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Abstract. This document is devoted to the description of advances in the gen-
eration of high-quality random numbers for CORSIKA 8, which is being de-
veloped in modern C++17 and is designed to run on modern multi-thread pro-
cessors and accelerators. CORSIKA 8 is a Monte Carlo simulation framework
to model ultra-high energy secondary particle cascades in astroparticle physics.
The aspects associated with the generation of high-quality random numbers on
massively parallel platforms, like multi-core CPUs and GPUs, are reviewed and
the deployment of counter-based engines using an innovative and multi-thread
friendly API are described. The API is based on iterators providing a very well
known access mechanism in C++, and also supports lazy evaluation. Moreover,
an upgraded version of the Squares algorithm with highly efficient internal 128
as well as 256 bit counters is presented in this context. Performance mea-
surements are provided, as well as comparisons with conventional designs are
given. Finally, the integration into CORSIKA 8 is commented.

1 Introduction

CORSIKA 8 is a new framework [1] for the modelling of extensive air showers in astropar-
ticle physics. Since individual ultra-high energy cosmic ray nuclei are observed beyond en-
ergies as extreme as Elab = 1020eV, the amount of computing resources needed to accurately
describe the corresponding secondary particle cascades are within one of the most demand-
ing tasks in computing nowadays. High-performance algorithms, utilization of accelerators,
as well as parallelism need to be developed and deployed to tackle this problem. Our under-
standing of the high-energy universe depends on the precise understanding of such particle
cascades. In CORSIKA 8, the Monte Carlo technique provides the foundation for this, thus,
the efficient and well-understood generation of random number streams are of paramount
importance.

Many popular conventional pseudorandom number generators (PRNGs) scale poorly on
massively parallel platforms, like modern CPUs and GPUs. In fact, such generators are built
using inherently sequential algorithms that operate applying a transformation function f on
each state si to obtain the next one, si+1,

si+1 = f (si).
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The state is then feed into another function in order to obtain the pseudorandom number.
For the conventional PRNGs, the statistical properties of the generated numbers are

strongly dependent on the function f and of the size of the state, typically measured in num-
ber of bits. In general, to obtain numbers with good statistical properties, large states and
complicated functions are necessary. Such generators are deployed in parallel calculations
following two basic approaches. The first one, called here multistream, consists in creating
as many instances as necessary of the PRNG, initializing each one of them with different
parameters, usually seeds, in order to obtain different sequences. In the second approach, re-
ferred to as substream, one would initialize the instances with the same parameters and setup
each of them to different and far-away (hopefully) detached states, skipping the intermediate
ones.

Both approaches are problematic. Indeed, running so many instances, each holding dif-
ferent states, leads to an increasing pressure on memory. Additionally, regarding the first
approach, most algorithms give guarantees on the statistical quality of the output only for
numbers produced in the same sequence. Usually, to access the statistical independence of
numbers from different sequences is a much harder task – if possible at all. The alternative
approach, substream parallelism, often produces unacceptably inefficient calculations, since
usually no suitable algorithms are known to skip states in constant or amortized time.

This document describes how the issues discussed in the previous paragraphs have been
overcome in CORSIKA 8, via the deployment of “counter-based pseudorandom number gen-
erators” (CBPRNGs) and their management through an iterator-based, STL compliant, and
parallelism enabled interface. The basic concepts and the used CBPRNGs are presented
in section 2. The iterator-based API and its usage are described in section 3. Statistical tests
and some performance measurements are discussed in section 4. The section 5 describes the
integration into CORSIKA 8.

2 Counter-based pseudorandom number generators

An alternative design of PRNGs, efficient and suitable for parallelism, addressing the issues
previously discussed indeed exists. It is called “counter-based pseudorandom number gener-
ator” (CBPRNG) [2, 3] because it produces sequences of pseudorandom numbers following
the equation

xn = g(n),

where g is a bijection and n a counter. Such generators produces high-quality output and
are suitable for parallelism because they can be implemented in a stateless fashion and allow
to jump directly to an arbitrary sequence member in constant time. The properties of the
CBPRNGs added to CORSIKA 8 are discussed in sections 2.1 to 2.3.

2.1 Cipher-based generators

Cryptographic block ciphers can be described as “keyed” functions,

xn = gk(n),

where k is an element of the key space and gk is one member of a family of bijections. Conse-
quently, a counter-based PRNG constructed from a keyed bijection can be easily parallelized
using the multistream approach on the key space, or the substream approach over the counter
space. In practice, some of the used ciphers operate applying rounds of transformations in
order to achieve cryptographic security. The recipe to get efficient CBPRNGs out of ciphers
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is to trade cryptographic strength, which is not required, for performance by applying less
rounds and simplifying the keys just enough to achieve statistical quality.

Two generators with this design are considered, nominally ARS and Threefry, both intro-
duced by the Random123 [2] library and briefly described below:

• ARS (Advanced Randomization System) is based on the AES cryptographic block cipher
and as such, it relies on AES New Instructions (AES-NI), present in most of the modern
CPUs. The ARS implementation used in this study applies 7 rounds of transformation.

• Threefry is based on Threefish a cryptographic block cipher and relies only on common
bitwise operators and integer addition. Therefore, Threefry does perform well across a
wide range of instruction-set architectures. The implementation used in this study applies
20 rounds of transformation.

2.2 Non-cryptographic bijection transformation generators

The third generator used in this, also from the Random123 library, is called Philox. This
algorithm uses non-cryptographic bijection that is based on multiplication instructions com-
puting the high and low halves of operands to produce wider words. For example multiplying
two 32-bit numbers producing a 64-bit number, or even multiplying two 64-bit numbers and
producing a 128-bit number. Philox is probably the most popular CBPRNG and implementa-
tions are available on CPUs, and as well on GPUs via nVidia’s cuRAND library. The Philox
implementation used in this study applies 10 rounds of transformations[2].

2.3 Middle-square transformation generators

The Squares CBPRNG is derived using ideas from “Middle Squares” algorithm, originally
discussed by Von Neuman[4], coupled with Weyl sequences[5, 6]. Indeed, only half of the
actual square is computed, which corresponds to the upper bits of the result. These middle
bits are easily obtained by either rotating or shifting the result. The middle square provides
the randomization, while uniformity and period length are obtained by adding in a Weyl
sequence. For the Squares algorithm, the Weyl sequence is just a counter multiplied by a
key. Three or four rounds of squaring are enough to achieve high statistical quality, with
outstanding properties.

The original implementation[3] supports 64 bit counters and produces 32 bit output,
which are not completely suitable for CORSIKA 8 need, and other similar applications in
physics. Hence, in this contribution, the original algorithm is updated to support 128 bit
counters with 64 bit output and 256 bit counters with 64 bit output.

3 Iterator-based API for parallelism

Iterators are a generalization of pointers and constitutes the basic interface connecting all STL
containers with algorithms. Therefore dereferencing an iterator, (*itr), returns the pointed
element itself. Iterators can be incremented and decremented like pointers to access suc-
cessive elements in a data structure. Finally, just like pointers, iterators are also lightweight
objects that can be copied with insignificant computing costs and incremented arbitrarily in
constant time, making iterator-based designs very convenient for parallelism. The iterator id-
iom is also a very popular choice for implementing designs based on lazy evaluation. These
features considered all together make an iterator-pair idiom the natural design choice for han-
dling the counters and the CBPRNG output, in combination with lazy-evaluation to avoid
pressure on memory and unnecessary calculations.
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1 template<typename Distribution, typename Engine>
2 class Stream
3 {
4 public:
5

6 //constructor
7 Stream( Distribution const& dist, uint64_t seed, uint32_t stream );
8

9 //stl-like iterators
10 iterator_type begin() const;
11 iterator_type end() const;
12

13 //access operators
14 result_type operator[](size_t n) const;
15 result_type operator()(void);
16 };

Listing 1: Minimal public interface of the Stream<Distribution, Engine> ob-
ject. Getters and setters are omitted. In the current implementation, the
Stream<Distribution, Engine> object can handle up to 232 sequences of pseudorandom
numbers each with a length of 264 and produced with the same seed.

The proposed design uses the "fancy iterators" implemented in Intel’s TBB. Counters are
handled using counting iterators, to represent the range [0, 264]. The counting iterators are
then wrapped by transform iterators, which convert each integer into the actual pseudorandom
number calculated by the CBPRNG, and furthermore to calculate the aimed distribution,
which is configurable via a template parameter.

The pseudorandom number sequences are represented by
Stream<Distribution, Engine> objects, which expose its functionality through a
concise and functional API, summarized in listing 1.

4 Statistical and performance measurements

4.1 Statistical tests

The CBPRNGs used in this study pass all the pre-defined statistical test batteries in
TestU01[7], which include SmallCrush (10 tests, 16 p- values), Crush (96 tests, 187 p-values)
and BigCrush (106 tests, 254 p-values). BigCrush takes a few hours to run on a modern CPU
and it consumes approximately 238 random samples in total.

Additionally, all used CBPRNGs have been tested using PractRand[8], using up to 32 TB
of random sample data. No issues have been found.

4.2 Performance

The performance of the iterator-based API design is measured using the
benchmark capabilities provided by the Catch2 library[9]. The timing of
the API calls Stream<Distribution, Engine>::operator[](size_t i)
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4.2 Performance

The performance of the iterator-based API design is measured using the
benchmark capabilities provided by the Catch2 library[9]. The timing of
the API calls Stream<Distribution, Engine>::operator[](size_t i)

CBPRNG Time - stream (ns) Time - stl distribution (ns)
Philox 8.853 8.062
ARS 9.031 8.684

Threefry 11.958 11.078
Squares3 8.691 7.956
Squares4 10.891 10.024

Table 1. For each generator, the second column lists the time spent calling the method
Stream<std::uniform_real_distribution<double>, Engine>::operator[](size_t i).

The third column lists the time for calling the distribution directly. As can be easily verified by
comparing the numbers, the Stream<Distribution,Engine> API does not introduce any significant
overhead. Measurements taken in a Intel Core i7-4790 CPU, running at 3.60GHz with 8 threads (four

cores) machine.
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Figure 1. CORSIKA 8 simulation of energy spectra at sea level for a single proton primary particle at
40 deg with 1017eV, using the Mersenne Twister random number generator, which is so far the default
in CORSIKA 8. There is a cutoff at 60 GeV.

for each generator are summarized in the table 1. For the sake of
comparisons, the table also includes the timing of a single call to a
std::uniform_real_distribution<double>::operator()(Engine& ) object.
Comparing the two measurements indicates that calling the distribution through the
Stream<Distribution,Engine> API does not introduce any significant overhead.

5 Integration into CORSIKA 8

Currently CORSIKA 8 uses std::mt19937_64, the Mersenne Twister (MT) implementa-
tion of the C++17 Standard Library, as its primary pseudorandom number generator. Despite
its very long sequences and good single-call performance, MT is known to fail statistical
tests. It also stores a huge state, of almost 2.5 kB, and operates strictly sequentially. COR-
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Figure 2. CORSIKA 8 simulation of energy spectra at sea level for a single proton primary particle at
40 deg with 1017eV, using the Philox random number generator. There is a cutoff at 60 GeV.

SIKA 8 deploys MT using multistream parallelism, which brings concerns about inter-stream
correlations.

The integration of the iterator-based Stream API into CORSIKA 8 is straightforward and
does not require any downstream refactory of the internal algorithms consuming pseudoran-
dom numbers. It also enables further development of more fine-grained parallelism into the
existing algorithms in a transparent way, that does not interfere with the surrounding algo-
rithms.

The distribution and management of multiple instances of CORSIKA 8, configured with
different seeds and running in parallel on clusters and other distributed systems is not im-
pacted either.

As a demonstration of the application of those random number generators inside COR-
SIKA 8 we show fig. 1 and fig. 2. The former illustrates the default simulation so far using
Mersenne Twister random numbers, while the latter shows the same distribution simulated
with the Philox random number generator. Statistically the two distributions are the equiva-
lent with a χ2/Nd.f. of 0.65.

6 Conclusion

The deployment of CBPRNGs for the production of high-quality pseudorandom numbers in
CORSIKA 8, using an iterator-based and multi-thread friendly API has been described. The
API is STL compliant, lightweight and does not introduce any significant overhead for calling
the underlying generators and distributions.

The API allows the management of parallelism using the substream approach, providing
up to 232 sub-sequences of length 264, configured with the same seed. The streams can be
accessed sequentially or in parallel using the API components described in listing 1. In addi-
tion to the generators from Random123 library, an upgraded version of the Squares algorithm
with highly efficient internal 128 as well as 256 bit counters is introduced.
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The distribution and management of multiple instances of CORSIKA 8, configured with
different seeds and running in parallel on clusters and other distributed systems is not im-
pacted either.

As a demonstration of the application of those random number generators inside COR-
SIKA 8 we show fig. 1 and fig. 2. The former illustrates the default simulation so far using
Mersenne Twister random numbers, while the latter shows the same distribution simulated
with the Philox random number generator. Statistically the two distributions are the equiva-
lent with a χ2/Nd.f. of 0.65.

6 Conclusion

The deployment of CBPRNGs for the production of high-quality pseudorandom numbers in
CORSIKA 8, using an iterator-based and multi-thread friendly API has been described. The
API is STL compliant, lightweight and does not introduce any significant overhead for calling
the underlying generators and distributions.

The API allows the management of parallelism using the substream approach, providing
up to 232 sub-sequences of length 264, configured with the same seed. The streams can be
accessed sequentially or in parallel using the API components described in listing 1. In addi-
tion to the generators from Random123 library, an upgraded version of the Squares algorithm
with highly efficient internal 128 as well as 256 bit counters is introduced.

The authors feel that the developments described in this document are useful beyond the
application in CORSIKA 8 for other projects in physics. Therefore the final code will be
released as a standalone open-source project, under a liberal license, in a public repository.
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