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ABSTRACT

Ultrasound (US) is widely accepted in clinic for anatomical

structure inspection. However, lacking in resources to prac-

tice US scan, novices often struggle to learn the operation

skills. Also, in the deep learning era, automated US image

analysis is limited by the lack of annotated samples. Ef-

ficiently synthesizing realistic, editable and high resolution

US images can solve the problems. The task is challenging

and previous methods can only partially complete it. In this

paper, we devise a new framework for US image synthesis.

Particularly, we firstly adopt a sketch generative adversarial

networks (Sgan) to introduce background sketch upon object

mask in a conditioned generative adversarial network. With

enriched sketch cues, Sgan can generate realistic US images

with editable and fine-grained structure details. Although ef-

fective, Sgan is hard to generate high resolution US images.

To achieve this, we further implant the Sgan into a progres-

sive growing scheme (PGSgan). By smoothly growing both

generator and discriminator, PGSgan can gradually synthe-

size US images from low to high resolution. By synthesizing

ovary and follicle US images, our extensive perceptual evalu-

ation, user study and segmentation results prove the promis-

ing efficacy and efficiency of the proposed PGSgan.

Index Terms— Ultrasound, Image synthesis, Conditional

GAN, High resolution, Progressive growing
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Fig. 1. Three changes are edited in Canny label to synthesize

a new ultrasound images. The white arrow marks the place

edited. In order to make it clearer, we present Canny sketch

in pseudo color.

1. INTRODUCTION

Featured as real-time and radiation-free, ultrasound (US) is

preferred in clinic for anatomical structure inspection. US-

based diagnoses require sonographers to have strong skills

in scanning subject and interpreting US images. However,

due to the lack of clinic resources and opportunities to prac-

tice with US machines, novices often need to struggle for a

long time to obtain the required skills. Realistic US image-

based scan training is hence highly desired [1]. On the other

hand, since labeling US images requires expertise and is

time-consuming, the lack of large-scale annotated US dataset

severely confines the development of automated US image

analyses, especially in the deep learning era [2]. Regarding

this situation, synthesizing US images has great potentials in

facilitating both the clinical training and technical evolution.

US image synthesis should be realistic with high resolu-

tion to provide an immersive experience, be editable to mimic
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various disease cases and be efficient for clinic deployment.

Previous researches have made continuous efforts but only

partially completed these criteria. Traditional physical princi-

ple based methods, such as kidney phantom images synthesis

in Field II [3], the intravascular US (IVUS) images synthesis

[1] and cardiac images sequence generation [4, 5], though

containing clearer physical parameters for synthesis, they

have high computational complexity and are time-consuming

when generating a new image, especially for high-resolution

images. In recent years, using deep neural network based

generator and discriminator to play a min-max game, Gen-

erative Adversarial Networks (GANs) [6] provide a brand

new way to efficiently synthesize realistic images. Once the

training is done, it takes only a few seconds for a new image

generation. However, the random noise input of GAN is not

editable and thus can not be customized in detail. Condi-

tional GAN (cGAN) [7] enables the user-controlled image

generation. Tom et al. [8] introduced a multi-stage method

for IVUS synthesis, including two different cGANs to trans-

form tissue maps into IVUS images. Due to the cascaded

connection between two different cGANs, the system is hard

to train. In [9], spatially-conditioned GAN was proposed to

synthesize US images from fetal phantom. Although effec-

tive, the synthesized US images are with low-resolution and

possible checkerboard artifacts. To enrich the structure de-

tails for easy training of cGAN and more realistic synthesis,

the auxiliary guidance information, like the sketch and edge

of background were introduced in [10, 11]. However, these

methods still have problems in generating high-resolution

images. Generating high-resolution images is challenging

because higher resolution makes it easier for the discrimina-

tor to capture flaws in the synthesized images. Also, higher

resolution restricts the use of large minibatches due to mem-

ory constraints, which further degrades the training stability.

In this paper, we devise a new end-to-end framework to

efficiently synthesize realistic, high-resolution and editable

US images. In order to enhance the structure fidelity and

ease the synthesis, we firstly adopt a Sgan to introduce aux-

iliary sketch guidance upon object mask in a cGAN (Fig. 1).

Sgan enables the interactive edition of fine-grained details.

Although effective, Sgan is hard to generate high resolution

US images. To achieve this and avoid the use of multiple

cGANs, we apply a progressive training strategy [12] on Sgan

to gradually generate high-resolution US images (PGSgan).

By smoothly growing both the generator and discriminator

with fade-in blocks (FIB) for transition, PGSgan can suc-

cessfully learn to synthesize high resolution images with less

training time. We validated PGSgan on ovary and follicle

US image synthesis. Extensive perceptual evaluation, cus-

tomized edition, user studies and segmentation tests prove the

promising efficacy and efficiency of PGSgan. Our synthe-

sized 512×512 images may promote the clinic training and

automated analysis.

Fig. 2. PGSgan framework. Generator input is label mask

and edge sketch. Input resolution increases as the generator

and discriminator grow. FIB transits among high- and low-

resolution layers. FIB-D for downsampling, FIB-U for up-

sampling. N×N is resolution. Yellow box is layer growing.

2. METHODOLOGY

Fig. 2 shows the workflow of our proposed PGSgan. The

system takes label and sketch guidance as input, and out-

puts realistic US images from low to high resolutions. Only

one generator and discriminator in the framework. Under our

progressive learning strategy, generator and discriminator are

growing during training process, with all layers in both net-

works being learnable throughout the training process.

2.1. Backbone of Sgan

As shown in Fig. 2, in order to balance between the train-

ing cost of Sgan and synthesis quality, we set the generator as

a encoder-decoder architecture with a 10-residual block en-

coder. For the discriminator, we follow the design of patch-

based PatchGAN [7] with a 30×30 output, which can force

the generator produce more realistic results than image-based

discriminator does. With these settings, the results have bet-

ter performance through experiments. PatchGAN restricts

the discriminator to only model high-frequency structure de-

tails, while exploits a L1-loss to force low-frequency synthe-

sis. The conditional adversarial loss and L1-loss of Sgan are

formulated as follow:

Lsgan(G,D) = Ex,y [logD(x, y)] + Ex,G(x)[log(1 − D(x,G(x))] (1)

LL1(G) = ‖y − G(x)‖1 (2)

G∗ = argmin
G

max
D

LSgan(G,D) + LL1(G) (3)

G, D represent the generator and discriminator, respectively.

x denotes the condition image input, which will be elaborated

in Sec.2.2. y denotes the ground truth US images. The train-

ing of Sgan starts from the resolution of 256×256.



Fig. 3. Structure of FIB-D (left) and FIB-U (right). Convolu-

tion in colored box. α increases linearly for transition. N×N

blocks refer to convolutional layers operating on correspond-

ing resolution.

2.2. Auxiliary Sketch Guidance

For cGAN training, a pair of images, i.e., input conditional

image and real image, are required. In this work, we use the

segmentation mask of object to serve as the basic input con-

ditioned image. We observed that, due to the absence of the

background pattern, only using the mask as input can not get

realistic and natural synthesis.

To alleviate the problem, motivated by [10], we propose

to introduce auxiliary sketch guidance of the background to

form composite conditional input. As shown in Fig.2, by in-

jecting the sketch features to represent the textures of back-

ground tissues, we upgrade the paired conditional input to a

triplet version. Specifically, Canny algorithm [13] is adopted

to effectively extract binary edges as sketch, especially the

weak edges. Canny edge is robust against noise and avoid re-

dundant edges. With the edge sketch, the conditional label of

our system is created by overlaying the auxiliary sketch onto

the original mask without affecting the area of target object.

With the auxiliary sketch of background, we can generate

realistic US images and avoid synthesizing unnatural images

in which the background has blurred areas and distored struc-

tures (see Section 3).

2.3. Progressive Growing Scheme

High resolution amplifies the flaws in structure details of syn-

thesized US images and hence is difficult to achieve. To tackle

the challenges and avoid heavy computation, we propose to

adopt the progressive growing training scheme [12] to decom-

pose the task as an incremental learning task (PGSgan). By

gradually growing the layout of both generator and discrim-

inator for capacity enhancement, the scheme enables PGS-

gan to use only one generator and discriminator with fast and

smooth learning for high-resolution, realistic synthesis.

Accordingly, we start the training of PGSgan on low-

resolution conditional input (256×256). We then progres-

sively increase the input resolution and add learnable layers

to the existing network with sharing weights for continuous

training (Fig. 2). To avoid the sudden shock on training

when adding new layers, we adopt the fade-in block (FIB) for

smooth transition in both generator and discriminator.

Fig. 3 illustrates the structure details of FIB. For the pur-

pose of transition, FIB follows the residual design. Facing

with the different resolutions between the input and internal

layers, FIB applies the added convolution layers and resizes

the input in the main stream to match the output resolution. At

the same time, FIB introduces a skip connection to directly

resize the input and skips it to merge with the main stream

through the weight α ∼ (0, 1). α = 1 means the output

does not need the original input. During training, the transi-

tion happens as the α increases and the output depends less

on original input resolution. The advantages of FIB are that it

not only smooths the transition between different resolutions,

but also remains the base model structure, making weights

sharing possible and hence reducing training time. Specifi-

cally, there are two types of FIB. FIB-D is for downsampling,

which is used in both generator and discriminator. FIB-U is

for upsampling, which is only used in generator (Fig. 2).

2.4. Training with FIB

To ease the learning of PGSgan, we conduct the training with

four phases. In the first phase, PGSgan is trained with reso-

lution 256 × 256 US image and composite sketch label until

convergence. In the second phase, we increase the input reso-

lution to 512× 512 and grow the discriminator of PGSgan by

adding a FIB-D after input. Generator then grows in the third

phase to match the increased input resolution. For end-to-end

requirement, a FIB-D is added after the input while another

FIB-U is added before the output (Fig. 2). The discriminator

grows earlier than generator to replenish the gradient infor-

mation and force the generator learn to synthesize higher res-

olution. Finally, we train the PGSgan in resolution 512× 512
until convergence.

Every time the network grows for a new training phase,

we increase the α linearly from 0 with an interval of 1/30.

Notably, because we observed that allowing the α increases

to 1 when growing generator could cause a sudden increase in

generator loss, we propose to truncate the α at 0.5 to partially

preserve the original input information for better stability.

3. EXPERIMENTAL RESULTS

Experiments were carried on a dataset of 3261 ovarian US im-

ages. All images were labeled by experienced doctors. Data

collection has been approved by local IRB. We used 2848

images for training and the rest 431 images for testing. We

adopted Adam with a batch size of 4, on a single TITAN X

GPU with 12GB RAM, to train the whole framework. The

learning rate of generator and discriminator was set to 0.001

and 0.0001, respectively. The maximum epoch was 200.

Fig. 4 visualizes the comparison of generated US images

from different methods. Some defects such as background

distortion (a,b), checkerboard artifacts (c) and stretching ef-



Fig. 4. Visual comparison of some synthesized images from

different methods at the resolution of 512×512.

Fig. 5. Customized synthesis of ovarian US images based on

label edition. First/second row: before/after editing.

fects (d) are denoted by arrows in Fig. 4. In contrast, our

method generates more realistic synthesized images. Further-

more, our method enables not only synthesizing images from

real labels but also being capable to generate images using

edited labels (see Fig. 5). By this way, we can create high

fidelity ovarian US images with various pathological mor-

phologies. Table 1 further lists the numerical evaluation met-

rics, including Freshet Inception Distance (FID) [14], Kernel

Inception Distance (KID) [15] and multi-scale structural sim-

ilarity (MS-SSIM) [16]. 8.5 hours was needed for training the

resolution of 256 and 16 hours for resolution of 512. For test-

ing phase, it took only 0.07s for an image generation in GPU

and 5.58s in CPU on average. Our method outperformes all

other compared methods with regard to all metrics, which is

mainly due to the employment of auxiliary sketch and pro-

gressive training scheme.

We further adopted U-Net[17] to investigate the segmen-

tation performance on synthesized images. The average dice

of ovary and follicle are 0.92 and 0.89, respectively. Fig. 6

(a) shows that the segmentation on synthesized images are

comparable with results from real images, which proves our

synthesis results could benefit the development of automatic

segmentation through realistic data augmentation.

To further validate the quality of synthesized images, a

user study of blinded trials was designed with three doctor

participants. They tried to tell the differences among real

and synthesized images from different methods. As shown

in Fig. 6 (b), doctors got high mean accuracy in recognizing

the real and synthesized images from cGAN and Sgan (0.64

and 0.55, respectively), but low accuracy (0.43) for PGSgan,

which indicates our synthesized images are more realistic.

Fig. 6. (a) Ovary and follicle segmentation results of real

and synthesized images. (b) Radar chart of user study results,

which shows the accuarcy of doctors’ assessments.

Table 1. Evaluation results for synthesized images.

Methods Resolution FID↓ KID(×100)↓ MS-SSIM↑

cGAN[7] 256 67.52 8.38 0.2404

Sgan 256 65.95 6.31 0.4355

cGAN[7] 512 104.95 14.18 0.2536

Sgan 512 79.25 7.96 0.4758

PGSgan 512 54.94 4.12 0.4895

4. CONCLUSIONS

Here we propose a framework of combining progressive

training strategy with guidance auxiliary to synthesize high-

resolution US images with high fidelity. Detailed analyses

of various experimental results support our assumption that

adding background texture information is beneficial for the

model to generate realistic US images. In addition, we found

that progressive training strategy helps improve performance

due to the sharing weights in different phases. Quantitative

comparisons, user-study and synthesis edition illustrate the

superiority of our proposed method.
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[15] Mikołaj Bińkowski, Dougal J Sutherland, Michael Ar-

bel, and Arthur Gretton, “Demystifying mmd gans,”

arXiv preprint arXiv:1801.01401, 2018.

[16] Zhou Wang, Eero P Simoncelli, et al., “Multiscale struc-

tural similarity for image quality assessment,” in The

Thrity-Seventh Asilomar Conference on Signals, Sys-

tems & Computers, 2003. Ieee, 2003, vol. 2, pp. 1398–

1402.

[17] Olaf Ronneberger et al., “U-net: Convolutional net-

works for biomedical image segmentation,” in MICCAI.

Springer, 2015, pp. 234–241.


	1  Introduction
	2  Methodology
	2.1  Backbone of Sgan
	2.2  Auxiliary Sketch Guidance
	2.3  Progressive Growing Scheme
	2.4  Training with FIB

	3  Experimental Results
	4  Conclusions
	5  References

