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Abstract

Transforming growth factor-beta 1 (TGF-β1), a pro-fibrotic tumour-derived factor promotes

fibroblast differentiation in the tumour microenvironment and is thought to contribute to the

development of pro-tumourigenic cancer-associated fibroblasts (CAFs) by promoting myofi-

broblast differentiation. miRNA dysregulation has been demonstrated in myofibroblast

transdifferentiation and CAF activation, however, their expression varies among cell types

and with the method of fibroblast induction. Here, the expression profile of miRNA in human

primary oral fibroblasts treated with TGF-β1, to derive a myofibroblastic, CAF-like pheno-

type, was determined compared to untreated fibroblasts. Myofibroblast transdifferentiation

was determined by the expression of alpha-smooth muscle actin (α-SMA) and fibronectin-1

extra domain A (FN-EDA1) using quantitative real-time PCR (qRT-PCR) and western blot.

The formation of stress fibres was assessed by fluorescence microscopy, and associated

changes in contractility were assessed using collagen contraction assays. Extracellular ves-

icles (EVs) were purified by using size exclusion chromatography and ultracentrifugation

and their size and concentration were determined by nanoparticle tracking analysis. miRNA

expression profiling in oral fibroblasts treated with TGF-β1 and their extracellular vesicles

was carried out using tiling low-density array cards. The Database for Annotation, Visualiza-

tion, and Integrated Discovery (DAVID) was used to perform functional and pathway enrich-

ment analysis of target genes. In this study, TGF-β1 induced a myofibroblastic phenotype in

normal oral fibroblasts as assessed by expression of molecular markers, the formation of

stress fibres and increased contractility. TaqMan Low-Density Array (TLDA) analysis dem-

onstrated that miR-503 and miR-708 were significantly upregulated, while miR-1276 was

significantly downregulated in TGF-β1-treated oral fibroblasts (henceforth termed experi-

mentally-derived CAF, eCAF). The gene functional enrichment analysis showed that the

candidate miRNAs have the potential to modulate various pathways; including the Ras

associated protein 1 (Rap1), PI3K-Akt, and tumour necrosis factor (TNF) signalling path-

ways. In addition, altered levels of several miRNAs were detected in eCAF EV, including
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miR-142 and miR-222. No differences in size or abundance of EV were detected between

eCAF and normal oral fibroblast (NOF). Little overlap was observed between changes in

cellular and EVmiRNA profiles, suggesting the possibility of selective loading of EV miRNA.

The study reveals miRNA expression signature could be involved in myofibroblast transdif-

ferentiation and the miRNA cargo of their EV, providing novel insight into the involvement of

miRNA in CAF development and function.

Introduction

Several lines of evidence have demonstrated that the altered stroma microenvironment makes

a significant contribution to the malignant progression of cancers, including oral squamous

cell carcinomas (OSCC) [1]. The tumour microenvironment is a dynamic milieu consisting of

a mixture of cancerous cells together with stromal cell populations. The majority of tumour

stromal cells are activated fibroblasts which commonly express α-SMA [2] and FN-EDA1 [3].

TGF-β1 is a well-established factor capable of inducing myofibroblast phenotype in vitro [4].

Activin A, a member of the TGF-β family of proteins, provokes myofibroblast differentiation,

similar to that of fibroblasts stimulated with TGF-β1 [5]. Other growth factors and cytokines

mediate myofibroblast transdifferentiation including interleukin-6 (IL-6), platelet-derived

growth factor (PDGF) and connective tissue growth factor (CTGF) [6]. Taken together, vari-

ous cytokines and growth factors are capable of modulating the myofibroblast transdifferentia-

tion, although the precise signals, and underlying molecular mechanisms, promoting the

formation of myofibroblastic CAF in vivo remain to be fully elucidated.

miRNAs are small non-coding RNAmolecules that regulate target gene expression and

modulate various biological processes [7]. Dysregulation of miRNA expression has been impli-

cated in myofibroblast transdifferentiation and the CAF phenotype [3, 8–10]. Shen et al [11]

reported the upregulation of miR-7 in CAFs of oral cancer compared with their paired normal

fibroblasts, and inhibition of miR-7 induces a functional change of CAFs into normal fibro-

blasts. Thus, differently expressed miRNAs in myofibroblasts opens the possibility of a treat-

ment approach targeting the tumour stroma with miRNA modulators (mimic or inhibitor). In

addition to their cell-autonomous effects, miRNAs are increasingly recognised to play a role in

intercellular signalling via their presence in EV. EV, encompassing exosomes, microvesicles

and other nano-scale lipid encapsulated vesicles, are released by every cell type and present in

every body fluid studied to date. They carry 2cargo including RNA, DNA, protein and lipid,

and have been implicated by a range of evidence to induce responses in recipient cells, at least

in part by the transfer of functional miRNA. Although the miRNA cargo of EV derived from

cancer cells has been widely studied, much less is known about their presence or functional

roles in fibroblast-derived EV.

While most studies focused on the effects of miRNA-derived CAFs on cancer progression,

only limited information is available regarding the functional role of miRNA in regulating

myofibroblast transdifferentiation. In this study, we have successfully characterised a myofi-

broblastic, CAFs-like phenotype in oral fibroblasts. We have further determined the differen-

tial miRNA expression; miR-503 and miR-708 were upregulated, while miR-1276 was

downregulated in eCAFs. Furthermore, we identified pathways potentially regulated by altered

miRNA that may influence CAF phenotype and function. In addition, we demonstrate the

presence of a wide array of miRNA in fibroblast and eCAF-derived EV and identify differences

in EV cargo that may potentially contribute to their pro-tumorigenic functions.
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Materials andmethods

Cell culture

Fibroblast cultures (NOF804 and NOF822) were kindly provided by Dr. Helen Colley (Univer-

sity of Sheffield, UK; University Research Ethics Approval Reference Number 003463). Fibro-

blasts were maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% Fetal Bovine Serum, L-glutamine and 100 U/ml penicillin and 100 μg/ml streptomycin.

All materials were purchased from Sigma-Aldrich, USA. Fibroblasts were incubated in a

humidified atmosphere containing 5% CO2 at 37
0C. Cell passages from 1 to 7 were used in

this study. For TGF-β1 treatment, fibroblasts were incubated with ranging concentrations of

TGF-β1 (0.05–5 ng/ml) for 24 h and/or 48 h.

Quantitative real-time PCR

Total RNA was extracted from fibroblasts using the RNeasy mini kit (Qiagen, Germany)

according to the manufacturer’s instructions. cDNA conversion of 100 ng RNA was done

using the High-Capacity cDNA reverse transcription kit (Life Technologies, UK) according to

the manufacturer’s instructions. Total cDNA was amplified using the Power SYBR green PCR

master mix (Life Technologies, UK). Primers sequence were as follows; U6 Forward (F)

50CTCGCTTCGGCAGCACA30, U6 Reverse (R) 50AACGTTCACGAATTTGCGT30, αSMA F

50GAAGAAGAGGACAGCACTG30, αSMA R 50TCCCATTCCCACCATCAC30, fibronectin-1

with extra domain A (FN-EDA1) 50TGGAACCCAGTCCACAGCTATT30, FN-EDA1 R

50GTCTTCTCCTTGGGGGTCACC30. Relative quantitation of targets in different samples was

calculated by the ΔΔCt method, normalised to endogenous control U6.

Immunocytochemistry

Fibroblasts were fixed with methanol (Fisher-Scientific, UK) for 20 min and permeabilised by

using 4 mM sodium deoxycholate (Fisher-Scientific, UK) for 10 min. Cells were blocked for

non-specific binding sites in 2.5% (w/v) bovine serum albumin in phosphate buffered saline

(PBS) for 30 min, followed by incubating with a FITC-conjugated anti-human α-SMAmouse

antibody (clone 1A.4; 1:100; Sigma-Aldrich,USA) for overnight at 4˚C. Coverslips were

washed twice with PBS, mounted using mounting media containing 40,6-diamidino-2-pheny-

lindole (DAPI; Vector Laboratories Inc, USA), viewed using a Ziess Axioplan 2 fluorescence

light microscope at 40x magnification and photographed using Proplus 7.0.1 image software.

Gel contraction assay

Fibroblasts (2.5 x 105 cells/well) were mixed with 4 mg/ml of rat tail collagen (Roche,UK) in

DMEM and pH adjusted to 7 using 0.1 mMNaOH (Sigma-Aldrich,UK). The cell:collagen

mixture was added to 24 well plates and incubated for 45 min for gel to polymerize. The gels

were incubated overnight at 37 0C in serum-free DMEM. The gels were then loosened from

the edges of the well by a scalpel and were incubated with serum free medium containing 5 ng/

ml of TGF-β1 for 48 h. Collagen lattices were photographed and the surface area for each lat-

tice was calculated using the Image J.

Immunoblotting

Total protein lysates were prepared in radioimmunoprecipitation assay buffer (Sigma-Aldrich,

USA) supplemented with complete mini protease inhibitor cocktail (Roche, UK). Protein

quantification was determined by BCA protein assay kit (Thermo Scientific, UK). Protein

lysates (20 μg) were resolved by 12% (v/v) sodium dodecyl sulphate-polyacrylamide gel

PLOS ONE miRNAs dysregulation in myofibroblast transdifferentiation

PLOSONE | https://doi.org/10.1371/journal.pone.0256812 November 11, 2021 3 / 13

https://doi.org/10.1371/journal.pone.0256812


electrophoresis (SDS-PAGE) and transferred onto nitrocellulose membrane (Milipore, USA)

by iBlot dry transfer (Life technologies, UK). Following blocking of non-specific protein bind-

ing, membranes were incubated with mouse monoclonal anti-human αSMA (1:1000; Sigma–

Aldrich USA) or mouse monoclonal β-actin (1:4000, Sigma-Aldrich, USA) at 4˚C overnight.

After a few washing steps, the membrane was incubated with a horseradish peroxidase-conju-

gated secondary antibody (1:3000, Cell Signalling Technology, USA) for 1 h at 37˚C. All anti-

bodies were diluted in 5% (w/v) skimmed milk powder and 3% (w/v) bovine serum albumin

in Tris-buffered saline (TBS) with 0.05% (v/v) Tween 20 (TBS-T). The membrane was visual-

ised by enhanced Pierce chemiluminescence (Thermo Scientific, UK). Densitometry was per-

formed using Image J.

Taqman Tiling Low-Density Array (TLDA)

miRNA expression profiling was performed using commercially available Tiling Low-Density

Array; TLDA (Life Technologies, UK), according to the manufacturer’s protocol. Briefly, total

RNA (3 ng) was used as an input for retrotranscription using a TaqMan MicroRNA Reverse

Transcription Kit (Life Technologies, UK) and the TaqMan Megaplex pool kit (Life Technolo-

gies, UK), which are customised to run the TLDAs. Preamplification was performed using

TaqMan PreAmpMaster Mix (Life technologies, UK) according to the manufacturer’s proto-

col. RT-PCR was carried out using a 7900HT thermocycler (Applied Biosystems, USA). The

raw data were analyzed by Data Assist Software version 3.0 (Life Technologies, UK). The ΔCt
values were normalized to U6 endogenous control at a Ct cut-off value of 34, according to

technical recommendation. EV-miRNA abundance was normalised to mean Ct value across

all detected miRNA in each sample with a detection cut-off of Ct 32. Fold change of the differ-

entially expressed miRNAs were calculated from ΔΔCt values relative to the untreated sample.

Extracellular vesicle isolation and characterisation

EV were isolated as described in Peacock et al [12]. Briefly, NOF or eCAF were rinsed with

PBS and incubated in serum-free DMEM for 24–72 h. Conditioned medium collected and

centrifuged at 300 x g for 10 min, 2000 x g for 10 min and 10,000 x g for 30 min. The superna-

tant was reduced to 0.5 ml using a Vivaspin-20 (100 kDa molecular weight cut-off) column

(GE Healthcare, Buckinghamshire, UK). EV were isolated by size exclusion chromatography

using Sepharose CL-2B (GE Healthcare, Uppsala, Sweden) stacked in disposable Econo-Pac

columns (Biorad, Watford, UK) and eluted in PBS. Where required, EVs were pelleted by

ultracentrifugation at 100,000 x g for 1 h. Size profile and quantification of EV was performed

by nanoparticle tracking analysis using a Zetaview instrument (Particle-Metrix) according to

the manufacturer’s instructions.

Bioinformatics analyses

Target genes of candidate miRNAs were predicted using online bioinformatic tools; TargetS-

can (http://www.targetscan.org/vert_71/), miRDB (http://www.mirdb.org/), and miRWalk

(http://zmf.umm.uniheidelberg.de/apps/zmf/mirwalk2/index.html). Venn diagrams (http://

bioinformatics.psb.ugent.be/webtools/Venn/) were used to obtain overlapping target genes

from the three bioinformatic tools. GO enrichment analyses of biological process (BP), cellular

compartment (CC), molecular function (MF) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway were obtained using the DAVID (https://david.ncifcrf.gov/) bioinformatics

tool [13]. For EV-associated KEGG pathway analysis, DIANAmiR-Path v3 was used [14]. A

false discovery rate (FDR)<0.05 was used as the cut-off criteria.
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Statistical analyses

Data are expressed as the mean ± standard error of the mean (SEM) from three independent

experiments, unless otherwise stated. Statistical analyses were made between two groups using

a paired two-tailed Student’s t-test (Graph Pad Prism 7), as appropriate and indicated in figure

legends. A value of p< 0.05 was considered statistically significant.

Results

TGF-β1 induces myofibroblast transdifferentiation

In order to establish a model of CAF-like (eCAF) myofibroblast differentiation, we exposed

NOF to TGF-β1. In keeping with previous reports, TGF-β1 induced expression of α-SMA and

FN-EDA1 transcripts in eCAF with maximum α-SMA and FN-EDA1 expressions occurring

at 48 h post-treatment at a concentration of 5 ng/ml (Fig 1A and 1B). Thus, this concentration

and time point were used for subsequent experiments. Similarly, TGF-β1 caused increases in
α-SMA protein abundance and the appearance of α- SMA-positive fibroblasts in eCAF (Fig

1C and 1D). The percentage of α- SMA positive cells in eCAF was significantly higher than

that in NOF. These data are concordant with greater contractility of collagen 1 lattice in eCAF

compared to NOF (Fig 1E).

miRNAs are differentially expressed in eCAF

It has been reported that several miRNAs are involved in myofibroblast transdifferentiation

and alterations in their expression provoke or attenuate the CAF-like myofibroblastic pheno-

type. We next examined the expression of cellular miRNA in eCAF and NOF to gain insight to

the potential role of miRNA in regulating the eCAF phenotype. We observed that only three

miRNAs were differentially expressed in eCAF compared to NOF. Two miRNAs (miR-503;

28.6-fold and miR-708; 2.8-fold) were significantly upregulated, while miR-1276 was signifi-

cantly downregulated (0.1-fold) in eCAFs (Fig 2A). In order to gain understanding of the

potential biological significance of these changes, we used an in silico approach to identify

potential target genes of miR-503, miR-708 and miR-1276 using three publicly available bioin-

formatics tools: TargetScan, miRDB, and miRWalk. As shown in Fig 2B, we identified a total

number of 745 overlapping predicted target genes for these miRNAs from these algorithms.

To understand the functional roles and mechanisms of identified target genes, GO and KEGG

analyses were performed using DAVID. The results demonstrated that genes were enriched in

five biological process (BP): synapse organization, phosphatidylinositol phosphorylation,

phosphatidylinositol biosynthetic process, actin cytoskeleton reorganization and phosphatidy-

linositol-mediated signalling (Fig 2C). While for cellular component (CC), the genes were

enriched in nucleoplasm, cell-cell junction, neuron projection, cytoplasm and plasma mem-

brane (Fig 2D). Additionally, molecular function (MF) analysis showed that the genes were

enriched in protein binding, protein kinase activity, 1-phosphatidylinositol-3-kinase activity,

kinase activity, and protein serine/threonine kinase activity (Fig 2E). The KEGG pathway anal-

ysis indicated that the genes were mainly involved in pathways in cancer, Rap1 signalling path-

way, PI3K-Akt signalling pathway, and TNF signalling pathway (Fig 2F).

eCAF-derived extracellular vesicles display altered miRNA cargo

In recent years an understanding has emerged of the contribution of miRNA to intercellular

signalling mediated by small membrane-enclosed moieties collectively termed EV [15]. The

miRNA cargo of EV is reported to mediate numerous effects of cancer cell-derived EV in the

tumour microenvironment, but considerably less is understood of the role EV-associated
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miRNAmight play in CAF functionality. Having established changes in the cellular expression

of miRNA in eCAF formation, we next therefore assessed the miRNA cargo of eCAF-derived

EV compared to their normal fibroblast counterparts. We first isolated EV from NOF and

eCAF and assessed their physical characteristics by nanoparticle tracking. No significant dif-

ferences were observed in the size profile of NOF-EV compared to eCAF-EV, nor was there a

significant difference between the number of EVs released by the different phenotypes (Fig 3A

and 3B). miRNA profiling however revealed a number of differentially represented miRNA

species (Fig 3C). Substantial differences in the abundance of a number of miRNAs were

observed for EV isolated from eCAF compared to normal fibroblasts; this included a greater

than ten-fold elevation in the abundance of miR-92a, miR-222 and miR-186, and a greater

than ten-fold reduction in miR-223 and miR-142-3p (Fig 3C). Downregulation of the small

Fig 1. TGF-β1 induces myofibroblastic phenotype in human oral fibroblasts. Fibroblasts were treated with TGF-β1 (0.05–5 ng/ml) or serum-free medium (untreated),
for 24 h and 48 h (A-B). Fibroblasts were subjected to RNA extraction, cDNA preparation and the expression of α-SMA (A) and FN-EDA1 (B) was determined using
qPCR. Fibroblasts were treated with TGF-β1 (5 ng/ml) or serum-free medium (untreated) 48 h (C-E). Cell lysates were immunoblotted against α-SMA and β-actin (C).
Fibroblasts were fixed in 100%methanol and were observed under a fluorescence microscope after being stained with the α-SMA-FITC antibody (green) and DAPI (blue)
(D). The collagen gel contractility was assessed by measuring the gel surface area (E). Each data represents the mean ± SEM from three independent experiments.
Statistical analysis was determined using two-tailed Student T-test with �p< 0.05, ��p< 0.005, ���p< 0.001, ����p< 0.0001 compared to untreated.

https://doi.org/10.1371/journal.pone.0256812.g001
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nuclear RNA U6 negated its use as a reference gene for normalisation, in keeping with previ-

ous reports [16]. KEGG analysis of putative targets of the three most elevated miRNA in eCA-

F-EV (miR-222, miR-92a and miR-186) indicated that if delivered to recipient cells, the

miRNA cargo has the potential to modulate pathways including ‘adherens junctions’, ‘extracel-

lular matrix (ECM) receptor interaction’ and ‘proteoglycans in cancer’, key processes in the

tumour microenvironment (Fig 3D).

Discussion

Emerging evidence has demonstrated that miRNAs are involved in CAF activation from resi-

dent stromal fibroblasts. However, the heterogeneity of miRNA expression varies due to

Fig 2. Differentially expressed miRNAs in myofibroblast transdifferentiation and their gene ontology and signaling pathway enrichment analysis. Fibroblasts were
treated with or without TGF-β1 (5 ng/ml) for 48 h. RNA was extracted, cDNA was amplified and used for TLDA analysis. Only miRNAs above the horizontal line are
significant (�p<0.05), the green dots denote miRNAs that are downregulated, red dots represent miRNAs that are upregulated, and the black dots are either miRNAs that
are not significant or below the fold change cut off (A). Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/) of target genes of each miRNAs using three
bioinformatics tools (B). GO enrichment analysis demonstrated the top 5 genes enriched in biological process (BP) (C), cellular component (CC) (D), molecular function
(MF) (E), and the KEGG pathway analysis (F).

https://doi.org/10.1371/journal.pone.0256812.g002

PLOS ONE miRNAs dysregulation in myofibroblast transdifferentiation

PLOSONE | https://doi.org/10.1371/journal.pone.0256812 November 11, 2021 7 / 13

http://bioinformatics.psb.ugent.be/webtools/Venn/
https://doi.org/10.1371/journal.pone.0256812.g002
https://doi.org/10.1371/journal.pone.0256812


patient-to-patient variability. It is well-known that cancer cells secrete high levels of TGF-β,
and this paracrine secretion is believed to trigger a transition of resident fibroblasts to CAF

phenotype with myofibroblastic features in various cancers [17]. Therefore, with this in mind,

the model for TGF-β-induced myofibroblast transdifferentiation was used to confirm that the

phenotype assessed in this study were CAF-like-myofibroblastic cell. Myofibroblasts are com-

monly characterised by the expression of activation markers, α-SMA and de novo expression

of fibronectin [18, 19]. Increased α-SMA and fibronectin expression is consistent with the

study of Melling et al [3] and Dally et al [20]. α-SMA is rapidly incorporated into actin stress

fibres, thereby increasing the contractility of fibroblasts [21]. The appearance of actin stress

fibres is closely related to the generation of contractile force [22, 23]. In keeping with this,

TGF-β1 provoked the development of α-SMA positive stress fibres and promoted the contrac-

tile phenotype of NOF. Herein, we show that TGF-β1 profoundly induces CAF-like-myofibro-

blastic phenotype in NOF.

miRNAs are likely to play a role in TGF-β1 signalling; most members of the TGF-β1 path-
way are known or predicted to be targeted by one or more miRNAs [24]. Moreover, TGF-β1

Fig 3. Characterisation of eCAF-derived EV and their miRNA cargo. EV were isolated from the conditioned media of fibroblasts treated with TGF-β1 (5 ng/ml) or their
untreated counterparts using size-exclusion chromatography. The concentration (A) and size (B) of the isolated particles was analysed using nanoparticle tracking
(Zetaview, Particle Metrix). Total RNA was extracted from isolated EV and their miRNA cargo was assessed using tiling low- density array quantitative PCR (C). KEGG
pathway analysis on the three most elevated miRNA (miR-222, miR-92a and miR-186 combined) was conducted using DIANA (D) [14].

https://doi.org/10.1371/journal.pone.0256812.g003
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directly regulates the biogenesis of miRNA through Smads [25]. We thus think that miRNA

plays a role in myofibroblast transdifferentiation. We show that miR-503 and miR-708 were

highly upregulated in eCAF, compared to NOF. Several studies demonstrated that miR-503

modulates myofibroblast transdifferentiation and fibrosis. Wu et al [26] demonstrated that

miR-503 expression was decreased in TGF-β1 stimulated lung fibroblasts and upregulation of

miR-503 attenuated CAF-like myofibroblastic phenotype in myofibroblasts. Several miRNAs

are involved in cardiac fibrosis (reviewed in [27]), and another study has proposed that miR-

503 modulates fibrosis by enhancing the ECM deposition in cardiac fibroblasts [28]. miR-708

is one of the more recently discovered miRNAs to play a role in fibrosis. A recent study dem-

onstrated that miR-708 was upregulated in fibrotic liver tissues and ectopic expression of miR-

708 inhibits hepatic stellate cell activation and reduces the ECM accumulation [29]. We also

showed that miR-1276 was significantly downregulated in eCAF, compared to NOF. Several

studies have shown that miR-1276 participates in cancer progression, however, to date, the

functional role of miR-1276 in myofibroblast transdifferentiation or fibrosis has not been

investigated. Taken together, these miRNAs might be involved in myofibroblast transdifferen-

tiation. Further functional analyses using miRNA inhibitors or miRNA mimics will give a

more definite understanding of the involvement of these miRNAs in myofibroblast transdiffer-

entiation in the future.

GO analysis demonstrated that the deregulated genes were mainly involved in phosphatidy-

linositol-mediated signalling (ontology: BP), nucleoplasm (ontology: CC), and protein binding

(ontology: MF). Previous study has revealed that phosphatidylinositol-mediated signalling reg-

ulates pro-inflammatory interleukin 32α (IL-32α) expression in human pancreatic periacinar

myofibroblasts [30]. At the level of cellular component, the target genes were associated with

miRNA translocation. Some miRNAs are present at much higher levels in the nucleolus and

occur at very low levels in the nucleoplasm and/or cytoplasm [31]. As for the molecular func-

tion, numerous proteins including Smad7 have been reported to bind to TGF-β receptors [32].
The most enriched pathways from KEGG analysis were the TNF-signalling pathway and

PI3K-Akt signalling pathway. TNF mediates various biological processes such as cell differen-

tiation, cell proliferation, inflammation and apoptosis [33]. TGF-β can induce activation of

PI3K-Akt indirectly via smad-dependent or–independent pathways [34, 35]. Additionally,

TGF- β indirectly activates PI3K-Akt signalling by inducing the expression of several miRNAs.

Previous studies have revealed that TGF- β activates the PI3K-Akt pathway by inducing the
expression of miR-216a/217 and miR-21 in kidney cancer cells and hepatoma cells [36, 37].

Given the well-described roles for EV in modulating paracrine signalling in cancer and

other contexts by the action of their miRNA cargo on target genes in recipient cells, it is poten-

tially significant that the data presented here indicate the differential abundance of specific

miRNA species in EV isolated from eCAF compared to NOF. Although requiring further vali-

dation, several of these miRNAs have known their putative roles in regulating the expression

of a number of genes and pathways relevant to cancer. miR-92a, for example, the abundance

of which was found to be increased by more than 10-fold in eCAF-derived EV, is widely

reported to have pro-tumourigenic effects, with elevated abundance in EV isolated from can-

cer patients associated with poor survival [38]. The proposed mechanism of action of miR-92a

is the promotion of epithelial-mesenchymal transition (EMT), a process favouring metastasis

also known to be promoted by CAF-derived EV [38, 39]. Another miRNA identified here as

elevated in eCAF-derived EV, miR-222, is also reported to promote EMT [40] and that ele-

vated EV-associated miR-222 promotes tumourigenesis and correlates with poor survival in

pancreatic cancer patients [41]. By contrast, miR-142-3p and miR-223, both found to be

decreased in abundance in eCAF-derived EV, are widely ascribed tumour-suppressive func-

tions [42, 43], although this may be context dependent. None of the miRNA found to be
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significantly up or down-regulated in the cellular transcriptome were altered in EV, which

could imply selective loading of miRNA into EV, but it should be noted here that these samples

weren’t obtained from the same culture used for cellular miRNA profiling and therefore differ-

ences between cultures cannot be excluded from accounting for this observation. Taken

together, this provides preliminary evidence that the miRNA cargo of eCAF-derived EV has

the potential to enhance tumour growth compared to that of EV isolated from NOF.

In summary, the findings reported here build on an emerging understanding of the role

miRNAmay play in the ability of TGF-β1 to induce a myofibroblastic CAF-like phenotype in

vitro. The study also represents, to our knowledge, the first assessment of changes in EV

miRNA cargo occurring during the transition of oral fibroblasts to a CAF-like myofibroblastic

phenotype. Further experimental studies are needed to determine the functional role and the

underlying mechanism (s) of these miRNAs.

Supporting information

S1 Fig. Uncropped and original Western blot against α-SMA from untreated and TGF-

β1-treated NOF cells. Proteins were collected from 3 independent batches.
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