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Bitcoin and Ethereum transactions present some of the largest real-world complex
networks that are publicly available for study, including a detailed picture of their time
evolution. As such, they have received a considerable amount of attention from the
network science community along with analyses from economic and cryptographic
perspectives. Among these studies, in an analysis on the early instance of the Bitcoin
network, we have shown the clear presence of the preferential attachment, or the “rich-
get-richer” phenomenon. Now, we revisit this question, using a recent version of the
Bitcoin network that has grown almost 100-fold since our original analysis. Furthermore,
we additionally carry out a comparison with Ethereum, the second most important
cryptocurrency. Our results show that preferential attachment continues to be a key
factor in the evolution of both the Bitcoin and Ethereum transactoin networks. To facilitate
further analysis, we publish a recent version of both transaction networks, and an efficient
software implementation that is able to evaluate linking statistics necessary for learn about
preferential attachment on networks with several hundred million edges.
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1 INTRODUCTION

Cryptocurrencies have presented a disruptive change for both economics and computer science. Over the
past years, interest in cryptocurrencies resulted in a huge amount of money invested in them (Baur et al.,
2018; Begušić et al., 2018) and a growing amount of research carried out on diverse application possibilities
of the underlying technologies, e.g., blockchain and decentralized trust (Bonneau et al., 2015; Yli-Huumo
et al., 2016; Zheng et al., 2016; Seres et al., 2020; Liu et al., 2021). At the same time, cryptocurrencies provide a
unique opportunity as financial systems where the whole list of transactions is exposed, making possible to
study the dynamic interactions taking place in them (Kondor et al., 2014a; Phetsouvanh et al., 2019; Oggier
et al., 2020; Wu et al., 2020); this allows the study of the complete history of how novel, alternative financial
systems evolve from their inception (Seebacher and Maleshkova, 2018; Dixon et al., 2019).

Furthermore, the appearance of cryptocurrencies has helped research connecting network
information with economical analysis to gain momentum due to the availability of high volume
data (Gurcan et al., 2018). With several booms and busts in price dynamics, there have been a
significant amount of interest in understanding and predicting price fluctuations (Kondor et al.,
2014b; Akcora et al., 2018; Kurbucz, 2019), and trying to understand cryptocurrency markets based
on a comparison with traditional financial instruments (Baur et al., 2018; Begušić et al., 2018).
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Considering the list of transactions as an evolving network,
cryptocurrencies present one of the largest real-world networks
that can be analyzed by the scientific community, with several
hundred million total edges. This can be of interest in itself, as it
allows to test theories about evolving and time-varying networks
on large scales with better statistical confidence. While there is
significant interest in how cryptocurrencies work from a network
science perspective (Di Francesco Maesa et al., 2018; Liang et al.,
2018; Motamed and Bahrak, 2019; Wu et al., 2020; Fischer et al.,
2021), we still do not have a comprehensive understanding of
which are the relevant processes that shape their network
structure.

In the current study, we evaluate key network characteristics
on the transaction networks of Bitcoin and Ethereum, the two
most popular cryptocurrencies. We specifically look at network
evolution and the dynamics of how nodes gain new transaction
partners and gain or lose balance. We build on our previous work
that focused only on the initial phase of Bitcoin and found that
preferential attachment drives the evolution of the transaction
network and concentration of wealth (Kondor et al., 2014a).
Considering the scale of Bitcoin and the many factors influencing
transaction dynamics, it is remarkable howwell power-law degree
distributions and preferential attachment describe its evolution.
In the current work, we extend our previous analysis to a
significantly longer period of trading with multiple up- and
downturns in the market for both Bitcoin and Ethereum; in
the case of Bitcoin, this means an almost 100-fold growth in total
network size. This allows us to test if the main transaction
dynamics found previously stay significant during a timeframe
when cryptocurrencies gained several orders of magnitude in
total investment and became a main market component instead
of just a niche. We show that a process of preferential attachment
continues to be determinant for both cryptocurrencies and is
robust with regard of the time period analyzed and the method
used to reconstruct the transaction network.

We download and process the transaction history of both
Bitcoin and Ethereum and reconstruct the temporally evolving
transaction network. Since the main components of the network
are the transactions which are instantaneous events, there are
multiple possible choices for defining a network among the
addresses (Kiffer et al., 2018; Motamed and Bahrak, 2019;
Phetsouvanh et al., 2019; Wu et al., 2020). We show that the
activity of addresses is characterized by fat-tailed distributions
both in terms of temporal extent, number of transactions they
participate in and addresses they come in contact with. Most
addresses are short lived according to the practice of users of
frequently generating new addresses to obtain increased privacy,
while some addresses participate in an especially large number of
transactions over an extended time range, giving rise to power-
law degree distributions in the aggregated network (Di Francesco
Maesa et al., 2018; Fischer et al., 2021).

We perform amore in-depth analysis of transaction dynamics,
testing how preferential attachment can explain the broad degree
distributions seen in the aggregated transaction networks. We
evaluate statistics of new edge formation using the rank function
methodology developed in our previous work (Kondor et al.,
2014a) using different levels of temporal aggregation, testing also

the robustness of results. During our analysis, we perform an in-
depth comparison among Bitcoin and Ethereum, focusing on
comparing the transaction dynamics of regular addresses in the
two systems and between addresses and smart contracts in
Ethereum.

2 RELATED WORK

2.1 Preferential Attachment
Preferential attachment is amodel of network evolution originally
suggested by Barabási and Albert (1999) and Barabási et al.
(1999), based on the models studied originally in different
contexts by Yule (1925) and Simon (1955). The original model
predicts a power-law degree distribution with an exponent of c �
2; it was later generalized to yield networks with power-law
degree distributions of arbitrary exponents (Dorogovtsev and
Mendes, 2000a). Preferential attachment was observed either
directly or indirectly in many real-world complex networks in
the past decades (Jeong et al., 2003; Kunegis et al., 2013; Perc,
2014), including an early phase of Bitcoin (Kondor et al., 2014a).

The original model of Barabási and Albert (1999) and Barabási
et al. (1999) assumes a continually growing network, where only
newly joined nodes initiate edges, and connection probabilities
depend linearly on the degree of existing nodes. While this
captures key aspects of growing networks, many questions
naturally arise about the importance of the underlying
assumptions and the extent they are expected to be present in
real-world networks. In accordance with this, researchers have
focused on investigating potential generalizations in multiple
directions, gaining insights into a more generalized class of
dynamical processes that involve a form of preferential
attachment (Albert and Barabási, 2002).

Models of preferential attachment typically assume that the
dependence between node degrees and the probability of
connecting to them follows a functional form such as: p(k) ∼
ka. A key early result was that for growing networks, an
asymptotically linear form, i.e., a � 1 is required to result in a
power-law degree distribution (Krapivsky et al., 2000). In the
sublinear case (a < 1), the result in the degree distribution is a
stretched exponential, while the a > 1 case yields highly
concentrated networks, where only a finite number of nodes
will have degrees larger than a threshold value ka (dependent on
the a exponent) even in the infinite limit (Krapivsky et al., 2000;
Albert and Barabási, 2002).

In the case of asymptotically linear preferential attachment, a
series of generalizations show that differences in the exact form
for small k (including a finite probability to connect to zero degree
nodes), and in edge dynamics can result in power-law degree
distributions with a wide range of exponents beyond the c � 2
case of the original model of Barabási and Albert (Dorogovtsev
et al., 2000a; Dorogovtsev and Mendes, 2000a; Dorogovtsev and
Mendes, 2000b; Dorogovtsev and Mendes, 2001a; Dorogovtsev
and Mendes, 2001b). An especially interesting case is networks
with accelerated growth, a case where not only the number of
nodes, but average node degrees are growing (Dorogovtsev and
Mendes, 2001b): in this case, internal edges are assumed to appear
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with a time-dependent rate. Again, linear preferential attachment
leads to power-law degree distributions, with exponents that are
dependent on the growth rate of the average node degree.

Recently, mechanisms that go beyond looking at node degrees
have also been investigated. A motivation for this is social
networks, where agents are not assumed to make conscious
decisions based on existing node degrees (a global information
that might not be readily available); on the other hand, node
betweenness can be a strong determinant on possible
opportunities for establishing new connections (Topirceanu
et al., 2018). More generalized measures of node fitness have
also been suggested such as based on recency (Nsour and Sayama,
2021) or a combination of node degrees with an aging factor
(Dorogovtsev and Mendes, 2000a). In real networks, it has been
shown that a combination of node degree and fitness can explain
network growth statistic well (Pham et al., 2015; Pham et al., 2016;
Aspembitova et al., 2019).

2.2 Cryptocurrency Analysis
Cryptocurrencies present one of the largest complex network
datasets available for study. Beside theoretical interest, there are
many practical implications of intelligence extracted from
analyzing the transaction dynamics.

Early works typically focused on identifying main features,
and characterization of cryptocurrency networks via established
metrics in network science (Ron and Shamir, 2013; Kondor et al.,
2014a); in the case of Bitcoin, a distinct early phase was identified
where the system functioned more as an experiment in its initial
2 years, before wider adoption (Kondor et al., 2014a; Liang et al.,
2018). Networks defined based on the transactions, and
dynamical properties show fat-tailed distributions typical of
complex systems; beside degree distributions, this was
observed in metrics of address activity, such as inter-event
times as well (Kondor et al., 2014a; Guo et al., 2019; Wu
et al., 2020). Further aspects of complex networks identified in
cryptocurrencies include the small-world property, network
densification over time (Di Francesco Maesa et al., 2018;
Ferretti and D’Angelo, 2020; Wu et al., 2020) and a presence
of disassortative mixing, suggesting that a significant number of
transactions happen between ordinary users and large players
providing services (Kondor et al., 2014a; Guo et al., 2019).

Preferential attachment was demonstrated as a mechanism
generating fat-tailed degree and wealth distribution in Bitcoin in
our previous work (Kondor et al., 2014a). In constrast, nowwe are
looking at a network that is a result of an almost 100-fold growth
since our initial analysis, thus it is an exciting question whether
the initially identified dynamics have continued to hold over this
intense expansion of activities. Furthermore, we present a
comparison with Ethereum, whose network is different both
on a technical level (it uses an account based model instead of
an UTXO model; see the next section for an explanation of this
difference) and on a conceptual level by the presence of smart
contracts. While several previous works focused on the
comparison of network structure in Bitcoin, Ethereum and
other cryptocurrencies, these works did not include the
analysis of preferential attachment (Ron and Shamir, 2013;
Liang et al., 2018; Guo et al., 2019; Ferretti and D’Angelo,

2020; Wu et al., 2020). The recent work of Di Francesco
Maesa et al. (2018) analyzed measures that correspond to a
concentration of wealth and found that it shows an increase
over time, consistent with a “rich-get-richer” phenomenon; we
note that these results were obtained by investigating the time
evolution of aggregated measures and not the dynamics of
individual transactions, i.e., a vastly different methodology to
our previous (Kondor et al., 2014a) and current work, yet are
compatible with our main findings.

Recently, Aspembitova et al. (2019) focused specifically on
preferential attachment in Bitcoin and suggested a fitness-based
model to explain the power-law degree distributions in Bitcoin
that is consistent with the short-lived nature of addresses. While
their analysis provides an interesting conceptual framework
similar to the “hot-get-richer” and fitness-based models (Pham
et al., 2016; Nsour and Sayama, 2021), we believe their reasoning
against degree preferential attachment to be problematic, as they
are considering empirical connection probabilities as a function
of node degree without taking into account the underlying
evolving degree distribution of the network. In our work, we
explicitly update the degree distribution over the course of the
network evolution, allowing us to evaluate a true preference
toward nodes with higher degrees among all available ones at
any point in time. This way, our investigation of preferential
attachment is directly comparable to previous works where it was
empirically found in networks in different contexts (Jeong et al.,
2003; Kunegis et al., 2013; Perc, 2014).

Going beyond network structure, an important research
direction utilizing cryptocurrency network information focuses
on anonymity and the traceability of transactions. While
anonymity was not among the original design goals of Bitcoin,
cryptocurrency transactions are often regarded pseudo-
anonymous despite the public record of them, since linking
addresses to actual users is only possible using externally
available information. Building on this, multiple mechanisms
were later proposed to enhance anonymity in Bitcoin and several
alternative cryptocurrencies were implemented with a stronger
focus on anonymity (Bonneau et al., 2015; Anderson et al., 2016;
Heilman et al., 2017; Conti et al., 2018). Several heuristics were
proposed for address clustering based on transaction patterns,
i.e., for identifying groups of addresses in cryptocurrency
networks that are controlled by the same entity (Meiklejohn
et al., 2013; Nick, 2015; Phetsouvanh et al., 2019; Fischer et al.,
2021). In line with this, there exist solutions and services with the
goal of “mixing” bitcoins or other cryptocurrencies, with the goal
of making the flow of money less traceable; formal and practical
analysis of such possiblitieis has attracted a significant research
interest as well (Chen et al., 2017; Heilman et al., 2017; Miller
et al., 2017; Conti et al., 2018). Practical applications typically
focus on tracing the movement of money linked to illegal and
illicit activities such as extortion or the sale of prohibited items
(Portnoff et al., 2017; Paquet-Clouston et al., 2019; Oggier et al.,
2020).

Finally, we note that there is a significant research interest in
modeling price fluctuations in cryptocurrency markets and
uncovering connections to network dynamics. Results include
the characterization of price fluctuations and comparison with
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traditional financial instruments (Baur et al., 2018; Begušić et al.,
2018); characterization of risk based on network structure and
motifs (Gurcan et al., 2018; Dixon et al., 2019); establishing
connections between network activity and price dynamics
(Kondor et al., 2014b; Alabi, 2017); and developing price
predictions by exploiting inherent information in the
transaction network (Akcora et al., 2018; Kurbucz, 2019). In
the current work however, we only focus on the evolving network
structure, and not consider market fluctuations.

3 METHODS

3.1 Data Collection
3.1.1 Bitcoin
We adapted the Bitcoin Core client program (version 0.19) by
adding functionality to write out data about transactions and
blocks in a CSV format1. We used this client to download and
extract the blockchain on February 7, 2020. Our data includes
616,345 blocks with 500,663,153 transactions among 609,963,452
unique addresses in total.

We note that Bitcoin uses an UTXO (unspent transaction
output) graph model: a transaction lists a number of outputs as
bitcoin values together with cryptographic challenges required to
spend them in the future. The network itself has no notion of
addresses or balances. In practice, almost all transaction outputs
follow a standard pattern, requiring a signature with a given
private key for spending it. A standard representation of the hash
of the corresponding public key is then referred to as the “Bitcoin
address” that received the amount associated with that output.
There is a small fraction of transactions where such an association
cannot be easily made (Caprolu et al., 2021); while the flow of
Bitcoins can still be followed in these cases, we did not associate
such transaction outputs with any Bitcoin address.

A key feature of Bitcoin is that any user can have an unlimited
number of addresses. While balances are not kept track of by the
network explicitly, it is possible to calculate them by summing up
either all incoming and outgoing transaction values associated
with an address, or alternatively, all unspent transaction outputs
corresponding to it.

We construct a network among addresses by creating a
directed edge between each input and output address for each
transaction, excluding self-edges. The resulting network has
3,648,627,182 unique edges, that appear 4,834,306,446 times in
total. Note that in Bitcoin, a transaction can have multiple input
and output addresses and thus can result in the addition of
multiple edges (Phetsouvanh et al., 2019); e.g., a transaction with
10 distinct input and output addresses will result in 100 edges.
Also, transaction inputs must always include the full amount
received by a previous transaction output; when spending less
than this amount, the remainder (or “change”) is directed to one
of the addresses of the spending user in a separate transaction

output. This results in a large number of self-edges and chains in
practice.

As it is common practice to create new addresses regularly (it
is often advised not to reuse addresses), there have been a
significant research interest in trying to identify groups of
addresses that belong to the same user, or are controlled by
the same entity (Wu et al., 2020; Fischer et al., 2021; Liu et al.,
2021). At the same time, there are several known methodologies
and services that aim to “mix” bitcoins in a way that limits the
possibility of such grouping and tracking the flow of money as
well (Bonneau et al., 2015; Heilman et al., 2017; Phetsouvanh
et al., 2019). In the current work, we do not attempt such
grouping, instead we look at network structure and dynamics
at the level of individual addresses.

3.1.2 Ethereum
We use the OpenEthereum client to synchronize with the
blockchain and then use the Ethereum-ETL client to output
the transaction history in CSV format. We extracted data on
February 2, 2020; this includes the first 9.4 million blocks in the
chain, with a total of 628,810,973 transactions among 68,429,208
unique addresses. Ethereum transactions are one-to-one: each
transaction has only one input and output address and thus can
be directly mapped to a directed edge in a network among
addresses. Contrary to Bitcoin, in Ethereum, the balance of an
address is recorded as an intrinsic property in the system; this
way, spending is possible in any denomination, and does not
require the “change” mechanism used in Bitcoin. Similarly to
Bitcoin, a user can have an unlimited number of addresses;
grouping these can be even more difficult, since there are less
clear transaction patterns that reveal connections among
addresses.

Beside addresses directly controlled by users, Ethereum allows
the creation of smart contracts, that are essentially algorithms
deployed in the networks, associated with addresses as well
(Wood, 2014; Anderson et al., 2016; Kiffer et al., 2018; Victor
and Lüders, 2019). After the creation of a smart contract, it exists
independently from its creator; Ethereum users can interact with
smart contracts via sending them money, and by “function calls,”
requesting certain some of the functionality exposed via the smart
contract interface to run. Smart contracts can react to such
interactions by creating further transactions themselves. In our
analysis, we separated addresses associated with smart contracts
from addresses controlled by regular users.

3.2 Edge Lifetime
In the usual picture of growing complex networks, edges are
typically considered static entities that represent existing
connections that can be gained or lost over time. For
transactions in cryptocurrencies, this picture is not accurate:
since transactions are instantaneous events, the presence of an
edge in our network indicates that at least one transaction took
place between two addresses over the lifetime of the network.
Given the timescales in our analysis, edges that correspond to
transactions that happened a long time ago lose their relevance
(e.g., if a user abandons using a certain address, as is often the
case). To account for this, we can use an alternate network

1Source code of our modified client is available at https://github.com/dkondor/
bitcoin/tree/0.19
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definition, where edges have a finite “lifetime”: they are created
when a transaction happens between two addresses, and are
removed if a certain time passes without repeated transactions
between the same pair of addresses. Removal of an edge also
decreases the network degree of the associated nodes. This means
that activity is gradually “forgotten,” at least for the purpose of
our analysis. This procedure is similar to some of the “aging”
processes suggested in theoretical models of growing complex
networks (Dorogovtsev and Mendes, 2000a; Dorogovtsev and
Mendes, 2000b).

In this case, the indegree of a node naturally represents the
number of distinct transaction partners it had in a recent time
interval. We can choose this time interval to correspond to a
presumption of “memory” in the dynamics between addresses. In
practice, we created networks where the lifetime of edges was
limited to 1 day and 30 days beside the fully time-aggregated
network.

3.3 Preferential Attachment
In the current work, we consider a generalized non-linear form of
preferential attachment (Krapivsky et al., 2000), where
probabilities of connecting to a node with degree k are given
by the following equation

p(k) ∼ ka (1)

with appropriate normalization. In this case, the probability of
connecting to any node with degree k is then

Π(k) ∼ n(k)ka (2)

where n(k) is the number of nodes with degree k in the network
(i.e., the empirical degree distribution).

The case of Bitcoin and Ethereum is clearly more complex than
the simple growing networkmodels used in most theoretical works
about preferential attachment. With the constant addition of new
nodes and transaction partners, both Bitcoin and Ethereum can be
regarded as a growing network. At the same time, it is less clear
what to consider as the lifetime of nodes and edges. Essentially, a
transaction represents an instantaneous interaction, thus
representing it as the addition of an edge to a network might
be misleading. At the same time, the number of past transaction
partners as represented by the indegree of a node is a meaningful
metric that can be indicative of a form of “fitness” that also related
to the capacity to attract new transaction partners.

In this paper, we ask whether a form of preferential attachment
is present in the evolution of the Bitcoin and Ethereum
transaction network. We use nodes’ indegrees as the base
metric that is assumed to be related to connection probability
of new edges. We perform our analysis both on time aggregated
networks over the whole lifetime of the systems, and also variants
where we consider edges to have a limited lifetime, thus indegrees
more directly correspond to a measure of “recency” or “hotness”
(Dorogovtsev and Mendes, 2000a; Dorogovtsev and Mendes,
2000b; Nsour and Sayama, 2021).

In our analysis, we focus on a model of nonlinear preferential
attachment described by Eqs 1, 2 (Krapivsky et al., 2000).
Importantly, we do not restrict this process to links from new

nodes, as we expect a significant amount of links to be created
between already existing nodes, a departure from the original
Barabási-Albert model (Barabási and Albert, 1999), but a case
considered in previous theoretical models as well (Albert and
Barabási, 2000; Dorogovtsev et al., 2000a; Dorogovtsev et al.,
2000b). We consider the case of a � 0 a null model, where
connection probabilities are independent of node indegrees. We
compare results for this case with a > 0 to assess the importance of
node degrees in establishing new transaction partners.

In an evolving network, the degree distribution will change
over time, making it difficult to compare probabilities of events
that occur at different times with different network
configurations. We overcome this problem by calculating the
transformed rank of the target indegree for each linking event:

R ≡
∑

ktarget
k�0 n(k)ka

∑
kmax
k�0 n(k)ka

(3)

where ktarget is the indegree of the node receiving the new link. If
our assumption about the preferential attachment process and the
a exponent holds true, then empirical R values calculated for a set
of linking events will be distributed in a uniform way over the [0,
1] interval (Kondor et al., 2014a). Since the R transformed rank
values are normalized this way, values from different time points
(and thus different stages of the evolving network) can be
analyzed together. Furthermore, by limiting the set of events
considered to smaller time intervals, the role of the preferential
attachment process in network evolution at different times can be
easily compared.

In practice, we can calculate transformed ranks for any value
of the a exponent. In this article, we compare several a values and
identify the one that best fits a uniform distribution. As noted
above, we consider a null hypothesis of no preferential
attachment (i.e., a case where network degree does not affect
the probability of attracting new transaction partners) with a � 0.

Evaluating the statistics of preferential attachment requires
calculating the R value in Eq. 3 for each “event,” based on the
actual degree distribution in the network. Since the number of
transactions is in the order of hundreds of millions for both
networks, a direct summation over the degree distribution (that
has a runtime complexity of O (N) for a network of N nodes) is
not feasible. However, using a properly augmented binary search
tree as the data structure to store the degree distribution along
with partial sums of ka, we are able to perform the calculation of R
values in O (log N) time complexity, making it possible to
evaluate the distribution of R values over hundreds of millions
of events. We describe the necessary tools used for this purpose in
the Supplementary Material, while we publish the source code of
an efficient augmented binary search tree implementation used
for this purpose online (Kondor, 2020a; Kondor, 2020b).

4 RESULTS

4.1 Network Growth and Structure
Both Bitcoin and Ethereum has experienced a great amount of
growth over their lifetime, including multiple “peaks,” where a
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sudden surge of interest resulted in large upticks of both exchange
price and network activity (Figures 1, 2) (Alabi, 2017). Since early
2018 when cryptocurrencies gained an unprecedented global
attention, daily activity for both Bitcoin and Ethereum has had
an approximately constant rate however, in contrast to previous
periods of growth. This could be the consequence of getting close
to the technical limits of transaction volume that the networks are
able to handle, as both Bitcoin and Ethereum have hard limits on
the amount of data, and thus the number of transactions that can
be included in blocks: Bitcoin directly limits the block size, while
Ethereum limits the maximum computational resources to be
used in blocks (Zheng et al., 2016). Approaching this limit will
result in transaction fees increasing since miners will prefer to
include transactions with more fees. This functions as a natural
feedback loop that discourages creating too many transactions
and thus limits the network activity. Also, since the beginning of
2018, the total capitalization of cryptocurrencies (for simplicity,
defined as the total value of coins in circulation based on the
current exchange rate) have approached that of publicly traded
stocks with the highest capitalization; this could limit further
speculative investment in them.

We perform a simple characterization of structure by looking
at the degree distribution of transaction networks. More
specifically, we are interested in indegree distributions, since
these can be interpreted as a measure of capacity to attract
interaction with external entities. Both networks are
characterized by fat-tailed distributions over their lifetime that
are well approximated with power-laws (Figures 3, 4). The
stability in shape of these distributions is especially remarkable
considering that different stages of the networks depicted in
Figures 3, 4 represent an over 100-fold increase in size (over
10,000-fold increase in the case of Bitcoin when comparing very
early instances with the latest ones). We note that the presence of
addresses with extremely high indegrees suggests that address
reuse is common at least in some part of the user base of these
cryptocurrency networks, despite the commonly cited
recommendations against it (Bonneau et al., 2015; Wu et al.,
2020; Fischer et al., 2021). We note that not all cryptocurrency
users will have strong privacy requirements regarding the use of
all of their addresses; there are many use cases where reuse of

well-known addresses is expected as part of normal operations.
Nevertheless, it is still important to see that the subset of users
who avoid address reuse (either manually or in an automated way
implemented in a wallet software) is not large enough to
statistically alter the properties of the indegree distribution.

4.2 Preferential Attachment
We test for the presence of preferential attachment by considering
all transactions that add new links to the aggregated networks and
calculating transformed ranks according to Eq. 3. In Figures 5, 7,
we display the transformed ranks in order, i.e., as a function of
their cumulative distribution function (CDF), for the case of the
Bitcoin and Ethereum transaction networks, and for the evolution
of Bitcoin balances. For each case, a perfect fit with the model of
nonlinear preferential attachment (i.e., Eq. 2) would be a straight
line, corresponding to the case where the transformed ranks are
uniformly distributed in the [0, 1] interval. Finding an exponent
that best describes the process means finding a case where a
straight line best approximates the distribution of transformed
rank values. It has been suggested previously that deviations from
a perfect fit can arise due to the large amount of automated and
spam-like activity in cryptocurrencies (Di Francesco Maesa et al.,
2018; Zwang et al., 2018; Liu et al., 2021).

In most cases, a significant feature is that the distributions do
not start from zero. This means that there is a large number of
transactions that target newly created addresses, in contrast to the
original nonlinear preferential attachment model, where the
probability of an edge targeting a non-existent node (i.e., a
node with a degree of zero) is zero. This is understandable
given that users can freely create any number of addresses,
and are advised to often move their wealth to new addresses.
Also, many service providers create unique addresses for their
customers, which necessarily have zero degree then. Given this,
we restrict the preferential attachment model to only apply to
existing addresses, while we acknowledge that linking to new
addresses is governed by more specific rules that are relevant to
cryptocurrency system usage (Di Francesco Maesa et al., 2018;
Fischer et al., 2021).

Given this observation, we only focus on nonzero transformed
ranks when considering if they can be fitted with a uniform

FIGURE 1 | Timeline of activity in the Bitcoin network, measured by the number of nodes (addresses) and edges active each day on a linear (A) and logarithmic (B)
scale. We see that the activity in Bitcoin experienced a steady growth over several years after an initial surge of interest in 2011. In the recent years, growths has tapered
off, with activity stabilizing around a few million edges per day.
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distribution. Graphically, this corresponds to starting the lines
that represent such uniform distributions (the black lines in
Figures 5, 7) from the CDF value that corresponds to the first
nonzero transformed rank.

In each case, we verify the presence of preferential attachment
by comparing the transformed rank distributions between the a �
0 and a > 0 cases. Using an exponent of a � 0 assumes that there is
no relation among node degrees and connection probabilities,

FIGURE 2 | Timeline of activity in the Ethereum network, measured by the number of nodes (addresses) and edges active each day on a linear (A) and logarithmic
(B) scale. Growth of activity here is characterized by two distinct phases: an approximately exponential growth phase in the first 2.5 years, followed by an approximately
constant level of activity in the past years.

FIGURE 3 | Distribution of network indegrees (A) and address balances (B) for Bitcoin. Indegrees are determined by the total number of distinct transaction
partners over the lifetime of the network. Both of these distributions are fat-tailed and are robust over the period of almost 10 years despite the size of the network
increasing by multiple orders of magnitude. The black line in the left figure shows a power-law fit for the final distribution that has an exponent of −2.68. The fit was carried
out with the plfit package (Nepusz, 2020), based on the algorithm of Clauset et al. (2009).

FIGURE 4 | Indegree distribution of regular addresses (A) and contract addresses (B) in Ethereum. These distributions are also characterized as fat-tailed ones,
and are well approximated by power-laws, similarly to Bitcoin. Again, the time evolution is robust over a period of almost 5 years, during which the Ethereum network
grew over 100-fold. Black lines show power-law fits for the final distribution, with exponents of −2.54 and −2.19 for addresses and contracts respectively. Fits were
carried out with the plfit package (Nepusz, 2020), based on the algorithm of Clauset et al. (2009).
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while an exponent of a > 0 assumes a positive correlation. For all
cases considered in this study, we see strong evidence for the
presence of a preferential attachment process as results for a > 0
always provide a much better fit to the assumed uniform
distribution. Beside visual inspection of the fits, we calculate
the Kolmogorov-Smirnov difference from a uniform
distribution, and present this as a function of the a exponent
in Figures 6, 8. Overall, exponents around a � 1 give the best fits;

however, there are some further interesting observations
regarding typical values.

In the case of the Bitcoin transaction network, linear
preferential attachment is the most plausible model for the
case of newly created edges, either from new or from existing
nodes. This is consistent with our earlier results (Kondor et al.,
2014a) that were done for this network at a much earlier stage.
For the case of repeated edges (i.e., repeated transactions on edges

FIGURE 5 | Testing for preferential attachment in Bitcoin. The four panels show the cumulative distribution of transformed ranks in the case of four different types of
events. Black lines show the expected ideal (i.e., uniform) distribution. Kolmogorov-Smirnov differences from these distributions are shown in Figure 6. All cases exhibit a
clear sign of preferential attachment, as evident by the fact that the curves for exponents a > 0 are closer to the uniform distribution than the results for the a � 0 case. At
the same time, there is a significant share of transactions that target new nodes (i.e., nodes with zero degree). This is understandable given the nature of Bitcoin,
where users are encouraged to frequently generate new addresses to enhance privacy. This is most prominent in the case of edges from new nodes, suggesting the
presence of chains of transactions among newly created addresses; one possible explanation for this is repeated spending from wallets where a new address is always
generated for the “change” amount.

FIGURE 6 | Kolmogorov-Smirnov differences from the presumed uniform distribution for the case of preferential attachment in Bitcoin, i.e., for results displayed in
Figure 5.
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that appeared before), we see a slight superlinear case, with a �
1.15 and a � 1.3 both giving almost equally plausible fits.
Furthermore, we also tested for preferential attachment in the
case of money dynamics, i.e., related to the flow of Bitcoins. In this
case, instead of node degrees, we considered the balance of the
target address, and also weighted the CDF values with the
transferred Bitcoin amount. We see evidence of slightly
sublinear preferential attachment, with a � 0.85 being the
most plausible exponent. This is again consistent with our
earlier results (Kondor et al., 2014a) and work that found
direct evidence of a “rich-get-richer” phenomenon in Bitcoin
based on inferred wealth of users (Di Francesco Maesa et al.,
2018).

In the case of Ethereum, we separately analyze the case where
edges connect to regular addresses (left column in Figure 7; top
row in Figure 8) and the case where the target of an edge is a
smart contract (right column in Figure 7; bottom row in
Figure 8). For regular addresses, we see some evidence of

superlinear preferential attachment (a � 1.15 being the most
plausible exponent); nevertheless, a uniform distribution does not
seem a very good fit in this case, as we see significant further
features in the distribution of transformed ranks in Figure 7. Still,
we can say that a form of preferential attachment is important in
this process, since the case of a � 0 gives a much worse agreement
with the empirical distribution of transformed ranks than any
other case. For smart contracts, the distributions fit more nicely,
and suggest a slightly sublinear process, with a � 0.85 being the
most plausible exponent, with the exception of the case, where a
newly created address initiates a transaction; in this case, a � 1
gives better fit.

4.2.1 Limited Lifetime Edges
We repeated the procedure of calculating the transformed ranks
for variants of the transaction networks where edges are assumed
to have limited lifetimes, i.e., 1 day or 30 days. This means that
indegrees of nodes can decrease in the case when edges are

FIGURE 7 | Testing for preferential attachment in Ethereum. The left column (panels (A), (C) and (E)) shows edges where the target is a regular address, while the
right column (panels (B), (D) and (F)) shows edges where the target is a smart contract. Black lines show the expected ideal (i.e., uniform) distribution. Kolmogorov-
Smirnov differences from these distributions are shown in Figure 8.
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removed. Detailed results are shown in the Supplementary
Figures S1–S7. These results are highly consistent with what
we have obtained for the fully time aggregated network, showing
an evidence of preferential attachment as well. Best fitting
exponents are very similar in all cases for Bitcoin, while for
Ethereum addresses, we see slightly higher exponents for short
time intervals, hinting at a preference for addresses that already
were the target of high activity recently, suggesting a
phenomenon where recency has an importance in determining
transaction dynamics (Dorogovtsev and Mendes, 2000a;
Dorogovtsev and Mendes, 2000b; Nsour and Sayama, 2021).

4.2.2 Evaluating Changes in Exponents Over Time
So far, we have evaluated statistics of preferential attachment in a
time-aggregated fashion, i.e., we considered all transactions that
happened over the lifetime of the cryptocurrency network when
looking at the distribution of transformed ranks. To gain more
insights into the process of network evolution, we evaluated the
distribution of transformed ranks in shorter, half-year long time
intervals, and show the Kolmogorov-Smirnov distances as a
function of exponents in Figures 9–11. We see that while the
best fit is achieved around the typical value of exponents as found
previously (see Figures 6, 8), there is some noticeable variation,
with some time periods showing slightly smaller or larger
exponents as best fits. This hints that there might be important
time-dependent processes shaping the evolution of the transaction
networks beyond preferential attachment, as also evidenced by the
deviations of the perfect fit of the transformed rank distributions.

5 DISCUSSION

Our results confirm that preferential attachment is a key
component shaping the evolution of cryptocurrency transaction
networks, contributing to the heavy-tailed degree distributions that
arise. This is true regardless of the time scale considered, as
focusing only on the subnetworks of recent transaction partners
results in very similar statistics of edge creation and activity. While
our previous results showed the presence of preferential
attachment in the early Bitcoin network, it is remarkable that
the same dynamic is present over a much longer time period that
involved an almost 100-fold growth in terms of network size and
several up- and downturns in the market.

Findings of preferential attachment and heavy-tailed degree
distributions matches well with other findings about networks
that describe interactions between complex and self-organizing
social, technological or economical phenomena (Kullmann and
Kertész, 2001; Albert and Barabási, 2002). It is also consistent
with the picture of cryptocurrency networks being made up of a
few very large players interacting with regular users who have
limited activity, especially when considered on the level of
individual addresses (Di Francesco Maesa et al., 2018; Fischer
et al., 2021; Liu et al., 2021).

We note that there are several limitations in our current study.
Firstly, we performed our analysis on the level of individual
addresses and not attempted to infer the correspondence between
addresses and users or other entities. While peculiarities of
Bitcoin, such as the UTXO network model, present multiple

FIGURE 8 | Kolmogorov-Smirnov differences from the presumed uniform distribution for the case of preferential attachment in Ethereum, i.e., for results displayed in
Figure 7. Top row (panels (A), (C) and (E)): results for transactions targeting addresses; bottom row (panels (B), (D) and (F)): results for transactions targeting contracts.
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heuristics for this (Fischer et al., 2021), the situation with
Ethereum is more complex; also, the presence of mixing
services is a complicating factor for Bitcoin as well (Bonneau

et al., 2015; Heilman et al., 2017; Phetsouvanh et al., 2019; Fischer
et al., 2021). Considering this limitation, we find the structural
complexity emerging in our study especially remarkable.

FIGURE 9 | Kolmogorov-Smirnov differences from the presumed uniform distribution for the case of preferential attachment in Bitcoin, for distributions
disaggregated over time. Each line corresponds to a distribution that was compiled based on the events taking place in the 6 months prior to it.

FIGURE 10 | Kolmogorov-Smirnov differences from the presumed uniform distribution for the case of preferential attachment in Ethereum, for transactions
targeting regular addresses, distributions disaggregated over time. Each line corresponds to a distribution that was compiled based on the events taking place in the
6 months prior to it.

FIGURE 11 | Kolmogorov-Smirnov differences from the presumed uniform distribution for the case of preferential attachment in Ethereum, for transactions
targeting smart contracts, distributions disaggregated over time. Each line corresponds to a distribution that was compiled based on the events taking place in the
6 months prior to it.
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Furthermore, while in the current work we established a
relation among indegrees and the probability of attracting new
connections, the situation in reality might be more complex. Even
though the indegree of an address is a property that can be
computed by anyone based on publicly available data, we do not
assume that users actually base decisions directly on it. At the
same time, in a statistical sense, indegree seems to be an efficient
proxy for a number of latent properties of network nodes that
determine their attractiveness for new transaction partners.
While in early works about preferential attachment, node
degrees were typically assumed to be a direct measure of node
size and thus a determinant of “popularity” (Barabási and Albert,
1999; Barabási et al., 1999; Krapivsky et al., 2000; Dorogovtsev
and Mendes, 2000a), recent works have looked at models where a
more complex property determines the attractiveness of nodes
(Pham et al., 2015; Pham et al., 2016; Topirceanu et al., 2018;
Nsour and Sayama, 2021). Our work could be readily extended to
consider other properties of addresses that can be extracted from
blockchain data to uncover a more complete understanding of
underlying transaction dynamics.

Our work suggests several future directions for research.
Firstly, while we find that preferential attachment is
consistently present in all of the studied networks over their
lifetime, our results hint that the detailed dynamics of the process
(as represented by the best fitting exponent, and also the shape of
the distribution of transformed ranks) changes over time (see
Figures 9–11). A more in-depth investigation of these changes
could lead to new insights about different phases of
cryptocurrency usage and how it is linked to structural
properties of the transaction network.

Second, while the overall trend of preferential attachment is
quite clear, there are systematic deviations from a perfect fit to the
presumed form (Eq. 2). It is a question whether these could be
explained by modifying the functional form or extending it to
include readily available properties of nodes. Research in this
direction could uncover more detailed driving forces of
transaction network evolution and provide new, generalizable
models of network growth (Naglić and Šubelj, 2019).

Finally, depending on availability of datasets, a comparison between
cryptocurrencies and other types of economical orfinancial transaction
networks could inform about the generalizability of our findings and
also help in better understanding the role cryptocurrencies play in the

global economy (Alabi, 2017; Begušić et al., 2018; Seebacher and
Maleshkova, 2018), a still widely debated subject. To facilitate further
research, we publish the data and code used in the current work
(Kondor et al., 2020; Kondor, 2020a; Kondor, 2020b; Kondor et al.,
2021).
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