	2 18576300
H	1 01593400	-1 29874900	2 28161900
C	-0.68988300	-0.82662700	-0.48166600
C	-0.89064500	0.53024000	-0.37182600
C	-1 97636700	-0.35111300	-0.46432700
N	-0.43318000	1 75897300	-0.24166800
N	-3 26650000	-0.61675300	-0.46162500
C	-1 43170700	2 85763000	-0.27885500
C	1 01646000	1 92664600	0.05423000
C	-4 26604500	0.45080600	-0 24596900
C	-3 70550800	-2 02848300	-0 54448800
C	-2 02304600	3 12858000	1 10374600
н	-2 22734400	2 47849100	-0.92593400
C II	-0.91737900	4 12238400	-0.92595400
C	1 28676800	2 74979700	1 30738200
н	-3 69476400	1 37739200	-0 20284900
П С	-5 23296100	0.54636500	-0.20204900
C	-4 97294300	0.27731200	1 09540700
ч	-4.79487300	-1 98371200	-0 57595000
II C	2 22256200	2 67005400	1 84054000
C	-3.23230300	-2.81027700	-1.84034000
ч	-2 300879900	2 20801500	1 55857500
H	-1 28410400	3 56294700	1.77788000
н Н	-2 85648000	3 83045200	1.02050800
н Н	-2.83048000	<i>J.63043200</i> <i>A.61703500</i>	0.38150400
н Н	-0.13423700	4.01793300	1 05704000
П П	-0.34109200	4.82520500	-1.93/94000
п	-1./4//6300	4.82330300	-1.04093700
п	1.02287700	3.80283400	1.19/04300
П	0./044/000	2.32977300	2.10//0200
п	2.33813800	2.09994800	1.51400800
П	-3.83960/00	-0.34469300	-1.30889900
п	-3.90031300	1.39808300	-1.28048500
П	-4.09304300	0.08348800	-2.30220000
п	-3.3/303400	-0.034//900	1.120/0300
Н	-4.25110900	0.23895100	1.91490000
Н	-3.0400/300	1.11890300	1.2/048400
H H	-3.03125500	-3.08353500	-1.92564200
п	-3.33//9000	-2.09809200	-2.70603400

Н	-2.14369800	-2.77246600	-1.88344200
Н	-2.22286800	-2.87221700	0.82516000
Н	-3.71556300	-2.34393400	1.60509900
Н	-3.69113800	-3.83104500	0.64690000
Н	5.40321800	0.71502600	1.84092500
Н	6.39236100	-0.07416700	-2.25477000
Н	1.33762600	0.91839500	0.29970400
С	1.81501900	2.40544000	-1.15620400
Н	1.67400600	3.46729100	-1.35813500
Н	2.87835600	2.23908200	-0.96897200
Н	1.53922700	1.85248100	-2.05940900

Optimized Structure of Z, Z-4-An-INT₂.

- Thermochemistry -

- Thermoeneniistry -

(0 imaginary frequencies) Zero-point correction= 0.728586 (Hartree/Particle) Thermal correction to Energy= 0.769970 Thermal correction to Enthalpy= 0.770914 Thermal correction to Gibbs Free Energy= 0.652420 Sum of electronic and zero-point Energies= -1861.889420 Sum of electronic and thermal Energies= -1861.848036 Sum of electronic and thermal Enthalpies= -1861.847092 Sum of electronic and thermal Free Energies= -1861.965586

С	-1.39131800	0.71678400	-0.75545300
S	-0.99527400	1.97677900	-1.75184100
Ν	-0.40841200	-0.16574100	-0.26344700
Н	-0.68246900	-1.14942000	-0.27401200
Ν	-2.59961300	0.32172300	-0.31857600
С	-3.91566400	0.70253000	-0.67753400
С	-4.25293400	1.86499900	-1.36493300
С	-4.91833100	-0.18385200	-0.26782800
С	-5.59112100	2.11942400	-1.64599300
Н	-3.48816500	2.56047800	-1.67241900
С	-6.24605000	0.08825000	-0.55108900
Н	-4.64795400	-1.08130300	0.28060300
С	-6.58884400	1.24215000	-1.24739100
Н	-7.62691600	1.45571400	-1.47089300
Н	-2.58622300	-0.45083700	0.34871000
С	-1.60234300	-2.35665000	2.10395700
С	-0.55396400	-2.06194800	2.86669800

С	-0.44032600	-0.76310600	3.61367700
С	-1.53097800	0.21034600	3.15961300
С	-2.83682400	-0.53492400	2.94193500
Н	-0.51633800	-0.94922700	4.69077600
Н	0.54970000	-0.32372500	3.45261900
Н	-1.68160900	1.00765000	3.89070200
Н	-1.24325400	0.68192900	2.21716100
Н	-3.17007200	-1.02820400	3.86087600
Н	-3.63085100	0.12076200	2.58379700
0	-2.68702200	-1.54327900	1.92912400
Н	-1.70083100	-3.27742200	1.54382700
Н	0.23131100	-2.80299800	2.95770200
С	-2.17619800	-3.82550100	-1.13936300
Н	-3.12099900	-3.98063100	-0.60919800
Н	-1.38027400	-4.34008900	-0.60126700
Н	-2.24839500	-4.25431800	-2.14280700
0	-1 82352400	-2 44947600	-1 18540300
H	-2.47565700	-1.97761900	-1.70771000
Н	-5 84898600	3 02531200	-2 18178500
Н	-7 01373000	-0 60469500	-0 22784500
C	0.91587900	0.08585900	-0.30367700
Č	2 16480900	-0 45772800	-0.45558800
C	2.10100900	0.89822900	-0.11665000
N	2 90754500	-1 51182000	-0 72345600
N	2.50754500	2 04580800	0.15928200
C	4 37588600	-1 46772200	-0 56603900
C	2 26294300	-2 73403800	-0.30003700
C C	4 07421700	2 10101700	0.04585300
C	1 88926300	3 15043400	0.04585500
C	1.88920500	-2 60186700	0.32360300
ч	4.87705000	-0.53626800	-0.04003100
II C	5.07056800	-1.42460000	-1.02377400
C C	1 42224500	2 43068000	2 40351300
U U	2 02002100	-2.43008900	-2.49331300
П	1 49440700	-3.3/330600	-1.309/8/00
	1.46449/00	-3.40429000	-0.10020800
П	4.55100800	1.55009000	-0.08903200
C	4.5/029000	3.42812200	-0.51815/00
C II	4./3533900	1./0013100	1.58065500
П	2.05221500	3.38930800	1.50927200
C	1.3820/100	4.22576900	-0.09521900
C	0.77528400	2.62535900	1.75745300
H	4.36962200	-2.59426400	1.29064500
H	4.73531800	-3.58230900	-0.13735500
H	5.94738100	-2.47669700	0.49898200
H	4.89775300	-2.34360300	-2.49027600
H	4.71170400	-0.58260500	-2.52051900
H	6.14905500	-1.31778300	-1.78983900
H	0.51696100	-1.87067200	-2.25052900
Н	2.00191400	-1.86753900	-3.22760600
H	1.10416800	-3.36809700	-2.95482400
H	2.13150600	-3.71712000	0.67583700
H	0.65666900	-2.85788700	0.21136600
Н	1.06704200	-4.39059500	-0.56748600
Н	4.37730100	4.26230600	0.15987800
Н	5.65094900	3.36515500	-0.66070700
Н	4.11093000	3.64290100	-1.48398500

Н	4.36159700	0.81339200	1.78087000
Н	5.81712500	1.67603600	1.25455400
Н	4.55013200	2.53713700	2.12647400
Н	0.94017000	5.04173100	0.48185000
Н	2.18295600	4.64099300	-0.70564000
Н	0.61703000	3.81673000	-0.75492100
Н	-0.07274600	2.27409300	1.16704400
Н	1.12482700	1.81816000	2.40646400
Н	0.41393600	3.43685400	2.39136000

Optimized Structure of Z,Z-4-An-TS1.

- Thermochemistry -

(1 imaginary frequency = -373.31 Hz) Zero-point correction= 0.722930 (Hartree/Particle) Thermal correction to Energy= 0.763533 0.764478 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.648222 Sum of electronic and zero-point Energies= -1861.842948 Sum of electronic and thermal Energies= -1861.802345 Sum of electronic and thermal Enthalpies= -1861.801401 Sum of electronic and thermal Free Energies= -1861.917656

С	0.80654200	-0.47955800	-0.56154100
S	0.39578500	0.41804800	-1.93953800
Ν	-0.20273100	-0.74495500	0.40781400
Н	-0.04743300	-1.61638400	0.89644700
Ν	1.93502200	-1.03121600	-0.20237400
С	3.08899900	-1.03721200	-1.01633400
С	3.62453400	-2.27293300	-1.38098100
С	3.79411500	0.12723100	-1.31837200
С	4.84768800	-2.34289700	-2.03229100
Н	3.07319300	-3.17356900	-1.13626200
С	5.02580800	0.05187100	-1.95757800
Н	3.37751900	1.08777600	-1.04470900
С	5.55870300	-1.18030500	-2.31417400
Н	6.51648500	-1.23645800	-2.81777300
Н	2.45452400	-0.54260000	1.15812200
С	3.58800100	1.01846400	1.78962800
С	2.97701900	-0.18156700	2.21216900
С	3.89470600	-1.29796400	2.68232900

С	5.19980800	-1.23118700	1.88651800
С	5.80241900	0.15364200	1.97401400
Н	4.09581200	-1.20548800	3.75403000
Н	3.40845000	-2.26248100	2.52538300
Н	5.93316200	-1.94281700	2.27146300
Н	5.01893000	-1.48234000	0.83862100
Н	6.14125400	0.40370500	2.98139500
Н	6.61673100	0.30347800	1.26933300
0	4.84146000	1.20470800	1.62019000
Н	2.98875200	1.87095500	1.46369600
Н	2.06704700	0.00878100	2.78433500
С	2.36729200	3.79258400	-0.91974900
Н	3.06732900	3.45440100	-1.69223900
Н	2.88712600	4.48212900	-0.25402500
Н	1.54409700	4.32839300	-1.40409300
0	1.89305300	2.71177300	-0.13365100
Н	1.42076800	2.09996200	-0.72319100
Н	5.25142400	-3.30787300	-2.31643600
Н	5 56547500	0 96436200	-2 18529700
Ĉ	-1 50480500	-0 38862800	0 24680900
Č	-2 49231300	0.56320900	0 15104700
C	-2.80594900	-0.81142400	0 18018900
N	-2 92309500	1 80022000	0.07711100
N	-3 66837000	-1 80400400	0.15474600
C	-4 37244400	2 03005200	-0 12939200
C	-2 04301300	2.03003200	0.12555200
C	-5 12303100	-1 55318200	0.43373200
C C	-3 15871700	-3 18148900	-0.04347900
C	-5.08358700	2 21740200	1 20934200
ч	-4 74100500	1 1 1 9 / 1 8 0 0	-0.60572400
C II	-4.64474900	3 17/12/00	-1.00862600
C	-1 3/066100	3 53537000	-0.78678400
ч	-2 72320700	3 601/7600	0.85268800
II C	-2.72329700	2 56026800	1 53308400
U U	-1.03021700	2.30020800	0.50728400
С	-5.22574500	-0.30833000	0.30/38400
C	-5.70105300	-1./3034000	-1.10181000
	-3./9103100	-2.39104100	1.29/30000
П	-4.04438800	-3./8530500	-0.24640500
C C	-2.24803000	-3.20895100	-1.20344100
C II	-2.50317900	-3./102/300	1.22804300
П	-4.89392200	1.3/310300	1.88030100
П	-4./5084000	3.12996000	1./1032000
H	-0.10185800	2.30000900	1.05591400
П	-4.31991300	4.13091200	-0.09/08/00
H	-4.15048/00	3.00593900	-2.05654200
H	-5./2018800	3.23993000	-1.2/516400
H	-0./33/0200	2.77608700	-1.26945200
H	-2.06681/00	3.91394200	-1.51492800
H	-0.70829000	4.36224300	-0.4/349500
H	-1.57002000	2.10919900	2.38631700
H	-0.29026900	1.87551300	1.16580000
H	-0.54105600	3.45869600	1.8/615100
H	-5.66815400	-2.77066800	-1.50938500
Н	-6.82681300	-1.50082600	-1.11644500
Н	-5.29267400	-1.08627400	-1.90265800
H	-5.31519400	-2.22784700	2.26642500

Η	-6.84172700	-2.10690000	1.38052100
Н	-5.76131700	-3.46031500	1.07118200
Н	-2.00512400	-4.31439300	-1.46477500
Н	-2.73989800	-2.85692500	-2.14894300
Н	-1.30789100	-2.73212300	-1.11960700
Н	-1.62583900	-3.11438700	1.49835500
Н	-3.19846000	-3.68895200	2.06948000
Н	-2.17046100	-4.73964300	1.08109000

Optimized Structure of *Z*,*Z*-**4**-An-**INT**₃.

- Thermochemistry -

(0 imaginary frequencies)

	0.70(072)(11)(0.1)
Zero-point correction=	0./260/2 (Hartree/Particle)
Thermal correction to Energy=	0.767283
Thermal correction to Enthalpy=	0.768227
Thermal correction to Gibbs Free Ener	rgy= 0.650427
Sum of electronic and zero-point Ener	gies= -1861.842898
Sum of electronic and thermal Energie	es= -1861.801687
Sum of electronic and thermal Enthalp	bies= -1861.800743
Sum of electronic and thermal Free Er	nergies= -1861.918543

С	0.73303400	-0.61896700	-0.56327800
S	0.43270900	0.48006600	-1.83895300
Ν	-0.36933000	-0.95076900	0.28300700
Н	-0.26507300	-1.86154500	0.70902200
Ν	1.77760300	-1.30230500	-0.21516400
С	2.99692900	-1.29656600	-0.89759000
С	3.64972300	-2.53099500	-1.02440500
С	3.66267100	-0.14725200	-1.33895900
С	4.91532100	-2.61584500	-1.58110200
Н	3.13521300	-3.41892600	-0.67571100
С	4.94327900	-0.23572300	-1.87903000
Н	3.16937000	0.81284100	-1.28117400
С	5.57675100	-1.46358200	-2.00415900
Н	6.56498000	-1.53028900	-2.44372800
Н	2.61515200	-0.46306100	1.44411100
С	3.91278100	1.11531700	1.37559200
С	3.32294500	0.03110600	2.14956900
С	4.32080900	-0.95499200	2.75008400

С	5.53283400	-1.06918600	1.82727400
С	6.14838500	0.28974000	1.60322000
Η	4.63569600	-0.61886700	3.74247100
Н	3.84194500	-1.92622500	2.87327300
Н	6.29918900	-1.71569100	2.25966900
Н	5.24366400	-1.50150100	0.86614300
Н	6.58431900	0.72475200	2.50397700
Н	6.87594000	0.30616400	0.79557800
0	5.14276600	1.28101600	1.16282400
Н	3.27361400	1.88310100	0.91402700
Н	2.65469500	0.50305100	2.88144100
С	2.41813800	3.73981300	-1.18536800
Н	2.97773400	3.28163900	-2.00869600
Н	3.06293300	4.45461900	-0.67290800
Н	1.56260500	4.27999300	-1.60356800
0	2.00159600	2.77286700	-0.23400900
Н	1.45628900	2.11407000	-0.70649100
Н	5.39233300	-3.58385400	-1.68508300
Н	5.43736200	0.66729400	-2.22150800
Ĉ	-1.62680800	-0.47914300	0.16126500
Č	-2 54874000	0 54330900	0 11356400
Č	-2.96151600	-0 79786900	0 15335200
N	-2.89656000	1 81300700	0.07129500
N	-3 89352700	-1 73045000	0.17161700
C	-4 33726000	2 12730100	-0.06765000
C	-1 95155600	2.12736100	0.46018300
C	-5 32208300	-1 37773900	0.28479400
C	-3 49529600	-3 13991600	-0.04484900
C	-4 99117800	2 30006800	1 30291900
н	-4 77156900	1 25686800	-0 56347400
П С	-4 58879300	3 32158700	-0.98036500
C	-1 28570000	3 54348600	-0.74780300
н	-2 57810600	3 63718100	0.95922400
n C	-0.033/8100	2 30736600	1 48243700
ч	-5 33734600	-0.32673500	0 573/8000
II C	-6.02073600	-1.52650700	-1.05906600
C C	6 00426600	2 1 5 8 1 0 0 0	1 40482200
U U	-0.00420000	-2.13819000	0.10545100
П С	-4.43208100	-3.07907200	-0.19343100
C C	-2.00033900	-3.29772100	-1.31277000
С и	-2.81344000	-3./130/100	1.19390300
П Н	-4.80820200	1.43232000	1.94293400
п	-4.000/9000	2 42588000	1.0003000
П U	-0.07008800	2.42388900	0.55032100
п	-4.211/8000	4.23234900	-0.33032100
п	-4.12937700	2 42010100	-1.938/3300
п	-5.00515200	3.43910100	-1.12134900
H	-0.72280500	2.79645700	-1.30698400
H	-2.0142/800	4.00325500	-1.4149/800
H	-0.59661600	4.318//400	-0.40454900
H	-1.42/54400	1.93015600	2.33867600
H	-0.23341700	1.68//8500	1.03890200
H	-0.34844300	3.24632400	1.83920600
H	-6.03212700	-2.56681600	-1.39565800
H	-7.07001200	-1.20475500	-0.97465800
Н	-5.54139200	-0.92162000	-1.82705700
Н	-5.47893900	-2.02301400	2.35260700

Н	-7.02713300	-1.79631400	1.52743100
Н	-6.06181400	-3.22770300	1.18796300
Н	-2.48937400	-4.35795800	-1.50934300
Н	-3.17503900	-2.86768100	-2.17432400
Н	-1.68343500	-2.81585100	-1.22516800
Н	-1.87910100	-3.18802200	1.41186300
Н	-3.45806100	-3.63428200	2.07104200
Н	-2.57152500	-4.76678500	1.03702200

Optimized Structure of Z, Z-4-An-TS₂.

- Thermochemistry -

(1 imaginary frequency = -44.43 Hz) Zero-point correction= 0.725305 (Hartree/Particle) Thermal correction to Energy= 0.765841 Thermal correction to Enthalpy= 0.766786 Thermal correction to Gibbs Free Energy= 0.651052 Sum of electronic and zero-point Energies= -1861.839806 Sum of electronic and thermal Energies= -1861.799269 Sum of electronic and thermal Enthalpies= -1861.798325 -1861.914058 Sum of electronic and thermal Free Energies=

С	0.74472700	-0.72568000	-0.50560000
S	0.39921700	0.18647900	-1.91249100
Ν	-0.33261000	-0.91310500	0.42091100
Н	-0.23719300	-1.77180000	0.94593000
Ν	1.79906200	-1.34949600	-0.08856000
С	2.99336100	-1.49325000	-0.81002200
С	3.66330000	-2.71262400	-0.64273700
С	3.61023500	-0.49797800	-1.57653700
С	4.89814700	-2.93791100	-1.23083800
Н	3.18528800	-3.47896200	-0.04299300
С	4.85329200	-0.72616200	-2.15823800
Н	3.11599800	0.44881500	-1.72211400
С	5.50470400	-1.94134900	-1.99065100
Н	6.46826300	-2.11572200	-2.45470000
Н	2.55121700	-0.18778500	1.35409100
С	3.58389300	1.52593800	1.78362200
С	3.17627400	0.19613100	2.20010300

С	4.32139900	-0.76708000	2.49901400
С	5.47279500	-0.50982800	1.52977800
С	5.90308400	0.93524500	1.57415000
Н	4.65648500	-0.64275300	3.53317400
Н	3.96167600	-1.78972400	2.38677900
Н	6.34244400	-1.12027200	1.78207100
Н	5.17776400	-0.77283700	0.51396200
Н	6.39684500	1.21607600	2.50557600
Н	6.52256700	1.22794700	0.73013700
0	4.75736600	1.87508100	1.49155200
Н	2.85886100	2.32685400	1.68526100
Н	2.45043700	0.30740900	3.01241500
С	2.68660400	3.25562700	-1.20477000
H	3.20320200	2.76136700	-2.03515200
Н	3.41261000	3.85322600	-0.65016600
Н	1.92571000	3.92724800	-1.61618000
0	2.12085300	2.31802500	-0.30632200
Ĥ	1.54196200	1.71954800	-0.82021900
Н	5 38958300	-3 89510900	-1 09782700
Н	5 30907700	0.05437100	-2 75793700
C	-1 58829100	-0 44969900	0 24229700
C	-2.48916500	0 57802400	0.07667400
C	-2 92803800	-0 74690400	0.23373000
N	-2 80836300	1 84336900	-0.09895700
N	-3 87991600	-1 65479000	0.31049400
C	-4 23291600	2 17341300	-0 33214100
C	-1 84974600	2.17541500	0.21203000
C	-5 30168500	-1 26125000	0.36381900
C C	-3 50847200	-3.08547700	0.20165100
C C	-1 93703500	2 51508400	0.22105100
с u	-4.93703500	2.31308400	0.74581600
II C	-4.07129500	3 26240100	1 28268100
C C	-4.41103000	3.20240100	1.02405400
U U	-1.103///00	2 74746700	-1.02493400
П	-2.4/321/00	5.74740700	0.39200000
C II	-0.89/49900	2.551/5000	1.55582100
П	-5.29588000	-0.19033700	0.30883000
C	-5.9858/400	-1.49954500	-0.97927400
C	-6.02528100	-1.93686800	1.52532200
H	-4.45389/00	-3.01085300	0.10064600
C	-2.65637200	-3.36644300	-1.01289400
C II	-2.85/82400	-3.56395000	1.5162/200
H	-4.80889000	1.72001300	1./1983500
H	-4.54/45100	3.44135900	1.41024400
H	-0.00661400	2.65618600	0.80889900
H	-4.01543600	4.22395800	-1.04831400
H	-3.92384500	2.98824900	-2.32054200
H	-5.47714600	3.39721400	-1.57735600
H	-0.53041800	2.61211900	-1.46223300
H	-1.78947500	3.81475900	-1.78013600
H	-0.42209200	4.23107500	-0.73878800
H	-1.44542200	2.15896300	2.20332100
H	-0.18584000	1.77360400	1.00255000
Н	-0.32186500	3.40767400	1.63881300
Н	-6.01727100	-2.56421300	-1.22621900
H	-7.01594500	-1.13785800	-0.94644500
Н	-5.46139000	-0.97874400	-1.78423100

Н	-5.51238700	-1.74733900	2.47056700
Н	-7.03901100	-1.53840900	1.60173800
Н	-6.11015500	-3.01719300	1.38511500
Н	-2.50200500	-4.44225300	-1.11668100
Н	-3.14836000	-3.00184200	-1.91671800
Н	-1.67208700	-2.89539500	-0.94912100
Н	-1.91309400	-3.04365300	1.69979400
Н	-3.51156500	-3.39244600	2.37326400
Η	-2.63985800	-4.63210100	1.45553100

Optimized Structure of Z,Z-4-An-INT₄.

- Thermochemistry ------

(0 imaginary frequencies)

Zero-point correction=	0.726617 (Hartree/Particle)
Thermal correction to Energy=	0.766621
Thermal correction to Enthalpy=	0.767565
Thermal correction to Gibbs Free Ene	ergy= 0.651762
Sum of electronic and zero-point Ene	rgies= -1861.881249
Sum of electronic and thermal Energi	les= -1861.841246
Sum of electronic and thermal Enthal	pies= -1861.840301
Sum of electronic and thermal Free E	nergies= -1861.956105

С	0.19746700	-1.51149600	0.13789000
S	0.55299600	-0.62791400	-1.36148500
Ν	-1.20030400	-1.69489800	0.28580200
Н	-1.44218400	-2.50098300	0.84589300
Ν	0.92757100	-2.04071900	1.01500100
С	2.33315300	-2.08750200	0.99750900
С	2.99047600	-1.75385100	2.18263900
С	3.07327400	-2.51051700	-0.10707300
С	4.37510400	-1.79971200	2.24606300
Н	2.40008400	-1.46747900	3.04493700
С	4.45824500	-2.55560500	-0.03301800
Н	2.56827500	-2.81940100	-1.01445300
С	5.11324000	-2.19453400	1.13606800
Н	6.19486500	-2.22902300	1.18405900
Н	3.59062700	0.39856900	0.62350500
С	4.41871600	1.09133400	-1.20057700
С	3.79699100	1.36560400	0.15573100
С	4.76810700	2.17307300	1.01993100
С	6.13496900	1.48670700	1.05474700

С	6.60789500	1.18862800	-0.36283300
Н	4.87837800	3.18158900	0.60215500
Н	4.36782900	2.29036300	2.02987300
Н	6.87283600	2.11279600	1.56377100
Н	6.05823900	0.54437700	1.60502000
Н	6.80525700	2.12875000	-0.90213900
Н	7 52493700	0 59953700	-0 36745600
0	5 64804800	0 42361700	-1 07464900
H	4 59018300	2.03971800	-1 74856900
Н	2 84970900	1 89442500	0.01803600
C	4 00105600	-0.02540800	-3 24250100
н	4.00103000	-0.62657500	-3 21404800
Н	4 18969800	0.89350000	-3 81050800
Н	3 19945000	-0 58662800	-3 72259700
$\hat{\mathbf{D}}$	3 55/35500	0.28311600	-1 93175400
U U	1 880/3500	0.28511000	1 17115800
11 U	1.88043300	-0.42099300	-1.1/113800
п u	4.87831900	-1.33330300	0.80820200
П	2 12045200	-2.80970900	-0.89820300
C	-2.13043200	-0.72327900	0.10////00
C	-2.33696600	0.39340300	0.17023000
C N	-3.4038/300	-0.44989800	0.00007000
IN N	-2.32378200	1.89008500	0.26/20/00
N	-4.69019200	-0.90030000	-0.1612/400
C	-3.4/088900	2.79493400	-0.00002700
C	-1.10886400	2.44345100	0.92105900
C	-5.85490100	0.00//1400	-0.09006800
C	-4.890/1/00	-2.34041600	-0.4513//00
C	-4.20484800	3.14614400	1.29298800
H	-4.138/0900	2.220/1100	-0.6459//00
C	-3.05696600	4.03350800	-0./8606900
C	-0.02211/00	2.810/0400	-0.08358800
Н	-1.45829200	3.36026900	1.40231700
C	-0.58868400	1.526/9100	2.02325200
H	-5.45558200	0.96011900	0.25///900
C	-6.4/200500	0.21060600	-1.4/018400
C	-6.86539800	-0.46519000	0.95102900
H	-5.95004100	-2.4362/100	-0.69368/00
C	-4.08858200	-2.7/446100	-1.6/41//00
C	-4.60/36/00	-3.19320000	0.78188100
H	-4.48333900	2.24/3/800	1.85002700
H	-3.58800800	3.76946800	1.9449/900
H	-5.11508100	3.70651500	1.06/82/00
H	-2.39946600	4.68619100	-0.20736000
H	-2.55584100	3.76249000	-1.71668100
Н	-3.95101300	4.60855400	-1.03524500
Н	0.35854000	1.91657700	-0.57759500
Н	-0.38769200	3.49916000	-0.84512700
Н	0.80520000	3.29556600	0.44085200
Н	-1.38140600	1.25212100	2.72328900
Н	-0.13523000	0.61585000	1.62700200
Н	0.18778100	2.05128100	2.58306300
H	-6.89243100	-0.71918300	-1.86245700
H	-7.28251500	0.94016700	-1.41396200
H	-5.72809100	0.57622600	-2.18218300
Н	-6.39351800	-0.58813500	1.92813900
Н	-7.66011400	0.27729200	1.04682800

Н	-7.33502600	-1.41081400	0.66964500
Н	-4.33297100	-3.80817800	-1.92612100
Н	-4.32308600	-2.14698900	-2.53653100
Н	-3.01174200	-2.72592800	-1.49107100
Н	-3.55778700	-3.12345900	1.08097500
Н	-5.22264000	-2.88285600	1.62797900
Н	-4.81718500	-4.24326400	0.56994300

Optimized Structure of *Z*,*Z*-**4**-An-**TS**₃-**PA**.

(1 imaginary frequency = -111.33 Hz))
Zero-point correction=	0.728437 (Hartree/Particle)
Thermal correction to Energy=	0.767631
Thermal correction to Enthalpy=	0.768575
Thermal correction to Gibbs Free Ene	ergy= 0.655048
Sum of electronic and zero-point Ener	rgies= -1861.839023
Sum of electronic and thermal Energi	es= -1861.799829
Sum of electronic and thermal Enthal	pies= -1861.798885
Sum of electronic and thermal Free E	nergies= -1861.912412

С	0.66177600	-0.89363000	-0.49210000
S	0.30062200	-0.16337400	-1.99868500
Ν	-0.42765900	-1.01883400	0.42152600
Н	-0.32288700	-1.78004800	1.07708400
Ν	1.74554800	-1.37353700	0.03971100
С	2.96562100	-1.66512400	-0.59039100
С	3.95913400	-2.14856100	0.27453400
С	3.28543500	-1.52226800	-1.94805000
С	5.23312900	-2.43798700	-0.17894400
Н	3.68943300	-2.30247100	1.31343000
С	4.56929400	-1.81953100	-2.39726400
Н	2.52971400	-1.19772700	-2.64880900
С	5.55152700	-2.26086600	-1.52271800
Н	6.54650400	-2.48886700	-1.88652300
Н	2.60554700	0.11765500	1.74368200
С	3.62220200	1.66694300	0.68841000
С	2.95822900	1.13643600	1.93783900
С	3.99963800	1.13983200	3.06438000
С	5.25478600	0.38878900	2.61952500
С	5.77816600	0.96341800	1.31422400
Н	4.25808400	2.17285600	3.32659200

⁻ Thermochemistry -

Η	3.56897600	0.68565700	3.95781600
Н	6.03757600	0.45934000	3.37847100
Н	5.02516700	-0.66954200	2.47440900
Н	6.16223700	1.98263500	1.46047500
Н	6.56672800	0.35150400	0.88148600
0	4.75410900	0.99603800	0.31083300
Н	3.78066100	2.75444800	0.72998400
Н	2.09633000	1.76031400	2.18602500
С	3.19099500	1.89266100	-1.77377000
Н	4.05450900	1.27436400	-2.00287400
Н	3.43683800	2.94915700	-1.69920200
Н	2.35954600	1.70620500	-2.44696300
0	2.68591200	1.51027900	-0.44336700
Н	2.27816500	0.60677300	-0.46090100
Н	5.97814500	-2.81619000	0.51283100
Н	4.79454600	-1.71118600	-3.45271400
С	-1.65241800	-0.48633600	0.24900300
C	-2.47235700	0.59315500	0.01419600
С	-3.01200200	-0.67472300	0.28663300
N	-2.68643900	1.86376800	-0.26078000
Ν	-4.02783900	-1.49584900	0.44942200
С	-4.08345700	2.29619400	-0.49595800
Ċ	-1.63497700	2.88885300	-0.04460100
Č	-5.41312000	-0.98870300	0.50389400
Č	-3.76419900	-2.95415500	0.46050900
Č	-4.72436300	2.80371300	0.79502300
H	-4.60655300	1.39487100	-0.82205100
С	-4,19342900	3.30516600	-1.63294200
Č	-0.87058800	3.22804000	-1.32105900
H	-2.18041200	3.77785400	0.28420400
С	-0.69078200	2.48959200	1.08598700
Ĥ	-5.31802300	0.09128400	0.62339800
С	-6.15258600	-1.27551400	-0.79961400
Ċ	-6.15112800	-1.51363100	1.73220100
H	-4.74810700	-3.42283100	0.40600500
С	-2.97348000	-3.38285300	-0.77243200
Ċ	-3.10563400	-3.37954700	1.76928100
H	-4.64264600	2.06380400	1.59593700
Н	-4.25288500	3.72793600	1.13855800
Н	-5.78328900	3.01569900	0.63101000
Н	-3.71291000	4.25513100	-1.38721100
Н	-3.75101200	2.91242400	-2.54974900
Н	-5.24863900	3.51167700	-1.82277400
Н	-0.32738900	2.34889200	-1.67075500
Н	-1.53684400	3.56273900	-2.11571100
Н	-0 16026300	4 03346500	-1 11365200
Н	-1 23879100	2 22449800	1 99355600
Н	-0.05739000	1 64725900	0 79823700
Н	-0.03936500	3 33499400	1 31878300
Н	-6 27002900	-2 35008300	-0.96317100
H	-7.15144700	-0.83485900	-0.76966300
Н	-5.61593700	-0.85747200	-1.65485000
Н	-5.60085700	-1.28599700	2.64751400
Н	-7 13222700	-1 03890700	1 79666300
Н	-6 31432400	-2 59301500	1 68335900
Н	-2.87857600	-4.47036400	-0.78952500

Н	-3.47889400	-3.06812100	-1.68761900
Н	-1.96476600	-2.96181100	-0.77930100
Н	-2.12170400	-2.91598600	1.88519900
Н	-3.71719400	-3.09768600	2.62832700
Н	-2.96321300	-4.46183800	1.78628000

Optimized Structure of *Z*,*Z*-4-An-**TS**₃-MA. ----

_____ - Thermochemistry -

_.

(1 imaginary frequency = -562.58 Hz)	
Zero-point correction=	0.597985 (Hartree/Particle)
Thermal correction to Energy=	0.631601
Thermal correction to Enthalpy=	0.632545
Thermal correction to Gibbs Free Ener	rgy= 0.531255
Sum of electronic and zero-point Ener	gies= -1591.409820
Sum of electronic and thermal Energie	es= -1591.376205
Sum of electronic and thermal Enthalp	bies= -1591.375261
Sum of electronic and thermal Free Er	ergies= -1591.476551

С	-1.64224600	-0.16899400	-0.07054400
S	-1.46044300	0.73166400	1.36335300
Ν	-0.49843400	-0.58624500	-0.74110800
Н	-0.66571600	-1.28202500	-1.45566700
Ν	-2.73785500	-0.45083000	-0.76949700
С	-3.99536200	-0.77312200	-0.20057700
С	-5.06178000	-0.81871800	-1.10740300
С	-4.24275900	-1.07127500	1.14192700
С	-6.34690900	-1.11695800	-0.68225300
Н	-4.85545000	-0.63527700	-2.15679800
С	-5.53280900	-1.38187100	1.55667000
Н	-3.43935300	-1.05876900	1.86506700
С	-6.59167800	-1.39498200	0.65779100
Н	-7.59326800	-1.63331200	0.99471200
0	-3.23948000	2.03357700	-0.73900500
Н	-2.76758000	2.00529100	0.14079000
Н	-7.15600300	-1.14700100	-1.40300700
Н	-5.70805400	-1.61271500	2.60130300
С	0.78644900	-0.28863400	-0.40516300
С	1.78828500	0.61375000	-0.14052300
С	2.04658000	-0.77757000	-0.18295300

Ν	2.25726300	1.82576000	0.03216100
Ν	2.85193400	-1.80848300	-0.09556800
С	3.68135900	1.97275100	0.42539500
С	1.49925700	3.02164600	-0.42676100
С	4.31248200	-1.63298500	0.06066200
С	2.26307200	-3.17082800	-0.08310400
С	4.56861500	2.11309100	-0.80941300
Н	3.92778500	1.04277100	0.94187400
С	3.89527500	3.09982600	1.42803300
С	0.70158900	3.67102200	0.69946000
Н	2.27117100	3.72049400	-0.75957400
С	0.62474800	2.69983400	-1.63406100
Н	4.49466100	-0.57258800	-0.11426400
С	4.74928800	-1.97953900	1.48049600
С	5.08095000	-2.40527000	-1.00752000
Н	3.09056900	-3.83482500	0.17051700
С	1.20496200	-3.30741700	1.00752500
С	1.74783200	-3.55614500	-1.46602600
Н	4.40889900	1.28980100	-1.51120600
Н	4.37002300	3.04972100	-1.33667900
Н	5.62137500	2.11665400	-0.51844900
Н	3.68792300	4.08120400	0.99572100
Н	3.27517400	2.96395000	2.31519200
Н	4.94135200	3.09649400	1.74062200
Н	-0.05553900	2.97884200	1.07012600
Н	1.33766600	3.96654500	1.53314600
Н	0.20622400	4.56799600	0.31943800
Н	1.19442900	2.20154400	-2.42224000
Н	-0.22700100	2.07291900	-1.36138500
Н	0.22728500	3.63025300	-2.04308100
Н	4.57950000	-3.03613100	1.70364900
Н	5.816/1/00	-1.78497700	1.60294600
Н	4.2025/200	-1.38269100	2.21451500
Н	4.75521900	-2.12028600	-2.01009100
H	6.14600700	-2.1831/200	-0.91766800
H	4.96393700	-3.48589300	-0.89/03300
Н	0.88/26900	-4.34924900	1.08041500
H	1.60311600	-3.00233600	1.9//30100
Н	0.31694000	-2./06//300	0./9399800
H	0.92864100	-2.90250400	-1.//900600
H	2.53814900	-3.49531000	-2.21600200
П	1.30341300	-4.3///2300	-1.451/3900
п С	-3.00003000	0.98/33900	-1.00/80/00
с н	-4.03330200	2.42313400	0.30779400
11 U	-3.09380000	2 47000200	0.20243000
11 U	-4.03012000	2.4/777200 2 2680000	1 52627200
11	-3.11923300	2.20000900	-1.5202/300

Optimized Structure of *Z*,*Z*-**4**-An-**INT**₅.

- Thermochemistry -

0.730296 (Hartree/Particle)
0.770089
0.771033
gy= 0.655788
gies= -1861.918663
es= -1861.878869
nies= -1861.877925
ergies= -1861.993170

С	0.92697800	1.01534800	-0.30996400
S	0.32051200	2.07127500	-1.44036700
Ν	0.10244100	0.09301300	0.33252700
Н	0.51758300	-0.74223500	0.75874800
Ν	2.20392900	0.89664200	0.09075000
С	3.35270100	1.56036700	-0.41917200
С	3.60553700	1.66936200	-1.78257800
С	4.28834800	2.01182900	0.50667000
С	4.79598800	2.24057700	-2.21027700
Н	2.87772800	1.31606100	-2.50001000
С	5.48264400	2.56866600	0.06945900
Н	4.07493800	1.92557500	1.56671100
С	5.73774700	2.68735400	-1.29068400
Н	6.66503300	3.12975700	-1.63416600
Н	2.19132500	-1.82004700	-0.71610500
С	2.58655900	-2.40214400	1.29710000
С	2.63356700	-2.67607300	-0.19378400
С	4.08865600	-2.86698700	-0.63324900
С	4.94875000	-1.68910000	-0.17078300
С	4.75467900	-1.44374000	1.31773500
Н	4.47694600	-3.79665300	-0.20046600
Н	4.14093600	-2.98012800	-1.71758800
Н	6.00650000	-1.88300100	-0.36540300
Н	4.67906700	-0.78280700	-0.72146200
Н	5.14837500	-2.28242600	1.90821500
Н	5.24678600	-0.52941400	1.64616800
0	3.36752600	-1.27234400	1.63608900
Н	2.95810200	-3.27021400	1.86747200

Н	2.02916700	-3.55854300	-0.41701600
С	1.07260800	-2.05737200	3.09094400
Н	1.69276600	-1.27984400	3.54053400
Н	1.30504500	-3.02524400	3.54520000
Н	0.01862200	-1.83139000	3.24691000
0	1.27444500	-2.11599100	1.68050000
Н	2.42455800	0.23202100	0.83182000
Н	4.98902700	2.33302900	-3.27244000
Н	6.20812000	2.91953500	0.79379300
С	-1.24594400	0.08883900	0.14926400
Č	-2 46423400	0 71575400	0 23890300
Č	-2 35506000	-0 61659000	-0 23064400
N	-3 22555100	1 74244900	0 52297800
N	-2 88988600	-1 71819900	-0 70159400
C	-4 66994800	1 66706300	0.19684400
C	-2 72226700	2 85874000	1 37061600
C	-4 35840800	-1 87916800	-0 76437400
C C	-2.00137200	-2 76767400	-0.70437400
C C	-5.47269700	1 10/28600	1 40684100
с u	-3.47209700	0.01048400	0.50546600
II C	5 10833500	2 07546800	0.37015200
C C	-3.19833300	2.97340800	-0.37913200
U U	-2.13108000	3.99700700	1 20022700
П	-5.01145500	3.22323100	1.89082700
C II	-1./4301/00	2.55505500	2.42099300
П	-4./0124300	-1.0/4/8/00	-0.14/38300
C	-4.862/1200	-1./0441/00	-2.19343900
C	-4.80531300	-3.19436900	-0.13330100
H	-2.66828200	-3.44328300	-1./9/38100
C	-1.01/63/00	-2.18431600	-2.26945500
C	-1.30//9300	-3.54965800	-0.14825500
H	-5.08405300	0.24882300	1.79557000
H	-5.44389500	1.9298/500	2.21464000
H	-6.51953900	1.04828900	1.13175300
Н	-5.17271600	3.78596300	0.35255600
Н	-4.62922300	3.27733500	-1.25969100
Н	-6.23960000	2.83507200	-0.67587000
Н	-1.23571200	3.66223000	0.02099600
Н	-2.84126600	4.37806400	-0.18707000
Н	-1.85680400	4.81908700	1.21226000
Н	-2.16020500	1.50832800	2.98288200
Н	-0.79126600	2.05628800	1.98415900
Η	-1.53882100	3.15680600	3.13576200
Н	-4.47222200	-2.48483100	-2.85204100
Н	-5.95267100	-1.76716600	-2.21863600
Н	-4.56228300	-0.73543700	-2.59966200
Н	-4.43913300	-3.28354100	0.89150800
Н	-5.89618500	-3.23059900	-0.10960200
Н	-4.46305300	-4.06239300	-0.70184400
Η	-0.47083900	-2.99623900	-2.75331600
Η	-1.53706600	-1.61267900	-3.04113700
Н	-0.28451200	-1.52890800	-1.79232600
Н	-0.60740800	-2.92216900	0.40877500
Н	-2.03348300	-3.96904400	0.55105200
Н	-0.73672400	-4.37540600	-0.57943700

Z,E Conformation

Optimized Structure of *Z*,*E*-4-An-INT₁.

- Thermochemistry -

(0 imaginary frequencies)	
Zero-point correction=	0.600527 (Hartree/Particle)
Thermal correction to Energy=	0.635884
Thermal correction to Enthalpy=	0.636828
Thermal correction to Gibbs Free Ener	gy= 0.530948
Sum of electronic and zero-point Energy	gies= -1591.455251
Sum of electronic and thermal Energies	s= -1591.419894
Sum of electronic and thermal Enthalp	ies= -1591.418950
Sum of electronic and thermal Free En	ergies= -1591.524830

С	1.49672700	-0.93537700	-0.10908500
S	1.42645500	-0.17576200	1.36234400
Ν	2.60021800	-1.37874300	-0.73537800
Н	2.52716000	-1.52649700	-1.73200000
Ν	0.33958900	-1.21317900	-0.85179700
С	3.93131300	-1.31024400	-0.21900100
С	4.28078600	-2.02500600	0.91909800
С	4.87132300	-0.55069300	-0.90390600
С	5.58594200	-1.96013100	1.38464300
Н	3.53610300	-2.61654300	1.43692200
С	6.17960300	-0.50450500	-0.43890500
Н	4.56969400	0.01218600	-1.77952600
С	6.53602500	-1.20376200	0.70724000
Н	7.55502900	-1.16188700	1.07270600
Н	0.31673400	-2.07166700	-1.38383200
С	3.76920700	2.87153800	-1.02249300
Н	3.63913600	3.67067400	-0.28300900
Н	3.69156400	3.30807400	-2.01855800
Н	4.77218400	2.44521900	-0.90388800
0	2.76249600	1.88049700	-0.91693900
Н	2.81209100	1.48523800	-0.04017800
С	-0.85046900	-0.61571000	-0.58067900
С	-1.54442300	0.53007100	-0.28471700

С	-2.19901700	-0.72036400	-0.36868300
Ν	-1.56307600	1.81661200	-0.04918200
Ν	-3.27186700	-1.47276500	-0.28560700
С	-2.75847000	2.37628700	0.63162000
С	-0.31935500	2.57414800	-0.37471700
С	-4.61177300	-0.86402500	-0.13556900
С	-3.10012900	-2.94302900	-0.20666000
С	-2.59733700	2.35078700	2.15167400
Н	-3.56234300	1.68171100	0.38001600
С	-3.17557300	3.74291800	0.10540900
С	0.23648700	3.35820800	0.80492400
Н	-4.47989400	0.18255800	-0.41689300
С	-5.61051500	-1.46758100	-1.11813500
С	-5.07892800	-0.93201200	1.31457600
Н	-4.09010300	-3.33508800	0.02904200
С	-2.67160200	-3.51397900	-1.55461100
С	-2.16318500	-3.32823500	0.93466600
Н	-2.26133500	1.36817100	2.49264000
Н	-1.87859300	3.09452700	2.49641000
Н	-3.55866200	2.56820200	2.62333600
Н	-2.45587700	4.52125300	0.36201600
Н	-3.31269200	3.73160100	-0.97686600
Н	-4.12702100	4.01468600	0.56693100
Н	-0.39064700	4.20816500	1.08178700
Н	0.37349800	2.71444900	1.67504600
Н	1.21395100	3.74854000	0.51569400
Н	-5.83200500	-2.51380800	-0.89495500
Н	-6.55171600	-0.91813100	-1.05704500
Н	-5.24151500	-1.39873200	-2.14339700
Н	-5.20096600	-1.96756500	1.64403500
Н	-4.36251000	-0.44211900	1.97883500
Н	-6.04511100	-0.43491800	1.42343300
Н	-2.58088200	-4.60003800	-1.49275200
Н	-3.39598300	-3.27039100	-2.33340100
Н	-1.69905800	-3.11752400	-1.86284900
Н	-1.13828400	-2.99161000	0.75474300
Н	-2.50127300	-2.89560100	1.87830600
Н	-2.14058900	-4.41413100	1.04419800
Н	5.86354800	-2.50916800	2.27623500
Н	6.91824300	0.08145300	-0.97283000
Н	0.41581600	1.80540200	-0.60918200
C	-0.47169700	3.42665100	-1.63232400
Н	-1.04064300	4.34056700	-1.45856300
Н	0.52702100	3.70961800	-1.97152800
Н	-0.95100400	2.86212300	-2.43552000

Optimized Structure of Z, E-4-An-INT₂.

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.728381 (Hartree/Particle) Thermal correction to Energy= 0.769422 Thermal correction to Enthalpy= 0.770366 Thermal correction to Gibbs Free Energy= 0.653712 Sum of electronic and zero-point Energies= -1861.890023 Sum of electronic and thermal Energies= -1861.848982 Sum of electronic and thermal Enthalpies= -1861.848038 Sum of electronic and thermal Free Energies= -1861.964692

С	-1.28241700	1.89310400	0.09339200
S	-2.02861600	3.33359900	0.42915200
Ν	0.10132800	1.83181900	-0.06865800
Н	0.56809300	2.74757500	-0.17881700
Ν	-1.89462900	0.70249300	-0.07819300
С	-3.30378500	0.50016500	0.05138600
С	-3.90574100	0.59883100	1.29997400
С	-4.04985600	0.17328500	-1.07327100
С	-5.26754200	0.36835900	1.42162200
Н	-3.31135400	0.86860400	2.16455700
С	-5.41126700	-0.07150800	-0.93982900
Н	-3.56481500	0.10867700	-2.04037900
С	-6.02125600	0.02761800	0.30364900
Н	-7.08470800	-0.15358700	0.40327900
Н	-1.38732400	0.00665800	-0.61852500
С	-0.74700500	-1.02670900	-2.85292800
С	-0.04220100	-1.75436600	-1.98163500
С	-0.63557700	-2.93252500	-1.26079700
С	-2.15893400	-2.91425200	-1.40489000
С	-2.54425700	-2.54045700	-2.82763600
Н	-0.22287000	-3.86755700	-1.65687200
Н	-0.36161800	-2.89443800	-0.20278800
Н	-2.59267100	-3.88638700	-1.16118500
Н	-2.60085300	-2.18784600	-0.71567200
Н	-2.16363300	-3.28200800	-3.53892100
Н	-3.62373300	-2.46013200	-2.94733200
0	-2.02510800	-1.26008800	-3.20935200

Н	-0.34622900	-0.15568500	-3.35944300
Н	0.99744000	-1.49300800	-1.82563900
С	1.50976500	4.76989400	1.20760900
Н	1.59524200	5.85279600	1.32439100
Н	2 50000900	4 32903500	1 32853900
Н	0 83787400	4 37351000	1 97639200
0	1 05834000	4 42958500	-0.09996400
н	0 14964500	4 74168300	-0 18982500
Н	-5 74228700	0.45583200	2 39145000
Н	-5 99734100	-0 32457400	-1 81545900
C	0.88831500	0.77213500	0.21534100
C	1 19633900	-0.38098000	0.90208000
C	2 10642400	0.17993900	-0.01126400
N	0.01535/00	-1 35060600	1 75120400
N	3 2/03/300	0 17232500	-0.65908700
IN C	1 01722200	2 43263100	1 0178/100
C C	0.16520400	1 20/22100	2 76222700
C	-0.10555400	-1.20432100	2.70233700
C C	4.29990000	1 1 2 2 2 0 7 0 0	1 77001500
C	3.40/83400	1.15559/00	-1.77001300
C II	2.95522000	-2.00038400	2.99455100
п	2.41941000	-2.50545800	0.95048400
C	1.2/849400	-3./9182000	2.18105200
C	-1.46/03000	-1.83831/00	2.28504900
H	0.19519400	-1./6035600	3.630/2000
C	-0.34660/00	0.243//800	3.20421500
Н	3.97346200	-1.28660100	0.59557300
C	4.39566900	-1.88324200	-1.41632500
C	5.63627600	-0.13821200	-0.04175000
H	4.38904400	0.79719400	-2.24783300
С	2.35170200	1.04913000	-2.80607700
С	3.68556200	2.55013000	-1.24930300
Н	3.39763400	-1.09098200	2.79027200
Н	2.46378600	-2.00731300	3.97910900
Н	3.72467100	-2.81353100	3.04613700
Н	0.75809700	-3.82821400	3.14047900
Н	0.57948700	-4.06939500	1.39131300
Н	2.06622200	-4.54694700	2.21143500
Н	-1.83246100	-1.33801700	1.38873100
Н	-1.34095700	-2.89916000	2.06636100
Н	-2.23440400	-1.74131000	3.05610100
Н	0.60422100	0.69192300	3.50228400
Н	-0.80013700	0.86022700	2.42666500
Н	-1.01528200	0.27003500	4.06653400
Н	4.71251300	-1.45523000	-2.37087900
Η	5.13056400	-2.63989200	-1.13424200
Н	3.43222500	-2.37755100	-1.56685200
Н	5.53483100	0.61117500	0.74593800
Н	6.35581400	-0.88843700	0.29192300
Н	6.05556100	0.34373000	-0.92782800
Н	2.59038400	1.69778400	-3.65098100
Н	2.23791100	0.02886000	-3.18042700
Н	1.39564300	1.38517200	-2.39572000
Н	2.77073900	2.97686700	-0.83182700
Н	4.46908600	2.57189300	-0.48977500
Н	3.99092900	3.20164500	-2.07077000
		•	

Optimized Structure of *Z*,*E*-**4**-An-**TS**₁.

- Thermochemistry -

.723295 (Hartree/Particle)
0.763740
0.764684
y= 0.649390
es= -1861.845928
-1861.805483
es= -1861.804539
rgies= -1861.919833

С	1.18795200	1.00065200	-1.63964800
S	2.00021400	2.13437700	-2.59192600
Ν	-0.21464200	1.18415800	-1.55557100
Н	-0.52388400	2.08407800	-1.89106500
Ν	1.63674700	0.01607800	-0.90150500
С	3.02753600	-0.23627200	-0.82426600
С	3.55111200	-1.42619800	-1.32705900
С	3.86904200	0.64174000	-0.13918100
С	4.88607800	-1.74578300	-1.11803800
Н	2.91023300	-2.08711500	-1.89707000
С	5.19911900	0.31105200	0.08251400
Н	3.48374300	1.60111700	0.18643300
С	5.71048000	-0.88783700	-0.39854900
Н	6.75155000	-1.14028600	-0.23618400
Н	1.18779200	0.18021100	0.56652400
С	1.96257300	0.95481400	2.29874000
С	0.86337000	0.25689600	1.75507000
С	0.66470400	-1.16245100	2.25653300
С	2.04495700	-1.80743300	2.39059200
С	2.92635300	-0.98436600	3.30781500
Н	0.14735900	-1.16507500	3.22177400
Н	0.04806600	-1.72307800	1.55361700
Н	1.97836700	-2.81479800	2.80737100
Н	2.51655500	-1.88872800	1.40722500
Н	2.61146300	-1.03818300	4.35145300
Н	3.97716900	-1.25499200	3.23391100

0	2.91426000	0.44492900	2.98255300
Н	2.08647000	2.01635600	2.09103300
Н	-0.00765800	0.90723200	1.66590000
С	1.26991300	4.67155400	0.59711700
Н	2.22112700	5.19558300	0.46268400
Н	0.90729200	4.86247700	1.60836900
Н	0.54192100	5.07335900	-0.11664300
0	1.41946100	3.26800300	0.45440500
Н	1.72211800	3.08749400	-0.45098000
Н	5.28701200	-2.66668900	-1.52565200
Н	5.84168000	1.00236000	0.61555200
С	-1.12061200	0.38784400	-0.97431500
С	-1.64738500	-0.83480000	-0.61815800
С	-2.35417700	0.34567500	-0.36569400
Ν	-1.59924300	-2.15165000	-0.52310900
Ν	-3.39192500	1.01463400	0.09533700
С	-2.70522000	-2.82466000	0.19635400
С	-0.69466700	-2.96080900	-1.38233200
С	-4.60618700	0.31310500	0.55842800
С	-3.30267400	2.49033200	0.19247100
С	-3.82973900	-3.20888100	-0.76343300
Н	-3.07890100	-2.08045000	0.90416400
С	-2.21886000	-4.00995500	1.02294500
С	0.60406600	-3.29845200	-0.65999500
Н	-1.24690700	-3.88517000	-1.56879700
С	-0.44085900	-2.29550700	-2.73067500
Н	-4.47116400	-0.72580000	0.25672500
С	-4.72003600	0.36760500	2.07922000
С	-5.85409500	0.82960800	-0.15170600
Н	-4.18841600	2.79013600	0.75489900
С	-2.07961300	2.92530400	0.99690000
С	-3.37692700	3.14263700	-1.18512800
Н	-4.16975100	-2.34545000	-1.34167100
Н	-3.50462000	-3.97798700	-1.46840500
Н	-4.68183200	-3.60837800	-0.20895600
Н	-1.82292700	-4.81356000	0.39823500
Н	-1.44832700	-3.70714700	1.73472200
Н	-3.05980800	-4.41847600	1.58658200
Н	1.15577100	-2.38052200	-0.45791700
Н	0.42340600	-3.82494000	0.27855900
Н	1.22364500	-3.93927800	-1.29166100
Н	-1.37577900	-2.00287200	-3.21443200
Н	0.20539200	-1.42164700	-2.63211100
Н	0.06833600	-3.00419500	-3.38644700
Н	-4.84787800	1.39340200	2.43514700
Н	-5.58709000	-0.20642400	2.41262200
Н	-3.82758300	-0.05035200	2.55229100
Н	-5.74558400	0.75194700	-1.23537100
Н	-6.71757100	0.23308500	0.14926900
Н	-6.07140800	1.86996500	0.10234500
Н	-2.12173900	4.00279200	1.16967000
Н	-2.06641200	2.42927100	1.97112000
Н	-1.13509100	2.71889900	0.48470500
Н	-2.54553400	2.83369800	-1.82465200
Н	-4.30472100	2.88032100	-1.69587800
Н	-3.33285000	4.22929100	-1.08906500

Optimized Structure of *Z*,*E*-4-An-INT₃.

(0 imaginary frequencies)	
Zero-point correction=	0.725700 (Hartree/Particle)
Thermal correction to Energy=	0.766822
Thermal correction to Enthalpy=	0.767766
Thermal correction to Gibbs Free Ener	gy= 0.650947
Sum of electronic and zero-point Energy	gies= -1861.845240
Sum of electronic and thermal Energies	s= -1861.804118
Sum of electronic and thermal Enthalph	ies= -1861.803173
Sum of electronic and thermal Free En	ergies= -1861.919993

С	1.06913200	1.10209800	-1.71055800
S	1.80107400	2.46664400	-2.42117200
Ν	-0.35041700	1.20067900	-1.61946300
Н	-0.69734200	2.11489300	-1.86966700
Ν	1.55355100	0.01813900	-1.19186800
С	2.93510500	-0.18867100	-1.06031100
С	3.49138900	-1.38523400	-1.52100300
С	3.75064500	0.69374700	-0.34329200
С	4.81138900	-1.70648000	-1.23894100
Н	2.87703600	-2.05305100	-2.11205300
С	5.06770100	0.36168500	-0.04979900
Н	3.35857500	1.66185200	-0.05389700
С	5.60246300	-0.84443800	-0.48542500
Н	6.63441500	-1.09535700	-0.27075700
Н	1.12140100	0.22307700	0.68800800
С	2.17877100	1.01020200	2.23317000
С	1.04026000	0.21924600	1.81141400
С	1.04564400	-1.21277800	2.32596800
С	2.47757300	-1.74088300	2.23916500
С	3.40498700	-0.87570900	3.06269500
Н	0.68634900	-1.25330200	3.35919300
Н	0.37329700	-1.81782800	1.71801600

Η	2.55350700	-2.76089400	2.62176500
Н	2.81513900	-1.75296000	1.19921700
Н	3.25733000	-0.98474900	4.13781600
Н	4.45455500	-1.02013000	2.81702500
0	3.20411000	0.56933300	2.81661900
Н	2.18413100	2.08299900	2.02581500
Н	0.13431700	0.80301900	2.00229900
С	0.99220200	4.66340500	0.82286000
Н	1.87269100	5.26294000	0.57231300
Н	0.74645900	4.82647600	1.87349700
Н	0.14983900	5.00335200	0.21005600
0	1.23598200	3.27704900	0.64484000
Н	1.47276300	3.13566300	-0.29258500
Н	5.22906600	-2.63293700	-1.61652400
Н	5.68490900	1.06201400	0.50241400
С	-1.19346500	0.36591600	-1.00385100
Ċ	-1.64396800	-0.87013600	-0.58899700
Ċ	-2.40756900	0.27601000	-0.35843900
N	-1.53134300	-2.18149800	-0.44237600
Ν	-3.46590200	0.90655800	0.11480600
С	-2.59739000	-2.86735900	0.32265500
Ċ	-0.63809900	-2.99311700	-1.31085900
Ċ	-4.64233200	0.16358600	0.60727500
Č	-3.43965100	2.38526200	0.18811500
Č	-3.73001300	-3.32382600	-0.59582300
H	-2 98193500	-2 11379400	1 01457100
C	-2.05259900	-4.00744700	1.17615800
Ċ	0.69533600	-3.26985500	-0.62693500
Ĥ	-1.16918500	-3.93906500	-1.44375600
С	-0.45701200	-2.36865400	-2.68968400
H	-4.46272900	-0.87627900	0.33467300
С	-4.75121700	0.25442800	2.12684200
Ċ	-5.91701000	0.60234000	-0.10842400
H	-4.33418800	2.65656100	0.75132000
С	-2.23200000	2.87819800	0.98216400
Ċ	-3.55239400	3.01540800	-1.19734700
H	-4.10491900	-2.49645400	-1.20424200
Н	-3.39849600	-4.11414000	-1.27379400
Н	-4.55955900	-3.72105200	-0.00641700
Н	-1.64489000	-4.81890500	0.56939400
Н	-1.27545800	-3.65669800	1.85841700
Н	-2.86538500	-4.42369400	1.77463200
Н	1.21860600	-2.32796900	-0.46483400
Н	0.56233000	-3.78439800	0.32654300
Н	1.31703000	-3.90207500	-1.26506900
Н	-1.42039100	-2.13837000	-3.15131100
Н	0.15098400	-1.46398100	-2.63839800
Н	0.06217700	-3.07920700	-3.33592800
Н	-4.91850100	1.28328900	2.45636500
Н	-5.59256900	-0.34520400	2.48044700
Н	-3.84041300	-0.11464400	2.60564200
Н	-5.80838400	0.50410500	-1.19040600
Н	-6.74996900	-0.02721000	0.21086000
Н	-6.18222500	1.63717700	0.12162600
Н	-2.30367800	3.95832600	1.12626400
Н	-2.20845000	2.40839000	1.96915400

Η	-1.27944900	2.68008300	0.48227300
Н	-2.71450700	2.73731400	-1.84202800
Н	-4.47141200	2.70254100	-1.69553200
Н	-3.55929800	4.10412800	-1.11580100

Optimized Structure of Z, E-4-An-TS₂.

- Thermochemistry -

(1 imaginary frequency = -39.39 Hz)	
Zero-point correction=	0.726261 (Hartree/Particle)
Thermal correction to Energy=	0.766376
Thermal correction to Enthalpy=	0.767321
Thermal correction to Gibbs Free Ener	rgy= 0.653395
Sum of electronic and zero-point Ener	gies= -1861.841574
Sum of electronic and thermal Energie	es= -1861.801458
Sum of electronic and thermal Enthalp	bies= -1861.800514
Sum of electronic and thermal Free Er	nergies= -1861.914440

С	-1.13612200	-0.87289100	-1.67846500
S	-1.99670000	-2.04615000	-2.56410800
Ν	0.26522400	-1.13418500	-1.58989900
Н	0.52912000	-2.03848600	-1.95275200
Ν	-1.51635700	0.17080600	-1.01523900
С	-2.87943300	0.53023200	-0.96970800
С	-3.29845100	1.72438300	-1.55499600
С	-3.80426900	-0.22343400	-0.24147500
С	-4.60687800	2.16507900	-1.39932100
Н	-2.59203500	2.29907100	-2.14208000
С	-5.10936000	0.22319000	-0.08381400
Н	-3.49266500	-1.17269000	0.17662400
С	-5.51606300	1.42430900	-0.65430700
Н	-6.53624300	1.76945800	-0.53626800
Н	-0.98853300	-0.39546800	0.79318100
С	-1.76897600	-1.31544900	2.44602900
С	-0.73269700	-0.46741300	1.88676600
С	-0.74969300	0.94784800	2.45781800
С	-2.18146600	1.47238000	2.38610000

С	-3.14847200	0.55310400	3.10506600
Н	-0.37830200	0.95091200	3.48751900
Н	-0.09000200	1.57879200	1.86204700
Н	-2.26669700	2.45827200	2.84816900
Н	-2.48276700	1.57113900	1.34242900
Н	-3.16385500	0.69551200	4.18555000
Н	-4.15953400	0.61899200	2,70843600
0	-2 82872600	-0.88961900	2 97442900
H	-1 68863800	-2 39628000	2 43199400
Н	0 22580300	-0.98737200	1 93838300
C	-3 24019100	-3 97598100	0 56929300
н	-4 15114100	-3 55631800	0.12911100
Н	-3 41482200	-4 15823800	1 63220400
Н	-3 02176500	-4 93274600	0.08641000
$\hat{0}$	-2 14644700	-3.07620200	0.00041000
Ч	-2.14044700	-2 85880700	-0.49495700
н	-/ 01881200	3 00075800	-1 86033000
Н	-5.81873300	-0.38226500	0.47088900
II C	1 20172800	-0.3002/800	-0.98528800
C C	1.20172800	0.77505300	-0.51874400
C C	2 1/970000	-0.43065000	-0.31374400
N	1 73723300	2 07815000	0.28348800
N	2 48383100	1 1 50 30 700	0.0220340000
IN C	2 86883800	-1.13939700	-0.02290300
C C	2.80883800	2.04209400	1.06247200
C C	0.87042800	0.52675200	-1.00347200
C	3 36800300	-0.52075200	0.40108100
C C	3.90285500	3 10586700	-0.43946700
н	3 23398600	1 81814300	1 10356700
П С	2 41800500	3 74146600	1.10550700
C C	-0.42878300	3 30292700	-0.32610100
н	1 45269800	3 92351500	-0.32010100
П С	0.62782700	2 49514000	-2 48074700
н	4 60076600	0.53864100	0.26820000
II C	4.00070000	-0 73207900	1 96387600
C	5 03800000	-0.73207900	-0.3/1/6000
с u	1 26488300	3 00444300	0.43575700
II C	4.20488300	-3.00444300	0.43373700
C	2.10332300	-3.11/80/00	1 /0881/00
с u	1 20666100	2 20066200	1 12/22000
H H	4.29000100	2.30900300	-1.12432000
н Ч	1 86468000	3.40830200	0 14520100
П П	4.80408900	1.40830200	0.14329100
п	2.03443900	4.01003300	0.91242900
н Н	2 27175800	1 06880400	2.12404900
п	3.2/1/3800	4.00880400	2.03898000
п	-1.00308200	2.38429300	-0.22199000
п	-0.242/3800	3.73303300	0.03912800
п	-1.02302100	4.01088200	-0.898/1000
н Ц	-0.02584700	2.23078100	-2.30101200
н Н	-0.02364/00	3 27016400	-2.40341300
н	5 01828200	_1 78980700	2 21165500
Н	5 78378200	-0.20615600	2.21103300
Н	4 02818600	_0 35013000	2.51900200
Н	5 78030100	-0.81753/00	-1 40002/00
H	6 82213900	-0 43285800	-0.02399500
	J.J1J/J00		

Η	6.15050300	-2.05171800	-0.18739900
Н	2.17755600	-4.20710700	0.81188100
Н	2.19802000	-2.71238700	1.75669800
Н	1.21300800	-2.83514400	0.28009300
Н	2.54204200	-2.75925200	-2.07936800
Н	4.30061400	-2.86984500	-2.01038300
Н	3.30339300	-4.24333100	-1.50780200

Optimized Structure of *Z*,*E*-4-An-INT₄.

- Thermochemistry -

(0 imaginary frequencies)	
Zero-point correction=	0.726739 (Hartree/Particle)
Thermal correction to Energy=	0.766823
Thermal correction to Enthalpy=	0.767767
Thermal correction to Gibbs Free Ener	rgy= 0.654513
Sum of electronic and zero-point Ener	gies= -1861.893184
Sum of electronic and thermal Energie	es= -1861.853101
Sum of electronic and thermal Enthalp	bies= -1861.852156
Sum of electronic and thermal Free Er	nergies= -1861.965410

С	-1.28596400	-0.57873000	-1.69131600
S	-2.18458600	-2.03522800	-2.24933700
Ν	0.10222900	-0.78028900	-1.68569500
Η	0.41578500	-1.67284700	-2.03375200
Ν	-1.74267800	0.54036800	-1.35625800
С	-3.10932900	0.84194900	-1.19497100
С	-3.61206800	1.98086000	-1.82055900
С	-3.92432300	0.09450100	-0.34543600
С	-4.93611000	2.34863600	-1.62522600
Н	-2.96390200	2.56349100	-2.46474700
С	-5.24242300	0.48075600	-0.14468800
Н	-3.51955200	-0.77543400	0.15823200
С	-5.75458900	1.60222000	-0.78539800
Н	-6.78590300	1.89483700	-0.62927500
Н	-0.60601400	-0.45848800	0.93110300
С	-1.04561800	-2.34308900	1.79752600
С	-0.35758200	-0.99239400	1.85173800

С	-0.87220200	-0.19995200	3.05477800
С	-2.39931500	-0.12779700	3.01354100
С	-2.98903000	-1.52398900	2.85117000
Н	-0.54966300	-0.68852400	3.98193800
Н	-0.43851600	0.80274200	3.05742900
Н	-2.79349800	0.32667800	3.92617300
Н	-2.71997500	0.49474700	2.17183200
Н	-2.80170200	-2.12650000	3.75227100
Н	-4.06579200	-1.48871500	2.68589800
0	-2.44338200	-2.19061600	1.71667200
Н	-0.80551600	-2.92648200	2.70637400
Н	0.72620600	-1.13664000	1.89316000
С	-0.96314100	-4.42888400	0.70992100
Н	-2.04409000	-4.56869600	0.78866800
Н	-0.47013800	-4.91841900	1.55685900
Н	-0.59966300	-4.86972100	-0.21798500
0	-0.63019100	-3.04559200	0.66955200
Ĥ	-1.86232700	-2.70618700	-1.12308800
Н	-5.32846200	3.22557900	-2.12664500
Н	-5.87507400	-0.10471000	0.51270700
С	1.02442400	-0.02647700	-1.05451500
Č	1.48382000	1.06677500	-0.34891900
Č	2 33109700	-0.01048300	-0 63726700
Ň	1 35884500	2 22922400	0 26116400
N	3 49457000	-0.62608800	-0 56604500
C	2 47685600	2 68110000	1 12173100
Č	0 23748000	3 16680500	-0.00368100
Č	4 70042000	0.08143700	-0.08730500
Č	3 58403500	-2 04970900	-0.96153100
Č	3 35914600	3 68945400	0 39099600
Ĥ	3 05992600	1 78281400	1 33254400
C	1 97846400	3 19924400	2 46738200
Č	-0 99845500	2 80105600	0.81348400
Ĥ	0.60730100	4 13011500	0 35326900
C	-0.01629200	3 31583300	-1 49892400
Н	4 40658800	1 12755100	0.00098100
C	5 12523500	-0.42931500	1 28581100
C	5 82563800	0.02147000	-1 11720200
Н	4 60877100	-2.34258400	-0 72904800
C	2 65519700	-2.91380300	-0 11390600
Č	3 38382000	-2 22426100	-2 46429300
Ĥ	3 72328100	3 28228100	-0.55608500
Н	2.81385500	4 61137300	0 17379400
Н	4 22180000	3 95362100	1 00692400
Н	1 40235700	4 12180500	2 36884900
Н	1 36051300	2 45277400	2.97017500
Н	2.83704900	3 41807500	3 10547000
Н	-1 29945800	1 77360000	0.61793800
Н	-0.80967500	2 92083300	1 88190800
Н	-1 83482800	3 44733600	0 53911300
H	0.90122300	3 60508500	-2 01748800
H	-0.40750400	2.39377600	-1.92862500
Н	-0.75971700	4.09910300	-1.66065700
Н	5 42107400	-1 48115000	1 24512100
Н	5 98281500	0 13982800	1 65040700
11	4 31200700	-0.33159400	2 01076200

Н	5.48903400	0.39649300	-2.08586400
Н	6.65658800	0.64463100	-0.78067800
Н	6.21306400	-0.99159600	-1.24982800
Н	2.80336800	-3.96773700	-0.35913400
Н	2.87234400	-2.77987200	0.94849300
Н	1.59716700	-2.68308700	-0.26361700
Η	2.39101500	-1.89945200	-2.78838600
Н	4.11812400	-1.64398300	-3.02563400
Н	3.49475900	-3.27522100	-2.73806900

Optimized Structure of Z, E-4-An-TS₃-PA.

- Thermochemistry -

(1 imaginary frequency = -363.40 Hz) Zero-point correction= 0.729072 (Hartree/Particle) Thermal correction to Energy= 0.768091 Thermal correction to Enthalpy= 0.769035 Thermal correction to Gibbs Free Energy= 0.658830 Sum of electronic and zero-point Energies= -1861.845824 Sum of electronic and thermal Energies= -1861.806806 Sum of electronic and thermal Enthalpies= -1861.805862 Sum of electronic and thermal Free Energies= -1861.916067

С	-1.33445100	-1.20724200	-1.32616800
S	-2.13874200	-2.63496800	-1.80507400
Ν	0.08456300	-1.32572900	-1.33168400
Н	0.40569100	-2.23978300	-1.61672000
Ν	-1.77518000	-0.08595600	-0.83853900
С	-3.09778800	0.35239300	-1.05375600
С	-3.73033500	0.24379500	-2.29774500
С	-3.76287100	1.02510600	-0.02435100
С	-4.99659700	0.77413400	-2.48984300
Н	-3.22680800	-0.26131000	-3.11205900
С	-5.03602200	1.54688200	-0.22141500
Н	-3.27209000	1.13224100	0.93401700
С	-5.66179900	1.42230700	-1.45409500
Н	-6.65093900	1.83519400	-1.61189400
Н	-0.26379900	-1.33515200	1.10655500
С	-1.90874100	-1.45982900	2.42991200
С	-0.46303800	-1.75636000	2.09352800

С	0.45099600	-1.08323000	3.11991700
С	0.09949100	0.40054400	3.21993000
С	-1.37881800	0.55809200	3.53611200
Н	0.33557300	-1.56161100	4.09916100
Н	1.49226700	-1.22218700	2.82232000
Н	0.68424900	0.88983900	4.00315700
Н	0.31836900	0.90250100	2.27142000
Н	-1.60574200	0.16430900	4.53600000
Н	-1.70287300	1.59639400	3.49167900
0	-2.19273100	-0.12035600	2.57091200
Н	-2.27049700	-2.04534000	3.28569000
Н	-0.31221100	-2.83640300	2.04782200
С	-4.18814200	-1.92295800	1.41910100
Н	-4.51432100	-0.92337000	1.69153500
Н	-4.43913900	-2.67545500	2.16224100
Н	-4.53705900	-2.20324700	0.42811800
0	-2.72244400	-1.93134700	1.31260900
Ĥ	-2.41178700	-1.56860100	0.43737900
Н	-5 46902000	0 67879900	-3 46082200
Н	-5 53431200	2 06269900	0.59236300
C	1 01325700	-0 44053500	-0.94641500
Č	1 50909900	0 79144000	-0 56061400
C	2 35206500	-0.31646500	-0.65314300
N	1 40297100	2 07292800	-0 25686800
N	3 53421900	-0.89812100	-0 54348400
C	2 59009400	2 74764700	0.34340400
C	0 22853400	2.74704700	-0.64891700
C	4 75711300	-0.09652300	-0.33896500
C	3 62138100	-0.07032300	-0.61545900
C C	3 36208400	3 50202000	-0.76740400
ч	3 21001300	1 94557500	0.70362000
C	2 22756000	3 63249100	1 50145400
C C	-0.87215800	2 70381/00	0.40085000
с u	-0.67213800	2.79381400	0.40083000
II C	0.00811100	2 562 472 00	-0.00001000
U U	-0.24248200	2.30347300	-2.00009300
П	4.43297800	0.93881900	1 08705000
C	5.27734700	-0.23039300	1.08/03900
	5.81002900	-0.40582000	-1.39410000
П	4.03421300	-2.00884400	-0.55450500
C	2.72033800	-3.031//300	0.431/1300
C II	3.30081300	-2.880/2900	-2.03199000
H	3.62936700	2.84006400	-1.59536400
H	2.//158300	4.32/0/200	-1.1/331500
H	4.2/998900	3.92477800	-0.35249800
H	1.60836100	4.48343400	1.21009900
H	1.69819200	3.06250100	2.26//1200
H	3.14332100	4.03093600	1.94292000
H	-1.15/92900	1.74973100	0.52704300
H	-0.54116100	3.20529400	1.35/33300
H	-1.75539800	3.34685300	0.07505600
H	0.58210500	2.64092700	-2.7/340600
H	-0.68021600	1.56621800	-2.10832200
H	-1.01634600	3.27441900	-2.35530800
H	5.57358800	-1.28279900	1.29237500
Н	6.15490200	0.38119200	1.24119400
Н	4.51422700	0.03729500	1.81503400

Η	5.40836500	-0.28983200	-2.40020500
Н	6.65036000	0.28946800	-1.28222500
Н	6.21918100	-1.41649200	-1.29380800
Н	2.88544600	-4.11177900	0.42934300
Н	2.96033700	-2.65333300	1.42976200
Н	1.66554100	-2.85603300	0.23514500
Н	2.36382800	-2.62438500	-2.38421200
Н	4.08290900	-2.45162200	-2.73466300
Н	3.46254000	-3.96773500	-2.06712000

Optimized Structure of Z, E-4-An-TS₃-MA.

(1 imaginary frequency = -453.03 Hz)	
Zero-point correction=	0.599373 (Hartree/Particle)
Thermal correction to Energy=	0.632729
Thermal correction to Enthalpy=	0.633673
Thermal correction to Gibbs Free Ener	rgy= 0.534554
Sum of electronic and zero-point Ener	gies= -1591.411199
Sum of electronic and thermal Energie	es= -1591.377843
Sum of electronic and thermal Enthalp	bies= -1591.376899
Sum of electronic and thermal Free En	ergies= -1591.476018

С	-1.55083000	-1.41943300	-0.58610800
S	-2.38483800	-2.68327400	-1.35892200
Ν	-0.15787700	-1.48825700	-0.66253900
Н	0.19748700	-2.33096600	-1.09205600
Ν	-2.01715400	-0.48624400	0.23549800
С	-3.28692400	0.11618100	0.02210700
С	-3.82224700	0.35419300	-1.24576300
С	-3.96844700	0.59758400	1.14229200
С	-5.01746100	1.04583500	-1.37856400
Н	-3.31121000	-0.00681500	-2.12943700
С	-5.16692000	1.28215000	1.00318200
Н	-3.54043100	0.44860500	2.12851800

С	-5.69866000	1.51027400	-0.25938600
Н	-6.63400900	2.04488200	-0.37162000
0	-3.02755400	-2.37954300	1.58810900
Н	-3.20939500	-2.75752700	0.67649900
Н	-5.42226000	1.21887500	-2.36905700
Н	-5.68175700	1.64408600	1.88552500
С	0.75142400	-0.54310900	-0.32622400
Ċ	1,19596700	0.74159100	-0.08952800
Ċ	2.09193900	-0.33937500	-0.12073400
N	1 03188600	2 03652100	0.05892900
N	3 30874500	-0 84048600	-0.04900100
C	2 19688300	2 85104900	0.47832900
Č	-0 22606900	2 72064500	-0 34192800
C	4 49044700	0.04404800	0.04268900
Č	3 48474400	-2.30987800	-0.03604700
C	2 86798100	3 49672300	-0 73132400
н	2 89059800	2 14499500	0.93888100
C	1 82917300	3 86569300	1 55566800
C	-1 24230000	2 70122200	0 79377700
Н	0.07473100	3 75349400	-0 53133300
C	-0 76303000	2 16123700	-1 65384100
н	4 11303900	1 04759900	-0 15258400
C	5 08922400	0.00775100	1 44528800
C	5 51098000	-0.26718500	-1 04830300
н	4 53547400	-2 46775600	0.21163400
C II	2 65410900	-2 95929600	1.06750500
C	3 22919300	-2.93929000	-1 41452700
н	3 14788000	2.71540000	-1 47605100
Н	2 20422200	4 21905200	-1 21294000
Н	3 77004700	4 02983200	-0.42316500
Н	1 14628600	4 63350900	1 18560600
Н	1 37196900	3 37762500	2 41798700
Н	2 73766800	4 37006800	1 89076000
Н	-1 42046600	1 67435700	1 11035000
Н	-0.89301900	3 28391200	1 64733500
Н	-2 19246000	3 12010300	0.45590900
Н	-0.00240900	2 20175500	-2 43741000
Н	-1 10978800	1 13452000	-1 54114000
Н	-1 62093200	2 75431800	-1 97429900
Н	5 48166800	-0.98374400	1 68679600
Н	5 91739500	0.71575700	1 51800200
Н	4 34215200	0 27367200	2 19717100
Н	5 05324200	-0 21940600	-2 03835400
Н	6 31453000	0 47068600	-1 00907900
Н	5 96726900	-1 25173600	-0.92002100
Н	2.89588700	-4 02160700	1 13523100
Н	2.86390500	-2,49620900	2.03395000
Н	1 58135800	-2.87680200	0.87164200
Н	2.20498000	-2.73107700	-1.75300200
Н	3 90356500	-2 49051300	-2 16052600
Н	3 38205000	-3 99405600	-1 38776700
Н	-2.49061500	-1.50251300	1.25980300
C	-2.19946000	-3.28814200	2.35647500
Ĥ	-2.76641700	-4.20475000	2.49863300
Н	-1.26847000	-3.48607000	1.82433000
Н	-2.01342500	-2.80703300	3.31272700

Optimized Structure of Z, E-4-An-INT₅.

- Thermochemistry -

- Thermoeneniistry -

(0 imaginary frequencies)

Zero-point correction=	0.731368 (Hartree/Particle)
Thermal correction to Energy=	0.770700
Thermal correction to Enthalpy=	0.771645
Thermal correction to Gibbs Free Ene	ergy= 0.660142
Sum of electronic and zero-point Ener	rgies= -1861.915232
Sum of electronic and thermal Energi	es= -1861.875899
Sum of electronic and thermal Enthal	pies= -1861.874955
Sum of electronic and thermal Free E	nergies= -1861.986458

С	-1.70186600	-1.56610100	-1.24336900
S	-2.56040900	-2.67232000	-2.11256100
Ν	-0.29918900	-1.60871200	-1.29742400
Н	0.07300100	-2.48747100	-1.62488400
Ν	-2.15248900	-0.59793900	-0.42181500
С	-3.50088100	-0.19631100	-0.23509100
С	-4.36384000	0.00599000	-1.30743700
С	-3.91667200	0.09090600	1.06299500
С	-5.64762200	0.47483900	-1.06931200
Н	-4.04036500	-0.20916800	-2.31672400
С	-5.20045600	0.56850300	1.28853500
Н	-3.22808600	-0.05351600	1.88786200
С	-6.07174400	0.75722300	0.22423900
Н	-7.07590500	1.12347700	0.39975400
Н	1.88057500	-0.71860800	1.94301700
С	-0.08885300	-1.09865700	2.62824000
С	1.37446100	-0.81512700	2.90839200
С	1.52960000	0.47064800	3.72134200
С	0.79365900	1.61801700	3.03101100
С	-0.64633700	1.22075800	2.74643300
Н	1.11458800	0.32298500	4.72498800
Н	2.58712100	0.71023800	3.85502200
Н	0.81267800	2.52485400	3.64144200

Н	1.28318800	1.84824200	2.07909600
Н	-1.19530500	1.07045300	3.68688500
Н	-1.17486400	1.97440400	2.16244600
0	-0.69353600	0.02309400	1.97491200
Н	-0.63666000	-1.27191300	3.57047300
Н	1.80701500	-1.67389600	3.42647600
С	-1.43712900	-2.89058100	1.87438800
Н	-2.29589200	-2.23544700	1.70509000
Н	-1.52954400	-3.37515700	2.85157500
Н	-1.41872800	-3.65076000	1.09533500
0	-0.20683600	-2.18007900	1.78288000
Н	-1.52095200	-0.30683400	0.32733200
Н	-6.32192000	0.62213900	-1.90455500
Н	-5.52017500	0.78556800	2.30086300
С	0.57182000	-0.63070200	-0.99393400
С	0.92792600	0.68931700	-0.83526000
С	1.88820500	-0.32678400	-0.74402300
Ν	0.65363700	1.98394500	-0.80758100
Ν	3.12276600	-0.75992700	-0.58990600
С	1.77277600	2.90198900	-0.48463100
С	-0.53123400	2.54707300	-1.51562400
С	4.24346300	0.18108700	-0.38685900
С	3.40231800	-2.21028300	-0.73678000
С	2.59033300	3.23281400	-1.73223600
Н	2.39931500	2.34804700	0.21848700
С	1.30258900	4.15418900	0.24661400
С	-1.68477200	2.83644900	-0.56283700
Н	-0.17415800	3.49926900	-1.91482600
С	-0.94861800	1.70246800	-2.71450000
Н	3.79392700	1.17245100	-0.39678300
С	4.88536800	-0.03494100	0.98030200
С	5.24512600	0.12073700	-1.53638800
Η	4.47387500	-2.30919400	-0.55812100
С	2.67920200	-3.03562100	0.32093500
С	3.13039600	-2.67147000	-2.16680800
Η	2.93336700	2.32486900	-2.23576600
Н	2.00258800	3.81438000	-2.44679700
Н	3.46714100	3.82671700	-1.46427300
Н	0.68649500	4.79763000	-0.38500400
Н	0.73820600	3.90172100	1.14562300
Η	2.17686300	4.73469700	0.54763900
Η	-2.04157000	1.92614500	-0.08426000
Н	-1.39343300	3.54809200	0.21066500
Η	-2.52354400	3.26480600	-1.11582100
Η	-0.09673900	1.48070900	-3.36199700
Η	-1.42308400	0.76860900	-2.41498700
Н	-1.67953500	2.26124800	-3.30133200
Н	5.34940200	-1.02145600	1.05849800
Н	5.66643400	0.70974900	1.14660700
Н	4.14269100	0.05910200	1.77615600
Н	4.75192200	0.29407200	-2.49554800
Н	6.00597100	0.89191200	-1.39970000
Н	5.76012700	-0.84193200	-1.58210200
Н	2.88535800	-4.09594100	0.16161600
Н	3.02606600	-2.76911500	1.32096700
Н	1.59676200	-2.89016300	0.30620900

Н	2.07679800	-2.56602300	-2.44016800
Н	3.71775100	-2.09259400	-2.88198200
Н	3.39437800	-3.72453400	-2.27879400

E,Z Conformation

Optimized Structure of *E*,*Z*-4-Cy-INT₁.

- Thermochemistry -

(0 imaginary frequencies)	
Zero-point correction=	0.602056 (Hartree/Particle)
Thermal correction to Energy=	0.636847
Thermal correction to Enthalpy=	0.637792
Thermal correction to Gibbs Free Ener	rgy= 0.533221
Sum of electronic and zero-point Ener	gies= -1591.463325
Sum of electronic and thermal Energie	-1591.428534
Sum of electronic and thermal Enthalp	bies= -1591.427590
Sum of electronic and thermal Free En	nergies= -1591.532161

С	-1.69895000	-0.94482800	0.27324700
S	-0.99553400	-2.23085900	1.08507800
Ν	-3.01681100	-0.77676700	0.14122900
Н	-3.60683100	-1.53307000	0.52637900
Ν	-0.93408200	0.06200400	-0.29718200
С	-3.63938800	0.33865000	-0.49887000
С	-4.22286400	0.17675200	-1.75073700
С	-3.66561100	1.57787200	0.13902300
С	-4.83174600	1.26219200	-2.36747600
Н	-4.19858900	-0.79593700	-2.22742500
С	-4.26368500	2.66225700	-0.49131600
Н	-3.23739200	1.67713300	1.13100800
С	-4.84653900	2.50419000	-1.74337300
Н	-5.32212000	3.34808700	-2.22849600
Н	-1.42075300	0.89740400	-0.59807400
С	-4.78758600	-2.80617500	2.59601100

Н	-4.94501500	-3.77005200	3.08769600
Н	-5.75495700	-2.32220500	2.46552900
Н	-4.15372000	-2.17643200	3.23036000
0	-4.22801600	-2.97858200	1.29934800
Н	-3.35675700	-3.37953400	1.39427400
С	0.42453100	0.13319900	-0.23865400
С	1.67348900	-0.41492700	-0.39073400
C	1.50506400	0.93744700	-0.00112600
N	2.46169300	-1.42407300	-0.66745600
N	1.96052600	2.11884400	0.34699200
C	3.91729000	-1.23151800	-0.42781500
Č	1.81081600	-2.71318100	-1.04282000
Č	3.40830700	2.38620300	0.48362800
Č	0 98217200	3 17044800	0 71614400
Č	4 25341100	-1 41021200	1 05122800
н	4 10185900	-0 19008000	-0 70196300
C	4 81156100	-2 06422400	-1 33597200
C	2 13394000	-3 83331400	-0.06223100
н	3 90228200	1 47774800	0.14003600
C	3 84429800	3 53455800	-0.42056300
C C	3 78492200	2 60113500	1 94679200
ч	1 58620000	4 01518200	1.04044200
II C	0.17037600	3 62270100	0.40087500
C C	0.17937000	2 73093400	1 88581/00
с u	3 61860000	2.73093400	1.67887300
П Ц	111726200	-0.77841000	1.07887500
п u	4.11/20300	-2.44393300	1.30001300
п	3.29463300	-1.13421000	1.23240300
п	4.75251000	-5.15524100	-1.13843100
п	4.39870700	-1.88018400	-2.38930100
п	3.84/32000	-1.//303300	-1.14/50/00
П	5.1/542800	-4.15505/00	-0.1105//00
п	1.90498700	-3.5299/500	0.96070000
Н	1.50996200	-4.696/3000	-0.30310200
Н	3.38519100	4.48154600	-0.12566600
H	4.92621900	3.66356600	-0.352/5/00
H	3.58/26500	3.3339/200	-1.462/0200
H	3.32450600	3.50413400	2.35597700
Н	3.4/894000	1.74967900	2.558/2600
Н	4.866/9/00	2.71680500	2.03/02100
Н	-0.48608/00	4.44293300	-0.22388000
Н	0.83860300	3.96640100	-1.29885100
Н	-0.44472100	2.81779400	-0.89867100
Н	-0.54895100	1.89919800	1.61183600
Н	0.71507100	2.41971500	2.73639200
Н	-0.52749000	3.56173100	2.20372600
Н	-5.29514700	1.13674700	-3.33858300
Н	-4.29317900	3.62488000	0.00520000
Н	0.74765700	-2.50373600	-0.92336800
С	2.04426000	-3.09668600	-2.50256300
Н	3.03106700	-3.52417300	-2.67832600
Н	1.30664300	-3.85187600	-2.78318600
Н	1.91049200	-2.23666100	-3.16256700

Optimized Structure of *E*,*Z*-4-Cy-**INT**₂. - Thermochemistry -

-----(0 imaginary frequencies)

Zero-point correction=	0.727291 (Hartree/Particle)
Thermal correction to Energy=	0.768940
Thermal correction to Enthalpy=	0.769885
Thermal correction to Gibbs Free Ene	ergy= 0.650424
Sum of electronic and zero-point Ener	rgies= -1861.885849
Sum of electronic and thermal Energi	es= -1861.844199
Sum of electronic and thermal Enthal	pies= -1861.843255
Sum of electronic and thermal Free E	nergies= -1861.962716

С	-1.09573900	0.18933600	-1.87789700
S	-0.05668300	0.93416800	-2.96362900
Ν	-2.40943000	0.04555900	-2.11740900
Н	-2.72967100	0.46766900	-2.97584300
Ν	-0.66769700	-0.32792700	-0.68694000
С	-3.33357100	-0.72867100	-1.34915400
С	-4.45922600	-0.11795000	-0.81416100
С	-3.11450900	-2.09393300	-1.16951400
С	-5.36925900	-0.87514700	-0.08755900
Н	-4.61020500	0.94556700	-0.95661300
С	-4.01711900	-2.83859800	-0.42543300
Н	-2.24972300	-2.56369600	-1.62441900
С	-5.14605200	-2.23003100	0.11500400
Н	-5.85418900	-2.81587200	0.68865800
Н	-1.34350200	-0.59634100	0.02972800
С	-2.70764200	-0.37765700	2.29218400
С	-1.38583900	-0.17128700	2.33845700
С	-0.80297000	1.21799400	2.34607600
С	-1.90675000	2.23388600	2.64033900
С	-3.14209700	1.87855400	1.82941300
Н	-0.00990800	1.28387500	3.09733200
Н	-0.35101400	1.46559100	1.37927900
Н	-2.15814500	2.22253300	3.70483000
Н	-1.58522100	3.24572700	2.38311300

Н	-3.96842700	2.56195600	2.02093000
Н	-2.89799800	1.89719200	0.76066700
0	-3.64022200	0.57897700	2.16306100
Н	-0.74365400	-1.03295600	2.48439600
С	-1.56866600	4.42190200	-0.69752800
H	-0.65154400	4,98760000	-0.90234100
Н	-1 92300300	4 68973600	0 29892400
Н	-2.33183500	4 71532000	-1 42575900
0	-1 34147400	3 02461300	-0.69922000
н	-1 03844600	2 75370100	-1 57363700
C	0.65053600	-0 35418400	-0.30914300
C	1 82634200	0.27268100	0.00798100
C	1.02034200	-1 14680000	0.05736900
N	2 55178900	1 350/5100	0.14442200
N	2.33178900	-2 3/053500	0.25804800
N C	2.17537500	-2.34933300	0.23804800
C	4.00320700	1.1046/600	0.40449300
C	1.00424000	2.04337100	-0.1/093100
C	3.37872000	-2.37880400	0.00384200
C	1.29458700	-3.30//2200	-0.0400/200
C II	4.74237200	0.79903300	-0.88194800
П	4.05203900	0.31430100	1.08945200
C	4.655/5200	2.32937900	1.13/35300
C	2.49013300	3.31831100	-1.40196/00
H	4.00594400	-1.58459/00	0./9568800
C	3.64696600	-3.309/3100	2.00080100
C	4.35985800	-3.2818/000	-0.44256200
H	1.90286800	-4.38/83400	0.1/0/0600
C	0.08512800	-3.53824100	0.88880800
C	0.90778900	-3.53330200	-1.51655900
H	4.2//68/00	-0.060/3600	-1.3/26/000
H	4.74216300	1.63119300	-1.58/83500
H	5./8046400	0.54310900	-0.65/5/400
H	4.68802500	3.23/61/00	0.534/7000
H	4.15119800	2.54461900	2.0/942600
H	5.68/2//00	2.05259800	1.36368000
H	3.50009900	3.69184100	-1.22090500
H	2.50651700	2.633/2000	-2.25134600
H	1.86908600	4.17534400	-1.67359500
H	3.23264900	-4.3188//00	1.93222700
H	4.68/96000	-3.40551500	2.31542700
H	3.10246500	-2.76400900	2.7/431300
H	3.99166100	-4.295/9000	-0.61829400
H	4.30044200	-2.72511300	-1.38024900
H	5.41065200	-3.36115100	-0.15708400
Н	-0.46808200	-4.46745000	0.73800600
Н	0.39208400	-3.48938100	1.93569600
Н	-0.60144500	-2.71255300	0.68596800
Н	0.29804000	-2.66603600	-1.78472500
Н	1.79231500	-3.53933300	-2.15610100
Н	0.32622700	-4.43255300	-1.73037900
Н	-6.24324600	-0.39830800	0.33752400
H	-3.85174400	-3.90027100	-0.28499600
H	0.86793300	2.35397000	-0.44024600
С	1.76644800	3.57799200	1.02699100
Н	2.68741500	4.12070100	1.23878400
Н	0.98951200	4.31460000	0.81125000

Н	1.46439300	3.03068900	1.92194100
Н	-3.15803000	-1.36094300	2.37387800

Optimized Structure of *E*,*Z*-4-Cy-TS₁.

(1 imaginary frequency = -664.73 Hz)	
Zero-point correction=	0.723417 (Hartree/Particle)
Thermal correction to Energy=	0.763687
Thermal correction to Enthalpy=	0.764632
Thermal correction to Gibbs Free Ener	rgy= 0.650510
Sum of electronic and zero-point Ener	gies= -1861.859816
Sum of electronic and thermal Energie	es= -1861.819545
Sum of electronic and thermal Enthalp	bies= -1861.818601
Sum of electronic and thermal Free Er	ergies= -1861.932723

C	-1 12351300	0 11873200	-1 60401000
C	-1.12331300	1.04600900	2 72000000
5	-0.25338100	1.04600800	-2./3090900
Ν	-2.46720100	-0.02447100	-1.77882600
Н	-2.82967500	0.49545900	-2.56312500
Ν	-0.60961000	-0.49989700	-0.53067700
С	-3.35686200	-0.92625300	-1.14429300
С	-4.66850600	-0.50927000	-0.92556200
С	-2.97548000	-2.21956200	-0.78253100
С	-5.58438600	-1.36535200	-0.32846300
Η	-4.96510300	0.49318000	-1.21447500
С	-3.89207000	-3.06213200	-0.16938300
Н	-1.96945200	-2.55884900	-0.98461500
С	-5.19729400	-2.64016800	0.06674000
Н	-5.91129200	-3.30767000	0.53378900
Н	-1.37580500	-0.39760900	0.75295000
С	-3.06166000	-0.15238800	1.91740500
С	-1.66036100	-0.09776100	1.94132600
С	-0.99940100	1.26102300	2.18410300
С	-2.03995400	2.29469700	2.60844400
С	-3.25322400	2.19274400	1.71039700
Н	-0.22256900	1.16142300	2.94402800
Н	-0.52449500	1.61102400	1.26441300
Н	-2.33933100	2.14441300	3.65045900

⁻⁻⁻⁻⁻

Н	-1.63505600	3.30404200	2.51771300
Н	-4.06725000	2.85092100	2.00302300
Н	-2.98068800	2.36058500	0.66536300
0	-3.84020100	0.85289000	1.78773500
Н	-1.22910700	-0.96911800	2.43497500
С	-1.42850700	4.58281700	-0.94819600
Н	-0.43877000	4.94742300	-1.24792500
Н	-1.74587800	5.14215900	-0.06639600
Н	-2.13538600	4.78471800	-1.75971100
0	-1.40207800	3.21146600	-0.59765700
H	-1.11425900	2,70005800	-1.37109400
C	0.72023500	-0.42301700	-0.27938900
С	1.88589400	0.25455300	0.01055400
С	1.83023300	-1.15347100	0.06188800
N	2.57318000	1.36764300	0.15830700
Ν	2.36514200	-2.34211900	0.24824800
C	4.02902600	1.22775000	0.41289000
Ċ	1.87443000	2.63489500	-0.18174400
С	3.79842300	-2.51617100	0.55008600
Ċ	1.50799600	-3.52784800	0.01592600
Ċ	4.78334700	0.88269800	-0.87049900
H	4.10420500	0.37950700	1.09917700
С	4.64543600	2.41188500	1.14521400
Č	2.46658900	3.31562000	-1.40977100
H	4.20149500	-1.50682400	0.63370500
C	3.99569100	-3.21845400	1.89044700
Č	4.52494500	-3.21275300	-0.59752200
H	2.14623200	-4.38845200	0.22139900
С	0.34060700	-3.56026600	0.99963400
С	1.04988600	-3.60174100	-1.43835500
Н	4.33421800	0.02101200	-1.37198300
Н	4.77815600	1.71969000	-1.57052600
Н	5.82338700	0.63890600	-0.64002700
Н	4.65141600	3.32037800	0.54186800
Н	4.13245300	2.61417700	2.08599700
Н	5.68463000	2.16732500	1.37405200
Н	3.46536400	3.71849500	-1.22897300
Н	2.50386000	2.62138900	-2.25069300
Н	1.82291200	4.15112600	-1.69533600
Н	3.61123100	-4.24152400	1.87085000
Н	5.06024900	-3.27479600	2.12670900
Н	3.49225700	-2.67615800	2.69384300
Н	4.18086100	-4.24175600	-0.73024500
Н	4.37689100	-2.67616700	-1.53721100
Н	5.59610400	-3.25006800	-0.38865200
Н	-0.20561700	-4.50003600	0.89271500
Н	0.69710600	-3.48597200	2.02966800
Н	-0.35887000	-2.74353000	0.80195300
Н	0.40818100	-2.75436000	-1.69484300
Н	1.90301000	-3.60429900	-2.11933800
Н	0.48019600	-4.51916800	-1.60245100
Н	-6.60156600	-1.02960300	-0.16596300
Н	-3.59000800	-4.06688800	0.10359000
Н	0.87520500	2.30708200	-0.46463800
С	1.71035800	3.57775800	1.00911400
Н	2.61126400	4.15022900	1.23014800

Н	0.91343600	4.28723000	0.77577600
Н	1.41727900	3.02813900	1.90668300
Н	-3.60094400	-1.09770200	1.94122000

Optimized Structure of *E*,*Z*-4-Cy-INT₃.

- Thermochemistry -

(0 imaginary frequencies)

Zero-point correction=	0.726499 (Hartree/Particle)
Thermal correction to Energy=	0.767764
Thermal correction to Enthalpy=	0.768709
Thermal correction to Gibbs Free Ene	rgy= 0.651185
Sum of electronic and zero-point Ener	gies= -1861.860769
Sum of electronic and thermal Energie	es= -1861.819504
Sum of electronic and thermal Enthalp	bies= -1861.818560
Sum of electronic and thermal Free En	nergies= -1861.936083

С	-1.05863800	-0.14875900	-1.58291900
S	-0.40145500	1.00240000	-2.66632000
Ν	-2.40027100	-0.41653200	-1.72086200
Н	-2.83417900	0.12654500	-2.45108700
Ν	-0.41419000	-0.81574900	-0.63824200
С	-3.22572900	-1.34017100	-1.05933500
С	-4.59754100	-1.06107400	-1.01653400
С	-2.75720700	-2.52414100	-0.47889900
С	-5.47747800	-1.93004100	-0.38717600
Н	-4.97212400	-0.15516200	-1.48203300
С	-3.64509600	-3.37604600	0.16599300
Н	-1.70649500	-2.76351700	-0.53899200
С	-5.00486700	-3.08622000	0.22529600
Н	-5.69027100	-3.76551100	0.71720100
Н	-1.52486400	-0.81661800	1.20901700
С	-3.38786100	-0.17496900	1.79336100
С	-1.94376100	-0.17196500	2.00476400

С	-1.29201100	1.20691100	1.99165500
С	-2.27059200	2.26651000	2.48872100
С	-3.52707200	2.21370900	1.65587000
Н	-0.38546600	1.18934400	2.59697700
Н	-1.00107500	1.45628000	0.96904200
Н	-2.50538000	2.12674000	3.54908800
Н	-1.84415100	3.26427800	2.36968300
Н	-4.34795200	2.81532300	2.03647600
Н	-3.31818200	2.43821800	0.60626000
0	-4.10546100	0.84024000	1.65013500
Н	-1.78591500	-0.73970200	2.93343900
С	-1.94814700	4.38979200	-1.28844200
Н	-0.95283700	4.83487400	-1.40373600
Н	-2.52230400	5.01111500	-0.59860900
Н	-2.44938500	4.39790500	-2.26137700
0	-1.87990300	3.08417700	-0.74342900
H	-1.47415500	2,49934100	-1.41112200
C	0.85864300	-0.51383200	-0.34656100
Č	1.89239600	0.33943200	-0.00255500
Č	2 07195000	-1 04872200	0.02244600
N	2 38370900	1 55206100	0 20735100
N	2 79103500	-2 14135000	0.21077600
C	3 82635200	1 63382800	0.53586300
C	1 52632300	2 70135900	-0.17113200
C	4 22761700	-2 08124200	0.52920400
C	2 13449100	-3 44675800	-0.02208600
C	4 69753800	1 42918500	-0 70381200
н	3 99794300	0.79720000	1 21997100
C II	4 21226200	2 88834800	1 30849100
C C	2.06535100	2.00034000	-1 37461500
н	4 45219500	-1 02158900	0.65013600
П С	4 53196600	-2 78235200	1 85043000
C	5 07332400	-2 60756100	-0.62780500
ч	2 91026600	-1 1953/800	0.14775800
n C	1 01081300	-3 67500000	0.14775000
C C	1.67696900	-3.57985000	-1 46264900
ч	1.04090900	-5.57585000	-1.40204900 -1.24722300
П Н	4.40423900	0.32087400	1 28087000
п	4.01930200	1 32360200	-1.38987000
П П	1 1 2 2 8 1 0 0 0	2 702 70000	-0.41270300
н Н	4.12381000	3.79379000	2 21202400
П П	5 25889700	2 70711700	2.21302400
П П	2 08801200	2.79711700	1.00398000
П U	2.98801300	4.00389400	-1.1310/200
п	2.23708900	2.78300900	-2.21024300
п	1.52149900	4.20078100	-1.09120400
П	4.3419//00	-3.85/12000	1./9001800
П	3.38340000	-2.0304/300	2.1058/700
п	3.92018100	-2.30893100	2.03983700
H	4.90642600	-3.6/4/5200	-0./9655500
H H	4.84380500	-2.0/355900	-1.55255100
П	0.13401000	-2.4/083000	-0.40030600
П	0.585/2500	-4.00848/00	0.86204500
H	1.404/3900	-3.60162000	2.01653800
H	0.2229/000	-2.93/22300	0.86442900
H	0.85212200	-2.86144900	-1.67902700
Н	2.46374700	-3.41/03600	-2.16861200

Η	1.24734700	-4.58304900	-1.62738600
Н	-6.53634400	-1.69987700	-0.37406200
Н	-3.26771800	-4.29106800	0.60840600
Η	0.60438600	2.22951800	-0.50799300
С	1.16654500	3.61462400	1.00120000
Η	1.93890600	4.35160000	1.22311300
Н	0.25098300	4.15321600	0.74420300
Η	0.97468000	3.03474800	1.90698300
Н	-3.94782100	-1.11196200	1.76987000

Optimized Structure of *E*,*Z*-4-Cy-TS₂.

- Thermochemistry -

(1 imaginary frequency = -65.27 Hz) Zero-point correction= 0.728155 (Hartree/Particle) Thermal correction to Energy= 0.768097 Thermal correction to Enthalpy= 0.769042 Thermal correction to Gibbs Free Energy= 0.654409 Sum of electronic and zero-point Energies= -1861.854060 Sum of electronic and thermal Energies= -1861.814118 Sum of electronic and thermal Enthalpies= -1861.813173 Sum of electronic and thermal Free Energies= -1861.927806

С	-0.78391900	0.63744200	-1.00325000
S	-0.83573600	-0.77651100	-2.01252400
Ν	-1.94768600	1.35398200	-0.92933100
Н	-2.62107100	1.08621900	-1.62657600
Ν	0.24673600	1.07664000	-0.32467100
С	-2.35669400	2.39129300	-0.07443800
С	-1.66804800	2.77760200	1.07718600
С	-3.56965500	3.01787300	-0.38548900
С	-2.20067200	3.76652500	1.89579100
Н	-0.72112900	2.31725500	1.31227400
С	-4.08788300	4.00245800	0.44092400
Н	-4.09458500	2.74389500	-1.29646400
С	-3.40697300	4.38172300	1.59229200
Н	-3.80730300	5.15446300	2.23691500
Н	-3.64523800	-3.46896100	-0.81468200
С	-4.04963600	-1.53784400	-1.44951000
С	-4.51196800	-2.80523400	-0.87000400

С	-5.25013300	-2.66714100	0.45653100
С	-6.06145700	-1.37221300	0.46653900
С	-5.16893100	-0.19038200	0.17444800
Н	-5.89908300	-3.52912500	0.61124100
Н	-4.50853100	-2.65156400	1.25599600
Н	-6.86871900	-1.41390100	-0.27184000
Н	-6.52693900	-1.20787500	1.44035200
Н	-5.69803900	0.74182200	-0.00376600
Н	-4.39410100	-0.03437300	0.92494300
0	-4.40519400	-0.39286400	-1.07684500
Н	-5.14976800	-3.22948200	-1.66449100
С	-1.95058400	-0.95326500	1.75605300
Н	-2.55342300	-1.28093500	2.60510500
Н	-2.13075500	0.11288600	1.57979900
Н	-0.89550500	-1.08405000	2.01774700
0	-2.31326900	-1.74918200	0.63901600
C	1.39387800	0.39113500	-0.27034600
C	2.17669700	-0.72765800	-0.05878500
C	2.76390200	0.53180100	-0.20974500
N	2.30327900	-2.02743400	0.17304800
N	3.80212800	1.34406100	-0.27002000
C	3 67434900	-2 53749000	0 39774500
C	1 05401500	-2 77486400	0 44316300
Č	5 17732600	0.85528200	-0.07803300
C	3 55269600	2 77334800	-0 56785600
C	4 16291100	-2.23773900	1 81662800
Н	4 29277500	-1 97214900	-0 30499700
C	3 85237500	-4 00446800	0.02908600
Č	0.96769100	-3 30187100	1 87307400
H	5 07705200	-0 20658700	0 14672900
C	5 99885700	0.99468600	-1 35732400
C	5 83953100	1 52169200	1 12517400
Н	4 54123400	3 23465100	-0.60383100
C	2 89479700	2.94259600	-1 93461500
C	2.05175700	3 43521800	0 54997100
н	4 00952600	-1 18509200	2 07057100
н	3 63768700	-2 84589900	2 55524300
н	5 23112700	-2 45338200	1 90067600
н	3 29996100	-4 67028900	0.69396800
н	3 54728100	-4 19711300	-0.99990300
Н	4 91086600	-4 25584900	0 12243500
Н	1 66475200	-4 12186500	2.05824200
Н	1 16503500	-2 51074100	2.60059300
H	-0.04196900	-3 68185800	2.00039300
Н	6 14820900	2 04367700	-1 62619300
Н	6 98551100	0 54742200	-1.02017500
н Ц	5 506/0900	0.49244400	-2 10200000
н Ц	5 98165200	2 50370500	0.06605300
н ц	5.23025700	1 38313600	0.90095500
н ц	6 82423500	1.08125300	1 20630800
Н	2 80271600	4 00480200	-2 17126000
H	3 48872400	2 46452100	-2 71655500
Н	1 88088/00	2.51255000	_1 94163400
Н	1 730/8300	2.51255000	0 59600200
H	3 2307/000	3 29493000	1 51681600
H	2 66441200	4 50745700	0 36056700

Η	-1.65451700	4.05974500	2.78517000
Η	-5.02219500	4.48426200	0.17630700
Η	0.28413600	-2.01381500	0.32805200
С	0.73788300	-3.84239100	-0.60121700
Η	0.89156900	-3.44535100	-1.60543400
Н	1.32616000	-4.75155700	-0.47516800
Η	-0.31710400	-4.11293200	-0.50256100
Н	-3.40457100	-1.51653300	-2.32835100
Н	-1.73418500	-1.52110700	-0.11310100

Optimized Structure of *E*, *Z*-4-Cy-INT₄.

(0 imaginary frequencies)	
Zero-point correction=	0.599660 (Hartree/Particle)
Thermal correction to Energy=	0.634038
Thermal correction to Enthalpy=	0.634982
Thermal correction to Gibbs Free Ene	rgy= 0.533050
Sum of electronic and zero-point Ener	rgies= -1591.451587
Sum of electronic and thermal Energie	-1591.417209
Sum of electronic and thermal Enthal	bies= -1591.416265
Sum of electronic and thermal Free En	nergies= -1591.518197
	-

С	2.53445600	-0.74138000	0.84437900
S	4.19314500	-1.32232300	0.74619700
Ν	2.23119000	-0.20876500	2.05616300
Н	3.00373400	-0.08893100	2.69465400
Ν	1.74525300	-0.85919100	-0.17754000
С	0.93081900	0.04247900	2.58655700
С	0.65801700	1.29039400	3.13711400
С	-0.03643900	-0.95784800	2.60097900
С	-0.59619000	1.54877900	3.67293200
Н	1.42770900	2.05275700	3.14411100

С	-1.29449200	-0.68547100	3.12065800
Н	0.20042200	-1.94100500	2.20905900
С	-1.57942000	0.56665200	3.65228300
Н	-2.55702200	0.76747000	4.07366900
0	3.46061900	-1.81246000	2.30156500
Н	4.14034500	-1.59388300	-0.59302800
С	0.51430800	-0.30648000	-0.2643100
С	-0.82876300	-0.52127100	-0.4378900
С	-0.29103100	0.76788700	-0.57695400
Ν	-1.83642400	-1.37268600	-0.4751000
Ν	-0.40883400	2.04515700	-0.86532600
С	-3.17770200	-0.82319000	-0.76680400
С	-1.45239400	-2.81295300	-0.46786700
С	-1.73594400	2.66361500	-1.05716600
С	0.81829600	2.86182300	-1.01291100
С	-3.32795600	-0.52230700	-2.25818000
Н	-3.21505700	0.12201500	-0.21687300
С	-4.32442300	-1.67035600	-0.23402200
С	-1.72496500	-3.46336200	-1.82184300
Н	-2.45383400	1.85642400	-0.90710500
С	-1.98952000	3.72738700	0.00747200
С	-1.91025700	3.18762500	-2.47952800
Н	0.46861100	3.83722800	-1.35376500
С	1.53548600	3.04894700	0.31831200
С	1.73445500	2.28050300	-2.08600100
Н	-2.49474200	0.08268200	-2.62623200
Н	-3.36943000	-1.43929100	-2.84787400
Н	-4.25208500	0.03346600	-2.43414300
Н	-4.41092900	-2.62604900	-0.75343800
Н	-4.22192500	-1.85446600	0.83595400
Н	-5.25772500	-1.12768700	-0.39559600
Н	-2.79429800	-3.57801700	-2.01144300
Н	-1.28442100	-2.88411100	-2.63596600
Н	-1.28033700	-4.46051200	-1.83692600
Н	-1.29340500	4.56483200	-0.08839200
Н	-2.99984900	4.12764700	-0.09832600
Н	-1.88592200	3.30222400	1.00859500
Н	-1.23839000	4.02257500	-2.69337400
Н	-1.72506800	2.40040600	-3.21371600
Н	-2.93168900	3.54880700	-2.61575700
Н	2.36533500	3.74843300	0.19741800
Н	0.85516400	3.44321400	1.07499200
Н	1.94609600	2.10183500	0.67723400
Н	2.14290600	1.31565700	-1.77209900
Н	1.20179800	2.14643400	-3.02987400
Н	2.57534000	2.95498300	-2.25963600
Н	-0.80229700	2.51785100	4.11158800
Н	-2.05049400	-1.46133100	3.13541500
Н	-0.36782100	-2.78683700	-0.33473900
С	-2.02008200	-3.62866300	0.69154800
Н	-3.07420400	-3.86987300	0.56123200
Н	-1.47445900	-4.57300900	0.75277000
Н	-1.89633500	-3.10706400	1.64121200
Н	2.62380500	-1.55496100	-1.89354000
С	3.83587600	-0.82744300	-3.24963000
Н	4.01241700	0.14938700	-2.78161900

Н	4.76297400	-1.16086600	-3.71416200
Н	3.07871200	-0.71539700	-4.03306100

Optimized Structure of *E*,*Z*-4-Cy-**TS**₃-**PA**.

- Thern	nochemistry -		
(1 imag	inary frequency =	-101.65 Hz)	
Zero-po	int correction=	0	0.729627 (Hartree/Particle)
Therma	l correction to End	ergy=	0.768801
Therma	l correction to Ent	halpy=	0.769745
Therma	l correction to Gib	bs Free Energ	y = 0.657465
Sum of	electronic and zer	o-point Energi	es= -1861.859081
Sum of	electronic and the	rmal Energies	-1861.819908
Sum of	electronic and the	rmal Enthalpie	es= -1861.818964
Sum of	electronic and the	rmal Free Ene	rgies= -1861.931244
			-
С	1.23662800	0.30342800	-2.06465000
S	0.70780500	-0.96197100	-3.08355500
Ν	2.55903500	0.66783800	-2.18178400
Н	3.03052300	0.17066200	-2.92159300
Ν	0.53456700	0.94400100	-1.13809000
С	3.39523900	1.25069700	-1.20703900
С	4.68891400	0.73369800	-1.07747600
С	2.99315000	2.29758800	-0.37717700
С	5.55203100	1.22599300	-0.10825500
Н	5.02242300	-0.05201600	-1.74941200
С	3.85898200	2.77012900	0.60140700
Н	2.01255000	2.72933700	-0.50514500
С	5.13292500	2.23498700	0.75122900
Н	5.80304500	2.61755300	1.51133500
Н	1.26513700	0.54746900	0.96346500
С	2.58398500	-1.08586900	1.30389600
С	1.56116000	-0.09836700	1.79016400
С	0.38702100	-0.77296700	2.49070200
С	0.92179800	-1.78271700	3.50533900
С	1.86805200	-2.75919600	2.83342100

Η	-0.22860600	-0.01715600	2.98197900
Н	-0.25183700	-1.27411400	1.75620200
Н	1.44891700	-1.25962800	4.30925700
Н	0.11068600	-2.35142100	3.96641500
Н	2.39428000	-3.38620100	3.54925600
Н	1.33558700	-3.40255700	2.12569500
0	2.92837700	-2.09168100	2.10085300
Н	2.11528700	0.53470100	2.49280800
С	2.78034900	-2.73788900	-0.71076800
Н	2.17747000	-3.22990200	-1.46904800
Н	3.15744900	-3.44110500	0.02594300
Н	3.59015700	-2.16944400	-1.16792900
0	1.89958100	-1.82691400	0.00342900
Н	1.46052800	-1.23294200	-0.64302900
С	-0.70905700	0.58797900	-0.80137300
С	-1.73903200	-0.28170300	-0.46508300
С	-1.85639800	1.08961100	-0.22210300
Ν	-2.26361800	-1.49603100	-0.32603200
Ν	-2.49327900	2.15365600	0.23226600
С	-3.63904200	-1.55507100	0.22265000
С	-1.56400500	-2.62389000	-0.98349500
Ċ	-3.89344000	2.08826000	0.68582400
Ċ	-1.76746700	3,44369900	0.25540600
Č	-4.68970600	-1.21233500	-0.83487600
Н	-3.65670200	-0.77814600	0.99234800
C	-3.95738200	-2.86124300	0.93826600
č	-2.34301900	-3.20994200	-2.15581000
H	-4.20143400	1.05579700	0.52692200
C	-4.00830200	2.39987100	2.17536100
Č	-4.79475800	2.96914300	-0.17612800
H	-2.48498400	4.16978800	0.64101900
Ĉ	-0.58752300	3.37926000	1.22311300
Č	-1.35131900	3.87892200	-1.14690300
H	-4.43679200	-0.28775500	-1.36093900
Н	-4 78206800	-2.00595800	-1 57743600
Н	-5.66571000	-1.07774700	-0.36134600
Н	-4 01566200	-3 70654800	0 25109800
Н	-3 22362600	-3 08380400	1 71427900
Н	-4 93425400	-2.76186100	1 41 563 300
Н	-3 23590600	-3 75356300	-1 83835200
Н	-2 63242600	-2 42488200	-2.85663400
Н	-1 70134500	-3 91303600	-2 69223900
Н	-3 71490100	3 43013300	2 39339600
Н	-5 04207400	2.27618100	2.50503700
Н	-3 37640500	1 73028100	2.76412900
Н	-4 57788500	4 03171900	-0.04019000
Н	-4 67763700	2 72577400	-1 23421800
Н	-5 83951500	2.72377400	0.09945000
н	-0 10505600	4 35688600	1 29192200
н	-0.91831700	3 08935800	2 22346400
H	0 15765000	2 66041700	0.87221800
H	-0 60375500	3 19981200	-1 56479600
H	-2 21255000	3 91034100	-1 81736100
Н	-0.91201800	4 87820000	-1 107/18700
Н	6 55225500	0.81729600	-0.02520400
H	3.53626600	3.58272200	1.24261700
-			

Η	-0.68528800	-2.15180000	-1.42349300
С	-1.06935900	-3.69633600	-0.01137900
Н	-1.85355200	-4.37965700	0.31420000
Н	-0.30690000	-4.29727400	-0.51501300
Н	-0.61549500	-3.24468100	0.87368100
Η	3.47445000	-0.64199900	0.85962400

Optimized Structure of *E*,*Z*-4-Cy-TS₃-MA.

- Thermochemistry -

(1 imaginary frequency = -384.83 Hz) Zero-point correction= 0.597671 (Hartree/Particle) Thermal correction to Energy= 0.630953 Thermal correction to Enthalpy= 0.631898 Thermal correction to Gibbs Free Energy= 0.532509 Sum of electronic and zero-point Energies= -1591.443428 Sum of electronic and thermal Energies= -1591.410145 Sum of electronic and thermal Enthalpies= -1591.409201 Sum of electronic and thermal Free Energies= -1591.508590

С	2.63573700	-0.50746800	0.74403700
S	4.29636300	-0.96540800	0.62629400
Ν	2.30975100	0.27382700	1.80737000
Н	3.10253300	0.55306200	2.36703400
Ν	1.74933300	-0.91718900	-0.16139900
С	1.02700600	0.47464500	2.39689800
С	0.66059800	1.76238600	2.77634600
С	0.17353200	-0.59640900	2.64975400
С	-0.57296100	1.98525400	3.37273500
Н	1.34702700	2.58328800	2.60950000
С	-1.06416100	-0.36296400	3.23372600
Н	0.48467000	-1.60356700	2.39446800
С	-1.44546000	0.92567200	3.58885000
Н	-2.40643800	1.09806300	4.05825000
0	3.29970100	-2.31357300	-1.62728400
Н	3.94118800	-1.92010200	-0.79781700

С	0.51840700	-0.36729500	-0.29338100
Ċ	-0.83121500	-0.58873900	-0.37254300
Č	-0 29983200	0.68134500	-0 66127000
N	-1 83744400	-1 43291000	-0.25059500
N	-0 44334100	1 92774200	-1.05625300
C I	3 1061/700	0.01714200	-1.03023300
C C	-3.19014/00	-0.91/14000	-0.34948300
C	1 78560000	-2.80043900	-0.11393900
C C	-1.78300000	2.32027000	-1.20382000
C	0.75425900	2.70878800	-1.44831400
C	-3.43248800	-0.78085400	-2.05322600
H	-3.20354800	0.08213300	-0.10514800
C	-4.31035700	-1.69103600	0.14100800
С	-1.82274300	-3.67882200	-1.35496100
Н	-2.48047500	1.76070200	-0.85714000
С	-1.93181500	3.74199600	-0.29363400
С	-2.11076500	2.83313000	-2.66331900
Н	0.35697400	3.60673500	-1.92349200
С	1.58736100	3.13473500	-0.24658200
С	1.58143900	1.95253100	-2.48447900
Н	-2.61411400	-0.23720300	-2.53271700
Н	-3.52211400	-1.75640000	-2.53393600
Н	-4 35766800	-0 22936500	-2 23682600
Н	-4 42722900	-2 69925000	-0.25963500
Н	-4 14884200	-1 75098100	1 21768800
н	-5 25007700	-1 16398500	-0.03008600
н Ц	-3.23097700	2 80170000	1 45805400
11 Ц	-2.90237500	-3.801/9900	-1.43893400
п	-1.43039300	-3.21169300	-2.20339000
п	-1.38009000	-4.0/03/300	-1.2/202400
п	-1.234/9300	4.34//9000	-0.389/0300
H	-2.95010/00	4.13150500	-0.35395000
H	-1./2199200	3.4/435200	0./444/000
H	-1.48464300	3.63498800	-3.06222500
Н	-1.9/902200	1.94880300	-3.29055100
Н	-3.14946500	3.15934600	-2.74779900
Н	2.39920200	3.78751800	-0.57465200
Н	0.97734900	3.67973600	0.47530700
Н	2.03232400	2.26901600	0.24889500
Н	2.04604200	1.06657000	-2.04169900
Н	0.96450500	1.64436400	-3.33169500
Н	2.38156300	2.59507500	-2.85703700
Н	-0.84801900	2.98895900	3.67515400
Н	-1.72663900	-1.19481900	3.44150700
Н	-0.36296800	-2.83229200	-0.06202300
С	-1.93370400	-3.52341900	1.17590300
Н	-2.99802400	-3.75476700	1.16317000
Н	-1.39597600	-4.46488700	1.30963500
Н	-1 72243200	-2 89000600	2 03780200
H	2.45743700	-1.87747400	-1.22733500
Ċ	3 65543600	-1 67337300	-2 86948500
Ĥ	3 78357700	-0 59934200	-2 71833700
Н	4 58702500	-2 11889000	-3 20966800
H	2.86694700	-1.87051600	-3.59326100

Optimized Structure of E, Z-4-Cy-INT5.

_____ - Thermochemistry -

(0 imaginary frequencies) 0.731752 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.771119 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies=

0.772063 0.659882 -1861.907295 -1861.867928 Sum of electronic and thermal Enthalpies= -1861.866983 Sum of electronic and thermal Free Energies= -1861.979165

С	1.93985000	-1.31077500	-1.74895400
S	1.07587100	-2.26736500	-2.78921900
Ν	3.23278300	-1.54767700	-1.43533000
Н	3.65597600	-2.29488200	-1.96543400
Ν	1.43649900	-0.16728800	-1.15523700
С	4.07356400	-0.75948400	-0.59483300
С	3.72684900	-0.52559700	0.73567500
С	5.25368400	-0.23672800	-1.11505000
С	4.55354700	0.25368100	1.53440400
Н	2.81891800	-0.96031900	1.13652700
С	6.08473400	0.52259700	-0.30221200
Н	5.51224300	-0.42281700	-2.15123200
С	5.73348500	0.77657500	1.01840200
Н	6.38282400	1.37366500	1.64695600
Н	-0.02172600	1.04792700	1.80475600
С	0.27256700	-0.86801400	2.72396600
С	-0.41728300	0.48810800	2.65422600
С	-1.93462700	0.31920300	2.57107900
С	-2.40743400	-0.56406200	3.72681800
С	-1.63053700	-1.87296300	3.74874600
Н	-2.42989200	1.29342900	2.61112500
Н	-2.19973500	-0.14853100	1.61624700
Н	-2.25211100	-0.03912900	4.67499200
Н	-3.47618200	-0.78080300	3.64537400

Η	-1.83902400	-2.44134100	4.65445800
Н	-1.90985200	-2.49564100	2.88987800
0	-0.22025700	-1.66712600	3.75518200
Н	-0.15586300	1.03880300	3.56329500
С	0.68350400	-2.77468000	1.36610900
Н	0.69206400	-3.04511300	0.30938700
Н	0.08614600	-3.49928000	1.92554000
Н	1.70880500	-2.80330900	1.75586100
0	0.13575700	-1.47002700	1.45239400
Ċ	0.14632700	0.21341000	-1.05767100
Č	-1 21353900	0.01773700	-0 99919900
Č	-0 65026200	1 27712600	-0 74002600
N	-2 28561200	-0 73671500	-1 08226700
N	-0 73438200	2 54442900	-0.38511500
C	-3 58717100	-0.02991300	-1 19015800
C	-2 09360400	-2 20255300	-1 24957900
C	-2 01731900	3 10744000	0.08550400
C	0 44670400	3 42075100	-0 55935100
C	-3 91057200	0.33698900	-2 63874300
н	-3 43652600	0.90319900	-0.64518400
C	-4 73397000	-0 75427300	-0.49969100
C	-2 66732800	-2 73094500	-2 55718000
н	-2 61628400	2.75074500	0.37462800
C II	-1.83270100	3 94789000	1 34570900
C C	-2 72851700	3 85859200	-1 03475500
н	0.06384400	<i>4 43474100</i>	-0.43623400
C II	1 49399300	3 17679000	0.52498500
C	1.01795700	3 31738300	-1 97080900
н	-3.06230900	0.83684300	-3 11392100
Н	-4 16465300	-0 54125900	-3 23279000
Н	-4 76421900	1 01883800	-2 66181100
Н	-5.00331200	-1 68132700	-1 00747300
Н	-4 49748300	-0.97630400	0 54220100
Н	-5 61201000	-0 10534600	-0 51843700
Н	-3 75946800	-2 71779800	-2 57147100
Н	-2 29091200	-2 16190900	-3 40916300
Н	-2 35052900	-3 76872400	-2 68225000
Н	-1 29666600	4 88013100	1 15324300
Н	-2 81396800	4 21640700	1 74185200
Н	-1 29787700	3 38771200	2 11565300
Н	-2 13674100	4 71384500	-1 37300600
Н	-2.90599100	3 20397000	-1 89167700
Н	-3 69110300	4 23879500	-0.68576700
Н	2 32702300	3 87222900	0 40489300
Н	1 07067800	3 31618700	1 52092400
Н	1 90552400	2 16321100	0.47686300
Н	1 47095400	2 34133000	-2 16348800
Н	0.24112100	3 48796400	-2 71885600
Н	1 79538700	4 07152500	-2 10716300
Н	4 28626000	0.43161400	2 56942400
Н	7 00611000	0 92384400	-0 70661100
Н	-1.01209700	-2.30769400	-1.31993500
C	-2.54309700	-2.99823100	-0.02779400
Ĥ	-3.62443400	-3.11605000	0.03839300
Н	-2.10540200	-3.99783300	-0.08530600
Н	-2.17433700	-2.51989300	0.87956400

Н	1.34030600	-0.76066500	2.95839400
Н	2.10074400	0.43715400	-0.68840000

Table 24. Energy for all structures at TZVP and $6-311G(d,p)$ basis sets with thermal corrections and q	uasi-
harmonic approximation adjustments to both TZVP and $6-311G(d,p)$ energies. All values are in kcal m	lol^{-l} .

Structure	TZVD	Cibba Eraa	6.211C(d n)	Cibbo Eroo	Quegi	Quasi
Structure		Energy	0-3110(u,p)	CIUOS FIEC	Quasi-	Quasi-
	Ellergy	Correction	Ellergy	Correction	Approximation	Approximation
		(TZVD)		(6	Approximation	Approximation
		(1ZVF)		(0-311G(d n))	Energy	Energy
				5110(u ,p))	(TZVD)	(6.211C(d n))
MaOU	72624 20071	72605 08501			72605.00002	(0-3110(d,p))
Meon	-/2024.200/1	-72003.98301	-	-	-72003.99002	-12391.41924
DUD	160775 2604	160715 5741	/2012.3/0//	/2394.3010/	160715 6152	160701 0002
DIIF	-109//3.2094	-109/15.5/41	-	-	-109/15.0155	-109/01.0002
МТР	242410 5025	242226 2874	242200 177	109700.9394	242226 4628	242206 0450
IVI I F	-242419.3933	-242320.2074	-242399.177	- 242305 8700	-242320.4028	-242300.0439
EE4	026406 2265	026190 9406		242303.8709	026180 7402	026145 5924
E,E-4	-920490.2203	-920189.8490	-	- 026145 6019	-920189.7402	-920143.3624
E 7 4	026406 6170	026102 9624	920432.0087	920145.0916	026101 2025	026146 5275
E,Z-4	-920490.0179	-920192.8034	-	-	-920191.0923	-920140.3373
774	026402 7100	026180 4205	920431.2028	920147.3082	026188 4074	026142 0107
Z,Z-4	-920492.7109	-920109.4393	026447 2222	-	-920100.4074	-920145.0197
7 E 4	026405 0402	026190 0449	920447.3232	920144.0318	026180 4278	026144 5029
Z,E-4	-920495.0405	-920189.9448	-	-	-920189.4378	-920144.3928
Dethermore			920450.1955	920145.0998		
Pathway						
771	000128 215	008702 6602			008702 2001	008741 4002
Z,Z-1-	-999128.515	-998/92.0002	- 000077 5048	-	-998/92.3091	-998/41.4992
	1160011 570	1169502 116	999077.3040	990/41.0301	1160501 021	1160420 424
Z,Z-4-	-1100911.370	-1106302.440	-	-	-1106501.651	-1100430.434
	1169970.095	1169471 106	1100040.101	1100439.049	1169470 592	1168407 750
2,2-4-15	-11088/9.085	-11004/1.100	-	1168408 283	-1100470.303	-1100407.739
774	1168022 778	1168500 364	1108810.202	1100408.285	1168500 115	1168446 701
L,L-4-	-1100/22.770	-1100507.504	1168860 363	1168446 949	-1100507.115	-1100-+0.701
Dethway			1100000.505	1100440.747		
$2 - \Delta n$						
$E E_{-4}$	-000127.0463	-008703 0852	_	_008738 007	_008780 3122	_008738 0051
An-INT1	-777127.0403	-778775.0852	999072 9582	-776756.777	-))0/0).5122	-778738.7031
F F-4-	-1168905 985	-1168497 665	-	_	-1168496 611	-1168432 999
An-INT2	1100705.705	1100177.005	1168842 373	1168434 053	1100190.011	1100 132.777
E E-4-	-1168882 623	-1168475 611	-	-1168412.3	-1168475 379	-1168412.068
An-TS1	1100002.025	11001/0.011	1168819 311	1100112.5	1100175.575	1100112.000
E E-4-	-1168902.09	-1168492.009	-	_	-1168491 658	-1168428 266
An-INT3	1100902.09	11001/2.00/	1168838 698	1168428 617	1100171.000	1100 120.200
E E-4-	-1168883 396	-1168476 697	-	-	-1168475 99	-1168412 94
An-TS2	1100005.570	1100170.077	1168820 346	1168413 647	1100175.77	1100112.91
F F-4-	-1168901 839	-1168492 867	-	-	-1168492.11	-1168428 639
An-INT4	1100/01.03/	11007/2.007	1168838 368	1168429 396	11007/2.11	1100 (20.05)
E E-4-	-1168891 163	-1168480 177	-	-	-1168479 553	-1168416 811
An-TS3-	1100071.105	1100/00.177	1168828 421	1168417 435	1100117.000	1100 110.011
PA			1100020.121	1100.17.100		

E,E-4-	-999107.6866	-998774.176	-	-998723.099	-998773.9547	-998722.8775
An-TS3-			999056.6096			
MA						
E.E-4-	-1168920.928	-1168509.03	-	-	-1168508.265	-1168445.526
An-INT5			1168858.189	1168446.291		
E.Z-4-	-999126.0935	-998791.4973	-	-	-998790.7014	-998738.6095
An-INT1			999074 0016	998739 4054		
E 7-4-	-1168909 942	-1168500 925	-	-	-1168500 194	-1168437.085
An-INT2	1100909.912	1100200.920	1168846 833	1168437 815	1100200.171	1100 15 7.005
E 7-4-	-1168882 137	-1168476 602	-	-	-1168/75 5/3	-1168/10 987
$\Delta n_T S1$	-1100002.157	-1100470.002	1168817 581	1168412.047	-1100+75.545	-1100+10.707
E 7 4	1169902 102	1169495 444	1100017.501	1100412.047	1169494 229	1168410 520
L,Z-4-	-1100095.105	-1100403.444	-	-	-1100404.230	-1108419.550
E Z A	1160001 077	1160176 50	1108828.390	1160420.737	1169476 012	1160411 112
E,Z-4-	-1100004.02/	-11064/0.38	-	-1106411.06	-11084/0.015	-1108411.115
An-152	11(0000 200	11(0400.077	1108819.927		11(0400 121	11(0404.007
E,Z-4-	-1168899.388	-1168490.077	-	-	-1168489.131	-1168424.937
An-IN14			1168835.194	1168425.883		
E,Z-4-	-1168889.999	-1168480.53	-	-	-1168479.235	-1168415.091
An-TS3-			1168825.856	1168416.387		
PA						
E,Z-4-	-999108.1475	-998776.4114	-999056.034	-998724.298	-998775.7469	-998723.6336
An-TS3-						
MA						
E,Z-4-	-1168920.722	-1168512.326	-	-	-1168510.177	-1168446.187
An-INT5			1168856.733	1168448.337		
Z,E-4-	-999124.8228	-998787.0433	-	-	-998787.1623	-998736.6549
An-INT1			999074.3158	998736.5363		
Z.E-4-	-1168912.417	-1168502.213	-	-1168438.72	-1168502.07	-1168438.577
An-INT2			1168848.924			
Z E-4-	-1168885 107	-1168477 615	-	-	-1168477 443	-1168414 385
An-TS1	11000000.107	11001, 1010	1168822.049	1168414 557	11001,71110	1100111000
Z F-4-	-1168887 948	-1168479479	-	-	-1168479 285	-1168416 259
An-INT3	1100007.910	1100179.179	1168824 922	1168416 453	1100179.200	1100 110.209
7 E-4-	-1168887 396	-1168/77 391	-	-	-1168/77 268	-1168/11/ 22/
$\Delta n_T S^2$	-1100007.570	-1100+77.571	1168824 352	1168/1/ 3/7	-1100+77.200	-1100+14.224
7 E 4	1162000.02	1169400 272	116824.552	1100414.547	1168400 140	1168426.050
L, E-4-	-1100909.90	-1106499.275	-1100040.09	-	-1100499.149	-1108430.039
\overline{AII} -IIN14	1160000 601	1169475 275		1106430.165	1169475 204	11(0412 002
Z,E-4-	-1108888.091	-11084/3.2/3	-	-	-11084/5.294	-1108412.885
An-155-			1108820.279	1108412.803		
PA Z F 4	000002 0007	000750 5401			000750 200	000707 (202
Z,E-4-	-999093.9807	-998/58.5481	-	-	-998/58.389	-998/0/.6393
An-TS3-			999043.2312	998707.7986		
MA						
Z,E-4-	-1168929.241	-1168515.001	-	-	-1168514.777	-1168452.954
An-INT5			1168867.417	1168453.178		
Z,Z-4-	-999121.7656	-998788.5957	-	-	-998787.8281	-998736.3618
An-INT1			999070.2989	998737.1291		
Z,Z-4-	-1168910.254	-1168500.861	-	-1168437.57	-1168500.257	-1168436.966
An-INT2			1168846.963			
Z,Z-4-	-1168880.133	-1168473.374	-	-	-1168473.078	-1168409.539
An-TS1			1168816.595	1168409.835		
Z,Z-4-	-1168883.765	-1168475.622	-	-	-1168475.248	-1168411.574
An-INT3			1168820.092	1168411.949		
Z,Z-4-	-1168882.218	-1168473.682	-	-1168409.87	-1168473.401	-1168409.588
An-TS2			1168818.405			
Z.Z-4-	-1168904.284	-1168495.303	-	-	-1168494.359	-1168429.917
An-INT4			1168839 843	1168430 863		
7.7.4-	-1168881 908	-1168470 866	-	-	-1168469 841	-1168406 207
An-TS3-	1100001.900	1100.70.000	1168818 274	1168407 231	1100.09.011	1100 100.207
PA			1100010.27	1100 107.201		
	1		1			1

Z,Z-4-	-999090.3865	-998757.024	-	-998705.836	-998756.2498	-998705.0621
An-TS3-			999039.1985			
MA						
Z,Z-4-	-1168928.83	-1168517.323	-	-	-1168516.386	-1168453.555
An-INT5			1168865.999	1168454.492		
Pathway						
2- Cy						
E,Z-4-	-999126.0935	-998791.4973	-	-	-998790.7014	-998738.6095
Cy-INT1			999074.0016	998739.4054		
E,Z-4-	-1168907.24	-1168499.098	-	-	-1168498.482	-1168435.017
Cy-INT2			1168843.775	1168435.634		
E,Z-4-	-1168887.459	-1168479.264	-1168824.69	-	-1168479.339	-1168416.57
Cy-TS1				1168416.495		
E,Z-4-	-1168892.324	-1168483.705	-	-	-1168483.385	-1168420.584
Cy-INT3			1168829.522	1168420.903		
E,Z-4-	-1168891.755	-1168481.113	-	-	-1168480.414	-1168416.959
Cy-TS2			1168828.299	1168417.658		
E,Z-4-	-1168890.695	-1168496.511	-	-	-1168496.196	-1168430.287
Cy-INT4			1168765.091	1168370.907		
E,Z-4-	-1168894.233	-1168481.674	-	-	-1168481.123	-1168418.104
Cy-TS3-			1168831.215	1168418.656		
PA						
E,Z-4-	-999109.604	-998775.4546	-	-	-998775.1012	-998724.0785
Cy-TS3-			999058.5815	998724.4321		
MA						
E,Z-4-	-1168925.145	-1168511.07	-	-	-1168510.771	-1168447.399
Cy-INT5			1168861.773	1168447.697		

Pyranylation product energies

Optimized Structure of MeOH.

- Thermochemistry -

(0 imaginary frequencies)

Zero-point correction=	0.051761 (Hartree/Particle)
Thermal correction to Energy=	0.055076
Thermal correction to Enthalpy=	0.056020
Thermal correction to Gibbs Free Ener	gy= 0.029029
Sum of electronic and zero-point Ener	gies= -115.665493
Sum of electronic and thermal Energie	es= -115.662178

Sum of electronic and thermal Enthalpies= -115.661234 Sum of electronic and thermal Free Energies= -115.688225

С	-0.65848600	-0.01956200	0.00000100
Н	-1.02940500	-0.54247300	0.89176100
Н	-1.02938900	-0.54257800	-0.89170500
Ο	0.74535300	0.12143700	0.00000100
Н	1.12896600	-0.75460500	-0.00000400
Н	-1.08208100	0.98552700	-0.00006800

Optimized Structure of EtOH.

- Thermochemistry -

-----(0 imaginary frequencies) Zero-point correction= 0.080577 (Hartree/Particle) Thermal correction to Energy= 0.084854 Thermal correction to Enthalpy= 0.085798 Thermal correction to Gibbs Free Energy= 0.055208 Sum of electronic and zero-point Energies= -154.954306 Sum of electronic and thermal Energies= -154.950030 Sum of electronic and thermal Enthalpies= -154.949086 Sum of electronic and thermal Free Energies= -154.979675

С	0.08772500	0.54621800	0.00007000
Н	0.13728900	1.19389800	-0.88720800
Н	0.13741500	1.19366100	0.88751300
0	1.14526800	-0.39624300	-0.00012900
С	-1.21748900	-0.22112600	0.00006100
Н	1.97341500	0.08239500	-0.00024000
Н	-1.28157300	-0.85777200	0.88519600
Н	-2.06842100	0.46476500	0.00020100
Н	-1.28168800	-0.85755400	-0.88522000

Optimized Structure of BnOH.

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.134121 (Hartree/Particle) Thermal correction to Energy= 0.141295 Thermal correction to Enthalpy= 0.142239 Thermal correction to Gibbs Free Energy= 0.102038 Sum of electronic and zero-point Energies= -346.608470 Sum of electronic and thermal Energies= -346.601297 Sum of electronic and thermal Enthalpies= -346.600352 Sum of electronic and thermal Free Energies= -346.640554

С	-1.89903800	0.62532200	0.06335800
Н	-2.11364300	1.11282500	1.02590300
Н	-2.10895800	1.35668200	-0.73036800
0	-2.68077700	-0.53828500	-0.09748400
С	-0.43272300	0.27329500	0.02279500
С	-0.00606000	-1.04957500	0.03425800
С	0.51697800	1.29348300	-0.01073000
С	1.35265000	-1.34688600	0.01500600
Н	-0.74567900	-1.83939700	0.05366300
С	1.87217400	0.99715300	-0.02650200
Н	0.19245800	2.33037100	-0.02644200
С	2.29493100	-0.32810700	-0.01380400
Н	1.67429400	-2.38259100	0.02203000
Н	2.60057800	1.79995700	-0.05248500
Н	3.35353300	-0.56162600	-0.02928500
Н	-3.59984100	-0.29805900	0.01057300

Optimized Structure of DHP-MeOH (Axial).

(0 imaginary frequencies)	
Zero-point correction=	0.180759 (Hartree/Particle)
Thermal correction to Energy=	0.188582
Thermal correction to Enthalpy=	0.189526
Thermal correction to Gibbs Free Ener	gy= 0.148695
Sum of electronic and zero-point Energy	gies= -386.104437
Sum of electronic and thermal Energie	s= -386.096615
Sum of electronic and thermal Enthalp	ies= -386.095670
Sum of electronic and thermal Free En	ergies= -386.136501

Н	-1.12543900	-1.45597400	1.44154200
С	0.56123200	-0.42583800	0.65141900
С	-0.61112100	-1.38264500	0.47788300
С	-1.57807300	-0.87401100	-0.59187500
С	-1.96737700	0.57307400	-0.28584000
С	-0.71565000	1.42114000	-0.10893100
Н	-1.08956000	-0.92351500	-1.56998500
Н	-2.46352900	-1.51358700	-0.63682200
Н	-2.58287100	0.99284100	-1.08724700
Н	-2.55599600	0.61161200	0.63782900
Н	-0.17049200	1.48610700	-1.05994100
Н	-0.95875900	2.43336700	0.21654500
0	0.13807400	0.89364700	0.90044400
Н	1.15984700	-0.68535700	1.53453400
Н	-0.22107200	-2.37168700	0.22820200
С	2.55432100	0.21829500	-0.41977700
Н	3.17600500	-0.13813300	0.41320900
Н	2.36634800	1.28794000	-0.28167800
Н	3.08788800	0.05930000	-1.35638400
0	1.35163200	-0.51402200	-0.50257900

Optimized Structure of DHP-MeOH (Equatorial).

- Thermochemistry -

(0 imaginary frequencies)	
Zero-point correction=	0.179964 (Hartree/Particle)
Thermal correction to Energy=	0.187903
Thermal correction to Enthalpy=	0.188847
Thermal correction to Gibbs Free Ene	rgy= 0.147471
Sum of electronic and zero-point Ener	rgies= -386.095617
Sum of electronic and thermal Energie	-386.087678
Sum of electronic and thermal Enthal	bies= -386.086734
Sum of electronic and thermal Free En	nergies= -386.128110

Н	-0.04673600	1.18393000	-1.40356400
С	0.57294900	-0.14111300	0.13213100
С	-0.04739700	1.18185800	-0.30913200
С	-1.47309100	1.30968600	0.23092500
С	-2.27829600	0.06289900	-0.13728200
С	-1.51466600	-1.18850200	0.28169100
Н	-1.44204500	1.41297400	1.32320000
Н	-1.95083500	2.21253700	-0.15750100
Н	-3.26149100	0.07210400	0.34262000
Н	-2.43724100	0.03148900	-1.22031400
Н	-1.44711900	-1.23382400	1.38170600
Н	-2.01233400	-2.09571900	-0.06231600
0	-0.21534000	-1.22428900	-0.27658800
Н	0.66863200	-0.16066100	1.23787800
Н	0.57716700	2.01391300	0.02977600
С	2.89502600	0.16052100	0.29011300
Н	2.95226800	-0.30008300	1.28636600
Н	2.83696900	1.25099500	0.41031600
Н	3.80417100	-0.07843600	-0.26075700
0	1.81927100	-0.35337500	-0.45317300

Optimized Structure of DHP-EtOH (Axial).

- Thermochemistry -

-----(0 imaginary frequencies) Zero-point correction= 0.209412 (Hartree/Particle) Thermal correction to Energy= 0.218468 Thermal correction to Enthalpy= 0.219412 Thermal correction to Gibbs Free Energy= 0.175333 Sum of electronic and zero-point Energies= -425.393203 Sum of electronic and thermal Energies= -425.384147 Sum of electronic and thermal Enthalpies= -425.383203 Sum of electronic and thermal Free Energies= -425.427282

Н	1 85685900	-1 45915900	-1 23979700
C	0.02622900	-0 43189100	-0.88092400
Č	1 12514000	-1 38474000	-0 42898200
Č	1.80378800	-0.86646000	0.83972900
Č	2.25826200	0.57791200	0.62324700
Č	1.08721200	1.42397900	0.14175200
Н	1.09022300	-0.90555500	1.66852400
Н	2.65002000	-1.50510500	1.10633300
Н	2.66419700	1.00594900	1.54488500
Н	3.05172900	0.60767500	-0.13206000
Н	0.32812300	1.49781000	0.93182500
Н	1.40375300	2.43296300	-0.12559600
0	0.50067800	0.88506800	-1.03750100
Н	-0.35156300	-0.70007100	-1.87587100
Н	0.68919000	-2.37410700	-0.27437400
С	-2.17880900	0.20092500	-0.30870600
Н	-2.56743200	-0.20155600	-1.25616400
Н	-1.94222200	1.25848200	-0.47183900
0	-1.00903800	-0.50831900	0.05960500
С	-3.19674000	0.03706500	0.79888200
Н	-4.12528100	0.55355200	0.54375800
Н	-3.41776300	-1.02006700	0.96077200
Н	-2.81344500	0.45445200	1.73277300

Optimized Structure of DHP-EtOH (Equatorial).

- Thermochemistry -

Zero-point correction=	0.208533 (Hartree/Particle)
Thermal correction to Energy=	0.217773
Thermal correction to Enthalpy=	0.218717
Thermal correction to Gibbs Free En	nergy= 0.174003
Sum of electronic and zero-point En	ergies= -425.384606
Sum of electronic and thermal Energy	gies= -425.375367
Sum of electronic and thermal Entha	alpies= -425.374423
Sum of electronic and thermal Free	Energies= -425.419137

-0.50183900	1.20079900	-1.37679800
0.08317700	-0.10270300	0.19021800
-0.55623900	1.19879800	-0.28374300
-2.00971500	1.28280500	0.18662400
-2.75776600	0.01026500	-0.21240500
-1.97527600	-1.21646200	0.24421600
-2.03458900	1.39084000	1.27865600
-2.49669800	2.16892500	-0.22806200
-3.76077400	-0.01060900	0.22432200
-2.86868600	-0.02843100	-1.30117300
-1.95893100	-1.25889800	1.34636500
-2.42865900	-2.13852700	-0.12103700
-0.65091000	-1.21215600	-0.25210300
0.12449300	-0.11833200	1.29872900
0.02678500	2.04862100	0.08390800
2.40114100	0.20473500	0.49527900
2.37479500	-0.31576500	1.46414700
2.27753200	1.27980300	0.69306500
1.36204700	-0.27103100	-0.33397600
3.71749700	-0.04721200	-0.20702800
4.55030600	0.30139900	0.40864600
3.84518900	-1.11450300	-0.39779000
3.74507600	0.47882600	-1.16332100
	-0.50183900 0.08317700 -0.55623900 -2.00971500 -2.75776600 -1.97527600 -2.03458900 -2.49669800 -3.76077400 -2.86868600 -1.95893100 -2.42865900 -0.65091000 0.12449300 0.02678500 2.40114100 2.37479500 2.27753200 1.36204700 3.71749700 4.55030600 3.84518900 3.74507600	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Optimized Structure of DHP-BnOH (Axial).

- Thermochemistry -

Zero-point correction=	0.262742 (Hartree/Particle)
Thermal correction to Energy=	0.274008
Thermal correction to Enthalpy=	0.274953
Thermal correction to Gibbs Free Ene	rgy= 0.224261
Sum of electronic and zero-point Ener	-617.048075
Sum of electronic and thermal Energie	-617.036808
Sum of electronic and thermal Enthalp	bies= -617.035864
Sum of electronic and thermal Free En	nergies= -617.086556
	-

Н	-3.72894600	0.50925200	-1.45102600
С	-1.84416700	-0.37185800	-1.01207100
С	-2.76718300	0.83837600	-1.04468300
С	-2.96286600	1.41287500	0.35893700
С	-3.39551500	0.29840100	1.31314100
С	-2.41605400	-0.86435400	1.23448800
Н	-2.02059300	1.84721500	0.70690800
Н	-3.70460200	2.21541500	0.33879100
Н	-3.44774100	0.66217800	2.34369400
Н	-4.39445700	-0.05874900	1.03831000
Н	-1.43440200	-0.55561800	1.61713300
Н	-2.75968700	-1.71923800	1.81778700
0	-2.28121500	-1.34789400	-0.09931800
Н	-1.82992100	-0.89133300	-1.97841500
Н	-2.35053800	1.58119900	-1.72854300
С	0.44041000	-0.90416000	-0.76281700
Н	0.53210800	-1.26645400	-1.79901400
Н	0.15964400	-1.76241000	-0.14167700
0	-0.55677700	0.09186800	-0.69958700
С	1.75986200	-0.34396500	-0.30045000
С	1.99170400	1.02728900	-0.25899500
С	2.78186900	-1.21571700	0.07106300
С	3.22780300	1.51739500	0.14672000
-			

Н	1.19580100	1.70557700	-0.53924800
С	4.01834400	-0.72698200	0.46991500
Н	2.60677300	-2.28747800	0.05120300
С	4.24481600	0.64413300	0.50991000
Н	3.39557200	2.58832200	0.17976900
Н	4.80328000	-1.41740500	0.75784500
Н	5.20750400	1.02913600	0.82678700

Optimized Structure of DHP-BnOH (Equatorial).

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.262530 (Hartree/Particle) Thermal correction to Energy= 0.274632 Thermal correction to Enthalpy= 0.275577 Thermal correction to Gibbs Free Energy= 0.222728 Sum of electronic and zero-point Energies= -617.042306 Sum of electronic and thermal Energies= -617.030204 Sum of electronic and thermal Enthalpies= -617.029260 Sum of electronic and thermal Free Energies= -617.082108

Н	2.13159900	-1.58242000	-0.83612400
С	1.58905600	-0.26063000	0.77091600
С	2.53934400	-1.27232600	0.13179700
С	3.92229600	-0.64809100	-0.06747000
С	3.79407600	0.66919800	-0.83248300
С	2.77405300	1.56745300	-0.14408500
Н	4.37777300	-0.45455500	0.91189300
Н	4.58406500	-1.34200100	-0.59144500
Н	4.75714200	1.18465700	-0.89277300
Н	3.45947100	0.47335100	-1.85694700
Н	3.14983700	1.86388500	0.84876300
Н	2.58387900	2.47574000	-0.71693100
0	1.52174900	0.92323300	-0.00303500
Н	1.94759500	-0.00799700	1.78002400
Н	2.58802100	-2.15696700	0.77212800
С	-0.43994600	-1.04982900	-0.21182400

Н	-0.50868900	-2.13887200	-0.31214200
Н	0.06714200	-0.65133900	-1.09556200
0	0.29903200	-0.72839900	0.96097100
С	-1.81758400	-0.44516100	-0.12915900
С	-2.95005700	-1.20147000	-0.40925400
С	-1.96224300	0.90260600	0.19785100
С	-4.21401300	-0.62107800	-0.37542500
Н	-2.84579000	-2.25515100	-0.65011800
С	-3.22171900	1.48160100	0.23572500
Н	-1.07406600	1.48272300	0.42245800
С	-4.35192900	0.72172700	-0.05327300
Н	-5.09044200	-1.22111200	-0.59394700
Н	-3.32608100	2.53090300	0.48912300
Н	-5.33571700	1.17647500	-0.02179000

Higher energy conformers

Optimized Higher Energy Structure of Z,Z-4-INT₁ (1).

(0 imagi	nary frequencies)		
Zero-poi	int correction=	C	0.601833 (Hartree/Particle)
Therma	l correction to Ene	ergy=	0.636808
Therma	l correction to Ent	halpy=	0.637752
Therma	l correction to Gib	bs Free Energ	y= 0.532055
Sum of	electronic and zero	o-point Energi	es= -1591.460281
Sum of	electronic and the	rmal Energies	-1591.425306
Sum of	electronic and the	rmal Enthalpie	es= -1591.424362
Sum of	electronic and the	rmal Free Ene	rgies= -1591.530059
С	1.69297600	0.18626800	-0.13401300
S	1.36577300	0.71678100	-1.67655500
Ν	2.90457700	-0.06954500	0.39397400
Н	2.91873600	-0.50761800	1.30963800
Ν	0.67253100	-0.07593300	0.77761300
Н	0.89183200	-0.66348400	1.58195000

0	2.00776900	-1.43223600	2.90335400
Н	2.18545000	-2.36543300	3.03029700
С	2.11812200	-0.75070100	4.15638100
Н	3.11740700	-0.86829200	4.58162900
Н	1.94340000	0.30516500	3.95297000
Н	1.36878500	-1.10754000	4.86725000
С	4.16390400	0.04015500	-0.26305800
С	4.56755100	1.23235700	-0.85237600
С	5.01285300	-1.06088400	-0.24678400
С	5.82095600	1.31097400	-1.44165200
H	3,90164900	2.08492200	-0.85453400
Ĉ	6.27166700	-0.96958800	-0.82563800
Н	4.68329800	-1.98818100	0.20969600
С	6.67534200	0.21446900	-1.42876900
H	7.65409400	0.28410600	-1.88788100
Н	6.13376200	2.23738900	-1.90814400
Н	6.93294600	-1.82778800	-0.81273200
Ĉ	-0.64302500	0.05511500	0.41129000
Ċ	-1.71594000	0.86530700	0.14061300
Č	-1.79350700	-0.55877300	0.00755400
N	-2.26633000	2.04668600	0.02558600
N	-2.39782300	-1.68424100	-0.28576600
C	-3 62549700	2 20610700	-0 54579200
Č	-1.59443700	3.29110000	0.49458000
Č	-3 81206500	-1 75300500	-0 70848000
Č	-1 61859400	-2 94502900	-0 17767000
H	-3 77559000	3 28666200	-0.58828500
C	-4 69747200	1 63700300	0 38219000
Č	-3.66698400	1.70107100	-1.98562800
Č	-0.11136600	3.10710300	0.75892200
H	-1.70517900	3.99926500	-0.33283400
C	-2.31611500	3.83852300	1.72462900
Н	-4.15389700	-0.72193200	-0.74530600
С	-3.93842400	-2.32957700	-2.11551200
Č	-4.65753800	-2.49341500	0.32282800
H	-2.31212900	-3.72823800	-0.48504200
С	-0.43528000	-2.95548900	-1.13866000
Č	-1.21864900	-3.22137800	1.26901500
H	-4.52630300	0.58598100	0.62007600
Н	-4.71920400	2.18389100	1.32620800
Н	-5.68106800	1.72233600	-0.08411300
Н	-2.94490200	2.24635600	-2.59636600
Н	-3.43020700	0.63888300	-2.06851500
Н	-4.66146500	1.85727000	-2.40826800
Н	0.07030500	2.45325000	1.61582600
Н	0.40474800	2.70425100	-0.11295400
Н	0.31903200	4.08282500	0.98962900
Н	-3.36726900	4.05901900	1.52952200
Н	-2.25842500	3.12211100	2.54891500
Н	-1.83963300	4.76727800	2.04394000
Н	-3.65430400	-3.38373100	-2.15776800
Н	-4.97698300	-2.25826700	-2.44493400
Н	-3.31561700	-1.77591400	-2.82160800
Н	-4.37230000	-3.54537900	0.40515500
Н	-4.56346900	-2.03214200	1.30888400
Н	-5.70865100	-2.46092700	0.02897600

Η	0.04669000	-3.93512200	-1.11415800
Н	-0.75900400	-2.75850500	-2.16196400
Н	0.31267600	-2.20575000	-0.87220600
Н	-0.49355100	-2.48892000	1.63419500
Н	-2.08848400	-3.20657700	1.92884200
Н	-0.75322700	-4.20687500	1.33840200

Optimized Higher Energy Structure of Z, Z-4-INT₁ (2).

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.601828 (Hartree/Particle) Thermal correction to Energy= 0.636818 Thermal correction to Enthalpy= 0.637763 Thermal correction to Gibbs Free Energy= 0.531900 Sum of electronic and zero-point Energies= -1591.460746 Sum of electronic and thermal Energies= -1591.425756 Sum of electronic and thermal Enthalpies= -1591.424812 Sum of electronic and thermal Free Energies= -1591.530675

С	1.75691800	0.01039700	-0.16593300
S	1.56789900	1.32662300	-1.15609800
Ν	2.91652900	-0.56696300	0.18851400
Н	2.87155100	-1.34851000	0.83444200
Ν	0.66321800	-0.66017600	0.40076900
Н	0.81855300	-1.60091300	0.76225300
0	1.79494700	-2.89730800	1.71544900
Н	2.03466000	-3.78447300	1.44277400
С	1.68185700	-2.84509800	3.14006500
Н	2.63216100	-3.09063000	3.61947900
Н	1.41327300	-1.81934900	3.39155500
Н	0.90025100	-3.51897500	3.49958100
С	4.21442500	-0.17242400	-0.26235800
С	5.13235800	0.29132900	0.67033900
С	4.56367000	-0.29936300	-1.60093900
С	6.41575700	0.62947300	0.25959900
Н	4.83844600	0.39606700	1.70877400

H3.83371700-0.65788700-2.31599800C6.770154000.51279800-1.07811100H7.769542000.78163600-1.39892000H7.134783000.991188000.98474400B6.11755300-0.04010400-3.05008600C-0.60478900-0.214245000.26227300C-1.501634000.824163000.23770000C-1.91076800-0.50145200-0.3837800N-1.775742002.107885000.34673400N-2.79815100-1.40719700-0.38394900C-0.822354003.024632001.04439700C-2.825963002.71242000-0.51617200C-4.24460100-1.10706600-0.36839000C-2.33516400-2.78371400-0.67562600H-0.153188003.439763000.28400000C-1.575769004.161121001.73577400C-1.575769004.161121001.7357400C-1.575769004.161121001.7887300C-2.890228002.04402100-1.88637900H-2.623800-3.32421100-0.7981800C-1.35934100-2.79221500-1.84775600C-1.35934100-2.79221500-1.84775600C-1.77783900-3.470258000.56986700H-0.650794001.753114002.79104100H0.709074001.578643001.65162800H-0.650794001.753114002.51739500H-2.245	С	5.84305300	0.05146900	-2.00608100
C 6.77015400 0.51279800 -1.07811100 H 7.76954200 0.78163600 -1.39892000 H 7.13478300 0.99118800 0.98474400 H 6.11755300 -0.04010400 -3.05008600 C -0.60478900 -0.21424500 0.2227300 C -1.50163400 0.82416300 0.23770000 C -1.91076800 -0.50145200 -0.03837800 N -2.79815100 -1.40719700 -0.38394900 C -2.82596300 2.71242000 -0.51617200 C -4.24460100 -1.10700600 -0.36839000 C -2.35516400 -2.78371400 -0.67562600 H -0.15318800 3.43976300 0.28400000 C -1.35756900 4.16112100 1.73577400 C -1.85756900 2.04402100 -1.88637900 H -2.47413100 3.73066300 -0.6917700 C -2.89022800 2.04402100 -1.88637900 H -2.32463800	Н	3.83371700	-0.65788700	-2.31599800
H7.769542000.78163600-1.39892000H7.134783000.991188000.98474400H6.11755300-0.04010400-3.05008600C-0.60478900-0.214245000.26227300C-1.501634000.824163000.23770000C-1.50167800-0.50145200-0.03837800N-2.79815100-1.40719700-0.38394900C-0.822354003.024632001.04439700C-2.825963002.71242000-0.51617200C-4.24460100-1.10700600-0.36839000C-2.33516400-2.78371400-0.67562600H-0.153188003.439763000.28400000C0.002232002.279843002.08817400C-1.575769004.161121001.73577400C-4.181519002.783311000.18019800H-2.474131003.73066300-0.69017700C-2.890228002.04402100-1.88637900C-4.88585900-1.36417400-1.72898300C-4.88585900-1.36417400-1.72898300C-1.35934100-2.79221500-1.84775600C-1.77783900-3.470258000.56986700H-0.650794001.75114002.79104100H0.780774001.578643001.65162800H-0.846104004.822230002.26430300H-2.32215003.59935001.10357500H-2.32210003.59935001.10357500H-2.322	С	6.77015400	0.51279800	-1.07811100
H7.134783000.991188000.98474400H6.11755300-0.04010400-3.05008600C-0.604789000.214245000.26227300C-1.501634000.824163000.23770000C-1.91076800-0.50145200-0.03837800N-1.775742002.107885000.34673400N-2.79815100-1.40719700-0.38394900C-0.822354003.024632001.04439700C-2.825963002.71242000-0.51617200C-4.24460100-1.10700600-0.36839000C-2.33516400-2.78371400-0.67562600H-0.153188003.439763000.28400000C0.002232002.279843002.08817400C-1.575769004.161121001.73577400C-4.181519002.783311000.18019800H-2.474131003.73066300-0.69017700C-2.890228002.04402100-1.88637900H-2.47413100-3.32421100-0.97891800C-1.35934100-2.79221500-1.84775600C-1.35934100-2.79221500-1.84775600C-1.77783900-3.470258000.56986700H-0.650794001.751442002.51739500H-0.85602003.007092002.65462600H-2.165597004.774476001.05451700H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4	Н	7.76954200	0.78163600	-1.39892000
H6.11755300-0.04010400-3.05008600C-0.60478900-0.214245000.26227300C-1.501634000.824163000.23770000C-1.91076800-0.50145200-0.03837800N-1.775742002.107885000.34673400N-2.79815100-1.40719700-0.38394900C-0.822354003.024632001.04439700C-2.825963002.71242000-0.51617200C-4.24460100-1.10700600-0.36839000C-2.33516400-2.78371400-0.67562600H-0.153188003.439763000.28400000C-1.575769004.161121001.73577400C-1.575769004.161121001.73577400C-1.81519002.783311000.18019800H-2.474131003.73066300-0.69017700C-2.890228002.04402100-1.88637900H-4.30714500-0.03923600-0.15958600C-4.88585900-1.86417400-1.72898300C-1.35934100-2.79221500-1.84775600C-1.35934100-2.79221500-1.84775600C-1.57597004.774476001.05451700H0.709074001.578643001.65162800H0.585602003.007092002.65462600H-2.234086003.772442002.51739500H-2.234086003.772442002.51739500H-2.32210002.64053500-2.54587300H-	Н	7.13478300	0.99118800	0.98474400
C -0.60478900 -0.21424500 0.26227300 C -1.50163400 0.82416300 0.23770000 C -1.91076800 -0.50145200 -0.03837800 N -1.77574200 2.10788500 0.34673400 N -2.79815100 -1.40719700 -0.38394900 C -0.82235400 3.02463200 1.04439700 C -2.82596300 2.71242000 -0.51617200 C -4.24460100 -1.10700600 -0.36839000 C -2.33516400 -2.78371400 -0.67562600 H -0.15318800 3.43976300 0.28400000 C -1.57576900 4.16112100 1.73577400 C -1.8151900 2.78331100 0.18019800 H -2.47413100 3.73066300 -0.69017700 C -2.89022800 2.04402100 -1.88637900 C -2.8902800 -1.36417400 -1.72898300 C -4.30714500 -0.3923600 -0.5958600 C -1.35934100	Н	6.11755300	-0.04010400	-3.05008600
C -1.50163400 0.82416300 0.23770000 C -1.91076800 -0.50145200 -0.03837800 N -2.79815100 -1.40719700 -0.38394900 C -0.82235400 3.02463200 1.04439700 C -2.82596300 2.71242000 -0.51617200 C -4.24460100 -1.10700600 -0.36839000 C -2.33516400 -2.78371400 -0.67562600 H -0.15318800 3.43976300 0.28400000 C 0.00223200 2.27984300 2.08817400 C -1.57576900 4.16112100 1.73577400 C -1.57576900 4.16112100 1.73597400 C -4.8151900 2.78331100 0.18019800 H -2.47413100 3.73066300 -0.69017700 C -4.88585900 -1.36417400 -1.72898300 C -4.94939500 -1.85434200 0.76023500 C -1.35934100 -2.79221500 -1.84775600 C -1.35934100	С	-0.60478900	-0.21424500	0.26227300
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	-1.50163400	0.82416300	0.23770000
N -1.77574200 2.10788500 0.34673400 N -2.79815100 -1.40719700 -0.38394900 C -0.82235400 3.02463200 1.04439700 C -2.82596300 2.71242000 -0.51617200 C -2.83516400 -2.78371400 -0.67562600 H -0.15318800 3.43976300 0.28400000 C 0.00223200 2.27984300 2.08817400 C -1.57576900 4.16112100 1.73577400 C -4.18151900 2.78331100 0.18019800 H -2.47413100 3.73066300 -0.69017700 C -2.89022800 2.04402100 -1.88637900 H -4.30714500 -0.03923600 -0.15958600 C -4.88585900 -1.36417400 -1.72898300 C -4.94939500 -1.85434200 0.76023500 H -3.23263800 -3.2421100 -0.97891800 C -1.77783900 3.47025800 1.65162800 H -0.65079400	С	-1.91076800	-0.50145200	-0.03837800
N -2.79815100 -1.40719700 -0.38394900 C -0.82235400 3.02463200 1.04439700 C -2.82596300 2.71242000 -0.51617200 C -4.24460100 -1.10700600 -0.36839000 C -2.33516400 -2.78371400 -0.67562600 H -0.15318800 3.43976300 0.28400000 C 0.00223200 2.27984300 2.08817400 C -1.57576900 4.16112100 1.73577400 C -4.18151900 2.78331100 0.18019800 H -2.47413100 3.73066300 -0.69017700 C -2.89022800 2.04402100 -1.88637900 H -3.0714500 -0.3923600 -0.15958600 C -4.8585900 -1.85434200 0.76023500 H -3.23263800 -3.32421100 -0.97891800 C -1.35934100 -2.79221500 -1.84775600 C -1.35934100 2.79104100 H H 0.65079400 1.757	Ν	-1.77574200	2.10788500	0.34673400
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ν	-2.79815100	-1.40719700	-0.38394900
C-2.825963002.71242000-0.51617200C-4.24460100-1.10700600-0.36839000C-2.33516400-2.78371400-0.67562600H-0.153188003.439763000.28400000C0.002232002.279843002.08817400C-1.575769004.161121001.73577400C-4.181519002.783311000.18019800H-2.474131003.73066300-0.69017700C-2.890228002.04402100-1.88637900H-4.30714500-0.03923600-0.15958600C-4.88585900-1.36417400-1.72898300C-4.94939500-1.854342000.76023500H-3.23263800-3.32421100-0.97891800C-1.35934100-2.79221500-1.84775600C-1.77783900-3.470258000.56986700H0.650794001.753114002.79104100H0.709074001.578643001.65162800H0.85602003.007092002.65462600H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-3.322702001.04314900-1.84199400H-3.322702001.04314900-1.84199400H-3.523210002.6405500-2.52913900H-4.93010400-2.43027100-1.96475800H-4.9307040-2.338951000.60177600H-4	С	-0.82235400	3.02463200	1.04439700
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ċ	-2.82596300	2.71242000	-0.51617200
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ċ	-4.24460100	-1.10700600	-0.36839000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Č	-2.33516400	-2.78371400	-0.67562600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	-0 15318800	3 43976300	0 28400000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C	0.00223200	2 27984300	2 08817400
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Č	-1 57576900	4 16112100	1 73577400
H-2.474131003.73066300-0.69017700C-2.890228002.04402100-1.88637900H-4.30714500-0.03923600-0.15958600C-4.88585900-1.36417400-1.72898300C-4.94939500-1.854342000.76023500H-3.23263800-3.32421100-0.97891800C-1.35934100-2.79221500-1.84775600C-1.77783900-3.470258000.56986700H-0.650794001.753114002.79104100H0.709074001.578643001.65162800H0.585602003.007092002.65462600H-2.165597004.774476001.05451700H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.913240003.25784600-0.47751600H-3.523210002.64053500-2.54587300H-3.523210002.64053500-2.52913900H-4.93010400-2.43027100-1.96475800H-4.9254800-2.935981000.60177600H-4.8956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.6405100-1.60466300H-0.43289800-2.6405100-1.60466300H	Č	-4 18151900	2 78331100	0 18019800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	-2 47413100	3 73066300	-0 69017700
H-4.30714500-0.03923600-0.15958600C-4.88585900-1.36417400-1.72898300C-4.94939500-1.854342000.76023500H-3.23263800-3.32421100-0.97891800C-1.35934100-2.79221500-1.84775600C-1.77783900-3.470258000.56986700H-0.650794001.753114002.79104100H0.709074001.578643001.65162800H0.585602003.007092002.65462600H-2.165597004.774476001.05451700H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.913240003.25784600-0.47751600H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.92254800-2.935981000.60177600H-4.92254800-2.935981000.60177600H-4.92254800-2.935981000.60177600H-4.8956000-1.555977000.80323400H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.43289800-2.26405100-1.60466300H<	C	-2 89022800	2 04402100	-1 88637900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	-4 30714500	-0.03923600	-0 15958600
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C	-4 88585900	-1 36417400	-1 72898300
$\begin{array}{llllllllllllllllllllllllllllllllllll$	č	-4.94939500	-1.85434200	0.76023500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	-3 23263800	-3 32421100	-0 97891800
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C	-1 35934100	-2.79221500	-1 84775600
H-0.650794001.753114002.79104100H0.709074001.578643001.65162800H0.585602003.007092002.65462600H-2.165597004.774476001.05451700H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.128206003.359935001.10357500H-4.913240003.25784600-0.47751600H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-4.92254800-2.935981000.60177600H-4.92254800-2.935981000.60177600H-4.3289800-1.555977000.80323400H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800	Č	-1 77783900	-3 47025800	0.56986700
H0.709074001.578643001.65162800H0.585602003.007092002.65462600H-2.165597004.774476001.05451700H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.128206003.359935001.10357500H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.52210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.92254800-2.935981000.60177600H-4.8956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	H	-0 65079400	1 75311400	2 79104100
H0.585602003.007092002.65462600H-2.165597004.774476001.05451700H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.554546003.359935001.10357500H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	0.70907400	1.57864300	1.65162800
H-2.165597004.774476001.05451700H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.554546003.359935001.10357500H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	0 58560200	3 00709200	2 65462600
H-2.234086003.772442002.51739500H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.554546003.359935001.10357500H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.92254800-2.935981000.60177600H-4.8956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-2 16559700	4 77447600	1 05451700
H-0.846104004.822230002.20630300H-4.554546001.788256000.43296300H-4.554546003.359935001.10357500H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.94307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-2 23408600	3 77244200	2 51739500
H-4.554546001.788256000.43296300H-4.128206003.359935001.10357500H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.92254800-2.935981000.60177600H-4.8956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-0.84610400	4 82223000	2 20630300
H-4.128206003.359935001.10357500H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.34307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-4 55454600	1 78825600	0.43296300
H-4.913240003.25784600-0.47751600H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800	Н	-4 12820600	3 35993500	1 10357500
H-1.896253001.97556100-2.33406300H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.34307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-4 91324000	3 25784600	-0 47751600
H-3.322702001.04314900-1.84199400H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.34307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-1 89625300	1 97556100	-2 33406300
H-3.523210002.64053500-2.54587300H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.34307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-3 32270200	1 04314900	-1 84199400
H-4.93010400-2.43027100-1.96475800H-5.91216700-0.99158600-1.72243600H-4.34307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-3.52321000	2.64053500	-2.54587300
H-5.91216700-0.99158600-1.72243600H-4.34307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-4 93010400	-2 43027100	-1 96475800
H-4.34307300-0.85695900-2.52913900H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-5.91216700	-0.99158600	-1.72243600
H-4.92254800-2.935981000.60177600H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-4.34307300	-0.85695900	-2.52913900
H-4.48956000-1.632720001.72583300H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-4.92254800	-2.93598100	0.60177600
H-5.99885800-1.555977000.80323400H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-4.48956000	-1.63272000	1.72583300
H-1.09985500-3.82087300-2.10644400H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	Н	-5.99885800	-1.55597700	0.80323400
H-1.80228100-2.31895100-2.72591100H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	H	-1.09985500	-3.82087300	-2.10644400
H-0.43289800-2.26405100-1.60466300H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	H	-1.80228100	-2.31895100	-2.72591100
H-0.83634100-3.021891000.89789600H-2.48970000-3.424010001.39588800H-1.57809600-4.521508000.35062000	H	-0.43289800	-2.26405100	-1.60466300
H -2.48970000 -3.42401000 1.39588800 H -1.57809600 -4.52150800 0.35062000	Н	-0.83634100	-3.02189100	0.89789600
Н -1.57809600 -4.52150800 0.35062000	Н	-2.48970000	-3.42401000	1.39588800
	Н	-1.57809600	-4.52150800	0.35062000

Optimized Higher Energy Structure of Z, Z-4-INT₁ (3).

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.602102 (Hartree/Particle) Thermal correction to Energy= 0.637039 Thermal correction to Enthalpy= 0.637983 0.532983 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= -1591.461183 Sum of electronic and thermal Energies= -1591.426246 Sum of electronic and thermal Enthalpies= -1591.425302 Sum of electronic and thermal Free Energies= -1591.530302

С	-1.79059800	0.00961900	-0.17782400
S	-1.62128000	-1.42415200	-0.98901700
Ν	-2.95112000	0.59659600	0.15617500
Н	-2.91311000	1.48259600	0.64946300
Ν	-0.69418900	0.78944000	0.21489900
Н	-0.87706400	1.75361600	0.49438100
0	-1.85134100	3.15915500	1.27740500
Н	-2.07852100	3.99199600	0.86050500
С	-1.76420500	3.34082400	2.69352700
Н	-2.70927200	3.70559200	3.10190700
Н	-1.54940000	2.36201300	3.12100300
Н	-0.95758900	4.03091100	2.95415300
С	-4.24318800	0.04733700	-0.12636200
С	-4.92760100	-0.61739400	0.88159300
С	-4.80892300	0.21274100	-1.38339800
С	-6.19605200	-1.12246300	0.62854700
Н	-4.46086500	-0.74578400	1.85139500
С	-6.07486600	-0.29895800	-1.63212400
Н	-4.25222600	0.72469200	-2.15936200
С	-6.76849600	-0.96389800	-0.62738400
Н	-7.75629300	-1.36285600	-0.82501900
Н	-6.73413800	-1.64412900	1.41089700
Н	-6.52072600	-0.17855900	-2.61209900
С	0.59164000	0.40887800	0.07663900
С	1.58334600	-0.54320900	0.10618600
С	1.88353900	0.80862400	-0.15738700

Ν	1.96792200	-1.78765700	0.27935000
Ν	2.71023100	1.79711100	-0.43525500
С	1.02792400	-2.69421000	0.99683700
С	3.25776000	-2.19897900	-0.32640700
С	4.16784300	1.71914900	-0.18835100
С	2.15912000	3.09460800	-0.88964700
Н	0.08399400	-2.14846100	0.98931800
С	1.44445400	-2.89141700	2.45402800
С	0.76982100	-4.00680200	0.27145600
С	3.06642100	-2.82732800	-1.70710600
Н	3.78595400	-1.25823600	-0.48263100
С	4.12279400	-3.04882200	0.59493300
Н	4.46877600	2.76057200	-0.04380800
С	4.49309200	0.98902200	1.11037600
С	4.90766700	1.18435400	-1.41084400
Н	3.01390400	3.61376900	-1.33004800
С	1.11680600	2.91998900	-1.98840800
С	1.64782100	3.91502300	0.29238300
Н	2.32704500	-3.52378200	2.55519300
Н	1.64682600	-1.93198300	2.93665500
Н	0.62709700	-3.37497100	2.99407900
Н	0.44433500	-3.82882600	-0.75393200
Н	1.64138400	-4.66450200	0.26550900
Н	-0.03403400	-4.53350800	0.78999300
Н	2.64229100	-3.82943300	-1.64845200
Н	2.41044400	-2.21157800	-2.32675000
Н	4.03659900	-2.90414600	-2.20450500
Н	4.27466600	-2.56522700	1.56194600
Н	3.69719600	-4.03919600	0.76243800
Н	5.09921400	-3.18875700	0.12642000
Н	4.22824300	-0.06888700	1.08189300
Н	5.56615000	1.05172800	1.29999200
Н	3.97220300	1.44970900	1.95287100
Н	4.63308200	0.14957100	-1.62851200
Н	4.67764800	1.78372300	-2.29477000
Н	5.98664800	1.22210700	-1.24666300
Н	0.86090500	3.89703400	-2.40296200
Н	1.50319400	2.29774200	-2.79788100
Н	0.19450100	2.46675800	-1.61763300
Н	0.76358700	3.45090500	0.74038400
Н	2.41481400	4.01460800	1.06394400
Н	1.36711100	4.91782000	-0.03803700

Optimized Higher Energy Structure of *E*, *Z*-**4**-Cy-**INT**₁ (1).

	 	 J	

(0 imaginary frequencies)	
Zero-point correction= 0	.602876 (Hartree/Particle)
Thermal correction to Energy=	0.637412
Thermal correction to Enthalpy=	0.638357
Thermal correction to Gibbs Free Energy	y= 0.533917
Sum of electronic and zero-point Energie	es= -1591.458339
Sum of electronic and thermal Energies=	-1591.423802
Sum of electronic and thermal Enthalpie	s= -1591.422858
Sum of electronic and thermal Free Ener	gies= -1591.527297

С	-1.79693300	-0.52214200	-0.61005500
S	-1.23325300	-1.63392800	-1.72753600
Ν	-3.09178800	-0.27257500	-0.39658100
Н	-3.73570700	-0.71657100	-1.07091200
Ν	-0.91556300	0.24652400	0.13616600
С	-3.64118800	0.66998100	0.51738300
С	-4.51859100	1.63604600	0.03148600
С	-3.35503700	0.60085600	1.88024300
С	-5.09704400	2.54150800	0.91056900
Н	-4.74458100	1.66497400	-1.02834000
С	-3.92495600	1.52276800	2.74876000
Н	-2.70990600	-0.18512200	2.25634300
С	-4.79543700	2.49296500	2.26669200
Н	-5.24748000	3.20260600	2.94898000
Н	-1.26653700	1.09916700	0.55483100
С	-5.23525600	-2.72617800	-2.06106300
Н	-5.54098700	-3.27026400	-2.95881600
Н	-6.12948200	-2.43340400	-1.51189100
Н	-4.62438600	-3.38056900	-1.42978800
0	-4.54214700	-1.52950200	-2.39983800
Н	-3.73151000	-1.76987900	-2.86032800
С	0.43767400	0.07726200	0.08691200
С	1.65793000	0.65741400	-0.11441000
С	1.55462100	-0.69647400	0.29655000
Ν	2.35520200	1.72100300	-0.43936700
Ν	2.15239800	-1.81236200	0.62462500
С	3.83335800	1.67368000	-0.29568700
С	1.56843300	2.87362600	-0.96466700

С	3.63073000	-1.88669000	0.51628900
С	1.41434900	-2.90950100	1.30977300
С	4.52489100	1.26908900	-1.59678900
Н	4.00161600	0.88146800	0.43667500
С	4.42138400	2.94235100	0.31132700
С	2.13593800	3.43969400	-2.26091500
Н	3.90312700	-1.10568400	-0.19492500
С	4.28649300	-1.58506600	1.86168700
С	4.09786800	-3.20985500	-0.07841300
Н	2.17204800	-3.39991000	1.92551600
С	0.34583900	-2.35922200	2.24876700
С	0.84281300	-3.92374000	0.32563700
Н	4.05990700	0.38104700	-2.03288400
Н	4.49510400	2.06647400	-2.33987600
Н	5.57464400	1.04174900	-1.39604000
Н	4.34600400	3.80016000	-0.35822200
Н	3.94258400	3.18960100	1.25998900
Н	5.48288700	2.77272700	0.50230300
Н	3.09445200	3.93932300	-2.11259900
Н	2.25465200	2.66044800	-3.01540200
Н	1.43756200	4.18311600	-2.65033600
Н	4.06483800	-2.36125300	2.59831400
Н	5.37156500	-1.54025700	1.74652900
Н	3.94413000	-0.62802200	2.26497700
Н	3.87842300	-4.05582000	0.57675900
Н	3.63770200	-3.38919000	-1.05132700
Н	5.18044800	-3.17224400	-0.21430600
Н	-0.04746300	-3.17619200	2.85601100
Н	0.75433100	-1.60212300	2.92303100
Н	-0.49403900	-1.93179000	1.69553800
Н	0.07602700	-3.45909000	-0.29589700
Н	1.61396800	-4.33581400	-0.32493400
Н	0.38964800	-4.74950700	0.87927100
Н	-5.78574300	3.28801100	0.53351200
Н	-3.70749000	1.46543100	3.80870900
Н	0.59981000	2.43310400	-1.21547000
С	1.32779200	3.94392700	0.09864300
Н	2.22936600	4.51400200	0.32235900
Н	0.57296200	4.64652100	-0.26181800
Н	0.96094700	3.49969300	1.02752500

Optimized Higher Energy Structure of *E*,*Z*-4-Cy-INT₁ (2).

(0 imaginary frequencies)	
Zero-point correction=	0.602864 (Hartree/Particle)
Thermal correction to Energy=	0.637406
Thermal correction to Enthalpy=	0.638350
Thermal correction to Gibbs Free Energy	gy= 0.533873
Sum of electronic and zero-point Energy	gies= -1591.458350
Sum of electronic and thermal Energies	-1591.423808
Sum of electronic and thermal Enthalpi	es= -1591.422864
Sum of electronic and thermal Free Ene	ergies= -1591.527341

С	-1.79719900	0.52238800	0.60993700
S	-1.23368300	1.63446600	1.72721100
Ν	-3.09201000	0.27275900	0.39628400
Н	-3.73606100	0.71683400	1.07043700
Ν	-0.91571300	-0.24643100	-0.13598100
С	-3.64102900	-0.67022500	-0.51749100
С	-4.51756400	-1.63694300	-0.03133600
С	-3.35524800	-0.60091100	-1.88041100
С	-5.09561000	-2.54281700	-0.91026700
Н	-4.74318100	-1.66606500	1.02856500
С	-3.92472900	-1.52323400	-2.74877900
Н	-2.71072400	0.18550300	-2.25664300
С	-4.79441300	-2.49403300	-2.26647200
Н	-5.24614600	-3.20398500	-2.94864500
Н	-1.26659800	-1.09918500	-0.55449500
С	-5.23508300	2.72682700	2.06116500
Н	-5.54021900	3.27097000	2.95908800
Н	-6.12967100	2.43418600	1.51251200
Н	-4.62448700	3.38113900	1.42954400
0	-4.54195400	1.53006200	2.39956100
Н	-3.73092600	1.77036500	2.85942600
С	0.43751500	-0.07711400	-0.08655400
С	1.65777600	-0.65728400	0.11475800
С	1.55449300	0.69654300	-0.29634900
Ν	2.35509700	-1.72087100	0.43964100
Ν	2.15223900	1.81236900	-0.62466100
С	3.83323100	-1.67355200	0.29574700

С	1.56838700	-2.87349300	0.96502500
С	3.63056000	1.88679300	-0.51623300
С	1.41415100	2.90931600	-1.31007600
С	4.52497300	-1.26908100	1.59677800
Н	4.00140100	-0.88129600	-0.43659100
С	4.42112800	-2.94222000	-0.31139600
С	2.13603300	-3.43957200	2.26120200
Н	3.90295000	1.10588900	0.19510300
С	4.28642700	1.58505600	-1.86155600
С	4.09758000	3.21006100	0.07833400
Н	2.17188900	3.39969900	-1.92579300
С	0.34580400	2.35877700	-2.24910200
С	0.84238100	3.92370200	-0.32621300
Н	4.06010100	-0.38104600	2.03300500
Н	4.49524800	-2.06652300	2.33980700
Н	5.57470900	-1.04178400	1.39589100
Н	4.34578600	-3.80004900	0.35813500
Н	3.94219300	-3.18941900	-1.26000500
Н	5.48261400	-2.77263800	-0.50249900
Н	3.09451700	-3.93922400	2.11276000
Н	2.25486200	-2.66032900	3.01567400
Н	1.43768700	-4.18297900	2.65071000
Н	4.06478400	2.36116500	-2.59826900
Н	5.37149200	1.54030500	-1.74632100
Н	3.94412800	0.62796000	-2.26477700
Н	3.87810600	4.05592800	-0.57695600
Н	3.63735200	3.38948500	1.05120300
Н	5.18015600	3.17254200	0.21428400
Н	-0.04749800	3.17560000	-2.85654500
Н	0.75443100	1.60158000	-2.92317200
Н	-0.49410000	1.93139300	-1.69587100
Н	0.07525500	3.45925400	0.29506500
Н	1.61332700	4.33567900	0.32466200
Н	0.38959900	4.74951900	-0.88008900
Н	-5.78369000	-3.28980400	-0.53303900
Н	-3.70757700	-1.46575200	-3.80878400
Н	0.59979300	-2.43296500	1.21593400
С	1.32762100	-3.94379500	-0.09825700
Н	2.22915200	-4.51392200	-0.32201900
Н	0.57277400	-4.64634100	0.26226300
Н	0.96073800	-3.49956000	-1.02712500

Optimized Higher Energy Structure of *E*,*Z*-4-Cy-INT₁ (3).

(0 imaginary frequencies)	
Zero-point correction= 0.6	501940 (Hartree/Particle)
Thermal correction to Energy=	0.636917
Thermal correction to Enthalpy=	0.637861
Thermal correction to Gibbs Free Energy	= 0.531739
Sum of electronic and zero-point Energies	s= -1591.456368
Sum of electronic and thermal Energies=	-1591.421391
Sum of electronic and thermal Enthalpies	-1591.420447
Sum of electronic and thermal Free Energ	ies= -1591.526569

С	-1.72335200	-0.76920800	-0.41042200
S	-1.19392600	-2.09765200	-1.27394300
Ν	-3.01051100	-0.46961600	-0.21660100
Н	-3.67373200	-1.04132300	-0.76493900
Ν	-0.82331300	0.15010800	0.11967900
С	-3.52672100	0.69022100	0.42834500
С	-4.37483400	1.52691400	-0.29267400
С	-3.23210000	0.96488900	1.76296300
С	-4.91747100	2.64735800	0.32113800
Н	-4.60648800	1.28833100	-1.32440900
С	-3.76716800	2.09824300	2.36277500
Н	-2.61039200	0.28115200	2.33002700
С	-4.60853500	2.93967100	1.64468600
Н	-5.03390500	3.81521800	2.12000500
Н	-1.17987000	1.07184000	0.34350700
С	-5.32576100	-3.10913700	-1.35067500
Н	-5.68637800	-3.77715900	-2.13738800
Н	-6.18569200	-2.64986000	-0.86462100
Н	-4.76311300	-3.68927300	-0.61160700
0	-4.54169500	-2.05280800	-1.89597600
Н	-3.76603500	-2.43379000	-2.31938700
С	0.52283200	0.00555000	0.06985800
С	1.70496600	0.64931500	-0.16016000
С	1.68512200	-0.70579900	0.27251800
Ν	2.22717800	1.78810300	-0.57612200
Ν	2.28929800	-1.81464100	0.62494100
С	1.26022000	2.75058600	-1.16881800

С	3.54663800	2.29621800	-0.13015100
С	1.63883100	-2.82798100	1.50200700
С	3.65036500	-2.15692000	0.14473800
С	0.74136000	3.73464400	-0.12291700
Н	0.42627700	2.13628900	-1.51775000
С	1.85085300	3.43840100	-2.39433100
С	4.69858800	1.77006700	-0.97768900
Н	2.43907900	-3.11721400	2.19246000
С	0.50970300	-2.23524800	2.33330700
С	1.19280000	-4.06164600	0.72385900
Н	3.70940900	-3.23862800	0.27785200
С	3.78344400	-1.88351800	-1.34838900
С	4.74571300	-1.54191200	1.00823100
Н	0.30636200	3.21282900	0.73478000
Н	1.53757900	4.38571700	0.24750900
Н	-0.02950400	4.37331200	-0.55893400
Н	2.67089600	4.11303100	-2.13692500
Н	2.21313400	2.70405800	-3.11589600
Н	1.07706400	4.03799100	-2.87757100
Н	4.86471300	0.70338400	-0.83243100
Н	4.50778500	1.94571900	-2.03796200
Н	5.62052400	2.28907800	-0.70638500
Н	-0.37560700	-2.03401400	1.72755900
Н	0.22164700	-2.96094500	3.09548300
Н	0.82015200	-1.31943300	2.84289700
Н	0.37581000	-3.80834500	0.04822800
Н	2.00696600	-4.49675200	0.14058500
Н	0.84625700	-4.82435000	1.42472700
Н	4.77581900	-2.18015400	-1.69345800
Н	3.03740900	-2.45304800	-1.90657000
Н	3.65028300	-0.82699400	-1.58941700
Н	4.81296000	-0.46265700	0.88016900
Н	4.57164700	-1.75251400	2.06612700
Н	5.71275300	-1.96957100	0.73527200
Н	-5.58212100	3.29433500	-0.23859200
Н	-3.54557300	2.30887600	3.40227600
Н	3.48985800	3.37164500	-0.30514100
С	3.72485600	2.10161400	1.37277300
Н	3.68253900	1.04886800	1.65947100
Н	4.69276400	2.49442500	1.68982100
Н	2.94446100	2.63323400	1.92240700

- Thermochemistry -

(0 imaginary frequencies) Zero-point correction= 0.546925 (Hartree/Particle) Thermal correction to Energy= 0.577671 0.578615 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.483133 -1475.778956 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -1475.748209 Sum of electronic and thermal Enthalpies= -1475.747265 Sum of electronic and thermal Free Energies= -1475.842748

С	1.82730300	-0.20014500	1.50089100
S	0.99198400	0.36151100	2.81935400
Ν	1.20521500	-0.49200600	0.30151500
Н	1.71642200	-1.00822900	-0.40268600
Ν	3.16116300	-0.41924300	1.48124000
С	3.96088300	-0.33762400	0.29221000
С	4.57442400	-1.48219900	-0.20229300
С	4.11361400	0.88680800	-0.35423000
С	5.34842000	-1.40103600	-1.35505700
Н	4.44974700	-2.42272600	0.32201300
С	4.88295000	0.95913000	-1.50653700
Н	3.64109500	1.77158500	0.05851400
С	5.49919700	-0.18382100	-2.00680000
Н	6.10387200	-0.12226800	-2.90369500
Н	3.61559500	-0.23861500	2.36488500
Н	5.01259200	1.91043000	-2.00860900
Н	5.83494100	-2.28881500	-1.74060000
С	-0.12340300	-0.23169800	0.08571700
С	-1.38673700	-0.71578800	-0.11490300
С	-1.12480300	0.68492700	-0.10595900
Ν	-2.20998800	-1.72374500	-0.22496900
Ν	-1.56371300	1.90908500	-0.20662800
С	-3.61534900	-1.52323500	-0.64394400
С	-1.72416700	-3.08076400	0.13626000
С	-3.02057600	2.16211200	-0.32643500
С	-0.60004600	3.03504900	-0.34924300
С	-3.95913000	-2.39069000	-1.85114400

Н	-3.67139200	-0.48265400	-0.96794400
С	-4.56511600	-1.72676600	0.53126500
С	-1.21665500	-3.11484300	1.57392700
Н	-2.60418800	-3.72199300	0.07169200
С	-0.69315200	-3.57749700	-0.87163200
Η	-3.49817500	1.25186900	0.04146900
С	-3.47355400	3.29907900	0.58236700
С	-3.40692100	2.37688300	-1.78647400
Н	-1.17860600	3.83322100	-0.81862300
С	-0.09173900	3.51627300	1.00438600
С	0.53560700	2.66961900	-1.29982200
Η	-3.25643200	-2.22037700	-2.66947500
Н	-3.95866600	-3.45572800	-1.60771300
Н	-4.96119400	-2.13870500	-2.20333600
Η	-4.52704000	-2.75448100	0.90193600
Н	-4.31523100	-1.05661300	1.35726600
Н	-5.59268400	-1.52599700	0.22163700
Η	-0.32385000	-2.49783600	1.70633000
Н	-1.98055300	-2.76027700	2.26842700
Н	-0.95630800	-4.13993400	1.84468700
Н	-1.08128100	-3.53157900	-1.89077200
Н	0.22546200	-2.98600300	-0.81911000
Н	-0.42768100	-4.61310700	-0.65132400
Н	-3.04730700	4.26004600	0.28590700
Н	-4.55941600	3.39134600	0.51886200
Н	-3.20785900	3.10257700	1.62231500
Η	-3.10607000	1.52580100	-2.40344700
Н	-4.48811600	2.50087600	-1.87587700
Η	-2.93706700	3.27559600	-2.19441500
Η	0.57647300	4.36882700	0.86294200
Η	-0.91024800	3.83083300	1.65263400
Η	0.45973100	2.72315500	1.51416600
Η	1.20736500	1.92585700	-0.86292500
Η	0.15240600	2.28576100	-2.24847800
Н	1.12688100	3.56269800	-1.50974100

(0 im	aginary frequencies)		
Zero-	point correction=	0	.547697 (Hartree/Particle)
Ther	mal correction to End	ergy=	0.578209
Ther	mal correction to Ent	thalpy=	0.579153
Ther	mal correction to Gib	obs Free Energ	y= 0.484461
Sum	of electronic and zer	o-point Energi	es= -1475.775189
Sum	of electronic and the	rmal Energies=	-1475.744677
Sum	of electronic and the	rmal Enthalpie	-1475.743733
Sum	of electronic and the	rmal Free Ener	rgies= -1475.838426
C	1 73121000	-0 88863500	1 33727100
S	0.99570700	-0.41052900	2 73982400
N	1 07736700	-0.89450100	0 12122600
Н	1 50939100	-1 37227900	-0.65837100
N	3 03158000	-1 28169500	1 23331800
C	3 89059500	-0 75847700	0 20297800
Č	4 64257500	-1 63513200	-0 56787000
Č	3 97474200	0.61691800	-0.00084100
Č	5 49053900	-1 13182900	-1 54844400
н	4 56471500	-2 70139300	-0 38949500
C	4 81413100	1 11106300	-0.98873200
н	3 39668100	1 28825700	0.62557300
C	5 57294100	0.23802600	-1 76204300
н	6 23527000	0.62754900	-2 52577800
н	3 46939600	-1 37397500	2 14035400
Н	4 89046400	2 18056200	-1 14570900
н	6.08615300	-1 81164300	-2 14566000
C	-0 18913300	-0.38808500	-0.03356300
C	-1.52600700	-0.50000500	-0.21518500
C	-1.01163500	0.70601400	-0.09695600
N	-2 52542900	-1 44327300	-0.37168700
N	_1 21722800	1 99323000	-0.06550800
C	-3 87969100	-0.94649700	-0 70498400
C	-2 29333900	-0.94049700	-0.14658300
C	-2.27555700	2 52536100	-0.04577900
C	-0.06073300	2.92674300	-0.14871100
C	-4 40725200	-1.60108500	-1 97817400
н	-3 74757600	0.11591100	-0.91726300
C	-4 82206300	-1 10066200	0.48352700
C	-1.83680000	-3 15254900	1 28517700
н	-3 26870900	-3 36196400	-0.28680000
C	-1 33549700	-3 46141700	-1 18853800
Н	-3 22837700	1 67418900	0 22678600
C	-2 78070100	3 57609900	1 04463000
C	-3.00738700	3 02352600	-1 42857700
н	-0 50143600	3 88575900	-0.42675600
C	0.63661600	3 07492200	1 19803900
C	0.89418600	2 51437800	-1 26389400
н	-3 70274300	-1 47875300	-2 80343600
Н	-4 60282100	-2 66709600	-1 84152600
Н	-5 35095600	-1 13077400	-2 26068600
Н	-4 98603200	-2 15349200	0 72762300
Н	<u>_4</u> 4215000	-0 60193200	1 36928900
Н	-5 70377000	-0 66167900	0.24878700
Н	-0.86871500	-2.68742500	1.49070300

-2.56001000	-2.76217100	2.00381900
-1.73359400	-4.22660000	1.45107200
-1.68368900	-3.25443700	-2.20229000
-0.33187900	-3.04459900	-1.06720800
-1.25420400	-4.54289700	-1.06610200
-2.21078700	4.48543800	0.84121600
-3.83427000	3.85701300	1.09711100
-2.48364900	3.18471700	2.01911600
-2.91381600	2.23206800	-2.17677700
-4.04521300	3.36277200	-1.41461800
-2.38861800	3.86732600	-1.74509900
1.44417600	3.80587200	1.11532200
-0.05413200	3.41808100	1.96921000
1.06053200	2.12339800	1.52703300
1.41807400	1.58445800	-1.02727700
0.36714600	2.39265200	-2.21301500
1.65257900	3.28872800	-1.39426300
	$\begin{array}{r} -2.56001000\\ -1.73359400\\ -1.68368900\\ -0.33187900\\ -1.25420400\\ -2.21078700\\ -3.83427000\\ -2.48364900\\ -2.91381600\\ -4.04521300\\ -2.38861800\\ 1.44417600\\ -0.05413200\\ 1.06053200\\ 1.41807400\\ 0.36714600\\ 1.65257900\end{array}$	-2.56001000 -2.76217100 -1.73359400 -4.22660000 -1.68368900 -3.25443700 -0.33187900 -3.04459900 -1.25420400 -4.54289700 -2.21078700 4.48543800 -3.83427000 3.85701300 -2.48364900 3.18471700 -2.91381600 2.23206800 -4.04521300 3.36277200 -2.38861800 3.86732600 1.44417600 3.80587200 -0.05413200 3.41808100 1.06053200 2.12339800 1.41807400 1.58445800 0.36714600 2.39265200 1.65257900 3.28872800

_____ ------ Thermochemistry ------

--

Zana maint a anna atian-	0.540002 (Hentree / Dentre 1.)
Zero-point correction-	0.548082 (Hartree/Particle)
Thermal correction to Energy=	0.578388
Thermal correction to Enthalpy=	0.579332
Thermal correction to Gibbs Free Ene	ergy= 0.486199
Sum of electronic and zero-point Energy	rgies= -1475.770696
Sum of electronic and thermal Energi	es= -1475.740391
Sum of electronic and thermal Enthal	pies= -1475.739447
Sum of electronic and thermal Free E	nergies= -1475.832580

С	1.52520500	-1.64898200	1.04202700
S	0.99796600	-1.24994800	2.55160700
Ν	0.76310400	-1.45167100	-0.08701600

Н	1.08019300	-1.85711200	-0.95671600
Ν	2.78284500	-2.13147400	0.73341700
С	3.62469000	-1.24417600	-0.04189100
С	3.80691200	-1.47501600	-1.39878900
С	4.22504800	-0.15174400	0.57655300
С	4.57586100	-0.59370700	-2.15040800
Н	3.37012400	-2.35761800	-1.85361100
С	5.00617300	0.71564200	-0.17569000
Н	4.07669000	0.01383300	1.63832600
С	5.17487200	0.50106600	-1.53939300
H	5.78710300	1.17798300	-2.12326000
Н	3.24480700	-2.44063700	1.57959000
Н	5.48588600	1.56010600	0.30524000
Н	4.72414300	-0.77469800	-3.20825700
С	-0.32087700	-0.60762900	-0.10619200
Ċ	-1.67369600	-0.43569100	-0.20931500
Č	-0.79415300	0.67580700	-0.03084000
N	-2.87087900	-0.93068900	-0.36001300
N	-0 60843800	1 95899800	0 10092100
C	-4.04688900	-0.04857500	-0.53819000
Č	-3.04123600	-2.40706400	-0.29710200
Č	-1 77363100	2 87020000	0 21125000
C	0 77069800	2 51770300	0.01275100
Č	-4 81048600	-0.39851500	-1 81193200
Н	-3 63290800	0.95237200	-0 67246300
C	-4 92498300	-0.05973200	0.70802100
C	-2.56778100	-2.95175900	1 04589400
Н	-4 11653700	-2.57071800	-0 37507100
C	-2.36323300	-3 08101900	-1 48501300
Н	-2 61149500	2,22672600	0 48708200
C	-1 59518700	3 87739900	1 34189200
C	-2 06691400	3 52848800	-1 13285900
н	0.62221700	3 57696200	-0 20443600
C	1 51147700	2 38088100	1 33723700
C	1 54288400	1 90666300	-1 15215800
н	-4 14930500	-0.39375100	-2 68098100
н	-5 29466800	-1 37551100	-1 74647000
Н	-5 59505600	0.34269500	-1 97563700
Н	-5 35966600	-1 04789200	0.87993800
Н	-4 35293300	0 22254700	1 59500800
Н	-5 74900100	0.64668800	0.58902600
Н	-1 49121200	-2.81819600	1 18186000
Н	-3 07921300	-2 45570600	1.87315200
Н	-2 78007700	-4 02104600	1 10369200
Н	-2 72072500	-2 66959100	-2 43089900
Н	-1 27724100	-2 96142100	-1 43520500
Н	-2 57390100	-4 15188700	-1 47342100
Н	-0 78819800	4 58554900	1 14139000
Н	-2 51582900	4.55554500	1 44985900
н	-1 39563900	3 37477500	2 28976300
Н	-2 23498900	2 77847300	-1 91028000
Н	-2.95980900	4 15265400	-1 05856200
Н	-1 24038500	4 16976900	-1 44979600
Н	2 50044600	2 83637300	1 25026500
Н	0 97711600	2.03037300	2 15056000
H	1.64307500	1.32940600	1.60053300

Н	1.80665000	0.86299700	-0.96370900
Н	0.97622400	1.97322000	-2.08398400
Н	2.48172800	2.44682600	-1.28451100

- Thermochemistry -

(0 imaginamy fragmanai

(0 imaginary frequencies)	
Zero-point correction=	0.547304 (Hartree/Particle)
Thermal correction to Energy=	0.576924
Thermal correction to Enthalpy=	0.577868
Thermal correction to Gibbs Free Ener	gy= 0.486057
Sum of electronic and zero-point Energy	gies= -1475.762748
Sum of electronic and thermal Energie	s= -1475.733128
Sum of electronic and thermal Enthalp	ies= -1475.732184
Sum of electronic and thermal Free En	ergies= -1475.823995

С	1.61246900	-1.59891900	0.35948800
S	1.08254400	-1.74134900	1.90923200
Ν	0.89997100	-0.95491500	-0.62084800
Н	1.33883100	-0.86549700	-1.52794200
Ν	2.87222800	-1.96090300	-0.12273100
С	3.91711500	-0.96996700	-0.15178800
С	5.10236900	-1.30634900	-0.80134000
С	3.77170400	0.28652300	0.42454000
С	6.14183400	-0.39055200	-0.85762500
Н	5.20070800	-2.28258000	-1.26250300
С	4.81196300	1.20591200	0.34353100
Н	2.86839400	0.54157900	0.96361500
С	5.99838300	0.87278600	-0.29314400
Н	6.80906400	1.58905200	-0.34558000
Н	3.19797000	-2.77379800	0.38812200
Н	4.69634200	2.18118500	0.80246100
Н	7.06502800	-0.66128200	-1.35596300
С	-0.32332700	-0.35800400	-0.40969400
С	-1.68013800	-0.49018600	-0.26437000
С	-1.04441800	0.79021900	-0.22364500
Ν	-2.76400900	-1.20872700	-0.20631100
Ν	-1.10326700	2.08727800	-0.09997400

С	-4.06585800	-0.57329000	0.11603800
С	-2.70857800	-2.65703700	-0.55160100
С	-2.40036900	2.80318900	-0.09208300
С	0.16346300	2.84166300	0.09675000
С	-4.87401400	-0.34378900	-1.15654300
Н	-3.80973300	0.39151000	0.55783200
С	-4.82839200	-1.35720300	1.17822000
С	-2.17161600	-3.48089700	0.61219900
Н	-3.74730100	-2.93409400	-0.73919400
С	-1.92701500	-2.88611300	-1.84061900
Н	-3.15064700	2.03644800	-0.29112900
С	-2.67810000	3.42213800	1.27290600
С	-2.46823600	3.81338400	-1.23370800
Н	-0.12799800	3.89235400	0.07838500
С	0.75516900	2.52231000	1.46627600
С	1.14278700	2.60381500	-1.04764100
Н	-4.31823000	0.27154600	-1.86891000
Н	-5.12311400	-1.28984100	-1.64410400
Н	-5.81143900	0.16394300	-0.92090400
Н	-5.14768800	-2.33836100	0.82022800
Н	-4.22719300	-1.48991900	2.07911400
Н	-5.72829200	-0.80163500	1.44873700
Н	-1.14153300	-3.19964300	0.84417100
Н	-2.77224000	-3.34352700	1.51214800
Н	-2.18681600	-4.54103500	0.35055500
Н	-2.28886800	-2.24146800	-2.64504500
Н	-0.85683100	-2.71524700	-1.69745300
Н	-2.05041700	-3.92381500	-2.15480600
Η	-1.95060900	4.20117200	1.51461800
Н	-3.66670200	3.88523500	1.27462200
Н	-2.64903400	2.66644700	2.06118500
Н	-2.26690800	3.33427900	-2.19403600
Н	-3.46787900	4.25038500	-1.27249300
Н	-1.75989000	4.63408400	-1.09931600
Н	1.69956400	3.05363900	1.60056600
Н	0.07678900	2.82000300	2.26769500
Η	0.94929300	1.45099700	1.57191300
Η	1.56859200	1.59835900	-1.01337700
Η	0.66372800	2.76139900	-2.01625000
Н	1.97672400	3.30278100	-0.96250000

- Thermochemistry -

(0 imagin Zero-poir Thermal Thermal Sum of e Sum of e Sum of e	ary frequencies) at correction= correction to End correction to End correction to Gib electronic and zer electronic and the electronic and the electronic and the	0 ergy= halpy= obs Free Energ o-point Energi rmal Energies= rmal Enthalpie rmal Free Ener	.546939 (Hartree/Particle) 0.576622 0.577566 y= 0.485288 es= -1475.758072 = -1475.728389 s= -1475.727444 rgies= -1475.819722
С	1.65172700	-1.45137300	-0.07734500
S	1.28562600	-1.70304300	1.49874700
Ν	0.81729100	-0.82548400	-0.96307100
Н	1.16700900	-0.70303300	-1.90447200
Ν	2.88846100	-1.75223700	-0.71081700
С	3.97307600	-0.88346400	-0.35223200
С	5.14060100	-1.41257600	0.18524400
С	3.87000500	0.48873900	-0.56583200
С	6.20118200	-0.57251000	0.49983600
Н	5.22272000	-2.47974500	0.36277700
С	4.92648800	1.32347100	-0.23113400
Н	2.97219900	0.90751400	-1.00537200
С	6.09748200	0.79757500	0.30060500
Н	6.92352900	1.45036200	0.55427600
Н	3.14087200	-2.70304100	-0.46575300
Н	4.83852200	2.39049800	-0.40100000
Н	7.10852600	-0.99519300	0.91444200
C	-0.40641700	-0.29973600	-0.60493400
C	-1.72388700	-0.49860300	-0.28437900
C	-1.13440500	0.80455100	-0.25561700
N	-2.76013700	-1.26765600	-0.11518000
N	-1.21049/00	2.08838300	-0.04543200
C	-4.02604300	-0./1164800	0.42436800
C	-2.09558500	-2.09303200	-0.55549700
C	-2.30891300	2.73329100	0.20831000
C	5.03504000	2.88004700	0.60680000
ч	-3.75215700	-0.48802000	-0.09089900
C	-4 57432500	-1 56823900	1 56057000
Č	-1 97894600	-3 54738900	0.50508100
H	-3.73863300	-3.00987200	-0.60069000
С	-2.08236400	-2.83381700	-1.92468500
Н	-3.26299500	1.98112900	0.05676800
С	-2.59059000	3.25118600	1.64735500
С	-2.76795800	3.85105000	-0.82173100
Н	-0.26266900	3.90187800	0.19084700
С	1.00706900	2.40245700	1.02141200
С	0.66178800	2.90293100	-1.45318100
Н	-4.63009800	0.17402200	-1.46609900
Н	-5.31821600	-1.43149500	-1.17161700
Н	-5.94368300	-0.03482700	-0.29620300
H	-4.89575000	-2.55393400	1.21684600
H	-3.83244200	-1.69611200	2.350/0/00
H	-5.447/11900	-1.0/229200	1.98921800
н Н	-0.94009900	-3.22/34100 -3.48252000	0.01972300 1.47973200
	ω_{1} = $(1, 1, 2, 3)$ = $(1, 1, 2)$	J_{1}	1. 1/7/.7400

Н	-1.98373000	-4.59307100	0.19030700
Н	-2.56481800	-2.16532000	-2.64151400
Н	-1.00794800	-2.63222300	-1.91298100
Н	-2.21470100	-3.85894300	-2.27449500
Н	-1.84019100	4.02019600	1.84840700
Н	-3.57144100	3.69362000	1.83197300
Н	-2.44104700	2.43291200	2.35541800
Н	-2.70510900	3.45692200	-1.83816300
Н	-3.77017100	4.25741400	-0.67353900
Н	-2.06349100	4.68034800	-0.72512300
Н	1.88563000	3.05001700	1.04899800
Н	0.53275900	2.42608800	2.00431400
Н	1.35771800	1.38474500	0.83489800
Н	0.97955200	1.90210300	-1.75836000
Н	-0.04450800	3.28230000	-2.19395900
Н	1.54539700	3.54392500	-1.46096300

Zero-point correction=	0.547186 (Hartree/Particle)
Thermal correction to Energy=	0.577743
Thermal correction to Enthalpy=	0.578687
Thermal correction to Gibbs Free H	Energy= 0.483791
Sum of electronic and zero-point E	nergies= -1475.765377
Sum of electronic and thermal Ene	rgies= -1475.734820
Sum of electronic and thermal Entl	halpies= -1475.733876
Sum of electronic and thermal Free	e Energies= -1475.828773

С	1.89312000	-0.26152200	-0.07761800
S	1.58869800	-0.77814700	1.45609900
Ν	0.87181900	0.24044400	-0.90207000
Н	1.11613200	0.99700400	-1.52669200
Ν	3.05328300	-0.41696300	-0.76898100
С	4.36045700	-0.05631400	-0.31622200
С	5.44684900	-0.66381700	-0.93656000
С	4.55744500	0.89417300	0.67867900
С	6.73658000	-0.30768500	-0.56919700
Н	5.28044500	-1.41973500	-1.69630900
С	5.85165200	1.23116400	1.05031100
Н	3.71163400	1.36169100	1.16720900

С	6.94255900	0.63714600	0.42821300
Н	7.94976700	0.90708600	0.72122400
Н	2.95341400	-0.38296900	-1.77481700
Н	6.00534400	1.96871800	1.82895000
Н	7.58153200	-0.78052600	-1.05499800
С	-0.44430100	0.13798300	-0.54931400
С	-1.52104100	-0.65593200	-0.24470900
С	-1.63124200	0.75725000	-0.26736700
Ν	-2.08343000	-1.81917900	-0.04694900
Ν	-2.32473400	1.85906000	-0.12500500
С	-3.47418300	-1.86334300	0.46963300
C	-1.42983600	-3.07202600	-0.51861700
C	-3.79004500	1.81514800	0.07842300
Č	-1 60170200	3 15417200	-0.09120000
Č	-4.47236600	-2.01388400	-0.67502900
Н	-3 62676000	-0.89635400	0.95367500
C	-3 64787000	-2.92922000	1 54522700
C	-0 51258900	-3 68056000	0.53557500
н	-2 26010300	-3 75741200	-0 70301000
C	-0 71085800	-2 85248600	-1 84574400
н	-4 07444900	0 78187800	-0 12596200
П С	-4 14608600	2 14869100	1 52346200
C C	-4.51747600	2.14809100	-0.03/03800
ч	-4.31747000	2.09422300	0.18772700
II C	-2.33393800	3.89300200	0.18772700
C	-0.32324900	3.131/4300	0.98737200
U U	-1.00094800	3.31002300	-1.4/293100
п	-4.34410900	-1.22491000	-1.42128800
П	-4.33921700	-2.9///8000	-1.1//41800
П	-5.49508700	-1.95994100	-0.29046/00
Н	-3.52884600	-3.93895200	1.14603500
H	-2.9364//00	-2./8646200	2.36008100
H	-4.65650/00	-2.855//300	1.95620000
H	0.33030200	-3.018//300	0.74157900
Н	-1.03835700	-3.86845700	1.4/160100
Н	-0.12072400	-4.63207000	0.16890400
Н	-1.36457700	-2.37728200	-2.58123500
Н	0.18836600	-2.24381500	-1.72052500
Н	-0.39580200	-3.81765300	-2.24557300
Н	-3.88485000	3.18103800	1.77100000
Н	-5.22080500	2.03523800	1.67924200
Н	-3.62436200	1.48680100	2.21886400
Н	-4.24227500	2.42969000	-1.95709000
Н	-5.59430300	2.55334600	-0.82344800
Н	-4.31235500	3.75629100	-0.78019100
Н	-0.06751700	4.14130300	1.05619100
Н	-0.94716600	2.90105700	1.96176300
Н	0.27132400	2.43276600	0.76902300
Н	-0.31598400	2.79403800	-1.80827900
Н	-1.86727100	3.54203200	-2.21418100
Н	-0.58934400	4.49707600	-1.44562600

------- Thermochemistry -

(° magnai j nequeneros)	
Zero-point correction=	0.546433 (Hartree/Particle)
Thermal correction to Energy=	0.576441
Thermal correction to Enthalpy=	0.577385
Thermal correction to Gibbs Free Ene	ergy= 0.483912
Sum of electronic and zero-point Ener	rgies= -1475.768761
Sum of electronic and thermal Energie	es= -1475.738752
Sum of electronic and thermal Enthal	pies= -1475.737808
Sum of electronic and thermal Free En	nergies= -1475.831282
	-

С	-1.83672700	-0.62168400	0.14839300
S	-1.68455900	-0.06946000	-1.40070500
Ν	-0.72527300	-0.76021200	0.99208500
Н	-0.74639700	-1.49086900	1.69063000
Ν	-2.96553300	-1.13069400	0.69476400
С	-4.27771900	-0.67893600	0.30576400
С	-5.15416100	-1.57702000	-0.28266500
С	-4.65921600	0.63278500	0.55973100
С	-6.43544000	-1.15748800	-0.61963000
Н	-4.82757200	-2.59089400	-0.47975200
С	-5.93791000	1.04648600	0.21713100
Н	-3.95613000	1.32352700	1.01227900
С	-6.82605100	0.15164600	-0.37010800
Н	-7.82478600	0.47796600	-0.63468400
Н	-2.91088900	-1.38855800	1.67198000
Н	-6.24214600	2.06842700	0.40880900
Н	-7.12577900	-1.85344600	-1.08054500
С	0.51658300	-0.33988600	0.59624800
С	1.80540300	-0.65037200	0.25810800
С	1.35530800	0.69725800	0.27770000
Ν	2.74288000	-1.54158400	0.06248200
Ν	1.60902000	1.96472400	0.09405500
С	4.14350000	-1.13254900	-0.18647200
С	2.36389700	-2.97608900	0.01327400
С	2.91773500	2.36941900	-0.47565400
С	0.66799500	3.00358500	0.59728500
С	5.10257200	-1.82492300	0.77700600
Н	4.17403300	-0.06538700	0.03981400
С	4.51442000	-1.33870100	-1.65117500
С	1.28938700	-3.22289600	-1.04067400

Н	3.26994300	-3.49715800	-0.29837500
С	1.97201900	-3.48408200	1.39652600
Н	3.30544500	1.47198000	-0.96181700
С	2.75732000	3.42886200	-1.55975200
С	3.87971300	2.79420200	0.63008400
Н	1.28778600	3.89384100	0.72317800
С	-0.43846600	3.30673700	-0.40603300
С	0.11703800	2.62701200	1.96867000
Н	4.80554900	-1.66072100	1.81483300
Н	5.16542400	-2.90068000	0.59686700
Н	6.10514600	-1.41477900	0.64135400
Н	4.48060900	-2.39635200	-1.92567200
Н	3.83409000	-0.79242900	-2.30895000
Н	5.53061000	-0.98312100	-1.83305000
Н	0.33969300	-2.74991200	-0.77578900
Н	1.59976000	-2.83567700	-2.01296500
Н	1.11051400	-4.29517200	-1.13987300
Н	2.76665900	-3.31016300	2.12403500
Н	1.06368300	-2.99014800	1.75466800
Н	1.76819900	-4.55572100	1.35727700
Н	2.38819000	4.37507400	-1.15787600
Н	3.73130900	3.62295500	-2.01280200
Н	2.07721600	3.09009300	-2.34286500
Н	3.99690400	2.00552200	1.37830900
Н	4.86171200	3.01484900	0.20647800
Н	3.52890700	3.69589700	1.13831700
Н	-1.07195800	4.10819300	-0.01891200
Н	-0.03451800	3.62812000	-1.36634700
Н	-1.05746000	2.42395200	-0.57581300
Н	-0.58336200	1.78982500	1.90639800
Н	0.91868400	2.36813200	2.66465600
Н	-0.42698500	3.47836200	2.38124700

(0 imaginary frequencies)

Zero-point correction=0.546839 (Hartree/Particle)Thermal correction to Energy=0.577604Thermal correction to Enthalpy=0.578549Thermal correction to Gibbs Free Energy=0.483102Sum of electronic and zero-point Energies=-1475.772273Sum of electronic and thermal Energies=-1475.741508

⁻ Thermochemistry -

Sum of electronic and thermal Enthalpies= -1475.740564 Sum of electronic and thermal Free Energies= -1475.836010

С	1.85954400	-0.43257000	-0.27607400
S	1.74136500	0.09667500	1.28235800
Ν	0.72273000	-0.66125600	-1.07549600
Н	0.75497000	-1.46349300	-1.69038100
Ν	2.99237500	-0.79471100	-0.91019000
С	4.30463400	-0.53240700	-0.38646000
С	4.96225400	-1.53016400	0.31740600
Ċ	4,90250600	0.70029500	-0.61125500
Ċ	6.23844500	-1.28868400	0.80776600
H	4,47049300	-2.48107100	0.48345700
C	6 18031400	0 93382600	-0 12198200
Ĥ	4 36637700	1 47058500	-1 15432200
C	6 84650300	-0.05898000	0 58730300
н	7 84240400	0 12737300	0.97112400
Н	2 94076900	-0.92448600	-1 91139000
Н	6 65449100	1 89302200	-0.29102200
Н	6 75770300	-2 06147300	1 36148200
C	-0 52044500	-0 29787100	-0.63827300
C	-1 78460200	-0.66731100	-0.26700300
C	-1 39562400	0.69608100	-0.28230900
N	-2.67501600	-1.60402400	-0.05567700
N	-1 70134600	1 94910000	-0.07220900
C	-4 08487100	-1 26398900	0 23948600
C	-2 22823300	-3.01875800	-0.02932900
C	-3 01343900	2 27813700	0 53715700
C	-0.83758000	3 03985500	-0 60164600
C	-5.03911100	-1 99996600	-0.69614400
Н	-4 17516900	-0 19894200	0.01999500
C	-4.39855600	-1.49376100	1.71416200
Č	-1 11127700	-3 22332200	0 98915100
H	-3 09789100	-3 58433000	0 30748200
C	-1 85908500	-3 50039700	-1 42822900
Ĥ	-3 33174200	1 36096800	1 03702200
C	-2.88476700	3 34878400	1 61434000
C	-4 03301300	2 64028500	-0 53894800
Н	-1 51529400	3 88833600	-0 71865900
C	0 27069200	3 42254200	0 37232400
Č	-0.29453900	2.69034600	-1.98331500
Н	-4.78683300	-1.81429800	-1.74218500
Н	-5.03801500	-3.07863800	-0.52229300
Н	-6.05701000	-1.64528100	-0.52355900
Н	-4.29335300	-2.54802000	1.98374100
Н	-3.73191300	-0.90962300	2.35323900
Н	-5.42816700	-1.20019200	1.92831400
Н	-0.19254000	-2.70563300	0.69959600
Н	-1.40845100	-2.85658900	1.97344900
Н	-0.88146900	-4.28707700	1.07450200
Н	-2.68560400	-3.36201600	-2.12719200
Н	-0.98989400	-2.96029200	-1.81597200
Н	-1.60167900	-4.56094200	-1.40375000
Н	-2.57789100	4.31230300	1.20145100
Н	-3.85699100	3.49160000	2.08980900
Н	-2.16936300	3.05022800	2.38207900

Н	-4.12273200	1.84476100	-1.28371400
Н	-5.01399600	2.80025800	-0.08653400
Н	-3.75491800	3.56114800	-1.05794200
Н	0.82244000	4.27763200	-0.02493000
Н	-0.12805000	3.70028800	1.34812700
Н	0.96707900	2.59377700	0.51182300
Н	0.45087800	1.89219900	-1.93390200
Н	-1.09467300	2.38669600	-2.66279700
Н	0.19448600	3.56881800	-2.40763600

**==

Zero-point correction=	0.546621 (Hartree/Particle)
Thermal correction to Energy=	0.577436
Thermal correction to Enthalpy=	0.578380
Thermal correction to Gibbs Free Ener	rgy= 0.482853
Sum of electronic and zero-point Ener	gies= -1475.772996
Sum of electronic and thermal Energie	es= -1475.742181
Sum of electronic and thermal Enthalp	bies= -1475.741237
Sum of electronic and thermal Free Er	nergies= -1475.836765

С	-1.86129300	-0.41135300	-0.27727200
S	-1.74169800	0.12570000	1.27796200
Ν	-0.72351200	-0.66044300	-1.07079300
Н	-0.76007300	-1.47398500	-1.67029600
Ν	-2.99511000	-0.74458200	-0.92549800
С	-4.30900700	-0.52305700	-0.39310500
С	-5.02962000	0.59433300	-0.79129400
С	-4.84727400	-1.44251700	0.49588500
С	-6.31021500	0.79103000	-0.29092000
Н	-4.58897600	1.30718600	-1.47948300
С	-6.12269200	-1.23383300	1.00057600
Н	-4.26391000	-2.30544700	0.79345400
С	-6.85426600	-0.11947600	0.60659200
Н	-7.85071600	0.03977800	1.00092800
Н	-2.93976200	-0.85092200	-1.92890400
Н	-6.54631800	-1.94389400	1.70040800
Н	-6.87929000	1.66027800	-0.59770100
С	0.51988800	-0.29590900	-0.63753600
С	1.39445000	0.69714800	-0.27697800
С	1.78578100	-0.66506300	-0.27205100
Ν	1.69986500	1.94899900	-0.05744600

⁻ Thermochemistry -

⁻⁻⁻⁻⁻

Ν	2.67734500	-1.60300600	-0.06895300
С	3.01394900	2.27098200	0.55179100
С	0.84108000	3.04589000	-0.58263500
С	4.08706900	-1.26444800	0.22813000
С	2.23149400	-3.01798100	-0.05429200
С	4.03455000	2.63197500	-0.52384900
Н	3.32869600	1.35111200	1.04894100
С	2.89139600	3.33920300	1.63202400
С	-0.25862900	3.44096300	0.39616600
Н	1.52544400	3.88839600	-0.70486700
С	0.28671400	2.70003200	-1.96066100
Н	4.17665500	-0.19775700	0.01691700
С	4.40135600	-1.50504700	1.70100200
С	5.04180100	-1.99254200	-0.71311100
Н	3.10017200	-3.58576100	0.28140600
С	1.11138500	-3.23085500	0.95904300
С	1.86742600	-3.48935400	-1.45810000
Н	4.11966700	1.83909900	-1.27197400
Н	3.76096500	3.55632400	-1.03898700
Н	5.01669200	2.78516800	-0.07155700
Н	2.58918400	4.30540300	1.22198900
Н	2.17516700	3.04217400	2.39956300
Н	3.86474000	3.47575600	2.10707800
Н	-0.96719500	2.62249400	0.53425600
Н	0.14628800	3.71000300	1.37175500
Н	-0.79886500	4.30519600	0.00287600
Н	1.07988600	2.38953400	-2.64521100
Н	-0.46525100	1.90844500	-1.90624400
Н	-0.19784500	3.58234300	-2.38208800
Н	4.29713400	-2.56137700	1.96277200
Н	5.43076800	-1.21223900	1.91716000
Н	3.73438100	-0.92620900	2.34455100
Н	4.78910200	-1.79954600	-1.75772200
Н	6.05938800	-1.63809100	-0.53818400
Н	5.04190500	-3.07246000	-0.54709500
Н	0.88106600	-4.29522600	1.03483700
Н	1.40546100	-2.87229800	1.94727600
Н	0.19371000	-2.71061100	0.67070500
Н	1.00185300	-2.94411300	-1.84688700
Н	2.69752100	-3.34803500	-2.15218500
Н	1.60736300	-4.54942400	-1.44248100

Computational Methods

Quantum mechanical calculations were performed using Gaussian 09.¹⁹⁴ The following geometry optimizations were performed using the ω B97XD functional¹⁹⁵ with a 6-31G(d)/def2-SV basis set. The optimized geometries were verified as transition state structures (one imaginary frequency) or minima (zero imaginary frequencies) by frequency calculations. Intrinsic reaction coordinate calculations were performed to confirm that all transition state structures were linked to relevant minima. The energies of the ω B97XD/6-31G(d)/def2-SV optimized structures were further refined by single point calculations performed at the ω B97XD/6-311+G(d,p)/def2-SV level of theory using the integral equation formalism polarizable continuum model (IEFPCM) with the default parameters of dichloromethane ($\varepsilon = 8.9$) to account for solvent.²⁰⁴ The thermal corrections to the Gibbs free energies (temperature = 298.15 K) computed at the lower level of theory (ω B97XD/6-31G(d)/def2-SV were added to the electronic energies obtained from the single point calculations to provide the final reported Gibbs free energies. The 3D images of all optimized geometries were generated with CYLview.²⁰⁰ GaussView5²⁰¹ was used to construct all structures prior to optimization and to visualize the output from the Gaussian 09 calculations. The reported non-covalent interaction (NCI) plot (isovalue = 0.3, min = -0.05 and max = 0.05 was calculated using the B3LYP-D3²⁰⁵ functional with a LAVP*+ basis set using the program Jaguar of the Schrödinger software package.²⁰⁶

Optimized Structures

Structure	Gibbs Free Energy (a.u.)	H (a.u.)	S (cal/mol*K)
4	-1475.551358	-1475.456688	199.249
8a	-513.873247	-513.826630	98.112
4•8a	-1989.441285	-1989.316470	262.695
9a	-402.865756	-402.824343	87.162
9b	-516.168702	-516.122965	96.261
9d	-363.590981	-363.553484	78.919
TS1	-2392.335045	-2392.202496	278.974
4•10a'	-2392.351427	-2392.220051	276.504
10a	-916.757514	-916.691224	139.519

Table 25. Gibbs free energy, enthalpies and entropies for all optimized structures.

- Thermochemistry -

0.551934 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.582455 Thermal correction to Enthalpy= 0.583399 Thermal correction to Gibbs Free Energy= 0.488729 Sum of electronic and zero-point Energies= -1475.488153 Sum of electronic and thermal Energies= -1475.457632 Sum of electronic and thermal Enthalpies= -1475.456688 Sum of electronic and thermal Free Energies= -1475.551358

S	-1.69970300	-0.30899800	1.31375000
Ν	1.80773500	-1.91374600	-0.14908800
Ν	2.61538100	1.68714500	-0.00654400
Ν	-0.75695500	0.62026000	-1.01742000
Ν	-3.02522900	0.47708700	-0.89355900
С	1.43853700	-0.66507300	-0.30681900
С	1.76442000	0.71355300	-0.24241100
С	0.50948000	0.30142100	-0.60940500
С	0.99764200	-3.02616800	-0.71739400
Н	1.72299200	-3.82671000	-0.89049100
С	-0.06595900	-3.52536800	0.25659200
Н	0.36821100	-3.82108700	1.21404300
Н	-0.56854000	-4.39756500	-0.17273200
Н	-0.81384500	-2.75046900	0.44564400
С	0.40425800	-2.64167900	-2.07032900
Н	-0.37841700	-1.88251000	-1.96952200
Н	-0.05345900	-3.52511900	-2.52332700
Н	1.17404200	-2.26940200	-2.75379700
С	3.14108500	-2.19797600	0.43726800
Н	3.41424400	-1.28597800	0.97579300
С	3.08032700	-3.32102900	1.46888500
Н	2.35457100	-3.09589700	2.25449800
Н	4.06457100	-3.42938700	1.93323000
Н	2.82514000	-4.28393400	1.01627500
С	4.17184200	-2.45877500	-0.65996500
Н	3.94235000	-3.37484900	-1.21404400
Н	5.16563300	-2.58010500	-0.21901600
Н	4.20898200	-1.62996200	-1.37508300
С	4.04561700	1.40523700	0.25066000
Н	4.18156300	0.35166900	-0.00559100
С	4.37940700	1.60073000	1.72793500
Н	4.24372500	2.64326800	2.03439200
Н	5.42430100	1.33634000	1.91400600
Н	3.74409200	0.97291700	2.36088900

С	4.94527800	2.21779700	-0.67869500
Н	4.68906800	2.04170700	-1.72743000
Н	5.98601800	1.91866500	-0.52591500
Н	4.88415000	3.29218500	-0.47947200
С	2.09641700	3.07305800	0.10003900
Н	2.94710800	3.67080600	0.43510400
С	1.65559800	3.59844100	-1.26402700
Н	2.46644900	3.53897000	-1.99499100
Н	1.34079200	4.64223300	-1.17984600
Н	0.80404500	3.02855300	-1.65327500
С	1.00416100	3.17233900	1.16308000
Н	0.10679800	2.60738000	0.88732400
Н	0.71282100	4.21809400	1.29536900
Н	1.35971500	2.79013900	2.12406200
С	-1.87483700	0.26037400	-0.22981900
С	-4.35100200	0.35972100	-0.36305300
С	-4.81409700	-0.85579200	0.13159600
Н	-4.15773600	-1.71825800	0.15012400
С	-6.11830100	-0.94207600	0.60491400
Н	-6.48395200	-1.88460300	0.99897000
С	-6.95458600	0.17107800	0.56866800
Н	-7.97242600	0.09591800	0.93742500
С	-6.48633500	1.37886100	0.05950900
Н	-7.13525700	2.24803100	0.02965700
С	-5.17880300	1.47793600	-0.40443000
Н	-4.79868800	2.41950100	-0.79039200
Н	-0.83957800	1.47843700	-1.55067400
Н	-2.96165300	0.73010800	-1.87172200

8a

Zero-point correction=	0.138818 (Hartree/Particle)
Thermal correction to Energy=	0.147927
Thermal correction to Enthalpy=	0.148871
Thermal correction to Gibbs Free Ener	rgy= 0.102255
Sum of electronic and zero-point Ener	gies= -513.836683
Sum of electronic and thermal Energie	es= -513.827575
Sum of electronic and thermal Enthalp	bies= -513.826630
Sum of electronic and thermal Free Er	nergies= -513.873247

0	-3.81781500	0.92852600	-0.05385500
Ν	-2.98538000	0.03231700	-0.00522300
0	-3.24480800	-1.16183900	0.05466400
С	-1.59806800	0.45741000	-0.02237000
Н	-1.50808200	1.53278300	-0.07816300
С	-0.61836000	-0.44595200	0.02179200
---	-------------	-------------	-------------
Η	-0.92414900	-1.48888200	0.06493400
С	0.81990600	-0.17395000	0.01294900
С	1.70048600	-1.26220900	-0.02026400
С	1.35293900	1.12310200	0.03785000
С	3.07621000	-1.06459800	-0.03483500
Η	1.29823600	-2.27163700	-0.03747700
С	2.72590400	1.32015100	0.02490900
Η	0.69263200	1.98427900	0.07246900
С	3.59158500	0.22732100	-0.01237000
Н	3.74523800	-1.91895600	-0.06197500
Η	3.12556100	2.32923400	0.04646500
Н	4.66559800	0.38581600	-0.02212900

4•8a

- Thermochemistry -

-----Zero-point correction= 0.692486 (Hartree/Particle) Thermal correction to Energy= 0.733951 Thermal correction to Enthalpy= 0.734895 Thermal correction to Gibbs Free Energy= 0.610080 Sum of electronic and zero-point Energies= -1989.358879 Sum of electronic and thermal Energies= -1989.317414 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -1989.316470 -1989.441285

S	-2.74965500	2.18992200	0.74575200
Ν	-3.64553100	-1.20021700	-1.41034200
Ν	-1.76042800	-2.52102200	1.47389900
Ν	-0.72476100	0.65556300	-0.05699600
Ν	-0.22912600	2.86756400	0.02978000
С	-2.65375500	-1.08210500	-0.55985200
С	-1.93657800	-1.60429300	0.54800400
С	-1.57254800	-0.41631300	-0.03118900
С	-3.69377300	-0.36198000	-2.63901000
Н	-4.29191500	-0.94798100	-3.34315800

С	-4.38251300	0.97833500	-2.39878300
Н	-5.38335700	0.84862700	-1.98062900
Н	-4.47629600	1.51319000	-3.34909900
Н	-3.80212100	1.59366600	-1.70582300
С	-2.30178200	-0.19224400	-3.24300300
Н	-1.66417200	0.43959700	-2.61589200
Н	-2.39138400	0.29670800	-4.21682500
Н	-1.81025400	-1.15939100	-3.39001500
С	-4.63264100	-2.28955200	-1.22205700
Н	-4.52503700	-2.59301500	-0.17690800
С	-6.06599500	-1.79370800	-1.39449000
Н	-6.27647300	-0.95869400	-0.72130200
Н	-6.75501700	-2.60873400	-1.15506200
Н	-6.27401500	-1.48024700	-2.42196200
С	-4.30638400	-3.48088600	-2.12176000
Н	-4.41284500	-3.22436000	-3.18084400
Н	-4.99167700	-4.30761900	-1.91213500
Н	-3.28154200	-3.83117600	-1.95803300
С	-2.51015400	-3.79401900	1.43434100
Н	-2.98726400	-3.81618500	0.45121700
С	-3.59480000	-3.82603600	2.50898000
Н	-3.16210600	-3.79258600	3.51434900
Н	-4.17410300	-4.75056600	2.42904100
Н	-4.27834600	-2.97746900	2.40377000
С	-1.56675800	-4.99388800	1.50468700
Н	-0.80253800	-4.93693900	0.72415700
Н	-2.13855200	-5.91465300	1.35822500
Н	-1.06886800	-5.07099400	2.47639100
С	-0.85852900	-2.21745600	2.61281400
Н	-1.00296000	-3.04119000	3.31631300
С	0.60220500	-2.21250800	2.16918200
Н	0.87152300	-3.15851400	1.69042100
Н	1.25284800	-2.06667100	3.03647400
Н	0.80253900	-1.39908600	1.46474000
С	-1.27359500	-0.92359500	3.31012800
Н	-1.13948800	-0.04894500	2.66505100
Н	-0.66225700	-0.77607600	4.20495000
Н	-2.32374200	-0.96233000	3.61336500
С	-1.18826800	1.94433000	0.21475100
С	-0.27905600	4.26038400	0.32337600
С	-1.33889000	5.06764600	-0.08308800
Н	-2.18222100	4.63621000	-0.60674600
С	-1.30005800	6.43003100	0.19387100
Н	-2.12830000	7.05866000	-0.11729900
С	-0.20867200	6.99007600	0.85149200
Н	-0.18480900	8.05519700	1.05820500
С	0.85527600	6.17956200	1.23702500
Н	1.71305600	6.60769100	1.74580600
С	0.82076900	4.81452900	0.97764400
Н	1.64386700	4.17448500	1.28305600
Н	0.27797300	0.45601200	-0.06516900
Н	0.69750000	2.52797900	-0.21940900
0	2.11646500	-0.15924900	-0.27623600
Ν	2.93479700	0.76423800	-0.33117600
0	2.61019200	1.94941200	-0.31243300
С	4.33034800	0.48485200	-0.42435000

Н	4.92004300	1.38897000	-0.45754600
С	4.76618000	-0.78439500	-0.47514200
Н	4.00858600	-1.56390700	-0.44573600
С	6.14820000	-1.22110800	-0.57594400
С	6.39735200	-2.59613900	-0.70044500
С	7.23482800	-0.33028100	-0.55873800
С	7.69659300	-3.07240600	-0.81361200
Η	5.56358100	-3.29305400	-0.71258800
С	8.53052600	-0.80821600	-0.66866100
Н	7.07040600	0.73740300	-0.45294900
С	8.76329200	-2.17829900	-0.79851700
Н	7.87717400	-4.13728700	-0.91457800
Н	9.36413100	-0.11403100	-0.65359200
Н	9.78009100	-2.54753300	-0.88699700

9a

-

- Thermochemistry -

Zero-point correction

Zero-point correction=	0 159838 (Hartree/Particle)
Thermal correction to Energy=	0.167704
Thermal correction to Enthalpy=	0.168648
Thermal correction to Gibbs Free Ener	rgy= 0.127235
Sum of electronic and zero-point Ener	gies= -402.833153
Sum of electronic and thermal Energie	-402.825287
Sum of electronic and thermal Enthalp	bies= -402.824343
Sum of electronic and thermal Free Er	nergies= -402.865756

С	-0.72987000	1.88464700	0.00215500
С	-1.85671500	1.11560100	-0.00377500
Ν	-1.52410100	-0.22255900	-0.01161100
Н	-0.69503400	2.96472800	0.00402700
Н	-2.89794500	1.40932600	-0.00484600
С	-0.15152200	-0.32716800	-0.00492300
С	0.65679000	-1.46793400	-0.00408600
С	0.38541400	0.98199900	0.00107100
С	2.02803300	-1.27685000	-0.00122500
Н	0.22824400	-2.46600200	-0.00484400
С	1.77884800	1.14160900	0.00374600
С	2.58458800	0.01629300	0.00243300
Н	2.68732400	-2.13990600	-0.00112400
Н	2.21774500	2.13540000	0.00763300
Н	3.66471500	0.12895600	0.00482000
С	-2.44120300	-1.33558300	0.01062500
Н	-3.46125200	-0.95916800	-0.08766200

Н	-2.24023100	-2.01696800	-0.82297400
Н	-2.36104300	-1.89413100	0.95012800

- Thermochemistry -

Zero-point correction=	0.131522 (Hartree/Particle)
Thermal correction to Energy=	0.137782
Thermal correction to Enthalpy=	0.138726
Thermal correction to Gibbs Free End	ergy= 0.101229
Sum of electronic and zero-point Ene	ergies= -363.560687
Sum of electronic and thermal Energi	ies= -363.554428
Sum of electronic and thermal Enthal	pies= -363.553484
Sum of electronic and thermal Free E	inergies= -363.590981

С	-1.62417900	1.16310100	0.00003300
С	-2.38154600	0.02878100	-0.00002300
Ν	-1.56076700	-1.07782500	0.00001900
Η	-1.87333300	-2.03367400	-0.00077900
Η	-1.99801300	2.17703900	0.00002400
Η	-3.45582000	-0.08973700	0.00027300
С	-0.24745300	-0.66722600	0.00000800
С	0.93363800	-1.41446300	0.00003900
С	-0.24914600	0.74768900	0.00004600
С	2.12882900	-0.71708200	0.00002600
Η	0.91510500	-2.50070800	0.00015100
С	0.97985200	1.42503100	-0.00003400
С	2.15243400	0.69104200	-0.00003200
Η	3.06630100	-1.26519700	0.00009200
Η	1.00744000	2.51112000	-0.00013900
Н	3.10911600	1.20470000	-0.00013100

- Thermochemistry ------

0.169808 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.179352 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.180296 0.134559 Sum of electronic and zero-point Energies= -516.133454 Sum of electronic and thermal Energies= -516.123910 Sum of electronic and thermal Enthalpies= -516.122965 Sum of electronic and thermal Free Energies= -516.168702

С	0.27411600	2.13305600	-0.00011600
С	-0.98973600	1.65497900	-0.00015500
Ν	-0.97772300	0.25378700	-0.00000300
Н	0.55649900	3.17644200	-0.00022700
Н	-1.92504300	2.19302800	-0.00018800
С	0.36396200	-0.16262500	0.00004700
С	0.91765100	-1.44318500	0.00003600
С	1.16435300	0.99677400	0.00001700
С	2.30265000	-1.53438100	0.00006500
Н	0.28688300	-2.32108000	-0.00003400
С	2.55733800	0.87665800	0.00004100
С	3.11627100	-0.39113800	0.00008000
Н	2.76517400	-2.51669400	0.00005800
Н	3.18540900	1.76280200	0.00001200
Н	4.19615400	-0.50482700	0.00008700
С	-2.09618500	-0.58164800	-0.00005300
0	-1.98404400	-1.78830800	-0.00031600
С	-3.44414400	0.10726600	0.00031800
Н	-4.21014100	-0.66749200	0.00058400
Н	-3.56784600	0.73670100	0.88721200
Н	-3.56834100	0.73653900	-0.88663100

- Thermochemistry -

Zero-point correction=	0.857318 (Hartree/Particle)
Thermal correction to Energy=	0.905265
Thermal correction to Enthalpy=	0.906209
Thermal correction to Gibbs Free Ener	gy= 0.773659
Sum of electronic and zero-point Ener	gies= -2392.251387
Sum of electronic and thermal Energie	es= -2392.203440
Sum of electronic and thermal Enthalp	ies= -2392.202496
Sum of electronic and thermal Free En	ergies= -2392.335045

S	-3.06544300	2.76105500	-0.74395800
Ν	-2.90566900	-2.46143900	-1.08390500
Ν	-5.27219900	-0.35941600	0.81481500
Ν	-1.71995600	0.69187700	0.30411000
Ν	-0.61767900	2.64736700	0.40708600
С	-3.17309500	-1.35873300	-0.41770800
С	-4.06865600	-0.53926000	0.31339100
С	-2.76763800	-0.15238600	0.09515700
С	-1.60913400	-2.59970000	-1.79153900
Н	-1.77622200	-3.38713700	-2.53050700
С	-1.23834600	-1.32907500	-2.55472800
Н	-2.07503500	-0.97488700	-3.16385700
Н	-0.39908400	-1.54834900	-3.22163400
Н	-0.92697200	-0.52349500	-1.88227400
С	-0.50515100	-3.04885600	-0.83548500
Н	-0.31399300	-2.28960800	-0.07106200
Н	0.42470900	-3.20001000	-1.39454300
Н	-0.76361800	-3.98945900	-0.34295300
С	-3.93904500	-3.51057100	-1.23840900
Н	-4.68364900	-3.29964100	-0.46967000
С	-4.60150900	-3.40862300	-2.61108800
Н	-5.03070400	-2.41315500	-2.76362200
Н	-5.40221300	-4.14930000	-2.69417400
Н	-3.88225000	-3.59983300	-3.41456700
С	-3.38574400	-4.90320600	-0.94745700
Н	-2.64035600	-5.21677600	-1.68473300

Н	-4.20773200	-5.62350700	-0.98456100
Н	-2.93706900	-4.94703800	0.04874000
С	-6.32471200	-1.35362200	0.49194200
Н	-6.01794600	-1.79640900	-0.45846800
С	-7.68104400	-0.69783200	0.25097500
Н	-8.08411300	-0.23629700	1.15750300
Н	-8.38865300	-1.46773800	-0.06956000
Н	-7.61823400	0.05886400	-0.53528200
С	-6.38879000	-2.44617400	1.55913200
Н	-5.40857800	-2.90968800	1.71181300
Н	-7.09491600	-3.22315200	1.25196100
Н	-6.72899600	-2.04472100	2.51921900
С	-5.51215200	0.61973600	1.90924600
H	-6.30307400	0.16313300	2.51170500
С	-4.28646600	0.77285900	2.80603000
H	-3.91558600	-0.19941800	3.14545600
Н	-4.56481300	1.35872100	3.68641000
Н	-3.47574600	1.30630900	2.30051300
C	-6.01031600	1.96601100	1.38952300
Ĥ	-5 23467600	2 45448800	0 79464500
Н	-6 25630400	2 61049300	2 23963800
Н	-6 90703500	1 85712400	0 77578400
C	-1 75167600	2 04450600	0.01441600
C	-0 17463500	3 96974300	0.15106400
C	-0 28819200	4 57210100	-1 10268400
н	-0.78966100	4.05418300	-1 91111200
C	0.25302000	5 83762700	-1 30493000
н	0.15852000	6 30560900	-2 27985900
C II	0.92073500	6 49727100	-0.27521800
н	1 34459100	7 48229800	-0.44271900
C II	1.04880000	5 88239400	0.96737600
н	1.57162600	6 38375700	1 77578900
n C	0.50074800	4 62220700	1 18365000
с u	0.50675200	4.02220700	2 15038100
П Ц	0.39073200	4.13/19/00	2.13038100
п	-0.78398000	0.20143800	0.41194200
	0.04203900	2.08821200	0.90510200
U N	0.80072400	-0.29800100	1 1 2 2 9 1 1 0 0
N O	1./1/2/800	0.17099300	1.12561100
0 C	2 2012(400	1.23292300	1.73074300
C II	2.89180400	-0.4040/100	1.29/24900
П	3.5//95400	0.03030700	1.90143400
C	3.16148100	-1.649/5800	0.5/299000
C	4.24460600	-2.55998900	1.0123/200
C	4.15810100	-3.91290200	0.00182000
C	5.34349800	-2.12514200	1.76238900
C	5.13925100	-4.81358200	1.056/9200
H	3.30841200	-4.25859700	0.07814000
C	6.32604700	-3.02/09200	2.15/51900
Н	5.44577700	-1.08009600	2.03439900
C	6.22756700	-4.37130900	1.80683800
H	5.05304400	-5.86047000	0.78351900
H	7.17215700	-2.67649100	2.74000300
Н	6.99504700	-5.07305400	2.11793800
H	2.27484300	-2.16080700	0.21013200
C	3.80612400	-1.16158800	-1.32046000
С	4.92815100	-0.26779900	-1.04990300

2.73935500	-0.30567500	-1.69014700
4.40556500	1.03253900	-1.03624300
6.27134900	-0.46778800	-0.73859500
1.75580800	-0.56746600	-2.04903000
5.15719800	2.15141100	-0.70234000
7.04618000	0.64291100	-0.41804300
6.70205700	-1.46322600	-0.74759300
6.49523300	1.93147800	-0.39163500
4.72844600	3.14786400	-0.68701500
8.09760700	0.51004500	-0.18435900
7.12486800	2.77586600	-0.13046700
3.89984100	-2.16681100	-1.71084300
2.16246800	2.10084400	-1.47243400
2.11335000	2.55268100	-0.47783700
2.52738700	2.83772100	-2.19095500
1.16725300	1.76314100	-1.75982900
3.05683900	0.95852500	-1.42758600
	2.73935500 4.40556500 6.27134900 1.75580800 5.15719800 7.04618000 6.70205700 6.49523300 4.72844600 8.09760700 7.12486800 3.89984100 2.16246800 2.11335000 2.52738700 1.16725300 3.05683900	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

4•10a'

- Thermochemistry -_____

Zero-point correction=

0.858542 (Hartree/Particle) Thermal correction to Energy= 0.906464 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.907408 0.776032 Sum of electronic and zero-point Energies= -2392.268917 Sum of electronic and thermal Energies= -2392.220995 Sum of electronic and thermal Enthalpies= -2392.220051 Sum of electronic and thermal Free Energies= -2392.351427

S -2.19408400 2.70902600 -1.03577900 Ν -3.50020800 -2.42421400 -0.76055300

Ν	-5.19494700	0.48597900	0.74826100
Ν	-1.49572100	0.45064100	0.21277600
Ν	-0.01956800	2.11151900	0.50104500
С	-3.45821900	-1.20313100	-0.26766400
С	-4.08721400	-0.07919000	0.31077100
С	-2.73009900	-0.09134900	0.07831800
С	-2.29207300	-2.99251900	-1.40303700
Н	-2.64582600	-3.87947800	-1.93370900
С	-1.71713700	-2.03058300	-2.43987400
Н	-2.47947300	-1.72887100	-3.16353100
Н	-0.90158400	-2.52236000	-2.97905700
Н	-1.31374400	-1.12950800	-1.96596700
С	-1.25669700	-3.42837100	-0.36814700
H	-0.83362600	-2.57244500	0.16682100
Н	-0.42839000	-3.93651300	-0.87279400
Н	-1.69151700	-4.12028300	0.35789900
С	-4.74895300	-3.21483500	-0.72000100
H	-5.42946100	-2.64703100	-0.08491400
С	-5.36637100	-3.33570800	-2.11194800
H	-5.52307400	-2.34825200	-2.55691900
Н	-6.33288100	-3.84340900	-2.04289000
Н	-4.73010600	-3.92088000	-2.78422100
C	-4 53321300	-4 56939100	-0.04816000
Ĥ	-3.87863200	-5.22008700	-0.63661000
Н	-5.49794600	-5.07474000	0.05278300
Н	-4 10254900	-4 44556300	0 94953300
C	-6.47598000	-0.22856400	0.53020100
H	-6.30455800	-0.86041000	-0.34460800
C	-7.61114700	0.72316400	0.16429400
H	-7.86826700	1.39686600	0.98746100
Н	-8.50170500	0.13243200	-0.06875800
Н	-7.35534800	1.31944700	-0.71551600
С	-6.82162000	-1.11132600	1.72990100
Н	-5.99452900	-1.78424300	1.97988300
Н	-7.70350600	-1.71776800	1.50243500
Н	-7.04909100	-0.50937200	2.61566700
С	-5.15840600	1.62470900	1.70375200
H	-6.03778500	1.47476900	2.33709900
С	-3.93098500	1.56482100	2.60938700
Н	-3.82749500	0.58068100	3.07680300
Н	-4.04025800	2.31091700	3.40120700
Н	-3.01020500	1.79859000	2.06698300
С	-5.28785900	2.97646500	1.00591300
Н	-4.41464800	3.16537500	0.37657300
Н	-5.35002900	3.76642900	1.76115600
Н	-6.18506000	3.02711900	0.38497000
С	-1.18827400	1.77658000	-0.06861100
Č	0.83503800	3.22621200	0.35573000
С	0.67506500	4.25480400	-0.57647000
Н	-0.17931900	4.26768700	-1.23829400
С	1.62337600	5.27537000	-0.63918300
Н	1.48941500	6.06930100	-1.36772800
С	2.72080900	5.29025300	0.21393800
Н	3.45002700	6.09216200	0.15841400
С	2.87573300	4.26069600	1.14133400
Н	3.73081500	4.25002800	1.80992500

С	1.94663500	3.23421100	1.21138000
Н	2.07381200	2.42152900	1.92173600
Н	-0.69139100	-0.18520000	0.36672800
Н	0.34414400	1.41037700	1.17459600
0	0.90247500	-0.93527700	0.27916000
Ν	1.57550200	-0.61391800	1.36339600
0	1.00135000	0.16407200	2.20734500
С	2.77720600	-1.09052400	1.51925900
Н	3.29374100	-0.77588900	2.41269300
С	3.34692800	-1.97181600	0.46014300
С	4.65615700	-2.64080800	0.84302800
С	4.95671200	-3.87665800	0.26302800
С	5.58403200	-2.07212900	1.71797600
С	6.15328900	-4.52773100	0.54129900
Н	4.24123400	-4.33633700	-0.41476200
С	6.78351300	-2.72307200	2.00150500
Н	5.39098500	-1.10938300	2.18080100
С	7.07274200	-3.95103200	1.41451200
Н	6.36377400	-5.48803200	0.08070600
Н	7.49174700	-2.26534400	2.68530200
Н	8.00740100	-4.45636600	1.63684300
Н	2.61635800	-2.76417500	0.24883600
С	3.49114800	-1.21012000	-0.90685100
С	4.20474300	0.12152500	-0.91121300
С	2.17502800	-0.84234400	-1.52477800
С	3.36652100	1.06014200	-1.50942300
С	5.45713100	0.52131200	-0.47329000
Н	1.43168300	-1.54426600	-1.87257100
С	3.69673100	2.39002000	-1.67907000
С	5.82014600	1.86241100	-0.62884800
Н	6.14631700	-0.18589200	-0.02631800
С	4.95295000	2.78195600	-1.21605900
Н	3.01149600	3.10500600	-2.12112700
Н	6.79517200	2.19175700	-0.28475600
Н	5.25025800	3.82053500	-1.31349100
Н	3.97180900	-1.91025600	-1.60461300
С	1.11741300	1.06697300	-2.66803200
Η	0.73929200	1.91298200	-2.09165400
Н	1.52277000	1.42705500	-3.61593200
Η	0.30998000	0.36099000	-2.85636300
Ν	2.17147300	0.40185100	-1.92012400

10a	
いか	
- Therm	ochemistry -
Zero-po Therma Therma Therma Sum of Sum of Sum of Sum of	nt correction= 0.303939 (Hartree/Particle correction to Energy= 0.321513 correction to Enthalpy= 0.322457 correction to Gibbs Free Energy= 0.256167 electronic and zero-point Energies= -916.709742 electronic and thermal Energies= -916.692168 electronic and thermal Enthalpies= -916.691224 electronic and thermal Free Energies= -916.757514
0	0 39707100 3 42033600 -0 27282800
N	0.32147900 2.76952100 0.76058900
0	1 12991000 2 79547100 1 66928000
Č	-0.87075700 1.87990400 0.90346100
Н	-1.73663000 2.53835400 0.80447100
С	-0.88490200 0.79532000 -0.19104800
С	-2.26189200 0.15790100 -0.27216200
С	-2.83392800 -0.09203400 -1.52071000
С	-2.96991600 -0.21637000 0.87311400
С	-4.08038200 -0.69982900 -1.62596800
Н	-2.29335100 0.19122000 -2.42015600
С	-4.21799700 -0.82548500 0.77151300
Н	-2.54631200 -0.03883100 1.85830900
C	-4.77770100 -1.06857200 -0.47865000
H	-4.51010500 -0.88156800 -2.60652900
H	-4./5359/00 -1.10/20900 1.6/340000
п u	-5.75199800 -1.34082800 -0.35959800 0.70642200 1.22009300 1.12676600
C	-0.70042200 1.32007300 -1.13070000 0.20530200 _0.22924900 _0.00345600
Č	1 59030800 -0 10865600 -0 37991200
č	0.07824300 -1.45832800 0.59112100

2.22879300 -1.30511800 0.01816600 2.34724600 0.87685400 -1.03217200

-0.80461000 -1.93999200 0.98949500

3.58756300 -1.54260300 -0.20687800 3.69241200 0.64647600 -1.25916200

 $4.06064100 \quad -2.46806300 \quad 0.10811900$

C C

Н

C C

Η С Η

Н	4.28704000	1.40488100	-1.75906000
Н	5.36651100	-0.69900900	-1.03983200
С	1.53548700	-3.43267100	1.13860200
Н	1.87945200	-4.10979200	0.34900200
Н	2.29330700	-3.39827200	1.92855700
Н	0.61014000	-3.82953900	1.56013600
Ν	1.28662200	-2.11248500	0.61311800
Н	-0.81255700	1.46010900	1.90612600

Computational details

The following DFT calculations were performed using the software package Gaussian 09, Revision E. 01¹⁹⁴ employing the range-separated hybrid ω B97X-D functional¹⁹⁵ with a 6-31G(d)/def2-TZV basis set. This functional was selected as it accounts for dispersion and has been shown to provide accurate thermochemical and kinetic energies. The optimized geometries were verified as transition state structures (one imaginary frequency) or minima (zero imaginary frequencies) by frequency calculations. Intrinsic reaction coordinate calculations¹⁹⁸ were performed to confirm that all transition state structures were linked to relevant minima. The energies of the @B97X-D/6-31G(d)/def2-TZV optimized structures were further refined by single-point calculations performed at the $\omega B97X-D/6-311++G(d,p)/def2-TZV$ level of theory using the integral equation formalism polarizable continuum model (IEFPCM) with the default parameters of dichloromethane (ε = 8.93) to account for solvent.²⁰⁴ The final reported Gibbs free energies are the summed thermal corrections to the Gibbs free energies computed at the lower level of theory (\omegaB97X-D/6-31G(d)/def2-TZV) and electronic energies from singlepoint $(\omega B97X-D/6-311++G(d,p)/def2-TZV).$ calculations The keyword (integral=grid=ultrafine) was used for all calculations. The pK_a was calculated in accordance to the method of Xue and Ji145 at the SMD(DMSO)M06-2X/6-311++G(2df,2p)//B3LYP/6-31+G(d) level of theory. Notably, this method has been successfully applied to predict the pKa values of numerous O–H and N–H acids in DMSO.²⁰⁷ The 3D images of all optimized geometries were generated with CYLview,²⁰⁰ and GaussView²⁰¹ was used to construct all structures prior to optimization and visualize the output from the Gaussian 09 calculations.

Cartesian Coordinates and Energies of Calculated Structures

Table 26. Single-point energies of all structures calculated at the $SMD_{(DMSO)}M06-2X/6-311++G(2df,2p)$ level of theory and thermal correction to Gibbs Free Energy and Gibbs Free Energy calculated at the B3LYP/6-31+G(d) level of theory. All energies are reported in Hartrees.

Structure	Single-Point Energies (E) SMD _(DMSO) M06- 2X/6- 311++G(2df,2p)	Single-Point Energies (E) M06-2X/6- 311++G(2df,2p)	Thermal Corrections to Gibbs Free Energies (G) B3LYP/6- 31+G(d)	Gibbs Free Energies (G) B3LYP/6- 31+G(d)
11c	-2016.98993189	-2016.88524360	0.492522	-2016.550047
11с _{су-н}	-2016.53535221	-2016.49826211	0.480739	-2016.178015
11c _{aryl-H}	-2016.52083588	-2016.46934443	0.478187	-2016.151713

Structure 11c

Number of Imaginary Frequencies = 0

E (Single Point Energy) $[SMD_{(DMSO)} M06-2X / 6-311++G(2df,2p)] = -2016.98993189$

Zero-point correction=	0.574965 (Hartree/Particle)
Thermal correction to Energy=	0.616824
Thermal correction to Enthalpy=	0.617769
Thermal correction to Gibbs Free Energy=	0.492522
Sum of electronic and zero-point Energies=	-2016.467604
Sum of electronic and thermal Energies=	-2016.425745
Sum of electronic and thermal Enthalpies=	-2016.424800
Sum of electronic and thermal Free Energies=	-2016.550047

11			
С	0.91552300	-0.38234500	-0.35415800
С	-0.47315600	-0.25792900	-0.36787400
С	-0.70735100	-1.51646900	-1.09215700
С	0.82815900	-1.70854300	-1.10543700
0	1.60769900	-2.51031600	-1.54706900
0	-1.68383300	-2.11400400	-1.48953700

Ν	-1.34826700	0.72720900	0.06726100
Н	-1.08698500	1.69443100	-0.10585500
С	-2.70227400	0.48088500	0.13256300
С	-3.98155300	0.82876600	-0.24746800
С	-3.74780000	-0.27953700	0.62113700
Ν	-4.22537800	-1.27863000	1.33585600
Ν	-4.79598700	1.62320400	-0.91587200
С	-4.22796800	2.61083100	-1.88775900
С	-3.45015500	3.72199600	-1.17207100
С	-3.40997800	1.91370700	-2.98061000
Н	-2.55011600	3.33481800	-0.67798600
Н	-3.12389900	4.47445200	-1.89754500
Н	-4.06342700	4.22013100	-0.41524400
Н	-2.50645700	1.44111700	-2.57884300
Н	-3.99843900	1.14211700	-3.48647700
Н	-3.09447400	2.64774200	-3.72951200
C	-6.27735900	1.54088000	-0.72519700
Č	-6.97247100	1.01135000	-1.98499000
H	-6.87706300	1.70574700	-2.82702000
Н	-6.56268700	0.04284200	-2.29098200
Н	-8.04240900	0.88381300	-1.78876300
C	-5 62741200	-1 75494500	1 11357800
C	-5 64636300	-3 23399300	0 70658500
Č	-6 52714200	-1 45412200	2 31769700
Н	-5 32582000	-3 89184700	1 52132200
Н	-6 66971500	-3 52055100	0.44155000
Н	-5 00428500	-3 41428800	-0 16119100
Н	-7 55836900	-1 74114300	2.08564300
Н	-6 22579900	-2 01911900	3 20637200
Н	-6 51784000	-0 38806800	2 57085000
C	-3 39602800	-1 92772700	2 40461000
Č	-2 22712700	-2 74343800	1 84617100
Н	-1 43264200	-2 09431200	1 46608200
Н	-1 79618400	-3 34960900	2 65038000
Н	-2 54164600	-3 41065500	1 03987400
N	1 87137800	0 40647700	0 16911100
Н	1 54371600	1 18313600	0 73524700
Н	-5 98525300	-1 17893500	0.25611500
Н	-5 10178400	3 06490300	-2 36009500
Н	-4 08795700	-2.61896100	2.89016100
C	-2 94802600	-0.89558300	3 44593000
Н	-3 80143100	-0 35633400	3 87005600
Н	-2 42474100	-1 40145100	4 26420400
Н	-2 25420300	-0 16428700	3 01402400
Н	-6 41497700	0.81541300	0.08056900
C	-6 85598600	2 87757100	-0 24403200
н	-6.35783300	3 22363700	0.66764300
н	-6 77767700	3.66214700	-1 00420200
н	-7 92032800	2 7/020300	-0.02062600
II C	3 28786600	0.30802500	0.10816400
č	3 95494100	-0.66512100	-0 63873000
č	4 01465300	1 26166500	0.83364900
č	5 35316500	-0.66996100	-0 64732700
й	3 40819300	-1 41557900	-1 19967600
C	5 40617900	1 23959200	0.80852500
H	3.50081400	2.02422500	1.41262900
-			

С	6.09068000	0.27186800	0.06786500
Н	7.17384000	0.25902200	0.04409700
С	6.18320000	2.24141000	1.63160500
С	6.05198300	-1.74463500	-1.45297500
F	6.50773200	1.73303400	2.84629300
F	7.33492900	2.60233200	1.02911600
F	5.46695300	3.37110100	1.85626400
F	7.38755600	-1.55957600	-1.49984500
F	5.82950800	-2.97237300	-0.92507000
F	5.59838200	-1.77477500	-2.72878000

Structure 11ccy-H

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= 0.562318 (Hartree/Particle) 0.603574 0.604518 0.480739 -2016.096437 -2016.055181 -2016.054237 -2016.178015

Number of Imaginary Frequencies = 0

E (Single Point Energy) [SMD_(DMSO) M06-2X /6-311++G(2df,2p)] = -2016.53535221

01			
С	0.92518800	-0.81136800	-0.52066000
С	-0.48256600	-0.77375500	-0.58522100
С	-0.52078400	-2.12939300	-1.21071400
С	1.00948400	-2.17481800	-1.08584200
0	1.89022200	-2.97639800	-1.35703700
0	-1.39371000	-2.85744400	-1.64945300
Ν	-1.30682300	0.24031600	-0.32344300
С	-2.62292900	0.10843300	-0.18923200
С	-3.82741700	0.79576300	-0.30270200
С	-3.80728800	-0.45764600	0.31524000
Ν	-4.47324900	-1.42112100	0.96874700
Ν	-4.44933500	1.90191800	-0.73587500
С	-3.67372400	2.87909700	-1.55012500
С	-2.56024100	3.54279600	-0.72692900
С	-3.13603200	2.24061600	-2.83821000
Н	-1.80497900	2.80689300	-0.43083000
Н	-2.06465800	4.31598300	-1.32605000
Н	-2.96398000	4.01652100	0.17469900
Н	-2.38024600	1.47962800	-2.61853000

Н	-3.94224800	1.77618100	-3.41642600
Н	-2.66466100	3.00771200	-3.46348100
С	-5.87726200	2.15584100	-0.44061800
С	-6.74556500	2.08515100	-1.70608800
Н	-6.49329800	2.88255000	-2.41457000
Н	-6.61941400	1.12407000	-2.21627400
Н	-7.80401400	2.20008500	-1.44456200
С	-5.94998400	-1.32503900	1.08259900
С	-6.65342200	-2.65358600	0.77339300
С	-6.37946100	-0.74774600	2.44116300
Н	-6.43703000	-3.42226200	1.52289800
Н	-7.73787600	-2.49452800	0.77155200
Н	-6.36136700	-3.03527100	-0.20970700
Н	-7.46668900	-0.60800700	2.46915700
Н	-6.11221900	-1.41926200	3.26519800
Н	-5.90372000	0.22174400	2.62725700
C	-3 75307000	-2 47699700	1 74061200
Č	-3.39341900	-3.68936400	0.87220900
Н	-2 74078400	-3 41021000	0 04073400
Н	-2.87393200	-4.43919400	1.48135000
Н	-4 28875100	-4 15941000	0 45420100
N	1 74397600	0 17725700	-0.06743200
Н	1 24949800	1 01220500	0 23339900
Н	-6 24941000	-0.62452500	0.29852500
Н	-4 39884800	3 64831600	-1 83121400
н	-4 47292000	-2 79710200	2 50188200
C	-2 53664800	-1 91089800	2 48435700
н	-2 80960200	-1 03961400	3 09079000
Н	-2 13309600	-2 67906300	3 1 5 3 0 3 3 0 0
Н	-1 73569100	-1 61810000	1 79937000
н	-6 18037300	1 34406400	0 22446600
C	-6.08065100	3 46924100	0.33083700
н	-5 47464700	3 48676300	1 24282600
Н	-5 82013500	4 34629300	-0 27206200
н	-7 13398800	3 57019300	0.27200200
П С	3 13796200	0 22269200	0.01078000
C C	3 95929800	-0.84859800	-0.35671200
C C	3 72294300	1 39911300	0.52643400
C	5 34514500	-0 72230100	-0 23163700
н	3 52062000	-1 76462800	-0.74782100
П С	5 10644900	1 50005700	0.63887200
н	3.09428500	2 23439100	0.82139700
II C	5 037/3800	0.44041300	0.82139700
ч	7 01376000	0.52220800	0.20219100
II C	5 71708400	0.32229800	1 22711200
C C	6 20545300	2.74307100	0.66004500
C F	6 00001200	-1.00421/00	0.00774300
E.	4 91755400	3.04042400	1 07071000
F	5.94528400	2 61360/00	2 56278700
F	7 51771700	-1 68060500	-0.38712600
F	5 83730000	-3 04018300	-0.36712000
F	6 11884300	-2 09578400	-2 00770000
-			

Structure 11caryl-H

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= 0.561308 (Hartree/Particle) 0.602892 0.603836 0.478187 -2016.068592 -2016.027008 -2016.026064 -2016.151713

Number of Imaginary Frequencies = 0

E (Single Point Energy) $[SMD_{(DMSO)} M06-2X / 6-311++G(2df,2p)] = -2016.52083588$

01			
С	1.00512000	-0.68779200	-0.33365900
С	-0.41627800	-0.68636900	-0.38200800
С	-0.58236700	-1.94079100	-1.05907300
С	0.95676200	-2.08975600	-0.99315800
0	1.75982200	-2.92146800	-1.35254000
0	-1.52171100	-2.59447700	-1.51535600
Ν	-1.26284600	0.37813800	-0.08045200
С	-2.59742000	0.29593300	0.02955200
С	-3.83621200	0.87735900	-0.19873700
С	-3.75001000	-0.38373200	0.41399100
Ν	-4.37362100	-1.42775000	0.95522100
Ν	-4.54407100	1.89487300	-0.68535300
С	-3.86782000	2.93666500	-1.51068200
С	-2.90700600	3.79219700	-0.67315400
С	-3.19243200	2.32462200	-2.74456300
Н	-2.06438600	3.20358700	-0.29326400
Н	-2.48978000	4.59721400	-1.28790400
Н	-3.41743200	4.24376400	0.18332700
Н	-2.36489200	1.66134000	-2.47072600
Н	-3.90727600	1.74731400	-3.34002400
Н	-2.78347100	3.12031500	-3.37686900
С	-6.00055500	1.99404600	-0.40391100
С	-6.83703600	1.83157800	-1.68059000
Н	-6.67410200	2.65728300	-2.38251600
Н	-6.59740500	0.89464300	-2.19476100
Н	-7.90341600	1.82211400	-1.42845700
С	-5.77501200	-1.72215000	0.55071100
С	-5.87406400	-3.10676300	-0.10645100

С	-6.77046800	-1.54522200	1.70566500
Н	-5.68065500	-3.91307000	0.60968200
Н	-6.88512300	-3.25487000	-0.50321200
Н	-5.15843000	-3.19980500	-0.92911800
Н	-7.79299200	-1.68903300	1.33829900
Н	-6.60465100	-2.27731900	2.50361800
Н	-6.70168500	-0.54345800	2.14488300
С	-3.72333200	-2.26246500	2.01297800
С	-2.49820500	-3.03693200	1.52475700
Н	-1.64091000	-2.37552000	1.36997800
Н	-2.21361100	-3.76980800	2.28874000
Н	-2.68883100	-3.55958300	0.58505800
Ν	1.78167800	0.26656100	0.09236700
Н	-6.00843700	-0.98119300	-0.22039300
Н	-4.67663200	3.58555600	-1.85757400
Н	-4.49378600	-2.98846900	2.28529300
С	-3.41036200	-1.41059600	3.25110200
Н	-4.30515100	-0.90459500	3.63037100
Н	-3.01107500	-2.04631800	4.04918500
Н	-2.65099100	-0.65215000	3.02583600
Н	-6.21730500	1.15023500	0.25717800
С	-6.34586800	3.27905600	0.36217100
Н	-5.76074400	3.35857900	1.28438300
Н	-6.16731800	4.17710000	-0.23975300
Н	-7.40807800	3.27225800	0.63113200
С	3.17265700	0.21857700	0.07811800
С	3.97317700	-0.86312100	-0.35216900
С	3.83023200	1.37354800	0.55187800
С	5.36628700	-0.77029700	-0.30214800
Н	3.50761500	-1.77047000	-0.72577900
С	5.22016800	1.45073700	0.58944500
Н	3.21893500	2.20569400	0.88482700
С	6.01045500	0.37823800	0.16393600
Н	7.09128800	0.43677600	0.19327300
С	5.87447600	2.68269600	1.15268500
С	6.18049700	-1.93507800	-0.80571800
F	7.12971600	2.87264600	0.67361700
F	5.17324300	3.81487900	0.87989200
F	5.98835200	2.62770700	2.51135600
F	7.49433300	-1.83494400	-0.47466700
F	5.74141600	-3.12031700	-0.31372700
F	6.13229500	-2.04073000	-2.16224500
Н	-0.82863600	1.29839400	-0.11791200

Table 27. Single-point energies of all structures calculated at the $IEFPCM_{(DCM)} \otimes B97X$ -D/6-311++ $G(d,p)/def^2$ -TZV level of theory and thermal correction to Gibbs Free Energy and Gibbs Free Energy calculated at the $\omega B97X$ -D/6-31G(d)/def²-TZV level of theory. All energies are reported in Hartrees.

Structure	Single-Point Energies (E) IEFPCM _(DCM) ωB 97X-D/6- 311++G(d,p)/def 2-TZV	Thermal Corrections to Gibbs Free Energies (G) ωB97X-D/6- 31G(d)/def2- TZV	Gibbs Free Energies (G) ωB97X-D/6- 31G(d)/def2- TZV	Gibbs Free Energies (G) IEFPCM _(DCM) ω B97X- D/6-311++G(d,p)/def2- TZV// ω B97X-D/6- 31G(d)/def2-TZV
12a	-440.16584496	0.122115	-439.920363	-440.04373
<u>6a</u>	-270.53433179	0.096333	-270.362697	-270.4379988
11c	-2017.01238872	0.504297	-2015.898700	-2016.508092
11c•12a	-2457.20890196	0.650746	-2455.836810	-2456.558156
11с _{су-Н} •12а	-2457.20426314	0.654273	-2455.830871	-2456.54999
TS1	-2727.74901860	0.767979	-2726.194263	-2726.98104
TS2	-2727.73670798	0.765916	-2726.180459	-2726.970792

Structure 12a

Zero-point correction=	0.156963 (Hartree/Particle)
Thermal correction to Energy=	0.165975
Thermal correction to Enthalpy=	0.166919
Thermal correction to Gibbs Free Energy=	0.122115
Sum of electronic and zero-point Energies=	-439.885516
Sum of electronic and thermal Energies=	-439.876503
Sum of electronic and thermal Enthalpies=	-439.875559
Sum of electronic and thermal Free Energies=	-439.920363

Number of Imaginary Frequencies = 0

E (Single Point Energy) [IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV] = -440.16584496

0 1 C -3.00725200 -0.20662600 -0.02542200

С	-2.19496700	-1.33169700	0.10962100
С	-0.81378800	-1.20086300	0.13154500
С	-0.21403000	0.06058500	0.01720400
С	-1.03759200	1.18249000	-0.11604700
С	-2.42338400	1.04960500	-0.13893700
Н	-4.08809700	-0.31077600	-0.03959900
Н	-2.64220900	-2.31699600	0.20330300
Н	-0.18011100	-2.07412600	0.23979500
Н	-0.60196600	2.17207200	-0.21276200
Н	-3.04535900	1.93330500	-0.24678900
С	1.26604900	0.20449700	0.03116400
С	1.88525400	1.56125500	0.22564300
Н	1.38042200	2.10053700	1.03251000
Н	2.94436300	1.47005000	0.46330800
Н	1.79058700	2.16013600	-0.68775800
Ν	1.93650900	-0.87517500	-0.13856900
0	3.30924700	-0.67001800	-0.11850500
Н	3.65109300	-1.56330800	-0.24261100

Structure 6a

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= 0.124694 (Hartree/Particle) 0.129848 0.130792 0.096333 -270.334335 -270.329182 -270.328237 -270.362697

Number of Imaginary Frequencies = 0

E (Single Point Energy) [IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV] = -270.53433179

01			
С	0.83821600	-1.05252300	-0.32247000
С	1.45283100	0.27738400	0.12625800
С	0.40545200	1.35727400	0.06208100
С	-0.89110000	1.07572700	-0.08166700
С	-0.54760000	-1.20731600	0.29296100
Н	0.74055400	-1.06980600	-1.41397200
Н	1.85701000	0.18613600	1.14418900
Н	-0.47480400	-1.19220900	1.39022500

0	-1.43193500	-0.16947200	-0.11491000
Н	-1.02836900	-2.13950500	-0.01165400
Н	1.46521100	-1.90224100	-0.03231600
Н	2.30187300	0.53609900	-0.51765000
Н	-1.65848200	1.83466200	-0.19518600
Н	0.70569000	2.39936500	0.09266900

Structure 11c

0.584726 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.625644 Thermal correction to Enthalpy= 0.626588 Thermal correction to Gibbs Free Energy= 0.504297 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -2015.818271 -2015.777352 Sum of electronic and thermal Enthalpies= -2015.776408 Sum of electronic and thermal Free Energies= -2015.898700

Number of Imaginary Frequencies = 0

E (Single Point Energy) [IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV] = -2017.01238872

11			
С	0.85281800	-0.16587000	-0.31150100
С	-0.51705500	0.01747100	-0.27976100
С	-0.84042200	-1.22031600	-0.99150600
С	0.68050000	-1.47977700	-1.07204400
0	1.40147400	-2.30525500	-1.54846900
0	-1.85701600	-1.77407700	-1.32977700
Ν	-1.35089200	1.01353200	0.21617600
Н	-1.13289600	1.97051700	-0.03701800
С	-2.68819100	0.70936100	0.29432200
С	-3.97715300	0.89489800	-0.14011900
С	-3.65111500	-0.15900800	0.74914800
Ν	-4.03795200	-1.21092400	1.42793700
Ν	-4.84984700	1.54743900	-0.87099800
С	-4.35250600	2.48873300	-1.90387800
С	-3.75824200	3.73955400	-1.26092700
С	-3.38725000	1.78981100	-2.85932400
Н	-2.87541700	3.49542200	-0.65766500
Н	-3.44463600	4.44715900	-2.03336600
Н	-4.48462700	4.23556600	-0.61178300
Н	-2.45990400	1.49507400	-2.35540300

Н	-3.83912700	0.89100600	-3.28773100
Н	-3.11991000	2.46604600	-3.67595600
С	-6.30099400	1.28556300	-0.72536700
С	-6.83063100	0.49291300	-1.91797400
Н	-6.75955900	1.07028300	-2.84582100
Н	-6.27172500	-0.43890800	-2.05194100
Н	-7.88494900	0.24577400	-1.76409600
С	-5.33858600	-1.85000000	1.11350900
С	-5.12980400	-3.30036900	0.68188200
С	-6.32849300	-1.69241400	2.26421200
Н	-4.76935000	-3.92545900	1.50501700
Н	-6.08266500	-3.71963800	0.34639800
Н	-4,41409500	-3.35775600	-0.14310900
Н	-7 29943300	-2 10510200	1 97548500
Н	-5 99894600	-2.22824000	3 16021500
Н	-6 46486700	-0.63801800	2 52595700
C	-3 17733300	-1 77332600	2.32373700
C	-1 91705400	-2 43969800	1 95636000
н	-1 19722700	-1 69028400	1.61244000
Н	-1 43579600	-3 01029000	2 75586300
Н	-2 14046100	-3 11615200	1 12862800
N	1 85227900	0 56989600	0 19063400
н	1.57386300	1 34763800	0.77582200
н Ц	-5 720/0000	-1 30662300	0.77382200
н	-5.72040900	2 78242000	-2 47347100
н ц	-3.23710000	2.78242000	2.47347100
II C	-3.79483900	-2.34113100	2.97049200
С u	-2.8000//00	-0.70443100	3.34379000
п u	-3.76344600	-0.20307300	3.94413700
п	-2.30083300	-1.14600300	4.57227500
п	-2.24854100	0.09319300	5.11650900
П	-0.39018000	0.0/339300	0.1//15500
C II	-/.0/508500	2.37901300	-0.4/020100
п	-0.00859500	3.12011500	0.38433000
Н	-/.05854000	3.24353300	-1.34624900
H	-8.119/1200	2.34022500	-0.26851900
C	3.25432900	0.39229700	0.09025200
C	3.8354//00	-0.59133800	-0./036/400
C	4.05364200	1.2/321500	0.81/23000
C	5.22266100	-0.682/2100	-0./5303200
Н	3.230/9000	-1.28696400	-1.2/502000
C	5.43551000	1.16592/00	0./504/900
Н	3.60/31100	2.04969600	1.43186500
C	6.03312300	0.18705700	-0.03509300
Н	7.11205400	0.11125100	-0.09451300
C	6.28896600	2.08907600	1.58619600
C	5.84128000	-1.79014000	-1.57483100
F	6.51443400	1.56423800	2.79928300
F	7.47577300	2.31360200	1.01328900
F	5.68636200	3.27584500	1.77061600
F	7.10442000	-1.50455700	-1.91341200
F	5.85334600	-2.94085000	-0.88717000
F	5.14820800	-2.00229800	-2.70218200

Structure 11c-12a

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= 0.744064 (Hartree/Particle) 0.794992 0.795936 0.650746 -2455.743491 -2455.692564 -2455.691619 -2455.836810

Number of Imaginary Frequencies = 0

E (Single Point Energy) [IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV] = -2457.20890196

11			
С	-0.84173800	-1.36139300	-0.86063100
С	0.48435800	-1.29537900	-1.24539700
С	0.34870000	-2.24123200	-2.34948000
С	-1.16169900	-2.30120000	-2.01786300
0	-2.14429100	-2.79397900	-2.48583900
0	1.08396700	-2.73825800	-3.16929700
Ν	1.58201700	-0.61750600	-0.74684700
С	1.62588100	0.72677300	-0.63866700
С	2.30065900	1.82763700	-0.15353300
С	1.14500100	1.98771800	-0.93687500
Ν	0.28032800	2.80842300	-1.51450200
Ν	3.31746000	2.32410800	0.51980100
С	4.21206000	1.40069600	1.26079400
С	3.41962300	0.51939900	2.22037700
С	5.08869800	0.60211200	0.29951300
Н	2.77038800	-0.18300700	1.68807700
Н	4.10613500	-0.08325400	2.82065100
Н	2.80886400	1.12788300	2.89469600
Н	4.48890600	-0.05523800	-0.33868700
Н	5.67641500	1.26328000	-0.34296300
Н	5.77399000	-0.03347900	0.86690200
С	3.58239000	3.77949000	0.52880300
С	4.99294600	4.09608800	0.03482300
Н	5.76286600	3.72230400	0.71695400

Н	5.16730700	3.66873700	-0.95682000
Н	5.11612600	5.18070900	-0.03321300
С	0.33378000	4.24892800	-1.16854600
С	1.13997500	5.03694900	-2.20099500
С	-1.06330100	4.82550700	-0.94924700
Н	0.63877000	5.05304900	-3.17420900
Н	1.25689800	6.07458600	-1.87452000
Н	2.13653600	4.60471800	-2.34158500
Н	-0.97389600	5.85892300	-0.60266900
Н	-1.65430100	4.84123100	-1.87012100
Н	-1.60972600	4.25720100	-0.19146900
C	-0.53693700	2.37529800	-2.67693900
С	0.26753400	1.49967700	-3.63464900
H	0.51694900	0.52794400	-3.19739500
Н	-0.32224800	1.30688700	-4.53475500
Н	1,19658400	1,99386500	-3.93431500
N	-1.47164000	-0.78682700	0.17131000
Н	-0.87021700	-0.31648900	0.83685700
Н	0.84917900	4.29186700	-0.20435700
Н	4.85620800	2.05106900	1.85760200
Н	-0.76927500	3.30253200	-3.20744400
C	-1.85237300	1.73376100	-2.24629000
Ĥ	-2 43018700	2 39700300	-1 59769100
Н	-2 45976200	1 49896200	-3 12526100
Н	-1 67125800	0.80409100	-1 70510500
Н	2 88430000	4 20499200	-0 19475700
C	3 28416000	4 37574600	1 90296400
Ĥ	2 25466100	4 16243900	2 20785700
Н	3 95780500	3 97781300	2 66903400
Н	3 41923300	5 46091300	1 87726300
C	-2 85486300	-0 68513900	0 44551000
č	-3.82822300	-1.17630200	-0.41937700
Č	-3.22146400	-0.02392800	1.61616200
Č	-5.16858500	-0.99934900	-0.09220100
Ĥ	-3 56060700	-1 69797900	-1 33236000
Ĉ	-4 56483900	0 14331800	1 92152200
H	-2 46561300	0 36816000	2 29052100
C	-5 55098200	-0 34180100	1 07015200
Ĥ	-6.59910100	-0.19976300	1.30367300
C	-4.94578200	0.81858400	3.21664300
Č	-6.21581200	-1.57633000	-1.01735700
F	-4.03229500	1.74187500	3.56825000
F	-6.13113000	1.42958400	3.12289000
F	-5.01996600	-0.06792200	4.21805000
F	-7.40044000	-0.97455300	-0.85378100
F	-5.85440800	-1.43468000	-2.30101700
F	-6 38539800	-2 88435200	-0 78771500
Ċ	4.56944100	-2.97006600	-0.47557400
Ĥ	2 93166800	-2 57900400	-2 93299400
0	3.83325500	-2.62107000	-2.55373900
Ň	3.60856200	-2.51786700	-1.19947600
C	4.36853200	-2.89811100	0.99245400
C	5.45675500	-2.70992100	1.85094300
Ċ	3.09002900	-3.04996300	1.54298600
Ċ	5.26913600	-2.65679800	3.22880800
Н	6.45814200	-2.60647900	1.44218400

С	2.90426500	-3.00084000	2.91959500
Н	2.24960400	-3.24376500	0.88350100
С	3.99262300	-2.80230500	3.76656800
Н	6.12336400	-2.51506000	3.88348100
Н	1.91153200	-3.14311400	3.33570200
Н	3.84924500	-2.77955300	4.84227600
С	5.82290700	-3.55006700	-1.05918800
Н	5.58073700	-4.11084800	-1.96446900
Н	6.51246600	-2.75026400	-1.35452500
Н	6.32710900	-4.20280700	-0.34478400
Н	2.45925700	-1.18182800	-0.75673200

Structure 11ccy-H-12a

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= 0.743861 (Hartree/Particle) 0.794194 0.795138 0.654273 -2455.741282 -2455.690949 -2455.690005 -2455.830871

Number of Imaginary Frequencies = 0

E (Single Point Energy) [IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV] = -2457.20426314

11			
С	0.47513200	-1.80571600	-0.05994000
С	-0.84222800	-1.75058800	0.40792900
С	-0.81783200	-3.14708200	0.83151300
С	0.62885300	-3.23728400	0.34765800
0	1.49971000	-4.06642300	0.33675400
0	-1.60914300	-3.90310800	1.37831700
Ν	-1.81413200	-0.80596100	0.43167600
С	-1.39530700	0.44693800	0.64465400
С	-1.60301300	1.80919000	0.48599800
С	-0.51772100	1.35203900	1.24032300
Ν	0.55727300	1.63444100	1.97291500
Ν	-2.31257800	2.79080000	-0.04931800
С	-3.34006600	2.44716200	-1.05404500
С	-2.72532600	1.67994500	-2.22324000
С	-4.50669800	1.70432200	-0.40760800

Н	-2.39524800	0.68227800	-1.91166700
Н	-3.47066400	1.54878800	-3.01252000
Н	-1.87282100	2.22500400	-2.64051200
Н	-4.16594800	0.75968800	0.02908700
Н	-4.96387700	2.30690700	0.38250400
Н	-5.26951400	1.46999800	-1.15609900
С	-2.04523000	4.19993900	0.29546900
С	-3.30376400	4.89557700	0.81266600
Н	-4.06651100	4.99919300	0.03410900
Н	-3.73627200	4.34443800	1.65280200
Н	-3.04997700	5.90258000	1.15615200
С	1.03765300	3.03459600	1.99469100
С	0.45570000	3.81103100	3.17782300
С	2.56247400	3.10731300	1.94711900
H	0.85591900	3.45082800	4.13101000
Н	0.71220800	4.87153400	3.09489600
Н	-0.63540900	3.72109100	3.21559300
Н	2.87138300	4.15478700	1.88516000
Н	3.02135100	2.68384200	2.84599700
Н	2.96002300	2.58622400	1.07268800
C	1.03233400	0.70338800	3.02917800
Č	-0 12624300	-0.04491800	3 68487300
Н	-0 60574800	-0 74482900	2,99269100
Н	0.25132500	-0.62785900	4 52950700
Н	-0.88506900	0.64903100	4 05971500
N	1 19852000	-0.84519900	-0.66753400
Н	0.69360700	0.01161100	-0.85303400
Н	0.66638000	3 47748400	1 06460700
Н	-3 70602200	3 40420900	-1 43430800
Н	1 46564500	1 35873600	3 79019100
C	2 13209200	-0 24290800	2 55218700
н	2.19209200	0.24270000	1 97331900
Н	2.67005000	-0 70874800	3 41649100
Н	1 72095100	-1.04632100	1 93728700
н Н	-1.33201700	16361300	1.2157700
II C	-1.39623100	4.10301300	-0.87370000
с u	0 47707700	4.93923100	1 10262800
11 Ц	-0.47707700	4.43088900	-1.19202800
п	-2.0/021200	4.99929800	-1./3499300
П	-1.144//300	0.74107100	-0.37992000
C	2.39340900	-0./410/100	-0.81091300
C C	3.43030100	-1.813/1400	-0.00201200
C	3.10109000	1 60647000	-1.13/04000
U U	4.82001000	-1.0004/900	-0.72282400
П	3.07292000	-2.79000300	-0.34282000
C II	4.4/303000	0.09410500	-1.2/439/00
П	2.4311/100	1.35101400	-1.51//2900
C II	5.54919400	-0.301/3300	-1.05599700
П	6.41929200	-0.21841500	-1.14213000
C	4.99291200	2.04//8/00	-1.68555400
	5./01//000	-2./513/100	-0.41024500
r E	4.23308400	3.03519200	-1.10388/00
Г Г	0.2495/100	2.24545100	-1.2//84300
Г Г	4.96419900	2.19/98000	-3.01645900
Г Г	0.939/3200	-2.60628300	-1.03121800
F	6.00471500	-2.81341500	0.90861600
F	5.23952700	-3.92603900	-0.78018800

С	-5.31895300	-2.31898600	0.40706600
Н	-2.98071600	-3.25101500	1.95545700
0	-3.86779900	-2.79849700	2.11842500
Ν	-4.14634300	-2.20500400	0.93318100
С	-5.56738300	-1.66398100	-0.88573600
С	-6.83464800	-1.13560300	-1.15929600
С	-4.55994000	-1.59666300	-1.85678700
С	-7.08356500	-0.52608700	-2.38235600
Н	-7.62174500	-1.18712100	-0.41320900
С	-4.82265200	-1.00512800	-3.08523600
Н	-3.58482600	-2.03493300	-1.66702700
С	-6.07994200	-0.46511400	-3.34733200
Н	-8.06452500	-0.11095200	-2.58772800
Н	-4.04834300	-0.97838400	-3.84479200
Н	-6.28364300	-0.01009000	-4.31144300
С	-6.36419400	-3.10941700	1.11950400
Н	-5.91169100	-3.98832700	1.58395200
Н	-6.79299600	-2.50814200	1.92992800
Н	-7.15765500	-3.40925600	0.43557100
Н	-3.36675900	-1.57570700	0.58354200

Structure TS1

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= 0.865773 (Hartree/Particle) 0.922840 0.923784 0.767979 -2726.096469 -2726.039403 -2726.038458 -2726.194263

Number of Imaginary Frequencies = 1

E (Single Point Energy) [IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV] = -2727.74901860

11			
С	0.65074800	-0.78205600	0.61880000
С	-0.65840900	-0.78108400	1.07254600
С	-0.42121500	-1.83226900	2.05206100
С	1.06684500	-1.77924400	1.66651500

0	2.10255900	-2.21811300	2.08133400
0	-1.10729200	-2.43494500	2.86019400
Ν	-1.79239900	-0.09233800	0.72272100
С	-1.66819300	1.22568500	0.54200000
С	-2.17722700	2.40859400	0.02393500
С	-0.99267400	2.41966400	0.76689800
Ν	0.02225800	3.11482300	1.28990500
Ν	-3.11904300	3.01971000	-0.67504500
С	-4.17297300	2.20165500	-1.31453400
С	-3.56692600	1.19502500	-2.28636300
Ċ	-5.07118700	1.55049400	-0.26496800
H	-2.94733700	0.45956500	-1.76340200
Н	-4.36131700	0.64317000	-2.79632200
Н	-2.95549400	1.70131700	-3.03971600
Н	-4.50450300	0.85282500	0.36015200
Н	-5.52536100	2.30312000	0.38572600
Н	-5.86877300	0.98556600	-0.75607500
C	-3.15334500	4.49040300	-0.79261900
Č	-4 43228700	5 06887300	-0.18900100
H	-5 32264900	4 76578800	-0 74958800
Н	-4 55184600	4 75059900	0.85102600
Н	-4 38757300	6 16160100	-0.21125200
C	0.15055000	4 53458300	0.88557000
C	-0 66008800	5 45965000	1 79775100
C	1 61225600	4 96651000	0 78975900
н	-0.21925100	5 52489600	2 79753700
H	-0.68210200	6 47240400	1 38372600
Н	-1 69233000	5 11007900	1 90866300
H	1.65981500	5 98726500	0 39959400
Н	2 10553600	4 96862100	1 76663200
и И	2.10333000	4.32134400	0.11847100
II C	0.65087000	2 69872500	2 57575000
C C	-0.31935400	1 92624100	3 46648100
ч	-0.51955400	0.03873/00	3.06017200
н Н	0.13028600	1 77001300	<i>A A A A A A A A A A</i>
и П	-1 25317300	2 47859800	3 61110300
N	1 25646100	0.08177800	0.34706400
	0.70125500	-0.081//800	-0.34700400
п	0.70133300	1 57050000	-0.82201700
н Н	-0.20403800	4.37939900	-0.12/0/000
п	-4.77079300	2.90832000	-1.88929400
II C	1 07502100	1 06557300	2 38705200
U U	2 66030500	2 51010100	2.38793200
п u	2.00039300	2.31919100	2 26001000
п	2.40143200	1.83038000	1.06205200
п	1.82/09900	0.9/150500	0.10252100
П	-2.31381300	4.84820400	-0.19255100
C II	-2.92462200	4.93091000	-2.23775500
П	-1.98/83000	4.52055800	-2.02/2/300
п	-3./4001300	4.010/3/00	-2.894/2100
Н	-2.8/122600	0.02226800	-2.29000800
C	2.00482300	-0.03480600	-0.50/53900
C	3.41844000	-1.1989/900	-0.33433100
C	3.24515800	1.20030500	-0.78615200
C	4.79119200	-1.09/95600	-0.72064800
Н	2.93430300	-2.16028700	-0.43439000
C	4.62257700	1.28180400	-0.96257700

Н	2.63692900	2.10026600	-0.78773400
С	5.40569300	0.13755200	-0.92375100
Н	6.47985200	0.20193000	-1.05249800
С	5.22092300	2.64779900	-1.17155900
С	5.65019500	-2.33741600	-0.64833000
F	4.82492000	3.17769000	-2.33966400
F	4.80763600	3.49565200	-0.20427100
F	6.55421800	2.62972000	-1.15568400
F	6.56480500	-2.34792900	-1.62829000
F	6.31000900	-2.39334400	0.51624200
F	4.91904700	-3.45674700	-0.75669500
С	-4.74071500	-2.10442300	0.73324800
Н	-2.77733700	-1.92696800	2.93283200
0	-3.72254100	-1.70085300	2.72193900
Ν	-3.72780400	-1.61562000	1.35781100
С	-4.70425800	-2.06231500	-0.74238700
С	-5.88006100	-1.87799700	-1.47772400
С	-3.49602700	-2.28253100	-1.41378400
С	-5.84297000	-1.89671600	-2.86716300
Н	-6.82451500	-1.71891500	-0.96492400
С	-3.46728400	-2.31887400	-2.80274800
Н	-2.59161400	-2.47363600	-0.84405700
С	-4.63830500	-2.12382600	-3.53090600
Н	-6.75768300	-1.75152200	-3.43265500
Н	-2.53226800	-2.51725000	-3.31752000
Н	-4.61650100	-2.16234000	-4.61537000
С	-5.88154900	-2.72102400	1.47636700
Н	-5.50400200	-3.27264600	2.34009800
Н	-6.54025500	-1.93531400	1.86470200
Н	-6.45866100	-3.38182500	0.82910600
С	-0.95008700	-4.70687400	-0.58944400
С	-0.61052800	-5.72235500	0.46752300
С	-0.08772700	-3.76207400	-0.97009500
Н	-1.92116000	-4.74285300	-1.07329900
С	1.68740000	-4.75996800	0.21383300
Н	-0.48979900	-6.71247200	0.00830900
Н	-1.43861800	-5.81381700	1.17954800
Н	-0.31487400	-2.99887200	-1.70985800
0	1.17900800	-3.62070100	-0.49740700
С	0.66956400	-5.30972300	1.20209200
Н	1.96019400	-5.52048100	-0.52874100
Н	2.59086000	-4.40718500	0.71232000
Н	1.11074800	-6.15913900	1.73236500
Н	0.44566900	-4.54527500	1.95304700
Н	-2.86075400	-0.84042200	0.93013400

Structure TS2

0.864768 (Hartree/Particle)
0.921704
0.922648
0.765916
-2726.081607
-2726.024671
-2726.023727
2726.180459

Number of Imaginary Frequencies = 1

E (Single Point Energy) [IEFPCM_(DCM) ω B97X-D/6-311++G(d,p)/def2-TZV] = -2727.73670798

11			
С	-1.06638300	-1.49728000	-0.26163500
С	0.31305100	-1.34981100	-0.11492400
С	0.45192700	-2.68975600	0.49941400
С	-1.06509900	-2.85516800	0.34128900
0	-1.89031700	-3.68441000	0.64921600
0	1.38664600	-3.31212000	0.95120500
Ν	1.16345200	-0.32242000	-0.27714800
С	2.47199700	-0.64642400	-0.13315300
С	3.66273700	-0.45924800	0.53000800
С	3.60068600	-1.30776600	-0.58464900
Ν	4.20176300	-2.11405500	-1.43834200
Ν	4.33197300	0.08497500	1.53501600
С	3.54796000	0.62853200	2.66324600
С	2.75210500	1.85479100	2.22301100
С	2.66026100	-0.44805300	3.28860500
Н	1.98111800	1.56802200	1.49835800
Н	2.25587900	2.30838800	3.08745600
Н	3.40569200	2.60051700	1.76156900
Н	1.90916100	-0.80689500	2.57662700
Н	3.25095200	-1.30926500	3.61254800
Н	2.14044900	-0.04145800	4.16231200
С	5.79315000	-0.08073100	1.63436600
С	6.16454500	-1.20150400	2.60419800

Н	5.86063000	-0.95210700	3.62671300
Н	5.67764900	-2.14168600	2.32492500
Н	7.24746600	-1.35855300	2.60891600
С	5.56100700	-2.61643100	-1.15578600
С	5.60149600	-4.14373600	-1.14832800
С	6.58433900	-1.99595400	-2.10543600
Н	5.40661500	-4.56475900	-2.13979400
Н	6.59539900	-4.48031400	-0.83910500
Н	4.86576700	-4.54681400	-0.44687500
Н	7.59277000	-2.33179500	-1.84611500
Н	6.39701700	-2.28590200	-3.14470000
Н	6.55940200	-0.90234100	-2.04550800
С	3.49086700	-2.53073900	-2.66794600
С	2.37435900	-3.53165800	-2.38058900
H	1.53953600	-3.04514600	-1.86901300
Н	1.99507300	-3.94154300	-3.32153800
Н	2.72167400	-4.35631200	-1.75454200
N	-1.95816400	-0.60861000	-0.76985300
Н	-1.56408800	0.28677500	-1.05350900
Н	5.78338200	-2.28339500	-0.13847300
Н	4 28381400	0 94396600	3 40678100
Н	4 25185900	-3 02040300	-3 28150000
C	2,97738800	-1 31224200	-3 43414700
н	3 78151700	-0 59186900	-3 61868500
Н	2 56977600	-1 62539100	-4 39955800
Н	2.56977500	-0.81793400	-2 88131300
Н	6 11346000	-0.36018300	0.62539400
C	6 48129500	1 24069900	1 97465500
н	6 13804100	2 03787800	1 30912200
Н	6 29880200	1 54777700	3 00931600
Н	7 56320800	1 12862300	1 85774900
C II	-3 35207800	-0.61973100	-0 70466500
C	-4 08647800	-1 65771100	-0 12846700
C	-4 01882800	0.50162600	-1 20889000
C	-5 46788700	-1 53534900	-0.02781500
н	-3 58754500	-2 55341900	0 23545700
II C	-5 39708900	0.60481200	-1 08190600
ч	-3 45482800	1 20802200	-1.68655700
II C	-5.45482800	-0.40766500	-1.08055700
ч	-7 21/76800	-0.32584800	-0.38853600
II C	-6.05909200	1 88524200	-1 51051800
C C	-6 22590700	-2 64081000	0.66730100
F	-7 36920100	1 7/679000	-1 71244000
F	-7.30920100	2 83795000	-0.55003500
L L	5 51185500	2.83793000	-0.55005500
Г Г	-5.51185500	2.58010500	1 00540000
Г	-0.0188/900	-2.36940400	1.99349000
Г Г	-7.34081800	-2.34/22000	0.402/3000
Г С	-3.82/29000	-3.84/02300	0.24838000
C II	0.8/2/1/00	2 47904200	-0.9/123400
п	-1.04820400	2.4/894300	0.30303200
U N	-1.10302300	2.100/2800	-0.820/0000
	0.22/40/00	2.24213000	1 00607000
C	2.34411000	3.29809100	-1.0008/800
C	3.08012/00	4.301/2800	-0.4/941000
C	3.01192700	2.2023/800	-1.56681000
U	4.4/462900	4.31215600	-0.481/0200

Н	2.58032600	5.22271600	-0.05284400
С	4.39988500	2.15726800	-1.56584300
Н	2.44806000	1.39946600	-2.03075500
С	5.13299300	3.20916200	-1.02274100
Н	5.04385500	5.13803500	-0.06815900
Н	4.90758400	1.30605300	-2.00979600
Н	6.21810500	3.18062200	-1.03811800
С	0.11762900	4.62842000	-1.11927600
Н	-0.87056300	4.43138600	-1.53876900
Н	-0.02027500	5.09818800	-0.13745900
Н	0.66550000	5.32635300	-1.75440600
С	-2.10627900	2.81941000	1.51322500
С	-1.01332800	2.35403800	2.46201600
С	-3.28911300	2.08081300	1.50374400
Н	-2.25544400	3.88945900	1.36596400
С	-2.38347900	0.27055100	2.77548500
Н	-1.19010400	2.74284100	3.47192200
Н	-0.04009800	2.73576900	2.13988400
Н	-4.17780900	2.41938100	0.97516000
0	-3.44881000	0.90286500	2.00438800
С	-1.00433000	0.82422600	2.46003900
Н	-2.66081300	0.42107800	3.82171300
Н	-2.47639100	-0.78822100	2.53067300
Н	-0.30217500	0.42543600	3.19827900
Н	-0.67478700	0.46529000	1.48129200
Н	0.69915600	1.30334900	-0.62287300

12.0 Vita

Ivor Smajlagic was born on February 4, 1994 in Belgrade, Serbia to parents Emirand Tanya Smajlagic, and shortly after immigrated to Canada, where he was raised in Stoney Creek, Ontario. Here, Ivor completed his secondary school education attending Saltfleet District High School. He then went on to pursue and earn an Honours Bachelor of Science degree in the Biomedical Sciences from Brock University in St. Catharines, Ontario. Following this achievement, Ivor joined Professor Travis Dudding's research group at Brock University initially as a Master's student, wherein he later transitioned to the Doctoral program. Under the mentorship of Professor Dudding, Ivor has successfully contributed to the field of catalysis through his research, and taken his first steps towards being a life-long academic.

13.0 References

¹ (a) Roberts, S. M.; Poignant, G.; Kozhevnikov, I.; Xiao, J.; Whittall, J.; Pickett, T. E.; Derouane, E. G., Eds.; *Catalysis for Fine Chemical Synthesis*; John Wiley & Sons: NJ, 2004, Vol. 1–5. (b) van Leeuwen, P. W. M. N. *Homogeneous Catalysis: Understanding the Art*; Kluwer: Dordrecht, 2004.

² (a) Blackmond, D. G. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool. *J. Am. Chem. Soc.* **2015**, *137*, 10852–10866. (b) Blackmond, D. G. Reaction Progress Kinetic Analysis: A Powerful Methodology for Mechanistic Studies of Complex Catalytic Reactions. *Angew. Chem. Int. Ed.* **2005**, *44*, 4302–4320.

³ Nielsen, C. D.-T.; Burés J. Visual Kinetic Analysis. Chem. Sci. 2019, 10, 348–353.

⁴ (a) Burés, J. Variable Time Normalization Analysis: General Graphical Elucidation of

Reaction Orders from Concentration Profiles. Angew. Chem. Int. Ed. 2016, 55, 16084-

16087. (b) Burés, J. A Simple Graphical Method to Determine the Order in Catalyst.

Angew. Chem. Int. Ed. 2016, 55, 2028-2031. (c) Martínez-Carrión, A.; Howlett, M. G.;

Alamillo-Ferrer, C.; Clayton, A. D.; Bourne, R. A.; Codina, A.; Vidal-Ferran, A.; Adams,

R. W.; Burés, J. Kinetic Treatments for Catalyst Activation and Deactivation Processes
based on Variable Time Normalization Analysis. *Angew. Chem. Int. Ed.* 2019, *58*, 10189–10193.

⁵ For timely reviews of organocatalysis, see: (a) Auvil, T. J.; Schafer, A. G.; Mattson, A. E. Design Strategies for Enhanced Hydrogen-Bond Donor Catalysts. *Eur. J. Org. Chem.*2014, 2633–2646. (b) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. The Progression of Chiral Anions from Concepts to Applications in Asymmetric Catalysis. *Nat. Chem.* 2012, *4*, 603–614. (c) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Low-Loading

Asymmetric Organocatalysis. *Chem. Soc. Rev.* **2012**, *41*, 2406–2447. (d) Wende, R. C.; Schreiner, P. R. Evolution of Asymmetric Organocatalysis: Multi- and Retrocatalysis. *Green Chem.* **2012**, *14*, 1821–1849 (e) Doyle, A. G.; Jacobsen, E. N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. *Chem. Rev.* **2007**, *107*, 5713–5743.

⁶ Gensch, T.; Teders, M.; Glorius, F. Approach to Comparing the Functional Group Tolerance of Reactions. *J. Org. Chem.* **2017**, *82*, 9154–9159.

⁷ For reviews on thiourea-based applications, see: (a) Knowles, R. R.; Jacobsen, E. N. Attractive Noncovalent Interactions in Asymmetric Catalysis: Links between Enzymes and Small Molecule Catalysts. Proc. Natl. Acad. Sci. 2010, 107, 20678–20685. (b) Connon, S. J. Organocatalysis Mediated by (Thio)urea Derivatives. Chem. Eur. J. 2006, 12, 5418–5427. (c) Takemoto, Y. Recognition and Activation by Ureas and Thioureas: Stereoselective Reactions using Ureas and Thioureas as Hydrogen-Bonding Donors. Org. Biomol. Chem. 2005, 3, 4299–4306. (d) Schreiner, P. R. Metal-Free Organocatalysis through Explicit Hydrogen Bonding Interactions. Chem. Soc. Rev. 2003, 32, 289–296. ⁸ For examples of thiourea catalysts forming ion pair complexes, see: (a) Kennedy, C. R.; Lehnherr, D.; Rajapaksa, N. S.; Ford, D. D.; Park, Y.; Jacobsen, E. N. Mechanism-Guided Development of a Highly Active Bis-thiourea Catalyst for Anion-Abstraction Catalysis. J. Am. Chem. Soc. 2016, 138, 13525-13528. (b) Mittal, N.; Lippert, K. M.; De, C. K.; Klauber, E. G.; Emge, T. J.; Schreiner, P. R.; Seidel, D. A Dual-Catalysis Anion-Binding Approach to the Kinetic Resolution of Amines: Insights into the Mechanism via a Combined Experimental and Computational Study. J. Am. Chem. Soc. 2015, 137, 5748–5758. (c) Berkessel, A.; Das, S.; Pekel, D.; Neudörfl, J. M. Anion-Binding Catalysis by Electron-Deficient Pyridinium Cations. Angew. Chem. Int. Ed. 2014, 53, 11660-11664.
(d) Lin, S.; Jacobsen, E. N. Thiourea-Catalyzed Ring Opening of Episulfonium Ions with Indole Derivatives by means of Stabilizing, Non-Covalent Interactions. *Nature Chemistry* 2012, *4*, 817–824. (e) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N. Asymmetric Cooperative Catalysis of Strong Brønsted Acid-Promoted Reactions using Chiral Ureas. *Science* 2010, *327*, 986–990. (f) Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. Enantioselective Thiourea-Catalyzed Additions to Oxocarbenium Ions. *J. Am. Chem. Soc.* 2008, *130*, 7198–7199. (g) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Enantioselective Thiourea-Catalyzed Acyl-Mannich Reactions of Isoquinolones. *Angew. Chem. Int. Ed.* 2005, *44*, 6700–6704.

⁹ For select examples of thiourea catalysts engaging in H-bonding interactions, see: (a)
Yang, X.; Zhou, Y.-H.; Yang, H.; Wang, S.-S.; Ouyang, Q.; Luo, Q.-L.; Guo, Q.-X.
Asymmetric Diels-Alder Reaction of 3-Vinylindoles and Nitroolefins Promoted by
Multiple Hydrogen Bonds. *Org. Lett.* 2019, *21*, 1161–1164. (b) Kennedy, C. R.; Guidera,
J. A.; Jacobsen, E. N. Synergistic Ion-Binding Catalysis Demonstrated via an
Enantioselective, Catalytic [2,3]-Wittig Rearrangement. *ACS Cent. Sci.* 2016, *2*, 416–423.
(c) Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. α-Selective
Organocatalytic Synthesis of 2-Deoxygalactosides. *Angew. Chem. Int. Ed.* 2012, *51*, 9152–
9155. (d) Lippert, K. M.; Hof, K.; Gerbig, D.; Ley, D.; Hausmann, H.; Guenther, S.;
Schreiner, P. R. Hydrogen-Bonding Thiourea Organocatalysts: The Privileged 3,5Bis(trifluoromethyl)phenyl Group. *Eur. J. Org. Chem.* 2012, 5919–5927. (e) Kotke, M.;
Schreiner, P. R. Generally Applicable Organocatalytic Tetrahydropyranylation of Hydroxy
Functionalities with Very Low Catalyst Loading. *Synthesis* 2007, *5*, 779–790. (f) Schreiner,

P. R.; Wittkopp, A. H-Bonding Additives Act Like Lewis Acid Catalysts. *Org. Lett.*, 2002, *4*, 217-220. For reviews, see: (g) Nishikawa, Y. Recent Topics in Dual Hydrogen Bonding Catalysis. *Tetrahedron Lett.* 2018, *59*, 216–223. For Brønsted acid type catalysis, see: (h) Madarász, A.; Dósa, Z.; Varga, S.; Soós, T.; Csámpai, A.; Pápai, I. Thiourea Derivatives as Brønsted Acid Organocatalysts. *ACS Catal.* 2016, *6*, 4379–4387.

¹⁰ For select examples of charge-enhanced thiourea organocatalysts, see: (a) Fan, Y.; Tiffner, M.; Schörgenhumer, J.; Robiette, R.; Waser, M.; Kass, S. R. Synthesis of Cyclic

Organic Carbonates using Atmospheric Pressure CO_2 and Charge-Containing Thiourea

Catalysts. J. Org. Chem. 2018, 83, 9991-10000. (b) Fan, Y.; Kass, S. R. Enantioselective

Friedel-Crafts Alkylation between Nitroalkenes and Indoles Catalyzed by Charge Activate

Thiourea Organocatalysts. J. Org. Chem. 2017, 82, 13288–13296. (c) Fan, Y.; Kass, S. R.

Electrostatically Enhanced Thioureas. Org. Lett. 2016, 18, 188-191.

¹¹ For select examples revealing thiocarbonyl Lewis base thiourea activity, see: (a) Park,

Y.; Schindler, C. S.; Jacobsen, E. N. Enantioselective Aza-Sakurai Cyclizations: Dual Role

of Thiourea as H-Bond Donor and Lewis Base. J. Am. Chem. Soc. 2016, 138, 14848-

4851. (b) Tripathi, C. B.; Mukherjee, S. Lewis Base Catalysis by Thiourea: N-

Bromosuccinimide-Mediated Oxidation of Alcohols. J. Org. Chem. 2012, 77, 1592–1598.

¹² Storer, R. I.; Aciro, C.; Jones, L. H. Squaramides: Physical Properties, Synthesis and Applications. *Chem. Soc. Rev.* **2011**, *40*, 2330–2346.

¹³ Lyons, D. J. M.; Crocker, R. D.; Blümel, M.; Nguyen, T. V. Promotion of Organic Reactions by Non-Benzenoid Carbocyclic Aromatic Ions. *Angew. Chem. Int. Ed.* 2017, *56*, 1466–1484 ¹⁴ Bandar, J. S.; Lambert, T. H. Aminocyclopropenium Ions: Synthesis, Properties, and Applications. *Synthesis* **2013**, *45*, 2485–2498.

¹⁵ Smajlagic, I.; Durán, R.; Pilkington, M.; Dudding, T. Cyclopropenium Enhanced Thiourea Catalysis. *J. Org. Chem.* **2018**, *83*, 13973–13980.

¹⁶ Smajlagic, I.; Guest, M.; Durán, R.; Herrera, B.; Dudding, T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. *J. Org. Chem.* **2020**, *85*, 585–593.

¹⁷ Smajlagic, I.; Carlson, B.; Rosano, N.; Foy, H.; Dudding, T. Charge-Enhanced Thiourea Catalysts as Hydrogen Bond Donors for Friedel–Crafts Alkylations. *Tetrahedron* **2019**, *75*, 130757–130763.

¹⁸ MacMillan, D. W. C. The Advent and Development of Organocatalysis. *Nature* **2008**, *455*, 304–308.

¹⁹ Lindstrom B.; Pettersson L. J. A Brief History of Catalysis. *Cattech.* 2003, *7*, 130–138.
 ²⁰ von Liebig, J. *Ann. Chem. Pharm.* 1860, *113*, 246–247.

²¹ (a) Wagner, A. J.; Zubarev, D. Y.; Aspuru-Guzik, A.; Blackmond, D. G. Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis. **2017**, *3*, 322–328. (b) Taillades, J.; Beuzelin, I.; Garrel, L.; Tabacik, V.; Bied, C.; Commeyras, A. N-Carbamoyl- α -Amino Acids Rather than Free- α -Amino Acids Formation in the Primitive Hydrosphere: A Novel Proposal for the Emergence of Prebiotic Peptides. *Origins Life Evol. Biospheres* **1998**, *28*, 61–77.

²² Bredig, G.; Fiske, P. S. *Biochem Z.* **1912**, *46*, 7–23.

²³ (a) Eder, U.; Sauer, G.; Weichert, R. New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures. *Angew. Chem. Int. Ed.* 1971, *10*, 496–497. (b) Fischer, F. G.; Marschall, A. *Ber. Dtsch. Chem. Ges.* 1931, *64*, 2825–2827.

²⁴ Kuhn, R.; Badstubner, W.; Grundmann, C. Ber. Dtsch. Chem. Ges. 1936, 69, 98–107.

²⁵ Langenbeck, W. Angew. Chem. **1928**, *41*, 740–745.

²⁶ Langenbeck, W. 2nd ed., Springer, Berlin, 1949.

²⁷ Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. New Strategies for Organic Catalysis:
The First Highly Enantioselective Organocatalytic Diels–Alder Reaction. *J. Am. Chem. Soc.* 2000, *122*, 4243–4244.

²⁸ Palumbo, C.; Guidotti, M. Organocatalysts for Enantioselective Synthesis of Fine Chemicals: Definitions, Trends and Developments. *ScienceOpen Research* **2015** (DOI: 10.14293/S2199-1006.1.SOR-CHEM.AGZIIB.v3)

²⁹ Jeffrey, G. A. (**1997**) *An Introduction to Hydrogen Bonding* (Oxford Univ Press, New York).

³⁰ (a) Brak, K.; Jacobsen, E. N. Asymmetric Ion-Pairing Catalysis. *Angew. Chem. Int. Ed.* **2013**, *52*, 534–561. (b) Israelachvili, J. (**1991**) *Intermolecular and Surface Forces* (Academic Press, London), 2nd Ed.

³¹ (a) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Exploiting Non-Covalent π
Interactions for Catalyst Design. *Nature*. 2017, *543*, 637–646. (b) Grimme, S. Do Special
Noncovalent π-π Stacking Interations Really Exist? *Angew. Chem. Int. Ed.* 2008, *47*, 3430–3434. (c) Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with Aromatic Rings
in Chemical and Biological Recognition. *Angew. Chem. Int. Ed. Engl.* 2003, *42*, 1210–1250.

³² (a) Kennedy, C. R.; Lin, S.; Jacobsen, E. N. The Cation- *π* Interaction in Small-Molecule Catalysis. *Angew. Chem. Int. Ed.* 2016, 55, 12596–12624. (b) Ma, J. C.; Dougherty, D. A. The Cation-*π* Interaction. *Chem. Rev.* 1997, 97, 1303–1324.

³³ Tanford, C. (1980) The Hydrophobic Effect. (Wiley, New York), 2nd Ed.

³⁴ (a) Wagner, J. P.; Schreiner, P. R. London Dispersion in Molecular Chemistry –

Reconsidering Steric Effects. **2015**, *54*, 12274–12296. (b) Stone, A. J. (**1996**) *The Theory of Intermolecular Forces* (Oxford Univ. Press, New York).

 ³⁵ Davis, H. J.; Phipps, R. J. Harnessing Non-Covalent Interactions to Exert Control Over Regioselectivity and Site-Selectivity in Catalytic Reactions. *Chem. Sci.* 2017, *8*, 864–877.
 ³⁶ Knowles, R. R.; Jacobsen, E. N. Attractive Noncovalent Interactions in Asymmetric Catalysis: Links Between Enzymes and Small Molecules Catalysts. *PNAS* 2010, *107*, 20678–20685.

³⁷ Latimer, W. M.; Rodebush, W. H. Polarity and Ionization from the Standpoint of the Lewis Theory of Valence. *J. Am. Chem. Soc.* **1920**, *42*, 1419–1433.

³⁸ Moore, T. S.; Winmill, T. F. The States of Amines in Aqueous Solution. *J. Chem. Soc. Trans.* **1912**, *101*, 1635–1676.

³⁹ Scheiner, S. The Hydrogen Bond: A Hundred Years and Counting. J. Indian Inst. Sci. **2020**, 100, 61–76.

⁴⁰ Wang, C.; Guan, L.; Danovich, D.; Shaik, S.; Mo, Y. The Origins of the Directionality of Noncovalent Intermolecular Interactions. *Journal of Computational Chemistry* 2016, *37*, 34–45.

⁴¹ Steiner, T. The Hydrogen Bond in the Solid State. *Angew. Chem. Int. Ed.* 2002, *41*, 48–76.

⁴² Frey, P. A. Strong Hydrogen Bonding in Molecules and Enzymatic Complexes. *Magn. Reson. Chem.* 2001, *39*, S190–S198.

⁴³ Nochebuena, J.; Cuautli, C.; Ireta, J. Origin of Cooperativity in Hydrogen Bonding. *Phys. Chem. Chem. Phys.* 2017, *19*, 15256–15263.

⁴⁴ Albrecht, G.; Corey, R. B. The Crystal Structure of Glycine. *J. Am. Chem. Soc.* **1939**, *61*, 1087–1103.

⁴⁵ Rozas, I.; Alkorta, I.; Elguero, J. Bifurcated Hydrogen Bonds: Three-Centered Interactions. *J. Phys. Chem. A* **1998**, *102*, 9925–9932.

⁴⁶ Taylor, M. S.; Jacobsen, E. N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. *Angew. Chem. Int. Ed.* **2006**, *45*, 1520–1543.

⁴⁷ Bates, R. G. Determination of pH: Theory and Practice; 2nd ed. New York: Wiley, 1973.

⁴⁸ Chang, H. Acidity: The Persistence of the Everyday in the Scientific. *Philosophy of Science* **2012**, *79*, *690–700*.

⁴⁹ Akiyama, T. In *Hydrogen Bonding in Organic Synthesis*; Pihko, P., Ed.; Wiley-VCH: Weinheim, 2009; pp5–14.

⁵⁰ Anslyn, E. V.; Dougherty, D. A. *Modern Physical Organic Chemistry*; University Science Books: Sausalito, 2006.

⁵¹ Akiyama, T.; Mori, K. Stronger Brønsted Acids: Recent Progress. *Chem Rev.* 2015, *115*, 9277–9306.

⁵² Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.; Masson, G. Enantioselective Brønsted Acid Catalysis as a Tool for the Synthesis of Natural Products and Pharmaceuticals. *Chem. Eur. J.* 2018, *24*, 3925–3943.

⁵³ Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid. *Angew. Chem. Int. Ed.* **2004**, *43*, 1566–1568.

⁵⁴ Uraguchi, D.; Terada, M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. *J. Am. Chem. Soc.* **2004**, *126*, 5356–5357.

⁵⁵ Lv, F.; Liu, S.; Hu, W. Recent Advances in the Use of Chiral Brønsted Acids as Cooperative Catalysts in Cascade and Multicomponent Reactions. *Asian J. Org. Chem.* **2013**, *2*, 824–836.

⁵⁶ Mayr, H.; Kempf, B.; Ofial, A. R. π-Nucleophilicity in Carbon–Carbon Bond-Forming Reactions. *Acc. Chem. Res.* **2003**, *36*, 66–77.

⁵⁷ (a) Diemoz, K. M.; Franz, A. K. NMR Quantification of Hydrogen-Bond-Activating Effects for Organocatalysts including Boronic Acids. *J. Org. Chem.* 2019, *84*, 1126–1138.
(b) Walvoord, R. R.; Huynh, P. N. H.; Kozlowski, M. C. Quantification of Electrophilic Activation by Hydrogen-Bonding Organocatalysts. *J. Am. Chem. Soc.* 2014, *136*, 16055–16065. (c) Huynh, P. N. H.; Walvoord, R. R.; Kozlowski, M. C. Rapid Quantification of the Activating Effects of Hydrogen-Bonding Catalysts with a Colorimetric Sensor. *J. Am. Chem. Soc.* 2012, *134*, 15621–15623.

⁵⁸ Leelananda, S. P.; Lindert, S. Computational Methods in Drug Discovery. *Beilstein J. Org. Chem.* **2016**, *12*, 2694–2718.

⁵⁹ Evans, J. D.; Fraux, G.; Gaillac, R.; Kohen, D.; Trousselet, F.; Vanson, J.-M.; Coudert,
F.-X. Computational Chemistry Methods for Nanoporous Materials. *Chem. Mater.* 2017,
29, 199–212.

- ⁶⁰ Grajciar, L.; Heard, C. J.; Bondarenko, A. A.; Polynski, M. V.; Meeprasert, J.; Pidko, E.
 A.; Nachtigall, P. Towards *operando* Computational Modeling in Heterogeneous Catalysis. *Chem. Soc. Rev.* 2018, *47*, 8307–8348.
- ⁶¹ Schuster, T.; Kurz, M.; Gobel, M. W. J. Catalysis of a Diels-Alder Reaction by Amidinium Ions. *J. Org. Chem.* **2000**, *65*, 1697–1701.
- ⁶² Huang, J.; Corey, E. J. A New Chiral Catalyst for the Enantioselective Strecker Synthesis of α-Amino Acids. *Org. Lett.* **2004**, *6*, 5027–5029.
- ⁶³ Selig, P. Guanidine Organocatalysis. Synthesis 2013, 45, 703–718.
- ⁶⁴ Takenaka, N.; Sarangthem, R. S.; Seerla, S. K. 2-Aminopyridinium Ions Activate Nitroalkenes through Hydrogen Bonding. *Org. Lett.* **2007**, *9*, 2819–2822.
- ⁶⁵ Ganesh, M.; Seidel, D. Catalytic Enantioselective Additions of Indoles to Nitroalkenes. *J. Am. Chem. Soc.* 2008, *130*, 5866–5867.
- ⁶⁶ Gheewala, C. D.; Collins, B. E.; Lambert, T. H. An Aromatic Ion Platform for Enantioselective Brønsted Acid Catalysis. *Science* **2016**, *351*, 961–965.
- ⁶⁷ Kelly, T. R.; Meghani, P.; Ekkundi, V. S. Diels-Alder Reactions: Rate Acceleration Promoted by a Biphenylenediol. *Tetrahedron Lett.* **1990**, *31*, 3381–3384.
- ⁶⁸ (a) Etter, M. C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. *Acc. Chem. Res.* **1990**, *23*, 120–126. (b) Etter, M. C.; Urbañczyk-Lipkowska,
- Z.; Zia-Ebrahimi, M.; Panunto, T. W. Hydrogen Bond Directed Cocrystallization and Molecular Recognition Properties of Diarylureas.
- ⁶⁹ Curran, D. P.; Kuo, L. H. Altering the Stereochemistry of Allylation Reactions of Cyclic .alpha.-Sulfinyl Radicals with Diarylureas. *J. Org. Chem.* **1994**, *59*, 3259–3261.

⁷⁰ Curran, D. P.; Kuo, L. H. Acceleration of a Dipolar Claisen Rearrangement by Hydrogen Bonding to a Soluble Diaryl^Urea. *Tetrahedron Lett.* **1995**, *36*, 6647–6650.

⁷¹ Sigman, M. S.; Jacobsen, E. N. Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries. *J. Am. Chem. Soc.* **1998**, *120*, 4901–4902.

⁷² Bordwell, F. G.; Algrim, D. J.; Harrelson, Jr The Relative Ease of Removing a Proton, a Hydrogen Atom, or an Electron from Carboxamides versus Thiocarboxamides. J. A. J. Am. Chem. Soc. 1988, 110, 5903–5904.

⁷³ Wittkopp, A.; Schreiner, P. R. Metal-Free, Noncovalent Catalysis of Diels–Alder
 Reactions by *Neutral* Hydrogen Bond Donors in Organic Solvents and in Water. *Chem. – Eur. J.* 2003, *9*, 407–414.

⁷⁴ Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. (Thio)urea Organocatalyst Equilibrium Acidities in DMSO. *Org. Lett.* **2012**, *14*, 1724–1727.

⁷⁵ Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. *J. Am. Chem. Soc.* **2003**, *125*, 12672–12673.

⁷⁶ Sun, Y.-L.; Wei, Y.; Shi, M. Applications of Chiral Thiourea-Amine/Phosphine Organocatalysts in Catalytic Asymmetric Reactions. *ChemCatChem* **2017**, *9*, 718–727.

⁷⁷ Zhu, Y.; Malerich, J. P.; Rawal, V. H. Squaramide-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes. *Angew. Chem.* **2010**, *122*, 157–160.

⁷⁸ (a) Zhao, B.-L.; Li, J.-H.; Du, D.-M. Squaramide-Catalyzed Asymmetric Reactions. *Chem. Rec.* 2017, *17*, 994–1018. (b) Alemán, J.; Parra, A.; Jiang, H.; Jørgensen, K. A.
Squaramides: Bridging from Molecular Recognition to Bifunctional Organocatalysis.

Chem. Eur. J. **2011,** *17*, 6890–6899. (c) Storer, R. I.; Aciro, C.; Jones, L. H. Squaramides: Physical Properties, Synthesis and Applications. *Chem. Soc. Rev.* **2011**, *40*, 2330–2346.

⁷⁹ Rombola, M.; Rawal, V. H. Dicyclopentyl Dithiosquarate as an Intermediate for the Synthesis of Thiosquaramides. *Org. Lett.* **2018**, *20*, 514–517.

⁸⁰ Quiñonero, D.; Prohens, R.; Garau, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà, P.

- M. A Theoretical Study of Aromaticity in Squaramide Complexes with Anions. *Chem. Phys. Lett.* **2002**, *351*, 115–120.
- ⁸¹ Quiñonero, D.; Frontera, A.; Ballester, P.; Deyà, P. M. A Theoretical Study of Aromaticity in Squaramide and Oxocarbons. *Tetrahedron Lett.* **2000**, *41*, 2001–2005.
- ⁸² Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea. *J. Am. Chem. Soc.* **2005**, *127*, 119–125.
- ⁸³ Malerich, J. P.; Hagihara, K.; Rawal, V. H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. *J. Am. Chem. Soc.* **2008**, *130*, 14416–14417.
- ⁸⁴ Ni, X.; Li, X.; Wang, Z.; Cheng, J.-P. Squaramide Equilibrium Acidities in DMSO. *Org. Lett.* 2014, *16*, 1786–1789.
- 85 Wöhler, F. Ann. Phys. Chem. 1828, 88, 253-256.
- ⁸⁶ Von Baeyer, A. Ber. Dtsch. Chem. Ges. 1885, 18, 2269–2281.
- ⁸⁷ Dem'yanov, N. Y.; Doyarenko, M. N. Bull. Acad. Sci. Russ. 1922, 16, 297–320.
- ⁸⁸ Closs, G. L. *Advances in Alicyclic Chemistry*. Vol 1. P. 53. Academic Press, New York, 2006.

⁸⁹ Roberts, J. D.; Streitweiser, A. Jr.; Regan, C. M. Small-Ring Compounds. X. Molecular Orbital Calculations of Properties of Some Small-Ring Hydrocarbons and Free Radicals. *J. Am. Chem. Soc.* **1952**, *74*, 4579–4582.

- ⁹⁰ Wilson, M. R.; Taylor, R. E. Strained Alkenes in Natural Product Synthesis. *Angew. Chem. Int. Ed.* **2013**, *52*, 4078–4087.
- ⁹¹ Breslow, R. J. Am. Chem. Soc. Synthesis of the s-Triphenylcyclopropenyl Cation. 1957,
 79, 5318. (b) Breslow, R.; Yuan, The sym-Triphenylcyclopropenyl Cation, a Novel
 Aromatic System. C. J. Am. Chem. Soc. 1958, 80, 5991–5994.

92 Wagner, W. M. Proc. Chem. Soc. 1959, 229.

⁹³ Tobey, S. W.; West, R. Tetrachlorocyclopropene and Hexachlorocyclopropane from Pentachlorocyclopropane. *Tetrahedron Lett.* **1963**, *18*, 1179–1182.

⁹⁴ Yoshida, Z.-i. Heteroatom-Substituted Cyclopropenium Compounds. *Top. Curr. Chem.* **1973**, 40, 47–72.

⁹⁵ Taylor, M. J.; Surman, P. W. J.; Clark, G. R. J. Chem. Soc. Chem. Commun. **1994**, 2517– 2518.

⁹⁶ Breslow, R. Höver, H.; Chang, H. W. The Synthesis and Stability of Some Cyclopropenyl Cations with Alkyl Substituents. *J. Am. Chem. Soc.* 1962, *84*, 3168–3174.
⁹⁷ Yoshida, Z.; Tawara, Y. Aminocyclopropenium Ion. *J. Am. Chem. Soc.* 1971, *93*, 2573–2574.

⁹⁸ Curnow, O. J.; MacFarlane, D. R.; Walst, K. J. Triaminocyclopropenium Salts as Ionic Liquids. *Chem. Commun.* **2011**, *47*, 10248–10250.

⁹⁹ Weiss, R.; Brenner, T.; Hampel, F.; Wolski, A. The Consequences of an Electrostatic "Forced Marriage" between Two Electron-Rich Particles: Strained Ion Pairs. *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 439–441.

¹⁰⁰ Mirabdolbaghi, R.; Dudding, T.; Stamatatos, T. A Class of Phase-Transfer Catalyst with Interionic Strain: Insight into the Bonding of Disubstituted N- vs Carbene-Stabilized N¹-Centered Cations. *Org. Lett.* **2014**, *16*, 2790–2793.

¹⁰¹ Mirabdolbaghi, R.; Dudding, T. Expanding the Forefront of Strong Organic Brønsted Acids: Proton-Catalyzed Hydroamination of Unactivated Alkenes and Activation of Au(I) for Alkyne Hydroamination. *Org. Lett.* **2015**, *17*, 1930–1933.

¹⁰² (a) Eckert, F.; Leito, I.; Kaljurand, I.; Kütt, A.; Klamt, A.; Diedenhofen, M. Prediction of Acidity in Acetonitrile Solution with COSMO-RS. *J. Comp. Chem.* **2009**, *30*, 799–810.

(b) Kütt, A.; Leito, I.; Kaljurand, I.; Sooväli, L.; Vlasov, V. M.; Yagupolskii, L. M.; Koppe,

I. A. A Comprehensie Self-Consistent Spectrophotometric Acidity Scale of Neutral Brønsted Acids in Acetonitrile. *J. Org. Chem.* **2006**, *71*, 2829–2838.

¹⁰³ (a) Guest, M.; Le Sueur, R.; Pilkington, M.; Dudding, T. Development of an Unsymmetrical Cyclopropenimine-Guanidine Platform for Acessing Strongly Basic Proton Sponges and Boron-Difluoride Diaminonapthalene Fluorophores. *Chem. Eur. J.* **2020**, *26*, 8608–8620. (b) Belding, L.; Stoyanov, P.; Dudding, T. Synthesis, Theoretical Analysis, and Experimental pK_a Determination of a Fluorescent, Nonsymmetric, In–Out Proton Sponge. *J. Org. Chem.* **2016**, *81*, 6–13. (c) Baric, D.; Maksic, Z. B. Non-additivity of the Static Correlation Energy of π -Electrons in Planar Molecules as a manifestation of Anti/Aromaticity. *J. Phys. Org. Chem.* **2003**, 16, 753–763. (d) Maksic, Z. B.; Vianello, R. Quest for the Origin of Basicity: Initial vs Final State Effect in Neutral Nitrogen Bases. *J.* *Phys. Chem. A* **2002**, *106*, 419–430. (e) Kovacevic, B.; Maksic, Z. B.; Vianello, R. The Proton Affinity of some Extended π -Systems involving Guanidine and Cylopropenimine Subunits. *J. Chem. Soc. Perkin Trans.* **2001**, 886–891. (f) Maksic, Z. B.; Kovacevic, B. Spatial and Electronic Structure of Highly Basic Organic Molecules: Cyclopropeneimines and Some Related Systems. *J. Phys. Chem. A* **1999**, *103*, 6678–6684.

¹⁰⁴ Bandar, J. S.; Lambert, T. H. Enantioselective Brønsted Base Catalysis with Chiral Cyclopropenimines. *J. Am. Chem. Soc.* **2012**, *134*, 5552–5555.

¹⁰⁵ Kelly, B. D.; Lambert, T. H. Aromatic Cation Activation of Alcohols: Conversion to Alkyl Chlorides Using Dichlorodiphenylcyclopropene. *J. Am. Chem. Soc.* **2009**, *131*, 13930–13931.

¹⁰⁶ Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; Ishikawa, T., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2009.

¹⁰⁷ Uraguchi, D.; Sakaki, S.; Ooi, T. Chiral Tetraaminophosphonium Salt-Mediated Asymmetric Direct Henry Reaction. *J. Am. Chem. Soc.* **2007**, *129*, 12392–12393.

¹⁰⁸ Nacsa, E. D.; Lambert, T. H. Higher-Order Cyclopropenimine Superbases: Direct Neutral Brønsted Base Catalyzed Michael Reactions with α -Aryl Esters. *J. Am. Chem. Soc.* **2015**, *137*, 10246–10253.

¹⁰⁹ (a) Chen, W.; Li, H.; Widawsky, J. R.; Appayee, C.; Venkataraman, L.; Breslow, R.
Aromaticity Decreases Single-Molecule Junction Conductance. *J. Am. Chem. Soc.* 2014, *136*, 918–920. (b) Breslow, R.; Change, H. W. Triarylcyclopropenium Ions. Synthesis and Stability in the Phenyl p-Anisyl Series. *J. Am. Chem. Soc.* 1961, *83*, 2367–2375.

¹¹⁰ (a) Dempsey, K.; Mir, R.; Smajlagic, I.; Dudding, T. Expanding the Repertoire of Cyclopropenium Ion Phase Transfer Catalysis: Benzylic Fluorination. *Tetrahedron* **2018**,

74, 3507–3511. (b) Mir, R.; Dudding, T. Phase-Transfer Catalyzed *O*-Silyl Ether Deprotection Mediated by a Cyclopropenium Cation. *J. Org. Chem.* **2017**, *82*, 709–714.

¹¹¹ Xu, J.; Liu, J.; Li, Z.; Xu, S.; Wang, H.; Guo, T.; Gao, Y.; Zhang, L.; Zhang, C.; Guo,

K. Opposite-Charge Repulsive Cation and Anion Pair Cooperative Organocatalysis in Ring-Opening Polymerization. *Polym. Chem.* **2018**, *9*, 2183–2192.

- ¹¹² Holthoff, J. M.; Engelage, E.; Weiss, R.; Huber, S. M. "Anti-Electrostatic" Halogen Bonding. *Angew. Chem. Int. Ed.* **2020**, *59*, 11150–11157.
- ¹¹³ Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer,
- P. D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118-7195.

¹¹⁴ (a) Guthrie, F. XXVIII.—On the Iodide of Iodammonium. *J. Chem. Soc.* 1863, *16*, 239–244. (b) Colin, M. *Ann. Chim.* 1814, *91*, 252–272.

¹¹⁵ Mulliken, R. S. Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents. *J. Am. Chem. Soc.* **1950**, *72*, 600–608.

¹¹⁶ Murray, J. S.; Paulsen, K.; Politzer, P. Molecular Surface Electrostatic Potentials in the Analysis of Non-Hydrogen-Bonding Noncovalent Interactions. *Proc. Indian Acad. Sci. Ser. Chim.* **1994**, *106*, 267–275.

¹¹⁷ Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. Halogen Bonding: the Sigma-Hole. *J. Mol. Model.* **2007**, *13*, 291–296.

¹¹⁸ Kniep, F.; Jungbauer, S. H.; Zhang, Q.; Walter, S. M.; Schindler, S.; Schnapperelle, I.; Herdtweck, E.; Huber, S. M. Organocatalysis by Neutral Multidentate Halogen-Bond Donors. **2013**, *52*, 7028–7032. ¹¹⁹ Jungbauer, S. H.; Huber, S. M. Cationic Multidentate Halogen-Bond Donors in Halide
Abstraction Organocatalysis: Catalyst Optimization by Preorganization. *J. Am. Chem. Soc.* **2015**, *137*, 12110–12120.

¹²⁰ Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451.

¹²¹ For reviews and select examples relating to cooperative catalysis, see: reviews: (a)
Hong, L.; Sun, W.; Yang, D.; Li, G.; Wang, R. Additive Effects on Asymmetric Catalysis. *Chem. Rev.* 2016, *116*, 4006–4123. (b) Zhang, Z. G.; Schreiner, P. R. (Thio)Urea
Organocatalysis – What can be learnt from Anion Recognition? *Chem. Soc. Rev.* 2009, *38*, 1187–1198. See examples: (b) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N.
Asymmetric Cooperative Catalysis of Strong Brønsted Acid-Promoted Reactions using
Chiral Ureas. *Science* 2010, *327*, 986–990. (c) Uraguchi, D.; Ueki, Y.; Ooi, T. Chiral
Organic Ion Pair Catalysts Assembled Through a Hydrogen- Bonding Network. *Science* 2009, *326*, 120–123. (c) Weil, T.; Kotke, M.; Kleiner, C. M.; Schreiner, P. R. Cooperative
Brønsted Acid-Type Organocatalysis: Alcoholysis of Styrene Oxides. *Org. Lett.* 2008, *10*, 1513–1516.

¹²² For pertinent examples relating to (thio)urea conformations, see: (a) Luchini, G.; Ascough, D. M. H.; Alegre-Requena, J. V.; Gouverneur, V.; Paton, R. S. Data-Mining the Diaryl(thio)urea Conformational Landscape: Understanding the Contrasting Behaviour of Ureas and Thioureas with Quantum Chemistry. *Tetrahedron* **2019**, *75*, 697–702. (b) Supady, A.; Hecht, S.; Baldauf, C. About Underappreciated Yet Active Conformations of Thiourea Organo- catalysts. *Org. Lett.* **2017**, *19*, 4199–4202. (c) Lam, C.-K.; Hau, S. C.-K.; Yau, C.-W.; Mak, T. C. W. Hydrogen-Bonded Anionic Host Lattices Constructed with Isocyanurate and Thiourea/Urea. *Cryst. Growth Des.* **2016**, *16*, 759–773. For reviews, see: (d) Crawford, J. M.; Sigman, M. S. Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element? *Synthesis* **2019**, *51*, 1021–1036.

¹²³ Cox, C.; Lectka, T. Solvent Effects on the Barrier to Rotation in Carbamates. *J. Org. Chem.* **1998**, *63*, 2426–2427.

¹²⁴ Rablen, P. R.; Miller, D. A.; Bullock, V. R.; Hutchinson, P. H.; Gorman, J. A. Solvent Effects on the Barrier to C–N Bond Rotation in *N*,*N*-Dimethylaminoacrylonitrile. *J. Am. Chem. Soc.* **1999**, *121*, 218–226.

¹²⁵ Cruz-Cabeza, A. J.; Bernstein, J. Conformational Polymorphism. *Chem. Rev.* 2014, *114*, 2170–2191.

¹²⁶ Garric, J.; Léger, J.-M.; Grelard, A.; Ohkita, M.; Huc, I. Solid State and Solution Conformation of 2-Pyridinecarboxylic Acid Hydrazides: A New Structural Motif for Foldamers. *Tetrahedron Lett.* **2003**, *44*, 1421–1424.

¹²⁷ (a) Kozuch, S. A Refinement of Everyday Thinking: The Energetic Span Model for Kinetic Assessment of Catalytic Cycles. WIREs: *Comput. Mol. Sci.* 2012, *2*, 795–815. (b) Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model. *Acc. Chem. Res.* 2011, *44*, 101–110. (c) Uhe, A.; Kozuch, S.; Shaik, S. Automatic Analysis of Computed Catalytic Cycles. *J. Comput. Chem.* 2011, *32*, 978–985.

¹²⁸ Kwan, E. E.; Park, Y.; Besser, H. A.; Anderson, T. L.; Jacobsen, E. N. Sensitive and Accurate ¹³C Kinetic Isotope Effect Measurements Enabled by Polarization Transfer. *J. Am. Chem. Soc.* **2017**, *139*, 43–46.

¹²⁹ Singleton, D. A.; Thomas, A. A. High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance. *J. Am. Chem. Soc.* **1995**, *117*, 9357–9358.

¹³⁰ Laidler, K. J. Chemical kinetics, 3rd ed.; Harper & Row: New York, 1987.

¹³¹ Daniel, P. T.; Koert, U.; Schuppan, J. Apoptolidin: Induktion von Apoptose durch einen Naturstoff. Angew. Chem. 2006, 118, 886–908; *Angew. Chem, Int. Ed.* 2006, *45*, 872–893.
(b) He, X.; Liu, H.- W. Mechanisms of Enzymatic CO Bond Cleavages in Deoxyhexose Biosynthesis. *Curr. Opin. Chem. Biol.* 2002, *6*, 590–597. (c) Kirschning, A.; Bechthold, A. F.-W.; Rohr, J. Chemical and Biochemical Aspects of Deoxysugars and Deoxysugar Oligosaccharides. *Top. Curr. Chem.* 1997, *188*, 1–84. (d) Sastry, M.; Patel, D. J. Solution Structure of the Mithramycin Dimer-DNA Complex. *Biochemistry* 1993, *32*, 6588–6604.
¹³² Schrödinger Release 2019–2: *MacroModel*; Schrödinger, LLC: New York, 2019.

¹³³ Storer, J. W.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Class IV Charge Models: A New Semiempirical Approach in Quantum Chemistry. *J. Comput.-Aided Mol. Des.* 1995, *9*, 87–110.

¹³⁴ Metrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Hurtley, A. E.; Miller,
S. J. Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences. *J. Am. Chem. Soc.* 2017, *139*, 492–516.

¹³⁵ Samet, M.; Buhle, J.; Zhou, Y.; Kass, S. R. Charge-Enhanced Acidity and Catalyst Activation. J. Am. Chem. Soc. 2015, 137, 4678–4680.

¹³⁶ For reviews on privileged indole scaffold and applications, see: (a) Xu, P.-W.; Yu, J.-S.; Chen, C.; Cao, Z.-Y.; Zhou, F.; Zhou, J. Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. *ACS Catal.* 2019, *9*, 1820–1882. (b) Ziarani, G. M.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent Advances in the Application of Indoles in Multicomponent Reactions. *RSC Adv.* 2018, *8*, 12069–12103. (c) Shiri, M. Indoles in Multicomponent Processes (MCPs) *Chem. Rev.* 2012, *112*, 3508–3549.

¹³⁷ Song, Z.; Zhao, Y.-M.; Zhai, H. One-Step Construction of Tetrahydro-5*H*-indolo[3,2-c]quinolines from Benzyl Azides and Indoles via a Cascade Reaction Sequence. *Org. Lett.* **2011**, *13*, 6331–6333.

¹³⁸ For reviews, see: a) Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition. *Science* 2007, *317*, 1881–1886. b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. *Chem. Soc. Rev.* 2008, *37*, 320–330. c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). *Chem. Rev.* 2014, *114*, 2432–2506. d) Kirk, K. L. Fluorination in Medicinal Chemistry: Methods, Strategies, and Recent Developments. *Org. Process Res. Dev.* 2008, *12*, 305–321.

¹³⁹ Jeschke, P. The Unique Role of Fluorine in the Design of Active Ingredients for Modern Crop Protection. *ChemBioChem.* **2004**, 5, 570–589.

¹⁴⁰ Hung, M.-H.; Farnham, W. B.; Feiring, A. E.; Rozen S. Functional Fluoromonomers and Fluoropolymers. In: *Fluoropolymers: Synthesis*; Cassidy, P. E., Hougham, G., Johns, K., Davidson, T., Eds.; Kluvert: New York, 1999; Vol. 1, Chapter 4, pp 51–66.

¹⁴¹ Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. *Acc. Chem. Res.* **2020**, *53*, 1066–1083.

¹⁴² Rao Manne, S.; de la Torre, B. G.; El-Faham, A.; Albericio, F. OxymaPure Coupling Reagents: Beyond Solid-Phase Peptide Synthesis. *Synthesis* **2020**, *52*, 3189–3210.

¹⁴³ Qixin, C.; Lam, C. C.; Yu, Z.; Song, Z.; Chen, M.; Lam, Y.-h.; Chen, S.; Houk, K. N. Catalytic Effects of Ammonium and Sulfonium Salts and External Electric Fields on Aza-Diels–Alder Reactions. *J. Org. Chem.* **2020**, *85*, 2618–2625. ¹⁴⁴ Pandey, P. Evidence of Blue-Shifting N–H…N Hydrogen Bonding Despite Elongation of the N–H Bond. *RSC Adv.* **2015**, *5*, 79661–79664.

¹⁴⁵ Wang, Z.; Wang, F.; Xue, X.-S.; Ji, P. Acidity Scale of N-Heterocyclic Carbene
Precursors: Can We Predict the Stability of NHC–CO₂ Adducts? *Org. Lett.* 2018, *20*, 6041–6045.

¹⁴⁶ Vianello, R. Acidifying Effect of an *N*-Oxide Group – A Useful Motif in Enhancing Acidity towards Superacidic Values. *Croat. Chem. Acta* **2009**, *82*, 27–39.

¹⁴⁷ Crawford, J. M.; Sigman, M. S. Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element? *Synthesis* **2019**, *51*, 1021–1036.

¹⁴⁸ Sonsona, I. G.; Marqués-López, E.; Herrera, R. P. The Aminoindanol Core as a Key Scaffold in Bifunctional Organocatalysts. *Beilstein J. Org. Chem.* **2016**, *12*, 505–523.

¹⁴⁹ Starks, C.; Liotta, C.; Halpern, M. *Phase-Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives*; Chapman & Hall: New York, 1994.

¹⁵⁰ Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts. *Acc. Chem. Res.* **2020**, *53*, 1066–1083.

¹⁵¹ (a) Brichacek, M. P.; Carlson, R. M. Dihydropyran as a Template for Lactone Synthesis.

Synth. Commun. **2007**, *37*, 3541–3549. (b) Booth, H.; Dixon, J. M.; Khedhair, K. A.; Readshaw, S. A. Experimental Studies of the Anomeric Effect. Part III. Rotameric Preferences about the Exo-Cyclic C₂-X Bond in Equatorial and Axial 2-Methoxy- and 2-Methylamino-Tetrahydropyrans. *Tetrahedron* **1990**, *46*, 1625–1652.

¹⁵² García-Muñoz, Á.; Ortega-Arizmendi, A. I.; García-Carrillo, M. A.; Díaz, E.; Gonzalez-Rivas, N.; Cuevas-Yañez, E. Direct, Metal-Free Synthesis of Benzyl Alcohols and Deuterated Benzyl Alcohols from *p*-Toluenesulfonylhydrazones Using Water as Solvent. *Synthesis* **2012**, *44*, 2237–2242.

¹⁵³ Sennari, G.; Hirose, T.; Iwatsuki, M.; Ōmura, S.; Sunazuka, T. A concise Total Synthesis of Puberulic Acid, a Potent Antimalarial Agent. *Chem. Commun.* **2014**, *50*, 8715–8718.

¹⁵⁴ Worrall, D. E. Nitrostyrene. Org. Synth. **1929**, *9*, 66.

¹⁵⁵ Figueiredo, J.; Serrano, J. L.; Cavalheiro, E.; Keurulainen, L.; Yli-Kauhaluoma, J.; Moreira, V. M.; Ferreira, S.; Domingues, F. C.; Silvestre, S.; Almeida, P. Trisubstituted Barbiturates and Thiobarbiturates: Synthesis and Biological Evaluation as Xanthine Oxidase Inhibitors, Antioxidants, Antibacterial and Antiproliferative Agents. *Eur. J. Med. Chem.* **2018**, *143*, 829–842.

¹⁵⁶ Liedtke, T.; Spannring, P.; Riccardi, L.; Gansäuer, A. Mechanism-Based Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry. **2018**, *130*, 5100–5104.

¹⁵⁷ Sha, F.; Tao, Y.; Tang, C.-Y.; Zhang, F.; Wu, X.-Y. Construction of Benzo[*c*]carbazoles and Their Antitumor Derivatives through the Diels–Alder Reaction of 2-Alkenylindoles and Arynes. *J. Org. Chem.* **2015**, *80*, 8122–8133.

¹⁵⁸ Wang, K.; Liu, Z. Synthesis of Arcyriarubin A and Arcyriaflavin A via Cross-Coupling of Indolylboronic Acid with Dibromomaleimides. *Synth. Commun.* **2010**, *40*, 144–150.

¹⁵⁹ Benkovics, T.; Guzei, I. A.; Yoon, T. P. Oxaziridine-Mediated Oxyamination of Indoles: An Approach to 3-Aminoindoles and Enantiomerically Enriched 3-Aminopyrroloindolines. **2010**, *122*, 9339–9343.

160 (a) Ohwada, T.; Itai, A.; Ohta, T.; Shudo, K. Nitroethylene Yields (N,Ndihydroxyiminium)methylium Dication in Trifluoromethanesulfonic Acid. Dications Stabilized by Y Delocalization. J. Am. Chem. Soc. 1987, 109, 7036-7041. (b) Bridges, A. J.; Zhou, H. Synthesis of [1]Benzothieno[3,2-d]pyrimidines Substituted with Electron Donating Substituents on the Benzene Ring. J. Heterocyclic. Chem. 1997, 34, 1163–1172. (c) Gamble, D. L.; Hems, W. P.; Ridge B. Studies on the Preparation of Camphorylidene Derivatives of α-Amino Acids. J. Chem. Soc. Perkin Trans. 1 2001, 3, 248-260. (d) Kithara, K.; Toma, T.; Shimokawa, J.; Fukuyama, T. O-TBS-N-tosylhydroxylamine: A Reagent for Facile Conversion of Alcohols to Oximes. Org. Lett. 2008, 10, 2259–2261. (e) Augustine, J. K.; Kumar, R.; Bombrun, A.; Mandal, A. B. An Efficient Catalytic Method for the Beckmann Rearrangement of Ketoximes to Amides and Aldoximes to Nitriles Mediated by Propylphosphonic Anhydride (T3P®). Tetrahedron. Lett. 2011, 52, 1074-1077. (f) Zaware, P.; Shah, S.; Pingali, H.; Makadia, P.; Thube, B.; Pola, S.; Patel, D.; Priyadarshini, P.; Suthar, D.; Shah, M.; Jamili, J.; Sairam, K.; Giri, S.; Patel, L.; Patel, H.; Sudani, H.; Patel, H.; Jain, M.; Patel, P.; Bahekar, R. Modulation of PPAR Subtype Selectivity. Part 2: Transforming PPAR α/γ Dual Agonist into α Selective PPAR Agonist through Bioisosteric Modification. Bioorg. Med. Chem. Lett. 2011, 21, 628-632. (g) Abedi, S.; Karimi, B.; Kazemi, F.; Bostina, M.; Vali, H. Amorphous TiO₂ Coated into Periodic Mesoporous Organosilicate Channels as a New Binary Photocatalyst for Regeneration of Carbonyl Compounds from Oximes under the Sunlight Irradiation. Org. Biomol. Chem. 2012, 11, 416–419. (h) Suzuki, K.; Watanabe, T.; Murahashi, S. Oxidation of Primary Amines to Oximes with Molecular Oxygen using 1,1-Diphenyl-2-picryhydrazyl and WO₃/Al₂O₃ as Catalysts. J. Org. Chem. 2013, 78, 2301–2310. (i) Chalyk, B.; Kandaurova,

I.; Hrebeniuk, K.; Manoilenko, O.; Kulik, I.; Iminov, R.; Kubyshkin, V.; Tverdekohlebov, A.; Ablialimov O.; Mykhailiuk P. A Base Promoted Multigram Synthesis of Aminosoxazoles; Valuable Building Block for Drug Discovery and Peptidomimetics. RSC. Adv. 2016, 6, 25713–25723. (j) Betke, T.; Rommelmann, P.; Oike, K.; Asano, Y.; Gröger, H. Cyanide-Free and Broadly Applicable Enantioselective Synthetic Platform for Chiral Nitriles through a Biocatalytic Approach. Angew. Chem. Int. Ed. 2017, 56, 2361–2366. (k) Kadam, K.; Gandhi, T.; Gupte, A.; Gangopadhyay, A. K.; Sharma, R. Alkyl Nitriles: Novel Reagents for One-Pot Synthesis of 3,5-Disubstitued Isoxazoles from Aldoximes and Alkynes. Synthesis 2016, 48, 3996–4008. (1) Blangetti, M.; Rolando, B.; Marini, E.; Chegev, K.; Guglielmo, S.; Lazzarato, L.; Lucarini, L.; Masini, E.; Fruttero, R. gem-Dinitroalkyl Benzenes: A Novel Class of IOP-Lowering Agents for the Treatment of Ocular Hypertension. ACS. Med. Chem. Lett. 2017, 8, 1054-1059. (m) Zhao, G.; Liang, L.; Wen, C.; Tong, R. In Situ Generation of Nitrile from NaCl-Oxone Oxidation of Various Aldoximes and Their 1,3-Dipolar Cycloaddition. Org. Lett. 2019, 21, 315–319. (n) Colin, B.; Lavastre, O.; Fouquay, S.; Michaud, G.; Simon, F.; Brusson, J.; High-Throughput Screening of the Alkoxide/Oxime-Based Library: An Alternative to Organotin Compounds or the Alkoxysilane Condensation in Adhesive and Sealants. ACS. Comb. Sci. 2019, 21, 300-309.

¹⁶¹ Lavallo, V.; Ishida, Y.; Donnadieu, B.; Bertrand, G. Isolation of Cyclopropenylidene-Lithium Adducts: The Weiss-Yoshida Reagent. *Angew. Chem. Int. Ed.* **2006**, *45*, 6652–6655. ¹⁶² Nacsa, E. D.; Lambert, T. H. Higher-Order Cyclopropenimine Superbases: Direct Neutral Brønsted Base Catalyzed Michael Reactions with α-Aryl Esters. *J. Am. Chem. Soc.* **2015**, *137*, 10246–10253.

¹⁶³ Das, S.; Pekel, D.; Neudörfl, J. M.; Berkessel, A. Organo- catalytic Glycosylation by Using Electron-Deficient Pyridinium Salts. *Angew. Chem. Int. Ed.* 2015, *54*, 12479–12483.
¹⁶⁴ Kayastha, A. K.; Hotha, S. Versatile Gold Catalyzed Transglycosidation at Ambient Temperature. *Chem. Commun.* 2012, *48*, 7161–7163.

¹⁶⁵ Kumar, B.; Aga, M. A.; Mukherjee, D.; Chimni, S. S.; Taneja, S. C. Allyl Tetrahydropyranyl Ether: A Versatile Alcohol/Thiol Protecting Reagent. *Tetrahedron Lett.* **2009**, *50*, 6236–6240.

¹⁶⁶ Hajipour, A. R.; Nasresfahani, Z. Mild and Efficient Chemoselective Tetrahydropyranylation of Alcohols using Brønsted Acidic Ionic Liquid as Catalyst under Solvent-Free Conditions. *Synth. Commun.* **2012**, *42*, 1995–2006.

¹⁶⁷ Speicher, A.; Groh, M.; Hennrich, M.; Huynh, A. M. Synthesis of Macrocyclic Bis(bibenzyl) Compounds Derived from Perrottetine E. *Eur. J. Org. Chem.* 2010, 2010, 6760–6778.

¹⁶⁸ Gonzalez-Calderoń, D.; Gonzalez-Gonzalez, C.; Fuentes-Benítez, A.; Cuevas-Yañez, E.; Corona-Becerril, D.; Gonzal ez-Romero, C. Cerium(IV) Sulfate Tetrahydrate: A Catalytic and Highly Chemoselective Deprotection of THP, MOM and BOM Ethers. *Tetrahedron Lett.* **2013**, *54*, 7164–7166.

¹⁶⁹ Casson,S.;Kocienśki,P.Palladium(0)-CatalyzedHydro- stannylation of 1-Alkoxy-1alkyenes: A Synthesis of α-Alkoxyalkenyl- stannanes and their Transmetallation to α-Alkoxyalkenyllithiums. *Synthesis* **1993**, *1993*, 1133–1140. ¹⁷⁰ Zheng, W. W.; Hsieh, Y. H.; Chiu, Y. C.; Cai, S. J.; Cheng, C. L.; Chen, C. Organic Functionalization of Ultradispersed Nano- diamond: Synthesis and Applications. *J. Mater. Chem.* **2009**, *19*, 8432–8441.

¹⁷¹ Khan, A. T.; Ghosh, S.; Choudhury, L. H. A Highly Efficient Synthetic Protocol for Tetrahydropyranylation/Depyranylation of Alcohols and Phenols. *Eur. J. Org. Chem.* **2005**, *2005*, 4891–4896.

¹⁷² Poon, P. S.; Banerjee, A. K.; Bedoya, L.; Laya, M. S.; Cabrera, E. V.; Albornoz, K. M.
Dowex 50WX4–100: An Efficient Catalyst for the Tetrahydropyranylation of Alcohols. *Synth. Commun.* 2009, *39*, 3369–3377.

¹⁷³ Schmalisch, S.; Mahrwald, R. Organocatalyzed Direct Glycosylation of Unprotected and Unactivated Carbohydrates. *Org. Lett.* **2013**, *15*, 5854–5857.

¹⁷⁴ Mahato, S.; Chatterjee, R.; Ghosal, N. C.; Majee, A. Zwitterionic Imidazolium Salt: An Efficient Organocatalyst for Tetrahydropyranylation of Alcohols. *Synth. Commun.* 2017, *47*, 1905–1915.

¹⁷⁵ Dong, X.-W.; Liu, T.; Hu, Y.-Z.; Liu, X.-Y.; Che, C.-M. Urea Postmodified in a Metal-Organic Framework as a Catalytically Active Hydrogen-Bond-Donating Heterogeneous Catalyst. *Chem. Commun.* **2013**, *49*, 7681–7683.

¹⁷⁶ Huang, W.-G.; Wang, H.-S.; Huang, G.-B.; Wu, Y.-M.; Pan, Y.-M. Enantioselective Friedel–Crafts Alkylation of *N*-Methylindoles with Nitroalkenes Catalyzed by Chiral Bifunctional Abietic-Acid-Derived Thiourea-Zn^{II} Complexes. *Eur. J. Org. Chem.* **2012**, 5839–5843. ¹⁷⁷ Meshram, H. M.; Nageswara Rao, N.; Santosh Kumar, G. Boric Acid–Mediated Mild and Efficient Friedel–Crafts Alkylation of Indoles with Nitro Styrenes. *Synth. Commun.* **2010**, *40*, 3496–3500.

- ¹⁷⁸ APEX-II, Bruker AXS, Madison, Wisconsin, USA.
- ¹⁷⁹ SAINT, Bruker AXS, Madison, Wisconsin, USA.
- ¹⁸⁰ SADABS, Bruker AXS, Madison, Wisconsin, USA.
- ¹⁸¹ Sheldrick, G.M. SHELXS-97, A Program for Automatic Solution of Crystal Structures,
- University of Göttingen, 1997; G.M. Sheldrick, Acta Cryst. 2015, A71, 3.
- ¹⁸² SHELXTL, Bruker AXS, Madison, Wisconsin, USA.
- ¹⁸³ Wheeler, S. E.; Seguin, T. J.; Guan, Y.; Doney, A. C. Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design. *Acc. Chem. Res.* **2016**, *49*, 1061–1069.
- ¹⁸⁴ Kennedy, C. R.; Lin, S.; Jacobsen, E. N. The Cation–*π* Interaction in Small-Molecule Catalysis. *Angew. Chem. Int. Ed.* **2016**, *55*, 12596–12624.
- ¹⁸⁵ Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- ¹⁸⁶ SHELXTL, Bruker AXS, Madison, Wisconsin, USA, 2015.
- ¹⁸⁷ Spek, A.L. (2015). Acta Cryst. C71, 9–19.
- ¹⁸⁸ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
- J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16 (Revision B.01). *Gaussian, Inc., Wallingford CT* **2016**.
- ¹⁸⁹ (a) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra using Density Functional Force Fields. *J. Phys. Chem.* **1994**, *98*, 11623–11627. (b) Becke, A. D. Density-Functional

Thermocehmistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
(c) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.

¹⁹⁰ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate *ab Initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104–154119.

¹⁹¹ Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, *113*, 6378–6396.
¹⁹² Lian, P.; Johnston, R. C.; Parks, J. M.; Smith, J. C. Quantum Chemical Calculation of pk_as of Environmentally Relevant Functional Groups: Carboxylic Acids, Amines and Thiols in Aqueous Solution. *J. Phys. Chem. A* 2018, *122*, 4366–4374.

¹⁹³ Zhurko, G.; Zhurko, D. ChemCraft, Version 1.8 http://www.chemcraftprog.com.

¹⁹⁴ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,

J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato,

M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zhang, G.; Sonnenberg, J. L.;

Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;

Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro,

F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.;

Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,

M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.e.; Cross, J. B.; Bakken, V.; Adamo, C.;

Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, A. R.;

Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G.

A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian, Inc.,Wallingford, CT, 2009.

¹⁹⁵ Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. *Phys. Chem. Chem. Phys.*, **2008**, *10*, 6615–6620.

¹⁹⁶ Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.*, **1980**, *72*, 650–654.

¹⁹⁷ Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree–Fock, Møller–Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. *J. Phys. Chem.*, **1996**, *100*, 16502–16513.

¹⁹⁸ (a) Hratchian, H. P.; Schlegel, H. B Using Hessian Updating To Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. *J. Chem. Theory Comput.*, 2005, *1*, 61–69. (b) Hratchian, H. P.; Schlegel, H. B. Accurate reaction paths using a Hessian based predictor–corrector integrator. *J. Chem. Phys.*, 2004, *120*, 9918–9924. (c) Peng, C. Y.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. *J. Comp. Chem.*, 1996, *17*, 49–56. (d) Fukui, K. The Path of Chemical Reactions–The IRC Approach. *Acc. Chem. Res.* 1981, *14*, 363–368

¹⁹⁹ (a) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B*, **2009**, *113*, 6378–6396.

(b) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* **2005**, *105*, 2999–3094.

²⁰⁰ C.Y. Legault. CYLview. Universite de Sherbrooke, Quebec, Canada, 2009, version
1.0b, http://www.cylview.org

²⁰¹ Dennington, R.; Keith, T.; Millam, J. GaussView. *Semichem Inc., Shawnee Mission, KS*, **2009**, *Version 5*.

²⁰² Storer, J. W.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G., Class IV charge models: a new semiempirical approach in quantum chemistry. *J. Comput. Aided. Mol. Des.* **1995**, *9*, 87–110.

²⁰³ Schrödinger Release 2019-2: MacroModel, Schrödinger, LLC, New York, NY, **2019**.

²⁰⁴ Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. *J. Chem. Phys.* **1997**, *107*, 3032–3041.

²⁰⁵ a) Grimme, S. Density Functional Theory with London Dispersion Corrections. *Wiley Interdiscip. Rev.: Comput. Mol. Sci.* 2011, *1*, 211–228. b) Grimme, S.; Ehrlich, S.; Goerigk,
L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* 2011, *32*, 1456–1465. c) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A
Consistent and Accurate ab initio Parametrization of Density Functional Dispersion
Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 2010, *132*, 154104.

²⁰⁶ a) Schrödinger Release 2018-4: Jaguar, Schrödinger, LLC, New York, NY, **2018**; b)

Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W.

T. Revealing Noncovalent Interactions J. Am. Chem. Soc. 2010, 132, 6498-6506.

²⁰⁷ (a) Yang, C.; Xue, X.-S.; Li, X.; Cheng, J.-P. Computational Study on the Acidic Constants of Chiral Brønsted Acids in Dimethyl Sulfoxide. *J. Org. Chem.* 2014, *79*, 4340–4351. (b) Yang. C.; Xue, X.-S.; Jin, J.-L.; Li, X.; Cheng, J.-P. Theoretical Study on the Acidities of Chiral Phosphoric Acids in Dimethyl Sufloxide: Hints for Organocatalysis. *J. Org. Chem.* 2013, *78*, 7076–7085.