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Reservoir for Continuous Ventricular
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Abstract—There is a growing interest in neuromorphic
hardware since it offers a more intuitive way to achieve
bio-inspired algorithms. This paper presents a neuromor-
phic model for intelligently processing continuous elec-
trocardiogram (ECG) signal. This model aims to develop
a hardware-based signal processing model and avoid em-
ploying digitally intensive operations, such as signal seg-
mentation and feature extraction, which are not desired in
an analogue neuromorphic system. We apply delay-based
reservoir computing as the information processing core,
along with a novel training and labelling method. Different
from the conventional ECG classification techniques, this
computation model is a end-to-end dynamic system that
mimics the real-time signal flow in neuromorphic hardware.
The input is the raw ECG stream, while the amplitude of
the output represents the risk factor of a ventricular ec-
topic heartbeat. The intrinsic memristive property of the
reservoir empowers the system to retain the historical ECG
information for high-dimensional mapping. This model was
evaluated with the MIT-BIH database under the inter-patient
paradigm and yields 81% sensitivity and 98% accuracy. Un-
der this architecture, the minimum size of memory required
in the inference process can be as low as 3.1 MegaByte(MB)
because the majority of the computation takes place in the
analogue domain. Such computational modelling boosts
memory efficiency by simplifying the computing procedure
and minimizing the required memory for future wearable
devices.

Index Terms—Continuous ventricular heartbeat detec-
tion, delay-based reservoir computing, Memory efficient
analogue computing, Physical neural network.
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I. INTRODUCTION

CARDIOVASCULAR diseases are the major sources of
global mortality, which led to 17.9 million deaths in 2016

(WHO) [1]. The electrocardiogram (ECG) is a clinical tool that
records the electrical rhythm, rate and activity of the heart and
provides a detailed analysis for the diagnosis and the treatment of
abnormal heartbeats [2]. Early research focused on manual com-
parative ECG classification and diagnosis by the cardiologist. In
recent decades, the rapid development of machine intelligence
opens a novel pathway for automatic arrhythmias analysis and
detection [2], [3]. In the future these systems have the potential
to be integrated into remote patient devices to stratify clinical
need by providing a more personalised healthcare system [2].

As a bio-inspired learning algorithm, neural network provides
a computational architecture that mathematically models the
electrical activities of a simplified neuron and synapse for infor-
mation processing and intelligent applications [4]–[8]. However,
running a neural network under a software-based system brings
the entire information processing to a digital system where the
data experiences storing, processing and communication using
the bits of 1’s and 0’s. The software-based artificial intelligence
(AI) faces the challenges in the further reduction of computa-
tional cost and miniaturization in post Moore’s Law era [4],
[8], [9]. To overcome this challenge, neuromorphic engineering
paves a new way to develop a physical neural network to keep
up with the computing needs [7], [10].

Delay-based reservoir computing (DRC) has been proposed
as a candidate for physical implementation among all the topolo-
gies of neural network [11]. It is categorized under reservoir
computing which is derived from Recurrent Neural Network
(RNN). By introducing delay lines to form a delay-coupled
reservoir, the DRC dramatically reduces the number of nonlinear
neurons to one, which facilitates its hardware implementation
using analogue and optical components for high-speed and low-
power computing [12]–[18]. The DRC architecture is chosen
as the main ECG processing core in this work because it is
well-suited to process time-dependent signal, and feasible to
implement as neuromorphic hardware. To validate the perfor-
mance of our proposed DRC model, we applied this model
to a Ventricular Ectopic Beat (VEB) detection task. Frequent
VEB could be a sign for coronary heart disease, rheumatic heart
disease and even acute myocardial infarction.
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Fig. 1. (a) The comparison between the conventional software-based ECG classification and the proposed hardware-based method. The two
standard procedures in literature, heartbeat segmentation and feature extraction were not adopted since they are difficult to achieve by analogue
system. Instead, the DRC, along with its readout and pre-processing blocks is used as the information processing core. (b) The conceptual figure
of the neuromorphic input ECG and output. The proposed hardware algorithm can receive continuous signal and perform point-by-point abnormal
ECG detection. The output is an indication of the type of input ECG. A spike can be observed at the output when an ectopic ECG is received.

There are fundamental differences between the neuromorphic
model with DRC architecture proposed in this paper and conven-
tional automatic ECG detection. Conventional software-based
ECG classification methods can be divided into five steps:
1) ECG signal pre-processing, 2) analogue-to-digital converter
(ADC), 3) heartbeat segmentation, 4) feature extraction and
5) learning/classification [2]. These widely used procedures,
such as detection of the QRS complex, signal segmentation
and feature extraction, critically rely on digital operations which
are not desirable in neuromorphic hardware [2], [4], [19]. For
example, the prime step for the majority of automatic ECG
classification algorithm is segmenting the entire ECG recording
into individual heartbeat according to the detection algorithm of
the QRS complex, followed by a feature extraction step where
various features are obtained from each individual heartbeat to
improve the classification accuracy. These operations are easy
to achieve within a digital system by accessing the memory unit
and running algorithms in the processor [4], [6], [9]. However,
the digital operations and mass memory bring several constrains
like latency, throughput and power, hindering the further de-
velopment of computing performance in conventional archi-
tecture [20], [21]. Meanwhile, a prospective wearable device
expects that the intelligent computing can also be carried out
at the local edge [21]–[23]. Under such circumstances, a neu-
romorphic analogue processor based on the above-mentioned
DRC architecture is well-suited to act as a direct interface to an
ECG electrode with less memory requirement. Fig. 1(a) illus-
trates the block diagram of the proposed system in comparison
with the conventional method. The proposed model preserves
the hardware-achievable operations and deposes the procedures
involving intensive digital components. Fig. 1(b) is a conceptual
figure of the input and output of an analogue neuromorphic
computer for ECG. Ideally, the indicator can be directly driven
by the neuromorphic output that reflects the ECG type. The
dynamic system aims to receive a continuous ECG stream and
output the abnormal ECG diagnosis result. The differences
mentioned above greatly reduce the memory needed to de-
ploy such detection algorithm. Compared with the conventional
software-based implementations, the proposed neuromorphic
system is expected to offer advantages on energy efficiency and

computing power for machine learning workloads. The proposed
model is validated by the MIT-BIH database [24]. The evaluation
protocol follows the inter-patient paradigm which was presented
by [25]. The result shows that this model obtained high accuracy
and sensitivity and has a great potential to facilitate the future
development of a pure analogue ECG processing system. The
full development of the dynamic system is not covered in this
paper and remains a topic of future research. The contribution of
this paper is to provide the first fundamental analysis model of
such a neuromorphic dynamic system using a DRC architecture
specifically designed for ECG signal.

The remaining sections of the paper are organised as follows:
Section II introduces the development of the model, including
DRC, learning algorithm, memory capacity (MC) as well as a
primary evaluation in terms of various parameters. Section III
presents testing results using MIT-BIH database as well as a
comparison between the proposed model and the state-of-the-
art solutions. The discussion and conclusions are provided in
Section IV.

II. DRC DESIGN FOR ECG

The development of proposed ECG processing model
mainly includes four key aspects: 1) construction of the time-
multiplexing reservoir, 2) Lasso regression and shifting la-
belling, 3) MC analysis, 4) post-processing. The simulation was
carried out in MATLAB/Simulink software.

A. Database

The performance of proposed method is evaluated by the
MIT-BIH arrhythmia database which is a well-known bench-
mark task recommended by Association for the Advancement
of Medical Instrumentation (AAMI). The database includes 48
two-lead ECG recordings at 360 Hz sampling rate [26].The
AAMI suggested that the heartbeats in the database can be
divided into five classes: normal, ventricular, supraventricular,
fusion of normal and ventricular and unknown beats. The ab-
normalities for each type of ECG are clearly labelled in the data
stream by at least two cardiologists. In this paper, the goal is
to detect VEB type heartbeat which is highly correlated with
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coronary heart disease and cardiomyopathy. Furthermore, this
work follows the inter-patient paradigm suggesting that the data
for training and testing should come from different patients. A
significant study [25] suggested that the database can be divided
into two groups: DS1 (101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223,
230, where the numbers indicate the recording label) and DS2
(100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212,
213, 214, 219, 221, 222, 228, 231, 232, 233, 234). The DS1 is
used to train the model while DS2 is for testing. The DS1 and
DS2 split for inter-patient evaluation is in line with the use of
MIT-BIH database in most ECG studies, which makes our results
comparable with the state-of-the-art works. This paradigm is
considered to be closer to a realistic scenario where the classifier
can be directly used on the ECG signal from unknown patients
without calibration. In addition, a single lead can satisfy the
model requirement and the modified lead II (MLII) that placing
electrodes on the chest was selected since it is an informative
and commonly used configuration.

B. Delay-Based Reservoir Computing for ECG
Processing

A conventional reservoir computing network consists of an
input layer, a reservoir and an output layer. For a reservoir
network with d-dimensional input, l-dimensional output and N
neurons, only the coefficients between the output and reservoir
(Wout ∈ Rl×N ) need to be trained by a linear regression method,
while the input coefficients (Win ∈ RN×d) and reservoir coeffi-
cients (Wres ∈ RN×N ) are randomly generated [27], [28]. The
complex dynamic and nonlinear transformation in the reservoir
would map the input data onto higher dimensional space for
classification or prediction. With the internal feedback, the past
neuron states can be preserved in the fading memory to affect
the computation at the current state [29]–[31]. At each time step
n, the states in a standard software-based reservoir are subjected
to:

r(n) = f [β1Wresr(n− 1) + β2Winu(n)] (1)

where r(n) denotes the reservoir states with nth input, r(n)
denotes the input at time step n, f represents the activation
function, β1 and β2 are the feedback and input scaling factors,
respectively. Under this dynamic, the interaction between neu-
rons generates the high-dimensional recurrent states denoted by
r(n). As a special type of RNN, only the output layer of the
reservoir needs to train by linear regression using collected r(n)
and target output. In previous studies, reservoir computing has
exhibited interesting network properties and excellent perfor-
mance in temporal signal processing[7]. Meanwhile, exploring
reservoir’s network typology is of high interest in both software
and hardware engineering [27], [32]

In recent years, the reservoir has been developed that can
be implemented by only one nonlinear neuron with time-
multiplexing and a delayed feedback [11]. The randomly
connected middle layer in traditional reservoir computing is
replaced by a single neuron and virtual nodes created by a
delay lines, namely DRC [11]. This substitution facilitates

the development of a physical reservoir, which is considered
to be a candidate of the next-generation neuromorphic signal
processors [7]. The ‘Delay-based Reservoir’ box in Fig. 1(a)
briefly illustrates the network typology. In this paper, the DRC is
designed to process ECG signal as illustrated in Fig. 2(a). Also,
the processing core, a nonlinear dynamical neuron, is shown
in Fig. 2(b). These modelling and design will be explained as
follows:

1) Pre-Processing: Before sending the signal to the delay-
loop, a pre-processing step is required to convert the raw ECG
data to a shape specifically created for our DRC system. The
filtering step follows the standard procedure: a 2nd order But-
terworth high-pass filter with a cut-off frequency at 0.5 Hz and a
12th order finite impulse response filter with a cut-off frequency
at 35 Hz, since the bandwidth in the range of 0.5-35 Hz contains
contains most relevant ECG information [33]. Following the
filtering, the ECG data was resampled by the sampling rate of
180 Hz to reduce the number of samples and accelerate the
modelling.

2) Masked Signal: After pre-processing, a mask step is es-
sential to create a reservoir dynamic in the activation node. Each
data point of ECG signal should be multiplied by a binary matrix
M (consisting of randomly uniform distribution of 1 and -1) with
length equal to N, which is the number of virtual nodes in the
reservoir [34], [35]. Assuming that τ is the sampling interval of
the ECG signal, the time interval between every two points in the
mask is defined as θ = τ/N to facilitate the MC quantification
in this paper, which will be discussed in the following section.
Given the input ECG data is u and the masked data is J(k), the
masking algorithm can be described as:

J(k) = u

(⌊
k

N

⌋)
· M(k%N)

s
+ b, for k = 1, 2, . . . , LN

(2)
where � � is the floor function, L is the total length of input
u, s and b denote the scaling and bias factors respectively for
adjusting the input range according to the linear and nonlinear
ranges of activation node, % is the modulus operation. After-
wards, the resulting J(k) is sampled and held to generate a
continuous signal J(t). The signal before and after masking are
plotted in Fig. 2(c). In this paper, τ = 5.56 ms is the reciprocal
of the sampling rate of 180 Hz. Also, we set the network size
N = 400 and therefore θ = τ/N = 13.89μs. For the hardware
implementation, the analogue masked signal can be obtained by
periodically switching the signal between the original signal and
its negative counterpart according to the mask matrix M, which
remains future development.

3) Delay-Coupled Activation Node: The J(t) is sent to the
activation node after pre-processing and masking. The design
of the activation node is illustrated in Fig. 2(b). The circuit with
bipolar junction transistor and resistors forms a Mackey-Glass
nonlinear function for the input signal. A passive low pass filter
is also connected to prevent the signal from rapidly reaching
a plateau. Fig. 2(d) shows the step response of the circuit, the
settling time T is obtained from the empirical configuration,
where T = 5× θ [10], thus it equates to 69.44 μs in our case.
This operation plays a crucial role in connecting a number of
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Fig. 2. (a) The system modelling of the DRC. After pre-processing and masking for the continuous raw ECG signal, the time-multiplexing signal
will be fed into a activation node subjected to delayed feedback lines. Next, the result can be obtained through post-processing step. (b) The circuit
design of the activation node and delay unit, which is the core of the reservoir computing unit. According to the working principle of DRC, the circuit
should be able to exhibit nonlinearity (provided by bipolar junction transistor and R3 −R6) and integration (provided by RL and CL) properties.
(c) An example of the masked signal generated by multiplying the original input with the mask matrix. (d) The settling period of the activation node
allows each virtual node states in DRC to connect to historical states, which creates a similar dynamic in conventional reservoir by using fewer
physical components. (e) A segment of input masked signal J(t) and output signal of the DRC mode. The green dots are the node states sampled
at 1/θ Hz. The value of each green dot is related to historical several values, which implies the connection between the neighbouring virtual nodes.

neighbouring virtual nodes. The effect of this connection can
be observed from the input and output in Fig. 2(e). The green
dot line represents the discrete virtual node state Q and the pink
signal is the masked input J(t). Both of the sampling intervals and
mask separation are θ. Given the settling time T = 5× θ, what
stands out in this figure is the correlation between current node
state and its historical node states, resulting in the connections
between neighbouring virtual nodes. Basically, such connec-
tions are provided by the integration property of activation node,
and they can exhibits reservoir dynamic to map the temporal
input onto high-dimensional node states. Furthermore, if T is
smaller than θ, each node state will reach a plateau rapidly before
the arrival of the next value. In this case, each state is irrelevant
to historical states and the connections between nodes no longer
exist.

To establish a recurrent connection, α delayed feedback lines
are coupled to the output of the activation node. Each delay
line delays the output for a certain time length and then feed-
ing it back to the input with another scaling factor Gf . This
delay-coupled reservoir dynamic is subject to a delay differential
equation below:

q̇(t) = − q(t) + f(G1q(t− τ), G2q(t− 2τ),

. . . Gαq(t− ατ), J(t))
(3)

where f(x) is the nonlinear function of the activation node (ac-
tivation function) formed by the transistor and its surrounding

resistors, q(t) denotes the node state at time t, G1, G2· · ·Gα are
the strengths of each delay line. The delay lines, which can be
easily implemented by optical fiber in analogue domain [13],
[18], [35], keep the information of historical data points within
the loop as a fading memory. Differ from the software-based
reservoir (1), the (3) describes the analogue signal in hardware
reservoir over continuous time t. When a data point is sent to the
delay-coupled node, the output contains not only the information
of the current point, but also a certain portion of knowledge from
historical inputs. In the absence of nonlinear function, the system
can be considered as a positive feedback system and its transfer
function is:

Q(s) =
1

RLCLs+1

1− 1
RLCLs+1D(s)

J(s) (4)

D(s) =

α∑
n=1

Gne
−nτs = G1e

−τs + . . .+Gαe
−ατs (5)

where D(s) approximates the delay unit, RL and CL form the
time constant T of the activation node as shown in Fig. 2(b)
and (d), Q(s) and J(s) denotes state output and masked input
in Laplace domain, respectively. In this work, (4) was solved
in MATLAB/Simulink together with the nonlinear function ex-
tracted from the activation node to obtain the resulting q(t). The
configuration of this delay-coupled activation node determines
the volume of historical information that can be preserved in the
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Fig. 3. (a) Schematic of the training data construction and the effect of fading memory. When the blue point is sent to the DRC, the information
retained in the node state includes not only the current data (blue), but also the historical data (red). However, the historical data is not intact since
the memory is fading. The top graph also illustrates the construction of training labels. The green line highlights the location of VEB (positive value)
and other types of heartbeat (negative value). The pink line is a shifted version of green line. (b) Visualization of the node state distribution in
high-dimensional feature space at δ points shifted away from the label location from database. PCA was used to reduce the state dimension from
400 to 2 for visualization.

loop, which is known as ‘memory capacity’. Furthermore, the
fading memory is capable of preserving the information of the
ECG morphology with only one input channel.

C. Lasso Regression

Sampling the continuous node state q(t) obtained by solving
(4), and then concatenating every N discrete elements as one
matrix can obtain Q, which is a high-dimensional mapping for
the each input data u(n) and the fading memory of historical data
(u(n-1), u(n-2)...)

Q =

⎡
⎢⎢⎢⎣
Q(1)
Q(2)

...
Q(n)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
q1(1) q2(1) · · · qN (1)
q1(2) q2(2) · · · qN (2)

...
...

. . .
...

q1(n) q2(n) · · · qN (n)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

q(θ) q(2θ) · · · q(Nθ)
q(τ + θ) q(τ + 2θ) · · · q(τ +Nθ)

...
...

. . .
...

q(nτ + θ) q(nτ + 2θ) · · · q(nτ +Nθ)

⎤
⎥⎥⎥⎦

(6)

where qi(j) denotes the state of ith virtual node after jth input,
and Q(j) is the state matrix for input u(j). The elements in
the last matrix (q(θ). . .) can be obtained by solving (4). Thus,
output weight Wout of the DRC can be calculated through a
linear regression of Q and a desired output Y . Lasso regression
is chosen as the regression method. Proposed by [36], Lasso
provides a sparse linear regression by adding L1-norm regu-
larisation to ordinary least squares regression for preventing
overfitting. After sampling the node states of training data, the
output weights can be obtained by minimising the loss function

of the Lasso regression:

Wout=argmin
W

{∑L

i=1
(yi−

∑N

j=1
qi(j)Wj)

2+λ
∑N

j=1
|Wj |

}

(7)
where L is the length of training data, yi is the training label
that will be discussed in the next section and λ represents the
regularisation parameter that determines the strength of the L1

penalty [36], [37]. Finally, the output X can be written as:

X = QWout, or x(n) = Q(n)Wout (8)

Different from L2-norm regularisation (Ridge regression), min-
imising the absolute value of coefficients will result in a sparse
output connection by automatically eliminating redundant coef-
ficients (Wj = 0), and that behaves like a coefficient selector.L1

norm is advantageous and suitable for this application because
sparse model reduces the number of components used to build
a post-processing circuit in the next stage. In addition, the
node states present a certain level of multicollinearity in our
simulation. The Lasso regression is well-suited to minimise the
effect of multicollinearity.

D. Training Data

The construction of training data and labels is shown in
Fig. 3(a). The blue line is the training ECG data with the round
dots representing each sample points. As mentioned above, the
end-to-end setup receives the input data points one by one.
The blue dot indicates the point injected to the system at the
time stamp tx while the red dots are the historical inputs at
tx – τ , tx – 2τ ....... The node states q(t) during [tx, tx+τ ]
contain high-dimensional information of not only the blue dot,
but also of the historical inputs (red dots). This is because the
information of previous points is preserved in the fading memory
created by the delay-coupled loop. However, one data point
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cannot be maintained permanently and will be attenuated after
each cycle. This feature is crucial for constructing training data.
The MIT-BIH database has labelled the location of Q-wave (the
central spike for MLII lead) in each heartbeat. There are three
steps for defining training label Y :

� The label y(n) is based on the ECG type from the database
and has the same length as input data. For the purpose
of detecting VEB, the locations of VEB are set to 1, the
locations of other types of ECG is set to -1 and the rest of
the labels are 0 (the green line in Fig. 3)).

� Right shift the y(n) by δ points (δ /180 ms). The label 1
and −1 are moved from the location of Q-wave to the end
of a heartbeat (pink line in Fig. 3). The reason is that the
node state q(n) at the end of each heartbeat includes the
fading memory of the entire heartbeat, which is analysed
with MC in the next subsection.

� The number of VEB (1) and other types of heartbeat
(-1) are unbalanced in terms of training labels, leading
to the hyperplane that separates the two classes of data
in high-dimensional space getting closer to the majority.
Therefore, the desired output y(n) should use n1+n2

n1
and

−n1+n2

n2
instead of 1 and −1, where n1 and n2 are the

number of VEB and other types of heartbeat respectively
in the training data set.

Determining the shifting distance δ of labels should con-
sider the state Q distribution and dispersion between different
classes. With the ECG input, the state Q(n) implies the mapping
of (u(n), u(n− 1), u(n− 2). . .) into a N -dimensional feature
space. Generally, the fewer overlaps between different classes
of ECG in the feature space, the better discrimination can be
obtained by the regression. Q over different δ is visualised and
plotted in Fig. 3(b). At the first step, Q was collected by feeding
the ECG data to the DRC model. The green dots of each graph
are the states at the locations of the shifted label which is δ points
away from the Q-wave. For example, when δ = 0, the states of
green dot were collected at the location of Q-wave. In order to
observe the dispersion between the extracted VEB states and
normal ECG, the states of red dots were randomly collected
within the range of other heartbeat classes including normal
beat, left bundle branch block beat and right bundle branch
block beat. After collection, the N -dimensional data of red dots
are consistent for all six graphs. Here total 20395 heartbeat
data points, including 15% VEB (green), were illustrated for
each graph. For visualising the high-dimensional data, Principal
Component Analysis (PCA) was used to map the data into two
dimensions. As shown in Fig. 3(b), the two axes represent the
first and second Principal Component (PC). In each graph, the
result of PCA also shows that the first two PCs can explain
88.19% (std 1.87%) on average of all variances. When δ = 40,
the two classes of data points present less overlap. Therefore, the
label was right-shifted for 40 samples ( 222.2 ms) for training.

E. Memory Capacity

Fig. 3(a) shows that the DRC can retain historical inputs in the
fading memory. MC is a key criterion that indicates the volume
of information from the previous inputs that can be retained

in the network. MC depends on the parameters and structure
of the reservoir. The crucial variables that affect the MC are
the nonlinearity of activation node, the strength of each delay
line (G1, G2 · · ·Gα), the ratio between the strength of feedback
and input (β = Gf/Gi) and the ratio between each delay line
(γ = G2/G1) [38], [39]. Here, the nonlinear activation region
leads to a rather low MC and lots of delay lines are needed
to compensate for the loss of MC. Therefore, the linear region
with two delay lines (G3 · · ·Gα= 0) was chosen since our single
input channel required high MC and too many delay lines are not
optimal in hardware design. In order to keep the system stable,
two requirements should be fulfilled: Gf +Gi = 1 and G1 +
G2= 1. Two tasks were employed to analyse the MC of the DRC
model: 1) the task of binary sequence reconstruction is a standard
method to quantify the MC; 2) a ‘look back’ ECG reconstruction
task for validating the ECG morphology preserved in a fading
memory.

1) Binary Sequence Reconstruction: A binary input p(n)
= −1 or 1 was randomly generated to evaluate the MC of the
proposed reservoir. In this task, the training output yi(n) is the
matrix of p(n) shifted by i steps for i = 1, 2 · · ·∞, which
means that each state at the input p(n) will be used to train and
reconstruct the historical points of a square wave. The MC can
be calculated as the sum of a linear correlation between recon-
struction result xi(n) and the actual shifted sequence yi(n):

yi(n) = p (n− i) (9)

MC =

∞∑
i=1

m(i) =

∞∑
i=1

ρ (xi(n), yi(n))

=
∞∑
i=1

< yi(n)xi(n) >
2
n

σ2 (p(n))σ2 (xi(n))
(10)

where ρ and σ denotes the correlation and variance, respec-
tively [39], [40]. Theoretically, the summation of m(i) should
be taken from i=1 to∞, which is incalculable. Thus, i∈ [1, 600]
was adopted. The p(n) was randomly generated with the length
of 4000 (75% for training and 25% for testing) and consistent
throughout the test. Also, the Ridge regression, instead of Lasso,
was applied to the square wave reconstruction because a sparse
Wout trained by Lasso may cause information loss. This means
the result cannot accurately reconstruct the square wave and
fully reflect the amount of information retained in node states.
During training, the shifted binary sequence yi(n) was used as
the label, which means the node state collected at the input p(n)
is employed and trained to reconstruct the input at i steps prior to
(p(n− i)). This task tests the capacity of the DRC to retain the
historical samples due to the fact that the memory is fading.
Reconstructing the sample becomes increasingly demanding
as i becomes higher. Therefore, the MC can be quantified by
analysing the correlation between xi(n) and yi(n) in (10).

In this task, the two ratios, β and γ, are investigated. The MC
is varied by different β, while γ was implemented to control
the shape of m(i). Fig. 4(a) shows a reconstructed sample for
lower MC when β= 9.1 and γ= 0.1. When the shifting steps
are small (i=7), the result (green dots) can capture most of the
original points. As i increases, the reconstructed points depart



LIANG et al.: NEUROMORPHIC MODEL WITH DELAY-BASED RESERVOIR FOR CONTINUOUS VENTRICULAR HEARTBEAT DETECTION 1843

Fig. 4. Result of memory capacity testing using binary sequence re-
construction at (a) lower MC (β = 9.1 and γ = 0.1 and (b) higher MC
(β = 9.1 and γ = 10. Based on the reconstruction results over different
i, the correlation graph m(i) can be computed. (c) The m(i) curve with
fixed β and (d) The m(i) curve with fixed γ. The corresponding MC
values are also provided. (e) The MC value as a function of the two
ratios, β and γ.

from the targeted value with the decline of m(i). In Fig. 4(b),
raising γ to 10, which means that the percentage of 2nd delay
line is increased, results in a small improvement in MC. As
can be seen from the graph, most of the reconstructed points
are close to the original data p(n), whereas a small fluctuation
was also found when i =19. The effect of MC can be observed
through the comparison of the two graphs. A higher MC will
enhance the reservoir’s ability to retain historical inputs in the
current node state. Subsequently, a higher γ will improve the
MC because the proportion of the 2nd delay line (length = 2τ )
is increased. Them(i) can be computed based on the correlation

between reconstructed data and original data over i, according
to (10). Firstly, β is fixed and γ is varied from 0.01 to 100. The
resulting m(i) is plotted in Fig. 4(c). When γ =100 (the 2nd

delay line is highly dominant), the unbalanced distribution of
m(i) for odd and even i was found. The reason for this issue
is that the 2nd delay line facilitates the reconstruction of even i
step shifting. In addition, the rest of the lines show that the m(i)
is slightly reduced as γ declines, and the distribution of m(i)
can also be tuned by γ. Secondly, γ is fixed and β is varied.
The Fig. 4(d) shows that β has a much stronger effect on MC
compared to γ. In the next step, the MC can be quantified by
taking the summation of the correlationm(i), which is visualised
in Fig. 4(e). In conclusion, the MC varies more significantly
when β changes. The higher the β and γ, the stronger MC can
be achieved. More specifically, MC mostly depends on the β,
while γ can slightly change the distribution of m(i).

2) ‘Look Back’ ECG Reconstruction: The ‘look back’
ECG reconstruction is a multistep backward signal reconstruc-
tion task. The purpose of this task it to numerically proof the
fading amount of ECG information retained in the delayed
feedback loop. If the state matrix collected at the end of each
heartbeat can reconstruct the entire past heartbeat episode, this
state matrix should include a certain amount of historical ECG
information and thus can be used to classify different heartbeat
types. In this task, the node states at the end of each ECG
beats were used for training to reconstruct the historical n1

points. For example, the node state at time tx in Fig. 3(a) that
was extracted as one of the QM (n) and yM (n) is a matrix of
ECG data segments from tx − τn1 to tx, where QM (n) and the
yM (n) are the node state and the training label for this task. In
total, n2 groups of node state and their corresponding ECG slots
were collected to calculate the output weight WM for training.
During the testing, the node states at the end of a heartbeat
were collected to reconstruct ECG using (8). Assuming that
the tE is an array recording the location of each heartbeat in
an ECG dataset, the elements in QM (n) and yM (n) can be
written as:

QM =

⎡
⎢⎢⎢⎣

QM (1)
QM (2)

...
QM (n2)

⎤
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Fig. 5. (a) The result of the ‘look back’ ECG reconstruction task under different MC values. Under DRC models with different MC, the state matrix
collected at the end of a heartbeat was used to reconstruct the past 400 ECG points (approximately two continuous heartbeats). The top graph
shows the reconstruction of two normal beats and the bottom graph shows one VEB and one normal beat. The blue line is the reconstruction target.
(b) The MSE between the reconstructed line and the reference data over MC value. The values of normal beat and VEB are plotted separately.The
reconstruction results demonstrate the memristive property of the DRC model that preserving the historical information within the network.

where n1 = 400 (~2.2 s) and n2 = 2000 were used in this task.
Using the QM and YM , the weights WM

out and the reconstructed
output can be calculated by ridge regression and (8). The re-
construction results at MC equal to 120, 70 and 20 along with
the original waveform are plotted in Fig. 5(a). The upper graph
illustrates the reconstruction of two normal beats and the lower
one shows a ventricular beat followed by a normal beat. When
MC = 120, the output can perfectly copy the later beat and tend
to follow most of the earlier beat. In contrast, the low MC (20)
can only retain the rough shape of the later beat and has almost
no information about the earlier beat. This phenomenon can
be quantified by taking Mean-Squared Error (MSE) between
the reference and reconstructed data. A more comprehensive
experimental result of ECG reconstruction using 1000 heartbeat
episodes from the database is shown in Fig. 5(b). It reveals that
when MC is increased, there is a continuous decrease in MSE as
well as the interquartile range. Also, a normal beat is easier to
reconstruct as compared to a ventricular beat. The result of this
task further proves that the node state generated at the end of
one ECG beat contains the information of the whole ECG under
the DRC model reported in previous sections. The accuracy of
reconstructing the ECG and the length of rebuildable data based
on the MC value is verified in the last task. On the other hand,
the earlier data are harder to retain in the network. Moreover,
it is worth mentioning that, for up-sampled or analogue ECG
signal, the value of θ ×N should not decrease as τ in order to
maintain enough MC in time domain.

F. Post-Processing

After obtaining the output X in (8), ideally, a spike would ap-
pear when a VEB is sent to the model, whereas the output should
keep flat for other types of ECG. This is because we set a spike
at the end of every VEB in the training shifted label. However,

fluctuation always happens throughout the output signal since
some of the components for other types of ECG are similar to
the VEB components. The Fig. 3(b) also demonstrates this issue
as there always exists a certain amount of overlap. Thankfully,
most of the spikes of VEB are higher than the unwanted noise.
Therefore, a thresholding approach was adopted to capture the
spikes of interest. Before the threshold, another two filters,
which are the same as the high-pass and low-pass filters in the
pre-processing step, were applied to the output x(n) to support
the thresholding. In this step, the location of the possible VEB
is highlighted by spikes after thresholding.

III. PERFORMANCE MEASURES AND RESULTS

A. Performance Matrix for VEB Detection

The performance matrix for the VEB detection is recom-
mended by AAMI. The metrics include sensitivity (Se), positive
predictivity (PP), specificity (Sp), and accuracy (Acc), which are
the standard statistic tools for evaluating the ECG classification
on MIT-BIH database. In addition, F1 score, the harmonic mean
of Se and PP is also used to optimise the parameters. These values
can be calculated using the values of True Positive (TP), True
negative (TN), False Positive (FP) and False Negative (FN) [26]:

Se = TP/ (TP + FN) (13)

PP = TP/ (TP + FP ) (14)

Sp = TN/ (TN + FP ) (15)

Acc = (TP + TN) / (TP + TN + FN + FP ) (16)

F1 = 2 (Se · PP ) / (Se+ PP ) (17)

The design goal is to minimise the FN and FP and maximise the
TP and TN. It is worth mentioning that, in the absence of heart-
beat segmentation, the performance quantification in this work
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Fig. 6. Result of the parameter optimization and performance matrix. (a) The F1 score over MC. The green line stands for the curve fitting of the
pink dots using an 8th order polynomial. The data was obtained from the simulation of MC over the two ratios and its resulting F1 scores. (b) The F1
score as a function of β and γ. The ranges of β and γ are the values producing MC from approximately 70 to 80, which is the range of the optimal
F1 was computed in (a). The threshold evaluation in terms of (c) TP, TN, FP, FN and (d) performance matrix.

is slightly different from the beat-by-beat comparison reported
in the literature. Instead, the model output is a point-by-point
indication because the raw ECG signal is continuously fed into
the model which acts like a dynamical nonlinear system. To
count the number, a threshold was applied to the output x(n)
generated by ECG input. The threshold can highlight the spike
of the output signal which may suggest the location of a VEB.
If the location of one spike matches the VEB annotated in the
database, this VEB will be counted as a TP. Similar approaches
were also used to count TN, FP and FN.

B. Optimisation

The MC allows the model to load the ECG morphology to
the recurrent network using only one-dimensional input without
signal segmentation and feature extraction. However, a high
MC will cause redundant information, such as previous mul-
tiple beats, preserved in the loop. Prior to calculating the final
result, the F1 score was chosen as a standard to optimise the
performance. In order to speed up the optimisation process, a
descriptive dataset including 1138 normal beats and 420 VEBs
randomly collected from DS1 was used to optimise the param-
eters. The F1 over different MC was firstly simulated. Fig. 6(a)
provides the relationship between MC and F1. The green line
presents a curve fitting using 8th order polynomial. The highest
point in this simulation has been amplified and plotted. Before
the maximum point, F1 keeps rising as MC increased. This is

because the gain of MC enhances the model’s ability to keep
the heartbeat information. Afterwards, the F1 is reduced with
the growth of MC because the redundant information makes
the VEB detection more challenging. The highest MC achieved
by current double delay model is less than 130. The highest
F1 occurs when MC is around 75. Based on this value and the
results in Fig. 4(e), the β and γ generating MC approximately
from 70 to 100 are evaluated by F1 (Fig. 6(b)). The highest F1
was obtained by β = 13.8 and γ = 3.01 in the condition that
MC = 91.8.

The ratios discussed above had been used to deploy the model
in which all ECG data in DS1 were tested. The output threshold
versus the performance matrix are plotted in Fig. 6(c) and (d). At
a low threshold value, the number of spikes including errors and
noises were captured, resulting in a high FP and TP. In this case,
unwanted noises were incorrectly detected as VEBs spikes. In
contrast, a high threshold leads to the large number of missing
VEBs (high FN and FP). Based on (13)–(17), the performance
matrix is plotted in Fig. 6(d). The optimal F1 can be obtained
when threshold is 0.3.

C. Results

The result of MC test and optimisation have been discussed
in the previous sections. After optimisation, the entire testing
dataset DS2 was fed to the model. In addition, four examples
of the output signal together with the optimised threshold value,
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Fig. 7. Four episodes of the ECG and their processing output. The top raw shows the input ECG signal. The bottom row shows the output of DRC
model. The red dots denote the locations of VEB from database. The yellow rhombuses are the VEB detection results. For example, the artifact in
Record 105 led to several FPs, and the multiform VEB in 233 resulted in FPs. Meanwhile, most VEB can be successfully detected in Record 200
and 221.

input signal and ground truth (the shifted labels of VEB in DS2)
are shown in Fig. 7. One pair of matched dot and rhombus is
counted as a TP, while FP is counted when no spike is found in
the range of other types of heartbeat. As can be seen from the
graph, most of the VEBs can be detected by the output spikes.
At the same time, the values outside the VEB were kept low.
In every TP, short displacements between the ground truth and
result always existed because of the continuous point-by-point
detection. However, the Record 233 contains the highest amount
of multiform VEBs, which can only be partially detected due to
its sharper waves. The unreadable artefact of the data such as
few episodes in Record 105, which has also been reported in
the database description, resulted in high TN and FN. The final
performance matrix was calculated by the gross TP, TN, FP and
FN, which is listed in Table I. The proposed hardware-based
model yielded Se = 80.9%, PP = 87.5%, Sp = 99.2% and Acc
= 98.0%.

D. Minimum Memory Needed for Inference

In wearable devices, the trained VEB detection model can be
deployed in a edge device where the hardware cost needs to be
considered. Minimizing the memory that needs to be accessed
for the detection is a crucial approach to reduce the hardware
cost. While the state-of-the-art systems require massive memory
for storing network parameters and performing nonlinear calcu-
lation, the memory needed for deploying the proposed model
is significantly lower since the major proportion of nonlinear
computing occurs in the analogue domain. The absence of
signal segmentation and feature extraction reduces the memory
requirement to zero for the data before the input player. Further-
more, the fixed physical reservoir layer significantly saves the
number of parameters for the network activities. In the proposed

TABLE I
THE RESULT OF VEB DETECTION

model, only the output of every time-multiplexing step needs to
be stored and multiplied by the corresponding weight for the
‘multiply and accumulate’ operation. Thus, the total number of
parameters in the model is 401 (400 weights and 1 network
output at the current time step). Assuming that the data type
is double precision floating point (8 bytes, as the simulation
setup), the minimum size of memory for inference is 3.13
MegaByte(MB). In addition,under the proposed architecture, the
memory is proportional to the number of virtual nodes. It means
that the memory requirement would not exponentially increase
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TABLE II
COMPARISON TABLE OF RECENT RESEARCHES USING INTRA-PATIENT PARADIGM AND MIT-BIH DATABASE

if we expend the network size for detecting more heartbeat types
or higher performance matrix.

E. Comparison With the State-of-The-Art

The methodologies of automatic ECG classification have
been widely explored in recent years. Using the open-access
MIT-BIH arrhythmia databases [24], previous researches were
done on automatically classifying different types of ECG by
the intelligent algorithms such as support vector machine [42],
[43], [45], echo state network [33], [44], decision tree [46], and
neural network [3], [41]. As summarised in Table II, the selected
publications are the state-of-the-art studies with the following
criteria: 1) published in the past five years, 2) evaluated by MIT-
BIH arrhythmia database, 3) inter-patient evaluation paradigm,
4) different types of processing core algorithms and 5) yielded
good results. As can be seen from the table, the prior ECG
signal processing studies mainly focused on software-based
methods. The minimum size of memory was calculated using
the method reported in the last section. The data type was double
precision floating point unless a specific data type or fixed-point
operation was used. For example, it has been reported that the
ring ESN was designed to detect arrhythmia in [44]. First, the
segmented heartbeat was 60 samples (240 ms). Second, total
63-dimensional vector including raw data and features were sent
to the input channels. Next, given the reservoir size is 1000, the
size of input weight is 63×1000 = 63000. In the reservoir layer,
the ring ECG hugely reduces the number of weights to 1000 in
comparison of 1000×1000 in normal ESN. Combining with
another 1000 data points for storing node states, the total number
of variables in this network is 60+63+63×1000+1000 = 65123,
and the corresponding memory size divided by the number of
heartbeat types under detection is 508.8 MB. This estimated
number indicates the minimum number after fully optimizing the
system, and the actual system should require larger memory. The
Support Vector Machine (SVM)-based classifier involves com-
plex operation using nonlinear kernel function to map the data
or features to higher dimensional space. These operations will
increase the burden of both processor and memory [42], [43].
The parameter reported is not sufficient to estimate the minimum
memory. The algorithms with large network size such as deep

belief network (DBN) [42] and 1500-neuron ESN [33] demands
high memory and intensive nonlinear computing, which may not
be suitable to deploy in a wearable edge device.

Compared to the state-of-the-art automatic ECG processing
study, an important difference is that the proposed model simu-
lates a dynamic neuromorphic system receiving continuous ECG
signal, rather than designing an offline machine learning frame-
work. It is advantageous in a number of ways: 1) the two digital
operations, signal segmentation and feature extraction, are re-
moved from the processing model. This difference facilitates the
implementation of a pure analogue neuromorphic processor; 2)
it allows raw ECG signal from single lead flow into the model
for detecting VEB and meanwhile obtains the acceptable result
of effectiveness, which can be also considered as near-sensor
computing; 3) it simulates a neuromorphic dynamic system,
rather than a pure algorithm, which implies the processing and
VEB detection happens in real-time; 4) the relatively lower
sampling rate reduce the overall system frequency for real-time
processing; 5) inherited from reservoir computing, the training
of this model is relatively easy and fast. These advantages can be
measured by the minimum memory size. The proposed system
requires significantly lower memory, only 3.1 MB, for running
the detection algorithm when the fully trained model is deployed.

IV. DISCUSSION AND CONCLUSIONS

In this paper, an ECG signal processing model based on
DRC for hardware implementation has been proposed for the
first time. This model was evaluated by an abnormal heartbeat
detection task with the MIT-BIH arrhythmia database. Consid-
ering the notion of neuromorphic engineering, the model design
refrained from using digital signal processing components. The
novelty of the proposed model can be summarised as follows:

i) Conventionally, heartbeat segmentation and feature ex-
traction are two routines of automatic ECG classification
in the previous studies. They were sidestepped in this
model since these operations are much more friendly for
software implementation rather than hardware. Instead,
the method proposed in this paper is to analytically test
the MC and to preserve the desired amount of ECG
morphology in the recurrent loop, which has been tested
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by two MC validation tasks. Accurate modelling of MC
is crucial for designing the DRC model for processing a
specific type of signal.

ii) This model is a end-to-end dynamic system: the input is
raw ECG signal and output is a point-by-point indication
of signal class. As discussed Table II, the performance
matrix in this work is comparable to the software-based
methods in the literature considering that the hardware-
based method is not as flexible as a software-based
method.

iii) The main signal processing takes place in the analogue
domain. It avoids suffering the intensive data trans-
mission and processing in memory and processor, and
therefore the memory needed for executing detection al-
gorithm can be greatly reduced compared with previous
studies. This advantage would potentially be useful to
form a low-power neuromorphic computer [20], [21],
[23].

Given the merits discussed above, the main weakness is the
limited computing ability and task performance. In the absence
of segmentation and feature extraction, the heartbeat information
is preserved by the inherent memristive property of the network.
These differences raise the task difficulty compared with the
software-based algorithms where mass memory and accurate
digital computing were used, resulting in a non-ideal perfor-
mance. The higher computing performance could be obtained
by scaling the network size in actual hardware, which remains
future challenge.

In conclusion, this model provides a fundamental analysis of
using DRC as computing architecture for ECG processing. To
the best of our knowledge, this work is the first hardware-based
model acting like a dynamic system which can highlight VEB
from continuous ECG input. The model and the analysis of its
dynamic property (such as MC) will facilitate the future devel-
opment of a neuromorphic wearable device, for instance, an ana-
logue end-to-end abnormal ECG detector with built-in reservoir
computing algorithm, to form a next-generation long-term ECG
monitoring device at edge. Full development of such system
remains a topic in future exploration. To achieve this, further
efforts should involve: 1) developing pre- and post-processing
front-end circuit; 2) analogue delayed feedback circuit; 3)
power consumption evaluation and optimisation; 4) ASIC
implementation.
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