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Abstract

Recently, the World Health Organization established the Diagnostic Technical Advisory

Group to identify and prioritize diagnostic needs for neglected tropical diseases, and to ulti-

mately describe the minimal and ideal characteristics for new diagnostic tests (the so-called

target product profiles (TPPs)). We developed two generic frameworks: one to explore and

determine the required sensitivity (probability to correctly detect diseased persons) and

specificity (probability to correctly detect persons free of disease), and another one to deter-

mine the corresponding samples sizes and the decision rules based on a multi-category lot

quality assurance sampling (MC-LQAS) approach that accounts for imperfect tests. We

applied both frameworks for monitoring and evaluation of soil-transmitted helminthiasis con-

trol programs. Our study indicates that specificity rather than sensitivity will become more

important when the program approaches the endgame of elimination and that the require-

ments for both parameters are inversely correlated, resulting in multiple combinations of

sensitivity and specificity that allow for reliable decision making. The MC-LQAS framework

highlighted that improving diagnostic performance results in a smaller sample size for the

same level of program decision making. In other words, the additional costs per diagnostic

tests with improved diagnostic performance may be compensated by lower operational

costs in the field. Based on our results we proposed the required minimal and ideal diagnos-

tic sensitivity and specificity for diagnostic tests applied in monitoring and evaluating of soil-

transmitted helminthiasis control programs.
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Author summary

The World Health Organization established an advisory group to identify and prioritize

diagnostic needs for neglected tropical diseases, and to ultimately describe the minimal

and ideal characteristics for new diagnostic tests. To support this advisory group, we

developed two generic frameworks, which we applied to soil-transmitted helminthiases:

one to explore and determine the required sensitivity (probability to correctly detect a dis-

eased person) and specificity (probability to correctly detect a person free of disease), and

another one to determine the corresponding samples size and decision rules during sur-

veys. We showed that specificity rather than sensitivity will become more important when

the program approaches the endgame of elimination and that the requirements for both

parameters are inversely correlated, resulting in multiple combinations of sensitivity and

specificity that allow for reliable decision making. We also highlighted that improving

diagnostic performance results in smaller sample sizes for the same level of program deci-

sion making. In other words, the additional costs per diagnostic tests with improved diag-

nostic performance can be compensated by the lower operational costs in the field. Based

on our results we proposed to the advisory group the required performance characteristics

of diagnostic tests for soil-transmitted helminthiasis control programs.

Introduction

Recently, the Strategic and Technical Advisory Group (STAG), the principal advisory group to

the World Health Organization (WHO) for the control of neglected tropical diseases (NTDs),

decided that a single WHO working group was needed to help to identify and prioritize diag-

nostic needs [1]. One of the recommendations was that target product profiles (TPPs) for diag-

nostics were needed for soil-transmitted helminths (STHs) that would facilitate monitoring

and evaluation of soil-transmitted helminthiasis control programs [2]. Generally, these TPPs

describe the minimal and ideal characteristics, including but not limited to the sensitivity and

the specificity (see [3] for previously published TPPs).

Soil-transmitted helminthiasis is a parasitic disease caused by a group of intestinal round-

worms, including Ascaris lumbricoides (giant roundworm), Trichuris trichiura (whipworm),

Ancylostoma duodenale and Necator americanus (hookworms). In 2019, it was estimated that

they globally accounted for 1.97 million disability adjusted life years (12% of the total disease

burden attributed to NTDs [4]). Given the route of STH transmission, infections and the asso-

ciated disease burden predominantly occurs in (sub)tropical countries where transmission is

facilitated by the optimal climate conditions for larval development, poverty, and lack of both

sanitation and hygiene [4,5]. To fight the global STH-attributable morbidity, WHO recom-

mends preventive chemotherapy (PC) programs, during which a single tablet of anthelmintic

drugs (albendazole (400 mg) or mebendazole (500 mg)) is periodically administered to both

pre-school and school age children and other at-risk populations living in endemic areas. The

frequency of these large-scale deworming programs is based on whether the observed preva-

lence of STH infections (any species) exceeds a predefined program decision threshold. For

example, at the start of the program it is recommended to distribute drugs twice a year when

the prevalence is at least 50% and once a year when the prevalence is at least 20%. During the

implementation phase, the prevalence of any STH infection is periodically re-evaluated to ver-

ify whether objectives are being met, and if necessary, to adjust the frequency of drug adminis-

tration (prevalence�50%: 3x PC / year; 50%> prevalence�20%: maintain PC frequency;
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20%> prevalence�10%: 1x PC /year; 10%> prevalence�2%: 1x PC/2 years; prevalence <2%:

no PC) [6].

Traditionally, STHs have been diagnosed by detecting worm specific eggs in stool using a

compound light microscope. Since the 1990s, Kato-Katz has been the WHO recommended

diagnostic standard for quantifying eggs in stools [7], and hence it has been used to guide soil-

transmitted helminthiasis control programs. During the last decade, a variety of new diagnos-

tic tests have been introduced to the STH field, including both other microscopy-based [8–10],

and DNA-based methods [11]. Each of these tests have important advantages and disadvan-

tages over the Kato-Katz. Important advantages are a clearer microscopic view [8,9], a higher

clinical sensitivity (referring to the proportion of diseased individuals correctly diagnosed as

infected) [12,13], opportunities for automated egg counting and quality control [10,14], the

ability to differentiate hookworm species [11] and to simultaneously detect parasites other

than STHs [8,9,11]. The chief limitations of these novel tests are the need for well-equipped

laboratories with well-trained technicians, the need to transport samples to a distant labora-

tory, the higher cost of processing large numbers of samples [15,16], and the lack of standard-

ized protocols for DNA-based methods [11,17,18]. Currently, most diagnostic technologies

based on biomarkers other than eggs or DNA (e.g. antigens, antibodies and metabolites) or

other sample matrices (e.g. serum and urine) are either not yet explored or in research phase

[19–22]. As these new diagnostic technologies transit from research to routine program tools,

important consideration needs to be paid to the performance of these tools when used by

NTD programs for making public health decisions.

In the present study, we developed a generic framework to explore the impact of diagnostic

test sensitivity and specificity at the individual level on program decision making at the popu-

lation level, with the ultimate aim to better define minimum TPP sensitivity and specificity tar-

gets for diagnostic tests for PC targeted NTDs. To this end, we first explored the impact of

diagnostic sensitivity and specificity on the probability of making an incorrect program deci-

sion within a soil-transmitted helminthiasis control program: unnecessarily selecting a PC fre-

quency that is greater than indicated by the true prevalence or prematurely reducing the

frequency of PC. Subsequently, we developed a multi-category lot quality assurance sampling

(MC-LQAS) framework that incorporates imperfect test performance to determine the corre-

sponding sample size and associated decision rules.

Methods

Required sensitivity and specificity

General framework. A program decision is generally based on the outcome of an epide-

miological survey in which Ntot subjects are screened for the presence of any infection. The

observed prevalence (proportion of positive test results N+ out of Ntot, which includes both

false and true positive test results) is then compared to a program decision threshold (T).

Rather than a proportion, one can also verify whether the number of positive test results N+

exceeds T0. When we assume a diagnostic test D with a sensitivity of Sed and a specificity Spd, a

true underlying prevalence equal to Prevtrue and a sample size of Ntot, the probability observing

at least T0 positive results can be written as

P Nþ � T 0jPrevtrue; Sed; Spd; Ntotð Þ ¼
PNtot

x¼T0
Ntot

x

� �

�Probþ
x
� ð1 � ProbþÞ

Ntot � x ð1Þ

Probþ ¼ Sed � Prevtrue þ ð1 � SpdÞ � ð1 � PrevtrueÞ ð2Þ
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It is important to note that T0 is not a fixed value, rather it will be a function of the total

number of subjects screened (Ntot), the program decision threshold (T) and the diagnostic per-

formance of the test (Sed and Spd), and this can be best illustrated with a few toy examples.

Assume that we are screening 500 subjects (Ntot) with a perfect test (Sed = Spd = 100%) and the

program decision threshold T is set at 50%, then T0 equals 250. In case 1,000 subjects are

screened with a perfect test, T0 equals 500. Given the same Ntot (1,000 subjects) and diagnostic

performance but a T of 2% instead of 50%, T0 equals 20. When an imperfect diagnostic test

(Sed = 80% and Spd = 80%) is used to screen 1,000 subjects and decisions are made around a

program decision threshold T of 2%, T0 equals 212 or more generally

T 0 ¼ Ntot � ðSed � T þ ð1 � SpdÞ � ð1 � TÞÞ ð3Þ

Combining (1)–(3) allows one to explore the impact of Sed and Spd on the probability of

making an incorrect program decision around a set of program decision thresholds T. For

example, suppose 500 subjects (Ntot) are randomly selected from a population where the true

underlying prevalence equals 45% (Prevtrue) and a threshold of 50% (T) is used to make pro-

gram decisions. The probability of N+� T0, and therefore unnecessarily selecting a PC fre-

quency that is higher than indicated by the true prevalence, equals 1.4% when a perfect test

(Sed = Spd = 100%) is applied and 9.7% for an imperfect test (Sed = Spd = 80%). Similarly, one

can determine the probability of prematurely reducing the PC frequency. For example, if we

change the true underlying prevalence from 45% to 55% (Prevtrue� T), the probability of N+

< T0, and therefore prematurely reducing the PC frequency equals 1.1% (= 1 – the probability

of N+� T0) when a perfect test (Sed = Spd = 100%) is applied and 8.2% for the same imperfect

test (Sed = Spd = 80%).

Data generation. For this analysis, we fixed Ntot to 500, but varied both Sed and Spd from

60% to 100% with 1% increments (resulting in 41 x 41 theoretic diagnostic tests) and Prevtrue
from 0% to 100% with 0.2% increments. The program decision thresholds included the cur-

rently recommended thresholds for an STH control program (2%, 10%, 20% and 50%). In

addition, we included program thresholds of 1% and 5%. This is because the current program

thresholds are based on the observed prevalence using Kato-Katz thick smear, for which we

know the specificity is not 100% [23,24]. As a consequence of this, the true underlying preva-

lence might be overestimated as it approaches zero.

Analysis of generated data. To further illustrate the interpretation of the obtained data,

we worked out a toy example in Fig 1. This figure represents the probability of N+� T0 over a

wide range of Prevtrue when an imperfect diagnostic test (Sed = Spd = 80%) was applied. Given

a program decision threshold T of 50% (vertical straight line), we can deduce both the error

related to unnecessarily selecting a PC frequency that is greater than needed (εovertreat) or pre-

maturely reducing the frequency of PC (εundertreat). These errors are analogous to 1 minus the

negative predictive value and 1 minus the positive predicted value, as used in recent NTD

modelling studies on optimal program decision thresholds [25–27]. Subsequently, we can also

deduce to what extent this diagnostic test allows for reliable decision making. In the present

study, we will use two different operating definitions for ‘reliable’ based on both errors. In

both definitions, we set the highest allowed probability of prematurely reducing frequency

(Eundertreat) at 5%, whereas the highest allowed probability of falsely continuing or increasing

PC frequency (Eovertreat) was set at either 10% and 25%. Generally, a lower value for Eundertreat
is preferred as prematurely reducing PC frequency may lead to an increase in infection and

morbidity. The two values for Eovertreat allow to differentiate between both adequate (Eovertreat =

25%) and ideal (Eovertreat = 10%) program decision making scenarios. In the remainder of the

document, we will refer to (in)adequate and (less than) ideal program decision making when
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the Eovertreat is set at 25% and 10% respectively. The values for Eundertreat and Eovertreat here have

also been applied earlier to determine the sensitivity and specificity for diagnostic tests for

other helminth diseases [28].

In the toy example (Fig 1), the diagnostic test performed at εundertreat�5% when Prevtrue is

at least 55.8% and at εovertreat�25% when the Prevtrue is not higher than 47.2%. In other words,

any program decision making within the Prevtrue interval] 47.2; 55.8 [is considered inadequate

Fig 1. The general framework to determine the required sensitivity and specificity. The red line represents the

probability (in %) of the number of positive test results (N+) in a random sample of Ntot subjects (= 500) being at least

T0 (see Eq 3) based on an imperfect diagnostic test D (sensitivity (Sed) = specificity (Spd) = 80%) over a wide range of

true underlying prevalence (Prevtrue). The vertical straight line represents the program decision threshold T of 50%.

The yellow areas highlight the program errors εovertreat (Prevtrue<50%) and εundertreat (Prevtrue�50%). The horizontal

black dashed lines represent a εovertreat equal to 25% and a εundertreat equal to 5% (= 100% - 95%), the vertical red

dashed lines indicate the corresponding Prevtrue. The grey zone indicates the range of Prevtrue for which the diagnostic

test is considered inadequate to make a well-informed program decision (εovertreat>25% and εundertreat>50%).

https://doi.org/10.1371/journal.pntd.0009740.g001
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when applying this test; we will refer to this interval as the ‘grey zone’. It is expected that for a

given sample size, the grey zone narrows with higher levels of sensitivity and specificity of diag-

nostic methods. Because the width of grey zones also depends on binomial variation, and thus

on the program decision threshold itself, we quantified the grey zone for each combination Sed
and Spd and program decision threshold separately.

In order to further differentiate diagnostic tests with small grey zones from those with a

wider zone, we classified the grey zone into three levels (level 1–3) for each program decision

threshold T separately. This classification into 3 levels was based on the 25th and 75th percentile

of the width of the grey zones (level 1: width of grey zone< 25th percentile; level 2: 75th

percentile > width of grey zone� 25th percentile; level 3: width of grey zone� 75th percentile

(see S1 Table) across all potential diagnostic methods that allowed for adequate program deci-

sion making. In other words, each of these diagnostic methods allowed for adequate decision

making (Eovertreat is set at 25%) at a true underlying prevalence of zero and 100%. Finally, we

arbitrarily classified the diagnostic tests into ‘minimal’ and ‘optimal’ based on their corre-

sponding levels of grey zone across each of the 6 program decisions thresholds. Diagnostic per-

formance was considered optimal when they resulted in level 1 grey zone for at least 3 out of

the 6 program decision thresholds and did not result in a level 3 grey zone in any of the 6 pro-

gram thresholds. In all other cases, the diagnostic test was considered ‘minimal’.

MC-LQAS framework

General framework for LQAS. Lot quality assurance sampling (LQAS) is a technique to

gather the minimal amount of information required for decision making, using a sample size

as small as possible. Instead of constructing a precise estimate of a population parameter,

LQAS aims to quantify whether the population parameter is above or below some decision

cut-off c with some desired minimal probability. For STH, LQAS can be used to verify whether

the observed number of positive test results (N+) in a random sample (Ntot) equals or exceeds a

predefined decision cut-off c [29,30], followed by continuing the current PC frequency if this

is the case, and reducing the PC frequency in all other cases. The sample size Ntot and the cor-

responding decision cut-off c are chosen to satisfy two conditions. The first is that for some

prevalence Prevtrue less than the program decision threshold T (Prevtrue<T), the probability

εovertreat to select a PC frequency that is higher than indicated by the true underlying preva-

lence does not exceed the target probability Eovertreat. The second condition is that for some

Prevtrue equal or above the program decision threshold T (Prevtrue�T), the probability εundertreat
to prematurely reduce the PC frequency is not higher than Eundertreat. Based on Eqs (1)–(3)

one can write these conditions as

P Nþ � cjPrevtrue<T; Sed; Spd; Ntotð Þ ¼
PNtot

x¼c
Ntot

x

� �

�Probþ
x
� ð1 � ProbþÞ

Ntot � x� Eovertreat ð4Þ

P Nþ < cjPrevtrue�T; Sed; Spd; Ntot

� �
¼
Pc� 1

x¼0

Ntot

x

� �

�Probþ
x
� ð1 � ProbþÞ

Ntot � x� Eundertreat ð5Þ

where Prob+ equals Sed�Prevtrue<T+(1−Spd)�(1−Prevtrue<T) in (4) and Sed�Prevtrue�T+(1−Spd)�(1
−Prevtrue�T) in (5).

Process to determine the decision cut-off c within LQAS. Fig 2 further illustrates the

process to determine the appropriate decision cut-off for two theoretical diagnostic tests. In

this example, we determined the decision cut-off c for a sample size of 500 subjects (Ntot)

that allowed for Eovertreat�25% and Eundertreat�5% at a Prevtrue<T arbitrarily set at 45% and at a

Prevtrue�T arbitrarily set at 55% (program decision threshold T = 50%), respectively. To
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contrast the findings, we determined c for both a perfect (Sed = Spd = 100%) and an imperfect

test (Sed = Spd = 80%).

For both theoretical diagnostic tests there is a range of possible values for c. For a perfect

test (Sed = Spd = 100%) any value between 233 (Fig 2B) and 257 (Fig 2A) can be used, whereas

for an imperfect test (Sed = Spd = 80%) the range of possible values is narrower, only ranging

from 244 (Fig 2E) to 247 (Fig 2D). This reduction in options of c for an imperfect test is also

reflected in panels representing the probability the number of positive test results (N+) in a

random sample of Ntot subjects being at least c over a wide range of true underlying prevalence

(Prevtrue) (Fig 2C and 2F). Where both lines are almost overlapping for an imperfect test, there

is a shift in Prevtrue of 5-point percent between both lines for a perfect test.

Expansion of framework to MC-LQAS. In STH control programs decisions are made

around multiple program decision thresholds, and hence a MC-LQAS (based on multiple deci-

sion cut-offs) would be more appropriate. In 2012, Olives et al. described the mathematical

underpinnings of a multi-category LQAS for schistosomiasis based on 2 decision cut-offs,

resulting in three categories (three-way MC-LQAS) [31]. Fig 3 illustrates the built-up of a five-

way MC-LQAS for program decisions around 4 program thresholds T currently used in STH

Fig 2. The process to determine the decision cut-off c in a LQAs framework. The different panels in this figure

illustrate the process to determine the decision cut-off c when 500 subjects (Ntot) are randomly recruited for both a

perfect test (sensitivity (Sed) = specificity (Spd) = 100%; Panels A–C) and an imperfect test (Sed = Spd = 80%); Panels

D–F). Panels A and D represent the cumulative error of prematurely reducing the preventive chemotherapy (PC)

(εundertreat) when the true underlying prevalence was arbitrarily set at 55% (Prevtrue�T). The horizontal dashed line

represents a εundertreat of 5%, the red dashed line represents the allowed possible decision cut-off c resulting in a

εundertreat�5%. The red area under the curve highlight all possible values for c resulting in a εundertreat�5%. Panels B

and E represent the cumulative error of selecting a PC frequency that is higher than needed (εovertreat) when the true

underlying prevalence was arbitrarily set at 45% (Prevtrue<T). The horizontal dashed line represents a εovertreat of 25%,

the blue dashed line represents the lowest possible decision cut-off c resulting in a εovertreat of� 25%. The blue area

under the curve highlights all possible values for c resulting in a εovertreat of� 25%. Panels C and F represent the

probability (in %) of the number of positive test results (N+) in a random sample of Ntot subjects being at least c over a

wide range of true underlying prevalence (Prevtrue) based on the two extreme decision cut-offs (red line: lowest

possible value; blue line: highest possible value). The vertical straight line represents the program decision threshold T
of 50%. The horizontal black dashed lines represent a εovertreat equal to 25% and a εundertreat equal to 5% (= 100% -

95%). The grey zone indicates the range of Prevtrue for which decision making is inadequate (εovertreat>25% (blue

dashed line) and εundertreat>5% (red dashed line). In this example, the grey zone ranges from 45% to 55% by design.

https://doi.org/10.1371/journal.pntd.0009740.g002
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Fig 3. The build-up of multi-category LQAS for STH control program decision making using an imperfect test.

The different panels illustrate the build-up of a multi-category LQAS around 4 program decision thresholds T (2%,

10%, 20% and 50%) when applying an imperfect test (sensitivity (Sed) = 76% and specificity (Spd) = 99%) on 500

randomly selected subjects (Ntot). Panel A provides the provides the probability (in %) of the number of positive test

results (N+) in a random sample of Ntot subjects (= 500) being at least c separately for each of the 4 thresholds, their

corresponding decision cut-offs (c2% = 13, c10% = 41, c20% = 84, c50% = 182) and true underlying prevalence Prevtrue
(Prevtrue<2%: 0.0%, Prevtrue�2%: 4.0%; Prevtrue<10%: 7.5%, Prevtrue�10: 12.5%; Prevtrue<20%: 15.0%, Prevtrue�20%: 25.0%;

Prevtrue<50%: 45.0%, Prevtrue�50: 55.0%). Note that these Prevtrue-values define the borders of the grey zone around the

program thresholds and for these Prevtrue-values εovertreat�25% and εundertreat�5%. The vertical straight line represents

the program decision threshold T (orange: 2%, red: 10%, green: 20% and blue: 50%). The horizontal black dashed lines

represent a εovertreat equal to 25% and a εundertreat equal to 5% (= 100% - 95%). The grey zone indicates the range of

Prevtrue for which decision making is inadequate (εovertreat>25% and εundertreat>5%). Panel B provides the same

information as Panel A, but highlights the error of falsely scaling up the PC frequency (solid surfaces). Panels C and D

represent the probability of correct program decision making across a wide range of Prevtrue, where Panel C provides

an overview of the relative contribution of εovertreat (colored areas) in the program decision making.

https://doi.org/10.1371/journal.pntd.0009740.g003
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programs (T1 = 2%, T2 = 10%, T3 = 20% and T4 = 50% [1]) when an imperfect test is used (Sed =

76% and Spd = 98%; this combination of Sed and Spd allowed for accurate decision making (see

Table 1). Fig 3A provides the probability (in %) of the number of positive test results (N+) in a

random sample of Ntot subjects (= 500) being at least T0 (see (3)) for each of the different thresh-

olds, their corresponding decision cut-offs (c2% = 13, c10% = 41, c20% = 84, c50% = 182) and Prevtrue
(Prevtrue<2%: 0.0%, Prevtrue�2%: 4.0%; Prevtrue<10%: 7.5%, Prevtrue�10: 12.5%; Prevtrue<20%: 15.0%,

Prevtrue�20%: 25.0%; Prevtrue<50%: 45.0%, Prevtrue�50: 55.0%). Note that these Prevtrue-values define

the borders of the grey zone around the program thresholds and for these Prevtrue-values for

which εovertreat�25% and εundertreat�5%. However, for a MC-LQAS we will need to consider the

interaction between each of the 4 individual LQAS. For example, between 2 consecutive thresh-

olds, there is not only the probability of prematurely reducing the PC frequency ðεundertreat ¼
PðNþ < cTi jTi � Prevtrue < Tiþ1; Sed; Spd; NtotÞÞ there is also the probability of falsely scaling up

the PC frequency ðεovertreat ¼ PðNþ � cTiþ1
jTi � Prevtrue < Tiþ1; Sed; Spd; NtotÞÞ. This εovertreat

around each of the program thresholds is highlighted in Fig 3B. Combining both εundertreat and

Table 1. The 207 diagnostic tests that allow for an adequate decision making. The table represents the width of the

grey zone around the six program decision thresholds T (1%, 2%, 5%, 10%, 20% and 50%) that allowed for a sufficient

decision making (εovertreat�25% and εundertreat�5%) for each of the 207 pairs of sensitivity (Sed) and specificity (Spd).
For simplicity, we have classified the width of the grey zone into three levels (1–3) for each threshold and εundertreat sep-

arately. This classification into 3 levels was based on the 25th and 75th percentile of the width of the grey zones (level 1:

width of grey zone<25th percentile; level 2: 75th percentile> width of grey zone� 25th percentile; level 3: width of

grey zone� 75th percentile (see S1 Table) across all potential diagnostic methods that allowed for adequate program

decision making. In other words, each of these diagnostic methods allowed for adequate decision making (εovertreat is

set at 25%) at a true underlying prevalence of zero. Diagnostic tests were considered ‘optimal’ (blue) when they resulted

in level 1 grey zone in at least 3 out of the 6 thresholds and did not result in a level 3 grey zone in any of the 6 program

thresholds. In all other cases, the diagnostic test was considered ‘minimal’ (white).

Spd Sed Program thresholds (in %) Type of test

50 20 10 5 2 1

100 74–100 1 1 1 1 1 1 Optimal

63–73 2 1 1 1 1 1 Optimal

60–62 2 1 1 1 1 2 Optimal

99 75–100 1 1 1 1 1 2 Optimal

60–74 2 1 1 1 1 2 Optimal

98 76–100 1 1 1 1 1 2 Optimal

69–75 2 1 1 1 1 2 Optimal

67–68 2 1 1 1 1 3 Minimal

66 2 1 1 1 2 3 Minimal

64–65 2 1 1 1 1 3 Minimal

62–63 2 2 1 1 1 3 Minimal

97 77–100 1 1 1 1 1 2 Optimal

72–76 2 1 1 1 1 3 Minimal

68–71 2 1 1 1 2 3 Minimal

63–67 2 2 1 1 2 3 Minimal

96 92–100 1 1 1 1 1 2 Optimal

84–91 1 1 1 1 1 3 Minimal

95 98–100 1 1 1 1 1 2 Optimal

93–97 1 1 1 1 1 3 Minimal

87–92 1 1 1 1 2 3 Minimal

85–86 1 1 1 1 1 3 Minimal

94 96–100 1 1 1 1 1 3 Minimal

86–95 1 1 1 1 2 3 Minimal

https://doi.org/10.1371/journal.pntd.0009740.t001
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εovertreat results into the probability of making incorrect program decisions, or in other words 1

−(εundertreat+εovertreat) or 1−ε provides the probability of correct program decision making. Fig

3C and 3D represent the probability of correct program decision making across a wide range of

Prevtrue, where Fig 3C provides an overview of the relative contribution of εundertreat and εovertreat
in the program decision making. It is important to note that the different decision cut-offs cTi in

this example are not based on (4) and (5) for each threshold separately, rather they were deter-

mined using the equations below

PðNþ � c2%jPrevtrue<2%; Sed; Spd; NtotÞ � E1 ð6Þ

Pðc2% � Nþ < c10%jPrevtrue�2%; Sed; Spd; NtotÞ � 1 � E2 &

Pðc2% � Nþ < c10%jPrevtrue<10%; Sed; Spd; NtotÞ � 1 � E3

ð7Þ

Pðc10% � Nþ < c20%jPrevtrue�10%; Sed; Spd; NtotÞ � 1 � E4 &

Pðc10% � Nþ < c20%jPrevtrue<20%; Sed; Spd; NtotÞ � 1 � E5

ð8Þ

Pðc20% � Nþ < c50%jPrevtrue�20%; Sed; Spd; NtotÞ � 1 � E6 &

Pðc20% � Nþ < c50%jPrevtrue<50%; Sed; Spd; NtotÞ � 1 � E7

ð9Þ

PðNþ < c50%jPrevtrue�50%; Sed; Spd; NtotÞ � E8 ð10Þ

where the E given Prevtrue<T (indicated with the odd subscript) represents the allowed probability

of selecting a PC frequency that is greater than indicated by the true underlying prevalence, and

those E given Prevtrue�T (indicated with an even subscript) represents the allowed probability of

prematurely reducing the PC frequency. In this example, the E given Prevtrue<T was set at 25%

and those given Prevtrue�T limit at 5%.

Determine sample size Ntot and decision cut−offs c for the required sensitivity and spec-

ificity within MC-LQAS. We will determine the sample size (Ntot) and the corresponding

decision cut-offs cTi for those theoretical diagnostic tests that allowed for adequate or ideal pro-

gram decision making. We varied the Ntot from 150–2,000 (by increments of 1), the corre-

sponding decision cut-offs were based on (6)–(10). In this MC-LQAS, we considered all

thresholds currently used in STH control programs (2%, 10%, 20% and 50%). For the corre-

sponding Prevtrue limits, we used those used in the example illustrated in Fig 3 (Prevtrue<2%:

0.0%, Prevtrue�2%: 4.0%; Prevtrue<10%: 7.5%, Prevtrue�10: 12.5%; Prevtrue<20%: 15.0%, Pre-
vtrue�20%: 25.0%; Prevtrue<50%: 45.0%, Prevtrue�50: 55.0%). The E was set at 5% at Prevtrue�T, E at

Prevtrue<T was either set at 25% for adequate program decision making and at 10% for ideal

program decision making.

Results

Required sensitivity and specificity

Figs 4 and 5 illustrate program decision making for a selection of the theoretic diagnostic tests,

program decision thresholds and the level of reliable decision-making. Fig 4 illustrates the pro-

gram decision making for four theoretic distinct diagnostic tests (D1−D4) when decisions are

made around the 50% program threshold. The diagnostic tests D1−D3 are imperfect diagnostic

methods (Fig 4A: Sed1 = Spd1 = 60%; Fig 4B: Sed2 = 100% and Spd2 = 60%; Fig 4C: Sed3 = 60%

and Spd3 = 100%), whereas D4 is a perfect diagnostic method (Fig 4D: Sed4 = Spd4 = 100%).

Fig 5 contrasts the impact of (i) program decision errors (Eovertreat = 25% (Fig 5A) vs.
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Eovertreat = 10% (Fig 5B)), (ii) program decision thresholds (50% (Fig 5A) vs. 2% (Fig 5C) and

(iii) diagnostic performance (diagnostic test D2 (Fig 5C) vs. diagnostic test D3 (Fig 5D)) on the

grey zone.

Taken together, these figures highlight three important aspects. First, they indicate that pro-

gram decision making becomes inadequate (εovertreat>25% and εundertreat>5%) when the true

Fig 4. The program decision making around the 50% threshold for four theoretic diagnostic tests. The red line

represents provides the probability (in %) of the number of positive test results (N+) in a random sample of Ntot
subjects (= 500) being at least T0 (see Eq 3) using four theoretic distinct diagnostic tests (D1−D4). The diagnostic tests

D1−D3 are imperfect diagnostic methods (Panel A: Sed1 = Spd1 = 60%; Panel B: Sed2 = 100% and Spd2 = 60%; Panel C:

Sed3 = 60% and Spd3 = 100%), whereas D4 is a perfect diagnostic method (Panel D: Sed4 = Spd4 = 100%). The grey area

represents the range of true underlying prevalence for which program decision is inadequate (εovertreat>25% and

εundertreat>5%).

https://doi.org/10.1371/journal.pntd.0009740.g004
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underlying prevalence (Prevtrue) approaches the program decision threshold T, even if a perfect

diagnostic method (D4) is applied. Second, they confirm that improved diagnostic tests (Fig

4), less stringent program errors (Fig 5A and 5B) and lower program thresholds (Fig 5B and

5C) allow for narrower grey zones. Third, it is important to note that improving the specificity

has a greater impact on the program decision making than improving the sensitivity, and that

the impact of specificity increases as the program decision threshold shifts to 2%. Indeed, for a

Fig 5. The impact of program decision errors and diagnostic performance on the grey zone. The red line in each

panel represents the probability (in %) of the number of positive test results (N+) in a random sample of Ntot subjects

(= 500) being at least T0 (see Eq 3) (Panels A and B: T = 50%, Panels C and D: T = 2%) using 2 theoretic distinct

imperfect diagnostic tests D1 and D2 (Sed1 = 100% and Spd1 = 60% (Panels A, B and C); Sed2 = 60% and Spd2 = 100%

(Panel D)). The grey area represents the range of true underlying prevalence for which program decision is inadequate

(εovertreat>25% and εundertreat>5% (Panels A, D and C) or not ideal (εovertreat>10% and εundertreat>5% (Panel B).

https://doi.org/10.1371/journal.pntd.0009740.g005
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program threshold of 50%, the grey zone of both diagnostic method D2 (Sed2 = 100% and Spd2 =

60%) and D3 (Sed3 = 60% and Spd3 = 100) are equally wide (Fig 4), whereas for program decision

threshold of one percent, the grey zone of diagnostic method D3 is smaller compared to that

one of diagnostic method D2 (2%: ~3-point percent vs. ~8-point percent) (Fig 5C and 5D).

Fig 6 further summarizes the width of the grey zone for each of the 1,681 theoretic diagnos-

tic tests by means of contour plots (each line represents the same width of grey zone) for ade-

quate program decision making (S1 Fig provides the contour plots for ideal decision making).

This figure highlights that multiple combinations of sensitivity and specificity can result in the

Fig 6. The width of grey zones around 6 program decision thresholds for 1,168 theoretic diagnostic tests. These

contour plots illustrate the width of the grey zone for each of the unique combinations of sensitivity and specificity

when decision making is adequate (εovertreat�25% and εundertreat�5%), each line representing the same width of grey

zone. The number beside the line represents the floor value of the width of the grey zone in % (e.g., any value�10%

and<11% is set at 10%).

https://doi.org/10.1371/journal.pntd.0009740.g006
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same width of grey zone. For example, there are 408 combinations that result in a grey zone

~10-point percent wide around a program decision threshold T of 10%. However, for each of

these combinations the sensitivity and specificity are inversely correlated (if sensitivity

increases then the specificity decreases). Indeed, when the sensitivity is set at 60%, the specific-

ity should not drop below ~83%. Similarly, a sensitivity of at least ~91% is required to obtain

the same level of accurate decision making when the specificity is fixed at 60%. The figure also

indicates that not all combinations can be recommended for monitoring and evaluating of

STH programs, as the width of the grey zone would be too large to be relevant. An extreme

case are the program decisions around a 2% threshold, where grey zones larger than 5-point

percent would include a true underlying prevalence of zero, and hence would result in unnec-

essarily distributing drugs when disease has already been eliminated.

Of the 1,681 pairs of sensitivity (n = 41) and specificity (n = 41) that were evaluated, there

were 207 combinations that allowed for adequate (εovertreat�25% and εundertreat�5%) program

decision making and 61 that resulted in ideal program decisions (εovertreat�10% and εunder-
treat�5%) across each of the 6 program decision thresholds. In other words, they allowed for

adequate or ideal decision making when the true underlying prevalence was zero and 100%

across all thresholds. Tables 1 and 2 provide an overview of the different possible diagnostic

tests and their corresponding grey zone for εovertreat less or equal to 25% and 10% respectively.

For simplicity, we have classified the width of the grey zone into three levels (1–3) for each

threshold separately. The classification into these 3 levels was based for each program decision

threshold separately on the 25th and 75th percentile of the width of the grey zones (level 1:

width of grey zone < 25th percentile; level 2: 75th percentile > width of grey zone� 25th per-

centile; level 3: width of grey zone� 75th percentile (see S1 Table).

Generally, each of these tables highlight four important aspects. First, they confirm that not

all pairs of sensitivity and specificity allow for reliable decision making throughout all program

phases. For example, combinations with specificity <94% are not included in Table 1. Second,

they also confirm that diagnostic requirements become more stringent as program thresholds

shift to 1%. This is because level 3 of the width of the grey zone in both tables is restricted by

the program threshold of 1%. In other words, there are number of diagnostic tests that allowed

for adequate or ideal program decision making around program decision thresholds between

2% and 50%, but failed to do so around a threshold T of 1%. Third, the requirements for both

specificity and sensitivity are inversely correlated with each other; if the requirements are

relaxed for one parameter, the requirements for the other one become more stringent for the

other one. For example, if the specificity is 100% in Table 1, the lowest sensitivity to result in

sufficient program decision making is 60%, whereas for a specificity of 94%, a sensitivity of at

least 86% is required for sufficient decision making.

Fourth, when comparing Table 1 and Table 2 it becomes apparent that ideal program deci-

sions require improved diagnostic tests. In contrast to an adequate program decision making

(Table 1), for which there are 207 potential diagnostic tests, there are only 61 for ideal program

decision making (Table 2). In addition, the requirements for specificity are more stringent.

For an ideal decision making the specificity cannot drop below 99% (Table 2), whereas this

was 94% across for an adequate decision making (Table 1).

In Table 3 we cross tabulated the pairs of sensitivity and specificity across the two levels of pro-

gram decision making (adequate vs. ideal) and two types of diagnostic test (minimal vs. optimal).

Sample size and decision cut-offs for the required sensitivity and specificity

Fig 7 summarizes the required sample size and the corresponding decision cut-offs ci for the

diagnostic tests summarized in Table 3. Fig 7A highlights that the required sample size
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decreases when the diagnostic performance improves. For example, where an imperfect diag-

nostic test (Sed = Spd = 96%) requires 301 subjects, this is only 200 for a perfect test (Sed = Spd
= 100%). From the same panel we can deduce that improving the specificity has more impact

on the sample size than improving sensitivity. For example, when improving the sensitivity

from 96% to 100% when the specificity remains 96%, the sample size can only be reduced to

285, whereas improving the specificity from 96% to 100% when the sensitivity is fixed at 96%,

the sample sizes can be further reduced to 209. Not unexpectedly, the sample size increases

when an ideal rather than an adequate program decision making is required, and this is illus-

trated in Fig 7B. Fig 7C illustrates the variation in decision thresholds, highlighting that these

values decrease when diagnostic tests become more perfect, which can be partially explained

by the variation in sample size (see Fig 7A). The data used to determine the required diagnos-

tic performance, the sample size and the corresponding decision cut-offs is provided S1 Data.

Discussion

This study presents a generic and readily adaptable framework to explore the impact of diag-

nostic test sensitivity and specificity at the individual level on program decision making, in

this instance applied to STH decision thresholds. Our results emphasize that specificity—

rather than sensitivity—will become increasingly important at the end-game as decision-rele-

vant prevalence thresholds become lower. Although it is commonly stated that sensitivity is

the most important diagnostic parameter when the prevalence drops [32–34], our study sug-

gests the opposite. Indeed, the outcome of the simulation study indicated that there are fewer

options for specificity (�94%) than for sensitivity (�60%), when it comes to sufficient pro-

gram decision making, and that increasing specificity improved the overall accuracy of pro-

gram decision making (narrower grey zones; Fig 6, Tables 1 and 2 and S1 Fig). Expanding

this to explore the outcome of decision-making using MC-LQAS further highlighted that

improving specificity would result in significantly less operational costs in the field (fewer sub-

jects required to make adequate or ideal program decisions (Fig 7)).

Table 2. The 61 diagnostic tests that allow for ideal decision making. The table represents the width of the grey

zone around the six program decision thresholds T (1%, 2%, 5%, 10%, 20% and 50%) that allowed for a sufficient deci-

sion making (εovertreat�10% and εundertreat�5%) for each of the 61 pairs of sensitivity (Sed) and specificity (Spd). For

simplicity, we have classified the width of the grey zone into three levels (1–3) for each threshold separately. This classi-

fication into 3 levels was based on the 25th and 75th percentile of the width of the grey zones (level 1: width of grey

zone< 25th percentile; level 2: 75th percentile> width of grey zone� 25th percentile; level 3: width of grey zone� 75th

percentile (see S1 Table) across all potential diagnostic methods that allowed for adequate program decision making.

In other words, each of these diagnostic methods allowed for adequate decision making (εovertreat is set at 25%) at a true

underlying prevalence of zero). Diagnostic tests were considered ‘optimal’ (blue) when they resulted in level 1 grey

zone around at least 3 out of the 6 thresholds and did not result in a level 3 grey zone in any of the 6 program thresh-

olds. In all other cases, the diagnostic test was considered ‘minimal’ (white).

Spd Sed Program thresholds (in %) Type of test

50 20 10 5 2 1

100 96–100 1 1 1 1 1 1 Optimal

81–95 2 1 1 1 1 1 Optimal

70–80 2 2 1 1 1 1 Optimal

61–69 2 2 1 1 1 2 Optimal

60 3 2 1 1 1 2 Minimal

99 97–100 1 1 1 1 1 2 Optimal

85–96 2 1 1 1 1 2 Optimal

81–84 2 2 1 1 1 2 Optimal

https://doi.org/10.1371/journal.pntd.0009740.t002
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Generally, our findings are very much in line with recent similar work [28]. In fact, these

observations are not unexpected, and this can be best illustrated by an extreme case. Assume

the disease is truly absent in population and samples are processed with an imperfect

Table 3. The diagnostic performance of minimal and optimal diagnostic tests for adequate and ideal decision making. Diagnostic tests were considered ‘optimal’

when they resulted in level 1 grey zone in at least 3 out of the 6 thresholds and did not result in a level 3 grey zone in any of the 6 program thresholds. In all other cases, the

diagnostic test was considered ‘minimal’. For simplicity, we have classified the width of the grey zone into three levels (1–3) for each threshold and εundertreat separately.

The classification into these 3 levels was based on the 25th and 75th percentile of the width of the grey zones (level 1: width of grey zone< 25th percentile; level 2: 75th

percentile> width of grey zone� 25th percentile; level 3: width of grey zone� 75th percentile (see S1 Table)). For an adequate decision making the εovertreat�25%, whereas

for ideal decision making this εovertreat�10%. For both levels of decision making εundertreat�5%.

Program decision making

Adequate Ideal

Specificity Sensitivity Specificity Sensitivity

Type of test Minimal 98 62–68 100 60

97 63–76

96 84–91

95 85–97

94 86–100

Optimal 100 � 60 100 � 61

99 � 60 99 � 81

98 � 69

97 � 77

96 � 92

95 � 98

https://doi.org/10.1371/journal.pntd.0009740.t003

Fig 7. The variation in sample size and decision cut-off for a selection of the diagnostic tests. Panel A describes the

variation in sample size across varying sensitivity (60–100%) and specificity (94–100%) when program decision

making is adequate. Panel B contrasts the sample size between adequate and ideal program decisions for two

diagnostic tests (specificity = 99% and specificity = 100%). Panel C illustrates the variation in decision thresholds (2%-

50%) across four diagnostic tests with the same specificity (96%) but varying sensitivity (64%, 70%, 80% and 90%).

https://doi.org/10.1371/journal.pntd.0009740.g007
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diagnostic test, then the number of positive test results is determined by the specificity of the

test only. For example, if we apply a test with a specificity of 95%, then there will be 5% (false)

positive test results (Eq 2). Even if we have a true prevalence of 1% and a perfect sensitivity

(100%), the majority of the positive tests will be false in nature.

Sensitivity and specificity need to be determined for each program use case

In the present study, we focused on defining the required specificity and sensitivity that

allowed for adequate/ideal decision-making at each program treatment threshold. This strat-

egy will result in diagnostic tests that can be used across all program decision thresholds; how-

ever, there may be diagnostic tests that perform well at a single threshold that are excluded by

this approach (e.g., tests that perform well in high-prevalence settings). Indeed, all combina-

tions of sensitivity and specificity allow for adequate and ideal program decisions around pro-

gram thresholds of 20% and 50%. In other words, the required diagnostic performance will

need to be determined for each program use case separately (see also Fig 6 and S1 Fig). For

this, it will be equally important for the STH community to agree on the acceptable width of

the grey zone separately for each program threshold, which in turn would provide a more jus-

tified criteria to classify diagnostic tests as ‘optimal’ and ‘minimal’ than those arbitrarily used

in the present study.

Specificity and sensitivity are inversely correlated

Although the lowest possible specificity and sensitivity is 94% and 60% for adequate decision

making and 99% and 60% for ideal program decision making (Table 3), it is important to note

that the diagnostic requirements for specificity and sensitivity are inversely correlated. As a

consequence of this, it would be inappropriate to independently report the lowest values of

specific and sensitivity into a TPP, as this would lead to the development of diagnostic tests

that result in poor program decision making. Rather, combinations/pairs of specificity and

sensitivity will need to be incorporated. S2 Table lists the pairs of sensitivity and specificity

that were eventually recommended to the STH subgroup. They include the pairs summarized

in Table 3, excluding all combinations with a perfect sensitivity or specificity, because this was

deemed unrealistic.

Currently used diagnostic methods may not allow for reliable decision

making throughout an STH program

When comparing the recommended diagnostic performance (S2 Table) with the sensitivity

and specificity for selection of currently available microscopic-based methods (e.g. direct

smear, formol-ether concentration, Kato-Katz thick, McMaster, and (Mini-)FLOTAC)

reported in a meta-analysis, it is clear that direct smear, formol-ether a single Kato-Katz and

McMaster did not meet the requirements for detection of infections of any intensity for at

least one of the three soil-transmitted helminths (Table 2 of [12]), and that in low endemic

areas only FLOTAC would be a potential candidate (Table 3 of [12]). In a more recent study

and assuming a perfect specificity [13], both a single and duplicate Kato-Katz, Mini-FLOTAC

and qPCR did meet the required sensitivity for STH of any intensity (Table 3 of [13]), but

when it concerns low intensity infections only qPCR remains as a potential candidate (Table 4

of [13]). FECPAKG2 did not meet any of the requirements. Although both studies indicate the

potency of FLOTAC and qPCR, there are some important logistical obstacles to roll them out

in large-scale deworming programs [16–18].
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Extension of the (MC)-LQAS framework allows to both develop and

compare program decision algorithms for imperfect tests

To our knowledge this is the first description of a five-way MC-LQAS framework that

accounts for imperfects test. The expansion of this framework not only allows for developing

program decision algorithms across imperfect tests, but can also be used to gain insights into

the operational cost. For example, we showed that additional investments to improve the test

(e.g., the specificity) may provide downstream benefits of reducing the required survey sample

sizes for making adequate programme decisions. This is because diagnostic tests with

improved specificity require smaller sample sizes for the same level of program decision mak-

ing. In other words, any additional cost per diagnostic test with improved diagnostic perfor-

mance can be compensated by savings in operational costs for testing in the field or

laboratory. Therefore, it is recommended to split up operational costs for testing into the mate-

rial cost per test and the number of tests that can be processed in an hour by one person in

future cost-analyses. This level of costing detail would lead to greater evidence-based recom-

mendations in the TPPs.

MC-LQAS framework needs to be adapted for 2-stage clustered sampling

In the current MC-LQAS framework we assumed that subjects are originating from the same

cluster (e.g; community/school) and ignored the clustered nature of STH and assumed that

these 500 subjects all represent one cluster (e.g. school/community). However, program deci-

sions are not made at each cluster separately, rather decisions are made for a certain adminis-

trative or geographical area–the so-called implementation units–based on the aggregation of

results across multiple clusters, with a number of subjects per cluster. In other words, pro-

grams employ 2-stage cluster sampling, whereby clusters are first chosen via random selection

within an implementation unit and then a select number of subjects are chosen within each

cluster. The development of a 2-stage cluster sampling MC-LQAS simulation approach was

out of scope of the present study. A possible way forward would be to determine MC-LQAS

around a 2-stage beta-binomial model, where the beta distribution describes the prevalence/

proportion of positive test results across clusters and the binomial distribution the proportion

of positive test results within a cluster.

Both frameworks are generalizable to moderate-to-heavy intensity STH

and any NTD program using population-based decision thresholds

Although the aforementioned frameworks were illustrated for program decision making

around the prevalence of any STH infection, it is clear that both frameworks are agnostic to

both the level of infection intensity and pathogen. For example, the results can also be used to

make program decisions on whether the prevalence of moderate-to-heavy STH intensity infec-

tions has dropped below 2% [1]. Based on the diagnostic performance recommended in S2

Table and the recently reported probability of Mini-FLOTAC, McMaster and qPCR to correct

classify moderate-to-heavy intensity infections when compared to Kato-Katz (Table 4 of [35]),

we can deduce that only Mini-FLOTAC meets these requirements, though not for all STH spe-

cies. Given that the schistosomiasis control programs use similar program decision thresholds

[36], this framework will also provide insights for this NTD.

Supporting information

S1 Table. The thresholds to classify the width of the grey zone into three levels. This classi-

fication into 3 levels was based on the 25th and 75th percentile of the width of the grey zones

PLOS NEGLECTED TROPICAL DISEASES Required diagnostic performance for NTDs tests

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009740 September 14, 2021 18 / 21

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009740.s001
https://doi.org/10.1371/journal.pntd.0009740


across all potential diagnostic methods for each program threshold T separately that allowed

for an adequate program decision making (level 1: width of grey zone< 25th percentile; level
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