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SUMMARY
Human facial expressions are complex, multi-component signals that can communicate rich information
about emotions,1–5 including specific categories, such as ‘‘anger,’’ and broader dimensions, such as ‘‘nega-
tive valence, high arousal.’’6–8 An enduring question is how this complex signaling is achieved. Communica-
tion theory predicts that multi-component signals could transmit each type of emotion information—i.e., spe-
cific categories and broader dimensions—via the same or different facial signal components, with
implications for elucidating the system and ontology of facial expression communication.9 We addressed
this question using a communication-systems-based method that agnostically generates facial expressions
and uses the receiver’s perceptions to model the specific facial signal components that represent emotion
category and dimensional information to them.10–12 First, we derived the facial expressions that elicit the
perception of emotion categories (i.e., the six classic emotions13 plus 19 complex emotions3) and dimensions
(i.e., valence and arousal) separately, in 60 individual participants. Comparison of these facial signals showed
that they share subsets of components, suggesting that specific latent signals jointly represent—i.e., multi-
plex—categorical and dimensional information. Further examination revealed these specific latent signals
and the joint information they represent. Our results—based on white Western participants, same-ethnicity
face stimuli, and commonly used English emotion terms—show that facial expressions can jointly represent
specific emotion categories and broad dimensions to perceivers via multiplexed facial signal components.
Our results provide insights into the ontology and system of facial expression communication and a new
information-theoretic framework that can characterize its complexities.
RESULTS AND DISCUSSION

Human facial expressions are complex dynamic signals

composed of combinations of individual facial movements

called action units (AUs)14,15—for example, smiles often

comprise lip corner puller (AU12) and cheek raiser (AU6) and

scowls often comprise brow lowerer (AU4), lid tightener

(AU7), and upper lip raiser (AU10).16 Current accounts report

that facial expressions can provide complex combinations of

specific emotion-category information and broader dimen-

sional information6,7 that could aid adaptive response.13,17,18

Yet how facial expressions achieve this complex signaling

task remains unknown because, while emotion category per-

ceptions often predict (i.e., correlate with) dimensional per-

ceptions of facial expressions, the specific facial signals that

drive (i.e., explain) these perceptions are unknown. Communi-

cation theory predicts that such multi-component facial sig-

nals could transmit different types of information via the

same components (e.g., lip corner puller, AU12) or different

components (e.g., lip-corner puller, AU12 and cheek raiser,

AU6), with specific implications for understanding the ontology

and system of facial expression communication.9 Here, we
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tested this hypothesis using a data-driven, perception-based

methodology19–27 to model and investigate three types of

facial signals: those perceived to (1) specifically transmit

emotion category information; (2) specifically transmit dimen-

sional information; or (3) jointly transmit—i.e., multiplex—

emotion category and dimensional information. Figure 1A

schematizes these facial signals within a general framework

of communication (see Shannon,28 Bradbury and Vehren-

camp,29 Dukas,30 Slater et al.,31 and Scott-Phillips32).

Thus, understanding any system of communication—i.e., how

information is transferred between individuals28,29,30–32—funda-

mentally relies on explaining what specific signals drive percep-

tual responses in receivers (see Jack and Schyns,34 Schyns

et al.,35 Barrett et al.,33 Krakauer et al.,36 Wu et al.,37 Naselaris

et al.,38 and Kriegeskorte and Douglas39 for reviews and discus-

sion). We examined this critical link between facial movements

and their impact on receiver perception—here, of emotion

categories, dimensions, or both—by combining classic data-

driven reverse-correlation methods from ethology,19 vision sci-

ence,20,21 neuroscience,22–24 and engineering25–27 (see Jack

and Schyns34 for a review) with a modern computer-graphics-

based generative model of human facial movements,10
ª 2021 Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Multiplexed facial expressions of emotion: A new ontology

(A) Transmitting and decoding facial expression signals—illustration of the general system of communication28,29 (see also Barrett et al.33 for discussion). To

communicate an emotionmessage to others—e.g., ‘‘disgust’’—the sending face must encode themessage into a perceptible signal, such as a facial expression.

(legend continued on next page)
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subjective human perception,3,40,41 and information-theoretic

analysis tools.11,12 Each step is described below.

Experiment I: Modeling facial expression signals of
emotion categories and of dimensions
To understand which specific facial movements drive the

perception of emotion categories and dimensions, we used the

classic data-driven method of reverse correlation to agnostically

generate facial expressions—i.e., random combinations of indi-

vidual AUs—and then used the receiver’s perceptual responses

to isolate the specific facial movements that elicit their percep-

tion of emotion categories and/or dimensions. Figures 1B and

1C illustrate the procedure. On each experimental trial, a gener-

ative model of human facial movements10 produced a facial

expression stimulus by randomly selecting a combination of

AUs and assigning a random movement to each AU (Figure 1B,

labeled solid black curve; see Yu et al.;10 Stimuli, Experiment I–

STAR Methods). Figure 1B, bottom row, shows an example (see

also Video S1). Each participant (100 white Western, English-

speaking, 51 females, 49 males; Participants, Experiment I—

STARMethods) viewed the stimulus and interpreted it according

to one of two pre-assigned tasks in a between-subjects design:

(1) categorized as one of the six classic emotions—i.e., ‘‘happy,’’

‘‘surprise,’’ ‘‘fear,’’ ‘‘disgust,’’ ‘‘anger,’’ or ‘‘sad’’—only if they

perceived that the facial expression accurately represented

that emotion category or ‘‘don’t know’’ if they did not (Figure 1C,

red frame) or (2) rated according to the dimensions of valence

and arousal in separate counterbalanced blocks (Figure 1C,

cyan frames). In Figure 1C, the participant perceived the

randomly generated facial expression as transmitting ‘‘negative

valence’’ (Figure 1C, black ellipse). Each experimental trial where

the participant selected an emotion label thus captured a combi-

nation of dynamic AUs that elicited the participant’s percep-

tion—e.g., ‘‘happy’’—or dimensional message—e.g., ‘‘positive

valence’’—thus providing an estimate of their prior knowledge

of these facial expressions, derived from their subjective experi-

ences of the external world.19,42,43 Each participant completed

2,400 trials, resulting in a large set of facial expressions associ-

ated with each response option (see Figures 2A and 2B bar plots

for average across participants; Experiment I, Perceptual task

procedure—STAR Methods).

Next, to isolate the specific facial movements that systemati-

cally elicit the perception of each emotion category and,
Human facial expression signals are often multi-component, composed of diffe

information about (1) the specific emotion category (represented in red), (2) broad

multiplexed signal (represented in magenta)—see Venn diagram. The face tran

receiver, who then may perceive a message from the signal (here, successful d

communication theory28,32 to model the facial movements that are perceived to

(B) Stimulus generation. On each experimental trial, a generative model of human

randomly selecting a subset of AUs—here, brow lowerer (AU4), nose wrinkler (A

using six temporal parameters (see labels illustrating the solid black curve). The fac

as four snapshots across time; the textured vector below shows the correspondin

on male and female face identities of the same ethnicity as participants (white).

(C) Perceptual task. Participants viewed the facial expression stimulus and interp

according to one of the six classic emotion categories (red frame)—i.e., ‘‘happy,’

that the facial expression accurately represented one of the emotion categories

"very negative’’ to ‘‘very positive’’—and arousal—"low arousal’’ to ‘‘high arousal’’

participant perceived that the facial expression transmits the message ‘‘negative

See also Video S1 for an illustration of the modeling procedure.
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separately, of each dimensional message, wemeasured the sta-

tistical relationship between the AUs presented on each trial and

each participant’s responses using a non-parametric measure of

statistical dependence—mutual information (MI) (Experiment I,

Facial expression modeling procedure—STAR Methods).11

This produced, for each participant, a statistically robust model

of the facial movements that elicit the perception of each

emotion category—i.e., ‘‘happy,’’ ‘‘surprise,’’ ‘‘fear,’’ ‘‘disgust,’’

‘‘anger,’’ and ‘‘sad’’—and each dimensional message—i.e.,

‘‘very negative valence’’ to ‘‘very positive valence’’ and ‘‘very

high arousal’’ to ‘‘very low arousal,’’ represented as a two-

dimensional valence-arousal space (Experiment 1, Facial

expression modeling procedure—STAR Methods; Figures S1A

and S1B illustrate the procedure). This resulted in a total of 360

facial expression models of the six classic emotion categories

(60 participants3 6 emotion categories) and 1,000 facial expres-

sion models of dimensional messages (40 participants 3 25

valence-arousal combinations across the 53 5 valence-arousal

space). Figure 2A shows the results for each emotion category,

aggregated across the 60 individual participants, displayed as

a color-coded facemap.Warmer colors indicate higher numbers

of participants, and cooler colors indicate lower numbers (color

bar to right)—for example, in ‘‘happy,’’ most participants

perceived lip corner puller (AU12) to be associated with this

emotion category (red regions aroundmouth corners; Figure S1A

shows results as color-coded matrices). Figure 2B shows the re-

sults for the two-dimensional valence-arousal space (results

normalized per face map for display purposes—see color bar

to right; also, Figure S1B shows results as color-coded

matrices).

Mapping facial expression signals of emotion categories
and dimensions
Having modeled the facial expression signals that elicit the

perception of emotion categories and of dimensions, we next

examined whether they share certain facial movements by map-

ping the former onto the latter and examining their embedding.

Specifically, for each emotion category, we computed the

average similarity (i.e., correlation) between the facial expression

signals (n = 60 models per category) and each facial expression

signal across the valence-arousal dimensional space (n = 40

models per cell), thus producing a distribution of average corre-

lation values across the valence-arousal space (Experiment 1,
rent facial movements called action units (AUs)14,15 that could each transmit

dimensions (represented in cyan), or (3) both categories and dimensions as a

smits the facial expression signal across the communication channel to the

ecoding) based on their prior knowledge. We use this general framework of

transmit emotion category and dimensional information.19–27

facial movements10 produced a random combination of facial movements by

U9), and lip stretcher (AU20)—and assigning a random movement to each AU

ial expression stimulus generated on this illustrative trial is shown at the bottom

g 3 (out of 42) randomly selected AUs. We displayed all facial expression stimuli

reted it according to one of two pre-assigned perceptual tasks: (1) categorized

’ ‘‘surprise,’’ ‘‘fear,’’ ‘‘disgust,’’ ‘‘anger,’’ or ‘‘sad’’—if and only if they perceived

or ‘‘don’t know’’ if they did not or (2) the dimensions of valence (cyan frame)—

on a 7-point scale in separate counterbalanced blocks. In this example trial, the

valence’’ (see black ellipse).



Figure 2. Mapping facial expression signals of emotion categories and dimensions

(A) Facial expression signals of emotion categories. Color-coded face maps show the facial expression signals (i.e., AU patterns) of the six classic emotions,

summed across participants—see color bar to right (see also Figure S1A). Bar plots below show the average number of trials (±SEM) participants associated with

each response option.

(B) Facial expression signals of valence and arousal dimensions. Color-coded face maps show the facial expression signals of the dimensions of valence and

arousal, summed across participants and normalized per face map—see color bar to right (see also Figure S1B). Bar plots below show the average number of

trials participants (±SEM) associated with each response option.

(legend continued on next page)
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Facial expression mapping procedure—STAR Methods). Fig-

ure 2C shows the results for each emotion category as color-

codedmatrices. Red indicates higher similarity (i.e., positive cor-

relations), and blue indicates lower similarity (negative correla-

tions; see color bar to right). We then validated these mappings

by comparing the location of the maximal correlation (saturated

red squares, Figure 2C) with the semantic location of the corre-

sponding emotion word44 (black point with cross, Figure 2C)

using linear regression. Results, shown in Figure 2D in red

(p = 0.0212; two-tailed), confirmed that the mapping of the facial

expressions of emotion categories onto the valence-arousal

space corresponds with the semantic mapping of emotion cate-

gory word (Experiment I, Validation of facial expression map-

pings—STAR Methods). Finally, we evaluated the generaliz-

ability of these results using a set of facial expression signals

of 19 more complex emotions, including ‘‘delighted,’’ ‘‘rage,’’

and ‘‘terrified,’’ derived using the same method to enable direct

comparisons.3 Results, shown in Figure 2D in blue (p = 0.00418,

two-tailed; see also Figure S1C), further validate the facial

expression mapping (Experiment I, Facial expression mapping

procedure—STAR Methods). Together, these results show that

facial expression signals that elicit the perception of emotion

categories are embedded into those that elicit dimensional

perceptions, suggesting that a latent set of shared AU jointly

represent—i.e., multiplex—emotion category and dimensional

information.

Experiment II: Measuring facial signal multiplexing
of emotion categories and dimensions
To test this explicitly, we next disentangled the specific facial

movements that serve this multiplexing role versus those that

uniquely drive perceptions of emotion categories or dimensions

(Figure 1A). We used an information-theoretic analysis called

conditional mutual information (CMI),11,45 which measures the

relationship between two variables—here, an AU and the partic-

ipants’ emotion category responses—while accounting for the

effects of a third variable—here, the participants’ dimensional re-

sponses. For example, if the statistical relationship between lip

corner puller (AU12) and the participants’ emotion category re-

sponses is significantly high, this indicates that AU12 provides

information about the participants’ emotion category responses

over and above that which it provides about their dimensional re-

sponses. Therefore, CMI enables precise characterization of the

information that each AU provides about the receivers’ re-

sponses and, thus, its capacity to jointly elicit—i.e., multiplex—

emotion category and dimensional responses (Experiment II,

Conditional Mutual Information analysis—STAR Methods). Us-

ing the same data-driven method (Figures 1B and 1C), a new

set of participants (20 white Western, English-speaking, 10 fe-

males, 10 males; Participants, Experiment II—STAR Methods)
(C) Mapping facial expression signals of emotion categories and dimensions. Ea

facial expression signals onto those of valence and arousal dimensions, measu

(positive correlation); blue represents high dissimilarity (negative correlation—see

of the emotion category word with standard deviation.44

(D) Semantic validation of facial expression signal mapping. A regression analysis c

the semantic location of the emotion word showed close correspondence (show

new set of facial expression signals of 19 of complex emotions3 (shown in blue) pr

STAR Methods).
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each interpreted 1,200 newly randomly generated facial expres-

sions (Experiment II, Stimuli—STAR Methods) according to the

six classic emotion categories plus the dimensions of valence

and arousal in three separate counterbalanced blocks in a

within-subjects design (Experiment II, Perceptual task proced-

ure—STAR Methods). We then used CMI to identify three types

of facial signals: those perceived to (1) specifically transmit

emotion category information; (2) specifically transmit dimen-

sional information; and (3) jointly transmit—i.e., multiplex—cate-

gorical and dimensional information. Figure 3A, left panel, shows

the results with each AU color coded accordingly (Venn diagram

legend).

Results showed that most AUs involved in these perceptual

tasks (i.e., 35/42; Figure S3) elicit the perception of emotion cat-

egories and dimensions (26/35 AUs; Figure 3A, magenta) with a

subset specifically eliciting the perception of emotion categories

(2/35 AUs; Figure 3A, red) or dimensions (7/35 AUs; Figure 3A,

cyan). To characterize the specific emotion categories and di-

mensions that each facial movement is perceived to transmit,

we used pointwise mutual information (PMI) (Experiment II, Con-

ditional Mutual Information analysis—STAR Methods).12 Fig-

ure 3A, center and right panels, show the results as color-coded

face maps (see also Figure S3A). For example, chin raiser

(AU17)—an emotion category signal (red)—elicits the perception

of ‘‘disgust’’ and ‘‘sad.’’ Unilateral lid tighteners (AU7L/R)—both

dimensional signals (cyan)—elicit the perception of ‘‘negative

valence’’ across high to low arousal. Nose wrinkler (AU9)—a

multiplex signal (magenta)—elicits the perception of ‘‘disgust’’

and ‘‘anger’’ and ‘‘negative valence’’ across all high to low

arousal. Figure 3B shows an example of the composition of

such facial signals. Here, the facial expression, perceived as

‘‘disgust’’ and ‘‘negative valence, low arousal,’’ comprises AUs

that elicit the perception of ‘‘disgust’’—chin raiser (AU17), upper

lip raiser (AU10), lip corner depressor (AU15)—and of ‘‘negative

valence’’ and ‘‘high arousal’’—lid tightener (AU7), upper lip raiser

(AU10), and lip corner depressor (AU15). Together, our results

show that facial expressions comprise specific facial movement

components that can jointly elicit the perception of—i.e., multi-

plex—emotion categories and dimensions.

Conclusions and future directions
Here, we have addressed the fundamental question of how facial

expressions can achieve the complex signaling task of commu-

nicating broad-plus-specific emotion category and dimensional

information (Figure 1A).28,29 Across two main experiments, we

used the classic data-driven method of reverse correlation to ag-

nostically generate facial expressions—i.e., random combina-

tions of AUs—and used the perceiver’s perceptual responses

plus information-theoretic analysis tools11,12,45 to isolate the

specific facial movements that elicit the perception of specific
ch subplot shows, for each emotion category, the projection patterns of their

red using correlation. Red represents high facial expression signal similarity

color bar on right). Black crosses show the average valence and arousal rating

omparing the location of themaximum facial expression signal correlation with

n in red), thus validating the facial expression signal mappings. Analysis with a

ovided further validation (Figure S1C; Facial expression mapping procedure—



Figure 3. Facial movements perceived to transmit emotion category and dimensional information
(A) Facial movement signals of emotion categories and dimensions. The left panel shows each individual facial movement (i.e., AU; see labels on y axis) color

coded according to whether it elicits the perception of emotion categories, dimensions, or both (see Venn diagram). Color saturation represents the CMI value,

averaged across participants (see color bars to right). Most AUs comprise multiplex signals—i.e., perceived to transmit emotion category and dimensional in-

formation (represented by magenta)—with a subset perceived to transmit either emotion category (represented by red) or dimensional information (represented

by cyan). Color-coded face maps in center and right show the specific emotion categories and dimensions each AU is perceived to transmit—for example, chin

raiser (AU17), shown in red, elicits the perception of the emotion categories disgust and sad and nose wrinkler (AU9), shown in magenta, elicits the perception of

disgust and anger, plus dimensional information (see also Figure S3A for a detailed breakdown). Bar charts below show the average number of trials (±SEM)

participants associated with each response option.

(B) Composition of emotion category and dimensional facial movement signals. The illustrative example shows the composition of facial movements that are

perceived to transmit emotion category and dimensional information in a facial expression.
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emotion categories and/or broad dimensions (Figures 1B and

1C). We found that a latent set of shared facial movements can

jointly elicit the perception of—i.e., multiplex—emotion cate-

gories and dimensions, with a subset eliciting perceptions of cat-

egories or dimensions (Figures 2 and 3). Our results suggest that

facial expressions can drive perceptions of broad-plus-specific

emotion messages via multiplexed facial signals. We now

examine the implications of these findings.

We examined the critical stimulus-response relationship to

identify the specific facial movements that drive emotion percep-

tion responses in receivers, thus providing a critical explanatory

element that goes beyond accounts in which receiver responses

are detached from the stimulus features that drive them.6,7,46,47

Specifically, our results underline the close link between emotion

category and dimensional perception by revealing their common

signaling basis.48 In contrast to some theoretical accounts,49,50

our results suggest that facial expressions that drive emotion

category perceptions are not distinct but instead structured by

underlying signals of broad dimensions, mirroring existing find-

ings.51–53 This latent structure of multiplexed signaling could

facilitate adaptive response—for example, broad dimensional

signals could engage generalized approach versus avoid mech-

anisms54 while category-specific signals could refine the mes-

sage perceived and subsequent behavioral responses.13

These results thus raise the question of how such multiplexed

signals are processed—for example, emotion category and

dimensional information could be processed separately and

asynchronously, with one informing the other (i.e., serving as

priors). Our results suggest that broad-to-specific processing

structure over time7,13,55 because facial signals of dimensional in-

formation can predict specific emotion categories, but not vice

versa (but see also Giordano et al.56 for emotion vocalization pro-

cessing). Broad dimensional information could also be more

robust to degradation in the communication channel57 and serve

distal communication. Alternatively, such information could be

processed synchronously, either separately in parallel or simulta-

neously, to produce amore refined percept. Task demands could

also modulate the contribution of emotion category and dimen-

sion information by filtering out task-irrelevant information24,55—

for example, where prioritizing categorical information over

dimensional information improves performance.7,58 Similarly, re-

stricting access to language and/or conceptual knowledge

could diminish one type of information while leaving the other

intact.59–61 Future work will examine these possibilities by tracing

the dynamic processing of facial signals in the brain.24,35,62

Central to our finding of facial signal multiplexing is an informa-

tion-theoretic analysis that goes beyond pairwise statistical

methods to measure triplewise relationships—here, between

AUs, emotion category responses, and dimensional responses.35

We anticipate that suchmethods will become increasingly impor-

tant in further understanding the complexities of human multi-

modal and multi-component signaling,63–65 including their struc-

tural features.9,66 Our results show that threat-related

perceptions, particularly of anger, are elicited by a broader variety

of facial signals than less threatening perceptions, which could

reflect both higher signal degeneracy—different signals elicit

similar perceptions—and redundancy—similar signals elicit

similar perceptions (e.g., nose wrinkler [AU9] and upper lip raiser

[AU10]—physically similar facial movements—each elicit anger
206 Current Biology 32, 200–209, January 10, 2022
and disgust perceptions). Such signal design features are partic-

ularly important for costly-to-miss threat messages within real-

world noisy visual environments. Future work will address these

questions using our methodological framework.

By using a paradigm that exploits the close symbiotic relation-

ship between signal production and perception,32,67–69 our results

offer potential insights into facial expression production. As pre-

dicted by general accounts of communication,19,28,29,66,70 human

facial expression decoding, perceptual expertise, and conceptual

knowledge,71,72 the facial movements that elicit emotion percep-

tions likely comprise a subset of those that are produced. Future

work will examine the precise relationship between facial move-

ment production and perception to better understand the nature

and function of human facial expressions.

Finally, facial expressions perceived in the real world are typi-

cally displayed alongside other sources of information—e.g., the

expresser’s identity, ethnicity, sex, gender, age, and culture;

their voice and body movements; the nature of the interaction,

social context, and scenery; and the communication channel

across which signals are transmitted (e.g., proximal versus distal

and clear versus occluded)—including dynamic changes that

unfold over time. The perceiver’s conceptual and cultural

knowledge, expectations, and goals can also influence which in-

formation is attended to, extracted, and interpreted (e.g., see

Archambault et al.,73 Brooks and Freeman,74 and Schyns and

Rodet;75 see Nisbett and Masuda76 for a review). Understanding

how each of these complex sources of information contribute to

emotion perception (e.g., see Schyns et al.,72 Hess et al.,77 Gill

et al.,78 and Hehman et al.79) remains a centrally important

empirical challenge. Using increasingly realistic generative

models of faces,43 scenes,80 bodies,81,82 and voices,83 plus vir-

tual reality technologies and new statistical tools,11,35 our future

work will address these major challenges. Relatedly, our results

are based on white Western participants interpreting facial ex-

pressions displayed by same-ethnicity faces, using commonly

used English-language emotion terms. Future work will prioritize

examining whether these results generalize to or vary across

other cultures, face identities, and languages (e.g., see Jack

et al.,41 Marsh et al.,84 Elfenbein,85 and Dailey et al.86).

In sum, our results provide new insights into the ontology and

system of facial expression communication and present a meth-

odological framework that can generate a richer account of

human communication.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Participants

B Screening questionnaire

d METHOD DETAILS

B Experiment I



ll
OPEN ACCESSReport
B Experiment II

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Experiment I

B Experiment II

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cub.2021.10.035.

ACKNOWLEDGMENTS

This work was supported by the China Scholarship Council (CSC)

(101706070134) awarded to M.L.; the Chinese Scholarship Council

(201306270029), the Leverhulme Fellowship (ECF-2020-401), and the Lord

Kelvin/Adam Smith Fellowship (201277) awarded to C.C.; the Wellcome Trust

(214120/Z/18/Z) awarded to R.A.A.I.; the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation pro-

gramme (grant agreement FACESYNTAX no. 759796), British Academy

(SG113332 and SG171783), and Economic and Social Research Council

(ES/K001973/1 and ES/K00607X/1) awarded to R.E.J.; and the Wellcome

Trust (Senior Investigator Award, UK; 107802) and theMultidisciplinary Univer-

sity Research Initiative/Engineering and Physical Sciences Research Council

(USA, UK; 172046-01) awarded to P.G.S. The funders had no role in the study

design, data collection or data analysis, decision to publish, or preparation of

the manuscript.

AUTHOR CONTRIBUTIONS

Conceptualization, M.L., R.E.J., and P.G.S.; methodology, Y.D., R.A.A.I.,

P.G.S., O.G.B.G., R.E.J., and M.L.; software, P.G.S. and O.G.B.G.; formal

analysis, Y.D., M.L., and R.A.A.I.; investigation, M.L. and C.C.; writing—orig-

inal draft, M.L., R.E.J., and P.G.S.; writing—review & editing, M.L., R.E.J.,

R.A.A.I., C.C., and P.G.S.; visualization, M.L., R.E.J., and O.G.B.G.; supervi-

sion, R.E.J. and P.G.S.; funding acquisition, R.E.J. and P.G.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 8, 2021

Revised: September 7, 2021

Accepted: October 14, 2021

Published: November 11, 2021

REFERENCES

1. Darwin, C. (2015). The Expression of the Emotions in Man and Animals

(University of Chicago).

2. Du, S., Tao, Y., and Martinez, A.M. (2014). Compound facial expressions

of emotion. Proc. Natl. Acad. Sci. USA 111, E1454–E1462.

3. Jack, R.E., Sun, W., Delis, I., Garrod, O.G.B., and Schyns, P.G. (2016).

Four not six: revealing culturally common facial expressions of emotion.

J. Exp. Psychol. Gen. 145, 708–730.

4. Mortillaro, M., Mehu, M., and Scherer, K.R. (2011). Subtly different pos-

itive emotions can be distinguished by their facial expressions. Soc.

Psychol. Personal. Sci. 2, 262–271.

5. Keltner, D. (1996). Evidence for the distinctness of embarrassment,

shame, and guilt: a study of recalled antecedents and facial expressions

of emotion. Cogn. Emotion 10, 155–172.

6. Cowen, A.S., and Keltner, D. (2020). What the face displays: mapping 28

emotions conveyed by naturalistic expression. Am. Psychol. 75,

349–364.

7. Mendolia, M. (2007). Explicit use of categorical and dimensional strate-

gies to decode facial expressions of emotion. J. Nonverbal Behav. 31,

57–75.
8. Mehu, M., and Scherer, K.R. (2015). Emotion categories and dimensions

in the facial communication of affect: an integrated approach. Emotion

15, 798–811.

9. Hebets, E.A., Barron, A.B., Balakrishnan, C.N., Hauber, M.E., Mason,

P.H., and Hoke, K.L. (2016). A systems approach to animal communica-

tion. Proc. Biol. Sci. 283, 20152889.

10. Yu, H., Garrod, O.G.B., and Schyns, P.G. (2012). Perception-driven facial

expression synthesis. Comput. Graph. 36, 152–162.

11. Ince, R.A.A., Giordano, B.L., Kayser, C., Rousselet, G.A., Gross, J., and

Schyns, P.G. (2017). A statistical framework for neuroimaging data anal-

ysis based on mutual information estimated via a gaussian copula. Hum.

Brain Mapp. 38, 1541–1573.

12. Bouma, G. (2009). Normalized (pointwise) mutual information in colloca-

tion extraction. Proc. GSCL, pp. 31–40.

13. Jack, R.E., Garrod, O.G.B., and Schyns, P.G. (2014). Dynamic facial ex-

pressions of emotion transmit an evolving hierarchy of signals over time.

Curr. Biol. 24, 187–192.

14. Ekman, P., Friesen, W., and Hagar, J.C. (1978). Facial Action Coding

System: Investigator’s Guide (Research Nexus). Palo Alto 3, 5.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
Raw and analyzed data reported in this study are deposited inMendeley Data, https://doi.org/10.17632/dr853shk56.2. Custom code

for analyses is deposited in Mendeley Data, https://doi.org/10.17632/dr853shk56.3. Custom code for modeling, experiment, and

visualization are available by request to the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Experiment I

For the emotion categorization task, we used an existing dataset comprising 60 participants (white, Western, English-speaking,

31 females, 29 males, mean age = 22 years, SD = 1.71 years; see Jack et al.13). For the valence and arousal dimensional rating tasks,

we recruited a separate set of 40 same-culture, ethnicity, age, and sex-balanced participants (white, Western, English-speaking,

20 females, 20 males, mean age = 21 years, SD = 2.52 years). All 100 participants had minimal experience of/exposure to non-West-

ern cultures (as assessed by questionnaire, see Screening Questionnaire—STAR Methods, e.g., see De Leersnyder et al.87), normal

or corrected-to-normal vision, and without any emotion-related atypicalities (Autism Spectrum Disorder, depression, anxiety),

learning difficulties (e.g., dyslexia), synesthesia, or disorders of face perception (e.g., prosopagnosia) as per self-report. All partici-

pants gave written informed consent prior to testing and received a standard rate of £6/h for their participation. The University of

GlasgowCollege of Science and Engineering Ethics Committee provided ethical approval (Ref: 300180112). All experiments conform

to the British Psychological Society’s Code of Human Research Ethics.

Experiment II

We recruited a further set of 20 new participants (white, Western, English-speaking, 10 females, 10 males, mean age = 20.3 years,

SD = 2.23 years) using the same criteria as described above. All participants gave written informed consent prior to testing and

received a standard rate of £6/h for their participation. The University of Glasgow College of Science and Engineering Ethics Com-

mittee provided ethical approval (Ref: 300180277). All experiments conform to the British Psychological Society’s Code of Human

Research Ethics.

Screening questionnaire
Given that culture and linguistic background is a known source of variance in perception (e.g., see Shablack and Lindquist,60 Nisbett

andMasuda,76 Roberson et al.,88 Chua et al.,89 and Jack90 for reviews), and that differences between the ethnicity of face stimuli and

participants can modulate social face perception (e.g., see McKone et al.91 for a review), we controlled these factors by including a

sample of same-culture (Western) and same-ethnicity (white) English-speaking participants—a population in which the six classic

emotion categories and the dimensions of valence and arousal are well-established constructs.90,92–94 Future work will further

examine whether and how such factors influence the perception of facial expressions as categorical and/or dimensional signals.
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To control for the effects of exposure to/experience of other cultures,87 each potential participant completed the following question-

naire. We only selected individuals who answered ‘no’ to all questions for participation in the experiments:

1. Have you ever lived in non-Western* country before (e.g., on a gap year, summer work, move due parental employment)?

2. How many weeks have you spent in a non-Western country (e.g., on vacation)?

3. Have you ever dated or had a very close friendship with a non-Western person?

4. Have you ever been involved with any non-Western culture societies/groups?

*By Western groups/countries, we are referring to Europe (East and West), USA, Canada, United Kingdom, Australia, and New

Zealand.

METHOD DETAILS

Experiment I
Stimuli

For both the emotion categorization task and the dimensional rating tasks, we generated facial expression stimuli using the same

procedure as follows. We used a generative model of human facial movements,10 which is comprised of a library of individual 3D

facial action units (AUs)—i.e., the basic elements of human facial movements as detailed by the taxonomic Facial Action Coding Sys-

tem (FACS,14 see also Hjortsjö15). Each AU in the generative model is derived from real humans, who are trained to accurately pro-

duce each individual AU on their face, captured using a stereoscopic system and their rendering verified by the trained AU producers

(see Yu et al.10). Therefore, the generative model produces valid representations of real human facial movements and comprises no

physiologically impossible facial movements (e.g., rotating the nose 90 degrees, sinking the eyeballs deep into the head, lowering the

eyebrows below the eyes; see Yu et al.10 for further details). To generate facial expression stimuli on each experimental trial, the

generative model of facial movements pseudo-randomly selected a combination of AUs from a set of 42 Action Units (minimum =

1 AU, maximum = 4 AUs, median = 3 AUs selected across trials) and assigned a random movement to each AU using six temporal

parameters—onset latency, acceleration, peak amplitude, peak latency, deceleration, offset latency (in Figure 1B, see labels

describing the black temporal curve). These six temporal parameters enabled each AU to peak once during the stimulus time course

while other parameters such as acceleration and amplitude could vary across the experiment, thus enabling exploration of dynamic

properties while retaining experimental feasibility (see Yu et al.10). Future work will examine the relevance of multiple AU peaks—e.g.,

lip quivering, repeated eyebrow raising—in driving social and emotion perception.

For the emotion categorization task we generated 2400 random facial expressions—i.e., random combinations of dynamic AUs—

and displayed each on one of 8 photorealistic face identities of real people of the same ethnicity as participants (white, 4 females,

4 males, mean age = 28 years, SD = 3.85 years), captured using a high-resolution 3D face capture system (see Yu et al.10), to control

for the potential effects of other-ethnicity perception.91 For the valence and arousal dimensional rating task, we generated a further

2400 random facial expressions and displayed each on the same face identities used in the emotion categorization task. For each

participant, we randomly split the stimuli into two sets of 1200 facial expressions and assigned each stimulus set to one of the two

rating tasks of valence and arousal. In both rating tasks, we included face identities of the same ethnicity as participants (white) to

control for the potential effects of other-ethnicity perception.91 Future work will examine whether and how the perceiver’s culture and

the ethnicity of the face stimuli each influence the perception of facial expressions as categorical and/or dimensional signals. In ex-

periments and tasks, we displayed all facial expression stimuli in the center of the participant’s visual field, on a black background,

and on a 19-inch flat panel Dell monitor (Round Rock, Texas 78682, refresh rate of 60 Hz and resolution of 10243 1280). Participants

used a chin rest to maintain a constant viewing distance, with stimuli subtending 14.25� (vertical)3 10.08�(horizontal) of visual angle
in the emotion categorization task (average stimulus size 17.00 cm3 11.99 cm) and 13.74� 3 8.65� of visual angle in the dimensional

rating task (average stimulus size 19.54 cm3 12.28 cm), each reflecting the average size of a human face during typical social inter-

action in Western culture.95

Perceptual task procedure

Participants viewed a randomly generated facial expression on each trial and interpreted it according to one of two pre-

assigned tasks in a between-subjects design: (1) categorize according to one of the six classic emotions—i.e.,

‘‘happy,’’ ‘‘surprise,’’ ‘‘fear,’’ ‘‘disgust,’’ ‘‘anger’’ or ‘‘sad’’—each well-established emotion concepts within Western culture, En-

glish-speaking populations (see Jack90 for a review)—or (2) rate according to the dimensions of valence or arousal—each well-es-

tablished dimensional concepts within Western culture, English-speaking populations92–94—in separate counterbalanced blocks. In

the dimensional rating task, participants rated each facial expression stimulus according to (1) valence on a 7-point scale from ‘‘very

negative’’ to ‘‘very positive,’’ and (2) arousal on a 7-point scale from ‘‘low arousal’’ to ‘‘high arousal.’’ In the emotion categorization

task, participants categorized each facial expression stimulus according to one of the six classic emotions if, and only if, they

perceived that the facial movement accurately represented that emotion message—i.e., corresponded with their prior knowledge

of facial expressions of the emotion message. If the participant selected an emotion label, they also rated the intensity on a 5-point

scale from ‘‘very weak’’ to ‘‘very strong.’’ If the participant perceived that the facial movement did not accurately represent any of the

emotion messages, including if it represented a compound/blended emotion message such as ‘‘happily disgusted,’’2 they selected

‘‘don’t know.’’ Therefore, we explicitly used a behavioral task that does not force participants to select unrepresentative facial
Current Biology 32, 200–209.e1–e6, January 10, 2022 e2



ll
OPEN ACCESS Report
expressions as representing emotion messages—i.e., building artificial relationships between stimuli and perceptions (e.g., see Rus-

sell96 for discussion)—and thus enables participants to separate the facial expressions that are representative of these emotion mes-

sages from those that are not, based on their prior knowledge of the external world (see Jack et al.3,41 and Chen et al.97,98 for vali-

dation examples; see also Darwin68 and Ekman et al.99 for similar applications, but see also Russell96 for discussion on task

demands). Note that facial expressions observed in the real world do not necessarily reflect the internal states of ex-

pressers.17,33,100,101 Thus, in modeling facial expressions of emotion messages—e.g., ‘‘disgust,’’ or ‘‘negative valence, high

arousal’’—we do not assume that such messages necessarily reflect the internal emotional states of expressers. Similarly, although

human facial movements can serve multiple functions—including displaying internal emotional states that can benefit both pro-

ducers102 and receivers,1,32 communicating social messages to others17,103,104 (e.g., back channeling), or serving physiological

needs (e.g., sneezing, chewing, squinting)—here, we specifically examine the relationship between facial movement stimuli and

receiver perceptual responses, not the relationship between internal emotion states and external facial displays.

In each experiment and all perceptual tasks, each facial expression played once for a duration of 1.25 s followed by a black screen.

We instructed participants to respond quicky based on their first impressions and to use a mouse-operated Graphic User Interface

(GUI) to register their responses. Participants could respond only after the facial expression stimulus had finished playing and had

unlimited time to respond. After response, the next trial started. In the emotion categorization task, we randomized the order of

the trials across the experiment for each participant. In the dimensional rating task, we blocked the two tasks of rating valence

and arousal, counterbalanced the order of the blocks across participants, and randomized the order of the trials within each block

for each participant. In both the emotion categorization task and the dimensional rating task, we divided the trials into separate ses-

sions of 200 trials, with each session split into 4 sets of 50 trials and each set separated by a short break. After three consecutive

sessions of 200 trials, participants took a required break of at least 1 hour. Note that the task included specific response op-

tions—i.e., the six classic emotion categories and dimensions of valence and arousal—rather than free response options or an exten-

sive list of emotion categories and dimensions to avoid combinatorial explosions and the curse of dimensionality, thus enabling appli-

cation of this data-driven method (e.g., see Jack and Schyns34 for discussion). Future work will examine whether and how other

socially relevant dimensions are transmitted by facial movements, their relative contributions to perceptual response outcomes,

and their potential multiplexing with categorical information (e.g., see Fontaine et al.,52 Oosterhof and Todorov,105 and Hess et al.106).

Experiment II
Stimuli

In a separate within-subjects designed experiment, we generated a further 1200 random facial expressions using the same stimulus

generation procedure described above (see Figures 1B and 1C, and Modeling facial signals of emotion information—STAR

Methods). We displayed each facial expression on a randomly generated face identity of the same ethnicity as participants (white,

600 females, 600 males aged 20–40 years) using a face identity generator that is based on high resolution 3D captures of real people

and has a high fidelity generative capacity (see Zhan et al.43). As with the other experiments, we included face identities of the same

ethnicity as participants (white) to control for the potential effects of other-ethnicity perception. Future work will examine whether and

how the perceiver’s culture and the ethnicity of face stimuli each influence the perception of facial expressions as categorical and/or

dimensional signals.

Perceptual task procedure

We used the same perceptual task procedure as in the two other experiments. Each participant viewed a randomly generated facial

expression and interpreted it according to one of three pre-assigned tasks: (1) categorize according to one of the six classic emo-

tions—i.e., "happy," "surprise," "fear," "disgust," "anger" or "sad"—if, and only if, the participant perceived that the facial expression

accurately represented the emotion message, or "other" if they perceived that it did not, including blended/compound emotions;2 (2)

rate by valence on a 7-point scale from "very negative" to "very positive;" and (3) rate by arousal on a 7-point scale from "low arousal"

to "high arousal." We used the same stimulus display and response conditions and as described above. Participants used a chin rest

to maintain a constant viewing distance of 47cm, with stimuli subtending 14.42� (vertical)3 8.80� (horizontal) of visual angle (average

stimulus size 11.89 cm 3 7.23 cm), reflecting the average size of a human face during typical social interaction.95 Each participant

viewed the same 1200 facial expression in each of the three tasks, presented in random order within each task. We blocked the three

tasks into two main blocks—emotion categorization and dimensional ratings—and counterbalanced the order of these two blocks

across participants. Within the dimensional rating block, we further blocked and randomized the order of the valence and arousal

tasks across participants. In each of the three tasks, we divided the trials and structured breaks in the sameway as described above.

QUANTIFICATION AND STATISTICAL ANALYSIS

Experiment I
Facial expression modeling procedure

Tomodel the facial expression signals that elicit the perception of emotion categories and, separately, dimensions, we used the non-

parametric statistical method of mutual information (MI11), whichmeasures the statistical dependence between two variables—here,

an AU and the participant’s emotion category perceptual response—without assumptions about the linear or non-linear nature of the

relationship.
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A. Emotion categories. To model facial expression signals of the six classic emotion categories, we computed MI between each

Action Unit (either present or absent on each trial) and each of the participant’s emotion category perceptual responses, rep-

resented as a binary coding (i.e., "happy" versus "not happy"). A highMI value indicates that the AU is strongly associated with

(i.e., predicts) the participant’s emotion category perceptual response; a lowMI value indicates aweak association.We pooled

trials across intensity ratings to derive a facial expression model that is not specific to intensity. To determine statistical sig-

nificance, we used a non-parametric permutation test and the method of maximum statistics to correct for multiple compar-

isons.107 Specifically, we randomly shuffled the participant’s perceptual responses, re-calculated the MI value for each AU,

and took the maximum MI value across all 42 AUs. We repeated this procedure for 1,000 iterations to derive a distribution

ofmaximumMI under the null hypothesis that the presence of the AU is independent of the participant’s perceptual responses.

We rejected this hypothesis for AUs with MI values above the 95th percentile (Family-Wise Error Rate [FWER] over 42 AUs, p <

0.05, one-tailed). We applied this procedure to the data of each participant, resulting in a total of 360 facial expression models

(60 participants x 6 emotion categories). Each facial expression model is represented as a 1 3 42-dimensional binary vector

that details the AUs significantly associated with the participant’s emotion category perceptual responses. Specifically, each

vector element represents one of the 42 individual AUs and is coded as 1 or a 0 according to whether the AU is statistically

significantly associated with the participant’s emotion category perceptual response—e.g., "happy." For example, a facial

expression model of "happy" that is composed of lip corner puller (AU12), cheek raiser (AU6), and brow raiser (AU1-2) would

be represented as a binary vector by coding the vector elements associated with these AUs as 1 and all other elements as 0,

thus producing a specific pattern of 1 and 0-coded vector elements. Representing each facial expressionmodel—i.e., each AU

pattern—in a common vector space thus enables objective comparisons. Figure S1A shows the results as color-coded

matrices and corresponding face maps below.

B. Dimensions of valence and arousal. We used a similar procedure to model the facial expression signals that elicit the percep-

tion of the dimensions of valence and arousal. First, we measured the MI between each AU and the participant’s dimensional

rating responses for valence and arousal separately, and determined statistical significance using a non-parametric permu-

tation test and the method of maximum statistics to correct for multiple comparisons107 (Family-Wise Error Rate [FWER]

over 42 AUs, p < 0.05, one-tailed). Next, for each AU with a significantly high MI value, we measured the point-wise mutual

information (PMI) between the AU and each level of rating response—for example, "high arousal"—to reveal the specific

AU-response relationship that underlies the overall MI value. A positive PMI value indicates that the presence of an AU

(e.g., upper lid raiser, AU5) increases the probability of observing a specific response (e.g., "high arousal"). A negative PMI

value indicates that the AU (e.g., lip corner puller-cheek raiser, AU12-6) decreases the probability of observing a specific

perceptual response (e.g., "very negative" valence). To ensure enough trials for each rating level, we first re-scaled each par-

ticipant’s responses from 7 to 5 bins by iteratively combining the smallest neighboring ratings. After computing PMI, we es-

tablished statistical significance using the same non-parametric permutation test described above and a two-tailed test to

identify AUs that are associated, positively (above 97.5th percentile) or negatively (below 2.5th percentile; p < 0.05, two-tailed),

with each level of valence and arousal for each participant separately. This resulted in a total of 400 facial expression models

each for valence and arousal (40 participants x 5 levels of rating x 2 positive/negative associations; see Figure S1A, center and

right panels, for results summed across participants). Finally, we built a 2-dimensional valence-arousal space of facial expres-

sion signals by building a facial expression for each of the 25 (i.e., 53 5) valence-arousal level combinations. For each of the 25

valence-arousal level combinations, we cross-combined in a pairwise manner all positively associated AUs across the two

dimensions and removed any negatively associated AUs (see Figure S1B for an illustration). Notably, while most AUs elicit

the perception of either valence or arousal, some AUs elicit the perception of valence and arousal—for example, nose wrinkler

(AU9) is positively associated with "high arousal" and "negative valence" perceptual responses. We therefore restricted these

AUs to these specific cells—e.g., nose wrinkler (AU9) only appears in "high arousal, negative valence" cells but never in "high

arousal, positive" cells. We applied this procedure to the data collected from each individual participant, resulting in 40 such

53 5 valence-arousal facial expression signal spaces, thus resulting in a total of 1000 facial expressionmodels (40 participants

x 25 valence-arousal combinations). Each facial expression model is represented as a 1 3 42-dimensional binary vector that

details the AUs significantly associated with the participant’s dimensional responses. Figures 2B and S1B show the results

displayed as face maps with results summed across 40 participants and normalized per face map for visualization purposes.

Facial expression mapping procedure

To examine whether facial expression signals of the six classic emotion categories are embedded into the valence-arousal dimen-

sional space, we computed the pairwise correlation between facial expression signals of the emotion category (e.g., "happy") of each

participant and facial expression signals of each valence-arousal dimensions of each participant. Specifically, we obtained six facial

expression models—i.e., one for each emotion category—for each participant in the emotion categorization task, and 25 facial

expression models—i.e., one per 5 valence levels x 5 arousal levels—for each participant in dimensional rating task (see Facial

expression modeling procedure—STAR Methods). Each facial expression model is represented as a 42-dimensional binary vector

as described above. We then computed the correlation between each facial expression model from the emotion categorization task

(6 emotions x 60 participants = 360 in total) and each facial expression model from the dimensional rating task (5 valence levels x 5

arousal levels x 40 participants = 1000 in total). The Pearson correlations between each pair of binary vectors thus measures the sim-

ilarity of their AU patterns. This generated 2400 correlation values for each of the six emotions in each cell of the valence-arousal
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space (60 facial expression models per emotion category x 40 facial expression models per dimensional message). We then aver-

aged these 2400 values to obtain an overall similarity measure between the facial expression models of each emotion category and

each cell of valence and arousal space.

To test the generalization of the facial expression signal mapping results with the six classic emotion categories, we mapped a

broader set of facial expression models of 19 complex emotion categories3 onto the facial expression models of valence-arousal

dimensions. Specifically, we measured the average similarity (i.e., Pearson correlation) between all facial animations categorized

as a given complex emotion (e.g., "delighted") in the experiment (minimum 370 trials, maximum 6383 trials, median 1975 trials

per emotion label across all complex emotions) and each of the 40 facial expression models in each cell of the valence-arousal

dimensional space. This produced a pattern of correlation values distributed across the valence-arousal space for each complex

emotion category (see Figure S1C for results). The systematic mapping observed validates the embedding of the facial expression

signals of emotion categories into those of dimensions.

Validation of facial expression mappings

To validate the facial expression signal mappings, we compared the correlation pattern derived for each emotion category to the

location of the corresponding emotion word. First, we extracted the average (mean) and standard deviation valence and arousal rat-

ing of each emotion word from an existing word corpus44 obtained from English speaking participants using a 9-point rating scale.

We then projected the 9-point ratings onto a 5-point scale to equate it with the valence-arousal space. Next, we plotted each emotion

word into the valence-arousal space using the average and standard deviation values. Figure 2C shows the results as black crosses.

We then compared the location of the emotion word in the 2-dimensional space with the location of the maximal correlation value of

the facial expression signal (represented in Figure 2C as high saturation red)—each represented according to their distance to the

origin point (valence = 0 and arousal = 0)—by fitting a linear regression between these values for all six emotion categories. Results

showed a statistically significant association between the facial expression signal mappings and the semantic location of the corre-

spond emotion words (p = 0.0212, two-tailed). Figure 2D shows the results in red, which confirms that the mapping of the facial

expression signals of emotion categories onto those of dimensions corresponds with the semantic mapping of the emotion category

word into the valence-arousal space. For example, the emotion category word ‘‘happy’’ is rated as ‘‘positively valenced’’ with

‘‘moderately high arousal’’ and thus located in the center right of the valence-arousal space (in Figure 2C, ‘‘happy’’ subplot). Similarly,

the facial expression signals of ‘‘happy’’ correlate most strongly with those of ‘‘positive valence’’ and ‘‘moderately high arousal’’ (in

Figure 2C, ‘‘happy’’ subplot, see red squares on center right). To test the generalizability of these results, we applied the same anal-

ysis to the facial expression signals of 19more complex emotions and found similar results (p = 0.00418, two-tailed; see Figure 2D for

results, shown in blue).

Experiment II
Conditional Mutual Information analysis

To identify the individual facial movements that specifically elicit the perception of emotion (1) categories, (2) dimensions, or (3)

categories and dimensions, we used conditional mutual information (CMI), which measures the statistical relationship between

two independent variables while controlling for the effects of a third variable. For example, in measuring the relationship between a

given AU (e.g., lip corner puller, AU12) and the participants’ emotion category perceptual responses, CMI measures this relationship

while controlling for the influence of the participants’ dimensional perceptual responses, henceforth represented as

CMIðAU12;Emotion Categories j Emotion DimensionsÞ. Therefore, CMI can segregate out and thus precisely characterize the

perceptions elicited in the receiver. To do so, we computed two CMI quantities: (1) CMI between the AU and the participants’ emotion

category responses while controlling for the effects of their dimension responses, represented as CMIðAUX;Emotion Categories j
Emotion DimensionsÞ, and (2) vice versa, henceforth represented as CMIðAUX;Emotion Dimensions j Emotion CategoriesÞ. For

example, to characterize the relationship between lip corner puller (AU12) and the participants’ responses, we first compute

CMIðAU12;Emotion Categories j Emotion DimensionsÞ. Specifically, we computed the MI between each AU and the participants’

emotion category perceptual responses under eachof the twenty-fivedimensional response events, thusproducing 25 sub-CMI values

per emotion category. We then computed CMI as the weighted sum of the 25 sub-CMI values according to the probability of each

response. A high CMI value indicates a statistical relationship between AU12 and the participants’ emotion category perceptual

responses even when their dimensional responses are known (i.e., fixed, and thus controlled). We can thus infer that AU12 provides in-

formation about the participants’ emotion category perceptual responses in addition to any information it provides about their dimen-

sional responses. In contrast, a low CMI value indicates that there is no such statistical relationship—i.e., we can thus infer that AU12

does not provide information about the participants’ emotion category perceptual responses in addition to any it provides about their

dimensional responses. Next, we compute CMI in the other direction: CMIðAU12;Emotion Dimensions j Emotion CategoriesÞ using
the same procedure. As before, a high CMI value indicates a statistical relationship between AU12 and the participants’ dimensional

responses when their emotion category perceptual responses are known. We can thus infer that AU12 provides information about

the participants’ dimensional responses in addition to any information it provides about their emotion category perceptual responses.

In contrast, a low CMI value indicates that there is no such relationship—i.e., we can thus infer that AU12 does not provide information

about the participants’ dimensions responses in addition to any information it provides about their emotion category perceptual

responses. We determined the statistical significance of all resulting CMI values using a non-parametric permutation test and the

method ofmaximumstatistics to correct for multiple comparisons as described above. Therefore, by computing CMI in both directions

we obtained two CMI values for each AU corresponding to direction (1) and direction (2) that characterizes each AU in one of four ways:
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AUs with (1) high CMI in the first direction and low CMI in the second direction, referred to as ‘category signals;’ (2) low CMI in the first

direction and high CMI in the second direction, referred to as ‘dimensional signals;’ (3) high CMI in both directions, referred to as ‘multi-

plex signals,’ which can elicit the perception of both emotion categories and dimensions; and (4) low CMI in both directions, which in-

dicates that the AUdoes not provide information about the receivers’ emotion category or dimensional responses. Figure 3A shows the

three sub-sets of AUs that are statistically associated with participants’ responses, displayed as a color-coded matrix (see also Fig-

ure S3A). Figure S3B shows results confirming the AUs that do not systematically elicit the perception of emotion categories or dimen-

sions.Re-computationofCMI according to the sexof the stimulus faceand the sexof theparticipants showed results that areconsistent

with the group-level sex-pooled results, whereby the majority of Action Units comprised multiplexed signals as defined above. We

further specified the emotion categories and/or dimensional messages that each AU elicits the perception of using point-wise mutual

information (PMI),12which quantifies the contribution of each possible event—e.g., the six emotion categories—to the overall CMI value

computed above. Figure 3A shows the results as color-coded face maps; Figure S3A, center and right panels, show a detailed

breakdown.

Perceptual link—emotion categories and dimensions

Before conducting the CMI analysis as described above, we first tested for the robust finding that emotion category responses to

facial expressions correlate with (i.e., predict) dimensional responses to the same facial expressions—for example, facial expres-

sions categorized as ‘‘anger’’ are often also rated as ‘‘negative valence, high arousal.’’[6–8] To ensure enough trials for each level

of the valence and arousal ratings, we re-binned each participant’s ratings from 7 to 5 bins for valence and arousal separately by

iteratively combining the lowest occupancy bin with its lowest occupancy neighbor. Next, we represented each participant’s joint

valence and arousal ratings as a single, combined variable comprising 25 unique events—for example, where a participant rated

a facial expression as 4 for arousal and 5 for valence, the trial would be represented as a single value (e.g., ‘24’). We then computed,

for each of 20 individual participants, the statistical dependence between their emotion category perceptual responses (six possible

emotion categories) and their dimensional responses (25 possible arousal and valence events) using mutual information (MI) and es-

tablished statistical significance using a non-parametric permutation test as described above. Specifically, we randomly shuffled the

participant’s dimensional responses before re-calculatingMI for each participant and repeated this procedure for 1,000 iterations per

participant. This produced a distribution of MI values under the null hypothesis that the participant’s emotion category perceptual

responses are independent from their dimensional responses. We rejected this hypothesis for participants with MI values above

the 95th percentile of the randomly generated MI distributions (p < 0.05). Results showed, for each of 20 participants, a statistically

significant relationship between the participant’s emotion category responses and their dimensional responses, suggesting a close

link between these perceptions. Figure S2A shows the results.

We further characterized the relationship between the participant’s emotion category and dimensional responses by specifying the

range of dimensional ratings associated with each emotion category using PMI as described above. We consider PMI values for the

presence of the considered emotion response, represented as one versus the rest binary coding per emotion (e.g., ‘‘happy’’ versus

‘‘not happy’’). A high PMI value indicates that the perception of a given emotion category such as ‘‘happy’’ is associated with a given

set of dimensional responses such as ‘‘positive valence, high arousal;’’ a low value indicates that they are not related—for example,

perceptions of the emotion category ‘‘anger’’ is dis-associated with dimensional responses such as ‘‘positive valence, high arousal.’’

We computed the PMI between each of the six emotion category responses and each of the 25 valence-arousal events for each

participant separately. Figure S2A center panel shows the results for each emotion category, averaged across participants. Results

characterized each emotion by specific location in the valence and arousal space. For example, facial movements categorized as

"happy" are also primarily rated as positively valenced, ranging from low to high arousal and rarely rated as negative valence. In

contrast, facial movements categorized as "disgust" are primarily rated as negatively valenced, ranging from low to high arousal

and rarely perceived as positively valenced. A visual inspection of these distribution patterns suggests that the perception of

each emotion category is associated with a specific range of valence and arousal ratings, thus forming distinct patterns. To test

this formally, we measured the pairwise similarities between the patterns of positive relationships of each of the six emotion cate-

gories using standard Euclidean distance. Figure S2B shows the results. As shown by these similarity values, each emotion category

response is associatedwith a distinct pattern of dimensional responseswith overlap between ‘‘disgust’’ and ‘‘anger,’’ as is commonly

reported.13,108–110 In sum, analysis of the participants’ perceptual responses shows that facial expressions perceived as an emotion

category such as ‘‘happy,’’ ‘‘anger,’’ or ‘‘sad’’ are also systematically perceived according to a specific range of dimensions such as

‘‘low to high arousal, positive valence,’’ ‘‘low to high arousal, negative valence,’’ or ‘‘low arousal, negative valence,’’ respectively.

These similarity distribution patterns also closely mirror the patterns of facial movements of emotion categories embedded into

the valence-arousal facial movement space (see Figure 2B). Together, these results demonstrate the close relationship between

the perception of emotion categories and dimensions, thereby mirroring existing work.51–53
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