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Sequencing of cell-free DNA in the blood of cancer patients (liquid biopsy) provides attractive

opportunities for early diagnosis, assessment of treatment response, and minimally invasive

disease monitoring. To unlock liquid biopsy analysis for pediatric tumors with few genetic

aberrations, we introduce an integrated genetic/epigenetic analysis method and demonstrate

its utility on 241 deep whole-genome sequencing profiles of 95 patients with Ewing sarcoma

and 31 patients with other pediatric sarcomas. Our method achieves sensitive detection and

classification of circulating tumor DNA in peripheral blood independent of any genetic

alterations. Moreover, we benchmark different metrics for cell-free DNA fragmentation

analysis, and we introduce the LIQUORICE algorithm for detecting circulating tumor DNA

based on cancer-specific chromatin signatures. Finally, we combine several fragmentation-

based metrics into an integrated machine learning classifier for liquid biopsy analysis that

exploits widespread epigenetic deregulation and is tailored to cancers with low mutation

rates. Clinical associations highlight the potential value of cfDNA fragmentation patterns as

prognostic biomarkers in Ewing sarcoma. In summary, our study provides a comprehensive

analysis of circulating tumor DNA beyond recurrent genetic aberrations, and it renders the

benefits of liquid biopsy more readily accessible for childhood cancers.
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Liquid biopsy analysis of circulating cell-free DNA (cfDNA)
from peripheral blood has emerged as a valuable diagnostic
tool in oncology1–5. Sample collection is quick and mini-

mally invasive, thus allowing longitudinal analysis with high
temporal resolution. In cancer patients, cfDNA consists in part of
cancer-derived circulating tumor DNA (ctDNA), and it has been
shown that tumor-related genetic and epigenetic alterations can
be detected by analyzing cfDNA in cancer patients6–14. As a
consequence, cfDNA analysis holds great promise for precision
oncology and personalized therapies, and is currently evaluated in
a broad range of clinical studies15,16.

In pediatric tumors, high levels of tumor-derived DNA in
blood have been linked to poor clinical outcome17, and initial
studies illustrate the value of liquid biopsy analysis for disease
monitoring18,19. The analysis of cfDNA in childhood cancers
has focused primarily on tumor-specific genetic aberrations,
including chromosomal translocations (fusion genes) and copy-
number alternations (CNAs), using assays such as droplet digital
PCR (ddPCR), targeted NGS panels, exome sequencing, and
low-coverage whole-genome sequencing17,19–27. These approa-
ches depend on the presence of readily detectable genetic
aberrations, require prior knowledge of chromosomal break-
points (ddPCR), focus on only one or a few genetic alterations
(ddPCR, targeted NGS panels), and may suffer from low
sensitivity6,28,29. There is thus an unmet need for new approa-
ches to liquid biopsy analysis in pediatric tumors, particularly
accounting for the low rate of recurrent genetic alterations
observed in most childhood cancers30,31.

Recent studies indicate that cfDNA fragmentation patterns
provide complementary information to the genetic analysis of
somatic mutations and copy-number aberrations. Given the low
rate of genetic alterations in many childhood cancers, such
fragmentation-based methods could be of high relevance for
pediatric oncology. These methods are based on the intriguing
observation that the fragmentation of DNA from dying tumor cells
is neither random nor determined solely by DNA sequence; rather,
it appears to reflect the chromatin structure and epigenetic states
of the cells from which the DNA fragments were derived32–35

(Fig. 1). Given that many pediatric tumors harbor highly char-
acteristic epigenetic aberrations36–44, analyzing cfDNA fragmen-
tation patterns may not only help quantify ctDNA in the absence
of recurrent genetic aberrations, but it may also provide minimally
invasive insights into the tumor’s epigenetic state at diagnosis,
relapse, and over the course of therapy.

Ewing sarcoma (EwS)45 constitutes an ideal model cancer for
establishing and validating fragment-based liquid biopsy analysis
for pediatric tumors. EwS has a unique epigenetic signature with
established clinical associations41, which constitutes a potential
epigenetic marker for early diagnosis and tumor classification
based on cfDNA. Moreover, EwS tumors have well-established
genetic aberrations that can be used for comparison, most notably
the tumor-defining chromosomal translocation between EWSR1
and an Ets family member gene (most commonly FLI1), and a
small number of recurrent CNAs46–48.

In this work, we establish a reference data set of cfDNA whole-
genome sequencing profiles for a large collection of patients with
EwS and other pediatric sarcomas. We present an integrative
analysis and comparison of fragmentation patterns in this data set
(Fig. 1), including (i) global fragment-size distribution; (ii)
regional fragment-size distribution along the genome; and (iii)
fragment coverage at predefined regions-of-interest. We show
that tumor DNA in the blood of patients with EwS is highly and
characteristically fragmented, we identify an EwS-specific epige-
netic signature among regional fragmentation patterns across the
genome, and we introduce a bioinformatic method for accurate
quantification of these epigenetic signatures in cfDNA. Moreover,

we investigate the clinical associations of cfDNA fragmentation
patterns, and we introduce a machine learning method that
integrates multiple cfDNA fragment-based metrics into highly
predictive models for the detection and classification of pediatric
solid tumors. In summary, we present one of the largest cfDNA
sequencing studies for childhood cancer, resulting in a detailed
genetic and epigenetic analysis of EwS tumors using liquid
biopsies. Our study contributes to liquid biopsy methodology by
introducing an integrated, broadly applicable, method for detec-
tion and quantification of epigenetic signatures based on cfDNA
fragmentation patterns.

Results
Deep whole-genome sequencing of cell-free DNA uncovers
tumor-specific fragmentation patterns. To establish a compre-
hensive data set for liquid biopsy analysis in pediatric sarcomas, we
performed whole-genome sequencing with a median coverage of
12× for 263 cfDNA samples collected from EwS patients (n= 95),
other pediatric sarcomas (n= 31), and healthy controls (n= 22)
(Fig. 1 and Supplementary Data 1). Where possible, we included
samples from the same patient at multiple stages of cancer (at
diagnosis and during therapy, remission, and relapse), to be able to
monitor disease courses in individual patients.

We first performed genetic analysis of the cfDNA samples
based on the whole-genome sequencing data and, indepen-
dently, based on ddPCR experiments targeting the EwS-specific
EWS-Ets fusion oncogene. This genetic analysis allowed us to
estimate the percentage of tumor-derived DNA for each cfDNA
sample, and it provided a reference for the fragment-based
analysis (Fig. 1). We applied three methods for the genetic
analysis of cfDNA in pediatric sarcomas: (i) CNA quantification
based on read depth using ichorCNA7; (ii) quantification of the
EWS-Ets fusion oncogene from the whole-genome sequencing
data17; and (iii) EWS-Ets quantification using ddPCR23. Based
on the combination of these genetic methods, we detected
tumor-derived DNA in 99 cfDNA samples (from 61 patients
with EwS), of which 59 had more than 20% tumor content in
cfDNA (Supplementary Data 2).

Next, we analyzed global DNA fragmentation patterns as a
non-genetic way of detecting tumor-derived DNA in the cfDNA
samples (Fig. 2a), building upon recent reports suggesting that
DNA fragmentation patterns of cfDNA reflect the chromatin
profiles of the cells from which the cfDNA is derived32–35. We
observed a global shift toward shorter fragments in the cfDNA of
patients with EwS compared to healthy controls, especially for the
characteristic 167 bp peak of cfDNA, which corresponds to the
length of DNA bound by one nucleosome plus linker DNA.

We quantified these tumor-induced changes using published
cfDNA metrics49, most notably the proportion of short fragments
with sizes below 150 bp (Supplementary Data 3). This proportion of
short fragments was consistently higher in cfDNA samples from
patients with EwS than from healthy controls (p < 0.001,
Mann–Whitney U test; Fig. 2b). The trend toward shorter fragment
sizes was similarly pronounced as in patients with adult cancers
known for their high levels of tumor-derived DNA and high
fragmentation in cfDNA, such as lung and colorectal cancers49

(Fig. 2b). We also observed similar fragmentation patterns for
cfDNA samples from patients with other pediatric sarcomas
(Supplementary Fig. 1a). Our analysis of cfDNA fragmentation
patterns strongly suggests that pediatric sarcoma-derived DNA is
more fragmented than cfDNA from other sources (e.g., from dying
blood and tissue cells). This conclusion was further supported by
the fact that cfDNA samples with high tumor-derived DNA content
(based on genetic evidence) had the highest proportion of short
fragments (Fig. 2b).
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Interestingly, many cfDNA samples from patients that did not
show genetic evidence of tumor-derived DNA still had a higher
proportion of short fragments compared to those obtained from
healthy controls (Fig. 2b and Supplementary Fig. 1a). We thus
hypothesized that our analysis of the global fragment-size
distribution detects low levels of tumor-derived DNA not seen
using genetic markers. Indeed, for five patients with EwS we
observed a high proportion of short reads and high tumor
content in cfDNA based on EWS-Ets quantification, but no
detectable CNAs (Supplementary Fig. 1b and Supplementary
Data 2). Such copy-number neutral cases, which are common in
pediatric tumors30, highlight the potential clinical value of non-
genetic methods for analyzing cfDNA based on fragmentation
patterns.

In summary, we observed a characteristic global fragment-
size distribution in cfDNA from patients with pediatric
sarcomas, similar to previous reports for adult cancers49,50.
These fragmentation patterns may be exploited for detection
and quantification of tumor-derived DNA independent of any
genetic aberrations, which is particularly relevant for pediatric
tumors with few genetic lesions.

Fragment-size filtering of cfDNA profiles enhances CNA
detection and improves monitoring of clonal evolution. We
can exploit the observation that short cfDNA fragments tend
to be tumor-derived, in order to enrich for these DNA frag-
ments in the genetic analysis of CNAs49,50 and thereby
refine the mapping of tumor-associated CNAs46–48. In EwS,

CNAs are more frequent than recurrent somatic mutations30,
and they are being investigated as potential biomarkers51.
Moreover, accurate CNA profiles can support the analysis of
clonal heterogeneity and evolutionary history52. We thus
evaluated whether filtering for short fragments enhances CNA
detection in our data set.

First, we assessed how well cfDNA-derived CNA profiles
recapitulate those of the corresponding primary tumor. To that
end, we performed low-coverage whole-genome sequencing on
DNA extracted from 43 matched EwS tumor samples (Supple-
mentary Data 4). We generally observed high concordance
between the CNA profiles of cfDNA and those of the matched
primary tumors (Fig. 3a). However, we also identified individual
cases in which the cfDNA-derived profiles showed CNAs that
were not detected in the primary tumor. This can occur when the
sequenced tumor sample (which comprises only a fraction of the
entire tumor mass) does not include certain subclones that are
detectable in cfDNA. We also observed cases in which specific
CNAs were detected only in the tumor sample, but not the
cfDNA. This may arise when certain subclones do not shed DNA
into the bloodstream at high enough rates to be detectable. In
four instances, in silico size selection for fragments in the range of
90–150 bp improved the detection threshold and confidence for
specific CNA events in cfDNA (Fig. 3b).

Second, we compared the CNA-based quantification of tumor
content between the unfiltered cfDNA sequencing data and the
same data after in silico size selection for fragments in the range
of 90–150 bp. Across the entire cfDNA data set, fragment-size

Fig. 1 Whole-genome sequencing of cfDNA enables fragment-based liquid biopsy analysis in Ewing sarcoma. The top row of the figure describes the
fragmentation and fragment-based analysis of cfDNA in cancer patients. The center row introduces the study cohort (center left) and illustrates the
quantification of tumor-derived DNA based on genetic evidence, which is used as a reference in this study (center right). The bottom part of the figure
outlines three complementary approaches to fragment-based cfDNA analyses: global fragment-size distribution; regional fragment-size distribution along
the genome; and fragment coverage at regions-of-interest (bottom left). CNA profiles were used for comparing cfDNA to matched tumors biopsies and for
time-resolved monitoring of tumor evolution. Fragment-based cfDNA metrics were combined for machine learning-based tumor detection and
classification (bottom right). The main figures describing each of the analyses are indicated in brackets.
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filtering resulted in a mean increase of 19 percentage points
for the inferred content of tumor-derived DNA (p < 0.001,
Wilcoxon signed-rank test; Supplementary Fig. 2a and Supple-
mentary Data 2). As the result of fragment-size filtering, we were
able to identify several weak and often subclonal CNAs.
Focusing on CNAs that are commonly found in EwS tumors
(gains of Chromosome 1q, Chromosome 8, and Chromosome
12; deletion of Chromosome 16q)48, in silico size selection
enhanced CNA detection in 11 cfDNA samples (Fig. 3b and
Supplementary Fig. 2b).

Third, we explored the utility of the refined CNA-based
analysis of cfDNA for minimally invasive monitoring of somatic
evolution and disease progression. We focused on 13 patients
with at least two cfDNA samples collected at different time points
and more than 5% tumor-derived DNA content (according to
ichorCNA). Based on the fragment-size filtered CNA dynamics
we identified three groups of patients: those with a stable CNA
profile over time (n= 5); those that exclusively lose (n= 1) or
gain (n= 2) CNAs over time; and those that simultaneously lose
and gain CNAs over time (n= 5) (Fig. 3c and Supplementary
Fig. 2c). These results illustrate how EwS tumors follow diverse
evolutionary dynamics over the course of diagnosis, treatment,
and relapse.

In summary, we found that fragment-size filtering increases the
sensitivity for detecting EwS-specific CNAs in cfDNA, allowing
us to follow individual patients during disease progression with
high subclonal resolution.

Differences in cfDNA fragmentation along the genome reflect
Ewing sarcoma-specific chromatin profiles. To investigate
how the fragmentation patterns of tumor-derived cfDNA are
influenced by the characteristic chromatin structure of EwS
tumors, we analyzed the size distribution of cfDNA fragments in
a position-dependent manner along the genome (Fig. 4a). We
split the genome into 100 kb bins and calculated, for each bin, the
ratio of short (S, 100–150 bp) to long fragments (L, 151–220 bp),
resulting in genome-wide fragmentation profiles for each cfDNA
sample32,53. The profiles of S/L ratios throughout the genome
were normalized in each cfDNA sample and compared to the
healthy controls (Fig. 4b).

We found that cfDNA samples with detectable tumor-derived
DNA showed differential fragmentation patterns across entire
chromosome arms; importantly, these differences persisted after
excluding chromosomal arms harboring CNAs (individually for
each sample), which have the potential to bias the S/L ratios
(Fig. 4c and Supplementary Fig. 3a, b, Supplementary Data 5).
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Fig. 2 Global fragment-size analysis detects highly fragmented EwS tumor DNA. a Histogram (top) showing the cfDNA fragment-size distribution for
three representative samples with high (95%), low (2%), and undetectable (0%) tumor-derived DNA (ctDNA) content. The range of cfDNA fragment
sizes in 22 healthy controls is shown in gray. Heatmap (bottom) showing the relative fragment-size distribution of 235 cfDNA samples subjected to whole-
genome sequencing, each normalized against the median of 22 healthy controls. EwS samples are grouped by genetically inferred tumor-derived DNA
content. The three samples shown in the histogram are marked by arrows. b Proportion of short cfDNA fragments (20-150 bp) for pediatric sarcomas and
healthy controls (data from this study) and for adult cancers (published data49). Boxes correspond to interquartile ranges (IQR), black lines indicate the
median, and the whiskers extend to the lowest or highest data points that are still within 1.5 IQR of the bottom or top quartile, respectively. Significance
versus the 22 healthy controls was assessed using two-sided Mann–Whitney U tests.
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For instance, fragments mapping to Chromosome 8 (which is
commonly affected by chromosomal gains in EwS), were
significantly shorter in the EwS cfDNA samples (higher S/L
ratio). On the other hand, Chromosome 12 (which is also affected
by recurrent chromosomal gains48) was significantly enriched in
longer fragments (lower S/L ratio). Chromosome 1q (which is
commonly affected by chromosomal gains) and Chromosome
16q (which is commonly affected by chromosomal deletions)
were not significantly enriched for shorter or longer fragments
(Fig. 4c and Supplementary Fig. 3b). Interestingly, the observed
regional fragmentation patterns were similar between EwS and
other pediatric sarcomas (Fig. 4c and Supplementary Fig. 3b).
These results suggest that the observed fragmentation patterns
cannot be explained as a side effect of CNAs but rather reflect
different biological properties of these chromosomes.

To connect these observations to EwS biology, we performed
region-set enrichment analysis (using the LOLA software54) on
those CNA-neutral 100 kb bins that had significantly different S/
L ratios compared to healthy controls (Fig. 4d and Supplemen-
tary Data 6). Based on LOLA’s comprehensive database of
region sets with epigenetic and transcription-regulatory annota-
tions, we found that bins with shorter fragments (higher S/L
ratios) than in healthy controls were enriched for regions with
EwS-specific open chromatin, showing peaks of promoter/
enhancer-associated histone H3K27 acetylation in EwS tumors
and EwS-specific DNase I hypersensitive sites (Fig. 4e and
Supplementary Data 6). In contrast, none of the non-EwS
tumor samples or randomized bins showed enrichment for this
genomic region set, thus confirming the specificity of the
observed EwS signature.

Fig. 3 CNA profiles in liquid biopsies reflect tumor aberrations and allow monitoring of tumor evolution. a Comparison of CNAs detected in cfDNA
versus matched tumor biopsies. Only sample pairs with tumor-derived DNA detected in cfDNA based on ichorCNA are shown (n= 29 sample pairs); four
copy-number neutral sample pairs were omitted from the plot. Patients are grouped according to CNA state in cfDNA relative to the matched tumor
biopsy. Gray represents CNAs detected in both cfDNA and matched tumor biopsy, orange indicates CNAs detected only in cfDNA, and turquoise
represents CNAs detected only in the tumor biopsy. The CNAs detected in cfDNAs versus matched tumor biopsies are summarized in a bar plot (bottom).
b CNA plot (ichorCNA) of an EwS cfDNA sample (EwS_90_1) before (middle) and after (bottom) in silico size selection to the range of 90–150 bp. A
subclonal CNA on chromosome 16 (indicated by black arrows) that was clearly visible in the tumor biopsy (top) became detectable in the matched cfDNA
sample only after in silico size selection. c CNA profiles (ichorCNA) of longitudinal cfDNA samples derived from the same patient (EwS_5) support the
monitoring of somatic clonal evolution for individual patients. The filtered CNA profiles of samples collected at diagnosis and two subsequent relapses are
shown. The day of sample collection relative to the day of diagnosis is indicated (left). Inferred chromosomal gains are shown in red, inferred deletions are
shown in green, and CNA-neutral regions are shown in blue.
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Bins with short fragments in EwS cfDNA samples were also
enriched for regions of open chromatin in the prostate, neural
cells, fibroblasts, and muscle (Fig. 4d)—cell types that share key
biological properties with EwS cells and/or with the suspected
cell-of-origin of EwS45. Moreover, they were enriched for regions
of closed chromatin in hematopoietic cells, while bins with lower
S/L ratios than in healthy controls (i.e., longer fragments in EwS
cfDNA samples) were enriched for open chromatin in hemato-
poietic cells. These results are consistent with evidence that

cfDNA in healthy donors is primarily derived from hematopoietic
cells2,35,55, and it is very likely that the tumor-derived DNA in
cfDNA samples from EwS patients results in a lower ratio of
blood-derived cfDNA.

Finally, we tested if regional fragmentation patterns could be
used for patient-specific disease monitoring in EwS, in order to
complement the CNA-based analysis described above (Fig. 3c and
Supplementary Fig. 2c). We focused on those seven patients for
whom we had cfDNA samples with genetic tumor evidence both

Fig. 4 Regional fragment-size analysis detects an EwS tumor-specific epigenetic signature in cfDNA samples. a Schematic illustration of the regional
fragment-size analysis, measuring the ratio of short (S) versus long (L) cfDNA fragments in 100 kb bins along the genome. Genomic regions that overlap
with CNAs are excluded in order to focus the analysis on epigenetic signatures reflected in the cfDNA fragmentation patterns. b Heatmap comparing the
genome-wide fragmentation profiles of cfDNA samples from patients with pediatric sarcoma to those of healthy controls. In each 100 kb bin (n= 20,706
bins), the log2(S/L ratio) of each sarcoma sample was compared to the distribution of log2(S/L ratios) of healthy controls via z-scores. Both CNA-affected
and CNA-neutral bins are shown. EwS samples are grouped by genetically inferred tumor-derived DNA content. c Regional cfDNA fragmentation in
patients with pediatric sarcoma compared to healthy controls. Only chromosome arms that are recurrently affected by CNAs in EwS tumors are shown.
Box plots illustrate z-scores for EwS samples with genetic tumor evidence and without detected CNAs on the chromosomal arm (red), non-EwS sarcomas
with genetic tumor evidence and without detected CNAs on the chromosomal arm (black), EwS samples without genetic tumor evidence (yellow), and
healthy controls (green). The significance of the first group versus each of the other three groups was assessed using the two-sided Mann–Whitney U test;
Bonferroni-corrected p-values are shown. Boxes correspond to interquartile ranges (IQR), thick black lines indicate the median, and the whiskers extend to
the lowest or highest data point that are still within 1.5 IQR of the bottom or top quartile, respectively. d Functional enrichment analysis for regions with
significantly shorter/longer cfDNA fragment size compared to healthy controls based on the LOLA software54. A selection of enriched terms is shown,
while the full list is provided in Supplementary Data 6. e EwS tumor-specific epigenome profiles for selected regions with significantly shorter cfDNA
fragment size compared to healthy controls. The genome browser profiles show open chromatin-associated histone H3K27 acetylation (for regions with
shorter fragments) based on ChIP-seq data for primary EwS tumors41. EwS-specific DHSs along the selected genomic region are also indicated.
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at diagnosis and relapse, and we selected CNA-neutral genomic
bins overlapping with regions of EwS-specific open chromatin.
Among the bins that showed variable S/L ratios over time, two
gene loci with a well-established role in EwS stood out (they were
ranked fifth and sixth overall): STAG156 and SMARCC1
(BAF155)57 (Supplementary Fig. 3c, d and Supplementary Data 7).
Although this analysis requires further validation, especially in
matched tumor samples collected at diagnosis and relapse, it
illustrates the potential of liquid biopsies for monitoring the state
of gene-regulatory elements during disease progression.

In summary, we found that regional differences in cfDNA
fragmentation across the genome reflect the chromatin structure
of the EwS tumor cells—and of the normal hematopoietic cells—
that contribute to the cfDNA circulating in the blood stream.

cfDNA fragmentation at EwS-regulatory regions detects tumor-
derived DNA independent of genetic alterations. Building upon
our observation that the characteristic chromatin structure of EwS
is detectable in the fragmentation patterns of cfDNA, we explored
the feasibility of monitoring tumor-derived DNA independent of
any genetic alterations. To that end, we developed a dedicated
method and software tool for fragmentation analysis of cfDNA in
the context of tumor-specific epigenetic alterations—such as the
characteristic regions of de novo open chromatin that we and
others previously discovered in EwS41,58,59. Our new tool, which
we named LIQUORICE (for liquid biopsy regions-of-interest
coverage estimation), overlays genome-wide cfDNA fragment
profiles with a predefined set of genomic regions that are fre-
quently altered in the studied cancer type, and it calculates a bias-
corrected consensus (composite) signature of fragment coverage
throughout these regions-of-interest (Fig. 5a and Supplementary
Fig. 4a, b).

We focused on four types of genomic region sets with
previously reported regulatory relevance in EwS41,59: (i) EwS-
specific DNase I hypersensitive sites (DHSs); (ii) EWS-FLI1
binding sites; (iii) EWS-FLI1-correlated enhancers, defined as
elements that lose histone H3K27 acetylation upon EWS-FLI1
knockdown; and (iv) EWS-FLI1-anti-correlated enhancers,
defined as elements that gain histone H3K27 acetylation upon
EWS-FLI1 knockdown (Supplementary Data 8). For each
cfDNA sample and each region set, we determined the
consensus signature of cfDNA fragment coverage by averaging
across all regions of the given type (Fig. 5b). For patients with
EwS (especially those with detectable tumor-derived DNA), we
observed a striking reduction of cfDNA fragment coverage for
EwS-specific DHSs, EWS-FLI1 binding sites, and EWS-FLI1-
correlated enhancers. In contrast, EWS-FLI1-anti-correlated
enhancers showed no such depletion, nor did cfDNA samples
from other pediatric sarcomas, whereas universally open DHSs
showed similar depletion patterns in all patients and in healthy
individuals. These results emphasize that the focus on regions
with EwS-specific open chromatin confers specificity regarding
the tumor type to our LIQUORICE-based analysis of cfDNA
fragmentation patterns.

To confirm that the depletion of cfDNA fragments at the EwS-
regulatory regions indeed reflects the characteristic epigenetic
states of the tumors from which the cfDNA is derived, we
performed genome-scale DNA methylation profiling in matched
tumor samples (n= 38), using the reduced representation
bisulfite sequencing assay41 (Supplementary Data 4). We plotted
the mean DNA methylation levels across EwS-specific DHSs and
observed a striking depletion of DNA methylation in those
regions in the primary tumors, mimicking the depletion of
cfDNA fragments (Fig. 5c). This result is consistent with our
previous finding that DNA methylation in primary EwS tumors is

depleted at EwS-specific DHSs41, and it provides further support
that the observed fragmentation patterns in cfDNA are indeed the
result of the characteristic chromatin structure in primary EwS
tumors.

To quantify the reduction (dip) of fragment coverage at EwS-
specific regulatory regions, we fitted three Gaussian functions to the
bias-corrected consensus signature, and we calculated the dip area
(i.e., area over the fitted curve, AOC) and dip depth for each cfDNA
sample (Fig. 5a and Supplementary Fig. 4c, and Supplementary
Data 9). These two scores reflect the sample-specific regulatory
activity of the selected region set: large areas and high depths
indicate strong depletion of fragments at EwS-specific regulatory
regions, and a high proportion of tumor-derived DNA in the
corresponding cfDNA sample. The EwS-specific coverage signal
strongly correlated with genetically inferred tumor content (Pearson
r= 0.88) (Fig. 5d), indicating that coverage at EwS-specific DHSs
may be useful for quantifying tumor-derived DNA content
independent of genetic alterations.

In total, 80 cfDNA samples obtained from 54 patients with
EwS showed significantly reduced fragment coverage around the
EwS-specific DHSs compared to healthy controls (|z-score| > 3).
For 62 of these 80 cfDNA samples, the clinical data supported
the presence of a tumor at the time of cfDNA sample collection,
and in 17 out of the remaining 18 samples, the identification of
tumor-derived DNA by LIQUORICE was supported by genetic
evidence (detection of CNAs and/or gene fusion). When we
grouped our samples by genetically inferred tumor content, 58
out of 59 samples with >20% genetic tumor content had
significantly reduced coverage at EwS-specific DHSs, while this
number dropped to 19 out of 39 samples with genetic tumor
content in the range of 0.1–20% and to 2 out of 90 samples with
0% genetic tumor content (Fig. 5b).

We also used LIQUORICE to quantify the contribution of non-
tumor cells to the cfDNA samples (Supplementary Data 8). We
focused specifically on open chromatin regions in hematopoietic
cells (as the main source of cfDNA in healthy controls2,35,55) and
liver tissue (as a proxy of chemotherapy-induced organ damage).
For regions with hematopoietic open chromatin, we observed
strongly reduced fragment coverage in healthy controls, whereas
the reduction was much weaker for patients with EwS (Fig. 5b).
The hematopoietic-specific coverage signal strength correlated
negatively with the genetic estimate of tumor-derived DNA in the
cfDNA sample (Pearson r=−0.73) (Fig. 5e and Supplementary
Fig. 5a, b). For regions with liver-specific open chromatin, we
observed strongly reduced fragment coverage in a subset of those
patients who received chemotherapy at the time of sample
collection, which correlated with serum-based protein markers of
liver damage (Fig. 5e and Supplementary Fig. 5c and Supple-
mentary Data 1). High proportions of liver-derived DNA also
explained most cases in which the coverage signatures of tumor-
derived DNA and of hematopoietic DNA were simultaneously
low (Fig. 5e and Supplementary Fig. 5d).

Finally, we tested whether the fragmentation analysis of tumor-
specific region sets could be generalized to other types of pediatric
sarcoma. We focused on alveolar rhabdomyosarcoma (ARMS), a
pediatric sarcoma which in most cases, similarly to EwS, is driven
by an oncogenic fusion protein (PAX3-FOXO1)60. Applying our
LIQUORICE software on a set of ARMS-specific DHSs that we
defined using publically available data61 (Supplementary Data 8),
we indeed observed a characteristic reduction in cfDNA fragment
coverage that was specific to ARMS samples (Fig. 5f). This
analysis confirms that the LIQUORICE analysis of cfDNA
fragmentation patterns generalizes beyond EwS, and it suggests
that our method might be broadly useful for detecting and
quantifying tumor-derived DNA independent of any genetic
aberrations.
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In summary, we developed a method and software that
measures tumor-derived cfDNA based on fragmentation
patterns that reflect the chromatin structure of the primary
tumor. We also demonstrated quantitative monitoring of
cfDNA derived from other tissue types including hematopoietic
cells (negatively correlated with tumor content) and liver

(indicative of organ damage), and we showed that our method
generalizes beyond EwS.

Non-genetic fragmentation-based methods improve the accu-
racy and robustness of liquid biopsy analysis in EwS. In the
final part of our analysis, we assessed whether fragmentation-
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based methods can improve the identification and classification of
patients with EwS compared to conventional liquid biopsy ana-
lysis based on genetic alterations. As input for our benchmarking,
we used the full range of metrics provided by each of the three
fragmentation-based methods introduced above. Moreover, we
included read depth in five megabases (Mb) bins as an additional
input that reflects CNAs. We then trained four machine learning
classifiers (support vector machine, neural network, random
forest, and generalized linear model with elastic-net regulariza-
tion) for each of the four feature sets, and we evaluated their
performance using cross-validation in 100 iterations of boot-
strapping. We additionally constructed a meta-learner, which
weighted and combined the predictions of the individual classi-
fiers that were based on single feature sets. Importantly, all per-
formance metrics were calculated on unseen test sets, and the
configuration of the analysis avoided potential information
leakage that could result in overtraining.

First, we evaluated the machine learning classifiers for their
ability to distinguish between cfDNA from patients with clinical
evidence of EwS tumor presence (103 samples from 73 patients)
and cfDNA from healthy individuals. Given that our cohort
comprised only 22 healthy individuals, we incorporated 46
additional control samples from two published data sets32,34,
which we normalized to make them comparable to our data set
(Supplementary Fig. 6a). We observed excellent prediction
performance for distinguishing between cfDNA from patients
with EwS and cfDNA from healthy individuals, with receiver
operating characteristic (ROC) area under the curve (AUC)
values of up to 0.97 (Fig. 6a and Supplementary Data 10). The
prediction performance was highly similar independent of which
set of healthy individuals was used as controls (Supplementary
Fig. 6b) and which machine learning algorithm was used
(Supplementary Fig. 6c–g). We further validated our machine
learning analysis by confirming its lack of predictiveness on
randomly shuffled labels (Supplementary Fig. 6h), and by
including only diagnostic EwS cfDNA samples (one per patient)
in the analysis (n= 64) (Supplementary Fig. 6i).

Given that deep whole-genome sequencing of cfDNA is costly
as a routine diagnostic assay, we systematically evaluated the
prediction performance not only at our full coverage (~12×), but
also for down-sampled coverage of 1× and 0.1×. We found that
the meta-learner, as well as the classifiers based on read depth and
the regional fragment-size distribution, profited most strongly
from deep whole-genome sequencing, and at 0.1× coverage, they
were outperformed by using only the global fragment-size
distribution. Indeed, the latter classifier was entirely unaffected
by the coverage reduction, achieving ROC AUC values of 0.93 at
all sequencing depths (Fig. 6a).

We also compared our machine learning classifiers to
established genetic methods for the detection of tumor-derived
cfDNA, namely CNA quantification using ichorCNA and fusion
gene detection using either whole-genome sequencing or ddPCR.
We found that the meta-learner achieved higher sensitivity at
100% specificity (i.e., using a threshold that correctly classified all
healthy individuals in the test set) than conventional genetic
methods, independent of whether we included all samples (n=
103, 85% versus 65% sensitivity) or only those for which all three
genetic measurements were possible (n= 56, 90% versus 79%
sensitivity) (Supplementary Fig. 7).

Fragment coverage at EwS-specific DHSs correlated well with
the genetic methods (Supplementary Figs. 8 and 9) and showed a
similar association with clinical annotations (Supplementary
Fig. 10). This observation supports the feasibility of substituting
genetic methods by fragment coverage at tumor-specific regula-
tory regions for cancers with few genetic aberrations. We also
observed that the detection of tumor-derived cfDNA based on the
coverage signal at EwS-specific DHSs in patients with localized
EwS (n= 45) was associated with shorter relapse-free survival
(RFS, p= 0.005, log-rank test) as well as shorter overall survival
(OS; p= 0.034, log-rank test). For RFS, this association remained
significant in a multivariate analysis (p= 0.042, Wald test). The
associations with survival were somewhat more pronounced for
the quantification of tumor-derived DNA based on coverage at
EwS-specific DHSs than for the genetic methods (Supplementary
Fig. 11).

Finally, we tested how well each of the classifiers could
distinguish EwS from other sarcomas, a task with high clinical
relevance62,63. Focusing on patients with genetic evidence of
tumor-derived cfDNA (EwS: 89 samples from 51 patients; other
sarcomas: 18 samples from 14 patients), fragment coverage at
EwS-specific DHSs outperformed all other metrics at high and
medium sequencing coverage, reaching a ROC AUC value of
0.93 at high sequencing coverage (Fig. 6b). This fragment-based
method also classified EwS more sensitively than detection of
the EWS-Ets fusion gene by whole-genome sequencing (81%
versus 73% sensitivity at 100% specificity) (Supplementary
Data 2 and 10). These results illustrate the feasibility of
LIQUORICE-based analysis of cfDNA fragment coverage for
the differential diagnosis of epigenetically distinct tumor types
using liquid biopsies.

In summary, we developed machine learning classifiers that
leverage fragment-based methods for accurate distinction
between patients with EwS and healthy individuals, and between
patients with EwS and other sarcomas, thereby establishing a
method for liquid biopsy analysis that does not depend on
recurrent genetic aberrations.

Fig. 5 Fragment analysis for EwS-specific genomic regions quantifies tumor-derived cfDNA in EwS patients. a Conceptual outline of the LIQUORICE
method and software for fragment analysis of cfDNA based on tumor-specific epigenetic alterations. b Aggregated, bias-corrected, and normalized
coverage signals at selected genomic region sets shown for healthy controls, for non-EwS sarcomas, and for EwS cfDNA samples. EwS samples are
grouped by genetically inferred tumor-derived DNA content and clinical tumor evidence. cfDNA samples with coverage signals significantly different (three
standard deviations) from healthy controls are displayed in red; the total number of those samples and the direction of the deviation (arrow) are indicated.
Total dip depth was used as the metric of choice for the sharp dips at hematopoietic-specific and universal DHSs; area over the curve (AOC) was used for
the other region sets. c cfDNA-based coverage signal at EwS-specific DHSs (bottom, nEwS= 38) reflects the aggregate DNA methylation profiles at these
regions in matched tumor biopsies (top, nEwS= 38). d Scatterplots showing the correlation of the coverage signal at EwS-specific DHSs with the genetically
inferred tumor-derived DNA content of the cfDNA samples. Pearson correlation coefficients (r) and linear trend lines are shown. The x-axes are shown in a
log scale from 1% onwards. e Same as d but showing the coverage signal at hematopoietic-specific DHSs. Blue arrows indicate samples with significant
liver signature. f Aggregated, bias-corrected, and normalized coverage signal (AOC) at alveolar rhabdomyosarcoma (ARMS)-specific DHSs for cfDNA
samples from healthy controls and patients with EwS, RMS, and other pediatric sarcomas (left; p-values were calculated using two-sided Mann–Whitney U
tests without correction for multiple testing). For ARMS patients with at least 9% ctDNA (genetic-based evidence), a striking reduction of fragment
coverage was observed (right). A cfDNA sample from a patient with embryonal rhabdomyosarcoma (ERMS) did not show any reduction of fragment
coverage at ARMS-specific DHSs (bottom right).
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Discussion
We present a comprehensive genetic and epigenetic analysis of
cell-free DNA in Ewing sarcoma, with the goal of widening the
scope and applicability of liquid biopsies in pediatric oncology.
We show that whole-genome sequencing of cfDNA (when
combined with suitable computational methods, some of which
we developed here) provides a one-size-fits-all assay for liquid
biopsy analysis, allowing us to: (i) detect tumor-derived DNA
with high sensitivity and without requiring any somatic muta-
tions or CNAs; (ii) distinguish between different cancer types
based on their characteristic epigenetic signatures; (iii) monitor
CNAs and disease progression over time; (iv) assess treatment-
induced toxicity and organ damage based on cfDNA released
from dying cells; and (v) estimate survival and relapse prob-
abilities at diagnosis. Importantly, our approach is practically
feasible in a clinical setting, requires less than 10 ng of cfDNA,
profits from falling sequencing costs, does not require access of
primary tumor tissue, and is informative even in the absence of
any genetic alterations.

Our work builds upon previous studies of fragmentation pat-
terns in cfDNA5,32–35,49,50,53,64,65, which we extended in several

ways to enable an integrated genetic and epigenetic analysis of
EwS tumors based on liquid biopsies. First, by analyzing the
global fragment-size distribution of cfDNA in a sarcoma cohort,
we showed that tumor-derived DNA in pediatric solid tumors
follows similar fragmentation patterns as observed in adult can-
cers, which enabled robust quantification of tumor content even
at reduced sequencing coverage (down-sampled from ~12× to
0.1×). Second, our analysis of the regional fragment-size dis-
tribution along the genome uncovered evidence of tumor-specific
epigenetic alterations, which supported sensitive and specific
identification of cfDNA samples that contained tumor-derived
DNA. Third, we developed and validated a dedicated method and
open source software (LIQUORICE) for assessing fragment
coverage at regions-of-interest with characteristic epigenetic
changes in the tumor and in other sources of cfDNA such as
blood and liver. This method enabled the distinction between
different tumor types based on their epigenetic profiles as well as
the accurate quantification of tumor-derived cfDNA independent
of genetic aberrations. Fourth, we showed that machine learning
classifiers exploiting these patterns achieve accurate tumor
detection and classification in our cohort, outperforming
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Fig. 6 Fragment-based analysis of cfDNA enables accurate tumor detection and classification. Prediction performance of machine learning classifiers
trained to distinguish patients with EwS from healthy controls (a) and from patients with other pediatric sarcomas (b), based on the following sets of input
features: global fragment-size distribution (blue); fragment coverage at EwS-specific DHSs (orange); read depth in 5Mb bins (green); and regional
fragmentation patterns (red). Results are also shown for a meta-learner combining the predictions of all individual classifiers into a weighted consensus
prediction (purple). The performance of each model was evaluated by and averaged over 100 iterations of bootstrapping, separately for the different
sequencing coverage levels (median of 12×, 1×, and 0.1×). CI is the 95% confidence interval obtained by bootstrapping. a ROC curves show, for
each feature set, the performance for distinguishing between cfDNA samples from patients with clinical evidence for EwS (nsamples= 103) and healthy
controls from three independent sets (22 controls sequenced in this study; 22 controls from Cristiano et al.32; and 24 controls from Ulz et al.34). Machine
learning models were trained separately for each of the 3 control sets; the mean results over the 3*100 bootstrap iterations are shown. b ROC curves show
the performance of each feature set for distinguishing between cfDNA samples from patients with EwS (nsamples= 98) and from patients with other
pediatric sarcomas (nsamples= 18). For both sets of samples, we ensured the presence of tumor-derived cfDNA in the blood based on genetic evidence.
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conventional genetic analysis based on CNAs and fusion gene
detection by whole-genome sequencing or ddPCR. Fifth, we
found that the fragment-based cfDNA metrics may have prog-
nostic value in pediatric sarcomas, given that a negative asso-
ciation between the detection of tumor-derived cfDNA and
patient survival was observed.

Our study provides one of the largest whole-genome
sequencing-based analyses of cfDNA in any childhood cancer
and a broadly useful resource for advancing the use of liquid
biopsies in pediatric oncology. Nevertheless, the following lim-
itations of the current study should be considered by researchers
building on our results. First, the lack of gold standards for
quantifying tumor-derived cfDNA that could be used as a
reference makes it difficult to provide definitive performance
metrics for the machine learning classifiers. To mitigate this
potential concern, we used clinical evidence (mainly based on
radiological imaging) as well as three lines of genetic evidence
(CNAs detected by ichorCNA, fusion genes detected by whole-
genome sequencing, and by ddPCR) as our reference. Second,
even among pediatric cancers, the sarcomas that we investigated
here are relatively rare (EwS accounts for ~2% of cancers
diagnosed in children and adolescents45), which limited the size
of the cohort and required the combination of samples from
several centers and countries. Third, the analysis was conducted
in a retrospective manner and was not embedded in a dedicated
clinical trial. Validation in a large, prospective study cohort will
be required to confirm the clinical associations and to qualify
the method for routine clinical use.

In summary, our study demonstrates how deep whole-
genome sequencing of cfDNA enables comprehensive detec-
tion, classification, and monitoring of pediatric tumors based on
their genetic and epigenetic profiles, thus providing a clinically
relevant method for liquid biopsy analysis in cancers with few or
no genetic alterations.

Methods
Patient cohort. This study included 200 plasma samples from 95 patients with
EwS and 41 plasma samples from 31 patients with other types of sarcoma: EwS-like
sarcoma (3 patients, two of which were positive for the CIC-DUX4 fusion gene),
osteosarcoma (8 patients), rhabdomyosarcoma (12 patients), synovial sarcoma (3
patients), and other types of sarcoma (5 patients) (Supplementary Data 1). Plasma
samples from 22 healthy individuals (24–50 years old) were used as controls and
were recruited for this study (7 individuals) or obtained via the Austrian Red Cross
(15 individuals). In total, we analyzed 263 plasma samples obtained from the
following institutions: St. Anna Kinderspital, Vienna, Austria (55 samples); St.
Anna CCRI biobank, Vienna, Austria (35 samples); Red Cross, Vienna, Austria
(15 samples); Institute Curie, France (25 samples); University Hospital Erlangen,
Germany (99 samples); and Oslo University Hospital, Norway (34 samples). We
also obtained 43 tumor biopsies (22 fresh frozen tissues; 21 FFPE tissues) from 42
of the patients for which plasma samples were available (Supplementary Data 4).
Of these tumor samples, one was collected at relapse, while all others were collected
at the time of diagnosis. Most of the patients with EwS included in this study were
treated according to the EWING2008 protocol or slight variations of it66. Patients
from Norway were treated according to the ISG/SSG III protocol67. All samples
were obtained with informed consent and with approval by the following review
boards: Ethics Committee of the Medical University of Vienna (1292/2018), CPP
SUD-EST IV, CPP 14/070, EE2012 study (reference number A 14-419), CPP ILE
DE FRANCE III, CPP 3272, MAPPYACT study (reference number 2015-A00464-
45), CPP ILE DE FRANCE IV, CPP 56-14, NGSKids study (reference number
2014-A00701-46), Ethics Committee of the “Ärztekammer Westfalen-Lippe und
der Westfälischen Wilhelms-Universität Münster” (2008–391-f-A; EudraCT
2008–003658-13 EWING2008), and Ethics Committee for Medical Research in
Southeastern Norway (17866). Clinical data for the patients included in this study
are provided in Supplementary Data 1.

DNA isolation. Plasma samples from Germany were prepared as follows: Blood
samples were collected in EDTA tubes and centrifuged within 2 h at 1200×g for 10
min. Plasma was separated from peripheral blood cells, aliquoted into microtubes,
and frozen at −80 °C. cfDNA was isolated using the QIAsymphony Circulating
DNA Kit with the QIAsymphony SP (Qiagen) instrument or the QIAampMinElute
cfDNA Kit (Qiagen) for manual isolation according to the manufacturer’s
recommendations23. Plasma samples from France were obtained in EDTA tubes

and prepared by centrifugation at 2000 rpm for 10 minutes within 1–24 h after
collection20. cfDNA was extracted using the QIAamp Circulating Nucleic Acid Kit
(Qiagen) with the Qiavac24s system, according to the manufacturers’ recom-
mendation. For the St. Anna CCRI biobank plasma samples, a cell stabilization step
using formaldehyde was implemented during plasma preparation68,69. For all other
plasma samples, cfDNA was isolated as follows: Whole blood was collected in
EDTA tubes and processed within a few hours. Plasma and cellular components
were separated by centrifugation at 1600×g for 10 min with gentle break and
acceleration set to 1. Plasma was centrifuged a second time for 10 min at 16,000×g
at room temperature to remove any remaining cellular debris and stored at −80 °C
until the time of cfDNA extraction. cfDNA was isolated from plasma (0.2–4.8 ml)
using the QIAamp Circulating Nucleic Acid Kit (Qiagen) and eluted in 45 µl
elution buffer using DNA LoBind tubes (Eppendorf). The concentration of cfDNA
was determined by the Qubit dsDNA HS Assay Kit (ThermoFisher Scientific). The
amount of plasma used per sample and the corresponding cfDNA concentrations
are provided in Supplementary Data 1. Tumor DNA was isolated from snap-frozen
tumors and formalin-fixed, paraffin-embedded (FFPE) tumor tissues by standard
proteinase K digestion and phenol/chloroform extraction41. DNA was quantified
using a Qubit 2.0 Fluorometer (ThermoFisher Scientific, Q32866) and the Qubit
dsDNA BR Assay Kit (ThermoFisher Scientific, Q32850).

Library preparation and sequencing. Whole-genome sequencing libraries were
generated from 10 ng of cfDNA unless noted otherwise (Supplementary Data 1),
using the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England
Biolabs). Briefly, cfDNA was processed without further fragmentation or size
selection, amplified and barcoded after adapter ligation with 6–10 PCR cycles
(Supplementary Data 1), depending on a qPCR amplification check. Cleanups were
performed with AMPureXP beads (Beckman Coulter) with a 1.2× volume ratio.
Final libraries were eluted in 20 µl nuclease-free water, quantified with the Qubit
dsDNA HS Assay Kit (Supplementary Data 1), and the profile was checked on a
TapeStation 4200 (Agilent Technologies). Libraries for 15 French samples were
prepared without fragmentation using the Kapa Library Preparation Kit for Illu-
mina platforms (Kapa Biosystems)20 and included a size selection step before
sequencing. These samples were excluded from the analysis corresponding to
Figs. 2, 4, and 6, and from the associations with clinical data. Formaldehyde-fixed
samples that showed signs of affected epigenetic properties (n= 11, CCRI Biobank;
Supplementary Data 2), were excluded from all epigenetics-based analyses (i.e.,
Figs. 2, 4, 5, 6, and clinical associations). Low-coverage whole-genome sequencing
(lcWGS) libraries for tumor DNA were generated as described above for cfDNA
samples, with an additional shearing step. For shearing, a Covaris M220 device was
used with MicroTUBE-50 AFA Fiber Screw-cap tubes (Covaris) and the following
settings: 75 peak incident power, 10% duty factor, 200 cycles per burst, 90 s at room
temperature. Reduced representation bisulfite sequencing (RRBS) libraries for
tumor DNA were generated as described previously41. Tumor DNA amounts used
for each assay are specified in Supplementary Data 4. cfDNA and lcWGS libraries
were sequenced on a NovaSeq 6000 machine using NovaSeq S4 2 × 100 bp flowcells
for cfDNA and 2 × 50 bp flowcells for lcWGS. In addition, pilot experiments for 18
cfDNA samples were performed using Illumina HiSeq 3000/4000 machines. RRBS
libraries were sequenced on Illumina HiSeq 3000/4000 machines with 2 × 50 bp
flowcells.

Whole-genome sequencing data processing. Base calls provided by the Illumina
Realtime Analysis software were converted into BAM files using Illumina2bam
(https://github.com/wtsi-npg/illumina2bam) and demultiplexed using BamIndex-
Decoder from the same package. Initial quality control was performed using the
FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Adapter trimming, initial quality control, and read-level filtering were performed
with fastp70 using default settings. Next, quality-filtered reads were mapped to hg38
using the BWA-MEM software71 with default settings. Samblaster72 was used to
mark duplicates, which were subsequently removed. All bioinformatic analyses
were relative to the GRCh38/hg38 assembly of the human genome. A summary of
the sequencing statistics is provided in Supplementary Data 1 and 4.

RRBS data processing. Bisulfite sequencing data were processed as follows41:
Read sequences were trimmed using Trimmomatic with the following settings:
ILLUMINACLIP: RRBS_adapters.fa:2:40:7 SLIDINGWINDOW:4:15 MAX-
INFO:20:0.50 MINLEN:18. Reads were aligned to the GRCh38 assembly of the
human genome, using BSMAP in its RRBS mapping mode. DNA methylation
levels for individual CpGs were calculated using custom Python scripts. Bisulfite
conversion efficiency was estimated by aligning unmapped reads to the spike-in
genome for methylated or unmethylated control sequences. CpGs located in
repetitive regions according to the UCSC RepeatMasker track were excluded from
further analysis. Mean DNA methylation levels across EwS-specific DHSs were
quantified and plotted using the MIRA v1.8.073 with the following settings: region
size was set to 2000 bp, number of bins per region was set to 21, minBaseCov-
PerBin was set to 100, and the center of the 2000 bp regions was used for plotting.

EWS-Ets fusion gene detection using whole-genome sequencing data. Aligned
BAM files were loaded into the IGV software74, and the relevant genomic regions
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(EWSR1, FLI1, and ERG genes) were manually screened for a cluster of discordant
reads indicating translocation to one of the potential fusion partners. In addition,
reads with a significant portion of mismappings only on one side of the read were
extracted to identify potential split reads where the breakpoint was near to the end
of the read. Finally, paired-end reads supporting the translocation (each read
mapped to the individual genes on different chromosomes) without including the
breakpoint were also used as evidence of the gene fusion. This manual procedure
proved more sensitive than automated methods, especially in cases with very few
supporting reads. All putative translocation reads were further evaluated with
BLAT75 to validate true split reads resulting in breakpoint coordinates and to
identify any additional bases that might have been inserted during the repair
process. In case of microhomologies directly at the breakpoint, their length was
recorded. All identified breakpoint coordinates, the genes involved, the type of
event (main, reciprocal, or complex), and a representative read at the breakpoint
are provided in Supplementary Data 2.

Once breakpoint coordinates and possible microhomologies were identified,
quantification of fusion reads and corresponding germline reads was performed,
requiring at least one base clearly distinguishing the fusion from the germline
(outside of the microhomology). To this end, we added the manually inferred
EWS-Ets fusion sequence and the surrounding genomic region (plus/minus 500 bp)
to the reference genome and used the resulting file as a reference for re-mapping of
reads in the breakpoint region (both breakpoint coordinates plus/minus 1000 bp).
We then counted the number of fragments that aligned to the fusion sequence and
contained reads that spanned the breakpoint. This number was compared to the
number of fragments with reads spanning the breakpoint coordinates at the
germline sequences on both chromosomes. For both counts, we considered
microhomologies and required that reads fully span them if they are detected.
To reduce the technical variability due to coverage fluctuations and sequence
composition biases around the breakpoints, germline counts for both involved
fusion partners around the breakpoint were averaged. Tumor content based on
breakpoints was calculated by using the formula 2*f/(((g1+ g2)/2)+f) (f: fusion
gene, g: germline; Supplementary Data 2). Additionally, if more than one
breakpoint was detected (for instance the main EWS-FLI1 fusion, the reciprocal
FLI1-EWS event, and/or multiple breakpoints in case of complex local
rearrangements) the mean was used.

EWS-Ets fusion gene quantification using ddPCR. Patient-specific assays for
fusion gene detection and quantification were designed following the guidelines
from the Bio-Rad ddPCR application guide bulletin 6407, using a double-
fluorescently labeled probe (FAM-BHQ1) that crosses the genomic DNA break-
point as well as two flanking primers. For normalization, a HEX-BHQ1 probe
targeting an invariant region in the genome (on Chromosome 4, 9, or 10) was
designed with a similar amplicon length as the fusion assay. The normalizer was
chosen based on the CNA profile of each individual sample and required a region
with a normal copy-number state. Primers and probes were ordered through
Sigma-Aldrich (Merck); their sequences are provided in Supplementary Data 2. All
reactions contained 900 nM of each primer, 250 nM of the mutant and normalizer
probe, 2× ddPCR Supermix for Probes (no dUTP), and up to 7.8 µl of PE library as
input in 22 µl total volume. We used whole-genome sequencing libraries as input
(instead of cfDNA) due to the limited cfDNA amounts. Fluorescence signals were
measured on a QX200 ddPCR system (Bio-Rad) and analyzed with the QuantaSoft
software v1.7.4 (Bio-Rad). Genomic DNA from healthy peripheral blood mono-
nuclear cells (PBMCs) was used as a negative control for fusion assays, and water
served as a negative control for the fusion assays as well as the normalizer assays in
each experiment. Events with more than three positive droplets were called posi-
tive, and their ddPCR-based tumor content was calculated by doubling the fusion
counts and dividing this number by the normalizer counts, assuming a hetero-
zygous fusion in the tumor cell (Supplementary Data 2).

CNA analysis and quantification of tumor-derived DNA based on read depth.
To determine CNAs and estimate tumor-derived DNA content, we used the
ichorCNA tool7 (version from git commit 1d54a1f), which was specifically
designed to work with cfDNA data. First, reads with mapping quality >20 were
counted in 500 kb windows using the readCounter tool from the HMMcopy R suite
(v1.2.0)76. Then, ichorCNA was run on the resulting WIG files. As no matched
germline control samples were available, ichorCNA was set to use its internal set of
reference samples to generate log2-ratios of sample versus control. Window size
was set to 500 kb, the minimum recommended size for this application. Homo-
zygous deletions were not allowed as a possible scenario, as it is recommended for
large windows. In addition to CNA profiles, ichorCNA provides estimates of
tumor-derived DNA content for different ploidy states, ranking them by log-
likelihood. The minimum, maximum, and top-ranked tumor content values were
recorded. After visual inspection and manual comparison of the suggested ploidy
states in case for longitudinal samples, the most plausible tumor content value
based on ichorCNA read depth was recorded and used for downstream analysis
(Supplementary Data 2).

Tumor content quantification based on combined genetic evidence. The
individual values for the tumor content derived from whole-genome sequencing

breakpoints, ddPCR, and ichorCNA read depth were used to infer a combined
genetic estimate of the tumor-derived DNA content in each cfDNA sample
(Supplementary Data 2).

Global fragment-size distribution analysis. Fragment-size distributions were
inferred from mapping coordinates of read pairs, using Picard CollectInsertSize-
Metrics (v2.8.1; http://broadinstitute.github.io/picard/) with default settings apart
from the histogram width parameter, which was set to 800. For further analysis,
frequencies were then calculated relative to the total number of reads. For visua-
lization purposes, frequencies were shown as the number of fragments with a
specific size divided by the total number of fragments in the displayed size range.
The effect of in silico size selection on the tumor content as estimated by CNAs was
calculated as follows: We used all samples for which ichorCNA called the same
number of copies for each chromosome for both the size-selected and non-size-
selected input. The resulting matching tumor content estimates were recorded and
used for significance testing with the Wilcoxon signed-rank test.

Regional fragment-size distribution analysis. The genome was split into bins
(tiling windows) with a length of 100 kb each using deeptools (deeptools suite
v3.1.2)77, and the number of short (S, 100–150 bp) and long (L, 151–220 bp)
fragments mapping to the bin was recorded. The bin size of 100 kb was chosen as a
compromise between high genomic resolution and a large enough number of reads
per bin for robust estimations of the S/L ratio (~25,000 expected reads per bin).
Regions overlapping the ENCODE blacklist78 or the hg38 gap track (https://
genome.ucsc.edu) were excluded (these regions tend to be badly mappable, and we
preferred to use slightly fewer, but more reliable bins for our analysis). Subse-
quently, GC bias was corrected with LOWESS smoothing (considering 75% of the
data for smoothing), separately for the short and long fragments. Using these
corrected values, the log2(S/L ratio) was calculated as log2(number of short frag-
ments/number of long fragments). This value was then normalized, subtracting the
genome-wide log2 of the S/L ratio, which was calculated separately for each cfDNA
sample by averaging over all bins for which ichorCNA (using in silico size-selected
input for maximum sensitivity) indicated a CNA-neutral state. The same proce-
dure, also using only bins for normalization that were called CNA-neutral in the
sample of interest, was applied to the healthy control samples (n= 22). Then, the
log2(S/L) value of each bin was compared to the distribution of control samples via
z-scores, and bins were marked as significantly shorter or longer if the FDR-
corrected p-value, based on these z-scores, was below 0.05. This procedure was also
applied to the healthy control samples, for which the z-score was calculated relative
to the distribution of all other healthy control samples (n= 21). Additionally, bins
were marked as CNA-neutral or CNA-affected, again depending on ichorCNA’s
output. Bins that were filtered by ichorCNA as unreliable regions (or for which
ichorCNA could not determine the CNA state) were excluded from the analysis.
For the chromosome arm analysis, the log2(S/L) was averaged for all bins within a
chromosomal arm, and then compared to the distribution of averaged log2(S/L)
values of the controls via z-scores. The generated z-scores, one per arm per sample,
were assigned to the CNA-affected category if a CNA was detected for at least one
bin on the analyzed chromosome arm, and to the CNA-neutral category if this was
not the case. Sample sizes per group and per chromosomal arm can be found in
Supplementary Data 5.

Region-set enrichment analysis. For region-set enrichment analysis, only bins
that were marked as CNA-neutral were retained. Genomic coordinates of sig-
nificantly longer and shorter bins compared to the healthy controls were separately
used as input to LOLA (v1.1)54 and were compared against the universe of coor-
dinates of all CNA-neutral bins for the sample. LOLA hits were deemed significant
if their q-values were smaller than 0.05. To increase specificity, we summarized
LOLA’s output over all EwS samples with genetic tumor evidence and kept only
hits that were significant in at least 10 samples. We then sorted the resulting list of
hits by either the average genomic tumor content estimation of samples in which
an entry was significant (in order to prioritize region sets that are highly tumor-
specific) or by the average q-value an entry achieved in all EwS samples with
genetic tumor evidence (in order to identify the most robustly identified signatures)
(Supplementary Data 6).

LIQUORICE analysis of fragment coverage at regions-of-interest. Genome-
wide read coverage was calculated for each cfDNA sample using bamCoverage
(deeptools suite v3.1.2)77, set to infer the coverage in a fragment-wide manner, to
normalize the coverage to 1×, and to require a minimum mapping quality of 20 for
a fragment to be counted. To analyze the resulting cfDNA fragment coverage data
at predefined regions-of-interest, such as cancer-specific regions of open chro-
matin, we developed a dedicated method and software, which we called
LIQUORICE. Our method takes the characteristic fragment-size distribution of
cfDNA into account and analyzes biases at the fragment level. It starts by splitting
each region-of-interest into five bins with sizes corresponding to bins of 10%, 15%,
50%, 15%, and 10% of the total length of the region, respectively. This is done in
order to facilitate comparisons between regions of different lengths within the same
region set. After splitting, every site consists of five bins, regardless of the initial
length of the region. Next, the adjacent genomic region (20 kb to both sides) is split
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into bins of 500 bp. The mean coverage of each bin is then extracted from the pre-
calculated BIGWIG files using pyBigWig (v0.3.11; https://github.com/deeptools/
pyBigWig) and divided by the coverage value of the corresponding 500 kb window
as calculated by ichorCNA7 to correct for CNA biases.

Next, a position-weight vector is determined for each bin size, which is used for
subsequent bias calculations. The rationale behind this approach is as follows:
Because GC bias occurs at the fragment level, usually not only the GC content of a
bin itself has an influence on its coverage, but also the GC content of flanking
regions. This is the case when there are fragments that overlap the bin and start
and/or end outside the bin borders. For an accurate GC bias correction, these
flanking regions should not be ignored79. To achieve this, we took an approach that
is equivalent to sliding fragments of different lengths over a generic bin and
determining the positions covered by the fragments as well as the fragments’
influence on the average coverage of the bin (Supplementary Fig. 4a). First, 200
fragment lengths were drawn from the fragment length distribution of the sample.
We then assumed that for a given fragment, any starting position relative to the bin
start is equally likely. For every fragment length L and every starting position p in a
range of −L to (bin size + L), the influence on the average coverage of the bin was
determined by calculating the fraction of bases in the bin that are overlapped by the
fragment starting at p and ending at p+ L. The coverage weight of each of the
positions covered by the fragment (all positions between p and p+ L) was then
increased by this influence value. The final coverage weight vector results from
summing over all fragment lengths L and starting positions p. It quantifies the
influence on the bin’s coverage for every position relative to the bin start. For a
given fragment length distribution, this coverage weight vector is universally
applicable to any bin, irrespective of the genomic content.

Once the coverage weight vector has been calculated, the reference DNA
sequence is extracted for every genomic bin and its surrounding regions. To
determine the GC weight vector, every position (relative to the bin start) is given
a weight of zero if its nucleotide is an A or a T, a weight of one for G or C, and a
weight of 0.461 (the genome-wide mean of GC content80) if the reference is an
N. This GC weight vector is then multiplied column-wise with the pre-calculated
coverage weight vector. Finally, the resulting vector is summed, and the sum is
divided by the sum of the coverage weight vector for normalization to a value
between zero and one. The resulting value is the GC bias factor: bins for which
the sequence in and around the bin has a high GC content will have a high GC
bias factor, while those for which the sequence has a low GC content will have a
low bias factor. This value is stored and used for correction with a machine
learning algorithm further downstream in the workflow. A similar approach is
used for determining bias factors of dinucleotides and trinucleotides. Each
dinucleotide and trinucleotide has its own bias factor (except reverse
complements, which share a factor). The weight of the corresponding position
bias is set to one if the reference sequence starting at the position and extending
two (three) bases downstream exactly matches the dinucleotide (trinucleotide),
and is zero otherwise.

The calculation of the mappability bias factors is based on mappability tracks
calculated with the GEM software81 for 75 bp reads, which assign every position in
the genome a value representing the mappability of a read of a specified length that
starts at that position. We use forward mappability (which we define as the
mappability of a 5′ to 3′ read starting at a position p), reverse mappability (defined
as the mappability of a 3′ to 5′ read starting at p, which is equivalent to the forward
mappability of p minus 75 bp), and the maximum of these two values as variables
to estimate the mappability bias. The latter value is included to account for the fact
that the mappability of a fragment is determined also by the interaction of the two
read mates. For the calculation of mapping bias, different coverage weight vectors
than those for GC and di-/trinucleotide bias are required, one each for forward and
reverse mappability. For these vectors, only the fragment start (or end, respectively)
is assigned the fraction of bases in the bin that are overlapped by the fragment, and
all other positions are set to zero.

Next, we trained a random forest with 50 trees using the H2O Python library
(http://docs.h2o.ai/h2o/latest-stable/h2o-py/docs/intro.html) on data from all
regions in a given region set, with coverage as the response variable and the bias
factors as predictors. The five central bins that cover the core region are excluded
from the training. The trained model is then used to predict coverage of each bin,
based on its bias factors. To obtain corrected coverage information, the resulting
values are subtracted from the uncorrected coverage values (Supplementary
Fig. 4b). After having obtained bias-corrected coverage values, these values are
aggregated across all regions in the region set using the mean, resulting in a single
coverage profile.

In the next step, these coverage profiles are quantified using a model-based
fitting approach tailored to the biological aspects of nucleosome occupancy at gene-
regulatory regions, which may be regulated at three levels: (i) Transcription factor
binding sites; (ii) enhancer or promoter regions; and (iii) large co-regulated
genomic segments such as super-enhancers. To account for these three levels of
regulation, we fitted three Gaussian functions of different widths as well as an
intercept to the aggregated, bias-corrected coverage profile. These functions were
constrained to be centered in the middle of the regions-of-interest. Moreover, their
σ parameters, which determine the widths of these functions, were constrained to
rough estimates of the genomic widths of the biological signals that they represent:
20–200 bp for transcription factor binding sites, 200–3000 bp for enhancer or
promoter regions, and 3000–40,000 bp for super-enhancers. σ values and

amplitudes were then optimized with the Python package lmfit (https://doi.org/
10.5281/zenodo.1469545) using dampened least-square-optimization82. After the
optimization was performed for every sample, the sample-wise medians of the
three σ values were obtained and used as fixed constraints for an additional
optimization run. After the second fitting process, the following parameters were
used to quantify the dip strength and shape: The area over the curve (AOC)
between the intercept and the fitted combined model, the heights of the three
Gaussian functions relative to zero, the intercept value, and the total dip depth
(Supplementary Fig. 4c and Supplementary Data 9).

Machine learning model for tumor detection and classification. For tumor
detection and classification, we used four alternative machine learning algo-
rithms: Linear support vector machines (which tend to perform well even on
small data sets), feed-forward neural networks (which provide high flexibility),
random forests (which tend to perform well without any parameter optimiza-
tion), and binomial generalized linear models with elastic-net regularization
(which provide a relatively straightforward baseline method). These algorithms
were trained and evaluated using the following bootstrapping and cross-
validation scheme: In 100 iterations, n patients were drawn with replacement
from the full data set of n patients. Samples of drawn patients were assigned to
the training set, while all other samples were assigned to the test set. Iterations
with <5 samples of each class in the test set were rejected and repeated. In each
iteration, the training set was split once more using stratified 5-fold cross-vali-
dation, and inner cross-validation scores were used to select the algorithm and
hyperparameters. The best algorithm/hyperparameter combination was selected
from the following options: (i) Linear support vector machines (hyperparameter
C: grid search over [2−5, 2−3, 2−1, 21, 23, 27, 29, 211, 213, 215]; as implemented in
scikit-learn83); (ii) feed-forward neural networks (using a rectifier activation
function, adaptive learning rate, and two hidden layers of size 200 each; as
implemented in H2O’s Python API); (iii) random forests (with 200 trees; as
implemented in H2O’s Python API); (iv) binomial generalized linear models
with elastic-net regularization (hyperparameter alpha: grid search over [0.1, 0.5,
0.7, 0.9, 0.95, 0.99, 1]; activated lambda search; as implemented in the H2O
Python library). For the latter three, the minority class was set to be
oversampled by a factor calculated as the ratio between the number of samples in
the majority class divided by the number of samples in the minority class. After
the best model was selected, its predictions on the (unseen) test set were stored
for each of the 100 iterations. To obtain the performance evaluation of the
classifier, a ROC curve was calculated for each iteration, and an aggregated ROC
curve and its AUC value were calculated by averaging over the 100 individual
curves.

In addition to the individual classifiers, a meta-learner was designed as follows:
In each of the 100 bootstrap iterations, the predicted tumor probabilities were
recorded for each of the four trained prediction models (using one model each for
global fragment size, regional fragmentation, read depth, or coverage at EwS-
specific DHSs, selected based on the performance in the inner cross-validation).
The meta-learner used the four resulting predictions per sample as input features,
combining and weighing the information from different fragment-based metrics.
To avoid data leakage between training and test sets, we made sure that only
samples in the training set of a given iteration were used to derive the input features
used for training of the meta-learner in the same iteration. The meta-learner
consisted of a Gaussian generalized linear model, as described above. Again, grid
search was performed using the training data only.

The following feature sets were used as input for the machine learning
algorithms: (i) Global fragment size: P(100–150), P(160–180), P(180–220),
P(250–320), P(100–150)/P(163–169), P(160–180)/P(180–220), the amplitude at
10 bp. Here, P(x− y) stands for the proportion of reads in a size range from x to
y bp. Moreover, the amplitude at 10 bp was based on the local minima at 84, 96,
106, 116, 126, 137, and 148 bp and the local maxima at 81, 92, 102, 112, 122, 134,
144 bp. This set of features was chosen in concordance to those reported by
Mouliere et al.49, although we excluded features utilizing the range of fragments
20–100 bp, as we detected minor technical artifacts in some of our samples
around 20 bp. (ii) Coverage drop around EwS-specific DHSs: Total dip area
based on the combination of the three fitted Gaussian functions G1 (narrowest)
to G3 (widest) and the fitted intercept, total dip area excluding the range [−σG1,
σG1], sum of y values of the fitted model over all bins, amplitudes of G1, G2, and
G3, the intercept, and the total dip depth (i.e., the sum of heights of G1, G2, and
G3). We added the total dip area excluding the range [−σG1, σG1] as a metric that
assesses the signal independent of the change directly at the center of each DHS,
and the sum of y values of the fitted model over all bins as a metric that
combines intercept and dip area. (iii) Read-depth in 5 Mb bins: The number of
fragments in the size range 100–220 bp in 380 bins with a size of 5 Mb each, GC-
corrected using LOESS smoothing (separately for fragments sized 100–150 bp
and 151 to 220 bp), and z-transformed within each sample. The bin size of 5 Mb
was chosen to allow good comparability to regional fragmentation-based
classifiers. (iv) Regional fragment size: A combination of read depth in 5 Mb
bins, regional read depth of short fragments in 5 Mb bins, corresponding to the
number of fragments in the size range 100–150 bp in 380 bins with a size of 5 Mb
each, GC-corrected using LOESS smoothing and z-transformed within each
sample, and read depth in chromosomal arms, corresponding to the regional
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read depth in 5 Mb bins (before z-transformation), averaged over all bins in the
same chromosomal arm, and then normalized by the sum over all arms within
each sample. This set of features was chosen in reference to the features used by
Cristiano et al.32.

To increase the number of healthy controls in the machine learning analysis, in
addition to the 22 healthy individuals in our data set we also included published
whole-genome sequencing data for 46 healthy individuals from two independent
data sets (Ulz et al.34, n= 24; Christiano et al.32, n= 22; Supplementary Data 10).
These samples were sequenced with comparable coverage as the cfDNA samples
included in this study (Cristiano et al.: 10×, Ulz et al.: 23×). To remove systematic
differences between the three data sources for healthy individuals (this study,
Cristiano et al., Ulz et al.), for each data set and each feature in the data set, the
mean and standard deviation over the healthy control samples were determined,
and all entries in the data set were normalized by subtracting the mean and
dividing by the standard deviation. As the result, the three sets of healthy controls
had the same mean and standard deviation, and they could all be used as references
for the cancer samples in our data set. As a measure against information leakage
across data sets, we employed a meta-analysis approach, and trained separate
machine learning models for distinguishing EwS samples from each of the three
sets of healthy controls. We then integrated the information across data sets by
taking the mean of the ROC data obtained from the 3*100 bootstrap iterations as
our final performance estimate. Independently of that approach, we also
investigated the performances of machine learning classifiers using only one of the
three control sets and found that the results were similar between the sets
(Supplementary Fig. 6b). We also tested the efficiency of this normalization by
training machine learning classifiers (as described above) to distinguish between
healthy controls generated in this study and, separately, healthy controls from the
other two studies. Since none of the classifiers achieved better-than-random
prediction performance, we concluded that the normalization was successful. Of
note, the performance of these classifiers was worse than expected by chance, with
ROC AUC values well below 0.5 (Supplementary Fig. 6a), which could be explained
as follows: Because the normalization was performed on the complete data set
(prior to splitting into train and test sets), in every iteration there were minor
random differences in the distributions of feature values in the training set between
the two classes (our data set versus the other data set). The machine learning
classifiers pick up these differences during training. However, since by definition
there are no differences in the mean between the two classes overall (i.e., in the full
data set), the samples in the test set will show opposite between-class differences
than those in the test set, resulting in systematically wrong predictions on test set
samples and ROC AUC values below 0.5. Following this explanation, one would
expect that the higher the number of features in a set, the more extreme some of
the randomly observed between-class differences can become. Indeed, we found
that read depth and regional fragmentation, for which this applies,
performed worst.

Associations with clinical data. Kaplan–Meier plots and statistics, as well as Cox
proportional hazards models, were generated using the survival package in R (v3.1-
12). For relapse-free survival from time of diagnosis (RFS), we used Cox propor-
tional hazards models for a multivariate analysis that corrected for sex and gender.
These Cox models could not be applied for overall survival (OS), as none of the
patients without detected tumor-derived cfDNA died in the observed period.
However, we found that age and sex were not significantly associated with OS (p=
0.77 and 0.88, log-rank test). To correct for the percentage of tumor-derived
cfDNA (based on genetic methods) and for technical (number of PCR cycles,
amount of input DNA) and biological (sex, age) covariates as shown in Supple-
mentary Fig. 10, we built a linear multivariate regression model that used these
covariates to predict each fragment-based metric, and used the residuals for further
analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequence data have been deposited at the European Genome-phenome Archive
(EGA), which is hosted by the EBI and the CRG, under accession number
EGAS00001005127. This data is available under a controlled access regimen to ensure the
protection of personally identifiable data; access can be obtained by contacting E.M.T.
Publically available sequencing data for cfDNA from healthy individuals were accessed
via the EGA (EGAD00001005343, and EGAD00001005339). Pre-processed, de-identified
data are available as an open-access online resource for viewing and download from the
following website: http://ews-liquid-biopsy.computational-epigenetics.org. The
remaining data are available within the Article, Supplementary Information, or available
from the authors upon request.

Code availability
The analysis source code underlying the final version of the paper is provided under open
access on the following website: http://ews-liquid-biopsy.computational-epigenetics.
org. A code archive is also available on Zenodo.

Received: 19 November 2020; Accepted: 29 April 2021;

References
1. Corcoran, R. B. & Chabner, B. A. Application of cell-free DNA analysis to

cancer treatment. N. Engl. J. Med. 379, 1754–1765 (2018).
2. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future

perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet.
20, 71–88 (2019).

3. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies
into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

4. Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of
circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

5. van der Pol, Y. & Mouliere, F. Toward the early detection of cancer by
decoding the epigenetic and environmental fingerprints of cell-free DNA.
Cancer Cell 36, 350–368 (2019).

6. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer
evolution. Nature 545, 446–451 (2017).

7. Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA
reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324
(2017).

8. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic
breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

9. Parikh, A. R. et al. Liquid versus tissue biopsy for detecting acquired resistance
and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 25, 1415–1421
(2019).

10. Cohen, J. D. et al. Detection and localization of surgically resectable cancers
with a multi-analyte blood test. Science 359, 926–930 (2018).

11. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-
stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).

12. Visvanathan, K. et al. Monitoring of serum DNA methylation as an early
independent marker of response and survival in metastatic breast cancer:
TBCRC 005 Prospective Biomarker Study. J. Clin. Oncol. 35, 751–758 (2017).

13. Chan, K. C. et al. Noninvasive detection of cancer-associated genome-wide
hypomethylation and copy number aberrations by plasma DNA bisulfite
sequencing. Proc. Natl Acad. Sci. USA 110, 18761–18768 (2013).

14. Sun, K. et al. Plasma DNA tissue mapping by genome-wide methylation
sequencing for noninvasive prenatal, cancer, and transplantation assessments.
Proc. Natl Acad. Sci. USA 112, E5503–E5512 (2015).

15. Mattox, A. K. et al. Applications of liquid biopsies for cancer. Sci. Transl. Med.
11, eaay1984 (2019).

16. Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor
DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).

17. Shulman, D. S. et al. Detection of circulating tumour DNA is associated with
inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the
Children’s Oncology Group. Br. J. Cancer 119, 615–621 (2018).

18. Andersson, D., Fagman, H., Dalin, M. G. & Stahlberg, A. Circulating cell-free
tumor DNA analysis in pediatric cancers. Mol. Aspects Med. 72, 100819
(2019).

19. Abbou, S. D., Shulman, D. S., DuBois, S. G. & Crompton, B. D. Assessment of
circulating tumor DNA in pediatric solid tumors: the promise of liquid
biopsies. Pediatr. Blood Cancer 66, e27595 (2019).

20. Chicard, M. et al. Whole-exome sequencing of cell-free DNA reveals temporo-
spatial heterogeneity and identifies treatment-resistant clones in neuroblastoma.
Clin. Cancer Res. 24, 939–949 (2017).

21. Jimenez, I. et al. Circulating tumor DNA analysis enables molecular
characterization of pediatric renal tumors at diagnosis. International journal
of cancer. J. Int. Cancer 144, 68–79 (2019).

22. Klega, K. et al. Detection of somatic structural variants enables quantification
and characterization of circulating tumor DNA in children with solid tumors.
JCO Precis. Oncol. 2018, PO.17.00285 (2018).

23. Krumbholz, M. et al. Genomic EWSR1 fusion sequence as highly sensitive and
dynamic plasma tumor marker in Ewing sarcoma. Clin. Cancer Res. 22,
4356–4365 (2016).

24. Eguchi-Ishimae, M. et al. Early detection of the PAX3-FOXO1 fusion gene in
circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma.
Genes Chromosomes Cancer 58, 521–529 (2019).

25. Shukla, N. N. et al. Plasma DNA-based molecular diagnosis, prognostication,
and monitoring of patients with EWSR1 fusion-positive sarcomas. JCO Precis.
Oncol. 2017, PO.16.00028 (2017).

26. Barris, D. M. et al. Detection of circulating tumor DNA in patients with
osteosarcoma. Oncotarget 9, 12695–12704 (2018).

27. Van Roy, N. et al. Shallow whole genome sequencing on circulating cell-free
DNA allows reliable noninvasive copy-number profiling in neuroblastoma
patients. Clin. Cancer Res. 23, 6305–6314 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23445-w

14 NATURE COMMUNICATIONS |         (2021) 12:3230 | https://doi.org/10.1038/s41467-021-23445-w |www.nature.com/naturecommunications

https://ega-archive.org/studies/EGAS00001005127
https://ega-archive.org/datasets/EGAD00001005343
https://ega-archive.org/datasets/EGAD00001005339
http://ews-liquid-biopsy.computational-epigenetics.org
http://ews-liquid-biopsy.computational-epigenetics.org
http://ews-liquid-biopsy.computational-epigenetics.org
https://doi.org/10.5281/zenodo.4719434
www.nature.com/naturecommunications


28. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor
DNA. Sci. Transl. Med. 9, eaan2415 (2017).

29. Zviran, A. et al. Genome-wide cell-free DNA mutational integration enables
ultra-sensitive cancer monitoring. Nat. Med. 26, 1114–1124 (2020).

30. Grobner, S. N. et al. The landscape of genomic alterations across childhood
cancers. Nature 555, 321–327 (2018).

31. Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699
paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).

32. Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with
cancer. Nature 570, 385–389 (2019).

33. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free
DNA comprises an in vivo nucleosome footprint that informs its tissues-of-
origin. Cell 164, 57–68 (2016).

34. Ulz, P. et al. Inference of transcription factor binding from cell-free DNA
enables tumor subtype prediction and early detection. Nat. Commun. 10, 4666
(2019).

35. Sun, K. et al. Orientation-aware plasma cell-free DNA fragmentation analysis
in open chromatin regions informs tissue of origin. Genome Res. 29, 418–427
(2019).

36. Erkek, S. et al. Comprehensive analysis of chromatin states in atypical
teratoid/rhabdoid tumor identifies diverging roles for SWI/SNF and polycomb
in gene regulation. Cancer Cell 35, 95–110 (2019).

37. van Groningen, T. et al. Neuroblastoma is composed of two super-enhancer-
associated differentiation states. Nat. Genet. 49, 1261–1266 (2017).

38. Gryder, B. E. et al. PAX3-FOXO1 establishes myogenic super enhancers
and confers BET bromodomain vulnerability. Cancer Discov. 7, 884–899
(2017).

39. Banito, A. et al. The SS18-SSX oncoprotein hijacks KDM2B-PRC1.1 to drive
synovial sarcoma. Cancer Cell 33, 527–541 (2018).

40. Northcott, P. A. et al. The whole-genome landscape of medulloblastoma
subtypes. Nature 547, 311–317 (2017).

41. Sheffield, N. C. et al. DNA methylation heterogeneity defines a disease
spectrum in Ewing sarcoma. Nat. Med. 23, 386–395 (2017).

42. Boeva, V. et al. Heterogeneity of neuroblastoma cell identity defined by
transcriptional circuitries. Nat. Genet. 49, 1408–1413 (2017).

43. Larson, J. D. et al. Histone H3.3 K27M accelerates spontaneous brainstem
glioma and drives restricted changes in bivalent gene expression. Cancer Cell
35, 140–155 (2019).

44. Thirant, C. et al. ETO2-GLIS2 hijacks transcriptional complexes to drive
cellular identity and self-renewal in pediatric acute megakaryoblastic
leukemia. Cancer Cell 31, 452–465 (2017).

45. Grünewald, T. G. P. et al. Ewing sarcoma. Nat. Rev. Dis. Prim. 4, 5
(2018).

46. Brohl, A. S. et al. The genomic landscape of the ewing sarcoma family of
tumors reveals recurrent STAG2 mutation. PLoS Genet. 10, e1004475 (2014).

47. Crompton, B. D. et al. The genomic landscape of pediatric ewing sarcoma.
Cancer Discov. 4, 1326–1341 (2014).

48. Tirode, F. et al. Genomic landscape of ewing sarcoma defines an aggressive
subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 4,
1342–1353 (2014).

49. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment
size analysis. Sci. Transl. Med. 10, eaat4921 (2018).

50. Underhill, H. R. et al. Fragment length of circulating tumor DNA. PLoS Genet.
12, e1006162 (2016).

51. Cheng, L. et al. Integration of genomic copy number variations and
chemotherapy-response biomarkers in pediatric sarcoma. BMC Med.
Genomics 12, 23 (2019).

52. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578,
122–128 (2020).

53. Ivanov, M., Baranova, A., Butler, T., Spellman, P. & Mileyko, V. Non-random
fragmentation patterns in circulating cell-free DNA reflect epigenetic
regulation. BMC Genomics 16, S1 (2015).

54. Sheffield, N. C. & Bock, C. LOLA: enrichment analysis for genomic region sets
and regulatory elements in R and Bioconductor. Bioinformatics 32, 587–589
(2016).

55. Moss, J. et al. Comprehensive human cell-type methylation atlas reveals
origins of circulating cell-free DNA in health and disease. Nat. Commun. 9,
5068 (2018).

56. van der Lelij, P. et al. Synthetic lethality between the cohesin subunits STAG1
and STAG2 in diverse cancer contexts. Elife 6, e26980 (2017).

57. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like
domain. Cell 171, 163–178 (2017).

58. Riggi, N. et al. EWS-FLI1 utilizes divergent chromatin remodeling
mechanisms to directly activate or repress enhancer elements in Ewing
sarcoma. Cancer Cell 26, 668–681 (2014).

59. Tomazou, E. M. et al. Epigenome mapping reveals distinct modes of gene
regulation and widespread enhancer reprogramming by the oncogenic fusion
protein EWS-FLI1. Cell Rep. 10, 1082–1095 (2015).

60. Shern, J. F. et al. Comprehensive genomic analysis of rhabdomyosarcoma
reveals a landscape of alterations affecting a common genetic axis in fusion-
positive and fusion-negative tumors. Cancer Discov. 4, 216–231 (2014).

61. Meuleman, W. et al. Index and biological spectrum of human DNase I
hypersensitive sites. Nature 584, 244–251 (2020).

62. Renzi, S., Anderson, N. D., Light, N. & Gupta, A. Ewing-like sarcoma: an
emerging family of round cell sarcomas. J. Cell Physiol. 234, 7999–8007
(2019).

63. Machado, I., Navarro, S. & Llombart-Bosch, A. Ewing sarcoma and the new
emerging Ewing-like sarcomas: (CIC and BCOR-rearranged-sarcomas). A
systematic review. Histol. Histopathol. 31, 1169–1181 (2016).

64. Ulz, P. et al. Inferring expressed genes by whole-genome sequencing of plasma
DNA. Nat. Genet. 48, 1273–1278 (2016).

65. Jiang, P. & Lo, Y. M. D. The long and short of circulating cell-free DNA and
the Ins and outs of molecular diagnostics. Trends Genet. 32, 360–371 (2016).

66. Gaspar, N. et al. Ewing sarcoma: current management and future approaches
through collaboration. J. Clin. Oncol. 33, 3036–3046 (2015).

67. Ferrari, S. et al. Nonmetastatic Ewing family tumors: high-dose chemotherapy
with stem cell rescue in poor responder patients. Results of the Italian
Sarcoma Group/Scandinavian Sarcoma Group III protocol. Ann. Oncol. 22,
1221–1227 (2011).

68. Heitzer, E. et al. Establishment of tumor-specific copy number alterations
from plasma DNA of patients with cancer. J. Int. Cancer 133, 346–356 (2013).

69. Gerber, T. et al. Assessment of pre-analytical sample handling conditions for
comprehensive liquid biopsy analysis. J. Mol. Diagn. 22, 1070–1086 (2020).

70. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34, i884–i890 (2018).

71. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

72. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and
structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).

73. Lawson, J. T., Tomazou, E. M., Bock, C. & Sheffield, N. C. MIRA: an R
package for DNA methylation-based inference of regulatory activity.
Bioinformatics 34, 2649–2650 (2018).

74. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26
(2011).

75. Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664
(2002).

76. Lai, D., Ha, G. & Shah, S. HMMcopy: copy number prediction with correction
for GC and mappability bias for HTS data. R package version 1.2.0. (2019).

77. Ramirez, F. et al. deepTools2: a next generation web server for deep-
sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

78. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist:
identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

79. Benjamini, Y. & Speed, T. P. Summarizing and correcting the GC content bias
in high-throughput sequencing. Nucleic Acids Res. 40, e72 (2012).

80. Romiguier, J. & Roux, C. Analytical biases associated with GC-content in
molecular evolution. Front. Genet. 8, 16 (2017).

81. Derrien, T. et al. Fast computation and applications of genome mappability.
PLoS ONE 7, e30377 (2012).

82. Levenberg, K. A method for the solution of certain non-linear problems in
least squares. Q. Appl. Math. 2.2, 164–168 (1944).

83. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. & Thirion, B. Scikit-
learn: machine learning in Python. J. Machine Learn. Res. 12, 2825–2830
(2011).

Acknowledgements
We would like to thank all patients who donated samples for this study. We also thank
the team of the Biomedical Sequencing Facility at CeMM for support with next-
generation sequencing and Stefan Terlecki-Zaniewicz for helpful suggestions and critical
reading of the manuscript. This study was funded by a grant from the Austrian National
Bank’s Jubiläumsfonds to E.M.T. (OeNB Project Number: 17876), an institutional
research grant to E.M.T. financed by a charitable donation of Kapsch Group (http://www.
kapsch.net/kapschgroup), and an ERA-NET project grant to C.B. (CEVIR FWF I 2798-
B28). The following associations supported this work: GIGAX Foundation (St. Anna
Kinderspital), German Cancer AID (DKH 108128, 70113419, 70112018), Gerd and
Susanne Mayer Foundation, Trettner Foundation, Annenberg Foundation, Foundation
Barletta, Associations H Gouin, and Association Enfants et Santé. This study was per-
formed in the context of the Euro Ewing Consortium (FP7 grant no. 602856), the
MAPPYACTS project (NCT02613962), the NoSarC study (which is supported by the
Norwegian Cancer Society), the La Ligue Nationale Contre le Cancer (project de
Recherche Enfants, Adolescents et Cancer), and the le Site de Recherche Intégrée en
Cancérologie (SiRIC). C.B. is supported by an ERC Starting Grant (European Union’s
Horizon 2020 research and innovation program, grant agreement no. 679146). C.B. and
E.M.T. are supported by a grant from the Vienna Science and Technology Fund (WWTF
call: Linking Research and Patients’ Needs, LS18-049). E.M.T. is supported by a fel-
lowship of the Austrian Science Fund (FWF, Elise Richter Fellowship V506-B28).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23445-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3230 | https://doi.org/10.1038/s41467-021-23445-w |www.nature.com/naturecommunications 15

https://arxiv.org/abs/1303.3997
http://www.kapsch.net/kapschgroup
http://www.kapsch.net/kapschgroup
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Author contributions
P.P., A.M.S., C.B., and E.M.T. designed the study; P.P. performed the data analysis with
contributions from A.M.S., N.C.S., B.E., D.B., and A.R.; A.M.S. performed the experi-
ments with contributions from D.S., M.K., S.S., M.C., and M.T.; D.S., M.K., M.C., G.P.,
E.L., A.A., H.B., G.E., M.D., M.B., S.T.-M., I.M.A., O.M., P.M.-B., S.A.B., B.B., S.J.S., J.W.,
G.S., C.S., U.D., C.H., K.B., P.F.A., O.D., and M.M. provided patient samples or clinical
data; P.P., A.M.S, C.B., and E.M.T. wrote the manuscript with contributions from all co-
authors; E.M.T. led and supervised the research.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23445-w.

Correspondence and requests for materials should be addressed to C.B. or E.M.T.

Peer review information Nature Communications thanks Mark Cowley, Victor
Velculescu and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

1St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria. 2INSERM U830, Équipe Labellisée LNCC, PSL Research University,
SIREDO Oncology Centre, Institut Curie Research Centre, Paris, France. 3Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
4Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany. 5Center for Public Health Genomics, University of Virginia,
Charlottesville, VA, USA. 6Unité de Génétique Somatique, Service d’oncogénétique, Institut Curie, Centre Hospitalier, Paris, France. 7CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 8Institute of Pathology, University Hospital
Erlangen, Erlangen, Germany. 9St. Anna Kinderspital, Department of Pediatrics, Medical University, Vienna, Austria. 10Department of Tumor
Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. 11Department of Clinical Science, University of Bergen, Bergen,
Norway. 12Pediatric Department, Hematology and Oncology Pediatric Institute, Centre Léon Bérard, Lyon, France. 13Children’s Cancer Research
Group, Leeds Institute of Medical Research, St. James’s University Hospital, Leeds, UK. 14Department of Pediatric Oncology, Royal Manchester
Children’s Hospital, Manchester, UK. 15Department of Oncology, UCL Cancer Institute, London, UK. 16Department of Oncology, University
College London Hospital, London, UK. 17University Hospital Essen, Pediatrics III, West German Cancer Centre, Essen, Germany. 18Department of
Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway. 19Institute of Artificial Intelligence, Center for Medical
Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria. 20Ludwig Boltzmann Institute for Rare and
Undiagnosed Diseases, Vienna, Austria. 21These authors contributed equally: Peter Peneder, Adrian M. Stütz. 22These authors jointly supervised
this work: Christoph Bock, Eleni M. Tomazou. ✉email: cbock@cemm.oeaw.ac.at; eleni.tomazou@ccri.at

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23445-w

16 NATURE COMMUNICATIONS |         (2021) 12:3230 | https://doi.org/10.1038/s41467-021-23445-w |www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-23445-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:cbock@cemm.oeaw.ac.at
mailto:eleni.tomazou@ccri.at
www.nature.com/naturecommunications

	Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with�low�mutational burden
	Results
	Deep whole-genome sequencing of cell-free DNA uncovers tumor-specific fragmentation patterns
	Fragment-size filtering of cfDNA profiles enhances CNA detection and improves monitoring of clonal evolution
	Differences in cfDNA fragmentation along the genome reflect Ewing sarcoma-specific chromatin profiles
	cfDNA fragmentation at EwS-regulatory regions detects tumor-derived DNA independent of genetic alterations
	Non-genetic fragmentation-based methods improve the accuracy and robustness of liquid biopsy analysis in EwS

	Discussion
	Methods
	Patient cohort
	DNA isolation
	Library preparation and sequencing
	Whole-genome sequencing data processing
	RRBS data processing
	EWS-Ets fusion gene detection using whole-genome sequencing data
	EWS-Ets fusion gene quantification using ddPCR
	CNA analysis and quantification of tumor-derived DNA based on read depth
	Tumor content quantification based on combined genetic evidence
	Global fragment-size distribution analysis
	Regional fragment-size distribution analysis
	Region-set enrichment analysis
	LIQUORICE analysis of fragment coverage at regions-of-interest
	Machine learning model for tumor detection and classification
	Associations with clinical data

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




