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a b s t r a c t 

Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity (measured 

by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or physiological rhythms (such as 

pupil dilation or respiration). Due to the distinct rhythmicity of these signals, undirected connectivity is typically 

assessed in the frequency domain. This leaves the investigator with two critical choices, namely a) the appropriate 

measure for spectral estimation (i.e., the transformation into the frequency domain) and b) the actual connectiv- 

ity measure. As there is no consensus regarding best practice, a wide variety of methods has been applied. Here 

we systematically compare combinations of six standard spectral estimation methods (comprising fast Fourier 

and continuous wavelet transformation, bandpass filtering, and short-time Fourier transformation) and six con- 

nectivity measures (phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise 

phase consistency, magnitude squared coherence, and entropy). We provide performance measures of each com- 

bination for simulated data (with precise control over true connectivity), a single-subject set of real MEG data, 

and a full group analysis of real MEG data. Our results show that, overall, WPPC and GCMI tend to outperform 

other connectivity measures, while entropy was the only measure sensitive to bimodal deviations from a uniform 

phase distribution. For group analysis, choosing the appropriate spectral estimation method appears to be more 

critical than the connectivity measure. We discuss practical implications (sampling rate, SNR, computation time, 

and data length) and aim to provide recommendations tailored to particular research questions. 
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. Introduction 

The analysis of cerebro-peripheral connectivity (CPC) has recently

ained significant interest. We define CPC as significant connectiv-

ty between electrophysiological recordings (such as MEG, EEG, or

FP) and simultaneously recorded peripheral signals ( Baillet, 2017 ;

ari et al. 2018 , Gross, 2019) . The application of CPC is highly ver-

atile and offers a direct way to study body-brain interactions. The un-

erlying physiological mechanisms as well as resulting signal processing

equirements vary and depend on the peripheral signal under investiga-

ion. For example, a prominent early application of cerebro-peripheral

onnectivity was the investigation of connectivity between brain and

uscle activity ( Conway et al. 1995 , Salenius et al., 1997 ), which has

ed to important insights into the role of neural rhythms in physiolog-
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cal and pathological motor control ( Bourguignon et al., 2017 , 2019 ;

. Schnitzler & Gross, 2005; Schoffelen et al., 2005 ). The underlying as-

umed physiological mechanism of interaction for this cortico-muscular

oherence is that the rhythmic activity in primary motor regions pro-

ides a rhythmic drive to the spinal motor neuron pool, which can

e detected as rhythmicities in the electromyographic (EMG) signal.

ore recently, using the envelope of speech as a peripheral signal, this

ype of analysis has also proven useful for studying continuous speech

rocessing due to the fact that brain signals are temporally synchro-

ised to the speech envelope ( Gross et al., 2013 b ; Lakatos et al., 2019 ;

eyer et al., 2019 ; Obleser & Kayser, 2019 ; Zoefel, 2018 ). More gen-

rally, cerebro-peripheral connectivity can be studied to elucidate the

ngoing coupling between any peripherally recorded signal and brain

ctivity ( Gross, 2019 ; Park et al., 2014 ; Rebollo et al., 2018 ) and even
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a  
odulations of such connectivity measures as a function of a secondary

eripheral signal. Examples for relevant peripheral signals are eye move-

ents, pupil size ( Pfeffer et al. 2021 ), heart beat (Park et al. 2014) , respi-

ation ( Kluger & Gross, 2020 ), speech ( Gross et al., 2013 b), movement or

uscle activity ( Bourguignon et al., 2017 , 2019 ; A. Schnitzler & Gross,

005 ; A. Schoffelen et al., 2005 ), skin conductance or temperature, and

lood pressure. Some of these signals (such as respiration, heartbeat,

peech, tremor) are distinctively rhythmic, thus favouring analysis in

he spectral domain. However, there is no consensus in the literature

egarding a standard method to quantify cerebro-peripheral connectiv-

ty in the spectral domain. Instead, a large variety of methods has been

sed. In practice, spectral cerebro-peripheral connectivity analysis con-

ists of two steps that can each be conducted in several ways: First,

pectral estimation is performed where time series are transformed into

he frequency domain (as complex-valued numbers). Spectral estima-

ion is most often performed by using Fourier transformation, wavelet

ransformation, or bandpass-filtering ( Bruns, 2004 ; Gross, 2014 ; Le Van

uyen & Bragin, 2007 ). 

In a second step, connectivity measures can be estimated. Again, a

arge number of methods have been suggested (Bastos and Schoffelen,

015 ; Marzetti et al., 2019 ) and some of them have been compared in

revious studies ( David et al., 2004 ; Kreuz et al., 2007 ; Quian Quiroga

t al., 2002 ). It is noteworthy that MEG/EEG connectivity is often dis-

ussed in the context of cerebro-cerebral connectivity, i.e. connectivity

etween different brain areas. This brings about complications that are

bsent in the case of cerebro-peripheral connectivity. Most importantly,

stimation of non-invasive MEG/EEG time series from two regions of

nterest in the brain is never perfect and leads to leakage effects that

ontaminate the connectivity estimate ( Schoffelen & Gross, 2009 ). This

s typically circumvented using connectivity measures that exclude com-

on zero-lag components in both time series (such as imaginary coher-

nce). In the case of cerebro-peripheral connectivity, the estimation of

ime series in the brain is still not optimal but the second signal is a pe-

ipheral recording that does not share any spurious signal components

ith the brain signal that result from imperfect source reconstruction.

herefore, analyses of cerebro-peripheral connectivity do not require

onnectivity measures to exclude shared zero-lag signals. 

Depending on the differences of multiple methods for spectral de-

omposition and estimation of effect size, the investigator’s choice could

ffect the results of the analysis. Here, we aim to investigate the sensi-

ivity of cerebro-peripheral connectivity analysis to the choice of spec-

ral estimation and connectivity measures. We realise that such an in-

estigation depends on the signals that are used and on the implemen-

ation of the spectral estimation and connectivity methods. Therefore,

e cannot expect to provide authoritative guidance on the ‘optimal’

nalysis approach that generalises to all possible applications. Still, we

an expect to learn lessons that could be valuable to the community in

he planning of similar studies and the analysis of cerebro-peripheral

ata. 

A second contribution is to make our analysis scripts publicly avail-

ble on GitHub ( https://github.com/ IBiomag/) so that a similar com-

arison can be performed for different simulated or real data and differ-

nt methods can be added and evaluated. 

Since we anticipate non-trivial interactions between different spec-

ral estimation methods and different connectivity measures, we anal-

se all combinations of a set of six standard spectral estimation methods

comprising fast Fourier and continuous wavelet transformation, band-

ass filtering, and short-time Fourier transform using Matlab’s spec-

rogram function) and six connectivity measures (phase-locking value,

aussian-Copula mutual information, Rayleigh test, weighted pairwise

hase consistency, magnitude squared coherence, and entropy). We

tart our investigation by using simulated data where the connectivity

etween signals is precisely controlled. We then proceed to a single-

ubject real data set and finally to a full group analysis of an exemplary

ata set. 
p

2 
. Material and methods 

.1. Data simulation 

The simulated data is constructed by applying a fourth-order But-

erworth bandpass filter (3–6 Hz) to a 1-minute simulated white noise

ignal (sampling rate: 100 Hz) with a mean of 0 and a standard devia-

ion of 1. Two time series are then constructed by adding white noise

independently for each time series and with a mean of 0 and a stan-

ard deviation of 1) to the filtered noise. Therefore, the resulting time

eries show linear dependencies in the frequency range between 3–6 Hz

hat are evident as phase synchronisation and amplitude correlation.

he degree of coupling can be adjusted through the amplitude of the

dded noise (see dedicated analyses below). 

In what follows, the dependency between the time series will be

uantified by applying all combinations of the six spectral estimation

ethods and the six undirected connectivity measures, which will be

escribed in detail next. 

.2. Real data 

We used MEG data recorded with a 275 whole-head sensor system

OMEGA 275, VSM Medtech Ltd., Vancouver, Canada) at a sampling

requency of 1200 Hz. The study was approved by the ethics committee

f the University of Münster and conducted in accordance with the Dec-

aration of Helsinki. Written informed consent was obtained before the

easurement and participants received monetary compensation after

he experiment. 

Twenty native German-speaking participants (11 males, mean age

4.9 ± 2.6 years, range 20–32 years) listened to nine 1-min long audio

ecordings of their own voice in which they answered general questions

uch as ‘What does a typical weekend look like for you?’. Speech data

as captured at a sampling rate of 44.1 kHz using a microphone placed

t a distance of 155 cm from the participant’s mouth. 

Prior to data analysis, MEG data were visually inspected. No jump

rtifacts or bad channels were detected. A discrete Fourier transform

DFT) filter was applied to eliminate 50 Hz line noise from the continu-

us MEG data. 

The wideband amplitude envelope of the speech signal is computed

sing the method presented in ( Chandrasekaran et al., 2009 ). Nine log-

rithmically spaced frequency bands between 100–10000 Hz were con-

tructed by bandpass filtering (third-order Butterworth filters). Then we

ompute the amplitude envelope for each frequency band as the ab-

olute value of the Hilbert transform and downsample them to 1200

z. This is standard preprocessing for this type of analysis (see e.g.

ross et al. 2013 ). We average them across bands and use the computed

ideband amplitude envelope for all further analysis. Finally, MEG and

peech envelope are downsampled to 256 Hz. In the preprocessing and

ata analysis steps, custom-made scripts in Matlab R2020 (The Math-

orks, Natick, MA, USA) in combination with the Matlab-based Field-

rip toolbox ( Oostenveld et al., 2011 ) are used following current MEG

uidelines (Gross et al., 2013a) . 

For source localisation we align individual T1-weighted anatomi-

al MRI scans with the digitized head shapes using the iterative closest

oint algorithm. Then, we segment the MRI scans and generate single-

hell volume conductor models ( Nolte, 2003 ) using the implementation

n FieldTrip, and use this to create forward models. Next, the linearly

onstrained minimum variance (LCMV) algorithm is used to compute

ime series of voxels taken from a parcel showing medium connectivity

L_PFop located within the left inferior parietal lobule) of the volumetric

CP brain atlas ( Glasser et al., 2016 ). The parcel selection is not relevant

or the purpose of this study (which is focused on methods differences

iven two time series), but we ensure that the parcel shows significant

onnectivity to the speech envelope. The final time series representing

ctivity from L_PFop is the first component of a singular value decom-

osition (SVD) of time series from all dipoles in this parcel. 

https://sciwheel.com/work/citation?ids=376288cepre=cesuf=cesa=0
https://github.com/
https://sciwheel.com/work/citation?ids=237611cepre=cesuf=cesa=0


J. Gross, D.S. Kluger, O. Abbasi et al. NeuroImage 245 (2021) 118660 

2

 

t  

e  

t  

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

b  

a  

m  

f  

(  

t  

t  

d  

e  

a  

fi  

m  

o  

s

 

w  

i  

h  

s

 

r  

i  

2  

fi  

d  

e

2

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w

2

 

d  

s  

s  

a  

a  

s  

n  

p  

f  

n  

(  

s  

t  

r  

e  

t  

(  
.3. Spectral estimation 

Six different methods are used to perform a complex-valued spectral

ransformation of the time series in the frequency band. All methods

xcept the wavelet transform use a frequency resolution of 0.5 Hz. For

he subsequent connectivity estimation and evaluation, we focus on the

requency band between 1 and 10 Hz. 

1-3) The first three methods use the Fast Fourier transform (FFT)

based implementation in FieldTrip ( Oostenveld et al., 2011 ). The

first method uses Hanning tapers while the second and third

methods use discrete prolate spheroidal sequences (DPSS) in a

multi-taper approach with ± 1 Hz and ± 2 Hz smoothing, respec-

tively. In all three cases a 2s window with 50% overlap is used. 

4) This uses the continuous wavelet transform implemented in Mat-

lab with Morlet wavelets (cwtfilterbank.m with wavelet parame-

ters 3 and 20). It uses L1-normalization so that equal amplitude

oscillatory components at different scales have equal magnitude

in the spectral estimate. The Matlab function cwt.m performs the

actual transformation into the frequency domain. 

5) A series of bandpass filters (windowed sinc FIR filter) is applied

with edge frequencies that are 1 Hz below and above the center

frequency. The center frequency changes from 1-10 Hz in steps

of 0.5 Hz. The Hilbert transform is then applied for each filtered

signal to obtain the complex-valued spectral estimate. 

6) This spectral estimate is computed from Matlab’s spectrogram

function in analogy to method 1. It also uses a 2s window with

50% overlap. 

It should be noted that the number of complex valued data points

eturned from these methods is very different. Methods 1-3 and 6 are

ased on the FFT and return about one spectrum per second. Methods 4

nd 5 instead return one spectrum per data sample and therefore provide

any more, albeit largely redundant, data points. This has implications

or computation time (see Table S1) but also for the degrees of freedom

df) in the spectral estimates. Since df might affect the performance of

he connectivity measure, we quantify it numerically (see Supplemen-

ary Fig. S5). Specifically, we compute 100 instantiations of simulated

ata (see section 2.1 and Fig. 1 ). For each instantiation and each spectral

stimate, we compute df separately for each frequency. Df is computed

s the first e-folding of the autocorrelation of the time series (i.e. the

rst lag where autocorrelation has decreased by e). Another established

ethod is the computation of df as the lag with the first zero crossing

f the autocorrelation function. However, results are qualitatively the

ame for both methods. 

We compute df for each frequency separately since for non-

indowed methods (continuous wavelet transform and bandpass filter-

ng) autocorrelation is expected to decrease (and df to increase) with

igher frequencies. The results are presented as a mean across 100 in-

tantiations in Supplementary Fig. S5. 

For the windowed spectral estimates (FT0, FT1, FT2, SG), df cor-

esponds to the number of windows times the number of tapers lead-

ng - as expected - to highest df for FT2 (multitaper estimate with + -

Hz smoothing). For continuous wavelet transform (CWT) and bandpass

ltering (BF) df increases with frequency (because the autocorrelation

ecreases). For comparison, the df in the original data before spectral

stimation is 6000 and corresponds to the number of samples. 

.4. Connectivity measures 

We use six undirected spectral connectivity measures (see also cor-

esponding Matlab code): 

1) Phase-locking value (PLV; Lachaux et al., 1999 ): This is defined as

the length of the vector average of the normalized (unit length) phase

differences between time series x and y. It is suitable to identify uni-

modal deviations from a uniform distribution of phase differences. 
3 
2) Gaussian-Copula mutual information (GCMI; Ince et al., 2017) : We

compute mutual information between two bivariate time-series (real

and imaginary part of x and y) using the original implementation

( https://github.com/robince/gcmi ). GCMI uses the Copula trans-

form to allow for efficient and robust analytical solutions to the

computation of entropy of Gaussian variables. GCMI does not make

specific assumptions on the distribution of the data. 

3) Rayleigh test (R-test; Berens, 2009 ): The Rayleigh test is defined for

circular (phase) data and tests for significant deviation from a uni-

form phase distribution. Here, it is applied to the phase difference. It

is computed as the squared length of the vector average of the nor-

malized (unit length) phase differences between time series x and y.

Similar to PLV it is suitable to identify unimodal deviations from a

uniform distribution of phase differences. 

4) Weighted pairwise phase consistency (WPPC; Vinck et al., 2010) :

This measure does not directly test for a deviation of a phase distri-

bution from a uniform distribution. Instead, it computes the pairwise

difference of phases from this distribution. The rationale for this ap-

proach is that a preferred phase in the phase distribution would also

lead to a cluster in the pairwise difference. However, in contrast to

PLV, WPPC is not biased by the sample size. Sample size bias means

that the expected value of a connectivity measure such as PLV or co-

herence depends on the number of samples used for the computation.

In the absence of phase synchronization (i.e. when a distribution of

phase differences is uniform) the PLV is larger than 0 for small sam-

ple sizes and converges to 0 as sample size increases. This is not the

case for WPPC. We compute WPCC with code based on the FieldTrip

implementation. 

5) Magnitude squared coherence (COH): Coherence is a standard mea-

sure of association corresponding to a frequency domain correlation

coefficient. It is computed by dividing the magnitude squared cross-

spectral density between x and y by the product of the individual

power spectra. COH is sensitive to bivariate dependencies of phase

and amplitude in contrast to e.g. PLV that uses only phase informa-

tion. 

6) Entropy (ENT; Shannon, 1948 ): We used entropy to quantify the de-

viation of the distribution of phase differences from a uniform dis-

tribution. In contrast to the other measures, this is sensitive to more

than just unimodal phase difference distributions. Here, the compu-

tation uses a binning of phase differences into 20 bins following the

standard equation 

H = −sum 

(
P i ∗ log 

(
P i 
))

(1) 

here H is entropy and P i the probability of a given phase i. 

.5. Surrogate data and normalisation 

For each connectivity measure, surrogate data are computed by ran-

omly shifting the spectral estimates of one of the time series with re-

pect to the other with a circular wrapping around the edges of the time

eries (using circshift.m in Matlab). This temporal shifting of data is

n established technique for creating surrogate data because it destroys

ny true synchronisation in the data ( Andrzejak et al., 2003 ) while pre-

erving the signals’ autocorrelation structure. Temporal shifting does

ot change connectivity between two sine functions (it just changes the

hase difference). However, in our simulated data connectivity arises

rom bandpass filtered noise (3-6 Hz) that is added to two independent

oise time series (see 2.1), leading to more complex phase dynamics

compared to a sine function). Temporal shifting destroys simulated

ynchronization in this case. We perform this shifting procedure 200

imes (unless otherwise stated) to create a null distribution of 200 sur-

ogate data points for each connectivity measure. Next, we normalise

ach raw connectivity measure by subtracting the mean and dividing by

he standard deviation of the surrogate distribution for each frequency

 Lancaster et al., 2018 ; Schreiber and Schmitz, 2000 ). This normalises

https://sciwheel.com/work/citation?ids=4723792cepre=cesuf=cesa=0
https://github.com/robince/gcmi
https://sciwheel.com/work/citation?ids=83076cepre=cesuf=cesa=0


J. Gross, D.S. Kluger, O. Abbasi et al. NeuroImage 245 (2021) 118660 

Fig. 1. Connectivity spectra for all combinations of spectral estimates and connectivity measures. Connectivity is estimated for simulated data with a ground truth 

effect between 3-6 Hz (indicated by vertical lines) with an SNR of 1/20. The solid line shows the connectivity spectrum of a single trial z-scored with the mean and 

standard deviation of 200 time-shifted versions. The shaded area quantifies the uncertainty of the normalization and is based on the 95 percent bootstrap confidence 

interval of mean and standard deviation of the surrogate distribution. The dashed line represents the 99th percentile of the surrogate distribution. Each row is 

based on the same spectral estimate corresponding to the six methods in the same order as described in the methods section. Each column shows results from the 

same connectivity measure in the same order as described in the methods section. The title of each panel shows the spectral estimation method, the connectivity 

measure, the area under curve value (AUC), and the D-value defined in the methods section. FT0: FFT with Hanning taper; FT1: multitaper with ± 1 Hz smoothing; 

FT2: multitaper with ± 2 Hz smoothing; CWT: continuous wavelet transform; BF: bandpass filter; SG: spectrogram; PLV: phase locking value; GCMI: gaussian copula 

mutual information; R-test: Rayleigh test; WPPC: weighted pairwise phase consistency; COH: coherence; ENT: entropy. The color code for connectivity measures is 

used throughout the manuscript. 
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t  
he connectivity measure and transforms it into units of standard de-

iations of the surrogate distribution. It therefore directly reflects how

ifferent the connectivity is from the surrogate distribution. This useful

ormalisation makes measures more comparable to each other and is

sed throughout the manuscript. 

To allow comparison of connectivity measures we define a perfor-

ance measure D that quantifies the ‘average distance’ of the normal-

zed connectivity estimate from the 99th percentile of the surrogate

istribution. This is computed as the mean of all connectivity values

xceeding the 99th percentile of the surrogate distribution in the fre-

uency band of simulated connectivity (3-6 Hz). This measure quanti-

es how much the estimated connectivity deviates from the surrogate

istribution. In addition, we use the area under curve (AUC) which is

n established performance measure for classifiers ranging from 0 to 1.

t corresponds to the area under the receiver operating characteristic

ROC) which shows true positive rate as a function of false positive rate

or various thresholds. 

.6. Data and code availability 

We will make the Matlab code and underlying data publicly accessi-

le in full through GitHub ( https://github.com/IBiomag/ ). 

. Results 

.1. Comparison of combinations of spectral and connectivity estimates 

First, we provide in Fig. 1 an illustration of all combinations of spec-

ral and connectivity measures for the simulated data described above

here with added noise with standard deviation of 1). For all of these

ombinations we plot the normalized connectivity spectrum (with the
4 
5 percent bootstrap confidence interval) in the frequency range 0-

0 Hz and the 99th percentile of the surrogate distribution (dashed

ine). 

All combinations of methods show a clear peak within the frequency

and where connectivity was simulated (3-6 Hz). At the same time, it is

learly evident that results differ substantially in the shape of the spec-

rum and how far peaks are separated from the 99th percentile of the sur-

ogate distribution (i.e., sensitivity for the true effect). First, for the same

pectral estimate, different connectivity measures show markedly differ-

nt sensitivity in detecting synchronisation in the data (compare panels

ithin a row). That is, given the same information, the use of this infor-

ation is significantly different between connectivity measures. Second,

or the same connectivity measure, different spectral estimates lead to

ery different results (compare panels for a given column). Recall that

ynchronisation between time series x and y was simulated in the fre-

uency band 3-6 Hz. Ideally, the spectrum in this band should exceed

he 99th percentile line leading to a high D-value. 

From this simulation (based on 500 separate repetitions) we can al-

eady make several interesting observations. By comparing the different

ows (spectral estimation methods), we note that the single taper FFT-

ased spectral estimates (FT0, SG) perform worse than the other meth-

ds (see Fig. 1 , top and bottom row and note the individual scaling of

ach graph). An increased spectral smoothing with multitapers leads to

n improved performance of all connectivity measures (higher D-values

ndicating larger separation from the surrogate distribution). However,

his comes at the cost of a reduced spectral resolution which we will

ee in the analysis of real data ( Fig. 5 , third row from the top). There-

ore, multitapers offer advantages for the detection of synchronisation

when the amount of spectral smoothing is similar to the spectral extent

f underlying connectivity) while they might be disadvantageous when

rying to resolve different spectral peaks. Besides the FT2 method, the

https://github.com/IBiomag/
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Fig. 2. Pairwise comparisons of spectral estimates and connectivity measures. a, To assess performance differences within the simulated data, we compare each 

combination of spectral estimate and connectivity measure with any other combination, resulting in a 36 × 36 symmetrical matrix. We compute Cohen’s d as a 

measure of effect size separating the D-values from the respective 500 simulation iterations of any two combinations. Positive values indicate higher D values for the 

row (vs the column) combination. b, Violin plot shows the distribution of effect sizes for each of the 36 combinations (grouped according to connectivity measures). 

White dots mark the respective median of each combination, black triangles indicate box plot notches for comparison across combinations. As a reference, top dashed 

lines indicate box plot notches for WPPC with FT2 estimation, which show the best median performance overall. Similarly, bottom dashed lines indicate box plot 

notches for entropy with SG estimation whose performance was lowest overall. c, Same as panel a, but comparing the AUC instead of D values. D, Same as panel b, 

but for AUC instead of D values. 
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ontinuous wavelet transform, and bandpass filtering perform very well

 Fig. 1 , second and third row from the bottom). 

A comparison of connectivity measures (different columns) reveals

est performance for WPPC (shown in red) followed by GCMI (yellow).

n contrast, ENT (purple) and PLV (grey) show relatively poor perfor-

ance. Overall, simulation-based connectivity spectra suggest that the

ombination of FT2 and WPPC shows the best performance. 

In order to make performance differences between methods more

ccessible, we provide pairwise comparisons of all 36 possible combi-

ations (6 spectral estimates x 6 connectivity measures). Specifically, we

ompute Cohen’s d as a measure of effect size separating the D values

rom the 500 simulations of each combination (see Fig. 2 a). Not count-

ng the main diagonal of the symmetrical 36 × 36 matrix, we gain 35

ffect sizes for each combination of spectral estimate and connectivity

easure. The respective distributions are shown in Fig. 2 b and afford

asy comparison between methods. Overall, pairwise comparisons cor-

oborate the previous impression that WPPC with FT2 outperformed

ost of the other combinations: Judging by the box plot notches in

ig. 2 b and d, only GCMI (with FT2, CWT, or BF) and the R-test (with

T2) reach a similar performance. Moreover, the performance for en-

ropy combined with FT0 or SG is particularly subpar, paralleled only

y PLV combined with the same estimates. Finally, pairwise compar-

sons support the initial impression of lowered performance of FT0 and

G in all combinations, irrespective of the connectivity measure (see

ig. 2 b). 
5 
Fig. 2 b also helps to address the question to what extent the per-

ormance of connectivity measures is driven by the degrees of freedom

fforded by a given spectral estimate ( section 2.3 ). Performance of all

onnectivity measures increase together with df from SG, FT0 via FT1 to

T2. However, BF has higher df compared to FT2 but leads to generally

ower performance across connectivity measures. In summary, it seems

hat the increased df from multitapered spectral estimates (compared to

ingle tapers) increases performance whereas a further df increase for

on-windowed, continuous spectral methods (CWT and BF) does not

ead to a further increase in connectivity performance. 

.2. Effect of SNR 

Next, we aim to quantify the effect of different levels of signal-to-

oise ratio (SNR) on performance. This is motivated by the hypothesis

hat different connectivity measures are differentially sensitive to vary-

ng SNR levels. Indeed, this can be seen in Fig. 3 which follows the

rrangements of rows and columns from Fig. 1 . Towards the right of the

gure, SNR is increasing. A differential SNR-effect on performance is

uite prominent in the comparison of the third and fifth column. While

PPC (shown in red) is the most sensitive measure in the middle column

SNR parameter = 1.5) it is outperformed by GCMI (yellow) for the high-

st SNR (N = 0.5, rightmost column). This indicates that performance of

CMI increases more strongly with SNR than for other measures. This
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Fig. 3. Effect of SNR. Each subplot shows a violin plot for each of the six connectivity measures (same order as in Fig. 1 ) of the D-value across 500 repetitions of 

the simulation. The noise factor (N) specifies the standard deviation of the noise added to the signal. Rows correspond to spectral estimates in the same order as 

described in the methods section. Columns correspond to different SNRs which increases from left (N = 2.5) to right (N = 0.5). Note that GCMI outperforms the other 

measures as SNR increases (from middle to right), indicating stronger SNR benefits for GCMI than for other measures. 
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igh performance for high-SNR data was also described in the original

CMI publication ( Ince et al., 2017 ). While all measures benefit to some

xtent from SNR-increases (albeit none as much as GCMI), this benefit

s considerably lower for PLV (grey) and entropy (purple) compared to

he other measures. Interestingly, the SNR dependence of performance

ncrease is rather similar across spectral estimation methods (e.g. the or-

er of connectivity measures according to performance in the rightmost

olumn is almost identical across spectral estimation methods (rows)).

till, the absolute D-values are very different across rows and show best

erformance for FT2 and BF and, as before, worst performance for FT0

nd SG. 

.3. Deviation from unimodal phase distribution 

Ideally, connectivity measures should be sensitive to any deviation

f the phase distribution from a uniform distribution. Here, we test the

pecific case of a bimodal phase distribution. For the first half of the

ime series we simulate a zero-degree phase synchronization while the

econd half uses a simulation of a 180-degree phase difference between

oth signals. This results in a bimodal phase distribution with devia-

ion from a uniform distribution at opposite sides of the circular phase

pace. Clearly, all connectivity measures except entropy (shown in pur-

le) fail to capture this more complex phase dependency (see Fig. 4 ).

iven the definition of these measures, this result is not surprising: In

ll measures (except entropy) the opposite phase differences across the

nit circle lead to cancellation and result in a non-detectable phase syn-

hronization. Entropy instead quantifies any deviation from a uniform

istribution in phase bins across the unit circle and therefore captures

his bimodal phase distribution. However, as we can see from the previ-

us section, this sensitivity to more complex deviations from a uniform

istribution leads to a reduced sensitivity for unimodal phase distribu-

ions (see Figs. 1 and 2 ). 

.4. Real data 

Next, we compare the same combinations of spectral estimation and

onnectivity methods in real data. Before proceeding to group analysis,

e study speech envelope to MEG connectivity spectra in a single 9-min

ong data set. Fig. 5 shows the results following the same computations
6 
nd plotting format as in our simulated data. Results are generally con-

istent with our findings from simulated data (see Fig. 1 ). Overall, best

erformance can be seen for FT2 and WPPC (third row from the top,

ed) followed by GCMI (yellow) and the Rayleigh test (blue). Interest-

ngly, this computation on real data shows that the spectral structure is

ostly determined by the spectral estimate and not so much by the con-

ectivity method (i.e., spectra in a row are more similar than spectra in

 column). Obviously, there is more spectral structure in real data than

n the simulated data where only a single spectral peak was evident.

ot surprisingly, this spectral structure is mostly lost in FT2 due to the

pectral smoothing of + /- 2Hz. Instead, the highest complexity of spec-

ral structure can be seen using the continuous wavelet transform (CWT,

hird row from the bottom) and still leads to high sensitivity (large D-

alues) compared to FT2. CWT is therefore probably most appropriate

hen preservation of the spectral structure is important for the research

uestion at hand. However, the ‘true’ spectral structure of the data is un-

nown so we cannot evaluate and compare the performance of spectral

stimation measures in this regard. 

.5. Group statistics 

In the previous sections we have exclusively used single simulated or

eal data sets to compare performance of different spectral estimation

nd connectivity techniques. In our final analysis we will now extend

his approach to group analysis. For data from 20 participants, we repeat

he computations shown in Fig. 5 . Specifically, the different connectivity

pectra were computed and normalised with their individual surrogate

istribution (as for the simulated data). To identify significant effects at

he group level we statistically compare connectivity spectra against the

5th percentile of the surrogate distribution. The computation used non-

arametric cluster-based permutation tests as implemented in FieldTrip

ith 2000 randomizations. 

Fig. 6 shows spectra of t-values for the different combinations of

pectral estimates and connectivity measures. First, comparing spectral

stimates, we find that the multi-taper spectral estimate with smoothing

f + /-2Hz (third row from the top) performs best, followed by the band-

ass filter (second row from the bottom). The comparison of connectiv-

ty measures (different columns) shows markedly smaller differences in

roup results than in the single data sets. Surprisingly, PLV (grey) per-
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Fig. 4. Deviation from unimodal phase difference distribution. The layout is the same as in Fig. 1 with rows showing spectral estimates and columns showing 

connectivity measures. The underlying data lead to a bimodal phase distribution that is only detected by the entropy measure (purple, rightmost column). 

Fig. 5. Results for 9-min long MEG recording. The layout is the same as in Fig. 1 with rows showing spectral estimates and columns showing connectivity measures. 

Results are generally consistent with those from simulated data (see above). Note that the spectral structure is mostly determined by the spectral estimate and not 

so much by the connectivity method (i.e., spectra in a row are more similar than spectra in a column). 
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orms much better in group statistics compared to the single simulated

nd real data sets. Overall, in our group analysis, the choice of spectral

stimation method appears to be more important than the connectivity

easure. 

. Discussion 

In this study we aim to demonstrate how the sensitivity to detect

erebro-peripheral connectivity is affected by different combinations of

pectral estimates and connectivity measures. Results from simulated
7 
nd real data reveal conclusively that the selection of methods can fa-

ilitate or preclude the detection of significant connectivity, both at the

ndividual and the group level. 

Spectral estimates and connectivity measures interact with each

ther in non-trivial ways. For a given spectral estimate the available

nformation about the underlying synchrony is utilized by different con-

ectivity measures in markedly different ways. More precisely, if phase

ynchronization exists in the data (as in our simulated data) the dis-

ance of estimated connectivity from the surrogate distribution varies

onsiderably across connectivity measures. 
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Fig. 6. Group statistics. The layout is the same as in Fig. 1 with rows showing spectral estimates and columns showing connectivity measures. T-values are plotted 

between 1-10 Hz. Cluster-corrected significant frequency bands are marked by increased line width. Multi-taper spectral estimate with smoothing of + /-2Hz (third 

row from the top) performs best, followed by the bandpass filter (second row from the bottom). Note that PLV (grey, leftmost column) performs much better in group 

statistics compared to the single simulated and real data sets. 
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Regarding spectral estimation methods, we compare different

ourier-based techniques that mostly differ in their spectral smooth-

ng, with wavelet spectral estimates and those based on bandpass filter-

ng followed by Hilbert transformation. Overall, highest performance

as observed for FT2, the multi-taper approach with + /- 2 Hz spec-

ral smoothing. CWT and BF performed also well and in general better

han FT0 and SG. Conceptually, Fourier-based methods, Hilbert trans-

ormation, and wavelet transformation are very different, but it has

een shown that - given well-chosen parameter settings - these three ap-

roaches can lead to converging results (Bruns, 2004) . In our analysis,

e use implementations with standard parameter settings. This might in

art explain the difference in performance between FT0 and SG on the

ne hand, and between CWT and BF on the other hand. Both FT0 and SG

eflect overlapping 2-second window FFT-based estimates, with a single

anning taper applied to each data window. In the simulations, this re-

ulted in 59 degrees of freedom for the spectral amplitude and phase

stimates, one for each window. In comparison, both CWT and BF re-

ult in a single amplitude and phase estimate per original time point,

hich, even considering the large amount of redundancy for consecu-

ive time points, likely leads to more stable estimates. Multi-taper based

pectral estimation ( Percival & Walden, 1993 ) trades spectral resolution

or reduced variance in the spectral estimates, thus increasing sensitiv-

ty. This is also referred to as spectral smoothing, and is achieved by

pplying a set of tapers to the data, the number of which is determined

y the time-bandwidth product NW, i.e. the length of the data segments

N) multiplied by the specified smoothing parameter (W). The number

f tapers used is then typically 2NW-1. In our case, as both FT1 and FT2

ere implemented using 2-second long overlapping data windows, the

moothing increased the degrees-of-freedom for the spectral estimates

y a factor of 3 and 7, respectively. 

In general, we can expect that an analysis is optimal when the ef-

ective resolution of its spectral estimate is adjusted to the expected

andwidth of significant phase synchronization (which is unknown in

eal data). For example, if phase synchronization exists in a 4 Hz wide

requency band (e.g. 8-12 Hz) then multi-taper smoothing of + /- 2 Hz
8 
hould be optimal. This is largely what we observe here. However, ad-

itional factors apparently contribute to performance. For example, our

imulation contains significant synchronization over a 3 Hz bandwidth.

herefore, if spectral smoothing were the only factor determining anal-

sis performance then we would expect the + /- 1 Hz and + /- 2 Hz

moothing to perform equally well. The fact that + /- 2 Hz multitaper

nalysis performs better than other spectral estimates with less or no

pectral smoothing indicates that the smoothing itself improves analy-

is sensitivity, albeit at the cost of reduced spectral resolution. Spectral

esolution should be highest for CWT where different wavelets capture

pectral structure even at low frequencies. Indeed, this point is nicely

llustrated in Fig. 5 . Whereas CWT-based connectivity spectra show sep-

rate peaks at low frequencies, these are largely merged into one for the

 /- 2 Hz multitaper estimate. Since in real data the underlying spectral

tructure is unknown, it might be advisable to use two approaches, the

T2 computation for optimal sensitivity and CWT for optimal spectral

esolution. Alternatively, longer data segments can be defined for the

pectral transformation, which would then still allow for leveraging in-

reased sensitivity of the multi-taper framework. For instance, increas-

ng the window length from 2 seconds to 4 seconds would allow for a

eduction of the smoothing parameter from 2 to 1 without compromis-

ng the number of tapers applied. 

We non-exhaustively compare six different connectivity metrics

imed at capturing band-limited phase synchronization between signals.

n most cases the weighted pairwise phase consistency (WPPC) outper-

orm the other methods. The main exception is the improved perfor-

ance of Gaussian-Copula based mutual information (GCMI) for data

ith high SNR. In general, GCMI and R-test also perform very well. Per-

ormance for coherence (COH) is overall quite good (particularly in the

imulations), while performance for phase locking value (PLV) and en-

ropy (ENT) is lowest overall. The entropy measure, however, is the only

etric that proves sensitive to more complex distributions of phase dif-

erences. Here, we test the challenging case of a bimodal distribution of

hase differences, with the modes of the distribution 180 ° apart, that

https://sciwheel.com/work/citation?ids=716706cepre=cesuf=cesa=0


J. Gross, D.S. Kluger, O. Abbasi et al. NeuroImage 245 (2021) 118660 

l  

c

 

t  

t  

fi  

p  

a  

a  

j  

i  

d  

m  

p  

t  

t  

r

 

p  

p  

n  

F  

t  

i  

u  

l  

p  

i  

t  

s  

b  

i  

s  

f  

p  

t  

E  

i  

p

 

a  

n  

t  

p  

W  

t  

t  

G  

p  

c  

h  

T

 

t  

t  

p  

m  

t  

fi

D

 

s  

c  

n  

a

D

C

 

R  

v  

C  

W  

o  

d  

d  

i  

o  

i  

a  

a

A

 

R  

t  

l  

J  

a  

c

S

 

t

R

A  

 

B  

B  

 

B  

B  

 

 

B  

 

B  

 

C  

 

C  

 

 

D  

 

D  

 

eads to cancellation in most methods and a failure to detect this more

omplex phase synchronization. 

(Weighted) PPC ( Vinck et al., 2010 ) has been proposed as a metric

hat provides a bias-free estimate of phase synchronisation, as opposed

o the more traditionally used phase locking value or coherence coef-

cient. Its improved performance could result from this reduced bias,

ossibly due to a reduction in variance of the surrogate distribution,

s well as a shift towards zero. Our implementation of GCMI uses both

mplitude and phase information for the estimation of the connectivity,

ust like WPPC and COH. R-test, PLV, and entropy only use the phase

nformation. Obviously, the sensitivity of a particular metric is in part

etermined by the actual functional statistical relationship between the

easured signals. If the relationship is mainly expressed in terms of the

hase difference, then ‘phase only’ metrics will be sufficient. If the rela-

ionship is in part also expressed in terms of the amplitude correlations,

hen ‘phase and amplitude’ metrics will be more sensitive. Non-linear

elationships might be more easily captured with GCMI or entropy. 

Another point of practical importance for the design of cerebro-

eripheral connectivity studies is the required data length. We compare

erformance of different combinations of spectral estimates and con-

ectivity measures for data length between 1-9 min (see Supplementary

ig. S3). In almost all cases, the mean distance of estimated connec-

ivity relative to the surrogate distribution increases continuously with

ncreasing data length. However, this depends on the stationarity of the

nderlying connectivity. In general, statistical analysis will benefit from

ong recordings (see e.g. Daube et al., 2019 ), particularly if subtle ex-

erimental effects are to be detected and the nature of the connectivity

s stationary over the observed period of time. It is worth noting that

he validity and performance of cerebro-peripheral connectivity analy-

is does not only depend on the optimal measure but can also be affected

y common artifacts in both signals. For example, if the peripheral signal

s ECG then magnetocardiographic signals recorded with the MEG sen-

ors will lead to significant connectivity that needs to be disambiguated

rom genuine cerebro-peripheral coupling. Note, when using EMG as

eripheral signal, a suboptimally placed ground electrode in combina-

ion with nonlinearities in the recording hardware may lead to residual

CG in the EMG due to suboptimal common mode rejection. Similar

ssues arise with ocular MEG artifacts, when eye movement is used as

eripheral signal. 

Furthermore, we can speculate to what extent our findings gener-

lise to other scenarios. For example, how are results affected by sig-

al amplitude? Answering this question requires dedicated new simula-

ions. It should be noted that we use measures that are based on signal

hase and amplitude (GCMI, COH) or only signal phase (PLV, R-TEST,

PPC, ENT). Even those measures that use only the phase are sensitive

o changes in signal-to-noise ratio. Our results do not generalise directly

o the case of phase-amplitude coupling. While some measures (such as

CMI) can be applied across all possible types of connectivity (such as

hase-phase, amplitude-amplitude, phase-amplitude) a comprehensive

omparison of phase-amplitude measures needs to include measures that

ave not been used in the present study (such as the modulation index;

ort et al. 2010 ). 

In summary, our analysis of cerebro-peripheral connectivity reveals

hat results depend significantly on the combination of spectral estima-

ion and connectivity measures. Our analysis of simulated and real data

rovides some observations that might assist scientists in this field in

aking a more informed choice of analysis methods given their respec-

ive priorities. We hope that this leads to further advances in the exciting

eld of cerebro-peripheral connectivity analysis. 
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