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1 Introduction

For decades, colleges and universities have grappled with the challenge of increasing

participation of minority and disadvantaged students. Differential admissions criteria

designed to increase participation of minority and disadvantaged students inevitably

collide with concerns for fairness toward those who are displaced. Courts, legislatures,

and electorates have weighed in to define the acceptable limits of affirmative action in

higher education.1 While the spotlight has largely focused on higher education, school

districts in large metropolitan areas confront the same challenge; minority and disad-

vantaged students are underrepresented in selective programs for gifted and talented

students.2 Efforts to increase participation of minority and disadvantaged students

in these programs are no less controversial than their higher-education counterparts.3

School districts nationwide make a large investment in providing programs to serve

gifted and talented students.4 The National Association for Gifted Children estimates

that there are approximately three million academically gifted children in grades K-

12 in the U.S. - almost seven percent of the student population. As a proportion of

1The two most recent affirmative action rulings by the US Supreme Court are on Fisher v Uni-
versity of Texas (June 24, 2013) and Schuette v. Coalition to Defend Affirmative Action (April 22,
2014). We return to these in our policy analysis.

2To cite a recent example, on September 27, 2012, a complaint was filed with the U.S. Department
of education claiming that the admissions policies of eight elite public high schools in New York
City violate the 1964 Civil Rights Act, causing extreme under-representation of black and Hispanic
students. (Baker, 2012).

3The New York Times dubbed the director of the city’s gifted and talented program a ”lightning
rod for fury” when she announced changes to the admissions policies for the city’s gifted programs
(NYT, March 22, 2006). Approximately, two years later, the times reported: ”When New York
City set a uniform threshold for admission to public school gifted programs last fall, it was a crucial
step in a prolonged effort to equalize access to programs that critics complained were dominated
by white middle-class children whose parents knew how to navigate the system.” The new policy
has also met with intense criticism, and the director of the city’s gifted and talented program has
concluded: “We implemented the eligibility criteria, it didn’t shake out that way and now we have
to take another look at it.” (NYT, June 19, 2008)

4The empirical evidence on the impact of gifted and talented programs on achievement is discussed
in Abdulkadiroglu, Angrist, & Pathak (2011).
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the student population, this is comparable to the percentage of high school students

admitted to selective colleges and universities.5 Most large public school districts in

the U.S. operate selective programs to serve gifted and talented students.6 Admission

to these programs is competitive and merit-based, and often subject to state govern-

ment requirements and guidelines. The purpose of this paper is to formulate and

estimate a model to analyze the effects of profiling and affirmative action policies on

participation of minority and disadvantaged students in gifted education. We believe

this to be the first econometric model providing a unified treatment of affirmative

action and profiling in urban schools that is based on an equilibrium framework that

permits counterfactual analysis of policy.

A strong negative connotation is attached to the term profiling in some contexts,

especially law enforcement. We emphasize that we use the term as it has traditionally

been applied in the policy domain. For example, the U.S. Department of Labor uses

a “Worker Profiling and Reemployment Services System”7 to facilitate targeting of

reemployment services to new claimants for unemployment benefits, and a widely

cited report on OECD labor market policies (Martin, 1998) advocates profiling for

the same purpose. A recent EU conference on ‘Profiling systems for effective labour

market integration’ provides a definition that accords with our use of the term: “To

target appropriate services, measures and programmes considered most suitable to

meet the requirements of (the individual’s) particular “profile” by statistics-based

programme selection (European Commission, 2011).” As we discuss further below,

5Reardon, et. al. (2012) identify the 171 most selective colleges and universities and report that
approximately 7% of high school students attend one of these selective institutions.

6International Baccalaureate programs also use stringent admission procedures. The most highly
ranked public high schools in New York, Boston, and Philadelphia all use merit-based admission
procedures. The referral and admission processes used for the gifted program in the district we study
are widely used elsewhere. To provide just a few examples here, the state of Florida prescribes
procedures that very closely parallel those used by our district, as does the Los Angeles Unified
District, the second largest school district in the country, and the Atlanta district.

7http://www.doleta.gov/programs/wprs.cfm
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the district we study is in a state in which the state government instructs school

districts to consider the “profile of the person” in its decisions about gifted admission.

We develop a new model in which a school district faces a mandate to provide

a special program to help highly able students reach their potential.8 The district

assigns a value for gifted program participation that is an increasing function of a

student’s ability. This value reflects the district’s assessment of the educational gains

obtained by the student taking into consideration the additional costs of operating

the program. Since ability is not fully observed by the district, there is uncertainty

about these gains. As a consequence, the district behaves in a Bayesian manner and

relies on achievement scores to form beliefs about a student’s ability. The school

district can also obtain an additional signal about student’s ability by conducting a

costly IQ test. We interpret the existing state mandate to imply that students cannot

be admitted to the program without taking an IQ test.9 The objective function of

the district is then given by the difference between the aggregate net benefits of the

program and the aggregate costs of IQ testing. We characterize the optimal referral

and admission policies that maximize the objective function of the district. One key

property of our model is that optimal policies are cut-off strategies that are functions

of the observed test scores and achievement measures.

Our baseline model considers the case of merit-based admission which arises when

the objective function of the district is only a function of ability. However, the

district must make a judgment of the extent to which the benefits of the program vary

with other observed student characteristics such as poverty or race. We, therefore,

consider two generalizations of our model. The first extension follows Becker (1957)

8Neal & Johnson (1996) show that black-white differences in premarket skill do account for a
significant portion of the black- white earnings gap in the early 1990’s.

9Ability is not only difficult to observe, but it is also non-verifiable. In contrast, IQ can be
observed and verified by parents and teachers.
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and models preference-based affirmative action. This case arises when the district

assigns higher values to minority students holding ability constant.10 Two primary

arguments are generally advanced in support of affirmative action. One is that,

by facilitating enrollment of a critical mass of minority students, affirmative action

reduces the isolation otherwise experienced by minority students. The other is that

the potential for interactions among diverse peers benefits both majority and minority

students.11 Affirmative action implies that the school district adopts lower referral

and admission criteria for minority students.

Similar issues arise with respect to economic disadvantage. Hence, in addition to

minority status, we consider whether a student is economically disadvantaged. Our

measure of economic disadvantage is based on whether a student is eligible for free

or reduced price lunch. Below, we use FRL to denote students eligible for free or

reduced-price lunch.

A student who has, in some way, experienced hardship may underperform on

achievement tests relative to his or her capability. By taking account of such

empirically-grounded differences across demographic groups, a district may be better

able to determine which students are most suited to admission to the gifted program.

Hence, the second extension of our model allows for use of empirically grounded differ-

10Becker (1957) introduced the analysis of taste based discrimination into economics. Phelps
(1972) and Arrow (1973) developed a theory of statistical discrimination. The effects of affirmative
action in employment have been studied by Lundberg (1991), Coate & Loury (1993), and Moro &
Norman (2003, 2004). Chung (2000) considers the relationship between role models and affirmative
action. Affirmative action in higher education is considered by Chan & Eyster (2003) , Loury,
Fryer, & Yuret (2008), and Epple, Romano, & Sieg (2006, 2008). Arcidiacono (2005) estimates a
structural model to determine how affirmative action in admission and aid policies affects future
earnings. Hickman (2010a, 2010b) develops and estimates a structural model of college admissions
and compares the effects of alternative admissions policies on incentives for academic achievement,
the racial achievement gap, and the racial college enrollment gap. Long (2007) provides a valuable
summary of the legal status of affirmative action and a review of the evidence regarding the effects
of affirmative action.

11These arguments are detailed in the University of Michigan brief in Grutter v. Bollinger:
http://www.vpcomm.umich.edu/admissions/legal/grutter/UM-Grutter.pdf
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ences in distributions of achievement, IQ, and ability for demographic groups defined

by race and FRL status. We find that minority students have higher IQ conditional

on achievement than non-minority students in the range of achievement relevant for

referrals for IQ testing. This property then implies that the district can improve

referral decisions by adopting a lower referral threshold for minority students. While

this profiling based on differences in distributions across racial groups is beneficial to

minority students, it is not preferential treatment.12

To gain additional insights into the quantitative properties of our model and

demonstrate its practical relevance, we parametrize the model and develop a Max-

imum Likelihood Estimator. Our estimation approach acknowledges the fact that

important variables are either latent (ability), partially latent (IQ scores), or mea-

sured with error (achievement). We estimate the parameters of the district’s objec-

tive function from observed test scores, gifted referrals, and admissions by race and

economic disadvantage (eligibility status for free or reduced-price lunch) of different

demographic groups.

Our empirical analysis is based on a sample of three cohorts of elementary school

students that entered first grade in the academic years 2003, 2004, and 2005. Our em-

pirical analysis documents the divergence between the demographics of the district’s

student body relative to the demographics of those participating in the district’s gifted

program. We then implement our maximum likelihood estimator. We find that our

model fits the data well and that estimated referral and admission thresholds are

consistent with policies articulated by the district. We find profiling with respect to

both race and subsidized lunch status. We find affirmative action in admission with

12Knowles, Persico, & Todd (2001) stimulated a large body of work on profiling in law enforcement.
In higher education, research on profiling includes Loury et al. (2008), Epple et al. (2008), and Epple,
Romano, Sarpca, and Sieg (2012). State policies mandating admission of a specified fraction of each
high school to state universities, motivated in part to achieve racial balance through profiling, are
studied by Long (2004a, 2004b) and Cullen, Long, & Reback (2012).
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respect to subsidized lunch status. We do not find any evidence of affirmative action

based on race.

A large proportion of African American students in our sample are eligible for

free or reduced-price lunch. As a consequence, our estimated model implies that

applying the FRL admission policies to all African American students, regardless of

FRL status, would have a modest effect on increasing African American enrollment in

the gifted program. Hence, in contrast to higher education13, we find that referral and

admission policies based on FRL status but not race can have a quite substantial effect

in increasing minority student participation. Our model also implies that eliminating

affirmative action for FRL students by standardizing referral and admission decisions

at the level of non-FRL students would reduce the size of the gifted program by up to

50 percent. We thus conclude that adopting strict merit based referral and admission

policies, would significantly alter the size and composition of the program.

The rest of the paper is organized as follows. Section 2 develops the theoretical

model of optimal referral and admission for a merit-based selective program. Section 3

discusses the implications of affirmative action and profiling within our model. Section

4 introduces a parameterization of the model and develops a Maximum Likelihood

Estimator. Section 5 discusses our data set. Section 6 reports the empirical results

of this study. Section 7 discusses the policy implications that can be drawn from this

analysis. Section 8 offers some conclusions.

13In his review of affirmative action in colleges and universities, Long (2007) concludes that ”...cor-
relates of race are unlikely to substitute successfully for the consideration of race itself.”
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2 A Model of Merit-Based Referral and Admission

We consider the decision problem of a public school district that operates a selective

educational program. Admission is competitive and merit-based. Ability is inherently

difficult to observe and cannot be verified. Admission criteria are, therefore, based on

prior academic achievement and a standardized aptitude or IQ test. Testing is costly.

Hence, not all students are referred for testing. We model the choice of policy for

referral of students for testing and the choice of policy for admission to the selective

program.

There is a continuum of students that differ by ability, b. Let q denote the student’s

score on an IQ test and a performance on a prior achievement test. Let f(a, b, q) be

the joint density of achievement, academic ability, and IQ score in the population.

Students may also differ by discrete characteristics such as race or low income status.

We first present the analysis for a single discrete type and then extend to consideration

of more than one such type.

Assumption 1 The density f(a, b, q) is continuous on its support (a, ā) × (0, b̄) ×

(0, q̄).14

Gifted programs are motivated by the objective of targeting education to high-

ability students to help them develop their capabilities. The value or value-added

that the district attaches to having a student of type b participate in the selective

program is denoted by v(b).

Assumption 2

a) The value function v(b) is continuous and differentiable. Moreover, it is monoton-

14For notational simplicity, we assume in the following that the upper bounds are infinity and the
lower bound for achievement is negative infinity.
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ically increasing in b, i.e. vb(b) ≥ 0.

b) The cost of testing a student a student is constant and equal to c.15

The district initially observes a and chooses a referral policy denoted by α(a).

The testing procedure provides the student IQ score. a and q are both informative of

students ability, hence the district grants access to the gifted program based on this

information.

The district optimally chooses a referral policy and an admission policy. We make

the following assumptions about the information revelation and hence the nature of

the admission and referral process.

Assumption 3

a) The decision rule that determines who is referred for testing is a function of prior

achievement:

0 ≤ α(a) ≤ 1 (1)

b) The decision rule that determines admission is a function of the IQ score and prior

achievement:

0 ≤ β(a, q) ≤ 1 (2)

The district forms beliefs in a Bayesian way and chooses the optimal referral and

admission policies to maximize the expected difference between benefits and costs.

15The IQ test employed by the district is an interactive test administered by a psychologist to
an individual student. State law mandates that gifted status be determined by a certified district
psychologist. Cost is typically cited as the reason for limiting the number of students who are tested.
(See NYT, June 19, 2008)
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The objective function of the district is then given by:

∫ ∞
0

∫ ∞
0

∫ ∞
0

α(a) β(a, q) v(b) f(a, b, q) da db dq

−
∫ ∞

0

∫ ∞
0

∫ ∞
0

α(a) c f(a, b, q) da db dq (3)

The first term captures the expected benefits of the program. The second term

captures the costs due to IQ testing.16

We can solve the decision problem above using standard techniques of variational

calculus. It is optimal for the district to use a cut-off strategy for both referral and

admission policies.

Proposition 1 The optimal solution of our model can be characterized by thresholds

ā and q̄(a).

All proofs are given in the Appendix.

As shown in the proof of Proposition 1, the district will only admit a student to

the gifted program if he or she performs sufficiently well on the IQ score, i.e. if the

expected value added to the program is non-negative:

V (a, q) =

∫ ∞
0

v(b) f(b|a, q) db ≥ 0 (4)

The district is indifferent if the equation above holds with equality. This condition

implies a threshold function q̄(a) such that a student is admitted to the program if

and only q ≥ q̄(a).

16An alternative approach is to model the behavior of the district as wishing to allocate limited
space in the gifted program based on fairness or efficiency considerations. These ideas are explored
in Abdulkadiroglu (2005) and Kojima (2012).
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Similarly, the optimality condition for referral for IQ testing can be written as:

W (a) =

∫ ∞
q̄(a)

∫ ∞
0

v(b) f(b, q|a) db dq ≥ c (5)

The first term measures the benefits of the students that are referred. The second

term captures the costs associated with testing. The district is indifferent if the

equation above holds with equality. This condition then defines a threshold function

ā such that a student is referred to the program if and only a ≥ ā.

Note that participation in the gifted programs is voluntary. Students who are

admitted to the gifted program by the district can opt out of the gifted program

and attend regular classes. Based on our conversations with members of the school

district we know that the take-up rate among students is very high, easily exceeding

90 percent. As a consequence, while we do not observe take-up decisions by individual

students, we feel quite confident that the take-up rate is sufficiently high as to make

this issue moot. For applications where acceptance of admission is less routine, it

would not be difficult to extend the model and the estimation procedure to allow for

voluntary participation decisions as long as the researcher observes admission and

attendance decisions.17

3 Affirmative Action and Profiling

Students from disadvantaged backgrounds tend to be underrepresented in selective

programs. Factors such as hardship that may cause underperformance relative to

ability on achievement tests may then be used in referral and admission decisions,

i.e., profiling. Being a minority student or a student with FRL status are observable

17An appendix is available upon request which shows how to extend our model to account for a
capacity constraint or additional operating costs that depend on the size of the program.
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indicators that may be correlated with having experienced hardship. Another poten-

tial strategy to reduce underrepresentation in selective programs is affirmative action.

Either profiling or affirmative action can give rise to different criteria for such stu-

dents and can potentially be adopted in either admission or referral policies. In this

section, we undertake analysis to provide an economic foundation for understanding

and distinguishing affirmative action and profiling in referral and admission policies.

To study the implications of profiling and affirmative action, we extend our model

to consider two discrete types. Let m denote a student of a disadvantaged or minority

type and M denote the advantaged or majority type.18 Where it does not cause

confusion below, we use the term minority to refer to a student who is economically

disadvantaged or a member of a racial minority or both.

Let fj(a, b, q) j = m,M now denote the density of the each type and let vj(b)

denote the value that the district assigns to type j student given ability b.

3.1 Affirmative Action

Affirmative action arises in our model if preferential treatment is given to minority

students. We formalize this concept of affirmative action as follows.

Definition 1 Preference based affirmative action arises if a school district assigns a

higher value to students of type m than students of type M , i.e if

vm(b) ≥ vM(b) (6)

where equation (6) holds with strict the inequality for a set of b with positive measure.

18In our empirical application we focus on African Americans and students that are eligible for
free or reduced lunch.
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Affirmative action then leads to lower referral and admission thresholds for mi-

nority students. We can formalize this result by considering the case in which there

are no differences in the underlying distribution of types.

Proposition 2 If fm(a, b, q) = fM(a, b, q), then preference-based affirmative action

implies that referral and admission thresholds are lower for minorities, i.e. that ām ≤

āM and q̄m(a) ≤ q̄M(a).

The intuition for this result is straightforward. A student is admitted to the gifted

program if the expected benefit conditional on prior achievement and IQ is positive.

Preference based affirmative action raises the benefits for minority students and as a

consequence lowers the admission threshold. Lower admission thresholds also imply

lower referral thresholds.

Thus far, we have cast the discussion in terms of differences between minority and

majority students where minority status can be defined based on race (black vs non-

black) or income (subsidized lunch vs regular lunch). However, it is also possible that

heterogeneity in treatment arises for a variety of other reasons. For example, there

may be systematic differences in treatment of students from different neighborhoods.

For example, a district may use its gifted program as a mechanism to retain students

from higher income neighborhoods in district schools. Even if not formally adopted

by a district, similar variation may arise if, for example, a district defers to school

principals to some degree in determining referral thresholds. In our empirical analysis

below, we extend our model to test whether there is evidence of such policy variation

across school types in the district we study.
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3.2 Profiling

In practice, we observe significant differences in the distribution of observed outcomes

between minority and majority students which suggests that fm(a, b, q) 6= fM(a, b, q).

As a consequence the district may want to adopt different referral and admission

thresholds even if it does not engage in preference based affirmation action. For

example, if, conditional on achievement, minorities perform better on intelligence

tests that non-minorities, then the district would optimally take these differences

into consideration when making referral decisions. We show later in the paper that

some minority students perform better on IQ tests than majority students for some

levels of school achievement, (FM(q|a) ≥ Fm(q|a) for some values of a). This in

turn implies that for some levels of achievement minorities students are likely to have

higher ability than majority students.

Definition 2 The district engages in profiling if it takes the differences in the distri-

bution of ability conditional on achievement into consideration when making referral

and admission decisions.

To isolate the effects of profiling in referral, we have the following result:

Proposition 3 If vm(b) = vM(b) and if FM(b|a, q) ≥ Fm(b|a, q), then the district

adopts a lower threshold for admission of minority relative to non-minority students

in admission decisions, i.e. q̄m(a) ≤ q̄M(a).

The intuition is as follows. Suppose, among students of a given ability, minority

students perform worse than majority students on prior achievement tests. As a

consequence, for given prior achievement, minority students are likely to be more

able than majority students. Since the value function of the district depends on
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ability, these students have higher expected benefits from gifted admission. This then

translates into a lower referral threshold for minority than for majority students.

4 Identification and Estimation

Let R denote a discrete random variable that is equal to one if the student is referred

for testing and zero otherwise. Let A denote a discrete random variable that is equal

to one if the student is accepted into the selective program.

Assumption 4 Consider a random sample of students.

1. We observe the referral decision, denoted by R, for all students in the sample.

2. For students, who are referred for testing (R = 1), we observe q.

3. We observe the admission decision, denoted by A, for all students that are

referred for testing.

4. We observe achievement with error, denoted by ã.

5. We observe race and subsidized lunch status.

6. We do not observe b for any student.

We assume that (a, b, q) are jointly normally distributed for each type j. Measured

IQ equals ability plus a normally distributed error that is independent of (a, q)

q = b + εq (7)
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The equation above implies that Ej[b] = Ej[q] and V arj(b) < V arj(q). Errors for

achievement and ability are classical measurement errors and depend on the observed

type j.

The key assumptions here are that b is linear in q and that εq is independent of b.

Both assumptions are important to disentangle latent ability from observed measured

scores, and as a consequence study the differences in ability and scores across racial

or socio-economic groups. To understand the limitations of these assumptions it is

useful to recast the problem within the larger literature of latent factor models. We

observe a number of different test scores and we do not need to aggregate these scores

into one composite score. Instead, we could alternatively follow Carneiro, Hansen, &

Heckman (2003) and assume that IQ scores and the test scores satisfy the following

latent factor model:

q = b + εq

a1 = β1b + εa1

. .

ak = βk b + εak

Moreover, we can relax the assumption that b is a scalar and treat b as a vector.

This would allow us to distinguish between different types of skills (such as math

versus reading skills). It is conceivable that the district could place different weights

on the different ability components. It should be noted that most empirical studies

that adopt the more general latent factor models follow Carneiro et al. (2003) and

invoke the linearity and independence assumption. However, recent work by Cunha,

Heckman, & Schenach (2010) show that the linearity assumption is not essential for
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identification.

Moreover, b is only identified up to a scaling factor, i.e. we need to normalize

the coefficient of one of the ability measurements to be equal to one to identify the

remaining parameters of the model. In our application it is natural to normalize the

coefficient of the IQ score since IQ plays the largest role in the decision making of the

district as we document in the paper.

Most of the test scores that are commonly used to measure ability are normed-

reference scores that only allow us to rank students. These are, therefore, ordinal

measures of ability. This then raises two additional question. First, we would like to

know whether our model is identified if the school uses a monotonic transformation of

b, denoted by g(b). Note that we do not observed g. In that case the value of function

of the school can be written as V (g(b)). It should be clear, that we cannot disentangle

V from g without observing g. Hence our analysis focuses on the composite function:

v(b) = V (g(b))

Our formal identification proof only covers the case in which v(b) is linear and thus

should be interpreted as a first order Taylor approximation of the true underlying

function V (g(b)). In all our work, we find that the linear specification of the value

function performs well. Nonetheless, it would be desirable to extend our analysis

to the non-linear case, but it is not a straightforward extension. Moreover, we can

conduct our policy analysis purely based on our knowledge of v(b), we do not need

to know V (·) or g(b).

Second, and maybe more importantly, the ordinality of ability raises a more fun-

damental question of how to model admission to merit based programs. If there is

no inherent scale of test scores or if the comparison of test scores across cohorts are
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difficult, it may make sense for the district to define admission thresholds not in terms

of the level ability b, but in terms of the percentile rank of b. For example, the district

may decide to admit all students of a given cohort that score in the top five percent of

the ability distribution. Profiling then implies that we adjust the observed distribu-

tions for hardship, while affirmative action involves judgement about the desirability

of admitting students that score in different percentiles from different socio-economic

or racial groups. Our current framework assumes that the district makes decisions

based on whether the expected level of ability exceeds a specified threshold. The dis-

trict that we study is in a state that requires districts to provide gifted education to

students above the 97.5 percentile of IQ (130 or higher). In this respect, the policy is

in the spirit of the percentile ranking approach advocated by Barlevy & Neal (2012).

The district’s value function for type j is given by:

vj(b) = ζ0j + ζ1j b (8)

= ζ1j (b+ ∆j)

where ∆j = ζ0j/ζ1j. In our application, we consider four types using race and FRL

status to define types. Given this assumption, the admission rule can be written as:

∫ ∞
0

(b+ ∆j) fj(b|a, q) db ≥ 0

which implies that admission rule only depends on ∆j, but not on ζ1j. The referral

rule is given by:

∫ ∞
q̄(a)

∫ ∞
0

ζ1j(b+ ∆j) fj(b, q|a) db dq ≥ c
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The referral decision, therefore, also depends on ζ1. Given this parametrization, we

can obtain a closed form solution of the admission policy and a simple characterization

of the referral policy. As shown in Appendix D, we have the following result:

Proposition 4 Given the parametrization above, the optimal admission policy is

given by the linear function q̄j(a) = τ0j − τ1j a where:

τ0j =
− ζ0j
ζ1j
− µbj + Aj µaj + Qj µqj

Qj

(9)

τ1j =
Aj
Qj

where Aj and Qj are known functions of the parameters of the model. A student of

type (j, a, q) is admitted to the program if and only if q ≥ q̄j(a).

The proof of Proposition 4 also implies that the expected benefit of referral, Wj(a),

can be computed fairly efficiently by univariate integration. Moreover, there exists

a unique āj, which is the solution to the equation Wj(a) = c and can be efficiently

computed.

With measurement error in achievement, the probability of observing R = 0

conditional on j and ã is given by:

Pr{R = 0 |j, ã} =

∫ āj

0

fj(a|ã) da (10)

Similarly, the probability of observing R = 1 and A = 1 is:

Pr{R = 1, A = 1| j, q, ã} =

∫ ∞
ā

1{q ≥ q̄j(a)} fj(a|q, ã) da (11)
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The probability of observing R = 1 and A = 0 is:

Pr{R = 1, A = 0| j, q, ã} =

∫ ∞
ā

1{q < q̄j(a)} fj(a|q, ã) da (12)

Given the specification of our model above, we can prove that our model is identified.

Proposition 5 The parameters of our model are identified.

A formal proof is provided in Appendix E. Here we provide the key intuition be-

hind the proof. The parameters of the joint distribution of prior achievement and IQ

are identified from the observed empirical distributions. While we do not observe IQ

scores for the students who are not referred for testing, we can account for that trun-

cation problem. The levels of the coefficients of the value function are thus identified

from the observed conditional admission and referral probabilities.19 The error vari-

ance of prior achievement is identified from the degree of misclassification observed

in the data. If the error variance were zero, our model should perfectly explain the

observed referral decisions once we condition on the observed prior achievement score.

Differences between the model’s referral and admission predictions and the observed

outcomes are only due to measurement error in achievement.

Note that the proof above relies on the joint normality assumption. This is not an

overly strong functional form assumption since our data are based on norm-referenced

tests. Standardized achievement scores typically are normally distributed at the state

level and IQ scores are normally distributed at the national level. Using multivariate

normal distributions is computationally convenient since the conditional expectations

of E[b|a, q] can be analytically characterized as shown in Proposition 4. As a conse-

quence, the threshold function for admission q(a) and the cut-off point for referral ā

19Note that we treat testing costs, c, as observed by the econometrician.
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can be computed. Extending this identification proof to models with for more flexible

functional form assumptions is not trivial, but the basic intuition of the proof should

carry over to the case in which the underlying distributions are not normal.20

The likelihood for a single observation is then given by:

L = [Pr{R = 0| j, ã} fj(ã)](1−R) (13)

[Pr{R = 1, A = 1| j, q, ã} fj(ã, q)]Rq A

[Pr{R = 1, A = 0| j, q, ã} fj(ã, q)]R (1−A)

The likelihood for a sample of N students is then a straightforward product of the

terms above.

Evaluating the likelihood function is not straightforward. To evaluate the likeli-

hood function above we need to numerically compute the optimal referral and ad-

mission policies for each type. The proof of Proposition 4 can be easily adapted to

generate an algorithm that efficiently accomplishes this purpose. The only challenge

here is to compute the optimal referral threshold which requires a line search algo-

rithm (See equation (30) in the appendix). Once we have computed the optimal

decision rules, it is relatively straightforward to evaluate the conditional probabilities

that form the likelihood function. We then compute the maximum likelihood estima-

tor using a standard nested fixed point argument. In the inner loop of the algorithm

we evaluate the likelihood function for each parameter value. In the outer loop we use

standard numerical optimization methods to find the argument that maximizes the

likelihood function. It is straightforward to show that our estimator is
√
N consistent

and asymptotically normally distributed. We use a standard bootstrap algorithm

to compute standard errors. Appendix F shows that our estimator works well in a

20Identification of latent factor models can be achieved without imposing strong functional form
assumption as discussed, for example, in Schenach (2004) and Cunha et al. (2010).
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Monte Carlo study.

5 Data

Our application focuses on a selective gifted program that is operated by a mid-

sized urban district that prefers to stay anonymous. The district operates a Gifted

Center that serves students in elementary and middle school. Gifted students in

grades 1 through 8 participate in a one-day-per-week program at a designated location

away from the student’s home school. Students participate in programs designed

to enhance creative problem solving and leadership skills and are offered specially

designed instruction in math, science, literature, and a variety of other fields.

The district adheres to state regulations concerning gifted students and services.

The state regulations outline a multifaceted approach used to identify whether a

student is gifted and whether gifted education is needed. The state requires gifted

status to be determined by a certified district psychologist. A mentally gifted student

is defined as someone with an IQ score of at least 130. The regulation specifies

that a student with IQ score below 130 may be admitted ”... when other educational

criteria in the profile of the person strongly indicates gifted ability (emphasis added).”

The state guidelines provide for consideration of factors that may ”mask” giftedness

including “. . . gender or race bias, or socio/cultural deprivation. . . ” Thus, the state

gives districts discretion to employ profiling and affirmative action in referral and

admission policies. Of course, the district is also subject to the U.S. constitution,

which has been interpreted by the Supreme Court as requiring that affirmative action

by race be a last resort in achieving diversity objectives.

The IQ tests that the district uses are the most widely used tests in the U.S.

The tests differ primarily by student age. For the age range that we are studying,
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the district uses the fourth edition of the Wechsler Intelligence Scale for Children

(WISC4). The district administers this examination using standard WISC4 protocol,

one-on-one, to a student by a psychologist trained in IQ testing. This test is designed

for elementary school children and is administered orally so that IQ assessment is not

heavily driven by the degree to which the student has developed reading and writing

skills sufficient to comprehend and complete a written exam. The WISC4 has roughly

15 subtests designed to elicit a range of cognitive capabilities; each subtest in turn is

comprised of a set of questions. The tester asks questions in a prescribed order and

scores student responses.

The district codes electronically the students IQ score, but not the scores on the

subtests or the name of the psychologist administering the test. Thanks to excellent

cooperation from the district, we were permitted to send a team of Ph.D. students

to the district offices for a period of many days to pull each student’s paper file, scan

the student’s IQ test report into a file, and, from these, code the sub-scores. We also

coded the name of the psychologist who tested each student. We find some evidence

of testers “giving the benefit of the doubt” to students who are very close to the

threshold. For example, for most psychologists, the proportion of students scoring

at the threshold is somewhat larger than the proportion scoring one or two points

below the threshold. This appears to be modest in magnitude (on the order of 2 to

3 points), and is not systematically linked to student observables.

Another concern with matching our model to the data is that our model does

not allow for private testing. Moreover, private testers may employ more lenient

standards than public testers giving some opportunity to parents to buy access to the

gifted program. Fortunately, our data set contains detailed information about the

identity of person that administered the IQ test allowing us to differentiate between

private and public testers. We find that there are only 24 students in the sample
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for whom we observe private test scores. These are all students from higher income

families and do not quality for free or reduced lunch. For all 24 students we observe

one private test score. All of them are admitted to the program based on the private

test. 22 out of the 24 students were also tested by a public psychologist. The average

private test is 130.6 compared to 116.6 for the publicly administered test. Note that

the average IQ of an accepted regular lunch student from a public test is 130.8. Of

course, there may be a larger number of students who are privately tested, but it is

reasonable to assume that we only observe private test scores when they are ”above

the bar.” While there is some evidence that private testers are more lenient than

public testers, we conclude that the number of students that are admitted into the

gifted program based on private test score is sufficiently small that it does not raise

serious doubts about our modeling and estimation approach.

Most referrals and admissions for the gifted program occur during elementary

school in grades 1-3. We focus on this population in this paper. The sample consists

of the cohort of students that were in 1st grade in 2003/04, 2004/05, or 2005/06. We

follow these students until the end of 3th grade.21

We start with a sample of 7,753 students. The district permits self-referral, and we

retain those referrals in our sample.22 We keep those students who were at the school

district during the first three grades of school. This reduces our sample to 5,409

students. We drop 751 observations without lunch status data and that changed

their lunch status over the three school grades. We eliminate 72 observations without

achievement data. We drop 24 observations for students who were admitted based

21We find that the main qualitative and quantitative findings of this paper are robust to excluding
any of the cohorts used in the analysis as well as including students that were referred for testing in
the forth grade. Results are available upon request from the authors.

22Approximately 11.5% of referrals are self-referrals. Relative to their numbers in the district, self-
referrals are proportionately higher among non-minority students who are not on free or reduced-
price lunch. Hence, our conclusions with respect to referral and admission of minority students are
certainly not driven by self-referrals.
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on IQ scores provided by private testers after failing to gain admission by the IQ test

administered by the district.23 We eliminate 104 students marked as gifted at any time

during elementary school with no history of IQ test data. Finally, we filter outliers

by eliminating the five lowest achievement scores by cohort of referred students, and

the top 5 achievement scores by cohort that were not referred, totaling 30 eliminated

observations. The final sample size is 4,428 observations.

Achievement scores can be constructed based on a variety of observed scores. We

observe the Oral Reading Fluency (ORF) test. We standardize ORF scores for every

period in every grade and compute the average score for each student. In addition

we have access to test scores on standardized tests that measure reading and math

skills in 3rd grade. Finally, we observe an average GPA score for each student in the

sample. As shown in Table 1 these measures are highly positively correlated.

Table 1: Correlation Matrix of Achievement Measures

ORF scores PSSA scores Average GPA Achievement
ORF scores 1 - - -
PSSA scores 0.74 1 - -
Average GPA 0.62 0.74 1 -
Achievement 0.89 0.95 0.82 1

The table above reports the correlation matrix between the components of the achievement
measure (rows 1-3) and the achievement measure (row 4). The achievement measure is a
weighted average of the students Oral Reading Fluency (ORF) tests, scores on standardized
state tests in reading and math, and GPA average score, from 1st grade through 3rd grade.
Achievement components and the achievement measure are standardized.

We construct the achievement measure used in the estimation of the model as

a weighted average of the GPA, the scores on the standardized tests of math and

reading, and the ORF scores.24 While our achievement measure is unlikely to be

23These 24 individuals are all non-FRL students. The average of their scores on the district test
was 116.6 and the average on the privately administered tests was 130.6.

24The weights are determined by regressing a referral indicator on the available achievement scores.
We experimented with alternative weightings of achievement scores and found that our results are
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the exact measure that is used by the district, we only require that our measure is

sufficiently strongly correlated with the latent measure used by the district.

As previously noted, we use eligibility for free or reduced-price lunch as a measure

of economic disadvantage for students. We also create a poverty indicator for each

school which ranges between 0 and 2. To construct this variable, students eligible

for free lunch are coded as 2, students eligible for reduced-price lunch are coded as

1, and regular lunch students are coded as zero. The school income indicator is

then the school average of this variable over a ten year period. We use this variable

to classify schools into two discrete categories, high- and low-income schools. As

we discuss in detail in the next section, we can, therefore, test whether there are

significant differences in referral and admission decisions for each type. Table 2 reports

descriptive statistics for the full sample as well as the subsamples by FRL status and

race.

Table 2: Sample Statistics by FRL status and Race

Sub-sample by Sub-sample by
Lunch status Race

All types Non-FRL FRL Non Black Black
Sample size 4428 961 3467 1872 2556
FRL 0.78 0 1 0.57 0.94
Black 0.58 0.16 0.70 0 1
Achievement 0.00 0.84 -0.23 0.40 -0.29
School Income 0.47 0.89 0.32 0.72 0.30
Fraction Referred 0.13 0.38 0.07 0.21 0.07
Fraction Gifted 0.07 0.22 0.02 0.13 0.02
Ratio Gifted/Referred 0.51 0.60 0.37 0.59 0.34

The table reports descriptive statistics of the full sample (column 1), the sample of stu-
dents with regular lunch status (column 2), the sample of students with subsidized lunch
status (column 3), the sample of non-black students (column 4), and the sample of black
students (column 5). School income is the fraction of students in the sample that attend
a high-income school as defined in the text.

robust.
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We find, as with many other urban districts, that there is a high proportion of

poor students and the majority of students are black. Achievement and school income

are negatively correlated with FRL status and race. Table 1 also shows that a large

majority of all African American students in our sample are FRL eligible while only

slightly more than half of non-black students are FRL eligible.

Table 3 reports the demographics of the sample by referral and gifted status. We

find that FRL and black students tend to be underrepresented among referred and

gifted students. Not surprisingly, students referred for testing have higher achieve-

ment scores than students who are not referred. Similarly gifted students have sig-

nificantly higher achievement and IQ scores than non-gifted students.

Table 3: Statistics for Non Referred, Referred and Gifted Students

Sub-sample by Sub-sample Referred by
referred status gifted status

Non referred Referred Non Gifted Gifted
FRL 0.84 0.37 0.48 0.26
Black 0.62 0.30 0.41 0.20
Achievement -0.21 1.43 1.09 1.76
IQ 110 129

The table reports descriptive statistics of the sample of non-referred students
(column 1), the sample of referred students (column 2), the sample of referred
but non-gifted students (column 3), and the sample of referred gifted students
(column 4).

To set the stage for our econometric analysis, we provide some additional evi-

dence regarding the referral process. We partition the support of the achievement

distribution into seven intervals. Table 4 reports the frequency of referral for each bin

conditional on FRL status and race. We find that referral probabilities are monoton-

ically increasing in the our observed measure of prior achievement. There are some

pronounced differences in referrals probabilities by FRL status. There are much

smaller differences in referral probabilities by race.
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Table 4: Ratios of Referred Students by Achievement Bin

Regular FRL
Achievement total % Referred total % Referred
<0 188 0.00 2092 0.00
0≤ <0.33 101 0.09 460 0.05
0.33≤ <0.66 111 0.14 354 0.09
0.66≤ <1.00 128 0.26 272 0.15
1.00≤ <1.33 122 0.42 152 0.30
1.33≤ <1.66 118 0.67 93 0.47
1.66≤ 193 0.90 44 0.61

Non Black Black
Achievement total % Referred total % Referred
<0 670 0.00 1610 0.00
0≤ <0.33 222 0.05 339 0.06
0.33≤ <0.66 227 0.09 238 0.12
0.66≤ <1.00 213 0.18 187 0.19
1.00≤ <1.33 170 0.34 104 0.38
1.33≤ <1.66 156 0.57 55 0.62
1.66≤ 214 0.85 23 0.78

The table above reports the frequency of referral by achievement
bins of four student sub-samples: Non-subsidized lunch students
(Regular), subsidized lunch students (FRL), Non-black students
(Non Black), and black students (Black).
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To illustrate some of the properties of the admission process, we partition the

support of the IO distribution into five intervals. Table 5 reports the frequency of

admissions for each bin conditional on FRL status and race.

Table 5: Ratios of Gifted Students by IQ

Regular Lunch FRL
IQ score total % Admitted total % Admitted
<110 44 0.00 88 0.00
110≤ <115 30 0.00 32 0.00
115≤ <120 51 0.20 38 0.58
120≤ <125 48 0.38 23 1.00
125≤ 188 1.00 33 1.00

Non Black Black
IQ score total % Admitted total % Admitted
<110 61 0.00 71 0.00
110≤ <115 39 0.00 23 0.00
115≤ <120 58 0.29 31 0.48
120≤ <125 51 0.51 20 0.75
125≤ 191 1.00 30 1.00

The table reports the frequency of admissions by five IQ bins of
four student sub-samples: Non-subsidized lunch students (Regular),
subsidized lunch students (FRL), Non-black students (Non Black),
and black students (Black).

The upper panel of Table 5 breaks down the sample by free or reduced lunch

status, the lower panel by race. We find that admission probabilities are increasing in

IQ scores. For students who are not eligible for FRL, the probability of acceptance is

equal to one if the IQ score is larger than 125. It drops to 38 percent if the IQ score

is between 120 and 125. It is 20 percent for students with scores between 115 and

120. For students eligible for FRL, the admission probability is one for all students

with scores larger than 120. It drops to 58 percent for students with IQ between 115

and 120. It is zero for student with IQ score below 115. These findings suggest that

students on FRL face lower admission thresholds, an issue we study formally in our
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empirical analysis.

Finally, we consider admission by race in the lower panel of Table 5. We find that

there are some difference in the admission probabilities between black and non-black

students in the interval between 115 and 125. These differences are substantially

smaller that the differences we observe by FRL status.

6 Empirical Results

We begin by estimating our model allowing the fullest possible variation in policies

across types with respect to both profiling and affirmative action. We designate this

Model I. We then investigate the extent to which policy variation across types can be

restricted without significantly reducing the fit of the model. It is useful to begin by

summarizing the set of parameters to be estimated in Model I. The utility function

of the district is linear and has two parameters for each type. With affirmative action

varying across four types (race and FRL), there are then 8 parameters in the utility

function. With full profiling, the distribution parameters differ across types. For

each type, we have means and covariances for ability and achievement. This yields

five parameters per type for a total of 20 parameters. In addition, there are eight

measurement error variances for achievement and IQ by type. Hence, the most general

specification, Model I, has 36 parameters.

Model specifications that impose common parameters in the underlying distribu-

tions of ability, IQ and achievement are clearly rejected by the data. Hence, we con-

sider restrictions regarding the use of affirmative action while retaining type specific

distributions of ability, achievement and measurement and, thus, allow for profiling.

We consider four models that vary in the use of affirmative action. Model I allows

for 8 different district utility parameters, thereby allowing for affirmative action by
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FRL status and race. Model II allows for affirmative action by FRL status, but not

race. This imposes 4 restrictions on the parameter space. In addition, it imposes

the additional restriction that the slope parameters of the district utility function are

the same, implying equal marginal benefit to ability across types. Model III allows

for affirmative action by race, but not FRL status. This imposes 4 restrictions on

the parameter space. In addition, it imposes the additional restriction that the slope

parameters of the district utility function are the same, implying equal marginal ben-

efit to ability across types. Finally, Model IV does not allow for affirmative action

imposing 6 restrictions on the parameters of the utility function.

Table 6 summarizes these model specifications and reports the relevant log-

likelihood statistics. Since Models II-IV are nested by Model I, we can use standard

likelihood ratio tests to evaluate the different specifications. The results in Table 6

lead us to choose Model II as our preferred model specification. Model II imposes five

restrictions relative to Model I. The difference in likelihood function values between

these two models implies a chi-squared statistic of 1.6 with a p-value of 0.9. Models

III and IV are very strongly rejected (p < .001) relative to either Model I or Model

II.

Our choice of Model II carries the implication that preferences do not differ be-

tween black and non-black students. Profiling with respect to race enhances prediction

of performance by race, but does not imply preferential treatment by race. Hence,

we conclude that the district provides no preferential treatment by race. By contrast,

we do find preferential treatment (affirmative action) with respect to FRL status,

especially at the admission stage.

Next we discuss the estimation results in further detail. Table 7 reports goodness

of fit statistics conditional on FRL status and race for the four models. Table 7 shows

that the first two models all fit the data almost equally well. Model III is slightly
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Table 6: Model Summary

Model Profiling Affirmative Action Log Free
Admission Referral Likelihood Param.
(Intercept) (Slope)

FRL Race FRL Race FRL Race

I Yes Yes Yes Yes Yes Yes -8807.4 36

II Yes Yes Yes No No No -8808.2 31

III Yes Yes No Yes No No -8845.8 31

IV Yes Yes No No No No -8873.0 30

This table summarizes four model specifications and reports the relevant log-likelihood.
Columns 1-2 indicate profiling by subsidized lunch status and race respectively. Columns
3-6 indicate affirmative action based on subsidized lunch status and race. Columns 3-4
signalize affirmative action through the intercept of the utility function while columns
5-6 pick out affirmative action through the slope of the utility function. The last column
shows the number of free parameters estimated by specification.

31



Table 7: Goodness of Fit

Data Model I Model II Model III Model IV
Non Black Students

Not Referred 78.6 78.3 78.7 78.8 78.8
Referred not Admitted 8.9 9.6 9.2 9.5 9.2
Referred Admitted 12.5 12.1 12.1 11.8 12.0
IQ Referred not Admitted 111.8 112.8 112.6 112.6 110.5
IQ Referred and Admitted 130.0 130.4 130.2 130.3 128.5

Black Students
Not Referred 93.2 93.1 93.1 93.2 93.4
Referred not Admitted 4.5 4.6 4.6 4.7 4.6
Referred Admitted 2.3 2.3 2.2 2.1 2.0
IQ Referred not Admitted 106.4 106.5 106.8 105.6 107.3
IQ Referred and Admitted 125.3 126.3 126.5 125.4 127.9

Non-FRL Lunch Students
Not Referred 62.4 62.4 62.6 63.0 62.8
Referred not Admitted 15.1 16.0 16.2 16.2 15.7
Referred Admitted 22.5 21.6 21.2 20.9 21.5
IQ Referred not Admitted 112.8 113.4 113.5 111.7 110.2
IQ Referred and Admitted 130.8 131.4 131.4 130.1 128.8

FRL Students
Not Referred 93.8 93.6 93.8 93.8 94.0
Referred not Admitted 3.9 4.2 3.9 4.1 4.0
Referred Admitted 2.2 2.2 2.3 2.1 2.0
IQ Referred not Admitted 106.1 107.0 106.4 107.6 108.1
IQ Referred and Admitted 124.2 124.3 124.4 127.2 127.3

All Students
Not Referred 87.0 86.8 87.0 87.1 87.2
Referred not Admitted 6.3 6.7 6.6 6.7 6.5
Referred Admitted 6.6 6.4 6.4 6.2 6.3
IQ Referred not Admitted 109.6 110.3 110.2 109.7 109.2
IQ Referred and Admitted 129.1 129.5 129.4 129.3 128.4
Black in Admitted 20.4 20.5 20.2 19.5 18.8
FRL in Admitted 26.5 26.9 28.2 26.7 25.3

The table reports goodness of fit statistics conditional on subsidized lunch status (FRL) and
race for the four models. The first column (Data) shows descriptive statistics of four sub-samples
of students and the full sample. Columns 2-5 show the goodness of fit for each specification using
simulated data from the parameter estimates.
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worse. By contrast, the fit of the Model IV is significantly worse for black and FRL

students.

We now turn to the parameter estimates. To save some space, Table 8 reports the

estimates and estimated standard errors only for our preferred specification, Model

II. Beginning with mean achievement estimates in the top panel, we see that students

on FRL have lower achievement than their non-FRL, same-race counterparts. We see

as well that non-black students have higher achievement than black students. The

standard deviations of achievement exhibit some variation across race and FRL, with

variance of non-white, non-FRL students being somewhat higher than for the other

three student types.

Our estimates of the parameters of ability are shown in the second panel. The

means of ability exhibit a striking contrast to the means of achievement. For students

not on FRL, non-black students have a higher mean than black students, but the

relative difference is substantially smaller than for achievement. The same holds true

for mean ability estimates for those on FRL. The contrast between the variation in

means of achievement by race and FRL to the variation in means of ability by race

and FRL provides insight into our finding of significant scope for profiling by race

and FRL. Other parameter estimates vary less across student types. The estimated

correlations between achievement and ability are similar in magnitudes across types

the four types, with the value regular lunch black students (.83) being somewhat

lower than the other three groups. The standard deviations of ability are somewhat

lower for non-FRL than for FRL students. Table 8 also reveals, not surprisingly, that

there is substantial error in measurement of both ability and achievement.

We provide in Figure 1 an illustration of how differences in distributions by type

provide scope for profiling. Figure 1 plots the conditional distributions of IQ scores for

a given value of achievement for black and non-black FRL students. The achievement
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Table 8: Parameter Estimates: Model II

µa,rw 0.92 µa,fw 0.00
(0.04) (0.00)

µa,rb 0.45 µa,fb -0.34
(0.07) (0.02)

achievement σat,rw 0.98 σat,fw 0.91
distribution (0.03) (0.02)

σat,rb 0.89 σat,fb 0.84
(0.05) (0.01)

σe,rw 0.52 σe,fw 0.57
(0.02) (0.03)

σe,rb 0.47 σe,fb 0.53
(0.05) (0.02)

µb,rw 111.52 µb,fw 84.58
(1.48) (4.25)

µb,rb 103.38 µb,fb 73.74
(4.50) (4.21)

ability σb,rw 14.43 σb,fw 18.02
distribution (1.25) (2.26)

σb,rb 15.81 σb,fb 20.24
(3.28) (1.92)

σq,rw 6.24 σq,fw 4.81
(0.41) (0.90)

σq,rb 6.13 σq,fb 3.47
(1.52) (0.97)

ρab,rw 0.90 ρab,fw 0.93
correlations (0.02) (0.02)

ρab,rb 0.83 ρab,fb 0.91
(0.05) (0.02)

∆rw -121.44 ∆fw -115.67
(0.41) (0.41)

∆rb -121.44 ∆fb -115.67
value (0.41) (0.41)
function ζ1,rw 0.19 ζ1,rb 0.19

(0.065) (0.065)
ζ1,fw 0.19 ζ1,fb 0.19

(0.065) (0.065)

The table reports parameter estimates for Model II. Boot-
strapped standard errors from 50 replications are shown in
parentheses.
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Figure 1:
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This figure shows for Black and non-Black FRL students the distribution of IQ conditional on achievement
after integrating out ability. Parameters are from Model II and achievement is set equal to .99.
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level is set to 0.99 which is the referral threshold for non-black FRL students. Figure

1 illustrates our finding that, among relatively high-achieving FRL students, the

IQ scores of black students are higher than that of non-black students, or stated

differently, black students have lower achievement relative to ability than non-black

students.

From the last panel of Table 8, we see that the intercept of the district utility

function for FRL students is higher than for non-FRL students, implying affirmative

action in favor of FRL students. The difference in intercepts is quite substantial,

equivalent to adding approximately one third standard deviation to ability of FRL

students. We established above in our comparison of Model IV to Model II that this

difference is highly significant.

Finally, we have investigated whether different schools use different referral and

admission policies. To conduct this analysis, we consider two sets of schools: high-

income and low-income schools. We then allow different utility functions for the

two school types, and hence different referral and admission thresholds. There are

very few non-FRL students in poor schools, too few to permit meaningful testing

of whether low-income schools treat non-FRL students differently than high-income

schools. We, therefore, investigate whether preferences for gifted participation of FRL

students differ between low-income and high-income schools by allowing the intercept

of the district utility function to differ between high- and low-income schools. We

obtain a difference in intercepts of 1.5, with low-income schools provide somewhat

higher affirmative-action benefits to FRL students than high-income schools. This

difference is relatively modest, equivalent to adding .1 standard deviation to ability

of FRL student in low-income schools, and not significant by conventional standards

(p=.09). Hence, we conclude that there is limited, if any, heterogeneity in treatment
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of FRL students between high- and low-income schools.25

7 Policy Analysis

In 2003, the U.S. Supreme Court considered two affirmative action cases against the

University of Michigan, naming then-president Lee Bollinger, as defendant. One,

Grutter v. Bollinger (2003), challenged the admission policy of the law school. The

other, Gratz v. Bollinger (2003), challenged the undergraduate admission policy. The

court upheld the former, seeing it as narrowly construed and employing race only as

a possible favorable factor, while striking down the latter as being too closely akin

to a quota system. The court decision with respect to Michigan’s undergraduate

admission policy prompted many colleges and universities to change their admission

policies to reduce or eliminate race as a distinct admission criterion.

The Gratz v. Bollinger decision prompted research investigating the extent to

which race-blind policies, coupled with selection employing correlates of race, might

preserve racial diversity in higher education.26 Here we use race-blind to mean that

criteria for student admission do not vary by race. These analyses suggest that, at the

college level, banning affirmative action while permitting of use of correlates of race

results in a very significant reduction in minority attendance, especially at top-tier

institutions.

It is likely that the Gratz v. Bollinger decision also induced many school districts,

possibly including the one that we study, to adopt race-blind referral and admission

policies. Subsequent Supreme Court decisions directly focused on K-12 education

reinforce the need for school districts develop race-blind policies. In 2007, the Court

25This sensitivity check is based on the 2004/05 cohort.
26See, for example, Chan & Eyster (2003), Epple et al. (2008) and Loury et al. (2008).
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decided two cases involving K-12 education, one in Seattle (Parents Involved in Com-

munity Schools v. Seattle School District No. 1) and the other in Louisville (Meredith

v. Jefferson County Board of Education). In those cases, the Court invalidated the

districts’ racial desegregation plans, ruling that students could not be assigned to

schools solely to achieve racial balance. Not surprisingly, the Court was closely di-

vided. Casting the pivotal vote, Justice Kennedy sided with the conservative wing of

the Court to form a majority to ban use of race in determining school assignments.

In his opinion, however, Justice Kennedy pointedly left the door open to use of cor-

relates of race to achieve race-conscious objectives.27 In 2006, voters in Michigan

approved a ban on affirmative, which in turn was upheld in the April 2014 Supreme

Court decision in Schuette v Coalition to Defend Affirmative Action. That decision

has prompted increased focus on use of socioeconomic factors as an alternative to use

of race in fostering affirmative action objectives.28

The following important policy question then arises: How closely can race-

conscious but race-blind policies achieve the objectives of racial integration of gifted

K-12 academic programs? Our model permits us to provide an analysis of the effect

on racial diversity of affirmative action based on race. We can compare this approach

to the effect of affirmative action based on a correlate of race—FRL status. We,

therefore, consider two policy alternatives. Policy 1 employs affirmative action with

respect to both FRL and race. This is accomplished by extending the admission

threshold for FRL students to all African American Students. Policy 2 eliminates

27In Fisher v University of Texas (June 24, 2013), the Supreme Court strongly emphasized that
placing any explicit weight on race in admissions should be a last resort, but, in its remand to the
lower court, the Supreme Court again seemed to accept use of correlates of race to achieve race-
conscious objectives: ”The reviewing court must ultimately be satisfied that no workable race-neutral
alternatives would produce the educational benefits of diversity.”

28The President of the American Association of State Colleges and Universities commented that
”Most of us have already started to look at other variables than race, especially first-generation
students, and low-income students.” (NYT, 4/22/2014).
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Table 9: Policy Analysis

Data Model II Policy 1 Policy 2
Non Black Students

Not Referred 78.6 78.7 78.7 81.0
Referred not Admitted 8.9 9.2 9.3 8.1
Referred Admitted 12.5 12.1 12.0 10.9
IQ Referred not Admitted 111.8 112.6 112.5 114.0
IQ Referred and Admitted 130.0 130.2 130.1 131.2

Black Students
Not Referred 93.2 93.1 92.1 95.6
Referred not Admitted 4.5 4.6 5.2 3.0
Referred Admitted 2.3 2.2 2.8 1.4
IQ Referred not Admitted 106.4 106.8 105.5 111.1
IQ Referred and Admitted 125.3 126.5 125.3 130.6

Non-FRL Lunch Students
Not Referred 62.4 62.6 59.9 62.6
Referred not Admitted 15.1 16.2 17.6 16.4
Referred Admitted 22.5 21.2 22.5 21.0
IQ Referred not Admitted 112.8 113.5 112.0 113.5
IQ Referred and Admitted 130.8 131.4 130.6 131.3

FRL Students
Not Referred 93.8 93.8 93.8 96.9
Referred not Admitted 3.9 3.9 3.9 2.1
Referred Admitted 2.2 2.3 2.3 1.1
IQ Referred not Admitted 106.1 106.4 106.3 112.0
IQ Referred and Admitted 124.2 124.4 124.5 129.8

All Students
Not Referred 87.0 87.0 86.4 89.4
Referred not Admitted 6.3 6.6 6.9 5.2
Referred Admitted 6.6 6.4 6.7 5.4
IQ Referred not Admitted 109.6 110.2 109.5 113.0
IQ Referred and Admitted 129.1 129.4 129.0 131.1
Black in Admitted 20.4 20.2 24.1 14.7
FRL in Admitted 26.5 28.2 27.0 15.5

The table reports statistics conditional on subsidized lunch status (FRL) and
race for the four models. The first column (Data) shows descriptive statistics
of four sub-samples of students and the full sample. Columns 2 show the same
statistics for the base line equilibrium, Columns 3-4 consider the policies discussed
in detail in the text.
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affirmative action entirely. Table 9 summarizes the impacts of these counterfactual

policy experiments.

Our model predicts that adoption of Policy 1 would increase gifted enrollment

of African American students in this cohort from 20.2 to 24.1 percent. By con-

trast, under Policy 2, enrollment of African American students would drop to 14.7

percent. Thus, eliminating affirmative action would reduce African American stu-

dent enrollment by approximately 39% relative to a policy of affirmative action for

African American students. The current policy, providing no affirmative action for

African American students but retaining affirmative action for FRL students reduces

African American student enrollment by 16% relative to Policy 1. Thus, affirmative

action with respect to FRL is extremely important in preserving enrollment of African

American students in the district’s gifted program.

8 Conclusions

U.S. educational institutions at all levels invest extensive resources in providing ad-

vanced programs to help high-ability students reach their potential. The challenge

that arises in deciding admission to these programs is that ability is unobserved. Ob-

taining measures of ability that are not affected by family resources and vagaries of

circumstance has proven to be extraordinarily challenging. Despite extensive research

and design efforts, measures of ability such as IQ exhibit systematic variation across

demographic groups. Educational institutions confront the challenge of using avail-

able evidence to assess suitability of students for admission to selective programs,

distinguishing ability from influences attributable to family resources and circum-

stance. While not uncontroversial, differential treatment based on income has gained

a considerable measure of acceptance. Race-based criteria have proven to be much
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more controversial.

The Supreme Court has endorsed a holistic approach, one that considers a broad

set of factors in decisions about the admission of a student to selective programs

and institutions, i.e., the Court encourages profiling. Going somewhat farther in

his decision for the majority in Gratz versus Bollinger, Justice Kennedy explicitly

declined to reject use of non-race factors to achieve race-conscious ends, a view he

reaffirmed in a concurring opinion in the Seattle and Louisville cases. It is natural to

wonder whether it is possible to formalize the distinctions being made by the court,

and, if so, whether it is possible to test empirically whether a policy does or does

not conform to court guidelines. In this light, we have pursued four objectives in

this paper. One objective is to develop a framework sufficiently broad not only to

encompasses merit, profiling, and affirmative action, but also to permit statistical

testing of the roles that these factors play in practice. A second is to demonstrate,

via econometric analysis, the practical relevance of this framework in application. A

third is to extend the analysis of these policy issues to an important domain that

has been understudied, selective programs for high-ability students in primary and

secondary education. A fourth objective is to make a substantive contribution to

policy by statistical testing of the extent of use of profiling and affirmative action

in an operational setting, and by counterfactuals that investigate the consequences,

either of curtailing or extending, the use of profiling or affirmative action.

We believe our application succeeds in these objectives. Of particular interest

are the findings of our counterfactual analysis of race-based affirmative action. Long

(2007), in his review of the evidence with respect to race-based affirmative action in

colleges and universities, concludes, and we agree, that: ”The pressures—and in some

cases, legal requirements—to replace affirmative action are very real. All the same,

the stark evidence of the inefficacy of replacement programs remains.” By contrast,
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for the central school district we study, we find that profiling by race and income,

coupled with affirmative action by income, can achieve more than 80 percent of the

level of African American enrollment that could be achieved by race-based affirmative

action.

Two questions naturally arise: Why the sharp contrast to findings with respect to

elimination of race-based affirmative action in our setting as compared to findings for

colleges and universities? To what extent is it likely to generalize to other central city

school districts? The answer to the first question is that middle- and upper-income

households with children tend to locate in suburban school districts, leaving relatively

low-income households in the central city districts. African American households are

disproportionately represented among low-income households. Hence, in central city

districts, policies that courts have thus far found admissible (profiling by race and

income and affirmative action by income) can go a long way toward achieving out-

comes that would be achieved by adding race-based affirmative action to the district’s

decision criteria. The answer to the second question is that our findings are indeed

likely to generalize to other central city school districts; the propensity of middle- and

high-income households with children to locate in suburban districts is a phenomenon

observed in every large metropolitan area in the United States.

The methods developed in this paper offer much scope for future research. Our

framework may also be applicable in other settings in which costly screening pro-

cedures are used with the goal of increasing minority participation.29 For example,

costly search for qualified minority applicants as an alternative or complement to affir-

mative action is quite common in post-secondary and post-graduate education (e.g.,

minority recruitment fairs hosted by colleges). Minority job fairs often require par-

29We are grateful to an anonymous referee for pointing out the potential relevance of our framework
in these domains.
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ticipating candidates to submit a specified set of materials that are then reviewed by

participating employers as they decide which candidates will be invited for interviews.
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A Proof of Proposition 1

Optimal admission for referral policies for IQ testing satisfies:

α(a)


= 1

∈ [0, 1]

= 0

 as

∫ ∞
0

∫ ∞
0

(
β(a, q) v(b) − c

)
f(b, q|a) db dq


> 0

= 0

< 0

 (14)

Optimal admission satisfies:

β(a, q)


= 1

∈ [0, 1]

= 0

 as

∫
v(b) f(b|a, q) db


> 0

= 0

< 0

 (15)

Rearranging the FOC gives the result.

B Proof of Proposition 2

If vm(b) ≥ vM(b) and fm(a, b, q) = fM(a, b, q) = f(a, b, q), then we have

Vm(a, q) =

∫ ∞
0

∫ ∞
0

vm(b) f(b|a, q) db (16)

≥
∫ ∞

0

∫ ∞
0

vM(b) f(b|a, q) db

= VM(a, q)
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and hence q̄m(a) ≤ q̄M(a). Similarly

Wm(a) =

∫ ∞
q̄m(a)

∫ ∞
0

vm(b) f(b, q|a) db dq (17)

≥
∫ ∞
q̄M (a)

∫ ∞
0

vm(b) f(b, q|a) db dq

≥
∫ ∞
q̄M (a)

∫ ∞
0

vM(b) f(b, q|a) db dq

= WM(a)

which proves the result.

C Proof of Proposition 3

If vm(b) = vM(b) and Fm(b|a, q) ≤ FM(b|a, q), then we have

Vm(a, q) =

∫ ∞
0

∫ ∞
0

v(b) fm(b|a, q) db (18)

≥
∫ ∞

0

∫ ∞
0

v(b) fM(b|a, q) db

= VM(a, q)

where the inequality follows from the fact that v(b) is monotonically increasing in b.

Hence qm(a) ≤ qM(a).
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D Proof of Proposition 4

The expected value of admitting a student type (a, q) is given by:

V (a, q) =

∫ ∞
0

∫ ∞
0

v(b) f(b|a, q) db = ζ0 + ζ1 µb/a,q (19)

The covariance matrix is given by:

Σb a q =


σ2
b σab σ2

b

σab σ2
a σab

σ2
b σab σ2

b + σ2
q

 (20)

Hence the conditional expectation of b given (a, q) is given by the following equation:

µb/a,q = µb +
[
σab σ2

b

] σ2
a σab

σab σ2
b + σ2

q

−1 a − µa

q − µq


= µb − (Aµa + Qµq) + Aa + Qq (21)

where the constants A and Q are defined as:

A =
σab(σ

2
b + σ2

q ) − σ2
bσab

σ2
a(σ

2
b + σ2

q ) − σ2
ab

Q =
−σ2

ab + σ2
bσ

2
a

σ2
a(σ

2
b + σ2

q ) − σ2
ab

(22)

The school is indifferent between admitting and not-admitting a student to the gifted

program if the expected value added of the program is zero:

0 = V (a, q) = ζ0 + ζ1 (µb − (Aµa + Qµq) + Aa + Qq) (23)

49



Equation (23) defines a linear function q̄(a) which fully characterizes the admission

policy β(a, q):

q̄(a) = τ0 − τ1 a (24)

where:

τ0 =
− ζ0
ζ1
− µb + (Aµa + Qµq)

Q

τ1 =
A

Q
(25)

Substituting the optimal admission rule into the expected value of referring a student

type (a) for testing, we obtain:

W (a) =

∫ ∞
0

∫ ∞
q̄(a)

v(b) f(b, q|a) dq db (26)

Now f(b, q|a) = f(b|a) fε(q−b). The mean and variance of the condition distribution

of b given a are given by

µb/a = µb +
σab
σ2
a

(a− µa) (27)

and

σ2
b/a = σ2

b −
σ2
ab

σ2
a

(28)

Hence, we have:

v(b) f(b, q/a) = (ζ0 + ζ1 b)
1√

2πσb|a
e
−

(b−mub|a)
2

2σ2
b|a

1√
2πσq

e
− (q−b)2

2σ2q (29)

50



Substituting (29) into (26), we obtain:

W (a) =

∫ ∞
−∞

[1− Φ(
τ0 − τ1a − b

σε
)] (ζ0 + ζ1 b)

1√
2πσb|a

e
−

(b−mub|a)
2

2σ2
b|a db (30)

ā is then the unique solution to the equation W (a) = c . A student is referred if

and only if a ≥ ā. Letting the structural parameters of the underlying distribution

of (a, b, q) and the parameters of the utility function to be functions of j then proves

the result.

E Proof of Proposition 5

Consider the model with one type.30 Achievement is measured with error:

ã = a+ εa (31)

First, consider the case in which the variance of the measurement error in achieve-

ment, denoted by σ2
εa , is known. In that case, µa, σ

2
a are identified from the observed

distribution of achievement.

Next consider the distribution of IQ condition on being referred and conditional

on ã. This distribution is given by:

f(q|R = 1, ã) =

∫
ā
f(a, q|ã) da∫ ∫

ā
f(a, q|ã) da dq

(32)

The left hand side of the equation is non-parametrically identified. Under the normal-

ity assumption, f(a, q|ã) is also normally distributed. Hence, the right hand side is a

function of the three structural parameters (µq, σ
2
q , σaq) and the nuisance parameter

30The identification argument easily extends to the case of multiple types.
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ā. All of these parameters are thus identified under the joint normality assumption

(as well as more flexible functional forms).

Next, we assume, that

q = b + εq (33)

Hence µb = µq and σab = σaq are identified as well. That leaves us with three

parameters: σ2
b = σ2

q − σ2
εq , and the parameters of the value function ζ0 and ζ1.

Consider the probability of being admitted to the gifted program, which is given

by:

Pr{A = 1|ã, q} =

∫
1{τ0 + τ1a ≤ q} f(a|ã, q) da (34)

where the functional forms of τ0 and τ1 are given in the proof of Proposition 4. The

left hand side of the equation above is non-parametrically identified. Consider the

right hand side which the same probability predicted by our model. First, note that

the joint distribution f(a|ã, q) has already been identified. Second note that τ1 is

function of only σ2
b . τ0 is a function of the ratio ∆ = ζ0/ζ1 and σ2

b , given that all

other parameters that affect τ0 and τ1 have been identified. We can thus conclude that

the ratio ∆ = ζ0/ζ1 and σ2
b are identified of the conditional admission probabilities.

Next, consider the referral probability, which is given by:

Pr{R = 1|ã, q} =

∫
ā

f(a|ã) da (35)
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where ā is the unique solution to

∫ ∞
−∞

[1− Φ(
τ0 − τ1a − b

σεq
)] (ζ1 (b+ ∆))

1√
2πσb|a

e
−

(b−mub|a)
2

2σ2
b|a db − c = 0 (36)

Given that c is a known parameter, it is straight forward to show that ā = ā(ζ1). We

thus conclude that ζ1 is identified of the observed referral probabilities.

Finally, note that the error variance of prior achievement is identified by the depen-

dence of Pr{R = 1|ã} and Pr{A = 1|ã, q} on σ2
εa . If the measurement error variance

is zero, then there is a deterministic relationship between referral and admission deci-

sions and observed achievement and IQ scores. As the amount of measurement error

increases, the correlation between ã and R and A decreases. If the measurement

error variance is infinite, the referral probability is not a function of the observed

achievement

F A Monte Carlo Study

We conducted a Monte Carlo study to get some additional insights into the small

sample properties of our ML estimator. We generated 50 samples with sizes equal to

5000 observations. Table 10 summarizes the findings of the Monte Carlo exercise. It

reports the true parameter values under which the data were generated, the mean of

the estimates, the standard deviation of the estimates and the sample mean of the

estimated asymptotic standard errors.

We find that the small sample bias of most parameters are small.
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Table 10: Monte Carlo Results

True Value Guess Mean Std Dev. Asymp. Errors
µa 0.00 0.00 0.00 0.01 0.01
µb 100.00 105.00 99.97 1.09 0.99
σb 13.00 12.00 13.06 0.60 0.58
σIQ error 7.00 7.50 6.99 0.32 0.28
σã error 0.35 0.40 0.35 0.01 0.01
σã 1.00 1.00 1.00 0.01 0.01
ρa,b 0.65 0.70 0.65 0.03 0.03

∆ = ζ0
ζ1

-116.67 -100.00 -116.68 0.23 0.24

ζ1 300 250 299.48 36.16 36.14
Simulations: 50. Simulations size: 7500

The table summarizes the findings of an identification exercise using a Monte Carlo
study. It reports the true parameter values under which the data were generated,
the mean of the estimates, the standard deviation of the estimates and the sample
mean of the estimated asymptotic standard errors.

54




