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ABSTRACT

Objectives: To examine the impact of COVID-19 pandemic on the extent of potential violations of Internet 

users’ privacy.  

Materials and Methods: We conducted a longitudinal study of the data sharing practices of the top 1,000 

websites in the US between April 9th and August 27th, 2020. We fitted a conditional latent growth curve 

model on the data to examine the longitudinal trajectory of the third-party data sharing over the 21 weeks 

period of the study and examine how website characteristics affect this trajectory. We denote websites that 

asked for permission before placing cookies on users’ browsers as "privacy-respecting".

Results: As the weekly number of COVID-19 deaths increased by 1,000, the average number of third 

parties increased by 0.26 [95%CI, 0.15 to 0.37] P<.001 units in the next week. This effect was more 

pronounced for websites with higher traffic as they increased their third parties by an additional 0.41 [95% 

CI, 0.18 to 0.64]; P<.001 units per week.  However, privacy respecting websites that experienced a surge 

in traffic reduced their third parties by 1.01 [95% CI, -2.01 to 0]; P = 0.05 units per week in response to 

every 1,000 COVID-19 deaths in the preceding week. 

Discussion: While in general websites shared their users’ data with more third parties as COVID-19 

progressed in the US, websites’ expected traffic and respect for users’ privacy significantly affect such 

trajectory.  

Conclusions: Attention should also be paid to the impact of the pandemic on elevating online privacy 

threats, and the variation in third-party tracking among different types of websites. 
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Lay Summary

As the COVID-19 pandemic progressed in the country, the demand for online services surged. As the 

level of Internet use increased, websites’ opportunity to track and monetize users’ data increased with it. 

In this research, we examine the extent to which websites increased the number of third-parties with 

which they share their user’ data and how such practices were moderated by a website’s level of respect 

for users’ privacy and traffic surge. We find that while the number of third parties increased over time, the 

websites with higher respect for privacy tend to decrease the number of their parties only if they also 

experience a significant increase in their traffic.    
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Background and Significance

The spread of Coronavirus Disease 2019 (COVID-19) has led many individuals to seek online 

alternatives for many of their offline activities. This happens for two reasons. First, the increase in 

COVID-19 deaths would lead the local governments to adopt stricter lockdown policies so that people 

would have to use online alternatives. For example, the surge in online streaming services was in part due 

to the fact that movie theaters were shutdown. Second, the news about the rising COVID-19 deaths would 

heighten people’s perception of the threat of the disease, leading them to be more cautions and choose 

online alternatives. For example, while grocery stores were never shutdown, many customers preferred to 

do their shopping online out of precaution. Both of these factors increase the demand of online 

alternatives, and subsequently, online traffic. Figure 1 presents the mediated process through which we 

hypothesize that an increase in COVID-19 deaths leads to an increase in online traffic.

[insert figure 1 here]

Figure 1: The mediated process through which an increase in COVID-19 deaths leads to an increase in online traffic

Websites commonly track their users and share their data with third parties,1 significantly elevating their 

users’ privacy risks.2 The increase in online traffic and the subsequent potential for privacy risks 

exacerbate the current privacy concerns about the digital surveillance practices put in place to combat the 

COVID-19 pandemic.3,4 McCoy et al.5 recently discovered that third-party tracking was prevalent among 

COVID-19-related websites. While that study sheds significant light on our understanding of data sharing 

practices of healthcare-related websites during a single point in time, it did not examine how such 

practices evolve over time, especially among a broader range of websites. We bridge these gaps by 

examining a large sample that is inclusive of a wide variety of websites and studying how they change 

their data sharing practices over time as COVID-19 spreads in the US, and if such changes can be 

explained by websites’ different features.
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Objective

A surge in the number of users would allow a website to collect more data and therefore increase the 

revenue it earns from sharing such data with third parties. A surge in the number of visitors could also 

increase website’s revenue from other streams such as subscriptions and product sales. We intend to 

examine if websites, upon experiencing a surge in user traffic, reduce their third-party data sharing and 

instead use the increased revenue from other sources (subscriptions, sales, etc.) to substitute their revenue 

from data sharing, or if they seize the chance to increase their revenue by even more aggressive data 

sharing practice. We denote websites that asked for permission before placing cookies on users’ browsers 

as "privacy-respecting". We hypothesize that the level of a website’s respect for their users’ privacy could 

influence this decision; the websites that have higher levels of respect for their users’ privacy tend to 

reduce their third parties if they experience a surge in the number of their visitors while the ones with less 

concern for their users’ privacy would see the surge in their visitors as an opportunity to increase their 

revenue through more aggressive data sharing practices. 

Materials and Methods

We collected data on the number of third-party hypertext transfer protocol (HTTP) requests (hereafter 

referred to as third parties) for each of the top 1,000 websites (based on ranking data from Alexa Internet) 

in the US on a daily basis between April 9th and August 27th, 2020, from a virtual server with a New 

York Internet Protocol (IP) address. Libert6 provides a detailed description of HTTP requests and how 

they can be used to track users. As he puts it, “a piece of content from an external server may be called a 

third-party element […], and the process of downloading such an element is the result of a third-party 

request. Every time an HTTP request is made, information about the user is transmitted to the server 

hosting the content. These data include the IP address of the computer making the request, the date and 

time the request was made, and the type of computer and Web browser employed by the user, which is 

known as the user-agent field. […] If the server has many such records, patterns of behavior may be 
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attributed to the same combination of IP and user-agent information. This is the most basic form of 

tracking and is common to all HTTP requests made on the Web.”

Note that in many cases, the number of HTTP requests is greater than the number of companies that are 

making such requests. This could happen for different reasons including when a company sends multiple 

requests or when different link addresses and third parties belong to the same company. As mentioned 

earlier, in this research we count the number of HTTP requests during each website visits as it is not only 

analytically easier to simply count all the requests, but also theoretically, the number of requests is a good 

measure of the extent of “potential privacy violation, regardless of the number of unique companies that 

make such requests We manually tagged the industry that each website operates in and whether it asks for 

permission before placing cookies on the users’ browsers. 

To systematically develop a system for classifying websites’ industries, all the coauthors reviewed the 

first one-hundred websites and independently assigned them to an industry. We then compared our 

classifications with each other and discussed the websites for which our classifications of industries were 

different. Once we reached a consensus, we hired a research assistant to label the rest of the websites. One 

of the co-authors supervised the research assistant and helped her with classification of the borderline 

websites.

Feldmann et al.7 Show that entertainment categories (which includes streaming and video games) 

experienced a spike in traffic during the pandemic in Europe. Websites in News and Media, 

Telecommunication (such as zoom and other video conferencing platforms), and Healthcare industries  

have also been shown to have experienced a significant spike in traffic.8,9 We therefore classified websites 

in News & Media, Health & Healthcare, Telecommunications, and Games industries as "high-traffic" 

because they are in sectors that experienced a spike in user traffic due to COVID-19 lockdown policies. 

We denote websites that asked for permission before placing cookies on users’ browsers as "privacy-

respecting". We merged these data with those on weekly number of COVID-19 related deaths in the state 
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of New York over the same period. We used the number of deaths in New York to focus on the local 

effect of the COVID-19 lockdown policies on the re-action of the websites within the same market. 

Within the country, the pandemic spread in waves. While New York was badly hit with COVID-19, 

southern states did not experience a significant rise in cases for a couple of months. Therefore, the 

lockdown policies, and the subsequent surge in traffic was very location specific. For the same reason, we 

posit that the website behavior is also dependent on the location of the user; they are going to have a 

different data gathering and sharing policy with users from New York than their Floridian counterparts 

simply due to the vast differences in the traffic surge patterns.  Since our virtual servers employ a New 

York IP address, we used the number of COVID-19 deaths in New York to have a consistency between 

the independent and outcome variables.

Note that the data collection process is very resource intensive as we need to visit each of the 1,000 

websites twice a day (from New York and California servers) for the 110-day duration of the study. That 

results in 220,000 website-day initial observations. We therefore developed our own script to collect such 

data using Golang programming language and ran it on Google Chrome browser through chromedp. The 

cache was automatically cleared after every single website visit in order to remove any potential effect of 

browsing history on the number and type of third parties. Postgresql and Clickhouse database 

management systems were used for storing primary data (the list of the top 1,000 websites) and recording 

and analytical processing of the subsequent data on third parties. We rented two virtual servers with 16 

CPUs, 64 GB of memory and 1280 GB of storage. 

We used a conditional latent growth curve model to examine the longitudinal trajectory of the third-party 

data sharing over the period of the study using CALIS procedure in SAS. The model allows us to examine 

how the spread of COVID-19 pandemic affects the third-party tracking and the extent to which it varies 

by website characteristics.

Results
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Table 1 presents the estimation results of five different models. The models gradually develop. In the first 

model the effect of COVID-19 deaths is considered to be uniform across all types of websites and 

therefore there are no estimates for the influence of “high-traffic” and “privacy-respecting” variables or 

their interactions on the effect of COVID-19 deaths. We sequentially expand the models by including the 

effects of these variables one by one in the subsequent models. The models in panel 2 and 3 only include 

the effects of “high-traffic” and “privacy-respecting”, respectively, while the model in panel 4 includes 

the estimates for the effects of both variables together. Our final model is presented in panel 5 and 

includes the moderation effects of “privacy-respecting” and “high-traffic” status of websites and their 

interaction on the association between COVID-19 weekly deaths and the average number of third parties 

in the subsequent week. Such gradual development of the model allows us to compare the estimates of the 

same variables across different models and examine the robustness of our model to inclusion of different 

variables. 

[insert table 1 here]

As shown in the fifth panel, latent slope is positive, showing that on average, websites increased their 

third parties by 0.18 [95% CI, 0.11 to 0.25]; P<.001 units per week. The websites that were expected to 

receive a higher traffic had a significantly larger intercept (30.08 [95% CI, 25.13 to 35.03]; P<.001) 

indicating that they shared their users’ data with more third parties at the beginning of the study. Those 

websites continued to increase their third parties during the study by 0.41 [95% CI, 0.26 to 0.56]; P<.001 

units per week.  As the weekly number of COVID-19 deaths increased by 1,000, the average number of 

third parties increased by 0.26 [95%CI, 0.15 to 0.37] P<.001 units in the next week. This effect was more 

pronounced for websites with higher traffic as they increased their third parties by an additional 0.41 

[95% CI, 0.18 to 0.64]; P<.001 units per week.  

Merely asking for consent may not necessarily reduce the number of third parties. In table 1, the 

coefficient of “Privacy-respecting vs. other” is not significant in any of the models, meaning that 

compared with others, the websites that ask for consent do not have a lower number of third parties. 
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However, the moderating effect of “High-traffic & Privacy-respecting vs. others” is significant and 

negative, meaning that asking for consent is indicative of lower third parties only for those websites that 

experienced a surge in their traffic. Specifically, if websites that asked for consent also experienced 

higher traffic, then they would reduce their third parties by 1.22 [95% CI, -1.88 to -0.56]; P<.001 units 

per week. They reduced their third parties by another 1.01 [95% CI, -2.01 to 0]; P = 0.05 units per week 

in response to every 1,000 COVID-19 deaths in the preceding week.

Discussion

One limitation of this analysis is the fact that all websites within the same industry are assumed to have 

experienced the same level of change in their traffic. This is a crude measure as it does not take into 

account the variations in traffic shifts of different websites. A better alternative would have been to 

individually determine traffic trends for each website. 

The other limitation arises from the fact that the number of third parties of a single website would 

fluctuate over time. We analyze the daily average number of third parties across the 1000 websites. This 

would decrease the effect of potential fluctuations. Moreover, we track the same websites over a long 

period of time. Despite the temporal changes, the number of third parties of a single website tend to 

fluctuate around an average trend.  A better solution would have been to measure the number of third 

parties over multiple times within the day and then take the average as the main outcome variable. 

Conclusion

Amid national discussions about the potential legislation aimed to protect users’ privacy,10 the insights of 

our research suggest that attention should also be paid to the impact of the pandemic on elevating online 

privacy threats, and the variation in third-party tracking among different types of websites. 
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Table 1: Parameter Estimates of the Latent Growth Curve in Third-Party Tracking Among the Top US Websites

Panel 1 Panel 2 Panel 3 Panel 4 Panel 5

COEFFICIENT Estimate (95% CI) P 
value Estimate (95% CI) P 

value Estimate (95% CI) P 
value Estimate (95% CI) P 

value Estimate (95% CI) P 
value

Latent Intercept

Main effect 20.33 (18.04 to 22.61) <.001 20.19 (17.9 to 22.48) <.001 20.33 (18.04 to 
22.61) <.001 20.19 (17.91 to 22.48) <.001 20.17 (17.89 to 22.46) <.001

High-traffic vs. other   29.34 (24.41 to 34.28) <.001 29.98 (25.03 to 34.93) <.001 29.34 (24.41 to 
34.28) <.001 29.98 (25.03 to 34.93) <.001 30.08 (25.13 to 35.03) <.001

Privacy-respecting vs. other 0.56 (-8.04 to 9.16) 0.898 0.56 (-8.04 to 9.16) 0.898 0.51 (-8.11 to 9.14) 0.907 0.55 (-8.07 to 9.18) 0.9 0.83 (-7.8 to 9.46) 0.85
High-traffic & Privacy-respecting vs. other 6.88 (-14.74 to 28.5) 0.533 6.88 (-14.74 to 28.51) 0.533 6.88 (-14.74 to 28.5) 0.533 6.88 (-14.74 to 28.51) 0.533 5.1 (-16.6 to 26.79) 0.645

Latent Slope
Main effect 0.21 (0.14 to 0.27) <.001 0.18 (0.11 to 0.25) <.001 0.21 (0.14 to 0.27) <.001 0.18 (0.11 to 0.25) <.001 0.18 (0.11 to 0.25) <.001

High-traffic vs. other   0.29 (0.15 to 0.42) <.001 0.39 (0.24 to 0.54) <.001 0.29 (0.15 to 0.42) <.001 0.39 (0.24 to 0.54) <.001 0.41 (0.26 to 0.56) <.001
Privacy-respecting vs. other 0.13 (-0.11 to 0.36) 0.285 0.13 (-0.11 to 0.36) 0.285 0.12 (-0.14 to 0.38) 0.362 0.13 (-0.13 to 0.39) 0.337 0.17 (-0.09 to 0.44) 0.197

High-traffic & Privacy-respecting vs. other -0.92 (-1.52 to -0.33) 0.002 -0.92 (-1.52 to -0.33) 0.002 -0.92 (-1.52 to -0.33) 0.002 -0.92 (-1.52 to -0.33) 0.002 -1.22 (-1.88 to -0.56) <.001
COVID-19 Deaths (in 1,000)

Main effect 0.35 (0.25 to 0.44) <.001 0.27 (0.17 to 0.37) <.001 0.35 (0.25 to 0.44) <.001 0.27 (0.17 to 0.38) <.001 0.26 (0.15 to 0.37) <.001
High-traffic vs. other   0.36 (0.14 to 0.58) 0.002 0.36 (0.14 to 0.58) 0.002 0.41 (0.18 to 0.64) <.001

Privacy-respecting vs. other -0.03 (-0.4 to 0.34) 0.886 -0.01 (-0.37 to 0.36) 0.974 0.15 (-0.25 to 0.55) 0.452
High-traffic & Privacy-respecting vs. other -1.01 (-2.01 to 0) 0.05

VARIANCE/COVARIANCE

Latent Intercept
855.94 (773.5 to 

938.39) <.001 855.87 (773.44 to 
938.31) <.001 855.94 (773.5 to 

938.39) <.001 855.87 (773.44 to 
938.31) <.001 855.85 (773.42 to 

938.28) <.001

Latent Slope 0.68 (0.6 to 0.76) <.001 0.68 (0.6 to 0.76) <.001 0.68 (0.6 to 0.76) <.001 0.68 (0.6 to 0.76) <.001 0.68 (0.6 to 0.75) <.001
Intercept & Slope 1.75 (-0.03 to 3.53) 0.054 1.74 (-0.04 to 3.52) 0.055 1.75 (-0.03 to 3.53) 0.054 1.74 (-0.04 to 3.52) 0.055 1.73 (-0.04 to 3.51) 0.056

RESIDUALS 

e1-e21 55.54 (54.32 to 56.76) <.001 55.54 (54.32 to 56.76) <.001 55.54 (54.32 to 
56.76) <.001 55.54 (54.32 to 56.76) <.001 55.54 (54.32 to 56.76) <.001

FIT SUMMARY

Chi-Square 18686.80 18610.16 18620.07 18610.15 18606.30
Chi-Square DF 301 298 298 297 296

Pr > Chi-Square <.001 <.001 <.001 <.001 <.001
Standardized RMR (SRMR) 0.11 0.11 0.10 0.10 0.10

Goodness of Fit Index (GFI) 0.34 0.34 0.34 0.34 0.34
RMSEA Estimate 0.26 0.26 0.26 0.26 0.26

Akaike Information Criterion 18732.80 18662.16 18672.07 18664.15 18662.31
Schwarz Bayesian Criterion 18842.81 18786.52 18796.44 18793.30 18796.24

Bentler Comparative Fit Index 0.73 0.73 0.73 0.73 0.73
Bentler-Bonett Non-normed Index 0.75 0.75 0.75 0.75 0.75

Bollen Normed Index Rho1 0.75 0.75 0.75 0.75 0.75

Note: The main results with interaction terms are provided in Panel 5 which includes moderation effects of “privacy-respecting” and “high-traffic” 

status of websites and their interaction on the association between COVID-19 weekly deaths and the average number of third parties in the 

Page 13 of 15

https://mc.manuscriptcentral.com/jamiao

Manuscripts submitted to JAMIA Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/advance-article/doi/10.1093/jam
iaopen/ooab100/6423998 by guest on 18 N

ovem
ber 2021



subsequent week. In Panels 1 to 4, the parameter estimates are consistent in their sign and significance across various configurations of the model, 

indicating its robustness.

Note: We removed 117 websites from the sample because either they were adult websites, or we could not collect data on their third parties for the 

period of the study.
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Figure 1: The mediated process through which an increase in COVID-19 deaths leads to an increase in 
online traffic
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