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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

A double-tank hybrid pneumatic engine system, with one low pressure tank and one high pressure tank has been proposed to 

improve the energy conversion efficiency and auxiliary braking power output of regenerative braking of vehicles. The 

performance of three ideal compression cycle scenarios for the double-tank system has been investigated and the results are 

compared with that of ideal one-tank scenario in order to identify the optimal compression cycle under different primary 

performance requirements. Results indicate the maximum brake mean effective pressure can be improved to not over 0.2 MPa 

less than the HP tank pressure and the highest improvement of total air mass recovered can reach over 40% utilising the double-

tank scenarios. Scenario 3 performs the best at the braking power output ability, while scenario 4 shows the greatest high 

pressure compressed air recovery potential. Considering about the LP tank air sources, scenario 2 is the only one that can operate 

independently without other air complements, which also performs the best at the energy conversion efficiency among the three 

double-tank scenarios. 
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1. Introduction 

Regenerative braking technology draws increasing attentions because of the urgent demand to improve the 
energy efficiency of conventional Internal Combustion Engine (ICE) [1-3]. Hybrid Pneumatic Engine (HPE) system 
is one of the available approaches, having the advantages of lightness, simplicity, pollution-free and low cost, that 
attracts researchers to study [4-6]. The conventional ICE can be easily adopted as a compressor by modifying the 
ICE valve system, which can also run the ICE as an air motor by changing the valve timing [7, 8]. The energy of the 
compressed air can also be used for supercharging system or supplying other pneumatic accessories [9-11]. Most 
previously proposed and studied hybrid pneumatic systems are focused on the one-tank system, which is easy to be 
fully filled and therefore limits the energy storage capacity. Several researchers proposed to use double-tank system 
to improve the system performance [12, 13]. However, the optimal compression cycle strategy using double-tank 
system has not been comprehensively studied and analysed. And the energy recovering improvements and braking 
effect improvements are required to be evaluated. In this paper, a double-tank hybrid pneumatic engine system based 
on the conventional one-tank system is proposed. Three ideal compression cycle scenarios for the double-tank 
system are described, analysed and compared in order to identify the optimal compression cycle scenario under 
different system demands.  

2. System concepts 

Figure 1 shows a schematic diagram of a one-tank hybrid pneumatic engine system. The engine cylinder is 
modified by adding a charging valve on the cylinder head which is connected to the air tank. Four modes, including 
the ICE mode, the compression mode, the air motor mode and the supercharging mode, can be achieved by 
controlling the fuel injection and the opening and closing times of the valves. Based on this configuration, a double-
tank hybrid pneumatic engine system (Figure 2), with one low pressure (LP) tank and one high pressure (HP) tank, 
is proposed to further improve the amount of the compressed air that can be recovered in the tank, meanwhile to 
achieve a better braking effect.  

Three ideal compression cycle scenarios for the double-tank hybrid pneumatic engine system are shown in 
Figure 3. As a comparison, the ideal compression cycle scenario for the one-tank system is also presented (Figure3 
(a)). Detailed working processes are defined as follows: 
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Fig.1. Schematic diagram of a one-tank HPE system Fig.2. Schematic diagram of a double-tank HPE system 
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Fig.1. Schematic diagram of a one-tank HPE system Fig.2. Schematic diagram of a double-tank HPE system 



1390 Wenbo Dou  et al. / Energy Procedia 142 (2017) 1388–1394
3 Wenbo Dou et al. / Energy Procedia 00 (2017) 000–000   

Scenario 1: 1-2: Intake valve opens and atmosphere air is sucked into the cylinder till the Bottom Dead Center 
(BDC); 2-3: Air is compressed in the cylinder; 3-4: Charging valve and the control valve open, the pressurized air is 
charged into the air tank till the Top Dead Center (TDC); 4-1: Both the charging valve and the intake valve are 
closed and the residual air in the cylinder expands to the atmosphere pressure. 

Scenario 2: On the basis of working process of scenario 1, an air charged into the LP tank process 4-5 is added. 
4-5: The HP control valve closes and the LP tank control valve opens, the remaining pressurized air is charged into 
the LP tank till the cylinder pressure equals to the LP tank pressure. 

Scenario 3: An air from the LP tank injected into the cylinder process 2-3 is added based on scenario 2. 2-3: 
Intake valve closes, charging valve and the LP tank control valve open, compressed air from the LP tank enters the 
cylinder till the cylinder pressure equals to the LP tank pressure.  

Scenario 4: Two cycles as in scenario 1 operate in turn. In the first 1-2-3-4-1 cycle, atmosphere air is sucked into 
the cylinder, and the pressurized air is charged into the LP tank. While in the second 1’-2’-3’-4’-1’ cycle, the air of 
the LP tank is taken as the air supply, and the higher pressurized air is charged into the HP tank. 
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Fig. 3. Scenarios of ideal compression cycle (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4 

3. Evaluation methods 

Thermodynamic analysis has been applied to the above four compression cycle scenarios, underlying the 
following assumptions. 

1. Air is an ideal and calorically perfect gas, and the state parameters distributes uniformly. 
2. Opening and closing times as well as flow restrictions of the valves are neglected. 
3. Both the cylinder and tanks are considered as adiabatic. 
4. The volumes of the tanks are far greater than the cylinder-swept volume. The tank pressure and temperature 

changes during one cycle are therefore neglected. 
Considering that the concept of hybrid pneumatic is proposed to fulfil the requirement of braking energy 

recovery and braking power output, three performance indicators of the thermodynamic cycles are selected for 
evaluating and comparing the four scenarios, as listed in Table 1. 

Brake Mean Effective Pressure (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏is the work expended in one compression cycle W divided by 
displacement volume𝑉𝑉𝑑𝑑 , which can reflect the braking ability of the hybrid pneumatic system. Mass of compressed 
air recovered per cycle∆𝑚𝑚 is the total of compressed air recovered by the LP tank ∆𝑚𝑚𝐿𝐿𝐿𝐿 and the HP tank ∆𝑚𝑚𝐻𝐻𝐿𝐿. 
Energy conversion efficiency expressed by 𝐶𝐶𝐶𝐶𝐵𝐵 equals to the energy of compressed air recovered ∆𝐻𝐻 divided by 
the work expended 𝑊𝑊 [14]. Mass recovered per cycle∆𝑚𝑚 and energy conversion efficiency 𝐶𝐶𝐶𝐶𝐵𝐵 can be used to 
demonstrate the hybrid system’s energy recovery ability.  

The parameters of the geometric model built to calculate these performance indicators are listed in Table 2. 
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Table 1. Performance indicators                                                             Table 2. Modified engine parameter 

4. Results and discussion 

As in the four scenarios, tank pressure is the main 
effecting factors. Only variation laws of BMEP, ∆𝑚𝑚, and 𝐶𝐶𝐶𝐶𝐶𝐶 with tank pressure are evaluated in detail below. 
Considering that the LP tank pressure is designed to be lower than the HP tank pressure, the ratio of the pressure of 
the LP tank with the HP tank is introduced as one independent variable. Another independent variable is the HP tank 
pressure, which only takes three cases of 0.5 MPa, 1.0 MPa, 1.5 MPa into account. 
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The comparison of BMEP of the four scenarios is shown in Fig.4. The increase of HP tank pressure can 
significantly promote BMEP of all scenarios which means the braking ability can be improved. All the three 
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conditions. The maximum value, which can reach not over 0.2 MPa less than the HP tank pressure, occurs when the 
ratio of the pressure of the LP tank with the HP tank is around 0.9.  

4.2. Evaluation of total air mass 

Different from the variation laws of BMEP, the higher the HP or LP tank pressure is, the less the total air can be 
recovered. As can be seen in Fig.5, the highest improvement of ∆𝑚𝑚 in the double-tank scenarios compared with that 
in the one-tank scenario can reach over 40%. However, there is no difference among the three scenarios under the 
same HP tank pressure.  
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Fig.4. Evaluation of BMEP under various LP and HP tank pressure (a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa 

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.1 0.3 0.5 0.7 0.9 1.1

BM
EP

 (M
Pa

) 

Ratio of the pressure of the LP tank 
with the HP tank 

1 2
3 4

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1 0.3 0.5 0.7 0.9 1.1

BM
EP

 (M
Pa

) 

Ratio of the pressure of the LP tank 
with the HP tank 

1
2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.1 0.3 0.5 0.7 0.9 1.1

BM
EP

 (M
Pa

) 

Ratio of the pressure of the LP tank 
with the HP tank 

1 2
3 4



 Wenbo Dou  et al. / Energy Procedia 142 (2017) 1388–1394 1391
3 Wenbo Dou et al. / Energy Procedia 00 (2017) 000–000   

Scenario 1: 1-2: Intake valve opens and atmosphere air is sucked into the cylinder till the Bottom Dead Center 
(BDC); 2-3: Air is compressed in the cylinder; 3-4: Charging valve and the control valve open, the pressurized air is 
charged into the air tank till the Top Dead Center (TDC); 4-1: Both the charging valve and the intake valve are 
closed and the residual air in the cylinder expands to the atmosphere pressure. 

Scenario 2: On the basis of working process of scenario 1, an air charged into the LP tank process 4-5 is added. 
4-5: The HP control valve closes and the LP tank control valve opens, the remaining pressurized air is charged into 
the LP tank till the cylinder pressure equals to the LP tank pressure. 

Scenario 3: An air from the LP tank injected into the cylinder process 2-3 is added based on scenario 2. 2-3: 
Intake valve closes, charging valve and the LP tank control valve open, compressed air from the LP tank enters the 
cylinder till the cylinder pressure equals to the LP tank pressure.  

Scenario 4: Two cycles as in scenario 1 operate in turn. In the first 1-2-3-4-1 cycle, atmosphere air is sucked into 
the cylinder, and the pressurized air is charged into the LP tank. While in the second 1’-2’-3’-4’-1’ cycle, the air of 
the LP tank is taken as the air supply, and the higher pressurized air is charged into the HP tank. 
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Fig. 3. Scenarios of ideal compression cycle (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4 
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Thus the air mass of LP tank and HP tank recovered per cycle are also presented in Fig.6 and Fig.7, respectively. 
Scenario 2 is the only scenario that can increase but not consume the air of LP tank, and the air recovered of HP tank 
is same to that of the ideal one-tank scenario. Air recovered of HP tank in scenario 3 and 4 increases greatly with 
increasing HP or LP tank pressure, while air consumed from LP tank increases greatly, too. Scenario 4 shows the 
greatest potential among the three double-tank scenarios of 1.4 to 22 times as much HP air amount recovered as that 
in the one-tank scenario 1. But if air sources of LP tank are taken into consideration, scenario 2 is the only one that 
can operate independently without other air complements. 

   

(a) (b) (c) 
Fig.6. Evaluation of LP air mass recovered per cycle under various LP and HP tank pressure  

(a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa 

   

(a) (b) (c) 
Fig.7. Evaluation of HP air mass recovered per cycle under various LP and HP tank pressure  

(a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa. 
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Fig.5. Evaluation of total mass recovered per cycle under various LP and HP tank pressure 
(a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa 
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4.3. Evaluation of COP 

Results in Fig.8 indicate the double-tank scenarios cannot do any favour to the improvements of energy 
conversion efficiency 𝐶𝐶𝐶𝐶𝐶𝐶. And 𝐶𝐶𝐶𝐶𝐶𝐶 of all double-tank scenarios shows a variation law of first decreasing and then 
increasing when the LP tank pressure increases. The poorest performances occur when the ratio of the pressure of 
the LP tank with the HP tank is about 0.3 to 0.5. Scenario 2 shows a better energy conversion performance 
compared with the other two double-tank scenarios, which is close to the ideal one-tank scenario.  

5. Conclusions 

This paper proposes three ideal double-tank compression cycle scenarios for the hybrid pneumatic engine system 
and reports the thermodynamics cycle analysis and comparisons results. The cycle performance evaluating, 
including brake mean effective pressure𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶 , mass of compressed air recovered per cycle ∆𝑚𝑚  and Energy 
conversion efficiency𝐶𝐶𝐶𝐶𝐶𝐶, are conducted in order to identify the optimal compression cycle under the different 
primary requirement of improving the braking energy recovery or braking power output. Main conclusions can be 
drawn as follows 

1. The introduction of double-tank compression cycle can help to improve the braking power output and the total 
air mass recovered of the hybrid pneumatic system. However, the energy conversion efficiency cannot be improved. 
The highest improvement of ∆𝑚𝑚 in the double-tank scenarios compared with that in the one-tank scenario can reach 
over 40%. 

2. Scenario 3 performs the best braking ability among all scenarios, which can reach not over 0.2 MPa less than 
the HP tank pressure. Scenario 4 shows the greatest potential of 1.4 to 22 times as much HP air amount recovered as 
that in the one-tank scenario 1. If air sources of LP tank are taken into consideration, scenario 2 is the only one that 
can operate independently without other air complements. At the same time, scenario 2 also performs the best at the 
energy conversion efficiency among the three double-tank scenarios, which is close to the ideal one-tank scenario.  

3. Optimal braking ability and optimal braking energy recovery ability cannot occur on the same compression 
cycle scenario, and cannot occur under the same tank pressure conditions, either. In an actual application, the choices 
of the compression cycle scenarios must have their own emphasis according to the requirement of the hybrid 
pneumatic system.  

   

(a) (b) (c) 
Fig.8. Evaluation of COP under various LP and HP tank pressure (a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa 
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Thus the air mass of LP tank and HP tank recovered per cycle are also presented in Fig.6 and Fig.7, respectively. 
Scenario 2 is the only scenario that can increase but not consume the air of LP tank, and the air recovered of HP tank 
is same to that of the ideal one-tank scenario. Air recovered of HP tank in scenario 3 and 4 increases greatly with 
increasing HP or LP tank pressure, while air consumed from LP tank increases greatly, too. Scenario 4 shows the 
greatest potential among the three double-tank scenarios of 1.4 to 22 times as much HP air amount recovered as that 
in the one-tank scenario 1. But if air sources of LP tank are taken into consideration, scenario 2 is the only one that 
can operate independently without other air complements. 

   

(a) (b) (c) 
Fig.6. Evaluation of LP air mass recovered per cycle under various LP and HP tank pressure  

(a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa 

   

(a) (b) (c) 
Fig.7. Evaluation of HP air mass recovered per cycle under various LP and HP tank pressure  

(a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa. 
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Fig.5. Evaluation of total mass recovered per cycle under various LP and HP tank pressure 
(a) HP=0.5MPa; (b) HP=1.0MPa; (c) HP=1.5MPa 
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4.3. Evaluation of COP 

Results in Fig.8 indicate the double-tank scenarios cannot do any favour to the improvements of energy 
conversion efficiency 𝐶𝐶𝐶𝐶𝐶𝐶. And 𝐶𝐶𝐶𝐶𝐶𝐶 of all double-tank scenarios shows a variation law of first decreasing and then 
increasing when the LP tank pressure increases. The poorest performances occur when the ratio of the pressure of 
the LP tank with the HP tank is about 0.3 to 0.5. Scenario 2 shows a better energy conversion performance 
compared with the other two double-tank scenarios, which is close to the ideal one-tank scenario.  

5. Conclusions 

This paper proposes three ideal double-tank compression cycle scenarios for the hybrid pneumatic engine system 
and reports the thermodynamics cycle analysis and comparisons results. The cycle performance evaluating, 
including brake mean effective pressure𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶 , mass of compressed air recovered per cycle ∆𝑚𝑚  and Energy 
conversion efficiency𝐶𝐶𝐶𝐶𝐶𝐶, are conducted in order to identify the optimal compression cycle under the different 
primary requirement of improving the braking energy recovery or braking power output. Main conclusions can be 
drawn as follows 

1. The introduction of double-tank compression cycle can help to improve the braking power output and the total 
air mass recovered of the hybrid pneumatic system. However, the energy conversion efficiency cannot be improved. 
The highest improvement of ∆𝑚𝑚 in the double-tank scenarios compared with that in the one-tank scenario can reach 
over 40%. 

2. Scenario 3 performs the best braking ability among all scenarios, which can reach not over 0.2 MPa less than 
the HP tank pressure. Scenario 4 shows the greatest potential of 1.4 to 22 times as much HP air amount recovered as 
that in the one-tank scenario 1. If air sources of LP tank are taken into consideration, scenario 2 is the only one that 
can operate independently without other air complements. At the same time, scenario 2 also performs the best at the 
energy conversion efficiency among the three double-tank scenarios, which is close to the ideal one-tank scenario.  

3. Optimal braking ability and optimal braking energy recovery ability cannot occur on the same compression 
cycle scenario, and cannot occur under the same tank pressure conditions, either. In an actual application, the choices 
of the compression cycle scenarios must have their own emphasis according to the requirement of the hybrid 
pneumatic system.  
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