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Advanced spectroscopic analysis and 15N-isotopic
labelling study of nitrate and nitrite reduction to
ammonia and nitrous oxide by E. coli†

George D. Metcalfe, a Thomas W. Smith a,b and Michael Hippler *a

Nitrate and nitrite reduction to ammonia and nitrous oxide by anaerobic E. coli batch cultures is investi-

gated by advanced spectroscopic analytical techniques with 15N-isotopic labelling. Non-invasive, in situ

analysis of the headspace is achieved using White cell FTIR and cavity-enhanced Raman (CERS) spectro-

scopies alongside liquid-phase Raman spectroscopy. For gas-phase analysis, White cell FTIR measures

CO2, ethanol and N2O while CERS allows H2, N2 and O2 monitoring. The 6 m pathlength White cell

affords trace gas detection of N2O with a noise equivalent detection limit of 60 nbar or 60 ppbv in 1 atm.

Quantitative analysis is discussed for all four 14N/15N-isotopomers of N2O. Monobasic and dibasic phos-

phates, acetate, formate, glucose and NO3
− concentrations are obtained by liquid-phase Raman spec-

troscopy, with a noise equivalent detection limit of 0.6 mM for NO3
− at 300 s integration time.

Concentrations of the phosphate anions are used to calculate the pH in situ using a modified

Henderson–Hasselbalch equation. NO2
− concentrations are determined by sampling for colorimetric

analysis and NH4
+ by basifying samples to release 14N/15N-isotopomers of NH3 for measurement in a

second FTIR White cell. The reductions of 15NO3
−, 15NO2

−, and mixed 15NO3
− and 14NO2

− by anaerobic

E. coli batch cultures are discussed. In a major pathway, NO3
− is reduced to NH4

+ via NO2
−, with the bulk

of NO2
− reduction occurring after NO3

− depletion. Using isotopically labelled 15NO3
−, 15NH4

+ production

is distinguished from background 14NH4
+ in the growth medium. In a minor pathway, NO2

− is reduced to

N2O via the toxic radical NO. With excellent detection sensitivities, N2O serves as a monitor for trace

NO2
− reduction, even when cells are predominantly reducing NO3

−. The analysis of N2O isotopomers

reveals that for cultures supplemented with mixed 15NO3
− and 14NO2

− enzymatic activity to reduce
14NO2

− occurs immediately, even before 15NO3
− reduction begins. Optical density and pH measurements

are discussed in the context of acetate, formate and CO2 production. H2 production is repressed by

NO3
−; but in experiments with NO2

− supplementation only, CERS detects H2 produced by formate dis-

proportionation after NO2
− depletion.

1. Introduction

In the absence of oxygen (O2), Escherichia coli (E. coli) can

utilise alternative terminal electron acceptors for anaerobic

growth, such as nitrate (NO3
−) and nitrite (NO2

−). The

sequence of reductions from NO3
− to NO2

− to ammonia (NH3,

NH4
+ at physiological pH) is generally referred to as

Dissimilatory Nitrate Reduction to Ammonia (DNRA).1 The

coupling of these reductions to the oxidation of organic sub-

strates, such as formate, enables the generation of a proton

gradient across the cytoplasmic membrane. DNRA is consider-

ably more efficient for obtaining energy than the mixed acid

fermentation pathways utilised when electron acceptors are

unavailable. The expression of the respiratory NO3
− and NO2

−

reductases is tightly controlled by FNR, an O2 sensitive tran-

scription factor, and NarXL/NarQP, both of which are two-com-

ponent NO3
−/NO2

− sensitive regulatory systems.2,3

Although DNRA is the major NO3
− reduction pathway in

E. coli, the bacterium also generates minor amounts of the

toxic radical nitric oxide (NO) from NO2
− reduction. The low

†Electronic supplementary information (ESI) available: S.1. Key nitrate and

nitrite reduction enzymes, S.2. M9 medium formulation, S.3. FTIR spectroscopy

of CO2 and ethanol, S.4. cavity enhanced Raman spectroscopy (Experimental

details, spectral fitting procedures and calibration plots), S.5. liquid phase

Raman spectroscopy (Experimental details of the home-built Raman spectro-

meter, spectral fitting procedures and calibration plots) and S.6. analysis of bac-

terial culture samples (nitrite colorimetry, 14N/15N-ammonium analysis). See
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level of NO production by E. coli may be due to disproportiona-

tion of NO2
− under acidic conditions or non-specific reduction

by metalloproteins. The NADH-dependent cytoplasmic NO2
−

reductase (NirB),4 the membrane-bound periplasmic NO2
−

reductase (NrfA)5 and the major anaerobic NO3
− reductase

(NRA)6,7 have all been proposed to be significant sources of

NO formation as a by-product of their roles in the DNRA

pathway. Aerobically, flavohemoglobin (Hmp) detoxifies NO by

oxidation back to NO3
−; while anaerobically, NO is reduced

further to nitrous oxide (N2O) reportedly by Hmp,8 flavorubre-

doxin (NorV)9 and hybrid cluster protein (Hcp).10 N2O is com-

paratively less toxic than NO and can rapidly diffuse out of the

cell. E. coli is not a true denitrifier but N2O production by

NO3
− respiring E. coli cultures does share similarities with the

denitrification pathway of NO3
− to nitrogen (N2) via NO2

−, NO

and N2O. A summary of DNRA and NO generation and detoxi-

fication is shown in Fig. 1.

As a model organism, DNRA has been studied extensively

in E. coli; however, comparatively less is known about the

minor pathway leading to N2O and how its generation differs

between NO3
− and NO2

− respiring cultures. To gain a better

mechanistic understanding, monitoring the key compounds

and parameters of these processes is essential. Accurate and

reliable analytical techniques are crucial for understanding

cell biochemistry and pathway elucidation. This represents a

challenge for analytical chemistry, requiring a combination of

advanced analytical techniques.

Mass spectrometry and chromatographic techniques are

widely applicable to the detection and quantification of a

broad range of metabolites.11 The tandem gas chromato-

graphy-mass spectrometry technique is considered the gold

standard for the general analysis of volatile organic chemi-

cals.12 Despite this, these techniques are not readily applicable

to rapid, online analysis either due to the need for sampling or

for downstream chemical/physical processing before analysis

can occur. Electrochemical sensors are widely used for moni-

toring pH, conductivity, dissolved O2 and various other chemi-

cal species,13 including NO.14 Often such sensors are suscep-

tible to cross-interferences from other species, changes in

solution activity and long-term drift. For microbiological

studies, the need for physical contact between the electrode

and cell culture increases the risk of contamination, particu-

larly in continuous cultures, and requires that the electrode is

stable towards sterilisation.11

Spectroscopic techniques can be readily applied for moni-

toring bioprocesses in situ and online, with no sampling.

Vibrational spectroscopic techniques, such as Fourier

Transform Infrared (FTIR) and Raman spectroscopies, show

high specificity for different molecules due to characteristic

spectral bands, making them potentially very valuable for

metabolic studies. Additionally, vibrational spectroscopies can

distinguish different isotopologues and isotopomers, allowing

online monitoring of isotope labelling experiments.15,16 Good

sensitivities are observed in the condensed phase, but measur-

ing headspace gases often suffers from low sensitivity, and

special enhancement techniques are required such as Cavity

Enhanced Raman Spectroscopy (CERS)15–22 or long-path

absorption White cells in FTIR spectroscopy.23 Partial press-

ures in the headspace can be converted into concentrations in

the solution via Henry’s law. Quantum Cascade Laser (QCL)

absorption spectroscopy has been applied to detect N2O and

other trace gases;24–26 while sensitive, the limited tuning range

of QCLs over a single IR absorption band limits the dynamic

range due to band saturation effects. While FTIR spectroscopy

has found some application in bioprocess monitoring, the

broad absorption profile of water limits its application for

monitoring metabolites at low concentrations in solution. In

the gas-phase, the lack of an extended hydrogen network con-

fines the absorption of water to certain spectral regions; mole-

cules with absorption bands outside these regions can be

readily detected, even in the presence of high levels of water

vapour. Since Raman spectroscopy is comparatively insensitive

to water, it is more readily applied to direct monitoring of the

liquid-phase. However, fluorescence in complex media such as

Lysogeny Broth (LB) can complicate the detection of the com-

paratively weak Raman light. Fluorescence can be avoided by

moving to longer excitation wavelengths or by using media free

of fluorescent components, such as M9 minimal media.23

Vibrational spectroscopic tools have been previously applied to

monitoring NO3
− metabolism in bacteria; CERS has been used

to follow N2O and N2 production in denitrifying organisms,

with the use of 15NO3
− to produce 15N2 distinguishable from

background 14N2.
19,22 A robust CERS instrument has also been

designed for field application to study the gas composition of

soil samples.21

We report a combined approach for characterizing DNRA

and N2O production in anaerobic E. coli batch cultures using

mostly non-invasive spectroscopic techniques. Sampling of the

bacterial culture was only done for NO2
− colorimetry and FTIR

detection of 14NH3 and 15NH3 isotopomers. Headspace gas

analysis was provided by the complementary techniques of

FTIR and CERS, with CERS being a technique recently intro-

duced by us in this Journal.17 FTIR allowed detection of CO2,

ethanol and N2O while CERS enabled monitoring of the homo-

Fig. 1 DNRA and NO generation and detoxification by E. coli. Enzymes

are displayed in red: Hcp, hybrid cluster protein; Hmp, flavohemoglobin;

Nap, periplasmic nitrate reductase, NirB, NADH-dependent nitrite

reductase; NorV, flavorubredoxin; NRA, nitrate reductase A; NrfA, peri-

plasmic nitrite reductase; NRZ, nitrate reductase Z.
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nuclear diatomic molecules N2, O2 and H2. Recently we intro-

duced the capability of liquid culture analysis by Raman spec-

troscopy to monitor the microbial fermentation products of

acetate and formate and the resulting in situ pH from phos-

phate signatures using a modified Henderson–Hasselbalch

equation.23 Here, we report on improvements that also allowed

NO3
− and glucose analysis during DNRA. With the use of 15N-

labelling, we report on mechanistic insights into NO3
− and

NO2
− reduction to NH4

+ and N2O through interpreting the

different 14N/15N-isotopomers produced. The aims of this

report are to introduce and characterise a unique combination

of advanced spectroscopic techniques with great potential for

bioanalytical applications, and to introduce an interesting bio-

chemical application, a 15N-isotope labelling study on N2O pro-

duction during DNRA by E. coli, with a focus on the differences

observed between NO3
− and NO2

− reduction.

2. Experimental

Fig. 2 shows a scheme of our experimental setup. Since the

previous iteration,23 it was modified to include CERS for H2,

N2 and O2 detection with larger headspace and culture

volumes to compensate for more frequent sampling. 250 mL

of bacterial batch culture is contained in a round bottom flask

with two side-arm ports and submerged in a 37 °C thermo-

stated water bath. From the left side-arm, the bacterial suspen-

sion is circulated using a peristaltic pump (PP(l), 4.5 L h−1) for

in situ OD600 (optical density at 600 nm in a 1 cm cuvette) and

Raman spectroscopy measurements. From the central-neck,

the headspace (1425 mL volume) is cycled by a second peristal-

tic pump (PP(g), 4.5 L h−1) for gas-phase FTIR and CERS ana-

lysis. The right side-arm has a rubber septum enabling

sampling of the liquid culture for further analysis. The CERS

cavity is equipped with a capacitance pressure gauge (PG), N2

inlet and vacuum line for purging O2 to give anaerobic growth

conditions (1 atm N2) before starting experiments.

Production of CO2, ethanol and N2O was quantified by gas-

phase FTIR spectroscopy (Mattson Research Series, 0.4 cm−1

spectral resolution, MCT detector) with a home-built multiple-

pass absorption White cell.23 The White cell pathlength was

adjustable between 4–8 m, with 6 m used for this work.

Spectra were recorded every 5 minutes. CO2 partial pressures

were obtained by integrating the ν1 + 2ν2 + ν3 band

(4920–5015 cm−1, ν0 = 4978 cm−1) of the Fermi triad and com-

paring with a reference spectrum from the PNNL database.27

N2O partial pressures were obtained by integrating the 2ν1
combination band from 2460–2580 cm−1 and comparing the

integral with simulated spectra from HITRAN 2012.28 All four
14N/15N-isotopomers of N2O could be distinguished, which

enabled the 15N-isotope labelling studies. A multiplier equi-

valent to ethanol partial pressure was obtained by a least-

squares fit of 1 ppmv ethanol and water reference spectra in

the 2800–3100 cm−1 region.23 Using Henry’s law, all partial

pressures could be converted into concentrations in solution.

Using the ideal gas law, we estimated that 10% of the CO2

present in the sample was dissolved. Under our conditions,

less than 1% of dissolved CO2 was expected to be converted to

carbonic acid and carbonates. 7% of N2O and 99.7% of

ethanol in the sample were also calculated to be dissolved.

The CERS setup has been described before with some

modifications outlined below.15–17,20 A 40 mW 636 nm single-

mode cw-diode laser (HL63133DG) is coupled via a short-pass

filter, a Faraday isolator and a mode matching lens into a

linear optical cavity composed of two highly reflective mirrors

(Newport SuperMirrors, R > 99.99%). If the laser wavelength

Fig. 2 Experimental setup for analysing the headspace by CERS and White cell FTIR spectroscopies and the liquid culture by Raman spectroscopy

and in situ OD600 measurements. DM, dichroic mirror; LP, laser pointer; MO, microscope objective; PD, photodiode; PG, pressure gauge; PP(g), gas-

phase peristaltic pump; PP(l), liquid-phase peristaltic pump; SM, supermirror; WC, White cell.
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matches the cavity length, an optical resonance builds up

optical power inside the cavity by up to 3 orders of magnitude,

enhancing the Raman signals. After the cavity, a dichroic

mirror separates leftover excitation light from Raman signals

which are coupled into a round-to-linear glass fibre bundle (7

× ∅ 105 µm) and transferred to the monochromator (Andor

Shamrock SR163, 1200 l mm−1 grating, DV420A-OE CCD). The

400–2500 cm−1 spectral range at 6 cm−1 resolution encom-

passes rotational S-branch lines of H2, the ν1/2ν2 Fermi reso-

nance of CO2 and the vibrational fundamentals of O2 and N2.

Part of the leftover excitation light is diverted back to the diode

for optical feedback, locking the laser to the cavity. To normal-

ize Raman signals, the N2 peak is used as an internal standard

since N2 is not expected to change during bacterial activity.

Raman intensities are converted to partial pressures using

tabulated integrated peak areas.20 CO2 analysis by CERS was

used to corroborate the FTIR analysis; however, CERS CO2 data

was not displayed in this study due to FTIR CO2 detection

being more sensitive. More details of the modified CERS setup

are provided in the ESI.†

The bacterial suspension was circulated through a glass

cuvette (1 cm path length) and the optical density OD600 was

recorded in situ by measuring the scattering of red laser

pointer light with a photodiode. The transmitted intensity was

calibrated with start and end-point OD600 values externally

measured using a UV-Vis spectrometer. The suspension was

also circulated through a sealed borosilicate tube for recording

liquid-phase Raman spectra using a home-built

spectrometer.29,30 A 532.2 nm, 20 mW laser (Lasos, GL3dT)

and monochromator (Shamrock SR-750-A, 1200 l mm−1

grating, DU420A-OE CCD) provided a spectral range from

830–1710 cm−1 at about 0.8 cm−1 resolution. Raman spectra

were recorded every 5 minutes at 300 s integration time. No

interfering fluorescence was noticeable in M9 minimal growth

medium. The water bending vibration at 1630 cm−1 was used

to normalise decreasing Raman intensities as the turbidity of

the bacterial suspension increased.23 0.1 M reference spectra

of individual glucose, KNO3, CH3CO2NH4, HCO2K, K2HPO4

and KH2PO4 solutions were recorded. As shown in Fig. 3, the

830–1200 cm−1 region contains characteristic Raman peaks for

HPO4
2− (989 cm−1), H2PO4

− (876 and 1076 cm−1), NO3
−

(1049 cm−1) and glucose (960–1180 cm−1).31 Using a least-

squares fitting routine, Raman spectra of the bacterial suspen-

sion in this region were fitted to the reference spectra, as well

as a linear baseline. The returned multipliers of the reference

spectra were then converted into concentrations via calibration

plots. Noise analysis of background sample measurements

(pure water) provided noise equivalent (1σ) detection limits of

0.6 mM NO3
− and 1.9 mM glucose at 300 s integration time.

With additional averaging to an integration time of 0.5 h (as

was done with all time-dependent data displayed in this

study), the limits improve to 0.25 mM for nitrate and 0.8 mM

for glucose. The concentrations of the phosphate anions were

used to calculate the pH in situ using a modified Henderson–

Hasselbalch equation.23,32 A least-squares fit determined

acetate and formate concentrations in the 1310–1450 cm−1

region to the sum of acetate (1414 cm−1) and formate

(1349 cm−1) models and a linear baseline, as shown in the

ESI.† At 300 s integration time, the noise equivalent (1σ) detec-

tion limits of acetate and formate were 2.6 mM and 1.5 mM,

respectively. These limits improve to 1.1 mM and 0.6 mM with

additional averaging to 0.5 h integration time. Although NO2
−

has a peak at 1326 cm−1, the feature was too weak to be used

in this study (1σ = 5.0 mM). Furthermore, NH3/NH4
+ had no

usable features within our spectral range.

E. coli (strain K-12 MG1655) was transferred from glycerol

stock (maintained at −80 °C) and streaked on LB-agar plates.

Plates were left to grow overnight at 37 °C. Before a measure-

ment, 50 mL of sterile LB medium was inoculated with a

single colony and incubated anaerobically in a sealed 50 mL

centrifuge tube for 16 h (37 °C, 200 rpm) to a typical OD600 of

1.2. From the starter culture, 20 mL was centrifuged, and the

pellet resuspended into 20 mL of fresh M9 minimal medium.

Our M9 medium formulation is given in the ESI;† but notably,

it contains 30 mM glucose and 18 mM NH4Cl. The

M9 medium was supplemented with 10 mM K15NO3 (10 mM,

98 atom % 15N, Sigma-Aldrich) and/or 5 mM KNO2 (either
14N

or 15N). A further 230 mL of M9 medium was prepared in the

round bottom flask with two side-arms. The flask was pre-

warmed and maintained at 37 °C using a thermostated water

bath under rapid stirring to enable efficient gas transfer. The

20 mL M9 medium containing E. coli was added to the 230 mL

M9 medium in the flask, giving a typical starting OD600 of 0.1.

The flask was then sealed and purged of O2 by alternating

between evacuating the headspace and refilling with N2 at

least five times. Experiments began once CERS measurements

confirmed no O2 remained.

During experiments, 1 mL of the bacterial culture was

sampled every 40 min and centrifuged. The supernatant was

analysed using a colorimetric method to determine NO2
− con-

centration based on the Griess test.33 Our M9 media began

with a typical pH of 6.9 and ended between 5.0–5.5 due to

organic acid excretion. With a pKa of 9.25, NH3 exists almost

Fig. 3 In black, an experimental Raman spectrum of M9 medium sup-

plemented with 10 mM KNO3 and 30 mM glucose. In red, the sum of

the fitted NO3
−, glucose, HPO4

2− (47 mM) and H2PO4
− (22 mM) models

shown below the overlaid spectra.
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entirely as NH4
+ at acidic pH. For 14N/15N-analysis of NH4

+

samples, 2 mL 1 M NaOH was added to 0.6 mL of sample to

release NH3. The gas was analysed by a second FTIR setup

(Bruker Alpha FTIR, 0.8 cm−1 spectral resolution) with a home-

built White cell (2.0 m pathlength). Spectra were recorded

every 5 minutes with around 30 minutes needed before NH3

concentration peaked in the headspace. The basified solution

was rapidly stirred and the 2 L headspace in the closed system

was cycled between the sample flask and White cell using a

peristaltic pump. The ν2 band is the strongest in the FTIR

spectrum of NH3 and can be used for 14N/15N-analysis.34 At the

end of bacterial activity, the suspension was centrifuged,

washed and dried to record the dry biomass (typically around

200 mg when corrected for sampling). For comparison with

the in situ spectroscopic pH measurements, the pH of start

and end-point samples was recorded externally using a Mettler

Toledo SevenMulti pH meter. See the ESI† for further experi-

mental spectra and calibration plots for all aforementioned

analytical techniques.

3. Results and discussion
3.1 FTIR spectroscopy of N2O and its 14N/15N-isotopomers

N2O has four 14N/15N-isotopomers, i.e., 14N2O, the structural

isomers 14N15NO and 15N14NO, and 15N2O. N2O is amenable to
15N-isotope labelling studies due to the low natural abundance

of the 15N-isotope (0.37%). In the 2000–3000 cm−1 spectral

range, characteristic partially rotationally resolved bands of the

N2O isotopomers are available for FTIR analysis. Apart from

ca. 2250–2400 cm−1 which is saturated by CO2, this region is

free from significant spectral interferences. The HITRAN mole-

cular database contains line lists for the three most abundant
14N/15N-isotopomers, excluding 15N2O.

28 A survey of HITRAN

and our experimental spectra has shown that the following

vibrational bands are available for quantitative analysis,

including band position of 14N2O, integrated absorption cross-

sections G and peak absorbances Apeak (defined as ln(I0/I))

under our experimental conditions for 1 μbar (1 ppmv) at 6 m

path length: the ν3 fundamental near 2224 cm−1 with G = 5.55

× 10−17 cm and Apeak ≈ 0.023 for rotational lines in the P- and

R-branches, the 2ν1 overtone near 2563 cm−1 with G = 1.33 ×

10−18 cm and Apeak ≈ 6 × 10−4 for rotational features in the P-

and R-branches, and the ν2 + ν3 combination near 2798 cm−1

with G = 9.0 × 10−20 cm and Apeak ≈ 2.6 × 10−4 of its Q-branch.

Characteristic spectral shifts allow distinction of the isotopo-

mers, while their G and Apeak values remain essentially the

same. For accurate quantitative results, Apeak should not

exceed unity. The dynamic range of the ν3 fundamental thus

extends from trace levels up to ca. 45 μbar N2O, the 2ν1 over-

tone up to 1.7 mbar, and the ν2 + ν3 combination up to

3.8 mbar. This range can be extended by reducing the absorp-

tion pathlength of the White cell.

Fig. 4 shows the ν3 fundamental with distinct P- and

R-branch features, with 14N2O having its origin near

2224 cm−1. In a spectrum containing only 14N2O, a least-

squares fit to the reference spectrum in the region denoted ‘D’

in Fig. 4 returns a multiplier which corresponds to N2O partial

pressure. A simple integration over the ν3 band would not be

suitable because part of the R-branch is buried in 13CO2

absorptions at higher wavenumbers. The region ‘D’ was

selected because it has some of the strongest absorption fea-

tures, it is very characteristic with partially resolved lines, and

it is least affected by CO2. With this fitting routine, noise ana-

lysis of blank samples provides a noise equivalent detection

limit of 60 nbar (60 ppbv at 1 bar total pressure) at 6 m path-

length and 128 accumulations which take 2 min to acquire.

Detection limits can be improved by more averaging or increas-

ing the path length. Note that this is sufficient to detect the

330 ppbv ambient levels of N2O for environmental analytical

applications. The heavier isotopomers shift to lower wavenum-

bers, 2201 cm−1 for 15N14NO, 2178 cm−1 for 14N15NO, and

2155 cm−1 for 15N2O. Since the bands are overlapping, only a

simultaneous fit to all four model spectra can yield individual

isotopomer partial pressures. A fit in the entire

2100–2220 cm−1 region, however, has serious problems with

cross-correlations. After a careful analysis, a simultaneous fit

only including the regions ‘A’ to ‘D’ in Fig. 4 returned multi-

pliers which are not noticeably affected by cross-correlations.

Each region was chosen so that an individual isotopomer has

a maximum weight with the other isotopomers having as little

weight as possible. This procedure yields reliable isotopic

partial pressures up to a dynamic range of about 45 μbar per

isotopomer.

Fig. 5 shows the weaker absorption bands that are more

suitable for N2O analysis above 45 μbar. In isotopically pure

samples, the 2ν1 overtone near 2563 cm−1 can be integrated

from 2505–2613 cm−1 to obtain 14N2O partial pressure after

Fig. 4 ν3 fundamental of N2O isotopomers with partially resolved

rotational P- and R-branches. Absorbances scaled to correspond to

1 μbar (1 ppmv) at 6 m path length. (a) Experimental FTIR spectra of
15N2O (blue) and 14N2O (brown). (b) Isotopomers (structural isomers)
14N15NO (red) and 15N14NO (green) calculated from the HITRAN data-

base. A to D denotes spectral ranges used in the fit.
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comparison with a reference spectrum (Fig. 5a). For 15N2O the

shifted band near 2523 cm−1 can be integrated from

2460–2580 cm−1 (Fig. 5b). In samples with mixtures of isotopo-

mers (Fig. 5c), the 2ν1 bands overlap and require a more soph-

isticated simultaneous fit similar to the one described above

for the ν3 fundamental. Fortunately, this is not required as the

ν2 + ν3 combination band (2798 cm−1 for 14N2O) has a sharp,

characteristic Q-branch which remains well resolved and separ-

ated in isotopic mixtures. After comparison with reference

spectra, simple integrations over the separate Q-branch peaks

yield isotopic partial pressures in a mixture up to a dynamic

range of about 3.8 mbar.

3.2 Spectroscopic analysis of nitrate reduction by E. coli

Fig. 6 is a typical example of pH, OD600 and number of moles

(n) of electron acceptors and other metabolites measured

during the reduction of 10 mM 15NO3
− by anaerobic E. coli.

Concentrations (mM) in solution were converted to n (mmol)

by multiplying by the culture volume (0.25 L), as were partial

pressures using the ideal gas law (V = 1.425 × 10−3 m3, T =

310 K) and correcting for the dissolved percentage calculated

via Henry’s law. All biological experiments were repeated in

triplicate, and all repeats showed essentially the same behav-

iour. The time-dependent data displayed in this study is for a

single representative experiment selected from the repeats.

Phase A (0–6.5 h) lasted until all NO3
− was reduced to NO2

−.

Phase B (6.5–10 h) lasted until all NO2
− was reduced to NH4

+

and N2O. Phase C (>10 h) had no electron acceptors remaining

so the bacteria utilised fermentative pathways solely. The 15N-

label transferred to 15NH4
+ and 15N2O with no trace of other

N2O isotopomers formed. This was consistent with other

studies that found the N-atoms in N2O both originate from

NO3
−/NO2

− and not other sources such as N2 or NH4
+.19,22,35

The externally measured start and end-point pH measure-

ments showed good agreement with the time-dependent spec-

troscopically determined pH.

After a brief lag phase, exponential growth began at 3 h

with a rapid increase in the OD600. NO3
− reduction to NO2

−

mirrored the growth curve with most of the NO2
− produced

excreted to prevent cytoplasmic toxification.36 E. coli expresses

three NO3
− reductases: the respiratory NO3

− reductases A and

Z (NRA and NRZ) and the periplasmic NO3
− reductase

(Nap).37–39 NRA is the most active reductase at high NO3
−

levels (>2 mM).40 Nap is induced by low NO3
− levels, while

Fig. 5 Experimental FTIR spectra of N2O overtone and combination

bands for (a) 1 mbar 14N2O, (b) 1 mbar 15N2O and (c) a mixture of

2.8 mbar 15N2O (49%), 1.1 mbar 14N15NO (20%), 1.2 mbar 15N14NO (22%)

and 0.5 mbar 14N2O (9%). The isotopomer mixture was recorded at 30 h

during the anaerobic respiration of E. coli supplemented with 10 mM
15NO3

− and 5 mM 14N-nitrite (see section 3.4).

Fig. 6 Anaerobic E. coli growth in M9 medium supplemented with

10 mM 15NO3
−. A to C denotes three distinct phases: NO3

− reduction (A),

NO2
− reduction (B) and NO2

− depletion (C). (a) Time-dependent number

of moles (n) of 15NO3
−, 15NO2

−, 15NH4
+ and 15N2O (×10). (b) n of

glucose, acetate and formate. (c) n of CO2, ethanol (×5) and
14NH4

+. (d)

Spectroscopically determined pH (open circles), externally measured pH

(solid squares) and OD600.
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NRZ is expressed at low levels constitutively and may function

under stress-associated conditions.40–42 NO2
− peaked at

2.2 mmol, less than the initial 2.5 mmol NO3
−, as some NO2

−

was reduced alongside NO3
− during A. 0.3 mmol 15NH4

+ and

1.6 µmol 15N2O was produced, accounting for the total

N-balance. Only 1% of the 0.3 mmol NO2
− reduced in A was

converted to N2O instead of NH4
+. E. coli expresses two NO2

−

reductases: the NADH-dependent cytoplasmic NO2
− reductase

(NirB) and the membrane-bound periplasmic NO2
− reductase

(NrfA). NirB likely produced NH4
+ during A as it is active when

NO3
− is readily available, unlike NrfA.43 Evidence also suggests

NirB can generate NO.4 Anaerobically, NO is detoxified by

reduction to N2O, which is comparatively non-toxic and rapidly

diffuses out of the cell. Flavorubredoxin (NorV),9 hybrid cluster

protein (Hcp),10 NirB44 and NrfA45 have all been proposed to

have NO detoxifying activity. Flavohemoglobin (Hmp) is pri-

marily an NO oxidase but also acts as an NO reductase

anaerobically.8

As E. coli does not possess any known N2O reductases,

further reduction to N2 was not expected. However, there is

some evidence that N2 can be produced from high amounts of

N2O by a yet unknown mechanism.46 To investigate whether

under our conditions N2 was produced, we repeated the experi-

ment, but under an argon atmosphere instead of N2. No trace

of N2 production was observed in the CERS spectra within our

detection limit of ca. 0.2 mbar or 12 μmol N2.

Formate oxidation to CO2 by the NO3
−-inducible formate

dehydrogenase (FdhN) is a physiological source of electrons

for NO3
− reduction.38 Other sources include NADH, lactate

and glycerol.37 1.7 of the 2.5 mmol NO3
− reduced was coupled

to FdhN activity as CO2 increased by such in A. The remaining

0.8 mmol NO3
− was likely coupled to NADH oxidation.47 As no

formate was excreted in A, all formate produced by pyruvate

formate lyase (PFL) must have been oxidised to CO2. For each

formate produced by PFL, one acetyl-CoA is formed which can

be either directed into the anaerobic TCA cycle or converted to

acetate (to produce ATP) or ethanol (to remove reducing

equivalents). 1.7 mmol acetate and 0.05 mmol ethanol were

excreted during A corresponding to 1.75 mmol formate, in

good agreement with the 1.7 mmol CO2 produced. Acetate

must be excreted to prevent cytoplasmic acidification and

caused the extracellular pH to decrease from 7.1 to 6.7. The

minor amount of ethanol produced was due to reducing

equivalents being coupled directly into reduction of NO3
−.

Previous studies have found a similar repression of substrate-

level NADH consuming pathways when electron acceptors are

available.48 Glucose decreased by 1.1 mmol owing to the pro-

duction of CO2, acetate, ethanol and biomass synthesis.

During phase B, NO2
− was reimported into E. coli and

reduced. From 6.5 to 10 h, 2.2 mmol 15NO2
− was reduced

almost linearly to 2.0 mmol 15NH4
+ and 0.1 mmol 15N2O. 91%

NO2
− was reduced to NH4

+ and 9% to N2O, a higher partition-

ing to N2O than observed in A (1%). A higher partitioning to

N2O after NO3
− was depleted is consistent with several studies

of E. coli and Salmonella enterica that have implicated NRA as

the enzyme that produces the majority of NO when NO2
− is

abundant and NO3
− absent.6,7,49,50 NrfA, which is induced by

NO2
− but repressed by NO3

−, may have also contributed

towards the higher partitioning to N2O in B as it has been pro-

posed as a source of NO.5,51 The radical NO has a distinct line-

resolved absorption band centred at 1904 cm−1 (for 14NO) and

a favourable partitioning into the headspace.52 However, no

intermediate 15NO gas was observed to accumulate, owing to

its rapid detoxification to 15N2O by E. coli. During B, a further

1.9 mmol CO2 was produced and the pH dropped from 6.7 to

5.7 due to the excretion of 5.7 mmol formate and a further

7.5 mmol acetate. Due to the 3 : 1 stoichiometry of formate oxi-

dation to CO2 : NO2
− reduction to NH4

+, 0.6 mmol NO2
− was

coupled to formate by NrfA.53 The 5.7 mmol formate excreted

during B would be plentiful to couple to the remaining

1.4 mmol NO2
−. However, NrfA is most active at low NO2

−

levels while NirB is most active at high NO2
− levels for detoxifi-

cation of excess NO2
−.36,43 Thus, 1.4 mmol NO2

− was likely

reduced by NirB.

Phase C started with exponential growth ending as the

OD600 peaked at 1.7, due to the depletion of glucose and NO2
−.

With no electron acceptors available, the bacteria funnelled

reducing equivalents into ethanol as a further 0.7 mmol was

made over the next 5 h. The remaining 5.7 mmol formate was

slowly oxidised to CO2 at a rate of 0.03 mmol h−1. Under

anaerobic conditions, the presence of formate induces formate

hydrogenlyase (FHL) activity that disproportionates formate to

CO2 and H2.
54 O2 and NO3

− repress FHL expression and

instead induce the aerobic and the formate-NO3
− respiratory

chains. High formate concentrations can partially reverse the

repression by NO3
−, but not by O2.

55,56 However, CERS

measurements detected no H2 production during our 10 mM
15NO3

− reduction experiments. During C, there was a slight

decline in N2O observed due to the gas adsorbing to tubing

and glass surfaces.

Experiments were terminated after 2 days with 5 mmol

formate still remaining. The dry biomass was typically around

200 mg. As E. coli can be approximated to be 48% carbon and

14% nitrogen by mass,57 ca. 8 mmol C and 2 mmol N in the

biomass originated from the 7.5 mmol glucose (45 mmol C)

and NH4
+, respectively. 44 out of the 45 mmol C from glucose

can be accounted for in the biomass, 5 mmol CO2, 5 mmol

formate, 12 mmol acetate (24 mmol C) and 1 mmol ethanol

(2 mmol C). During exponential growth, 14NH4
+ decreased

from 4.5 to 3.0 mmol accounting for 1.5 out of the 2 mmol N

in the biomass. The remaining 0.5 mmol N likely was taken

from the excreted 15NH4
+. The 2.5 mmol 15N-label can be

accounted for in the 2.0 mmol 15NH4
+, 0.1 mmol 15N2O

(0.2 mmol 15N) and ∼0.5 mmol 15NH4
+ used for biosynthesis.

3.3 Spectroscopic analysis of nitrite reduction by E. coli

To study the response to NO2
− alone, anaerobic E. coli was sup-

plemented with 5 mM 15NO2
−, as shown in Fig. 7. Phase A′

(0–9 h) corresponded to the reduction of NO2
− to NH4

+ with

concurrent N2O production via NO. Phase B′ (9–15 h) was

when the bacteria utilised fermentative pathways only, due to

NO2
− depletion. During the first 9 h of phase A′, 1.25 mmol
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15NO2
− was reduced almost exponentially to 1.15 mmol 15NH4

+

(90%) and 0.06 mmol 15N2O (10%), mirroring the bacterial

growth curve which increased to an OD600 of 0.7. The 10% par-

titioning to N2O here was consistent with the 9% observed

during the NO2
− reduction phase B in section 3.2. During A′,

1.9 mmol CO2, 3.7 mmol acetate, 2.0 mmol formate and

0.3 mmol ethanol were produced as glucose decreased from

7.5 to 5.2 mmol. Excretion of acetate and formate caused the

pH to decrease from 6.9 to 6.3. The sum of acetate and ethanol

(4.0 mmol) showed good agreement with the sum of CO2 and

formate (3.9 mmol). Due to the 3 : 1 stoichiometry of formate

oxidation : NO2
− reduction and 1.9 mmol CO2 being produced,

0.63 out of the initial 1.15 mmol NO2
− reduced to NH4

+ was

coupled to formate oxidation to CO2. The remaining

0.52 mmol NO2
− was likely reduced via coupling to NADH oxi-

dation by NirB.

Phase B′ began at 9 h when 15NO2
− was depleted. E. coli

could only utilise fermentative pathways in the absence of

NO2
−. The most notable difference between 10 mM 15NO3

−

reduction (discussed in section 3.2), and 5 mM 15NO3
−

reduction was H2 production that occurred after NO2
−

depletion in Fig. 7. No H2 production was observed during A′

as formate-dependent NO2
− reduction likely made the intra-

cellular formate unavailable for FHL induction. The presence

of formate is required for FHL expression but it can be made

unavailable by coupling to the reduction of electron acceptors.

This inhibiting effect has been observed for NO3
− and tri-

methylamine N-oxide respiring E. coli cultures and in both

cases the effect could be partially relieved by adding exogenous

formate.56,58 When NO2
− was depleted, 5.2 mmol glucose

remained meaning further formate could be produced during

B′ which may have triggered the induction of FHL. From

9–15 h, 6.0 mmol H2 and a further 6.0 mmol CO2 were pro-

duced from the disproportionation of formate. At 10 h, there

was a peak of 2.1 mmol formate excreted. During B′, a further

5.3 mmol acetate and 3.5 mmol ethanol were produced. By

12 h, the pH dropped to 5.4 and then remained stable as

1.6 mmol acetate was produced and balanced by the reimport

and disproportionation of 1.5 mmol formate. By 14 h, the

OD600 peaked at 1.5, just before the end of bacterial activity at

15 h due to the depletion of glucose and formate. 42.8 out of

the 45 mmol C from glucose can be accounted for in the

biomass (∼8 mmol C), 8.9 mmol CO2, 9 mmol acetate

(18 mmol C) and 3.8 mmol ethanol (7.6 mmol C). During expo-

nential growth, 14NH4
+ decreased from 4.5 to 2.9 mmol as did

15NH4
+ from a peak value of 1.15 to 0.9 mmol accounting for

1.85 mmol out of the ∼2 mmol N in the biomass.

3.4 Simultaneous nitrate and nitrite reduction

In section 3.2, when E. coli was supplemented with NO3
−,

there was a distinct hierarchy of metabolic pathways between

phases A, B and C. NO3
− reduction dominated in A, followed

by NO2
− reimport and reduction in B and finally fermentation

in C. However, in A it was observed that some NO2
− was simul-

taneously reduced alongside NO3
− to NH4

+ and N2O. To

further investigate the overlap between the reductions of NO3
−

and NO2
− in A, anaerobic E. coli was supplemented with

10 mM 15NO3
− and 5 mM 14NO2

− as shown in Fig. 8 and 9.

Phase A (0–9 h) lasted until all 15NO3
− was reduced to 15NO2

−.

Phase B (9–30 h) corresponded to the reduction of NO2
− to

NH4
+ with concurrent N2O production via NO. At 15.5 h, the

OD600 peaked and exponential growth of E. coli ended; thus,

phase B1 (9–15.5 h) was NO2
− reduction with glucose still

present and phase B2 (15.5–30 h) was NO2
− reduction during

glucose depletion. Fig. 8 displays n of 15NO3
−, NO2

−, 14NH4
+,

15NH4
+ (×10) and N2O isotopomers in A. The complete charac-

terization of bacterial growth is given in Fig. 9.

In phase A, 2.5 mmol 15NO3
− was reduced and ca.

2.25 mmol 15NO2
− was excreted. NO2

− colorimetry cannot dis-

tinguish between 14NO2
− and 15NO2

−, so NO2
− was observed to

increase from 1.25 to 3.5 mmol. During A, as in section 3.2,

some NO2
− was reduced alongside 15NO3

− to 0.2 mmol 15NH4
+

and N2O isotopomers. 14NO2
− reduction to 14N2O occurred

immediately, with 2.2 µmol 14N2O produced almost linearly by

Fig. 7 Anaerobic E. coli growth in M9 medium supplemented with

5 mM 15NO2
−. A’ and B’ denote two distinct phases: NO2

− reduction (A’)

and NO2
− depletion (B’). (a) Time-dependent number of moles (n) of

15NO2
−, 15NH4

+ and 15N2O (×10). (b) n of glucose, acetate and formate.

(c) n of CO2, H2, ethanol and
14NH4

+. (d) Spectroscopically determined

pH (open circles), externally measured pH (solid squares) and OD600.
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9 h. This indicated that even before NO3
− reduction began,

some unknown enzymatic activity to reduce small quantities

of NO2
− to N2O was immediately active. For the first 3 h,

15NO3
− and NO2

− measurements were virtually constant

suggesting a lag in the expression of NRA. This lag was best

indicated by the highly sensitive positional isomers 14N15NO

and 15N14NO which were not detected until 15NO2
− was made

available by 15NO3
− reduction starting from 3 h. 15N2O pro-

duction also began at 3 h, but much slower than the pro-

duction of 14N2O and the positional isomers, due to 14NO2
−

initially being more readily available than 15NO2
−. By the end

of A, 1.5 µmol each of 14N15NO, 15N14NO and 15N2O were pro-

duced alongside the 2.2 µmol 14N2O, totalling 6.7 µmol. It is

unknown if 14NO2
− was also immediately reduced to 14NH4

+,

due to the large background of 4.5 mmol 14NH4
+ in the growth

medium. It can be assumed ca. 0.25 mmol NO2
− was reduced

during A based on the NO2
− colorimetry measurements giving

a partitioning of 5% NO2
− reduced to N2O, instead of NH4

+.

This was a higher value than the 1% observed during A in

section 3.2, indicating that the added 14NO2
− led to more NO

generation and detoxification to N2O. During A, glucose

decreased from 7.5 to 5.6 mmol due to the production of

2.1 mmol CO2, 2.0 mmol acetate and biomass synthesis. The

OD600 began increasing indicating exponential bacterial

growth while acetate excretion caused the pH to decrease from

7.0 to 6.5. No formate was excreted during A, as the n of CO2

and acetate suggested all formate formed was oxidised to CO2.

No ethanol was detected during the entire 30 h experiment,

likely due to the abundance of electron acceptors to couple

reducing equivalents to.

Phase B1 began with 15NO3
− depletion and ended at 15.5 h

when glucose was depleted, coinciding with the OD600 peaking

at 1.2. The pH dropped further to 5.6 due to the excretion of

5.0 mmol formate and a further 6.0 mmol acetate. The sum of

formate excreted and the further 1.3 mmol CO2 produced was

in good agreement with the amount of acetate excreted.

Phase B2 lasted until NO2
− depletion at 30 h. From NO2

−

reduction, 1.6 mmol 15NH4
+ and 0.35 mmol N2O were pro-

duced overall. The final composition of N2O isotopomers was

previously introduced in Fig. 5c. As the majority of N2O pro-

duction occurred in B when the NO2
− composition was ca.

66% 15NO2
− and 33% 14NO2

−, a near statistical mixture of N2O

isotopomers was formed of 0.17 mmol 15N2O (49%),

0.08 mmol 15N14NO (22%), 0.07 mmol 14N15NO (20%) and

0.03 mmol 14N2O (9%). For comparison, a perfect statistical

mixture would have produced 44.4% 15N2O, 22.2%
15N14NO,

22.2% 14N15NO and 11.1% 14N2O. It is unknown whether the

Fig. 8 N2O isotopomers produced in the NO3
− reduction phase (A) of

anaerobic E. coli growth in M9 medium supplemented with 10 mM
15NO3

− and 5 mM 14NO2
−. (a) Time-dependent number of moles (n) of

15NO3
−, NO2

−, 14NH4
+ and 15NH4

+ (×10). (b) n of N2O isotopomers pro-

duced. 14N15NO is omitted due to essentially having the same behaviour

as 15N14NO.

Fig. 9 Anaerobic E. coli growth in M9 medium supplemented with

10 mM 15NO3
− and 5 mM 14NO2

−. A to C denotes three distinct phases:

NO3
− reduction (A), NO2

− reduction with glucose present (B1) and NO2
−

reduction with glucose depleted (B2). (a) Time-dependent number of

moles (n) of 15NO3
−, NO2

− (both 14N and 15N), 15NH4
+ and sum of all

14N/15N-isotopomers of N2O (×10). (b) n of glucose, acetate and

formate. (c) n of CO2 and 14NH4
+. (d) Spectroscopically determined pH

(open circles), externally measured pH (solid squares) and OD600.
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slight preference for 15N14NO over 14N15NO is significant or

due to experimental uncertainty. The partitioning of the

3.5 mmol NO2
− to N2O in B was 20%, a much higher value

than the 10% observed during A in section 3.2. This is consist-

ent with previous studies that found that between 5–36% of

NO3
− is converted to N2O by E. coli, depending on growth con-

ditions.35 During B2, CO2 increased by a further 0.5 mmol

while the pH remained constant at 5.6 due to no significant

change in acetate and formate. 33 out of the 45 mmol C from

glucose can be accounted for in the biomass (∼8 mmol C),

4 mmol CO2, 8 mmol acetate (16 mmol C) and 5 mmol

formate. The higher NO2
− content may have had cytotoxic

effects in E. coli resulting in other products that have not been

accounted for in the C balance. During B2, the OD600 dropped

from 1.2 to 0.8 suggesting cell death or changes in cellular size

and morphology, possibly due to the cytotoxicity of NO2
− and

NO. The 2.5 mmol 15N label was accounted for in the

1.6 mmol 15NH4
+, 0.17 mmol 15N2O (0.34 mmol 15N),

0.08 mmol 15N14NO, 0.07 mmol 14N15NO and ca. 0.5 mmol
15NH4

+ assumed to have been used for biosynthesis. As ca.

2.0 mmol NH4
+ was needed for biosynthesis, it was assumed

ca. 1.5 mmol was taken from 14NH4
+, which decreased overall

from 4.5 to 4.0 mmol suggesting ca. 1.0 mmol 14NH4
+ pro-

duced from the reduction of the 1.25 mmol 14NO2
−. This was

in good agreement with the 0.26 mmol 14NO2
− reduced to N2O

isotopomers with 0.03 mmol 14N2O (0.06 mmol 15N),

0.08 mmol 15N14NO and 0.07 mmol 14N15NO.

4. Conclusions

We have studied NO3
− and NO2

− reduction during DNRA by

anaerobic E. coli batch cultures by a combination of advanced

spectroscopic analytical techniques in conjunction with 15N-

isotopic labelling. The online spectroscopic techniques

described here are non-invasive, avoiding any contact with the

bacterial suspension, and provide concentrations in real-time.

We discussed in detail the spectroscopy, which spectral fea-

tures are most useful for analysis, and data analysis and fitting

routines for quantitative analysis. In situ analysis of the head-

space is achieved using cavity-enhanced Raman (CERS) and

long-path White cell FTIR spectroscopies alongside liquid-

phase Raman spectroscopy. Gas phase CERS allows CO2, H2,

N2 and O2 monitoring while White cell FTIR measures CO2,

ethanol and N2O. The 6 m pathlength White cell affords trace

gas detection of N2O with a noise equivalent detection limit of

60 nbar or 60 ppbv in 1 atm (1σ noise equivalent, 128 scans

corresponding to 120 s acquisition). This extremely high sensi-

tivity could be utilised in situations where N2O cannot be

allowed to build up, e.g. in continuous culture studies.

Quantitative analysis is discussed for all four 14N/15N-isotopo-

mers, including the positional isomers 14N15NO and 15N14NO,

a unique capability not available to other analytical

techniques.
15N-isotopic labelling of NO3

− identifies the sources of

N-atoms in products of E. coli metabolism, in particular, it pro-

vides insight into the mechanism of N2O production during

mixed NO3
− and NO2

− reduction. This study is one of very few

reporting quantitative analysis of N2O production by E. coli

under various conditions. The reductions of 15NO3
−, 15NO2

−,

and mixed 15NO3
− and 14NO2

− to NH4
+ and N2O have been dis-

cussed. In a major pathway, NO3
− is reduced to NH4

+ via

NO2
−, with the bulk of NO2

− reduction occurring after NO3
−

depletion. By isotopically labelling 15NO3
−, 15NH4

+ production

is distinguished from background 14NH4
+ in the growth

medium. In a minor pathway, NO2
− is reduced to N2O via the

toxic radical NO. With excellent detection sensitivities, N2O

monitors trace NO2
− reduction even when cells are predomi-

nantly reducing NO3
−; the analysis of N2O isotopomers reveals

that some enzymatic NO2
− reduction activity occurs immedi-

ately for cultures supplemented with mixed 15NO3
− and

14NO2
−. Optical density and pH measurements are discussed

in context of acetate, formate and CO2 production. H2 pro-

duction is repressed by NO3
−, but with NO2

− only, CERS

detects H2 produced by formate hydrogenlyase after NO2
−

depletion.

In future work, we want to extend our spectroscopic

approach to monitor different bacterial pathways, in particu-

lar, the relationship between fermentative and other respirat-

ory pathways and to study nitrifying and denitrifying bacteria.

These spectroscopic techniques are capable of detecting key

species in the nitrogen cycle and with the ability to sensitively

distinguish N2O isotopomers they may be of great interest for

helping better understand global N2O budgets. Spectroscopic

monitoring of bioprocesses has excellent potential to sup-

plement or replace traditional techniques in analytical

chemistry.
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S.1. Key Nitrate and Nitrite Reduction Enzymes

Fig. S1. The cellular locations of key enzymes during NO3
- and NO2

- reduction by E. coli, including

generation or detoxification of NO by NO3
- and NO2

- reductases. Enzymes are displayed in boldface:
Hcp, hybrid cluster protein; Hcr, NADH-dependent Hcp reductase; Hmp, flavohemoglobin; NarK, a

NO3
-/NO2

- antiporter;  NirB,  NADH dependent  NO2
- reductase;  NirC,  a  NO2

- transporter;  NorV,
flavorubredoxin;  Nap, periplasmic NO3

- reductase;  Nar,  NO3
- reductase A;  NrfA, periplasmic NO2

-

reductase.  

Fig.  S1 shows the cellular locations of key enzymes involved during E. coli NO3
- and NO2

-

reduction. E. coli expresses three NO3
- reductases: the respiratory NO3

- reductases A and Z (NRA and

NRZ) and the periplasmic NO3
- reductase (Nap)  [1–3]. NRA is the major anaerobic NO3

- reductase

active at high NO3
- levels ( > 2 mM) while Nap is induced by low NO3

- levels [4]. NRZ is expressed at

low levels constitutively and may function under stress-associated conditions or in an adaptive role in

the transition from aerobiosis to anaerobic NO3
- respiration [5, 6]. Formate is a physiological source

of electrons for NO3
- reduction that is oxidised to CO2 by the NO3

--inducible formate dehydrogenase

(FdhN)  and  transfers  electrons  to  the  quinone  pool  of  the  membrane  [2],  other  sources  include

reduced  nicotinamide  adenine  dinucleotide  (NADH),  lactate  and  glycerol  [1].  NADH-dependent

cytoplasmic  NO2
- reductase  (NirB)  and  the  membrane-bound  periplasmic  NO2

- reductase  (NrfA)

formally catalyse the six-electron reduction of NO2
- to NH3 instead of the one-electron reduction of

NO2
- to NO  [7]. Nevertheless,  E. coli still generates low levels of NO during anaerobic growth on

NO3
-,  either  from the disproportion of  NO2

- under  acidic  conditions  or  non-specific  reduction by

metalloproteins.  NRA (in  the  absence  of  NO3
-)  [8–11],  NirB  [12] and  NrfA  [13] have  all  been

proposed to be significant sources of NO formation. Both NO2
- and NO are cytotoxic species and

careful control of their intracellular concentration is required, either through detoxification to less

reactive species  or  by excretion.  Anaerobically,  NO is  detoxified  by reduction to  N2O, which  is

comparatively non-toxic and rapidly diffuses out of the cell. Flavorubredoxin (NorV)  [14], hybrid

cluster protein (Hcp) [15], NirB [16] and NrfA [17] have all been proposed to have NO detoxifying

activity.  Flavohemoglobin  (Hmp)  is  primarily  an  NO oxidase  but  also  acts  as  an  NO reductase
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anaerobically [18]. As E. coli does not possess any known N2O reductases, further reduction to N2 is

not  expected to  occur.  However,  there  is  some evidence that  N2 might  be produced under  some

conditions by a yet unknown mechanism [19].

S.2. M9 Formulation

Our entire M9 formulation is listed below. To this base formulation we supplemented 10 mM

K15NO3 (10 mM, 98 atom % 15N, Sigma Aldrich) and/or 5 mM KNO2 (either 14N or 15N).

● 48 mM Sodium phosphate dibasic

● 30 mM Glucose

● 22 mM Potassium phosphate monobasic

● 18 mM Ammonium chloride

● 8.5 mM Sodium chloride

● 1 mM Magnesium sulphate

● 1 mM Thiamine hydrochloride

● 300 µM Calcium chloride

● 134 µM Tetrasodium EDTA

● 56.6 µM Boric acid

● 31 µM Iron(III) chloride

● 9 µM Nickel chloride hexahydrate

● 6.2 µM Zinc chloride

● 4 µM Biotin

● 4 µM Sodium selenite

● 3.2 µM Sodium molybdate dihydrate

● 2.7 µM Cobalt(II) chloride hexahydrate

● 1.3 µM Manganese(II) chloride tetrahydrate 

● 0.2 µM Copper(II) sulphate

S.3. FTIR Spectroscopy of CO2 and Ethanol

Fig. S2.  Experimental White cell FTIR Spectrum of the CO2 (2ν1+ν3) Fermi triad. The CO2 partial
pressure was 100 mbar calculated from the integral of the shaded ν1+2ν2+ν3 band. 

Production  of  CO2,  ethanol  and  N2O  was  quantified  by  gas-phase  FTIR  spectroscopy

(Mattson Research Series, 0.4 cm-1 spectral resolution, 1000 - 7000 cm -1 range, liquid N2 cooled MCT

detector) with a home-built multiple-pass absorption White cell  [20]. N2O spectral bands and fitting

procedures are described in the main text. Fig.  S2 shows an experimental spectrum of the (2ν1+ν3)

Fermi triad of CO2, corresponding to 100 mbar in 1 atm. The integral of the red-shaded ν1 + 2ν2 + ν3

band (4920 - 5015 cm-1,  ν0 = 4978 cm-1) was compared with a reference spectrum taken from the

PNNL database to calculate CO2 partial pressure [21]. PNNL spectra corresponded to 1 ppm-meter of

a species and so were scaled to 6 m, the folded pathlength of our White cell.
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Fig. S3. White cell calibration plot showing the calculated CO2 partial pressure as a function of CO2

partial pressure, assuming a folded pathlength of 6 m.  

Fig. S3 shows the excellent linearity between the calculated partial pressures of CO2 (pcalc) and

CO2 in 1 atm air. This confirmed the 6 m folded pathlength of our White cell. Non-linearity was

observed at CO2 partial pressures greater than 100 mbar due to the  ν1 + 2ν2 +  ν3 exceeding a peak

absorbance of unity. This was not an issue for our experiments displayed in the main text as CO 2

produced by E. coli did not exceed 100 mbar, under our conditions.

Fig. S4. In black, an experimental White cell FTIR spectrum of 63 ppm ethanol (5.1 mM in solution).

In red, the sum of the fitted ethanol and water models shown below the overlaid spectra. The water
model is divided by five for clarity due to the intense lines. 

Fig.  S4 shows the fitting procedure to obtain ethanol partial pressure. In the C-H stretching

region, the broad ethanol peak overlapped with sharp water lines. Using a least-squares fitting routine,

model spectra of 1 ppm ethanol and water taken from the PNNL database were fitted to experimental

spectra, returning a multiplier equal to the partial pressure of ethanol. Using Henry’s law, this partial

pressure was converted to concentration in solution.
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S.4. Cavity Enhanced Raman Spectroscopy (CERS)

S.4.1. Experimental Details of CERS

Fig.  S5.  Scheme of  the experimental  CERS setup.  DM,  dichroic  mirror;  F,  filter;  FIA,  Faraday

isolator assembly;  FOA, fibre optical assembly;  G, grating;  LD, laser diode;  ML, mode matching
lens; O, oscilloscope; PM, mirror on a piezomount; PolP, polarization plane turning prism pair; PSM,

supermirror on a piezomount; SM, supermirror.    

The experimental  CERS setup (Fig.  S5)  has  been described before  [22–25],  but  contains

several modifications. A 40 mW 636 nm single-mode cw-diode laser (HL63133DG) is coupled via a

short-pass filter, a Faraday isolator and a mode matching lens into a linear optical cavity composed of

two highly reflective mirrors (Newport SuperMirrors, R > 99.99 %). If the laser wavelength matches

the cavity length, then an optical resonance builds up optical power inside the cavity by up to 3 orders

of magnitude, enhancing the Raman signals. The enhancement can be clearly seen in Fig. S6 showing

a photograph that was taken when the cavity was opened for cleaning. In the present simplified setup,

no active mode matching was attempted; the diode laser current was rather modulated periodically to

allow periodic mode matching which is  then re-enforced by optical  feedback.  After  the cavity,  a

dichroic mirror separates leftover excitation light from Raman signals which are coupled into a round-

to-linear  glass  fibre  bundle  (7  x  Ø105  µm)  and  transferred  to  the  monochromator.  Remaining

excitation light is fed back to the diode for frequency stabilization to match the laser wavelength to

the cavity. In the feedback loop there are a grating (G), a piezo-mounted mirror (PM) and a set of 2

prisms (PolP) to change the polarisation from horizontally to vertically polarised. The grating is in 1st

order reflection to select just one wavelength of the possible cavity modes, to encourage single mode

operation by feedback. The piezo-mirror is to adjust the feedback loop length to the laser wavelength

(‘phase matching’). In a simplification, we are not using active phase matching but apply a periodic

change which will lock the laser periodically to a resonance. In the setup, only one Faraday isolator is

used. The original 45o polarised diode laser light will be horizontally polarised after the isolator. To
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allow feeding light  back to  the diode  via the  rejection port  of  the Faraday isolator,  it  has  to  be

vertically polarised which is achieved by the prism pair rotating the polarisation.

Fig. S6.  Photograph taken of the inside of the cavity while open for cleaning, clearly showing the
power enhancement of the red laser beam inside the cavity.

S.4.2. Spectral Fitting Procedures and Calibration Plots

Fig. S7. CERS spectrum of 1 atm air (210 mbar O2 and 790 mbar N2). 

Fig.  S7 shows a CERS spectrum of air, with the  Q-branches of the O2 and N2 vibrational

fundamentals visible. Fig. S8 shows a CERS spectrum of 140 mbar each of H2 and CO2, taken during

a bacterial anaerobic fermentation experiment. 

Fig. S8. CERS spectrum of H2 and CO2 (140 mbar of each).

The area of the  S(1) rotational peak of H2 was divided by the area of the  Q-branch of N2

(corresponding to 1 atm in anaerobic experiments)  in order to obtain H2 partial  pressures after  a

calibration.  Using known partial  gas  pressures,  a  calibration was made for  H2 showing excellent
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linearity,  see  Fig.  S9.  A  similar  procedure  has  been  applied  to  CO2;  the  calibration  also  shows

excellent linearity, see Fig. S9. 

Fig. S9. CO2 and H2 calibration plots.

S.5. Liquid Phase Raman Spectroscopy

S.5.1. Experimental Details of the Home-built Raman Spectrometer

Fig. S10. Photographs of the home-built spectrometer set-up, showing the laser beam path through the
mirror and the microscope objective to the sample. Left: side view; right: top view.

The home-built Raman spectrometer was first described in ref.  [26] and modified later as

described  in  refs.  [20,  27];  key  components  of  the  monochromator  and  the  camera  have  been

described in refs  [22, 23]. Briefly, a frequency doubled Nd:YAG laser, 532.2 nm, 20 mW (Lasos,

GL3dT) emits  green excitation light  that  is  turned by 90° by a small  mirror  and coupled into a

microscope objective. The small mirror was a 2 mm × 3 mm oval film deposited in the centre of a

glass  slide  so  as  not  to  take  away too  much of  the  Raman backscattered  light.  The  microscope

objective is a 20x, 0.50 NA achromatic objective (OptoSigma, 028-0220) with a large clear aperture

(8.2 mm). The objective focused the laser light very tightly at 2 mm distance from the objective front

into the glass tube, as well as collimating the resulting Raman backscattered light. The sample volume

is essentially the focus volume with an estimated spatial resolution below 100 μm. The backscattered

light passed through the glass slide and was coupled into a lens and transmitted to the monochromator

(Shamrock SR-750-A) equipped with 1200 l/mm grating, 750 nm blaze, and CCD camera (Andor i-

Dus DU420A-OE at –80 °C). The grating provided a 880 cm-1 spectral range at about 0.8 cm-1

resolution. After wavenumber calibration, Raman peak position accuracy is estimated to be ± 3 cm-1 .
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Raman reference spectra were obtained in borosilicate NMR test tubes. A scheme of the Raman setup

is part of Fig. 2 in the main text. In addition, see Fig. S10 for two photos of the Raman spectrometer.

S.5.2. Spectral Fitting Procedures and Calibration Plots

Fig. S11. In black, an experimental Raman spectrum of M9 medium containing 30 mM acetate and 10
mM formate excreted by E. coli. In red, the sum of the fitted acetate and formate models shown below

the overlaid spectra.

As described in the main text, experimental liquid Raman spectra were fitted with the sum of

model Raman spectra of pure compounds of known concentration and a linear baseline. Fig. 3 in the

main text shows an example fitting procedure for NO3
-, glucose, H2PO4

- and HPO4
2- at 825 - 1200 cm-

1.  Fig.  S11 shows  an  example  fit  for  the  other  species  we  analyse  by  liquid  phase  Raman

spectroscopy, acetate and formate between 1300 - 1450 cm-1, as first described in ref. [20].

Fig.  S12.  The  entire  experimental  Raman  spectrum  of  M9 medium  supplemented  with  10  mM

K15NO3 and 30 mM glucose.The water bending vibration is highlighted in blue. See the main text for
Fig. 3. 

The least-squares fitting procedures returned multipliers  x that were normalised by dividing

by  the  water  area  peak  (bending  vibration  of  the  water  solvent  at  1630  cm -1)  to  give  x’;  this

normalisation was particularly relevant for our biological samples which became turbid with time. In

the normalisation, the water peak was fitted by a Gaussian contour centered at 1630 cm -1 with FWHM
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of 80 cm-1. Normalisation assumed that the area of this Gaussian was the same in all solution Raman

spectra because water concentrations remained the same. Fig. S12 shows the water peak as well as the

entire spectral range (830 - 1710 cm-1) of a typical solution Raman spectrum. The part of the spectrum

coloured red is displayed in the main text in Fig. 3.

Fig. S13. Calibration plots of normalized Raman signals x’ (in a.u.) versus concentration in solution
for NO3

-
, glucose, acetate, formate, H2PO4

- and HPO4
2-; with linear fit lines, slopes m and R2 values.

The normalized x’ provides the concentration of the compound in comparison with the known

concentration of the pure compound used as the model for the fit. This procedure was validated by

calibration plots shown in Fig. S13 where the concentrations of calibration solutions were determined

as described above and compared with the nominal concentrations. Excellent linearity (as shown by

the  R2 value) and a good dynamic range are demonstrated in all cases. m denotes the slope of the

calibration curves. Error bars, as represented by the standard deviation of repeat measurements, are

approximately the size of the symbols used or smaller and are therefore not included in the calibration

plots.
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S.6. Analysis of Bacterial Culture Samples

S.6.1. Nitrite Colorimetry

Scheme S1. The two subsequent reactions of the Griess test.

Scheme  S1 shows the two subsequent reactions of the Greiss test.  First  NO2
- reacts with

sulfanilamide forming a diazonium salt  which then reacts in an azo coupling reaction with N-(1-

napthyl)ethylenediamine forming a pink azo dye. The pink colour is shown in Fig. S14.

Fig. S14. The pink azo dye formed by the Griess test for NO2
-. 

By  using  a  spectrophotometer,  NO2
- can  be  quantitatively  determined  by  measuring  the

absorbance at 520 nm, as shown by the calibration plot in Fig. S15. 

Fig. S15. NO2
- colorimetry calibration plot. 
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S.6.2. 14N/15N-Ammonium Analysis

Fig. S16.  The White cell (2.8 m folded pathlength) FTIR and flask setup for analysing  14NH3 and
15NH3.

For 14N/15N ammonium analysis of samples, 2 mL 1 M NaOH was added to 0.6 mL of sample

to release ammonia gas in a flask connected to our second FTIR set-up (Bruker Alpha FTIR, 0.8 cm-1

spectral resolution, 350 - 7000 cm-1 range) also with a home-built multiple-pass absorption White cell

(2.8 m pathlength), shown in Fig. S16. The gases were cycled using a peristaltic pump (4.5 L/h) and

the solution was stirred rapidly.  Spectra  were recorded every 5 minutes  with around 30 minutes

needed before ammonia concentration peaked in the headspace.

 

Fig. S17.  Experimental White cell FTIR spectra of  14NH3 (cyan) and 15NH3 (dark blue) gases, each

corresponding to 20 mM NH4
+ in solution. The grey dashed box indicates the ν2 Q-branch fitted for

NH3 analysis.

Fig.  S17 shows typical experimental spectra of  14NH3 (black) and  15NH3 (red) gases, both

corresponding  to  20  mM  ammonium.  The  two  Q-branches  of  ammonia’s  ν2 N-H  wagging

fundamental are visible, it is centred around 950 cm-1 for 14NH3. Two Q-branches are observed due to

the inversion doubling phenomenon exhibited by trigonal pyramidal molecules like ammonia. The ν2

P- and R- branches extend over 700 - 1200 cm-1, outside the range displayed for the spectra. The ν2

band is the strongest in ammonia’s IR spectrum and free from CO2 and water lines and is commonly

used for FTIR analysis of 14N/15N ammonia. We observed the higher energy Q-branch, highlighted by
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a dashed box for the prior spectra, to be the most intense ammonia spectral feature so it was utilised

for analysis. A self-written computer programme implements the least-squares fit of the 955 - 970 cm -

1 region of an experimental FTIR spectrum to the sum of scaled 14NH3 and 15NH3 model spectra and a

linear baseline. 

Fig.  S18.  In  black,  an  experimental  White  cell  FTIR  spectrum  of  14NH3 and  15NH3 gases
corresponding to 12.5 mM 14NH4

+ and 8.25 mM 15NH4
+. In red, the sum of the fitted 14NH3 and 15NH3

models shown below the overlaid spectra.

Fig.  S18 is  an  example  least-squares  fit  for  14NH3 and  15NH3.  Calibration  plots  were

constructed  (shown below in  Fig.  S19)  to  convert  the  multipliers  of  the  model  spectra  (x’)  into

concentrations. The model NH3 spectra were constructed from experimental spectra.

Fig. S19. Calibration plots for 14NH3 and 15NH3. 

Under our conditions, we obtained a dynamic range up to 22.5 mM and a noise equivalent

detection limit (1 σ) of 0.13 mM. This was suitable for our bacterial culture samples containing 18

mM 14NH4
+ and 10 mM 15NO3

- at the start.  14NH4
+  concentrations can only decrease due to biomass

synthesis and 15NH4
+ concentrations produced cannot exceed that of the 10 mM 15NO3

- supplied.
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