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Abstract 
 

In this study, a new closed-form solution for transverse free vibration analysis of laminated composite 

beams (LCBs) with arbitrary number of concentrated masses is developed. The LCB is modeled based on 

the Euler-Bernoulli beam theory and concentrated masses are simulated considering Dirac delta function. 

Obtained governing equations are, then, solved semi-analytically while the frequency equation and mode 

shapes are extracted for two different boundary conditions, i.e., clamped-free and simply-supported. In order 

to verify the closed-form solution, the represented model is simplified for a beam without concentrated mass 

and outcomes are compared with available results in the literature. Finally, the effects of mass as well as 

location and number of concentrated masses on the free vibration response of the beam are investigated in 

detail. The results highlight that with increasing the value of point masses, the natural frequencies decrease. 

Also, it was revealed that the number of point masses influences on the vibration of cantilever beam more 

than the simply-supported one. These outcomes would practically be used to minimize detrimental effects 

of vibrational noises, leading to increase of the structural components’ lifetime. 
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1. Introduction 

The world of manufacturing engineering is constantly evolving while striving to deal with a number of 

challenges, such as transverse vibrations due to geometrical imperfections or inaccurate assembly of 

machine parts. Similarly, detrimental effects associated with physical discontinuities, namely ‘concentrated 

masses’, ‘presence of cracks and ‘presence of ledge on structures’ have always been among the primary 

concerns of researchers in vibrational sciences. An efficient method to mathematically model such 

mechanical components as gears, chains and couplings is to simulate them as a concentrated mass through 

the longitudinal axis of a beam or a shaft. This can be particularly seen in aerospace sciences, where the 

composite wing of an airplane is considered as a beam with concentrated mass.  

. Several researches have been conducted regarding free vibration analysis of laminated composite beams 

related to the concept of “concentrated mass”. Banerjee [1] did research on the natural frequencies and mode 

shapes of a cantilever layered symmetric beams. Ghayesh et al. [2] studied the thermo-mechanical free 

vibrations of a simply supported with concentrated mass. Yang and Oyadiji [3] investigated the effects of 

delamination in LCBs due to concentrated mass loading with respect to modal frequency variations. The 

vibration and stability of rectangular plates in contact with fluid [4-5], vibration of elliptical and circular 

plates on an elastic foundation [6-7], laminated composite cylinder [8] and free vibration of Euler and 

Timoshenko LCBs based on finite strain displacement [9-11] have presented in the past researches.  

Free vibrations of the non-uniform axially Euler–Bernoulli beam with mass center of the tip body studied 

by Nikolic [12]. The free vibration analysis of laminated composite shells with cutouts and concentrated 

mass investigated by Chaubey et al. [13]. In recent years, the wave transmission using prismatic beams with 

concentrated gradient masses [14], bending vibration generated by tapping cross section with additional 

mass [15], twist of composite blade with moving mass [16], transverse vibrations of nanobeam with a single 

point mass [17] and dynamic stability of spinning thin-walled composite beams carrying rigid bodies [18] 

are presented.  

Above literature review arguably highlighted that in spite of numerous researches being performed 

regarding free vibration response of composite beams, vibrational analysis of composite beams with 

arbitrary number of point masses has not been carried out in structural engineering community. This 

research, therefore, aims to focus on the transverse vibration of a LCB with multiple concentrated masses 

representing a novel semi-analytical solution method for two different boundary conditions. Moreover, the 

influence of location and numbers of point mass on the natural frequencies as well as mode shapes are taken 

into account. Ultimately, interesting outcomes are outlined in conclusions.   



2.  Governing Equations of Motion 

A general LCBs with multiple concentrated masses is considered as shown in Fig. 1. Some required initial 

assumptions are made as below: 

The Euler-Bernoulli beam theory is used and the beam is subjected to clamp-free and simply-supported 

boundary conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: A composite beam with multiple point masses 
 

 

The relation between the bending and torsional moments with transverse displacement and rotation of the 

beam are represented as below [1]: 

𝑀 = 𝐸𝐼𝑦′′ − 𝐾𝜑′ 
 (1 ) 

𝑇 = −𝐾𝑦′′ + 𝐺𝐽𝜑′ 

where  𝐸𝐼 is flexural rigidity, 𝐺𝐽 is torsional rigidity and 𝐾 represents bending-twisting coupling stiffness. 

It should be noticed that derivatives are considered with respect to 𝑥. These rigidities are defined in terms of 

components of flexural stiffness matrix as follows: 

𝐸𝐼 = 𝐷22 −
𝐷12

2

𝐷11
 , 

𝐾 = 2(𝐷26 −
𝐷12𝐷16

𝐷11
) 

𝐺𝐽 = 4 (𝐷66 −
𝐷16

2

𝐷11
) 

where 

𝐷𝑖𝑗 = ∫ 𝑄̅𝑖𝑗𝑦
2𝑑𝑦

ℎ/2

−ℎ/2

 



in which h refers to the beam thickness and 𝑄̅𝑖𝑗 is reduced stiffness matrix of laminated composites (𝑖, 𝑗 =

1, 2 𝑎𝑛𝑑 6).  

In Fig. 1, the point mass 𝑀𝑖 is assumed to be distributed along 𝑑𝑥 element, 𝑚𝑖̅̅̅̅  is mass distribution and 𝑥𝑖 

shows the distance of 𝑀𝑖 from the very beginning of the beam. Thus, 

𝑀𝑖 = 𝑚𝑖̅̅̅̅ 𝑑𝑥 (2) 

The distributing function is represented via applying step function along the beam length, and the 

concentration is presented by delta Dirac function as follows: 

𝑚𝑖(𝑥) = 𝑚𝑖̅̅̅̅ [𝑢(𝑥 − 𝑥𝑖) − 𝑢(𝑥 − 𝑥𝑖 − 𝑑𝑥)] (3) 

𝑙𝑖𝑚
𝑑𝑥→0

𝑚𝑖(𝑥) = 𝑙𝑖𝑚
𝑑𝑥→0

𝑀𝑖

𝑑𝑥
[𝑢(𝑥 − 𝑥𝑖) − 𝑢(𝑥 − 𝑥𝑖 − 𝑑𝑥)]

= 𝑀𝑖𝛿 (𝑥 − 𝑥𝑖) 

(4) 

Fig. 2 depicts the free body diagram of a beam element. 

 

 

Fig. 2: Free body diagram of a beam element  

 

in which V(𝑥, 𝑡) denotes shearing force and 𝑀(𝑥, 𝑡) is the bending moment. Using equilibrium equations, 

the following equations are obtained in terms of bending and torsional moments: 

𝜕2𝑀(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝐴 [1 +

𝑀𝑖

𝜌𝐴
𝛿(𝑥 − 𝑥𝑖)]

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 𝑞(𝑥, 𝑡) 

(5) 
𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
− 𝐼𝛼

𝜕2𝜑(𝑥, 𝑡)

𝜕𝑡2
= 0 

where 𝐼𝛼 is the polar mass moment of inertia per length. 

In order to investigate transverse free vibration of the beam, external loading should be zero, i.e. 𝑞(𝑥, 𝑡) =

0. Therefore, governing equations of motion for transverse free vibration of a beam with 𝑁 point masses in 

terms of displacement and rotation can be written as: 



𝐸𝐼
𝜕4𝑦

𝜕𝑥4
− 𝐾

𝜕3𝜑

𝜕𝑥3
+ 𝜌𝐴 [1 + ∑

𝑀𝑖

𝜌𝐴
𝛿(𝑥 − 𝑥𝑖)

𝑁

𝑖=1

]
𝜕2𝑦

𝜕𝑡2
= 0 (6) 

𝐺𝐽
𝜕2𝜑

𝜕𝑥2
− 𝐾

𝜕3𝑦

𝜕𝑥3
− 𝐼𝛼

𝜕2𝜑

𝜕𝑡2
= 0 (7) 

 

3. Solution Method 

The following harmonic solution could be applied for Eqs. (6) and (7) to separate the solution with respect 

to space and time: 

𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑒𝑖𝜔𝑡 
(8)  

𝜑(𝑥, 𝑡) = 𝜙(𝑥)𝑒𝑖𝜔𝑡 

Given the particular studied stacking sequences in this research (unidirectional and cross-ply laminated 

composites), one can rightly claim that the coupling parameter K equals to zero. Subsequently, substituting 

Eq. (7) into the (6) and using Eq. (8) yields:  

𝐸𝐼
𝑑4𝑌

𝑑𝑥4
+ 𝜌𝐴 [1 + ∑

𝑀𝑖

𝜌𝐴
𝛿(𝑥 − 𝑥𝑖)

𝑁

𝑖=1

] (−𝜔2)𝑌(𝑥) = 0 (9)  

The dimensionless form of Eq. (9) can be rewritten as:  

𝑤4(𝜁) − 𝜆4 [1 + ∑𝛼𝑖𝛿(𝜁 − 𝜁𝑖)

𝑁

𝑖=1

]𝑤(𝜁) = 0 (10)  

where 𝑊 = 𝑌 𝐿⁄ , 𝜁 = 𝑥 𝐿⁄ , 𝛼𝑖 = 𝑀𝑖 𝜌𝐴𝐿⁄  and  

𝜆4 = 𝜌𝐴𝐿4𝜔2 𝐸𝐼⁄  (11) 

After simplification, Eq. (10) will be in the following form: 

𝑤𝑖𝑣(𝜁) − 𝜆4𝑤(𝜁) = 𝐵(𝜁) (12)  

in which  

𝐵(𝜁) ≜ 𝜆4 ∑𝛼𝑖𝛿(𝜁 − 𝜁𝑖)

𝑁

𝑖=1

𝑤(𝜁) (13) 

Accordingly, natural frequencies and the corresponding mode shapes can be found solving Eq. (12). It 

must be noticed that 𝑤(𝜁) should be the same as the eigen-mode of uniform beam for region between two 

concentrated masses. The solution for overall beam can, therefore, be assumed as a combination of standard 

trigonometric and hyperbolic functions in which the coefficients of combination are generalized functions:  

𝑤(𝜁) = 𝑐1𝑠𝑖𝑛 (𝜆𝜁) + 𝑐2𝑐𝑜𝑠 (𝜆𝜁) + 𝑐3𝑠𝑖𝑛ℎ (𝜆𝜁) + 𝑐4𝑐𝑜𝑠ℎ (𝜆𝜁) (14)  

 



Assume 𝑤̅(𝜁) is a solution of a uniform beam without concentrated masses that satisfies the following 

equation: 

𝑤̅(𝜁)4 − 𝜆4𝑤̅(𝜁) = 0 (15)  

The first, second, third and fourth derivations of Eq. (14) with respect to 𝑥 are:  

𝑤 ́(𝜁) = (𝑐1́𝑠𝑖𝑛𝜆𝜁 + 𝑐2́𝑐𝑜𝑠𝜆𝜁 + 𝑐3́𝑠𝑖𝑛ℎ𝜆𝜁 + 𝑐4́𝑐𝑜𝑠ℎ𝜆𝜁) + 𝑤̅ ́(𝜁) 

(16) 

𝑤 ́(𝜁) = (𝑐1́𝑠𝑖𝑛𝜆𝜁 + 𝑐2́𝑐𝑜𝑠𝜆𝜁 + 𝑐3́𝑠𝑖𝑛ℎ𝜆𝜁 + 𝑐4́𝑐𝑜𝑠ℎ𝜆𝜁) + 𝑤̅ ́(𝜁) 

w′′′(𝜁) = 𝜆2(−c1
′′′𝑠𝑖𝑛𝜆𝜁 − c2

′′′𝑐𝑜𝑠𝜆𝜁 + c3
′′′𝑠𝑖𝑛ℎ𝜆𝜁 + c4

′′′𝑐𝑜𝑠ℎ𝜆𝜁) + w̅′′′(ζ) 

w𝑖𝑣(𝜁) = 𝜆3(−c1
𝑖𝑣𝑠𝑖𝑛𝜆𝜁 + c2

𝑖𝑣𝑐𝑜𝑠𝜆𝜁 + c3
𝑖𝑣𝑠𝑖𝑛ℎ𝜆𝜁 + c4

𝑖𝑣𝑐𝑜𝑠ℎ𝜆𝜁) + w̅𝑖𝑣(ζ) 

The above equations can be represented in the matrix form as below: 

[

𝑠𝑖𝑛𝜆𝜁 𝑐𝑜𝑠𝜆𝜁
𝑐𝑜𝑠𝜆𝜁 −𝑠𝑖𝑛𝜆𝜁

𝑠𝑖𝑛ℎ𝜆𝜁 𝑐𝑜𝑠ℎ𝜆𝜁
𝑐𝑜𝑠ℎ𝜆𝜁 𝑠𝑖𝑛ℎ𝜆𝜁

−𝑠𝑖𝑛𝜆𝜁 −𝑐𝑜𝑠𝜆𝜁
−𝑐𝑜𝑠𝜆𝜁 𝑠𝑖𝑛𝜆𝜁

𝑠𝑖𝑛ℎ𝜆𝜁 𝑐𝑜𝑠ℎ𝜆𝜁
𝑐𝑜𝑠ℎ𝜆𝜁 𝑠𝑖𝑛ℎ𝜆𝜁

]

[
 
 
 
c′

1

c′
2

c′
3

c′
4]
 
 
 
=

[
 
 
 
 

0
0
0

𝐵(𝜁)

𝜆3 ]
 
 
 
 

 (17) 

Where  

𝑐1
′ =

−𝑐𝑜𝑠𝜆𝜁

2𝜆3 𝐵(𝜁), 𝑐3
′ =

𝑐𝑜𝑠ℎ𝜆𝜁

2𝜆3
𝐵(𝜁) 

(18) 

𝑐2
′ =

𝑠𝑖𝑛𝜆𝜁

2𝜆3
𝐵(𝜁) 𝑐4

′ =
−𝑠𝑖𝑛ℎ𝜆𝜁

2𝜆3
𝐵(𝜁) 

 

Integration of Eqs. (18) results in: 

𝑐1 = −
𝜆

2
∑𝛼𝑖𝑤(𝜁𝑖) 𝑐𝑜𝑠(𝜆𝜁𝑖) 𝑢(𝜁 − 𝜁𝑖)

𝑁

𝑖=1

+ 𝑑1 

(19) 

𝑐2 =
𝜆

2
∑𝛼𝑖𝑤(𝜁𝑖) 𝑠𝑖𝑛(𝜆𝜁𝑖) 𝑢(𝜁 − 𝜁𝑖)

𝑁

𝑖=1

+ 𝑑2 

𝑐3 =
𝜆

2
∑𝛼𝑖𝑤(𝜁𝑖) 𝑐𝑜𝑠ℎ(𝜆𝜁𝑖) 𝑢(𝜁 − 𝜁𝑖)

𝑁

𝑖=1

+ 𝑑3 

𝑐4 = −
λ

2
∑α𝑖w(𝜁𝑖) sinh(λ𝜁𝑖) u(ζ − ζi)

N

i=1

+ 𝑑4 

where 𝑑𝑖 (𝑖 = 1,2,3 𝑎𝑛𝑑 4) are integration constants. Substituting Eqs. (19) into Eq. (14) gives the eigen-

mode of the problem in a closed-form solution: 



𝑤(𝜁) = 𝜆 ∑𝛼𝑖𝑤(𝜁𝑖)𝑇(𝜁 − 𝜁𝑖) 𝑢(𝜁 − 𝜁𝑖)

𝑁

𝑖=1

+ 𝐷(𝜁) (20) 

where 

𝐷(𝜁) = 𝑑1𝑠𝑖𝑛 (𝜆𝜁) + 𝑑2𝑐𝑜𝑠 (𝜆𝜁) + 𝑑3𝑠𝑖𝑛ℎ (𝜆𝜁) + 𝑑4𝑐𝑜𝑠ℎ (𝜆𝜁) 

(21) 

𝑇(𝜁) ≜
1

2
[𝑠𝑖𝑛ℎ(𝜆𝜁) − 𝑠𝑖𝑛(𝜆𝜁)] 

in which 𝑢(𝜁 − 𝜁𝑖) refers to unit step (Heaviside) function, which is the derivative of Dirac delta function, 

indicating a jump discontinuity at 𝜁𝑖. The  𝛼𝑖 stands for dimensionless mass values evaluated at the 

concentrated mass sections 𝜁𝑖. The 𝑤(𝜁𝑖) value at the mass point cross-section 𝜁𝑖 can be selected by applying 

the distributional product with Dirac’s delta to the bending deformation continuous function provided by in 

the some simplified form which we give consent to waiver for more explain them.  

The solution of the eigen-mode governing equation (Eq. (13)) is given by Eqs. (20) and (21). Therefore, 

Eq. (20) can be updated as follows: 

 

𝑤(𝜁) = 𝑑1 [𝜆 ∑𝛼𝑖𝜇𝑖̅𝑇(𝜁 − 𝜁𝑖)𝑢(𝜁 − 𝜁𝑖)

𝑗−1

𝑖=1

+ 𝑠𝑖𝑛 (𝜁)]

+ 𝑑2 [𝜆 ∑𝛼𝑖𝜂𝑖̅𝑇(𝜁𝑗 − 𝜁𝑖)𝑢(𝜁 − 𝜁𝑖)

𝑗−1

𝑖=1

+ 𝑐𝑜𝑠 (𝜁)]

+ 𝑑3 [𝜆 ∑𝛼𝑖𝛾𝑖̅𝑇(𝜁𝑗 − 𝜁𝑖)

𝑗−1

𝑖=1

𝑢(𝜁 − 𝜁𝑖) + 𝑠𝑖𝑛 ℎ(𝜁)]

+ 𝑑4 [𝜆 ∑𝛼𝑖𝜅𝑖̅𝑇(𝜁𝑗 − 𝜁𝑖)𝑢(𝜁 − 𝜁𝑖)

𝑗−1

𝑖=1

+ 𝑐𝑜𝑠ℎ (𝜁)] 

 

(22) 

The integration constants 𝑑1, 𝑑2, 𝑑3  and  𝑑4 can be easily evaluated by applying relevant boundary 

conditions. The first and second derivatives of the eigen-mode could be obtained by means of single and 

double differentiation of Eq. (14 (. Thus, the solution of the eigen-mode in terms of the basic functions in 

Eq. (22) would be:  



𝑤(𝜁) = 𝑒1 [𝜆 ∑𝛼𝑖𝜇𝑖𝑔4(𝜆𝜁 − 𝜆𝜁𝑖)𝑢(𝜁 − 𝜁𝑖)

𝑗−1

𝑖=1

+ 𝑔1(𝜆𝜁)]

+ 𝑒2 [𝜆 ∑𝛼𝑖𝜂𝑖𝑔4(𝜆𝜁 − 𝜆𝜁𝑖)𝑢(𝜁 − 𝜁𝑖)

𝑗−1

𝑖=1

+ 𝑔2(𝜆𝜁)]

+ 𝑒3 [𝜆 ∑𝛼𝑖𝛾𝑖𝑔4(𝜆𝜁 − 𝜆𝜁𝑖)

𝑗−1

𝑖=1

𝑢(𝜁 − 𝜁𝑖) + 𝑔3(𝜆𝜁)]

+ 𝑒4 [𝜆 ∑𝛼𝑖𝜅𝑖𝑔4(𝜆𝜁 − 𝜆𝜁𝑖)𝑢(𝜁 − 𝜁𝑖)

𝑗−1

𝑖=1

+ 𝑔4(𝜆𝜁)] 

 

 

(23) 

To obtain unknown coefficients in Eq. (23), specific boundary conditions should be applied. Two 

boundary conditions, i.e., SS (S stands for simply-supported boundary) and CF (C and F stand for clamped 

and free, respectively) are considered here. In the case of simply-supported boundary conditions, vertical 

displacements and moments are zero, i.e., 𝑤(0) = 𝑤′′(0) = 𝑤(1) = 𝑤′′(1) = 0, and consequently 𝑒1 =

𝑒3 = 0. In the case of clamped-free boundary conditions, vertical displacement and slope at clamped 

boundary are zero and moment and shear force are zero at free boundary, i.e., 𝑤(0) = 𝑤′(0) = 𝑤′′(1) =

𝑤′′′(1) = 0 and consequently 𝑒1 = 𝑒2 = 0 for boundary condition at 𝜁 =  0. The frequency equations are 

derived and numerically solved in order to obtain natural frequencies of the beams with multiple 

concentrated masses, and the corresponding explicit expressions of the vibration modes.  

 

4. Results and Discussion 

4.1. Validation 

First, to verify outcomes of the proposed method being associated with free vibration of a composite beam 

with multiple point masses, the first four frequencies of a cantilever composite beam without point masses 

are provided from the Ref. [1]. Table. 1 compares natural frequencies of a cantilevered composite beam. It 

is seen that findings of present study are acceptably close to those of Ref. [1]. Therefore, it confirms the 

closed-form solution obtained for free vibration of LCBs.  

 

 

 

 



Table 1. Comparison of first four frequencies (Hz) of a cantilever composite beam. 
 

𝝎𝟒 𝝎𝟑 𝝎𝟐 𝝎𝟏  

275.9 141.0 50.39 8.040 Present study 

276.0 141.0 50.39 8.040 Reference [1] 

0.0004 0 0 0 Difference, % 

 

 

Now, the frequency behavior of a circular composite shaft with [0/90/0/90]s lay-up and length of L=560 

mm, inner radius of r=25 mm, total thickness of t=0.54 mm, mass moment of inertia of 3.4×10-4 kg.m2 is 

investigated. Also, the material properties of this orthotropic beam are 𝐸11 = 155.8 𝐺𝑃𝑎, 𝐸22 =

10.36 𝐺𝑃𝑎, 𝐺12 = 6.67 𝐺𝑃𝑎 and 𝜐12 = 0.28. The first four frequencies of this shaft are reported in Table. 

2 for both SS and CF boundary conditions. The 𝜔0𝑖 (i=1 -4) indicates natural frequencies of a beam without 

point mass. Table. 2 shows that the natural frequencies of a simply-supported beam are higher than those of 

a cantilever beam. 

 
Table 2. First four natural frequencies (Hz) of a cross-ply circular composite shaft with different boundary 

conditions. 
 

Boundary condition 𝝎𝟎𝟏 𝝎𝟎𝟐 𝝎𝟎𝟑 𝝎𝟎𝟒 

SS 57.76 81.68 100.04 115.52 

CF 44.62 70.60 91.33 108.06 

 
 

4.2. The Effect of Amount and Location of Point Mass 

To study the effect of point mass values and locations, three different values and locations are considered. 

Results of natural frequencies for SS and CF boundary conditions are presented in Table. 3 and Table 4, 

respectively . In these tables, 𝛼𝑖 indicates the ratio of point mass to total mass of the beam and 𝜁𝑖 indicates 

the ratio of the mass location to the beam’s length. The results indicate that dimensionless natural frequencies 

decrease in the presence of point masses and all of the frequency ratios in Tables. 3 and .4 are less than 1. 

Natural frequencies of a simply-supported beam with masses at locations of 𝜁 = 0.25 and 0.75 are the same 

due to symmetric boundary conditions. If the mass gets closer to the center of the beam, the more reduction 

in dimensionless frequencies is observed. This phenomenon also happens for a cantilever beam while the 

mass gets closer to the free end of the beam. 



 

Table 3. Frequency ratios of a simply-supported cross-ply beam with different values and locations of point 
mass 

 

SS 

ζ=0.25 ζ=0.5 ζ=0.75 

α=0.1 α=1 α=10 α=0.1 α=1 α=10 α=0.1 α=1 α=10 

𝝎𝟏 𝝎𝟎𝟏⁄  0.988003 0.912773 0.730693 0.977417 0.870973 0.682345 0.988003 0.912773 0.730693 

𝝎𝟐 𝝎𝟎𝟐⁄  0.979027 0.916995 0.884363 1 1 1 0.979027 0.916995 0.884363 

𝝎𝟑 𝝎𝟎𝟑⁄  0.990923 0.974536 0.969196 0.980433 0.935004 0.915694 0.990923 0.974536 0.969196 

𝝎𝟒 𝝎𝟎𝟒⁄  1 1 0.999986 1 0.999999 0.999998 1 1 0.999986 

 

Table 4. Frequency ratios of a clamped-free (CF) cross-ply beam with different values and locations of point 
mass. 

 

CF 
ζ=0.25 ζ=0.5 ζ=0.75 

α=0.1 α=1 α=10 α=0.1 α=1 α=10 α=0.1 α=1 α=10 

𝝎𝟏 𝝎𝟎𝟏⁄  0.999527 0.995245 0.953498 0.994352 0.952266 0.798284 0.980234 0.881798 0.694954 

𝝎𝟐 𝝎𝟎𝟐⁄  0.991354 0.927257 0.773509 0.977895 0.896377 0.831062 0.999211 0.996442 0.99453 

𝝎𝟑 𝝎𝟎𝟑⁄  0.976956 0.90465 0.871575 0.999984 0.999935 0.999905 0.985907 0.946414 0.926823 

𝝎𝟒 𝝎𝟎𝟒⁄  0.9836 0.958848 0.952379 0.981063 0.942219 0.927851 0.986312 0.963878 0.957335 

 

4.3. The Effect of Point Masses Number 

In this section, the effect of point masses number on the natural frequencies of a composite beam is 

investigated. For this purpose, different numbers of masses 1, 2, 3, 5, 7, 10 in symmetric locations of beam 

length have been studied and the frequency equation in terms of dimensionless mass 𝛼𝑖 is plotted in Fig. 3 

and .4 for SS and CF boundary conditions, respectively. 

Figs. 3 and .4 clarify that frequency ratio decreases in presence of the point masses on the beam regardless 

of the numbers of masses. Also, frequency ratio is more affected by increasing the number of masses due to 

increasing of total system mass. Comparing Figs. 3 and 4., it is also found that the differences between 

frequency ratio curves are more significant in a cantilever beam than a simply-supported one. This 

phenomena is related to symmetric of boundary condition in the simply supported beam. These results can 

practically be used for designing of different composite shafts with multiple concentrated masses. 

 



 

Fig. 3: The effect of number of point masses on the frequency ratio of a simply-supported composite 

beam 

 

 

 
 

Fig. 4: The effect of number of point masses on the frequency ratio of a cantilever composite beam 

 

 

5. Conclusions and Outlooks 

Vibration response of equipment installed on the beam and shafts is of great interest for design 

engineers in various industries. In this study, free vibration of a LCB with multiple concentrated 

masses along the beam length is solved for the first time. More explicitly, the effects associated with 

value, location and number of point masses on the natural frequencies and mode shapes of a composite 

beam with simply-supported (SS) and cantilever-free (CF) boundary conditions are investigated in 



detail. Results suggested that natural frequencies of a simply-supported beam are more than those of 

a cantilever beam. It was seen that increasing the value of point masses results in decrease of natural 

frequencies. In simply-supported boundary conditions, the most reduction in vibration amplitude 

happens at the center of composite beam. In a cantilever beam, nevertheless, the most significant 

reduction in frequency occurs when a point mass is located at the free end. 

 

Nomenclature 

T      : Torsion moment 

M    : Bending moment 

EI      : Bending stiffness rigidity 

GJ    : Torsional rigidity 

k      : Coupling stiffness 

ijD    : Bending stiffness matrix 

m      : Beam mass 

I    : Mass moment of inertia 

y    : Transverse displacement 

    : Torsion angle  

y     : Second derivative of displacement 

    : First derivative of torsion angle 

t    : Time 

L      : Beam length  

)( iu  −  : Heaviside step function  

x      : Location 

      : Dimensionless location 

D      : Dimensionless differential operator 

ig      : General basic functions 

ig      : Basic geometry coordinate functions 

W      : Displacement 

q      : Cross force on beam’s unite length 

i      : Concentrated mass on beam’s mass ratio 

i      : Mass location on beam length ratio 

im      : Point mass distribution 

      : Dirac delta function 

      : Beam density 

iA      : Arrays of general basic functions 

      : Natural frequency 

 
 

Conflict of Interest Statement 

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or 

publication of this article. 

 

Funding 

The author(s) received no financial support for the research, authorship, and/or publication of this 

article. 

 

ORCID ID 

Ahmad Reza Ghasemi https://orcid.org/0000-0002-9326-4990  

https://orcid.org/0000-0002-9326-4990


 

References 

 

1.  Banerjee, J. R. (2001). Explicit analytical expressions for frequency equation and mode 

shapes of composite beams. International Journal of Solids and Structures, 38(14), 2415-

2426.  

2. Ghayesh, M. H., Kazemirad, S., Darabi, M. A., & Woo, P. (2012). Thermo-mechanical 

nonlinear vibration analysis of a spring-mass-beam system. Archive of Applied 

Mechanics, 82(3), 317-331. 

3. Yang, C., & Oyadiji, S. O. (2016). Detection of delamination in composite beams using 

frequency deviations due to concentrated mass loading. Composite Structures, 146, 1-13. 

4. Khorshidi, K., Karimi, M., & Amabili, M. (2020). Aeroelastic analysis of rectangular 

plates coupled to sloshing fluid. Acta Mechanica, 231, 3183-3198. 

5. Karimi, M., Khorshidi, K., Dimitri, R., & Tornabene, F. (2020). Size-dependent 

hydroelastic vibration of FG microplates partially in contact with a fluid. Composite 

Structures, 244, 112320. 

6. Ghaheri, A., Keshmiri, A., & Taheri-Behrooz, F. (2014). Buckling and vibration of 

symmetrically laminated composite elliptical plates on an elastic foundation subjected to 

uniform in-plane force. Journal of Engineering Mechanics, 140(7), 04014049.  

7. Afsharmanesh, B., Ghaheri, A., & Taheri-Behrooz, F. (2014). Buckling and vibration of 

laminated composite circular plate on winkler-type foundation. Steel and Composite 

Structures, 17(1), 1-19.  

8. Mohandes, M., & Ghasemi, A. R. (2019). Discrepancies between free vibration of FML 

and composite cylindrical shells reinforced by CNTs. Mechanics of Advanced Composite 

Structures, 6(2), 105-115.  

9. Ghasemi, A. R., Taheri-Behrooz, F., Farahani, S. M. N., & Mohandes, M. (2016). 

Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain 

subjected to different boundary conditions. Journal of Vibration and Control, 22(3), 799-

811.  

10. Mohandes, M., & Ghasemi, A. R. (2016). Finite strain analysis of nonlinear vibrations of 

symmetric laminated composite Timoshenko beams using generalized differential 



quadrature method. Journal of Vibration and Control, 22(4), 940-954.  

11. Ghasemi, A. R., & Mohandes, M. (2017). Nonlinear free vibration of laminated 

composite Euler-Bernoulli beams based on finite strain using generalized differential 

quadrature method. Mechanics of Advanced Materials and Structures, 24(11), 917-923. 

12. Nikolić, A. (2017). Free vibration analysis of a non-uniform axially functionally graded 

cantilever beam with a tip body. Archive of Applied Mechanics, 87(7), 1227-1241.  

13. Chaubey, A. K., Kumar, A., & Chakrabarti, A. (2018). Vibration of laminated composite 

shells with cutouts and concentrated mass. AIAA Journal, 56(4), 1662-1678. 

14. Fang, X., Chuang, K. C., Yuan, Z. W., & Huang, Z. L. (2018). Defect mode-induced 

unidirectional flexural wave transmission using prismatic beams with concentrated 

gradient masses. Journal of Applied Physics, 123(22), 224901. 

15. Kubojima, Y., Sonoda, S., & Kato, H. (2018). Practical techniques for the vibration 

method with additional mass: bending vibration generated by tapping cross section. 

Journal of wood science, 64(1), 16-22. 

16. Amoozgar, M. R., Shaw, A. D., Zhang, J., & Friswell, M. I. (2019). Composite blade 

twist modification by using a moving mass and stiffness tailoring. AIAA Journal, 57(10), 

4218-4225.  

17. Dilena, M., Dell’Oste, M. F., Fernández-Sáez, J., Morassi, A., & Zaera, R. (2019). Mass 

detection in nanobeams from bending resonant frequency shifts. Mechanical Systems and 

Signal Processing, 116, 261-276. 

18. Eken, S., Cihan, M., & Kaya, M. O. (2020). Vibration and stability analysis of a spinning 

thin-walled composite beam carrying a rigid body. Archive of Applied Mechanics, 1-14. 

 


	Enlighten Accepted coversheet.pdf
	258997

