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Abstract

A continuing challenge in modern medicine is the identification of safer and more efficacious

drugs. Precision therapeutics, which have one molecular target, have been long promised

to be safer and more effective than traditional therapies. This approach has proven to be

challenging for multiple reasons including lack of efficacy, rapidly acquired drug resistance,

and narrow patient eligibility criteria. An alternative approach is the development of drugs

that address the overall disease network by targeting multiple biological targets (‘polyphar-

macology’). Rational development of these molecules will require improved methods for pre-

dicting single chemical structures that target multiple drug targets. To address this need, we

developed the Multi-Targeting Drug DREAM Challenge, in which we challenged participants

to predict single chemical entities that target pro-targets but avoid anti-targets for two unre-

lated diseases: RET-based tumors and a common form of inherited Tauopathy. Here, we

report the results of this DREAM Challenge and the development of two neural network-
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based machine learning approaches that were applied to the challenge of rational polyphar-

macology. Together, these platforms provide a potentially useful first step towards develop-

ing lead therapeutic compounds that address disease complexity through rational

polypharmacology.

Author summary

Many modern drugs are developed with the goal of modulating a single cellular pathway

or target. However, many drugs are, in fact, ‘dirty;’ they target multiple cellular pathways

or targets. This phenomenon is known as multi-targeting or polypharmacology. While

some strive to develop ‘cleaner’ therapeutics that eliminate secondary targets, recent work

has shown that multi-targeting therapeutics have key advantages for a variety of diseases.

However, while multi-targeting drugs that affect a precisely-defined profile of targets may

be more effective, it is difficult to computationally predict which molecules have desirable

target profiles. Here, we report the results of a competitive crowdsourcing project (the

Multi-Targeting Drug DREAM Challenge), where we challenged participants to predict

chemicals that have desired target profiles for cancer and neurodegenerative disease.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Despite important advances in drug development, many diseases remain partly or wholly

resistant to drug-based treatments. In recent decades, the field has attempted to address this by

developing precision therapeutics with the goal of targeting critical nodes in disease networks.

However, this approach has proven to be challenging. Most targeted therapeutics do not prog-

ress past preclinical research or clinical trials due to poor efficacy or unacceptable toxicity

[1,2]. Additional hurdles are encountered even after clinical approval. For example, initial effi-

cacy against melanoma by the BRAF inhibitors dabrafenib or vemurafenib as single-agent

therapeutics is generally followed by emergent tumor resistance [3]. Further, based on bio-

markers only a small number of patients with metastatic tumors are eligible for these target-

driven precision therapies, and fewer still show sustained response [4].

An alternative to developing drugs with single targets is the development of polypharmacol-

ogy (multi-targeting) drugs. Many clinically approved drugs bind multiple targets (http://

ruben.ucsd.edu/dnet) [5,6], and in some cases the drug is improved by these secondary activi-

ties. For example, vandetanib, a drug used in RET-dependent medullary thyroid cancer

(MTC), has a broad range of kinase targets that include RET, VEGFR, etc. [7]; pre-clinical

studies suggest that some of these secondary targets can contribute to drug efficacy (e.g., [8,9]).

Toxicity is also an important consideration in multi-targeting drug activity. For example, ima-

tinib’s side effects—including inhibition of proper bone remodeling—are likely due to multi-

ple ‘off-targets’ of imatinib [10]. Developing optimized polypharmacology-based drugs

remains a challenge as there are few roadmaps for predicting compounds that safely combine

beneficial targets (‘pro-targets’) while avoiding ‘anti-targets’ (direct targets that are liabilities in

the context of a specific assay) in a single molecule.
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landing page (www.doi.org/10.7303/syn8404040).

Code and Data availability Zhaoping Xiong’s top-

performing method is available in a Github

repository: https://github.com/xiongzhp/

FusedEmbedding. The final embedding data used

for this method are available at: https://raw.

githubusercontent.com/xiongzhp/

FusedEmbedding/master/data/kinase_seq_

embedding.csv Instructions for running the

method can be found here: https://github.com/

xiongzhp/FusedEmbedding/blob/master/

REPRODUCING.md. Team DMIS-MTD’s top-

performing method is available at: https://github.

com/dmis-lab/ReSimNet https://www.synapse.org/

#!Synapse:syn20545440 Instructions for running

this method can be found at: https://github.com/

dmis-lab/ReSimNet/blob/master/README.md.

Chemical fingerprints and final embedding data

used by team DMIS-MTD are available on the

Challenge workspace: https://www.synapse.org/#!
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the implementation and results of these two

methods as well as all other submitted methods

can be found in the Supplemental Methods. Post
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Current approaches to predict multi-target compounds range from ‘physics-based’ methods

that directly predict binding affinities, to ‘omics-based’ approaches utilizing large datasets such

as those including side-effects or gene expression profiles [11–15]. Notably, recent advances in

machine learning architectures have allowed the development of more effective methods relying

on both physics-based and omics-based approaches [16,17]. For example, a generative tensorial

reinforcement learning (GENTRL) model was used to design a small-molecule with optimal

biological activity for the discoidin domain receptor 1 (DDR1) with desirable pharmacokinetic

properties in just 21 days [18]. However, several limitations remain: current methods often (i)

identify frequent binders or obvious compounds, (ii) fail to discriminate activities among close

analogs, or (iii) identify small molecule inhibitors of ‘promiscuous kinases’ (e.g., DDR1 [19])

that are inherently easier to target. Notably, exploration of the full chemical space—estimated

between 1024 and 1060 structures—still remains a tremendous challenge: known binders of, e.g.,

the kinome together address a limited set of chemical scaffolds [20].

Rational polypharmacology will require an improved ability to predict chemical structures

that specifically target optimized target sets. To identify better computational strategies for this

problem, we developed the Multi-Targeting Drug DREAM Challenge [21]. In this challenge,

we challenged participants to predict single chemical entities that target pro-targets but avoid

anti-targets for two unrelated diseases: RET-based tumors and an inherited form of Tauopa-

thy. Exploring each disease, we used a Drosophila ‘dominant genetic modifier screen’ to iden-

tify mediators of Drosophila RETM955T-mediated transformation and of Tau-mediated

dysfunction, two well-characterized models of human disease [22,23]. Although Drosophila-

based screening platforms provide an imperfect model of human disease, we have previously

used them to help identify effective pharmacologic interventions for RET-driven, colorectal,

and adenoid cystic cancers [8,24,25]. The resulting functional suppressors and enhancers of

RET-driven transformation provide a useful ‘roadmap’ towards an ideal profile of a lead poly-

pharmacological therapeutic.

We used data from our dominant genetic modifier screens to identify suppressors (candidate

‘pro-targets’) and enhancers (candidate ‘anti-targets’) for RET- and TAU-based disease. We

publicly posted this data, challenging the community to develop computational approaches

with improved ability to predict single chemical structures that successfully inhibit pro-targets

while avoiding anti-targets. Here, we report the development of two artificial neural network-

based machine learning approaches that were applied to the challenge of rational polypharma-

cology. Together, these platforms provide a potentially useful first step towards developing lead

therapeutic compounds that address disease complexity through polypharmacology.

Results

Rational development of drugs that act through polypharmacology will require identifying (i)

pro-targets that, as a group, are predicted to be effective in addressing a disease network, and

(ii) anti-targets that are predicted to act as liabilities either due to reduced disease efficacy or

increased whole body toxicity. Our work in Drosophila [22,23,26–30] identified whole body

pro-targets and anti-targets for RET-associated cancer and Tauopathy. To leverage this data, we

established the Multi-targeting Drug DREAM challenge (www.doi.org/10.7303/syn8404040)

designed to promote and assess novel rational approaches to polypharmacology (Fig 1).

Pro-targets and anti-targets

To ensure whole animal relevance, we used data from two Drosophila models. To model RET-

dependent oncogenic transformation, we used data from previous work that screened Dro-

sophila GMR-RETM955T and ptc>RETM955T cancer models [22,23]. Broad genetic screening
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identified multiple key ‘pro-targets’ defined as ‘dominant genetic suppressors’ of

GMR-RETM955T-mediated transformation including Drosophila orthologs of BRAF, SRC, and

S6K. Candidate ‘anti-targets’—genetic loci that, when reduced, acted as ‘dominant genetic

enhancers’ of RETM955T-mediated transformation—include MKNK1, TTK, ERK8, PDK1, and

PAK3. Given its central role, we also included RET as a pro-target.

To provide a second independent test for compound predictions, we used data recently

generated in a screen of a previously-described inherited Drosophila Tauopathy model [26–

30]. Expressing the human disease isoform TAUR406W exogenously in a transgenic Drosophila

line led to nervous system defects and animal lethality [26–30]. Genetic screening of most of

the Drosophila kinome identified several dominant genetic suppressors of TAUR406W. For

example, reducing the activity of the Drosophila orthologs of AURKA, PAK1, FGFR1, or

STK11 suppressed TAUR406W-mediated fly lethality; these loci represent candidate therapeutic

targets. Conversely, reducing activity of PAK3, MAP3K7, or PIK3CA enhanced TAUR406W-

mediated lethality, indicating they should be avoided by candidate therapeutics.

We used these two sets of data as benchmarks for computation-based compound predic-

tions: ideal therapeutic leads would inhibit most or all pro-targets while exhibiting minimum

activity against anti-targets.

Participation and performance

The challenge had 190 registered participants. Of these registrants, 34 submitted predictions,

either as a part of one of 5 teams or as individuals. 10 prediction sets were submitted for

Fig 1. Multi-targeting drug DREAM Challenge overview. This challenge sought to identify new algorithms for the identification of multi-targeting

drugs that bind disease-relevant targets and avoid disease-specific anti-targets. Participating teams used a broad array of different datasets and

computational approaches to develop these methods. They were then asked to use these methods to predict small molecules that would bind to RET-

driven cancer targets and anti-targets (Problem 1, P1) as well as Tauopathy targets and ant-targets (Problem 2, P2). A shortlist of these predicted

molecules were then experimentally validated (Kd determination) as binders or non-binders of P1 and P2 proteins. Finally, the submitted

compounds were scored using a combination of criteria including selectivity, novelty, patentability, and drug-like properties to identify the top

performing teams.

https://doi.org/10.1371/journal.pcbi.1009302.g001
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Problem 1, and 8 prediction sets were submitted for Problem 2. Each prediction was scored

using the rubric described in Table 1 (see Materials and Methods for additional details).

Problem 1: Prediction of multi-targeting compounds for RET-driven

cancers

Problem 1 asked participants to predict molecules that bound the RETM955T-associated cancer

pro-targets RET[M918T], BRAF, SRC, S6K, and did not bind the anti-targets MKNK1, TTK,

ERK8, PDK1, and PAK3. Of the 10 prediction files submitted, two of the predictions had the

same top-ranked molecule and, therefore, 9 compounds were selected by the challenge orga-

nizers for experimental evaluation. S1A Fig shows that while most of the submitted com-

pounds had no similar molecule submitted by another team (Tanimoto similarity >0.5), the

few similar submitted molecules were mostly predicted by the same method/team.

Binding evaluation revealed that the majority of predicted compounds (7/9) did not bind

any of the pro-targets at 10 μM or any of the anti-targets at 30 μM (S1 Table). Two compounds

were observed to significantly bind one or more pro-targets: ZINC98209221 and

ZINC40900273 (Figs 2 and 3). ZINC98209221 was observed to significantly bind all 4 pro-tar-

gets, while avoiding 2 of the 5 anti-targets. Of the remaining 3 ‘bound’ anti-targets, the Kd was

larger than that of the pro-targets, indicating that ZINC98209221 displayed a lower binding

affinity for the Problem 1 anti-targets as compared to the pro-targets. The other compound in

Fig 3, ZINC40900273, only significantly bound one of 4 pro-targets (BRAF) but avoided all 5

anti-targets.

Problem 2: Prediction of multi-targeting compounds for Tauopathy

Problem 2 asked participants to predict compounds that bind the Tauopathy pro-targets

AURKA, PAK1, FGFR1, and STK11 and avoid the Tauopathy anti-targets PAK3, MAP3K7,

and PIK3CA. Eight compounds were selected for experimental testing. Kinase binding assays

indicated that 6 of 8 of the predicted compounds did not bind any of the pro-targets or anti-

Table 1. Scoring guidelines for Problems 1 and 2. Starred targets indicate that binding or avoiding that target was a

requirement to receive target-based points.

Criteria Points Awarded

Problem 1
Binds RET[M918T)] 5

Binds BRAF, SRC, S6K 1, 3 or 9 if binding 1, 2 or 3 of these targets

Avoids MKNK1� 3

Avoids TTK, ERK8, PDK, PAK3 1, 2, 3, or 4 if it avoids 1, 2, 3, or 4 of these targets

Problem 2
Binds AURKA� 5

Binds PAK1� 5

Binds FGFR1, LKB 1 or 3 if binding 1 or 2 of these targets

Avoids PAK3� 3

Avoids MAP3K7� 3

Avoids PIK3CA 1

Predicted to enter CNS 3

Both Problems
Novelty 2

Ability to Patent 2

Drug-like molecule 3

https://doi.org/10.1371/journal.pcbi.1009302.t001
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targets at 30 μM (S2 Table). Two compounds were observed to bind one or more pro-targets:

ZINC3938668 and ZINC538658 (Figs 3 and 4). S1B Fig recapitulates the finding from Problem

1 in Problem 2—most of the submitted compounds had no similar molecule submitted (Tani-

moto similarity >0.5) and when similar molecules were submitted, they were generally pre-

dicted within a single method and not across different teams.

The molecule predicted by Zhaoping Xiong, ZINC3938668, bound 3 of 4 pro-targets at

10 μM: AURKA, PAK1, and STK11. However, this molecule also bound 2 of 3 anti-targets at

10 μM: PAK3 and MAP3K7. Similarly, the predicted molecule from team DMIS-MTD,

ZINC538658, bound 3 of 4 pro-targets at 10 μM: AURKA, FGFR1, and STK11, and 2 of 3 anti-

targets at 10 μM: PAK3 and MAP3K7.

Overall performance and methods summaries

To identify the top participants, we used the scoring algorithm described in Table 1. This algo-

rithm considered multiple factors including binding of targets and avoiding anti-targets as

well as fulfilling novelty, patentability, and drug-likeness criteria to derive a numerical score.

The top teams for both Problem 1 and Problem 2 were identical: Zhaoping Xiong and

DMIS_MTD, with 16 points each for Problem 1, and 11 and 9 points for Problem 2, respec-

tively (Table 2). The remaining teams received points for novelty, patentability, and drug-

Fig 2. Kd values of experimentally tested candidates from Problem 1. A heatmap indicating the Kds of all

compounds tested in Problem 1. The best binder of the pro-targets (ZINC98209221) was predicted by two different

teams.

https://doi.org/10.1371/journal.pcbi.1009302.g002
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likeness criteria, but the compounds predicted by these teams failed to meet binding criteria to

receive points. Therefore overall top-performers for the challenge were Zhaoping Xiong and

DMIS_MTD, with overall scores of 28 and 25, respectively (Table 2).

Across the 10 participating teams a variety of approaches were employed to arrive at a set of

predicted compounds for Problems 1 and 2 (Table 3 and S1 Methods). The majority of these

Fig 3. Compounds with activity against Problem 1, 2 targets. “Submitter or Team” indicates the team that identified the compound as a solution to

Problem 1 (top) or Problem 2 (bottom) as indicated. “Chemical ID” is the ZINC identifier for the molecule. “Structure” is a two-dimensional

representation of the molecule. “InChIKey” is the hashed InChI for the molecule. Strikingly, two teams identified the same molecule as a solution for

Problem 1.

https://doi.org/10.1371/journal.pcbi.1009302.g003
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methods utilized multiple steps including (i) combining structure- and ligand-based

approaches, (ii) applying one or more machine learning/classification algorithms, (iii) use of

other computational approaches such as filtering, ligand docking, or creation and application

of confidence scoring metrics to identify compounds for the two problems, or (iv) manual

selection of the top candidates. Importantly, some teams used fully automated methods, while

others used approaches that required several manual curation steps. While the majority of

Fig 4. Kd values of experimentally tested candidates from Problem 2. A heatmap indicating the Kds of all

compounds tested in Problem 1. ZINC3938668 and ZINC538658 bind a subset of the pro-targets, and also both bind 2

of the three anti-targets.

https://doi.org/10.1371/journal.pcbi.1009302.g004

Table 2. Challenge scoreboard. “Submitter or Team” indicates which team was scored. The “Problem 1” and “Problem 2” scores indicate each team’s performance in the

two problems as scored using the criteria described in Table 1. “Interactome” indicates whether the team participated in a text-mining exercise to facilitate team interaction

for bonus points. “Final Points” indicates the final score for each team.

Submitter or Team Problem 1 Problem 2 Interactome Final Points

Zhaoping Xiong 16 11 TRUE 28

DMIS_MTD 16 9 FALSE 25

Lasige-BioISI—Multi-target Drug Designing 7 7 TRUE 15

SuperModels 7 7 FALSE 14

Huiyuan Chen 7 7 FALSE 14

Masahiro Mochizuki 7 7 FALSE 14

David Koes 7 7 FALSE 14

Gregory Koytiger 7 7 FALSE 14

UM-BISBII 8 FALSE 8

Stratified 7 FALSE 7

https://doi.org/10.1371/journal.pcbi.1009302.t002

PLOS COMPUTATIONAL BIOLOGY Crowdsourced identification of multi-target kinase inhibitors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009302 September 14, 2021 8 / 19

https://doi.org/10.1371/journal.pcbi.1009302.g004
https://doi.org/10.1371/journal.pcbi.1009302.t002
https://doi.org/10.1371/journal.pcbi.1009302


teams utilized one or more machine learning approaches, the two top-performing teams spe-

cifically relied on neural network-based approaches to identify the best compounds for Prob-

lem 1 and 2 (Fig 3). We therefore examined these two approaches more closely to identify key

similarities and differences.

Top performing teams

The two teams that were most effective at predicting binding of pro-targets and avoidance of

anti-targets both used artificial neural network approaches. Method 1 (Zhaoping Xiong) used

features derived from the protein and small molecules. Method 2 (Team DMIS_MTD) relied

on transcriptional responses in combination with chemical features of the drug, with a post

processing step that included docking.

Method 1 used a graph convolutional neural network deep learning approach [31,32] to

predict candidate bioactive compounds (Fig 5). Ligand-based models are constrained when

testing is done with just a few bioactive compounds. To build a more generalizable and useful

model, this approach incorporated key features of each target kinase by converting the amino

acid sequence into a ‘word embedding’ vector of a length of 80, then trained together with

graph convolutional neural fingerprints which includes 4 layers of GRUs (Gated Recurrent

Units) as the aggregating method. In developing this method, different combinations were

used of extended connectivity fingerprints (ECFP4) of compounds with known bioactivity

data, neural fingerprints, and protein embeddings. Testing on a 10% internal hold-out test set

demonstrated that the combination of neural fingerprints and protein embeddings, which we

have termed FEMTD (Fused Embedding for Multi-Targeting Drug), performed the best, with

an RMSE of 0.414 (S3 Table).

The Method 1 researcher also made the observation that the majority of -log10 IC50 (pIC50)

training data was centered around a pIC50 of 5, making prediction of more extreme com-

pound-target pIC50 values more challenging. To address this, the method was developed as a

classification problem in which the bioactivity of training data was classified as “inactive”

(pIC50 < 5), “weak” (5< = pIC50 < 6) or “potent” (pIC50> = 6). A classification model

trained on these data was then used to predict compound classes for the targets/anti-targets

posed by the Challenge. Finally, the top predictions were manually selected based on predicted

Table 3. Methods summary table. “Computational Approach Used” describes the methods that were mentioned in each team’s writeup (see S1 Methods). “Manual Selec-

tion of Top Candidates” indicates whether a team described using a manual curation step to produce their final set of predicted compounds. “Method Data Description”

highlights the data sources and data types used by each team.

Team Computational Approach Used Manual Selection of Top

Candidates

Method Data Description

David Koes neural network yes PDB

Team Stratified ensemble gradient boosting yes pIC50

DMIS-MTD neural network yes Cmap scores

UM-BISBII dataset filtering SEA-TC algorithm

Lasige-BioISI—Multi-target Drug

Designing

random forest, support vector

machine

yes ChEMBL

Gregory Koytiger neural network ChEMBL, SwissProt

SuperModels random forest, logistic regression yes ChEMBL, Klaeger et al, Eidogen,

ExCAPE-DB

Zhaoping Xiong neural network yes Merget and Fulle et al, Uniprot

Masahiro Mochizuki random forest, logistic regression unspecified kinase inhibition assay dataset

Huiyuan Chen similarity calculations Drugbank

https://doi.org/10.1371/journal.pcbi.1009302.t003
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classes for the query targets and anti-targets. Overall, this model performed best in the Chal-

lenge (S3 Fig).

Team DMIS-MTD based Method 2 on ReSimNet [33], a Siamese neural network model

that receives the structural information of two drugs represented as 2048-bit extended connec-

tivity fingerprints (ECFPs) and predicts their transcriptional response similarity. ReSimNet

was trained on the Connectivity Map (CMap) dataset [34], which provides CMap scores of

around 260,000 drug pairs from 2,400 unique drugs. The CMap score of a pair of drugs is com-

puted based on the similarity of the observed drug-induced gene expression profiles of the two

drugs. Trained on these CMap scores of observed drug pairs, ReSimNet predicts the CMap

scores of any drug pair that includes novel compounds. ReSimNet consists of two identical

2-layer Multi-Layer Perceptrons (MLPs), and the dimension of a hidden layer and an output

layer is 512 and 300, respectively. The cosine similarity of two output vectors is considered pre-

dicted CMap scores of two compounds. The model was trained to minimize the mean squared

error between the real CMap scores and the predicted CMap scores of compound pairs using

Adam optimizer [35] with a learning rate of 0.005. The input fingerprints and the output

embedding vectors of the CMap compounds are available on the Challenge workspace (see

Code and Data availability).

Before utilizing ReSimNet to identify novel drug candidates, Team DMIS-MTD first identi-

fied several prototype drugs with kinase inhibition profiles that satisfied most of the

Fig 5. A schematic summarizing FEMTD (Zhaoping Xiong’s method). The molecule is embedded with graph neural

fingerprints and the target proteins are represented as sequences and pretrained with a language model (doc2vec) model.

These two embeddings are fused together to classify the binding affinity as inactive, weak, or potent.

https://doi.org/10.1371/journal.pcbi.1009302.g005
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Challenge’s pro-target and anti-target conditions. They used the kinase inhibition profiles

from the KInase Experiment Omnibus (KIEO) database (http://kieo.tanlab.org), which was

constructed from experimental data on kinase inhibitors. The data was curated from more

than 600 published articles (Fig 6A). ReSimNet, trained on the CMap dataset (Fig 6B), was

used to predict the transcriptional response similarity between a prototype drug and a novel

compound from ZINC15 [36] (Fig 6C). Finally, the top-ranking ZINC15 compounds were

aggregated and filtered by Lipinski’s rule, a patent search through PubChem, and a protein-

ligand docking algorithm (Fig 6D).

Translation of hits to in vivo model systems

After identifying the best-binders in the competitive phase of the Challenge, we assessed the in
vivo translatability of the in silico predicted binders from Problem 1 that were also found to

bind the P1 targets in vitro (Figs 2A and 3). We obtained and tested the compounds for their

ability to rescue viability of transgenic flies that expressed the oncogenic form of Drosophila

RET in multiple tissues (ptc>RETM955T) as previously described [23,37].

Control transgenic ptc>RETM955T (RET2B) flies fail to eclose to adulthood due to expres-

sion of the transgene (0% adult viability; S4 Fig and S4 Table). Feeding ptc>RETM955T flies

with food containing AD80 or APS6-45 (50 μM)—experimental multi-targeting kinase inhibi-

tors that reduce ptc>RETM955T lethality [23,37]—significantly increased survival to 27% and

22% mean eclosure, respectively (S4 Fig and S4 Table). Feeding with ZINC98209221 or

ZINC40900273 (1, 10, or 50 μM final food concentrations) rescued to 1–1.5% of animals,

respectively (S4 Fig and S4 Table), a number that failed to rise to statistical significance.

Ensemble modeling

As a proof-of-concept to identify candidates for future study, we devised a “wisdom of the

crowds” approach to identify consensus Problem 1 predictions of the top-performing models

by identifying the nexus of chemical space predicted by these methods. Specifically, we

obtained a larger list of top predictions from the two top-performing teams using the same

method and then determined the pairwise Tanimoto similarity (S2A Fig) between these two

sets. Using this data, we performed network analysis (S2B Fig), which allowed us to identify

subclusters of structurally similar predicted molecules within the full set of top predicted mole-

cules. We further profiled these molecules using computationally generated absorption,

Fig 6. A schematic summarizing DMIS-MTD’s method. The method was based on ReSimNet [33], a Siamese neural

network model that predicts their transcriptional response similarity of two compounds. (A) Several prototype drugs whose

kinase inhibition profiles satisfy most of the pro-target and anti-target conditions of the challenge problem were identified

using the KInase Experiment Omnibus (KIEO) database. (B-C) ReSimNet, trained on the CMap dataset, was used to predict

the transcriptional response similarity between a prototype drug and a novel compound from ZINC15. (D) Finally, the top-

ranking ZINC15 compounds are aggregated and filtered for compounds that fulfill Lipinski’s rules, a patent search through

PubChem, and a protein-ligand docking algorithm.

https://doi.org/10.1371/journal.pcbi.1009302.g006
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distribution, metabolism and excretion (ADME) metrics (S5 Table) to facilitate future prioriti-

zation of these molecules for medicinal chemistry and in vivo screening.

Discussion

One approach to overcoming the limitations of precision medicine approaches in drug devel-

opment is to develop new drugs with a goal of multi-targeting drugs that target multiple nodes

in a disease network. Developing these drugs is a challenge, as both desired targets as well as

toxic targets must be considered in the design process. One possible framework for identifying

these drugs involves the use of predictive computational modeling strategies to perform virtual

screening and identify compounds with a desirable target profile. Here, we described our

efforts to identify better computational approaches for this pharmacologic problem.

To provide a disease context to this challenge, we used a set of previously identified pro-tar-

gets and anti-targets to design two challenge problems. Problem 1 asked teams to predict mol-

ecules that bound the RETM955T-associated cancer targets RET[M918T], BRAF, SRC, S6K, and

avoided binding to MKNK1, TTK, ERK8, PDK1, and PAK3. Problem 2 asked participants to

predict compounds that bound the Tauopathy pro-targets, AURKA, PAK1, FGFR1, and

STK11 and did not bind PAK3, MAP3K7, and PIK3CA. The teams collectively identified 3

compounds for Problem 1 and 2 compounds for Problem 2 that were observed to have any

binding potency to the pro-targets. Furthermore, the same set of teams in both problems were

successful, indicating that their methods were consistently best-performing. Both of the top-

performing teams used neural networks based learning approaches. However, there were

other teams that also employed a neural network based approach but did not successfully iden-

tify any binding compounds, suggesting that the specific approach may be critical for success.

Other approaches (solely manual curation, random forest, logistic regression) were unsuccess-

ful in identifying binders, suggesting that these methods may not be well-poised to perform

well in this type of problem. In the future, it may prove valuable to explore how additional

high-dimensionality training data types—for example, high-content image-based screening

[38] or pharmacogenomic datasets [34,39,40]—can improve performance or enable the com-

munity to explore different prediction strategies and methodologies.

Another key finding was that most of the submitted methods, including the top-perform-

ing methods, required a manual curation/selection step to select the top performing com-

pounds (Table 3). The decisions and criteria that are used in manual selection can be

difficult to define or reproduce using a decision tree or other algorithm. A clear direction for

future studies is to better define the nature and rationale for these manual curation steps and

devise strategies to automate these steps. The benefits of such future work would likely be

two-fold: it would increase the reproducibility of these methods, and it could yield ensemble

methods that are more successful in identifying optimal compounds for a given set of targets

and anti-targets.

The predominant limitation of this challenge was a relatively small participant pool, which

likely resulted in constrained space of methodology. Remarkably, the top-performing methods

predicted the identical compound (ZINC98209221) as the best candidate for solving Problem

1, which is surprising given the size of the ZINC15 compound library. Furthermore, previous

DREAM Challenges have consistently demonstrated that a variety of methodologic approaches

can perform well in many different applications; therefore, it may be the case that methodolo-

gic approaches beyond neural networks may indeed be applicable to the problems defined in

this challenge, but that the implementation may need to be altered to be successful.

The other key limitation of this study was the difficulty in translating computationally pre-

dicted best binders to activity in an in vivo system. We tested the top prediction from Problem
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1 in the Drosophila RETM955 model system of RET-driven cancer but did not observe bioactiv-

ity. There are multiple possible explanations for this, such as the standard ADME challenges

faced in drug development, as well as the differences between the fly and human targets and

networks [23,41]. To ameliorate this, improvements could include increasing the scale of

experimentally tested compounds to identify a larger number of best binders, performing

more stringent computational filtering to eliminate compounds with poorer predicted bio-

availability characteristics, and performing standard medicinal chemistry and structure-activ-

ity relationship studies to identify analogues with better in vivo performance.

In the Results, we described a proof-of-concept approach to use these methods to identify

molecular candidates for future experimental validation. By leveraging a “wisdom of the

crowds” approach, we identified consensus Problem 1 predictions of the top-performing mod-

els by identifying the nexus of chemical space predicted by these methods. We subsequently

evaluated these molecules using computationally ADME metrics to facilitate future prioritiza-

tion of these molecules for medicinal chemistry and in vivo screening. With this in mind,

employing a tandem approach that leverages ensembled computational models to identify a

general region of chemical space with an appropriate polypharmacological profile, followed by

more traditional drug optimization approaches, may be a worthwhile future avenue to acceler-

ate the development of multi-targeting drugs.

Materials and methods

Challenge infrastructure

Multi-targeting Drug DREAM Challenge participants were required to submit a prediction

file following a pre-formatted YAML template that included each team’s top 5 compound pre-

dictions for each of the two problems (RETM955T1- and TAUR406W-mediated phenotypes) (Fig

1). Each prediction included a compound name, vendor name and ID, a methods description,

a rationale explaining why the approach was innovative, how the approach is generalizable,

and why top predicted compounds are chemically novel. Participants were restricted to com-

pounds that were available through a vendor listed on ZINC15 or other vendors for no more

than $250 per mg. The full set of predictions and methods descriptions provided by the Multi-

targeting Drug DREAM Challenge community is available as Supplementary Methods.

Top-performing algorithms

Detailed descriptions of all methods, including the top performing methods (Zhaoping Xiong

and DMIS-MTD) are available in the Supplementary Methods file. Additional resources (e.g.

final protein embeddings used) for each method can be obtained as described in the Code and
Data Availability section.

In vitro testing

Compounds were purchased and delivered to a contract research organization for experimental

testing of binding to the target and anti-target kinases defined for Problems 1 (Fig 2) and 2 (Fig

4). Binding was evaluated using the DiscoverX KinomeScan profiling service. In brief, this

method evaluated the ability of the predicted compounds to compete with a bead-immobilized

ligand for the active sites of DNA-tagged kinases from Problem 1 and Problem 2. Kinases

bound to the immobilized ligand were exposed to a broad range of concentrations of the predic-

tion compounds (11 doses, 3-fold serial dilutions starting at 30 μM of compound). At each

dose, the amount of drug bound to kinase was measured by eluting the non-bead-bound DNA-

tagged kinase and performing quantification by quantitative polymerase chain reaction (qPCR).

PLOS COMPUTATIONAL BIOLOGY Crowdsourced identification of multi-target kinase inhibitors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009302 September 14, 2021 13 / 19

https://doi.org/10.1371/journal.pcbi.1009302


Scoring algorithm

Submissions were assessed using a point-based approach (Table 1). Points were awarded for

meeting multiple criteria, in which “binding” of a pro-target was a positive hit at 10 μM and

“non-binding” of an anti-target was defined as a negative result at 30 μM (S1 and S2 Tables).

For problem 1, each of the compounds submitted were awarded points for binding RET

[M918T], BRAF, SRC, and/or S6K. Compounds were also awarded points for avoiding

MKNK1, TTK, ERK8, PDK1, and/or PAK3. For problem 2: E, each of the compounds submit-

ted were awarded points for binding AURKA, FGFR1, LKB1, and PAK1 and avoiding the

anti-targets PAK3, MAP3K7 (TAK1), and PIK3CA. In addition, points were awarded for pre-

dictions for meeting other criteria including: novelty (ECFP6-based Tanimoto coefficient

<0.4 against all other ChEMBL compounds known to be active against these targets), ability to

patent (<2 hits in SciFinder database), and drug-like features (adheres to ¾ of Lipinski’s rule

of 5). In addition, for Problem 2, predictions predicted to enter the central nervous system

(polar surface area<75) were awarded additional points.

Chemical similarity calculations

Chemical similarity calculations and visualizations were performed in the R programming lan-

guage using rcdk, fingerprint, pheatmap and visNetwork packages. SMILES strings for each struc-

ture were provided by each team, and then converted to a binary fingerprint using the “standard”

method provided by the fingerprint package (a 1024-bit "path based, hashed fingerprint”). These

fingerprints were then used to generate pairwise similarity matrices using the fingerprint::fp.sim.

matrix with the method parameter set to ‘tanimoto’. Full R notebooks describing these analyses

can be found at https://github.com/Sage-Bionetworks-Challenges/Multi-Target-Challenge.

Ensemble method

Ensemble predictions were performed by generating lists of top predictions for each top-per-

forming team and assessing structural similarity as described above. We then used the Swis-

sADME [42] webapp to calculate the number of Lipinski violations, Ghose violations, Veber

violations, Egan violations, Muegge violations, PAINS alerts, Brenk alerts, and Lead-likeness

violations (S5 Table). For each compound, we assigned a score of 1 for each value without a

violation or alert, or a score of 0 otherwise. We then summed these values to create a compos-

ite score where a larger score indicates fewer applicable violations/alerts to prioritize com-

pounds for in vivo screening.

In vivo validation

Female UAS-RETM955T virgins were mated to ptc-GAL4 males to generate ptc>RETM955T prog-

eny. Progeny were grown at 25˚C and compounds were tested by feeding larvae at three doses:

10 μM, 5 μM, and 1 μM final food concentration. DMSO alone served as a negative control

and the experimental compounds AD80 and APS6-45 [23,37] served as positive controls.

Using survival to adulthood (eclosure), each condition was done in quadruplicate, with 41–

110 animals tested for each drug concentration.

Supporting information

S1 Methods. Supplementary description of the methods used to generate the predictions

submitted by the Multi-targeting Drug DREAM Challenge community.

(DOCX)
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S1 Fig. Chemical similarity comparison of all submitted Problem 1 and Problem 2 solu-

tions.

(TIFF)

S2 Fig. (A) Similarity heatmap of top predicted compounds for Problem 1 provided by the

top-performing teams. Columns correspond to predictions from Zhaoping Xiong, while rows

correspond to predictions from DMIS-MTD. The majority of compounds are relatively dis-

similar from one another. (B) The similarity matrix was converted into a network, where

nodes are individual predicted compounds and edges encode compound-compound Tani-

moto similarities. Edge thickness represents similarity (thicker edges = greater similarity).

Edges representing similarity below 0.4 were filtered out, and cluster subnetworks were identi-

fied (with each color representing an individual subnetwork).

(TIFF)

S3 Fig. Recapitulating Zhaoping Xiong’s three-class classification model used for screen-

ing. (A) The distribution of pIC50; (B) The distribution of classes; (C) The accuracy of the

model across train, valid and test sets.

(TIFF)

S4 Fig. RET2B and control D. melanogaster were treated with DMSO (negative control),

two candidate RET-targeting compounds identified using top performing methods

(ZINC4020 and ZINC9820) and two positive control multi-targeting RET inhibitors previ-

ously demonstrated to rescue the RET2B model (AD80 [37], APS6-45 [23]). Bars show the

mean percent survival and error bars show the standard deviation of four replicates per condi-

tion. A Mann-Whitney test was used to assess the significance of changes to percent survival in

the varying conditions. The RET2B Adult panel (bottom right) indicates that higher concen-

trations of AD80 or APS6-45 significantly (p<0.05) rescue the RET2B model, while the two

candidate ZINC molecules have a minimal and non statistically-significant effect on percent

survival to adulthood.

(TIFF)

S1 Table. Problem 1 Results. “Submitter or Team” indicates which team was scored. “Chemical

ID” indicates the ZINC or MolPort identifier for each predicted compound. “InChIKey” indicates

the InChiKey for each predicted compound. Columns 4–12 indicate the experimentally-validated

binding constant (Kd, nanomolar) for the pro-target or anti-target listed in the column header

(>30000 nM indicates it was above the detection limit for the assay). Columns 13–16 indicate the

status of the compound with respect to the challenge rules for novelty, drug-like properties, and

likelihood to pass the CNS as defined in the challenge scoring rules. The final column indicates

the number of points the prediction was given based on the defined scoring criteria.

(XLSX)

S2 Table. Problem 2 Results. “Submitter or Team” indicates which team was scored. “Chemi-

cal ID” indicates the ZINC or MolPort identifier for each predicted compound. “InChIKey”

indicates the InChiKey for each predicted compound. Columns 4–10 indicate the experimen-

tally-validated binding constant (Kd, nanomolar) for the pro-target or anti-target listed in the

column header (>30000 nM indicates it was above the detection limit for the assay). Columns

11–14 indicate the status of the compound with respect to the challenge rules for novelty,

drug-like properties, and likelihood to pass the CNS as defined in the challenge scoring rules.

The final column indicates the number of points the prediction was given based on the defined

scoring criteria.

(XLSX)
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S3 Table. Zhaoping Xiong’s method predictive performance on regression models. A sum-

mary of the performance of various model architectures tested by top performer Zhaoping

Xiong using root-mean-square-error calculated using true pIC50 values.

(XLSX)

S4 Table. Top Problem 1 predictions fail to rescue the RET2B fly model. The RET2B model

was treated with two positive controls expected to rescue this model (AD80 and APS6-45), a

vehicle control (DMSO), and two test compounds (ZINC4090, ZINC9820) predicted by the

challenge results to rescue the RET2B model. “tx”: the treatment (compound and concentra-

tion) used; “genotype”: WT or RET2B flies; stage: class of counted animal—adult or pupae;

“mean_percent_surv”: the mean percent survival across 4 replicates; “std_dev_survival”: the

standard deviation of the percent survival across 4 replicates.

(XLSX)

S5 Table. in silico chemical modeling of Problem 1 predictions from top performers. Addi-

tional hits from top performing teams were characterized using SwissADME to identify com-

pounds with preferred absorption, distribution, metabolism, excretion, and other medicinal

chemistry properties.

(XLSX)
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