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Abstract: As a result of environmental pollution and the ever-growing demand for energy, there 
has been a shift from conventional vehicles towards electric vehicles (EVs). Public acceptance of EVs 
and their large-scale deployment raises requires a fully operational charging infrastructure. Charg-
ing infrastructure planning is an intricate process involving various activities, such as charging sta-
tion placement, charging demand prediction, and charging scheduling. This planning process in-
volves interactions between power distribution and the road network. The advent of machine learn-
ing has made data-driven approaches a viable means for solving charging infrastructure planning 
problems. Consequently, researchers have started using machine learning techniques to solve the 
aforementioned problems associated with charging infrastructure planning. This work aims to pro-
vide a comprehensive review of the machine learning applications used to solve charging infra-
structure planning problems. Furthermore, three case studies on charging station placement and 
charging demand prediction are presented. 
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1. Introduction 
Global energy consumption is increasing at an alarming rate, and the transportation 

sector is one of the largest consumers [1]. It was found that, in 2019, in the US, approxi-
mately 28% of the net energy consumption was involved in moving people and goods [2]. 
Furthermore, it was reported that the transport sector is one of the major agents of air 
pollution [3–5]. The paradigm shift from internal combustion engine (ICE)-driven vehi-
cles to EVs is a viable way to mitigate the serious concerns regarding the energy crisis and 
air pollution. The large-scale adoption of EVs requires fully operational charging infra-
structure. Charging infrastructure planning involves interactions between both the road 
and power distribution network. Charger placement at weak points in the power distri-
bution network and uncoordinated charging can result in voltage instability, increased 
power losses, harmonic distortions, and degraded reliability indices [6–12]. Furthermore, 
charging infrastructure planning must also take into account the convenience of EV driv-
ers, for example, the accessibility of the charging stations, and the waiting time in the 
charging stations [13]. Moreover, smart coordinated charging is preferred over uncoordi-
nated charging to tackle the detrimental impact of EV charging on the grid [14]. Charging 
infrastructure planning is a multifaceted problem involving a number of decision varia-
bles, objective functions, and constraints. Researchers have used heuristics [15,16], me-
taheuristics [17], machine learning [18], and game theory [19,20] for solving these prob-
lems.  
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In recent years, the advent of machine learning has made data-driven approaches 
popular for solving charging infrastructure planning problems. Consequently, research-
ers started using machine learning techniques to solve the problems associated with 
charging infrastructure planning, such as charging station placement, charging demand 
prediction, and charging scheduling. This work aims to provide a comprehensive review 
of machine learning applications for solving charging infrastructure planning problems. 
Table 1 lists prominent studies that meticulously review different aspects of charging in-
frastructure planning. From Table 1, it can be seen that researchers have reviewed various 
aspects of e-mobility, such as charging station placement, drivers of EV adoption, policies 
for promoting EVs, charging technologies, and charge scheduling. However, there is lack 
of comprehensive reviews focused on machine learning applications for solving charging 
infrastructure planning problems. Hence, this work aims to provide a comprehensive re-
view of the machine learning applications used for solving different aspects of charging 
infrastructure planning, such as placement, charging demand prediction, and charging 
scheduling. Furthermore, case studies on charging infrastructure planning are also pre-
sented in this work. However, this paper contains more detailed descriptions of machine 
learning algorithms, more quantitative analyses of the reported literature, and three case 
studies on charging infrastructure planning. The main contributions of this work as com-
pared to the reviews reported in Table 1 are as follows: 
 A comprehensive review of the applications of machine learning algorithms for 

charging infrastructure planning; 
 Qualitative and quantitative analyses of the reported literature; 
 Recommendations regarding the suitability of machine learning algorithms for solv-

ing charging infrastructure planning problems; 
 Case studies on charging hotspot identification and charging demand prediction. 

Table 1. Reviews of charging infrastructure planning. 

Ref Author Journal/Conference Year Diligence 

[21] 
Hardman et 
al. 

Transportation Research Part D: 
Transport and Environment 

2018 
Review of consumer preferences towards 
and interactions with the EV charging infra-
structure. 

[22] Pagany et al. 
International Journal of Sustainable 
Transportation 

2019 
Review of spatial localization methodolo-
gies for the electric vehicle charging infra-
structure. 

[23] Zhang et al. 
Renewable and Sustainable Energy Re-
views 

2018 
Review of the economics of charging infra-
structure planning. 

[24] Khan et al.  Smart Science 2018 
Review of fast charging infrastructure for 
EVs. 

[25] Das et al. 
Renewable and Sustainable Energy Re-
views 

2020 
Review of EV charging standards and grid 
impacts of EV charging. 

[26] Ji et al. 
Renewable and Sustainable Energy Re-
views 

2018 
Review of policies, methodologies, and chal-
lenges for charging infrastructure deploy-
ment in China. 

[27] 
Coffman et 
al.  

Transport Reviews 2017 
Review of factors affecting the adoption of 
EVs. 

[28] Rahman et al. 
Renewable and Sustainable Energy Re-
views 

2016 
Review of recent trends in optimization 
techniques for plug-in hybrid and electric 
vehicle charging infrastructures. 

[29] Yang et al.  Journal of Cleaner Production 2018 
Suggestion on tax policy for promoting the 
PPP projects of the charging infrastructure 
in China. 
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[30] 
Rietmann et 
al. 

Journal of Cleaner Production 2019 
Review of worldwide policy measures to 
promote e-mobility. 

[31] Ahmad et al. Smart Science 2018 

Review of electric vehicle charging tech-
niques and standards, and the progression 
and evolution of EV technologies in Ger-
many. 

[32] Gnann et al. 
Renewable and Sustainable Energy Re-
views 

2018 Review of the global EV diffusion model. 

[33] Ding et al. 
IEEE transaction on Industry Applica-
tions 

2020 
Review on approaches for EV charging de-
mand management. 

[34] Zhang et al. 
Renewable and Sustainable Energy Re-
views 

2017 Review of EV policies in China. 

[35] Youssef et al. 
Materials Science and Engineering Con-
ference Series  

2018 
Review of EV DC charging stations using 
photovoltaic sources. 

[36] Du et al. Applied Energy 2017 Review of EV industrialization in China. 

[37] Hardman 
Transportation Research Part A: Policy 
and Practice 

2019 
Review of financial incentives for EV adop-
tion. 

[38] García et al. Applied Soft Computing 2018 
Review of metaheuristics for solving charg-
ing scheduling problems. 

[39] Zheng et al. 
Renewable and Sustainable Energy Re-
views 

2019 

Review of the power interaction mode, 
scheduling methodology, and mathematical 
foundation for EV integration with the 
power grid. 

[40] Jawad et al. Energies 2020 
Review of the current scenario of EV charg-
ing service planning and operation consid-
ering transport and the power network. 

[41] Solanke et al. Journal of Energy Storage 2020 
Review of strategic charging–discharging 
control of grid-connected electric vehicles. 

[42] Amjad et al. 
Transportation Research Part D: 
Transport and Environment 

2018 
Review of EVs charging from the perspec-
tive of energy optimization, optimization 
approaches, and charging techniques. 

[43] Limmer Energies 2019 
Review of dynamic pricing for EVs in charg-
ing stations. 

[44] Ahmadi et al. IET Electrical Systems in Transportation 2019 
Review of power quality improvement in 
smart grids by EVs. 

[45] Ma Energies 2019 
Review of planning of grid-connected 
charging stations. 

[46] Jia et al. Control Theory and Technology 2020 
Review of charging behavior of data, model, 
and control in EV charging stations. 

[47] Panchal et al. Engineering Science and Technology 2018 
Review of static and dynamic wireless elec-
tric vehicle charging systems. 

[48] Khan et al. Smart Science 2018 Review of solar EV charging stations. 

[49] 
Triviño-
Cabrera et al. 

Transportation and Power Grid in Smart 
Cities: Communication Networks and 
Services 

2018 Review of wireless charging for smart cities. 

[50] Khan et al. Smart Science 2018 Review of Level 2 charging systems for EVs. 

2. Overview of Charging Infrastructure Planning 
Charging infrastructure planning is a prerequisite for the large-scale adoption of EVs. 

The different activities associated with charging infrastructure planning are shown in Fig-
ure 1. Charging demand prediction involves the prediction of the demand of charging 
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services at different times of the day and in different locations. Charging station placement 
is a typical planning problem centered on the optimal allocation and sizing of charging 
stations, which takes into consideration the economic factors, the operating parameters of 
the distribution network, and EV drivers’ convenience. Charger utilization computation 
involves computing how much a charger is utilized or how many charging events a 
charger has served. Charging scheduling involves managing the charging activities based 
on the charging demand and load profile, while keeping in mind that the power grid must 
not be overloaded. 

 
Figure 1. An overview of charging infrastructure planning. 

3. Machine Learning Techniques 
In machine learning, the computer learns from previous experience without any ex-

plicit programming [51]. In this context, experience refers to the dataset that the algorithm 
uses to train itself [52]. With time and learning experience, the models can accurately pre-
dict trends, thereby providing predictive analysis [51]. Typically, machine learning algo-
rithms are categorized into supervised and unsupervised learning algorithms [51,53,54]. 
Furthermore, depending on the type of variable, the problems that machine learning al-
gorithms approach can be divided into regression problems and the classification prob-
lems [51]. If the response variable is continuous, it is called a regression problem [51]; if 
the response variable is categorical, it is called a classification problem [51]. In the context 
of charging infrastructure planning, charging demand prediction is a regression problem, 
as the response variable is continuous. On the other hand, the identification of charging 
hotspots is a classification problem because the response variable is categorical. 

Data partitioning in machine learning is the division of all data available into two or 
three nonoverlapping sets: the training set, the validation set, and the test set. The param-
eters of the model were fitted to the available data, and the model demonstrated high 
prediction accuracy on these data. Partitioning can be performed by different techniques, 
such as harsh partitioning, list partitioning, and composite partitioning [18]. 

The classification of machine learning algorithms is shown in Figure 2. Detailed de-
scriptions of these groups are provided in the subsequent subsections. 
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Figure 2. Classification of machine learning algorithms. 

3.1. Supervised Learning 
As the name indicates, supervised machine learning models are trained by labeled 

datasets [51,55,56]. The dataset contains the input variable and target variable. Model 
learning is iterative in nature and works by mapping between the input and target output 
assisted by optimization [51]. As shown in Figure 2, supervised learning can be divided 
into five types. In the linear regression model, there is a linear relationship between the 
input variable and the target variable [51]. Linear regression can be used for regression 
problems and for linearly separable datasets [54]. Decision trees can be used for both re-
gression and classification problems [54]. Decision trees separate complex decisions into 
simpler decisions using split points [54,57,58]. In the random forest technique, several de-
cision trees are aggregated for the purpose of prediction [59,60]. A support vector machine 
(SVM) is mainly used for classification problems, but can also be utilized for regression 
problems [61,62]. An SVM separates the classes with the best hyperplane, which maxim-
izes the marginal difference between the classes [18,62]. The training time for an SVM is 
long, and therefore, it is not suitable for large datasets [61,62]. K-nearest neighbors (KNN) 
can be used for both regression and classification problems [18,63,64]. However, it is 
mostly used for classification problems [18]. KNN does not require a dedicated training 
phase and it is associated with a lazy learning phase [18,63,64]. 

There is also another class known as semi-supervised learning. Semi-supervised 
learning is an innovative approach to machine learning that combines a small amount of 
labeled data and a large amount of unlabeled data during training. Semi-supervised learn-
ing falls between unsupervised learning (with no labeled training data) and supervised 
learning (with only labeled training data) [52].  
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3.2. Unsupervised Learning 
In the case of unsupervised learning, the training dataset comprises the input varia-

ble only [18,65,66]. The key goal of this model is to find patterns within the dataset using 
clustering [18,65,66]. The subdivisions of unsupervised learning are as illustrated in Fig-
ure 2. In k clustering, individual datapoints form k clusters, wherein each and every point 
is assigned to k center points at the beginning in a random fashion [18,67], and later data-
points are assigned to the nearest centers based on new datapoint calculations. The Gauss-
ian mixture model (GMM) is a probabilistic learning model that has the capacity to repre-
sent subpopulations of normal distribution by considering multiple normal distributions 
of the dataset in use [18]. The kernel density estimator (KDE) is used in the case of a non-
parametric probability density function [18]. 

4. Performances of Machine Learning Algorithms 
The performances of different machine learning algorithms can be compared on the 

basis of some metrices. For regression models, root mean square error (RMSE), mean ab-
solute error (MAE), and mean absolute percentage error (MAPE) are some of the metrices 
for performance evaluation [18]. 

Equations (1)–(3) represent these indices mathematically. 

𝑅𝑀𝑆𝐸 =
∑ (𝑦 − 𝑦 )

𝑛
 (1)

𝑀𝐴𝐸 =
1

𝑛
𝑦 − 𝑦  (2)

𝑀𝐴𝑃𝐸 =
1

𝑛

𝑦 − 𝑦

𝑦
× 100 (3)

Ideally, the difference between the predicted value 𝑦 , and the target value y , 
should be small. 

For the classification problem, the evaluation metrices are accuracy, precision, and 
F1 score [18], as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
(4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(5)

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑇𝑃𝑅

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑇𝑃𝑅  
(6)

A true positive (TP) represents a case in which the predicted positive class value and 
the real value belong to the positive class. Moreover, a true negative (TN) represents a 
case in which the predicted negative class value and the real value belong to the negative 
class. False positives (FP) are cases in which the model falsely predicts the positive class 
for actual values belonging to the negative class. False negatives (FN) are cases in which 
the model falsely predicts the negative class for actual values belonging to the positive 
class. 

5. Machine Learning for Charging Infrastructure Planning 
Applications of machine learning techniques for solving different charging infra-

structure planning problems are shown in Figure 1. 
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5.1. Machine Learning for Charging Station Placement 
The charging station problem involves determining the locations and sizes of 

chargers. In [68], the authors provided an optimal wireless charging station placement 
scheme for electric trams by applying an algorithm that hybridizes the genetic algorithm 
(GA) and reinforcement learning (RL). The integration of GA with reinforcement learning 
improved the performance of GA by preventing it from becoming stuck in local optima. 
The superior performance of the hybrid GA RL algorithm as compared with the 
standalone algorithms is illustrated in Table 2. 

Table 2. A performance comparison of GA RL with standalone GA and RL algorithms [68]. 

Parameter GA RL GA + RL 
Investment cost ($) 106.230 104.561 103.891 

Battery capacity (kWh) 15.06 13.14 12.60 

In [69], the authors provided a novel scheme for placing new charging stations that 
utilizes the maximization utilization rate of chargers as the objective function. The prob-
lem was solved by hierarchal clustering [70]. In [71], the authors categorized charging 
stations as top ranked and bottom ranked using the linear regression model and decision 
trees. The simulation results established the superiority of the linear regression model 
over decision trees. In [72], a cellular automaton agent-based model was proposed to 
study different EV deployment scenarios. 

5.2. Machine Learning for Charging Demand Prediction 
Accurately predicting the charging load is crucial for charging infrastructure plan-

ning and the large-scale adoption of EVs. In [73], the authors presented a novel scheme 
for predicting the aggregated load demand of buildings in the presence of EVs that utilizes 
a methodology based on feature selection and an enhanced SVM. In [74], the authors pre-
dicted the charging load of the UCLA campus by applying a modified pattern sequence-
based technique. In [75], the authors used a deep learning approach to estimate multiscale 
EV charging demand. Moreover, in [76,77], an enhanced deep learning-based approach 
was used for charging load prediction. In [78], the authors used a hybrid ant lion algo-
rithm and deep learning for charging demand prediction. In [79], the authors proposed a 
hybrid KDE using both Gaussian and diffusion-based KDE (GKDE and DKDE) to predict 
the stay duration and charging demand of EVs. In [80], authors employed a generalized 
regression neural network (GRNN) model to predict the charging load. In [81], the authors 
predicted the charging demands of electric bus charging stations using an SVM and the 
wolf pack algorithm. In [82], the authors compared the performances of different deep 
learning approaches as applied to the charging demand prediction problem, and con-
cluded that the long short-term memory (LSTM) method performed best, as it reduced 
the forecasting error by over 30%. In [83], the authors used a regression model to predict 
the charging load. In [84], the authors compared the time series approach with machine 
learning techniques, such as the random forest technique and the regression model, as 
applied to the charging demand prediction problem. The simulation results established 
the superiority of machine learning techniques over the time series approach. In [85], the 
authors used ensemble learning to predict household EV charging demand. Ensemble 
learning is a machine learning technique that leans by evaluating the results from different 
machine learning models. In the aforementioned work, the ensemble learning model was 
based on the results of the random forest, gradient boosting, adaptive boosting, and re-
gression techniques. In [86], the authors used the k-nearest neighbors method for charging 
demand prediction. In [87], the authors applied a neural network to predict the charger 
occupancy for an EV charging station in an urban area. 
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5.3. Machine Learning for Charging Scheduling 
The management of charging activities at charging stations is important to avoid sud-

den increases in the peak load demand. In [88], the authors considered the operational 
benefit of EVs by focusing on vehicle-to-grid (V2G) technology and scheduled EV charg-
ing at charging stations using reinforcement learning. In [89], the authors proposed a de-
mand response method for long-term charging cost reduction and provided a charging 
schedule for EVs. The solution was based on reinforcement learning. In [90], the authors 
proposed a constrained EV charge scheduling strategy and utilized reinforcement learn-
ing for this. In [91], the authors formulated charging scheduling as a NP-hard problem 
and found a solution using reinforcement learning. In [90], the authors proposed an arti-
ficial neural network (ANN) for solving charging scheduling and suggested adopting a 
smart pricing strategy at charging stations. In [92], the authors identified the best charging 
time for EVs in a fast-charging station integrated with a smart grid using the Q-learning 
method. In [93,94], the authors solved the charging scheduling problem using reinforce-
ment learning. In [95,96], the authors used multiagent reinforcement learning for charging 
scheduling and proposed a dynamic pricing strategy. In [97], the authors proposed a re-
inforcement learning-based approach for optimizing the charging scheduling and pricing 
strategies of a public EV charging station. In [98], the authors used reinforcement learning 
to regulate charging scheduling for electric buses in a charging station in a smart grid 
environment. 

5.4. Machine Learning for Charger utilization prediction 
Estimating the charger utilization rate is essential for the expansion of the charging 

infrastructure. In [99], the authors predicted EV charging station usage using an ANN. In 
[100], the authors used the linear regression model to compute the charger idle time for a 
dataset in the Netherlands. In [101], the authors used the linear regression model to pre-
dict the charger utilization rate, assuming a nonlinear charging profile. 

6. Literature Review Summary 
A summary of the research reported in the previous section is presented in Table 3. 

Furthermore, a quantitative analysis of the reported literature is presented in Figure 3. 
From Figure 3, it is clear that machine learning techniques can be successfully applied to 
charging demand prediction problems. 

Table 3. Summary of the research concerning the use of machine learning for charging infrastructure planning. 

Ref Author Journal Year Problem Technique 

[68] Ko 
Computers and Industrial Engi-
neering 

2019 
Charging station 
placement 

Hybrid GA RL 

[69] Pevec et al. 
International Journal of Energy 
Research 

2018 
Charging station 
placement. 

Hierarchal cluster-
ing 

[70] Cohen-Addad et al. Journal of the ACM (JACM) 2019 
Charging station 
placement 

Linear regression 
model and decision 
trees 

[71] Straka Preprint 2018 
Charging demand 
prediction 

SVM 

[73] Duan et al. Sustainable Cities and Society 2014 
Charging Demand 
prediction 

Modified pattern 
sequence 

[74] Majidpour et al. 
2014 IEEE International Confer-
ence on Smart Grid Communica-
tions 

2019 
Charging Demand 
prediction 

Deep learning 

[75] Zhu et al. 
IEEE Innovative Smart Grid 
Technologies-Asia (ISGT Asia) 

2017 
Charging Demand 
prediction 

Deep learning 
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[76] Li et al. 
4th International Conference on 
Information Science and Control 
Engineering (ICISCE) 

2019 
Charging Demand 
prediction 

Deep learning 

[77] Zhu et al. Applied Science 2018 
Charging Demand 
prediction 

Hybrid ant lion 
and deep learning 

[78] Li et al. Energies 2018 
Charging Demand 
prediction 

Hybrid KDE 

[79] Chung et al. 

IEEE International Conference 
on Probabilistic Methods Ap-
plied to Power Systems 
(PMAPS) 

2020 
Charging Demand 
prediction 

GRNN 

[80] Mansour et al. Electronics 2018 
Charging Demand 
prediction 

SVM 

[81] Zhang Energies 2019 
Charging Demand 
prediction 

Deep learning 

[82] Zhu et al. Energies 2020 
Charging Demand 
prediction 

Regression model 

[83] Almaghrebi et al. Energies 2019 
Charging Demand 
prediction 

Random forest and 
regression model 

[84] Buzna et al. 

1st International Conference on 
Energy Transition in the Medi-
terranean Area (SyNERGY 
MED) 

2018 
Charging Demand 
prediction 

Ensemble learning 

[85] Ai eta al. 
IEEE International Conference 
on Energy Internet (ICEI) 

2014 
Charging Demand 
prediction 

KNN 

[86] Majidpour et al. 
IEEE Transactions on Industrial 
Informatics 

2019 
Charging Demand 
prediction 

Reinforcement 
learning 

[87] Dang et al. 
IEEE Transportation Electrifica-
tion Conference and Expo (ITEC) 

2020 
Charging Demand 
prediction 

Reinforcement 
learning 

[88] Wang et al. 
IEEE Transactions on Vehicular 
Technology 

2019 Charging scheduling 
Reinforcement 
learning 

[89] Li et al. IEEE Transactions on Smart Grid 2019 Charging scheduling 
Reinforcement 
learning 

[90] Zhang et al. 
IEEE Transactions on Intelligent 
Transportation Systems 

2020 Charging scheduling ANN 

[91] Dang et al. 
IEEE Transportation Electrifica-
tion Conference and Expo (ITEC) 

2018 Charging scheduling 
Reinforcement 
learning 

[92] Sharbaaf et al. 
2018 Electrical Power Distribu-
tion Conference (EPDC)  

2018 Charging scheduling 
Reinforcement 
learning 

[93] Liang et al. IEEE Transactions on Smart Grid 2018 Charging scheduling 
Reinforcement 
learning 

[94] Wan et al. IEEE Transactions on Smart Grid 2020 Charging scheduling 
Reinforcement 
learning 

[95] Han et al. 
IEEE Global Communications 
Conference (GLOBECOM)  

2019 Charging scheduling 
Reinforcement 
learning 

[96] Shin et al. 
IEEE Transaction on Industrial 
Informatics 

2019 Charging scheduling 
Reinforcement 
learning 

[97] Wang et al. 
IEEE Transaction on Industrial 
Informatics 

2019 Charging scheduling 
Reinforcement 
learning 

[98] Chen et al. 
IEEE Global Communications 
Conference (GLOBECOM)  

2018 Charger utilization ANN 
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[99] Ramachandran et al. Preprint 2019 Charger utilization 
Linear regression 
model 

[100] Lucas et al. Energies 2019 Charger utilization 
Linear regression 
model 

[101] Frendo et al. Energy and AI 2021 
Charging station 
placement 

Supervised learn-
ing 

[102] Ma et al. Preprint 2021 
Charging demand 
prediction 

ANN 

 
Figure 3. Quantitative analysis of the reported literature. 

7. Case Studies 
7.1. Home Charging Hotspot Prediction for Helsinki, Finland 

Charging hotspots are points with relatively high charging demand throughout the 
day. It is expected that, during the initial stages of EV deployment, the majority of charg-
ing activity will take place at home. Hence, identifying home charging hotspots is neces-
sary. In this work, we identified home charging hotspots for the city of Helsinki. The 
charging behavior and schedule of EV drivers in Helsinki specifically concerning home 
charging was modeled using the Activity-Based Transport Model (ABTM) [103,104]. A 
data-driven approach was adopted to identify the charging hotspots. The output of the 
ABTM model was utilized as an input with which to evaluate the charging hotspots. In 
this scenario, it was considered that the EV drivers charged their vehicles at home at the 
end of their journeys. The data-driven approach used for the identification of home charg-
ing hotspots is shown in Figure 4. Moreover, the home charging hotspots computed using 
the methodology shown in Figure 4 are presented in Table 4. 
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Figure 4. Flowchart for the computation of home charging hotspots [105]. 

Table 4. Home charging hotspots for Helsinki [105]. 

Latitude Longitude Location Region Pin 
60.16088 24.92796 Hietalahdenranta 14 Helsinki 00180 
60.17884 24.945945 Säästöpankinranta 10 Helsinki 00530 

60.349377 25.05433 Kuhankeittäjäntie 5 Vantaa 01450 
60.14246 24.640027 Ristiniementie 5 Espoo 02320 

60.197788 24.92788 Pasilankatu 8b Helsinki 00240 

7.2. Commercial Charging Hotspot Prediction for Dundee City Council, United Kingdom 
In addition to home charging, commercial public charging stations will be required 

for the large-scale adoption of EVs. Therefore, the identification of commercial public 
charging hotspots is also essential. A data-driven methodology was used for the identifi-
cation of charging hotspots for Dundee city council, as shown in Figure 5. The identified 
charging hotspots are presented in Table 5.  
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Figure 5. Flowchart for the computation of public commercial charging hotspots [105]. 

Table 5. Commercial public charging hotspots for Dundee city council. 

Latitude Longitude Location Type 
56.47296514 −3.011192798 Housing Office West Slow 
56.46983341 −3.057191231 Hillcrest Housing Association Fast 
56.48982926 −2.917475296 Whitfield Centre Slow 
56.46149716 −2.96647828 Gellatly Street Car Park Fast 
56.4821483 −3.024697396 Dundee Ice Arena Fast 
56.46999414 −2.910300665 Oranges & Lemons Slow 
56.45682527 −2.973600267 Greenmarket Car Park Fast 
56.4575 −2.9785 Dundee University Slow 
56.45563168 −3.024181427 Dundee University Botanic Gardens Slow 
56.4725685 −2.973004185 Taxi Hub, Isla street Slow and Fast 
56.48588707 −2.89249497 Michelin Tyres Fast 
56.46779037 −2.873580046 Queen Street Car Park Slow 
56.47946054 −2.90444341 Douglas Community Centre Slow 
56.47796824 −2.913471531 Janet Brougham House Slow 
56.47016332 −2.920663615 Brington Place Sheltered Housing Slow 
56.47847573 −2.94163689 AutoecosseMitsibushi Slow 
56.48838239 −3.014352526 Ardler Complex Slow 
56.46543565 −3.035060314 Menziehill House Slow 
56.45677168 −3.068633303 James Hutton Institute Slow 
56.46553827 −3.04197669 Ninewells Car Park Fast 
56.46238032 −3.016417028 Royal Victoria Hospital Fast 
56.46826957 −3.005973737 Oakland Centre Slow 
56.47296831 −3.002456461 Marchbanks Slow 
56.46355616 −2.962498196, Olympia Multi-Storey Car Park Slow 
56.46297438 −2.966068959 Trades Lane Fast 
56.46024694 −2.966793953 Dock Street Fast 
56.4568153 −2.977853701 Perth Road Fast 
56.45907815 −2.977267895 South Tay Street Fast 

7.3. Charging Demand Prediction for Helsinki, Finland 
Predicting the charging demand in advance will assist in the smart and effective man-

agement of the charging load. In this work, a case study on charging demand prediction 
using the random forest technique for e-buses and private EVs in Helsinki is presented. 
The RF model was validated for Leepavara, which is a commercial shopping hub in Es-
poo, Finland. The e-buses charging dataset was generated using the bus timetables avail-
able on the HSL website [106–108]. Moreover, the charging dataset for private EVs was 
generated using the Bayesian network (BN)-based approach [109–111] proposed in [112]. 
The congestion levels in the city, as recorded using the Tom application [113] and shown 
in Figure 6, and the typical traffic conditions in Leepavara, as shown in Figure 7, were also 
taken into account while generating the charging dataset for private EVs. The charging 
demand was predicted using the random forest technique. The target and predicted 
charging demands are shown in Figure 8.  
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8. Discussions 
This work comprehensively reviews the applications of machine learning algorithms 

for solving charging infrastructure planning problems. An overview of charging infra-
structure planning is also provided herein. Charging station placement, charging demand 
prediction, charger utilization computation, and charging scheduling and pricing are 
some of the activities involved in charging infrastructure planning. Dedicated chargers 
serve the scheduled EV operations, which can be derived from GTFS and fleet manage-
ment (i.e., to provide the combined flow of EVs). Different machine learning algorithms, 
such as supervised learning, reinforcement learning, and ANN, are used extensively for 
solving these problems. Qualitative and quantitative analyses of the research in this arena 
are provided. It can be seen that machine learning algorithms can be successfully applied 
to charging demand prediction and charging scheduling. SVM, deep learning, and ran-
dom forest techniques are extensively used in charging demand prediction. Moreover, 
reinforcement learning is widely used for solving the problem of charging scheduling. 
Three case studies focused on charging infrastructure planning are also provided in this 
work in order to provide real-world examples. The first case study was focused on iden-
tifying home charging hotspots in the city of Helsinki, Finland, using a data-driven meth-
odology. One of the main contributions of the first case study is the realization that initial 
EV adopters will mostly rely on home charging. The second case study identified public 
charging hotspots for Dundee city council. The identification of charging hotspots in ad-
vance will help power grid operators check whether grid reinforcement is required to 
support the increasing EV adoption. The planning model adopted in this case study per-
formed better than the model reported in [114–117]. The third case study predicted the 
charging demand in Helsinki using a hybrid Bayesian network and RF-based methodol-
ogy. It was observed that the model used for prediction was efficient as compared with 
the model proposed in [101] and [102]. 

This has been an extensive review of the machine learning algorithms utilized for 
solving different charging infrastructure planning problems. We hope to provide re-
searchers with an analysis of the suitability of machine learning algorithms for charging 
infrastructure planning problems. However, this work was limited to the charging infra-
structure without vehicle grid integration (VGI).  

9. Conclusions 



Energies 2021, 14, x FOR PEER REVIEW 16 of 20 
 

 

The large-scale deployment of EVs requires sustainable charging infrastructure. This 
work systematically analyzed the machine learning applications for solving charging in-
frastructure planning problems. Qualitative and quantitative analyses of the research in 
this arena are provided herein. It can be seen that machine learning algorithms can be 
successfully applied in charging demand prediction and charging scheduling. Further-
more, three case studies that focus on charging infrastructure planning are presented. 
These explored charging station placement and charging demand prediction. We pre-
sented an extensive review of the machine learning algorithms utilized in solving different 
charging infrastructure planning problems. We hope to provide researchers with an anal-
ysis of the suitability of machine learning algorithms for charging infrastructure planning 
problems. However, this work was limited to charging infrastructures without vehicle 
grid integration (VGI).  

We expect this work to attract the attention of researchers working in the areas of e-
mobility, optimization, machine learning, power, and energy. Our future research will 
address some of the following key issues: 
 The use of machine learning in localizing charging hotspots; 
 A performance comparison of machine learning techniques combined with heuristics 

and metaheuristics applied to charging infrastructure planning problems; 
 Planning V2G-enabled charging facilities. 
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