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It is essential to incorporate mechanisms of biotic resistance into predictions of

ecological impact conferred by invasive species. Trophically and functionally analogous

native species have high potential to confer biotic resistance or to be susceptible to

competitive exclusion by the invading species. In species with dominance hierarchies

and high aggression the role of weapons, such as chelae, is emphasised and

selected for. Differences in traits such as crushing capacity can indicate prey handling

capabilities, while correlations between closing force and morphology can be used

to understand the role of signaling in agonistic contests. Closing force strength can

be used to infer the outcomes of both direct (predation) and indirect (competition)

trophic interactions. Southern Africa has been invaded by two freshwater crayfish

species (Cherax quadricarinatus and Procambarus clarkii). Biotic resistance of freshwater

crabs toward crayfish invasions varies between geographic location and co-evolutionary

history, thus comparing invasion histories without incorporating geographic context

can produce unequivocal conclusions. We compared the closing force and chelae

morphology of both crayfish species with a native trophically analogous freshwater

crab, Potamonautes perlatus. Closing force increased significantly with mass for all

species. There was significant interaction between sex and species on closing force.

Potamonautes perlatus females showed significantly stronger maximum chela closing

force than male P. perlatus, both sexes of P. clarkii and female C. quadricarinatus.

Contrastingly, male C. quadricarinatus had significantly higher closing forces than both

sexes of P. clarkii and female C. quadricarinatus, however, there was no difference

between female P. perlatus. Native P. perlatus has the capacity to hold a competitive

mechanical advantage over both invaders, but this varies with sex. Chelae length was

not a significant predictor for closing strength in any of the species, which may be related

to dishonest signaling in decapod species. This makes it imperative to assess whether
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factors such as closing force actually translate to resource holding potential in a contest

scenario. We thus provide evidence that African freshwater crabs may exhibit biotic

resistance toward invasion and the first measurements for C. quadricarinatus closing

force strength.

Keywords: Procambarus clarkii, Cherax quadricarinatus, Potamonautes perlatus, invasive species, competition,

strength

INTRODUCTION

Non-native species introductions and subsequent establishment
continues to threaten global biodiversity (Seebens et al., 2017;
Meyerson et al., 2019). The likelihood of a particular species
successfully establishing and persisting in a novel environment
is influenced by both abiotic and biotic factors (Byers, 2002;
Pearson et al., 2018; Kinney et al., 2019). For example, evidence
toward the environmental matching hypothesis suggests that
when the climate of the incumbent ecosystem matches the
climate of the native range, the invader has a higher potential
to both persist and perform better than when the climate
does not (Capinha et al., 2013; Iacarella et al., 2015). The
community assemblage of the invaded system can also facilitate
or impede establishment via biotic resistance (deRivera et al.,
2005; Alofs and Jackson, 2014). Theoretically, areas with high
species richness are more likely to have species that are strong
competitors or, indeed, predators, which make the system less
invadable than those with low species richness (Elton, 1958;
Tilman, 1999). Although, in areas where species are functionally
similar there is a likelihood that the analogous native species are
outcompeted or niche excluded by the invader (Dick et al., 2017;
Zeng et al., 2019).

Species interactions shape community dynamics through
consumptive effects, but also in non-consumptive manners such
as intraspecific and interspecific competition for resources such
as food, shelter, and reproduction (Sih et al., 2010; Lopez
et al., 2019; Mofu et al., 2019; Zeng et al., 2019). Biotic
resistance can thus be exhibited in both consumptive and
competitive manners, however, in freshwater systems biotic
resistance is driven overwhelmingly by consumption (Alofs
and Jackson, 2014). Aquatic environments exhibit a higher
occurrence of generalist feeding and omnivory leading to a lack
of intraspecific and interspecific competition (Alofs and Jackson,
2014). Moreover, dietary plasticity and frequency dependent
predation (i.e., prey switching) are common traits of successful
invaders as it allows persistence of species via trophic niche
separation and capacity to consume new resources when one is
over-exploited (Snyder and Evans, 2006; Olsson and Nyström,
2009; Havel et al., 2015). Often, successful invasive species
also outcompete and competitively exclude native species for
resources through agonistic interactions, though, aggressiveness
does not always equate to resource holding potential (Camerlink
et al., 2015; Lopez et al., 2019).

Freshwater crayfishes are highly successful invaders, having
established widespread invasive populations. While the impacts,
both positive and negative, have been reported for various

crayfish species (see review by Lodge et al., 2012), the
mechanisms that drive species persistence and increased impact
are still somewhat unclear. The African continent is devoid of
native crayfish species. This is potentially due to evolutionary
competition with freshwater crabs (Ortmann, 1902; Lodge
et al., 2012; Nunes et al., 2017a). Freshwater crabs of the
genus Potamonautes are, however, present in almost all African
freshwater habitats where they are trophically analogous to
freshwater crayfish and provide essential nutrient cycling services
(Hill and O’Keeffe, 1992; Dobson, 2004; Cumberlidge and
Daniels, 2009; Peer et al., 2015). Potamonautid species typically
exhibit high degrees of endemism and range restriction. These
traits make them vulnerable to the impacts of habitat destruction
and invasive species introductions (Cumberlidge and Daniels,
2009; Zeng and Yeo, 2018). Crabs and crayfish are polytrophic
benthic omnivores that are both opportunistic scavengers and
direct predators (Hill and O’Keeffe, 1992; Grey and Jackson,
2012). Due to the trophic similarities between crayfish and
freshwater crabs it is likely that they will either provide an
important component of biotic resistance or be competitively
excluded by crayfish invasions (Lodge et al., 2012; Dick et al.,
2017). Indeed, in Tanzania the red swamp crayfish, Procambarus
clarkii (Girard, 1852) has replaced a native freshwater crab
Potamonautes neumannii in many systems (Ogada, 2007), and
has replaced Potamonautes loveni as the primary food source
in African clawless otter diets in Lake Naivasha (Ogada et al.,
2009). Similar trends are reported in Singapore where Australian
redclaw crayfish Cherax quadricarinatus competitively excludes
smaller native freshwater crabs from shelter resources (Zeng
et al., 2019). In Cyprus the invasive P. clarkii shows shelter
holding dominance over native freshwater crab Potamon
potamios despite both species being equally aggressive (Savvides
et al., 2015). Contrastingly, the European river crab Potamon
fluviatile shows dominance in aggression and resource holding
capacity toward the invasive P. clarkii but this may be driven
by co-evolutionary history with the native Astropotamobius
italicus crayfish (Cioni and Gherardi, 2004; Mazza et al., 2017).
Again, there are similar reports that populations of native
pseudothelphusid crabs persisting despite the C. quadricarinatus
invasion inMexico, likely due to the co-evolutionary history with
native crayfish (Bortolini et al., 2007). Predicting the impacts
of invasive crayfish species on native biota via consumptive
and non-consumptive effects by way of comparing invasion
histories can thus produce unequivocal conclusions due to
geographical context.

Southern Africa is suffering from an over-invasion scenario by
functionally similar crayfish species which have been introduced
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primarily through aquaculture ventures and the pet trade (Lodge
et al., 2012; Russell et al., 2014; Nunes et al., 2017a,b; Weyl
et al., 2020). Cherax quadricarinatus, the Australian redclaw
crayfish and P. clarkii both have established invasive populations
in South Africa (Nunes et al., 2017a,b). Cherax quadricarinatus
is also present in Zambia (Nakayama et al., 2010; Nunes
et al., 2016), Swaziland (Nunes et al., 2017a) and Zimbabwe
(Marufu et al., 2018) while P. clarkii is invasive in Zambia,
Uganda, Kenya, Egypt, Sudan, and Rwanda (Hobbs et al., 1989;
Mikkola, 1996; Cumberlidge, 2009). Both species are likely to
spread into ecologically and economically integral streams and
wetlands, which will potentially threaten the stability of aquatic
systems that provide refuge habitat for imperilled species such
as Potamonautid crabs (Ahyong and Yeo, 2007; Belle et al.,
2011; Nunes et al., 2017a,b; Zeng et al., 2019). To test whether
there could be some degree of biotic resistance exhibited by
African freshwater crabs, wemeasure and compare themaximum
closing force of native Potamonautes perlatus to the invasive
crayfish C. quadricarinatus and P. clarkii. Weapon performance
can usually be assumed to be an honest signal and is correlated
with aggression (Lappin and Husak, 2005; Wilson et al., 2007;
Bywater and Wilson, 2012). We hypothesised that the invasive
crayfish species would have a higher maximum closing force than
P. perlatus. Closing force can indicate prey handling capacity
(Meers, 2002; Miranda et al., 2016), but also, if closing force is
related to morphology it can contribute to important signaling
in agonistic contests (Wilson et al., 2007; Bywater et al., 2008;
Bywater and Wilson, 2012). Thus, we also determined whether
morphological and biological factors can be used to predict
closing force.

METHODS

Animal Collection and Maintenance
Cherax quadricarinatus is native to Northern Australia and
southeastern New Guinea. Populations have established in
southern African freshwater systems where they were introduced
and are spreading (Nunes et al., 2016, 2017a; Douthwaite et al.,
2018). Cherax quadricarinatus tolerates a wide variety of habitats
and environmental conditions (Masser and Rouse, 1997). One
hundred and fifty live C. quadricarinatus samples (mean ±

sd carapace length: 63.20 ± 4.93mm, mass: 67.34 ± 11.26 g)
were collected from sugarcane irrigation ponds in Nkomazi,
Komatipoort (Mpumalanga Province) supplied by the Komati
River (S 25.55◦, E 31.90◦). Komatipoort has been invaded by C.
quadricarinatus since 2002 and represents an invasion core for
the species in South Africa (de Moor, 2002; De Villiiers, 2015).
A standard gear for trapping the redclaw crayfish was used, this
consists of Promar collapsible traps baited with dry dog food.
Traps were deployed at 1,600 h and retrieved at 800 h. Permits to
transport and keep C. quadricarinatus were issued by the DEA
(Permit Numbers: 50869181001115242, 50869181001120608).
The crayfish caught were transported to a biosecure facility at
the South African Institute for Aquatic Biodiversity (SAIAB)
in insulated cooler boxes with source water from the dam and
constantly aerated with battery pumps.

Procambarus clarkii is native to southern and south-eastern
USA and northern Mexico. In Africa, P. clarkii was introduced
to South Africa, Zambia, Uganda, Kenya, Egypt, Sudan, and
Rwanda (Hobbs et al., 1989; Mikkola, 1996; Cumberlidge, 2009).
Procambarus clarkii lives in a variety of freshwater habitats,
including lakes, ponds, rivers, canals, streams, seasonally flooded
swamps and marshes, and ditches with mud or sand substrata
and plenty of organic debris (Huner and Barr, 1991). Fifty-
six live P. clarkii crayfish samples (carapace length: 58.62 ±

6.86mm, mass: 59.54 ± 7.05 g) were collected from Mimosa
Dam (S 27.88◦, E 26.69◦) in Free State Province South Africa,
where there has been a recent invasion ((DEA), 2018) using
traps baited with fish heads and dry dog food. Traps were
deployed at 1,600 h and retrieved at 800 h. Mimosa Dam
represents an invasion core population of P. clarkii. The crayfish
caught were transported from Mimosa Dam to the biosecure
facility at SAIAB in insulated cooler boxes with source water
from the dam and constantly aerated with battery pumps.
Permits to transport and keep P. clarkii were issued by the
Department of Environmental Affairs (DEA) (Permit Numbers:
50869181001113030, 50869181002121045).

The same gear was also used to trap P. perlatus samples
from Eastern Cape Dams (S 33.32◦, E 26.52◦; S 33.32◦,
E 26.52◦; S 33.29◦, E 26.51◦; S 33.41◦, E 26.50◦). Traps
were deployed at 1,600 h and retrieved at 800 h. Permits to
sample crabs were issued by the Eastern Cape Department of
Economic Development, Environmental Affairs and Tourism
(CRO 19/18CR and CRO 21/18CR). Larger crabs were selected
to most closely match the mass of the crayfishes, however, there
were few females caught in the traps. Twenty crabs (carapace
length: 53.27± 4.55mm, mass: 96.29± 22.15 g) were caught and
placed in 60 L cooler boxes with fresh dam water with battery
powered air pumps and transported to the biosecure facility
at SAIAB.

Not all collected animals were used in this experiment as
they were in use for other research purposes at the time,
therefore the animals used were a random subsample of the total
collected animals (Table 1). Animals were maintained in species
specific and sex specific holding tanks (60 L) with constantly
filtered and aerated aged tap water which was replaced twice a
week to maintain good water quality. Water temperature was
maintained at 23 ± 1◦C by a computer controlled recirculating
heating: cooling air conditioner unit. The laboratory was held
under a 12:12 light:dark regime. All animals were maintained
on cabbage leaves, broad leaved pondweed Potamogeton nodosus
and fennel-leaved pond weed Stockenia pectinatus and cultured
Eisenia sp. worms.

Experimental Setup
Individual animals were selected from the holding tank
haphazardly and patted dry before measurements were taken.
Animals were weighed (to the nearest g), the chelae length
(propodus) of both left and right chela, and cephalothorax length
were measured with Vernier calipers (to the nearest mm), and
sexed (Table 1). Animals with regenerated claws and females with
eggs were excluded due to differences in energy conservation.
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TABLE 1 | Median and range of morphometric values and closing force (N) values for P. perlatus, C. quadricarinatus and P clarkii females and males.

Species Sex (n) Mass (g)

(median

and range)

Carapace

length (mm)

(median and range)

Left chela

length (mm)

(median and range)

Right chela

length (mm)

(median and range)

Left closing

force (N)

(median and range)

Right closing

force (N)

(median and range)

Potamonautes

perlatus

F (n = 8) 95.1, 54.6–123.5 75, 59–87 33, 25–39 37, 27–45 11.0, 6.7–42.7 49.8, 10–153.4

Cherax

quadricarinatus

F (n = 27) 76.2, 22.0–132.0 69, 45–86 31, 24–41 33, 24–44 6.0, 2.0–26.0 4, 2.0–30.0

Procambarus

clarkii

F (n = 18) 50.4, 28.7–64.5 61, 47–66 36, 28–49 35, 31–45 3.3, 2.0–10.0 3.3, 2.0–5.3

Potamonautes

perlatus

M (n = 6) 70.7, 46.3–117.2 65, 58–76 28, 21–35 32.5, 26–41 6.0, 2.7–10.0 14.67, 3.3–25.3

Cherax

quadricarinatus

M (n = 25) 98.9, 38.1–144.6 71, 51–81 32, 25–41 34, 26–41 18.7, 3.3–136.7 19.43, 2.6–116.7

Procambarus

clarkii

M (n = 21) 52.1, 25.7–76.8 60, 48–65 41, 30–52 40, 25–50 2.6, 2.0–37.4 3.1, 2.0–9.3

Chelae closing force measurements were completed in vivo in
the laboratory using the Kistler system and the protocol outlined
in Herrel et al. (1999), Singh et al. (2000), and Lailvaux et al.
(2009). Animals were allowed to grip from the proximal region
of the chela onto plates set at a gap of 6mm, to allow comparison
with Miranda et al. (2016). Closing force (N) was measured five
times per individual, per chela, resulting in 10 measurements
taken for each individual. Animals were given a rest period
of 5min between measurements. The laboratory, and holding
tank water, were both held at (23 ± 1◦C) throughout the entire
acclimation and experimentation time.

Analyses
Differences in mass and cephalothorax length between species
was determined using one way non-parametric Kruskal-Wallis
tests and Dunn test post-hoc, with p-values adjusted for multiple
comparisons using Holm-Bonferroni corrections. Handedness
was assessed separately for each species, by comparing left and
right chela closing force measurements using Friedmans test to
account for repeated measures.

Closing force data were log-transformed and linear mixed-
effects models were fitted, based on maximum likelihood.
Initially the models were fitted separately to each left and right
chelae. It was assumed that chela length would affect closing
force, and to account for some individuals having asymmetrical
chelae lengths between the left and right claws, we first ran a
model to account for this rather than taking data from only
one chela. Fixed factors were “species,” “mass,” “sex” and “chela
length,” while “individual identity” was used as a random factor
nested within “species.” A full model was fitted, containing
“species,” “mass,” “sex” and “chela length,” and their interactions.
Chela length was not a significant predictor of closing force so
was removed from themodel (see results) and only themaximum
closing force obtained per individual was selected, regardless
of left or right chelae. Cephalothorax length was significantly
correlated with mass and thus not included in the analysis
(Figure 1). If either the fixed factors, or the interaction did not
have a significant effect, in subsequent steps the model was re-run

with non-significant terms removed, starting with the interaction
term. The final model only contained significant terms to obtain
the most parsimonious model. Differences were calculated post-
hoc using χ

2 to communicate effect size. All analyses were
performed in an R environment (R Core Team, 2018), using the
package nlme (Pinheiro et al., 2018).

RESULTS

There were significant differences in mass of each species (χ2

= 39.03, df = 2, p < 0.001; Table 1, Figure 1), where P. clarkii
weighed less than both C. quadricarinatus (z = 5.83, p < 0.001;
Table 1, Figure 1) and P. perlatus (z = 4.11, p < 0.001; Table 1,
Figure 1), however there was no difference between P. perlatus
and C. quadricarinatus mass (z = 0.08, p = 0.93; Table 1,
Figure 1).

Potamonautes perlatus had significantly stronger right chela
closing force than left (Friedmans χ

2
= 15.05, df = 1, p <

0.0001; Supplementary Figures S1, S2). Contrastingly, both C.
quadricarinatus and P. clarkii had significantly stronger left
chela closing force (respectively: Friedmans χ

2
= 5.68, df

= 1, p < 0.05, Friedmans χ
2
= 5.09, df = 1, p < 0.05;

Supplementary Figures S1, S2). Female P. perlatus had a higher
left and right chela closing force than males (Table 1, Figure 2)
whereas, male C. quadricarinatus had a higher left and right chela
closing force than females (Table 1, Figure 2). There were no sex
differences in left or right chela closing force in P. clarkii (Table 1,
Figure 2). Chelae length did not affect closing force in any species
on either left or right chelae (left: χ

2
= 0.19, df = 1, p = 0.65;

right: χ2
= 0.83, df = 1, p= 0.36).

There was a significant interaction between species
and sex on maximum closing force (Table 2, Figure 3;
Supplementary Figure S3). Species and sex both had
significant main effects on closing fsorce (Table 2, Figure 3;
Supplementary Figure S3). Closing force increased
significantly with mass for all species (Table 2, Figure 3;
Supplementary Figure S3). Opposite trends in maximum
closing force were seen between male and female P. perlatus and
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FIGURE 1 | Linear regressions and SE of Log10 mass (g) and Log10 Cephalothorax length (mm) of P. perlatus, C. quadricarinatus and P. clarkii.

FIGURE 2 | Median maximum closing force (N) of left and right chelae of female and male P. perlatus, C. quadricarinatus, and P. clarkii. Individual points represent raw

data. Boxplots represent median value and 25–75% interquartile range.
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TABLE 2 | Model terms for all factors from a linear mixed effects model used to

determine differences in maximum closing force (N) with regards to fixed factors

“species,” “sex,” and “mass,” using a Type 3 Anova and χ2 to report the effect

size of a factor on the dependent variable.

Predictor Maximum closing force (N)

χ
2 df p-value

Species 39.25 2 <0.001

Sex 32.94 1 <0.001

Mass 23.02 1 <0.001

Species*Sex 29.86 2 <0.001

C. quadricarinatus, however there was no difference between
male and female closing force in P. clarkii (p = 0.46). Female
P. perlatus had a significantly stronger closing force than male
P. perlatus, female C. quadricarinatus, and both sexes of P.
clarkii (all p < 0.01). There was no difference between female
P. perlatus closing strength and male C. quadricarinatus or
between male P. perlatus and female C. quadricarinatus (both
p > 0.05). However, male C. quadricarinatus had significantly
higher maximum closing forces than male P. perlatus (p < 0.01).
Male P. perlatus had significantly stronger maximum closing
forces than both sexes of P. clarkii (all p < 0.01). There was no
difference between maximum closing force of P. clarkii females
and C. quadricarinatus females (p= 0.58).

DISCUSSION

Determining what makes systems resilient to biological invasion
is a many faceted challenge (Holling, 1973; Havel et al., 2015).
Nonetheless, by understanding basic differences in physical
capacity it is possible to infer how performance can relate to
species interaction outcomes within an invasion scenario (Griffen
and Mosblack, 2011). We predicted that the invasive crayfish
species would have a higher maximum closing force than native
crabs, however, this proved to be unequivocal at least when
considering animals of the same size. Given that there have been
reports of invasive crayfish reducing abundance of trophically
analogous decapods (Ogada, 2007; Ogada et al., 2009; Zeng et al.,
2019), these results suggest that P. perlatus has the capacity to
hold a competitive mechanical advantage over both invaders, but
that this varies with sex. Unfortunately, our results are based on
a small sample size of native P. perlatus which may confound
results with regards to sex based differences. Nonetheless, there
was a more even amount of males and females amongst smaller
P. perlatus individuals (50–80 g) whereas the heavier individuals
(>100 g) were predominantly female. Our results indicate that
there are other mechanisms at play that may cause freshwater
crabs to be competitively excluded by invasive crayfish species,
rather than brute strength. Although, population size structure,
growth rates, and maximum attainable mass of each species will
affect competitive exclusion. For example, larger individuals will
have a higher resource holding potential over smaller individuals
of any species. Resultingly, it is possible to determine maximum

chelae strength for these species through correlation with mass
and sex but it is unclear as to whether chelae strength can
actually be a predictor for resource holding potential or success
in agonistic contests.

Closing force relates to ability of an individual to pinch
down onto a subject. Whether this is for direct predation,
during agonistic contests, reproductive purposes, or even to
withstand abiotic disturbances such as high flow rates (Gherardi,
2002; Ion et al., 2019). It can be assumed that the larger
the closing force the more damage may be conferred to the
recipient despite high force conferring a high energy cost to
the individual (Herrel et al., 1999; Wilson et al., 2007). Our
results of chela closing force fall well within the range reported
for P. perlatus (18–598N) (Miranda et al., 2016), and for P.
clarkii (males: 1.35 ± 0.41 N/g; females: 2.22 ± 0.89 N/g; see
Supplementary Figure 3 for N/g results) (Claussen et al., 2007;
Malavé et al., 2018). Similar to our results (Claussen et al.,
2007) and Malavé et al. (2018) found sexual dimorphism in
chela length where male P. clarkii had longer chela than females
but this did not relate to closing force. This is likely related to
reproductive activities and the cost of signaling during male-
male contests (Stein, 1976). Contrastingly, P. perlatus females
were stronger than males indicating a difference in resource
holding potential between sexes and species. These differences
may also be exacerbated in a natural setting when individuals
are in or out of reproductive status. For example, female P.
clarkii are more aggressive and more successful when they
are maternal compared to non-maternal females and males
(Peeke et al., 1995; Figler et al., 2005). Another native African
crab species (Potamonautes sidneyi) had a significantly weaker
closing force than P. perlatus (8–43N) (Miranda et al., 2016).
There is no prior published data on the closing force of C.
quadricarinatus, but for comparative purposes the closing force
of the largest terrestrial arthropod, the coconut crab (Birgus
latro), is 29.4–1765.2N (Oka et al., 2016), of which the lower
ranges all overlap with the three species in the present study.
In a first attempt to incorporate C. quadricarinatus into impact
assessments, Zeng et al. (2019), show that larger bodied C.
quadricarinatus have a competitive advantage over a native
freshwater crab (Parathelphusa maculata) when competing for
shelter space.

The presence of heterochely or “cutter vs. crusher” is well-
established in marine decapods but it is less evident in freshwater
crayfish species (Govind, 1989; Schenk and Wainwright, 2001;
Lele and Pârvulescu, 2019). In essence it describes potential
handedness between left and right chelae. Potamonautes perlatus
had stronger right chela, whereas C. quadricarinatus and P.
clarkii had stronger left chela. As claw length was not an effective
predictor of strength it suggests a degree of ambidexterity
between left and right chelae in all of these species as a
response to likelihood of losing chelae during agonistic bouts
(Kouba et al., 2011; Lele and Pârvulescu, 2019). The lack
of strong morphometric predictors reinforces the concept of
dishonest signaling in crayfish species (Wilson et al., 2007;
Malavé et al., 2018). This combination of potential dishonest
signaling and opposite trends in dominant chelae could be
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FIGURE 3 | Predicted maximum closing force correlation with mass (g) of female (left panel) and male (right panel) P. perlatus, C. quadricarinatus, and P. clarkii with

95% confidence intervals. Individual points indicate raw data points for each species.

a factor in competition between crab and crayfish species
despite P. perlatus females dominating mechanically. Potential
for biotic resistance, either consumptive or competitive, is
likely to be species specific and still further regulated by
other biotic and abiotic parameters (deRivera et al., 2005).
In this case, size mis-matches, differential spatial ecology,
abundance, and type of resources present in a system are
all possible factors that could be driving the likelihood of
biotic resistance.

Freshwater crabs and crayfish are polytrophic keystone
consumers that occupy an unusually large dietary niche breadth
as a result of generalist feeding strategies (Jackson et al., 2014,
2016). Chelae are regularly used in decapod feeding to assist in
subduing, capturing, holding, and manipulating resource items
(Loya-Javellana et al., 1993; Mariappan et al., 2000). This is
particularly important when considering durophagous feeding,
as crushing predators are thus limited by their strength to
process prey items such as snails, but also limited by the shell
resistance and predator induced phenotype changes (DeWitt
et al., 2000; Evers et al., 2011; Miranda et al., 2016). There is
limited information on crush resistance of African gastropod
species, but the invasive snail Tarebia granifera has a resistance
of 100 ± 6 (mean ± se) N, while native Melanoides tuberculata
has a resistance of 31 ± 4N (Miranda et al., 2016). However,
in its invasive range in Lake Malawi M. tuberculata has a
crush resistance range of 18.63–94.73N (Evers et al., 2011).
Bulinus globosus and Bulinus nyassanus are native gastropods
of Lake Malawi, which have crush resistance ranges of 2.29–
4.79N and 8.33–117.82N, respectively (Evers et al., 2011).
All three of the species represented in this study, besides
female P. clarkii, have the capacity to handle all of these

gastropod species. The relatively high crush resistance of the
invaders suggests that this may facilitate their persistence in
a system, however it should also be considered that if the
southern African crayfish invasion persists there could be an
invasion meltdown scenario where predation is concentrated
on the native gastropods and facilitates population expansion
of the invasive gastropods (Ricciardi, 2001; Simberloff, 2006).
An invasion meltdown scenario may also be facilitated in the
wild by Potamonautes sp. via differences in biotic resistance.
Although, the cost-benefit of undertaking crushing activities for
food, rather than reproductive efforts, should be investigated as
it is likely that predators select for forage with low handling
demands (Murdoch, 1969; Behrens Yamada and Boulding, 1998).
The present study focuses on the relative differences in closing
force with respect to resource utilisation and non-consumptive
competition but direct predation by either crabs or crayfish upon
heterospecific juveniles is also likely. Therefore, addressing actual
contest outcomes and consumption rates between different sized
individuals of each species would further our understanding of
competitive interactions.

Handling vegetation and crushing prey items require
differences in closing force and dentition patterns (Sibbing,
1991; Herrel et al., 1999). Thus, differences in closing force
could also relate to niche separation between the species
when they occur in sympatry, which could in turn facilitate
species persistence of both natives and invaders. Procambarus
clarkii exhibit this pattern of niche breadth reduction when
found in sympatry with P. loveni, where they affect leaf
litter breakdown due to direct consumption (Jackson et al.,
2016; Nishijima et al., 2017), possibly related to differences
in chela morphology (Sibbing, 1991). Further, P. clarkii is
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capable of exerting predatory pressure on planktonic prey items
which do not need strong crushing capacity to handle (South
et al., 2019). Little work has been completed on the diet
and trophic niche of C. quadricarinatus in either its invasive
or native range. Nonetheless, Marufu et al. (2018) found the
main diet components of the Lake Kariba C. quadricarinatus
population to be predominantly macrophytes, detritus and
macroinvertebrates. In Lake Kariba the trophic niche of crayfish
differed with size class, wherein macroinvertebrate consumption
increased with size, which could potentially be due to the
positive relationship between mass and closing force (Marufu
et al., 2018). Comparative functional morphology of decapod
chelae and feeding apparatus should thus be incorporated into
invasion risk assessments as ecomorphology can help to predict
impact (Nagelkerke et al., 2018).

Due to the complex nature of trophic interactions and
food web structuring, particularly within a stochastic aquatic
environment, it is difficult to determine mechanisms of biotic
resistance in situ (Havel et al., 2015). Comparing species
traits is a first step in assessing whether native species will
exhibit some degree of either competitive or consumptive
resistance toward invaders (Funk et al., 2008; Kumschick and
Richardson, 2013; Zeng et al., 2015). The results presented
here indicate that chelae closing force can be predicted by
body mass and sex of the individual for all three decapod
species but in order to correctly predict biotic resistance these
must be validated further by assessing actual resource holding
potential. Consequently, when trait based analysis should be
complemented with other predictive assessments such as the
comparative functional response and relative impact potential
metrics (Dick et al., 2017; Dickey et al., 2018; South et al.,
2019; but see Vonesh et al., 2017), but also with contest based
experiments (Lopez et al., 2019; Zeng et al., 2019). Unfortunately,
there is a severe paucity of data on the ecological impact of C.
quadricarinatus but also on the basic ecology of Potamonautid
crabs in southern Africa. Further, the specific dynamics of
invasion and the recipient system can mediate trait expression
in populations across the invasion gradient, whereupon crayfish
at the invasion front can be more aggressive (Pintor et al.,
2009), or they have smaller and less heavy chela as a response
to reduced competition (Messager and Olden, 2019). Therefore,
a considerable amount of baseline assessment (i.e., abundance,
size structure, fecundity, distribution, and diet) is needed to be
completed in order to effectively assess the risk that both invasive
crayfish species pose toward functionally similar and ecologically
important species such as freshwater crabs. Further, assessing
actual interaction frequency and habitat or resource use overlap
between different sized native and invasive decapod species
would determine the potential degree of biotic resistance in
the environment.
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