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Spousal associations of serum 
metabolomic profiles by nuclear 
magnetic resonance spectroscopy
Karema Al Rashid1,5, Neil Goulding2,3,5, Amy Taylor2,3,4, Mary Ann Lumsden1, 
Deborah A. Lawlor2,3,4,6 & Scott M. Nelson1,4,6*

Phenotype-based  assortative mating is well established in humans, with the potential for further 
convergence through a shared environment. To assess the correlation within infertile couples of 
physical, social, and behavioural characteristics and 155 circulating metabolic measures. Cross 
sectional study at a tertiary medical center of 326 couples undertaking IVF. Serum lipids, lipoprotein 
subclasses, and low-molecular weight metabolites as quantified by NMR spectroscopy (155 metabolic 
measures). Multivariable and quantile regression correlations within couples of metabolite profiles. 
Couples exhibited statistical correlations of varying strength for most physical, social, and behavioural 
characteristics including age, height, alcohol consumption, education, smoking status, physical 
activity, family history and ethnicity, with correlation coefficients ranging from 0.22 to 0.73. There was 
no evidence of within couple associations for BMI and weight, where the correlation coefficients were 
− 0.03 (95% CI − 0.14, 0.08) and 0.01 (95% CI − 0.10, 0.12), respectively. Within spousal associations 
of the metabolite measurements were all positive but with weak to modest magnitudes, with the 
median correlation coefficient across all 155 measures being 0.12 (range 0.01–0.37 and interquartile 
range 0.10–0.18). With just four having associations stronger than 0.3: docosahexaenoic acid (0.37, 
95% CI 0.22, 0.52), omega-3 fatty acids (0.32, 95% CI 0.20, 0.43) histidine (0.32, 95% CI 0.23, 0.41) 
and pyruvate (0.32, 95% CI 0.22, 0.43). Infertile couples exhibit spousal similarities for a range of 
demographic and serum metabolite measures, supporting initial assortative mating, with diet-derived 
metabolites suggesting possible subsequent convergence of their individual metabolic profile.

Phenotype-based assortative mating is well established in humans for several traits including age1,2, height3,4 
and other physical characteristics such as skin pigmentation5, eye and hair colour6. In addition, there are other 
behavioural and social factors that are correlated between spouse-pairs and are thought to affect mate selection 
such as educational level2,7, occupation2, socio-economic status1, smoking8, alcohol consumption9, language 
and culture10. For other physical and physiological characteristics such as weight7, body mass index4 and blood 
pressure8, weak to modest positive correlations are also observed, potentially reflecting both initial assortative 
mating, and subsequent spousal interaction and convergence through a shared environment and behaviours11.

Over the last decade epidemiological studies have increasingly measured circulating multiple metabolic 
traits, which collectively provide information on genomic, environmental and lifestyle traits. As physical, social 
and behavioural assortative mating traits may be associated with these metabolic profiles, correlations between 
spouses for a range of metabolites may be anticipated. However, despite the long established positive correlations 
of physical, social, and behavioural characteristics between couples, the assessment of metabolic measures in cou-
ples has been limited and primarily focused on conventional cardiovascular risk factors8. For example, for total 
cholesterol, LDL cholesterol, and triglycerides, the within-spouse correlation coefficients are generally weak with 
coefficients ranging from 0.05 to 0.108, with limited evidence of correlation for glucose and HDL cholesterol8.

Serum nuclear magnetic resonance (NMR) metabolomics enables reproducible quantification of circulating 
lipids and abundant metabolites12 and has been used to assess the differences in metabolites with adiposity13, 
height14, glycemia15 and a range of physiological and pathogenic disease states16–18. Furthermore, detailed meta-
bolic profiling has been applied to assess the heritability and genetic architecture of blood metabolites19–22, that 
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may underlie established physical, social and behavioural assortative mating traits. We could only identify three 
studies assessing four cohorts for within-spouse metabolite correlations. These included sample sizes of 281, 
327, 64 and 6 spousal pairs, respectively, used different metabolite platforms to each other and the one we use 
here, which covered 120, 110, 51 and 147 metabolic trait measures and were undertaken in extended families of 
twin studies19–21. In general, they found weak metabolic trait spousal correlations (mean = 0.08, 0.18, 0.24), with 
these being weaker than twin correlations.

The aim of the current study was to assess the correlation within couples undergoing fertility treatment of 
physical, social and behaviour characteristics, and 155 circulating metabolic measures. These measures were pro-
filed by a high throughput cost efficient NMR platform, covering a range of metabolic pathways, predominantly 
a lipidome, including lipoprotein lipids, fatty acids, as well as some amino acids, ketone bodies, and glycaemic 
traits. Whilst other studies have explored spousal similarity of the physical, social and behavioural characteristics 
that we also explore here, it is important that we explore these in this group of couples to help interpretation 
of metabolite correlations. Specifically, if we see similar correlations in these infertile couples to those seen in 
general populations it provides some rationale for assuming the results for the metabolites might generalise to 
a more general population.

Materials and methods
Study design and participants.  Cross-sectional study of women aged 18 to 45 and their male partners 
who presented at Glasgow Royal Infirmary, UK for assessment prior to assisted conception between 1 April 
2017 and 31 March 201923,24. Referral for state-funded assisted conception is limited to those where the female 
body mass index (BMI) ≤ 30 kg/m2 and both partners are non-smokers and in a stable relationship defined as 
cohabiting for ≥ 2 years, while for self-funding patients female BMI should be < 35 kg/m2. Exclusion criteria for 
study participation were a documented positive pregnancy test at time of presentation and /or requiring gamete 
or embryo donation. A total of 399 women were recruited, 326 of whom had a male partner who agreed to par-
ticipate and of those 326 couples (100%) had a blood sample suitable for NMR analyses (Fig. 1).

The study was conducted according to ICH Guideline for good clinical practice, the Declaration of Helsinki 
and the Convention of the Council of Europe. All participants provided written informed consent. The study 
protocol was approved prior to study initiation by the NHS Health Research Authority (Ref 16/WM/0308).

Study procedures.  Physical, social, behavioural, fertility and medical history was obtained by self-reported 
questionnaire at the baseline visit or from the medical notes at initial recruitment23,24. Weight and height [used 
to calculate the body mass index (BMI)] were measured in light clothing and unshod. Weight was measured to 
the nearest 0.1 kg using Tanita scales; height was measured to the nearest 0.1 cm using a Harpenden stadiometer. 
Smoking status was categorised as ever versus never (to be considered for state funded assisted conception both 
women and men had to have not smoked for at least 3 months and this was confirmed by a negative cotinine 
breath test).

Non-fasted blood samples were collected during the same baseline visit for NMR analyses and immediately 
spun and frozen at − 80 °C and all NMR assays completed for this study were undertaken within 1 year of storage 
and with no previous freeze/thaw cycles.

NMR protocol.  Profiling of 155 lipid and metabolite measures was performed by a high-throughput targeted 
NMR platform [Nightingale Health© (Helsinki, Finland)] at the University of Bristol23,24. The platform applies a 
single experimental setup, which allows for the simultaneous quantification of routine lipids, 14 lipoprotein sub-
classes and individual lipids transported by these particles, multiple fatty acids, glucose, the glycolysis precursors 
lactate and pyruvate, ketone bodies, and amino acids in absolute concentration units (mostly mmol/l) (Fig. 1). 
The NMR-based metabolite quantification is achieved through measurements of three molecular windows from 
each sample. Two of the spectra (LIPO and LMWM windows) are acquired from native serum and one spectrum 
from serum lipid extracts (LIPID window). The NMR spectra were measured using Bruker AVANCE III spec-
trometer operating at 600 MHz. Measurements of native serum samples and serum lipid extracts are conducted 
at 37  °C and 22  °C, respectively. Details of this platform have been published previously12,25 and it has been 
widely applied in genetic and observational epidemiological studies13,16–18,26–30. Further details of the platform 
are provided in the Supplemental Material (Supplemental text and Table S1).

Metabolite quantification and quality control.  The NMR spectra were analysed for absolute metabo-
lite quantification (molar concentration) in an automated fashion23,24. For each metabolite a ridge regression 
model was applied for quantification in order to overcome the problems of heavily overlapping spectral data. In 
the case of the lipoprotein lipid data, quantification models were calibrated using high performance liquid chro-
matography methods, and individually cross-validated against NMR-independent lipid data. Low-molecular-
weight metabolites, as well as lipid extract measures, were quantified as mmol/l based on regression modelling 
calibrated against a set of manually fitted metabolite measures. The calibration data are quantified based on itera-
tive line-shape fitting analysis using PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). Absolute 
quantification cannot be directly established for the lipid extract measures due to experimental variation in the 
lipid extraction protocol. Therefore, serum extract metabolites are scaled via the total cholesterol as quantified 
from the native serum LIPO spectrum.

Statistical analysis.  All analyses were performed in Stata (version 15.1, StataCorp. 2017 College Station, 
TX), with figures created in R 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria). Characteristics 
were summarized as n, total range, mean, standard deviation, median, and 25th and 75th quantiles (IQR) as 
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appropriate. Associations between physical, social and behavioural characteristics within couples were investi-
gated using both Pearson and Spearman’s rank correlation (continuous variables) and phi for dichotomized cat-
egorical variables31. In females and males separately, the metabolic measures were scaled to standard deviation 
(SD) units (by subtracting the mean and dividing by the standard deviation of all women or men respectively 

Figure 1.   Summary of NMR spectroscopy method. The NMR spectroscopy methodology utilises approach 
uses three molecular windows, (two that were applied to native serum and one to serum lipid extracts requiring 
minimal preparation) to quantify the 148 metabolic traits. The NMR-based metabolite quantification is achieved 
through measurements of three molecular windows from each serum sample. Two of the spectra (LIPO 
and LMWM windows) are acquired from native serum and one spectrum from serum lipid extracts (LIPID 
window). The NMR spectra are measured using Bruker AVANCE III spectrometer operating at 500 or 600 MHz. 
Measurements of native serum samples and serum lipid extracts are conducted at 37 °C and 22 °C, respectively. 
The LIPO window represents a standard spectrum of human serum displaying broad overlapping resonances 
arising from lipid molecules in various lipoprotein particles. The LIPO data are recorded using 8 transients 
acquired using a NOESY-presat pulse sequence with mixing time of 10 ms and water peak suppression. The 
LMWM window includes signals from various low-molecular-weight molecules. The LMWM spectrum is 
recorded using a relaxation-filtered pulse sequence that suppresses most of the broad macromolecule and 
lipid signals to enhance detection of small solutes. Specifically, a Carr–Purcell–Meiboom–Gill (CPMG) pulse 
sequence with a 78 ms T2-filter and fixed echo delay of 403 μs is applied using 24 transients. The LIPID window 
of the serum extracts is acquired with a standard 1D spectrum using 32 transients. QC and outputs The NMR 
spectra were analysed for absolute metabolite quantification (molar concentration) in an automated fashion. For 
each metabolite a ridge regression model was applied for quantification in order to overcome the problems of 
heavily overlapping spectral data. In the case of the lipoprotein lipid data, quantification models were calibrated 
using high performance liquid chromatography methods, and individually cross-validated against NMR-
independent lipid data. Low-molecular-weight metabolites, as well as lipid extract measures, were quantified 
as mmol/l based on regression modelling calibrated against a set of manually fitted metabolite measures. 
The calibration data are quantified based on iterative line-shape fitting analysis using PERCH NMR software 
(PERCH Solutions Ltd., Kuopio, Finland). Absolute quantification cannot be directly established for the lipid 
extract measures due to experimental variation in the lipid extraction protocol. Therefore, serum extract 
metabolites are scaled via the total cholesterol as quantified from the native serum LIPO spectrum. Figure 
adapted from12.
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included in the analyses). This scaling allows easy comparison of multiple metabolic measures with different 
units or with large differences in their concentration distributions. Our primary analyses were the correlation 
of the unadjusted metabolite measures. In secondary analyses we assessed whether these were influenced by 
potentially similar physical, social and behavioural characteristics. This was done by using linear regression, with 
robust standard errors as some metabolite concentrations had skewed distributions, the sex-specific standard 
deviation (SD) scores of metabolites on a priori selected characteristics that might result in spousal correlations 
(age, educational attainment, ever smoking, physical activity, family history of cardiometabolic disease, alcohol 
consumption, BMI, ethnicity) and obtaining the residuals from these regression models (i.e. the sex specific 
metabolic concentrations having removed variation due to the observed characteristics listed above). The corre-
lations between the residuals from these regressions within couples were then calculated using both Pearson and 
Spearman’s rank correlation. Confidence intervals for these correlations were calculated using bootstrapping. 
We used Student’s T-test to provide p values for the correlations. To test whether the skewness of the metabolite 
data was having any impact on correlations, regressions were repeated using quantile regression and results 
compared. To assess whether observed physical, social and behavioural characteristics that have been shown to 
correlate in couples explained any metabolite correlations we compared the covariates adjusted and unadjusted 
correlation using a scatter plot of these and exploring the linear fit. As women are excluded from infertility treat-
ment if their BMI is greater than 30 kg/m2 and this exclusion (which is not applied to their male partners) may 
influence spousal correlations, we reassessed the correlation of spousal BMI after exclusion of the 17 male part-
ners with a BMI > 30 kg/m2. Lastly, in additional analyses we ran principal component analyses in women and 
men separately and descriptively compared the number of principal components selected in women and men, 
the extent of overlap in factors loading on them and between spousal correlations for the top 10 components.

Ethics approval and consent to participate.  NHS Health Research Authority provided ethical approval 
for the study. REC reference 16/WM/0308. IRAS project ID:202216. All participants provided signed consent.

Results
Three hundred and twenty-six couples with complete physical, social and behavioural characteristics and NMR 
data were included in the study. Characteristics of the participants are shown in Table 1. Couples exhibited cor-
relations of varying strength for most physical, social and behavioural characteristics including age, height, alco-
hol consumption, education, smoking status, family history and ethnicity, with correlation coefficients ranging 
from 0.22 to 0.73 (Table 1). There was no evidence of within couple correlation for BMI and weight, where the 
correlation coefficients were − 0.03 (95% CI − 0.14, 0.08) and 0.01 (95% CI − 0.10, 0.12) respectively (Table 1). 

Table 1.   Demographic/lifestyle characteristics of couples undergoing IVF treatment (N = 326). *From 
Pearson’s correlation/chi square test.

Females Males Correlation coefficient (95% CI)
P value for association between traits in 
couples*

Age (years) 35.6 (4.4) 37.2 (5.7) 0.61 (0.53, 0.69)  < 0.001

Height (cm) 164.2 (6.3) 176.5 (5.1) 0.22 (0.12, 0.32)  < 0.001

Weight (kg) 66.7 (9.7) 78.6 (10.2) 0.01 (− 0.10, 0.12) 0.86

BMI (kg/m2) 24.7 (3.24) 25.2 (3.0) − 0.03 (− 0.14, 0.08) 0.55

Alcohol (units per week) 4 (1,8) 4 (2,9) 0.62 (0.50, 0.74)  < 0.001

Education

School 146 (45%) 147 (45%)

Undergraduate 115 (35%) 139 (43%)

Postgraduate 65 (20%) 40 (12%)  < 0.001

Smoking

Ever 83 (25%) 97 (30%)

Never 243 (75%) 229 (70%) 0.47 (0.36, 0.57)  < 0.001

Physical activity (times per week)

Never/once 33 (10%) 29 (9%)

Twice 70 (21%) 73 (22%)

3–4 times 196 (60%) 177 (54%)

> 4 times 27 (8%) 47 (14%)  < 0.001

Family history of cardiometabolic disease

Yes 167 (51%) 154 (47%)

No 159 (49%) 172 (53%) 0.39 (0.29, 0.50)  < 0.001

Ethnicity

White 299 (92%) 300 (92%)

Non-white 27 (8%) 26 (8%) 0.73 (0.59 ,0.88)  < 0.001
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Figure 2.   Correlations of lipoprotein classes, fatty acids and metabolic traits in couples awaiting IVF. Pearson 
correlation coefficients and 95% CI of within couple.
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Figure 2.   (continued)
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When we repeated the analyses after excluding couples (n = 17) where the male BMI was > 30 kg/m2, the results 
were unchanged with a correlation for BMI of − 0.02 (95% CI − 0.13, 0.09), p = 0.75.

The correlation estimates for the unadjusted metabolite measures are shown in Fig. 2, with overall similar 
results for the Spearman correlation coefficients (Supplemental Fig. 1). Across the metabolites correlation point 
estimates were all positive and ranged from very weak to modest, with the median coefficient across all 155 
measures being 0.12 (full range 0.01–0.37 and interquartile range 0.10–0.18). For lipoproteins, the correlation 
coefficients ranged from 0.11 for very large VLDL and 0.13 for medium VLDL, to 0.12–0.21 for very large HDL, 
large HDL, medium HDL and small HDL. For fatty acids the overall degree of unsaturation was correlated 
within couples (0.26, 95% CI 0.13, 0.38). Of the individual fatty acids docosahexaenoic acid (0.37, 95% CI 0.22, 
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0.52) and omega-3-fatty acids (0.32, 95% CI 0.20, 0.43) exhibited modest correlations within couples, with the 
correlation of docosahexaenoic acid the strongest correlation across all of the NMR measures. The contribu-
tions of individual fatty acid classes to total fatty acid concentrations was broadly similar within couples with 
coefficients ranging from 0.20 to 0.27. For all the glycolysis related metabolites, there was modest evidence of 
positive correlations within couples with the strongest effects observed for pyruvate (0.32, 95% CI 0.22, 0.43), 
citrate (0.29, 95% CI 0.14, 0.44) and glycerol (0.26, 95% CI 0.15, 0.38), with the correlation for glucose 0.25 (95% 
CI 0.08, 0.41). Of the amino acids only, histidine had evidence of modest correlation (0.32 95% CI 0.23, 0.41), 
with alanine, isoleucine, leucine, valine, phenylalanine, glycine and tyrosine exhibiting weaker positive correla-
tions (0.12–0.29) within couples.

Correlation estimates within couples were similar in adjusted versus unadjusted analyses (Fig. 3) for most 
metabolites (R2 = 0.96 across all metabolites coefficients). For adjusted analyses the results were similar when 
covariates were adjusted by linear or quantile regression (Supplemental Figs. 2, 3 respectively).

Figure 4 shows the scatter plots of the unadjusted metabolite concentrations (in SD units) for each woman 
versus her male partner for the four metabolites with a Pearson’s correlation of greater than 0.3; Docosahexa-
noic acid, pyruvate, histidine and omega-3-fatty acids. For all four metabolites the concentrations were mostly 
concentrated around central values in both women and men but with a spread showing the weak to moderate 
correlations.

Post‑hoc analyses.  When comparing Pearson with Spearman’s correlations we noticed that beta-hydroxy-
butyrate exhibited different correlation coefficients (Pearson = 0.01 (95% CI − 0.10, 0.13) versus Spearman = 0.26 
(95% CI 0.16, 0.36)). On further investigation there was an obvious outlier for beta-hydroxybutyrate, with the 
difference attenuated by removal of the outlier: Spearman (adjusted) = 0.18, Pearson (adjusted) = 0.08. When 
males with a BMI > 30 kg/m2 were excluded, there was still no evidence of a correlation of BMI within couples 
(n = 309, rho = − 0.02 (− 0.13, 0.09), p = 0.75).

Discussion
In this cross-sectional study we demonstrate that couples attending for infertility treatment exhibit strong correla-
tions for a range of physical, social and behaviour characteristics and modest to weak correlations for a range of 
lipids and some other metabolic measures. The similarity in correlations for height, education and ethnicity, with 
those found in couples not seeking fertility treatment2–4,7,10, suggest that conventional assortative mating is similar 
in infertile couples as in the general population. That diet is the principal source for several of the metabolites; 
docosahexaenoic acid, histidine, phenylalanine and omega-3-fatty acids, would suggest that convergence due 
to a shared environment and active co-participation in daily activities including food consumption facilitates 
convergence of some metabolites.

The present analyses provide additional evidence of assortative mating for age32–34, height3 and educational 
levels2,7, with strong evidence of endogamy with respect to self-declared ethnicity11. Age is well established as 
showing the greatest level of couple similarity among all personal characteristics, with spousal age correlations 
typically ranging from 0.70 to 0.9011,32–34. The reasons for our slightly lower estimate (0.61 95% CI 0.53, 0.69) are 
unclear but may reflect recruitment of participants with known fertility issues, as both maternal and paternal age 
are known to be independently inversely associated with fecundity, however, the median age gap was similar to 
that observed in the general population35. The observed modest estimate for height is similar to previous meta-
analyses with moderate assortative pairing for height across human populations (r = 0.23, 95% CI 0.21, 0.23)3. 
For ethnicity although endogamy remains the norm in Scotland, it has declined over recent years with similar 
declines observed in other Western countries11,36. IMost studies including the current report have indicated a 
sustained increase in educational homogamy34, with moderate partner similarities for potential drivers for educa-
tion including socioeconomic status, abilities and intelligence all documented11. Despite previous meta-analyses 
suggesting weak associations (r = 0.10–0.15) for BMI, weight and related indices including waist circumference 
and waist to hip ratios8, we did not observe any correlation. This is likely to reflect our unique population, as 
restriction of analyses to couples where the male BMI was also ≤ 30 kg/m2 did not change our findings.

The observed convergence of additional lifestyle factors like alcohol consumption (r = 0.62, 95% CI 0.50, 0.74), 
with a dominance of consumption of a low number of units may in part reflect that the population were drawn 
from an infertility clinic where healthy preconceptual lifestyle behaviours may be anticipated. Meta-analyses 
have previously suggested an overall moderate similarity for alcohol use (r = 0.36)37, though levels of similarity 
observed in different studies have ranged from negligible to high. For exercise, studies have generally reported 
correlations between 0.15 and 0.3038–40 albeit some higher than 0.4041,42. That our observed correlation of smoking 
status (r = 0.47 95% CI 0.36, 0.57), is marginally higher than previous meta-analyses estimates r (r = 0.23, 95% 
CI 0.12, 0.36)8 may reflect our eligibility criteria, as in Scotland placement on the waiting list for public funding 
of fertility treatment is dependent on confirmation of non-smoking by cotinine breath testing for both partners.

Limited evidence from twin and family studies suggest that the heritability (h2; proportion of phenotypic 
variance due to genetic factors) of lipids and lipid-like molecules have a mean h2 levels of 47% (range from 
h2 = 0.11 to h2 0.66), while for organic acids and derivatives the mean is 0.41 (0.14–0.72), essential amino acids 
0.42 (0.23–06.4) and non-essential amino acids 0.39 (0.22–0.69)19–22,43. As direct genetic variation in metabolites 
profiles would not produce a correlation between couples due to the invisible nature of both genes and metabo-
lites, our observed correlations are likely to be due to through indirect pathways including assortative mating for 
social and behavioural characteristics. In a systematic review for coronary risk factors, significant but low (upper 
limit of 95% confidence interval, maximal 0.10) spousal correlations were identified for total and LDL cholesterol 
and total triglycerides8. These meta-analysis estimates are very similar to ours; total cholesterol 0.07 vs 0.11, LDL 
cholesterol 0.06 vs 0.10 and triglycerides 0.08 vs 0.12, with the detailed NMR breakdown of the lipid subclasses 
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and lipoproteins providing further similar estimates of spousal correlation for lipid metabolism. Inference on 
whether assortative mating and/or cohabitation and thereby a shared environment underlie these associations has 
been achieved by using marriage duration as a surrogate for a common environment and potential convergence8. 
These support initial indirect assortative mating (i.e. on social or behaviour factors that influence metabolism), 
and that a shared environment may further influence lipid metabolism but to a lesser degree8.

We observed weak to moderate spousal correlations for a range of essential amino acids and omega-3-
fatty acids including the subtype docosahexaenoic acid all of which have diet as their principal source44,45. The 
sharing of a common household larder and most main meal is a potential mechanism by which couples have 
similarities in types of food, and nutrient intakes46. Although gender asymmetry in the spousal adoption of 
health-related dietary changes has been reported47, this may not apply to preconceptual diets where females may 
have a dominant role in preparation for pregnancy. Consistent with the suggestion that shared diet may have a 
critical influence, heritability variance estimates for circulating serum levels of histidine, docosohexaenoic acid, 
phenylalanine have been all lower than those observed for lipids, with environmental factors such as diet having 
a much greater contribution43.

Glucose, pyruvate, citrate, plus lactate and the glyceroneogenesis pathways were all weakly correlated. A 
meta-analyses of six studies, estimated that history of spousal diabetes was a risk factor for diabetes in their 
partner (effect estimate 1.26 (95% CI 1.08–1.45)48. A data mining study of 5,643 couples and 5643 non-couple 
pairs similarly found strong associations of having diabetes within couples (5.2% both of the couple had diabetes) 
than non-couples (0.1%)49. Heritability and shared environmental factors are proposed to account for at least 
half of the variability in normalised fasting glucose50, however, our study is unable to delineate their respective 
contributions to the weak association observed here.

Our studies adds to the small number3 of studies that have previously explored spousal metabolite 
correlations19–21. It has a similar sample size to one of those previous studies19 and examines a similar number of 
metabolic traits to two of them19,21. We do however acknowledge several limitations. Participants were couples 
awaiting IVF and this homogeneous relatively healthy population may have resulted in some selection bias and 
may mean that our results do not generalise to a general population of couples of reproductive age or same-sex 
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populations. Replication of our findings in age-matched fertile couples, would elucidate whether the observed 
correlations are in part attributable to infertility. Previous population studies have suggested that regardless 
of sex composition of the partnership, all couples demonstrate substantial within couple similarity in demo-
graphics including for age, education, race/ethnicity, work hours, and earnings51. Determination of metabolite 
concentrations were undertaken on non-fasting samples taken in the morning. This was necessary to align with 
clinical processes for a population who are undergoing assisted conception, where caloric restraint may be det-
rimental. Replication of our findings with non-fasted samples would be useful, but comparison of fasting and 
postprandial samples of using the same NMR analysis platform have not differed notably, with on average, sex 
and fasting/postprandial states explaining 5.2% and 4.4% of the total variance, respectively52. Our analyses are 
cross-sectional and included couples within a narrow age range. With repeat assessments of couple correlations 
over time, or with cross-sectional data including couples with a wide age range and number of years of being 
together, it would be possible to explore the relative contributions of assortative mating and convergence on the 
weak metabolite correlations we have observed. Previous studies that have tried to explore this using marriage/
cohabitation duration as a surrogate have found little evidence of any convergence for physical measures such 
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as BMI or blood pressure, while behaviours such as smoking and alcohol converged during the initial period of 
a relationship prior to marriage/cohabitation, whereas convergence in physical activity was sustained through-
out life53,54. The NMR platform used misses a proportion of the currently quantifiable metabolites in human 
serum/plasma, including markers of microbiota metabolism, vitamins, co-factors, and xenobiotics, that may 
be influenced by diet and preconceptual supplements. We do not have detailed dietary questionnaires, which 
would allow us to confirm our suggestion that a shared environment and common food would contribute to the 
observed correlations of metabolites.

We have explored within couple correlations of multiple metabolomic traits and find weak to modest posi-
tive correlations for the vast majority that are not influenced by adjustment for traits know to be influenced by 
assortative mating or shared couple behaviours. This suggests assortative mating, for example via genes linked 
to assortative characteristics such as height and education, might have some potential weak to modest impact 
on couples having similar metabolic traits. Whilst we acknowledge replication in a general population would be 
valuable the broadly similar within couple correlations of physical, social, and behavioural traits in these couples 
provides some evidence that our findings might be generalisable. Longitudinal studies would be valuable to fully 
explore the relative roles of assortative mating and convergence.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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