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Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four
opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor
(NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence
opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid
receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid
receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be
interesting alternative targets, especially for the development of safer analgesics. Five of these opioid
peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)—two are members
of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor
family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-
D-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the
implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology,
with members displaying signaling to scavenging properties. We provide an overview of their established and
emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as
alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors
in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and
plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-
driven signaling.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Discovery and nomenclature of classical opioid receptors

Ancient writings and archeological findings have dated the use of
opium (from “opos”, Greek for juice) as far back as antiquity. During
the 19th century, morphine (named after Morpheus, the Greek god of
dreams) and codeine (after “kodeia”, or poppy head in Greek)were iso-
lated from the opium poppy and later extracted in large amounts after
finding evidence of the plant’s analgesic properties in the treatment of
postoperative pain (Hamilton & Baskett, 2000). A tremendous effort to
understand the mechanisms involved in analgesia led to the discovery
of three pharmacologically distinct receptors, initially proposed as μ, κ,
and δ (Chen, Mestek, Liu, Hurley, & Yu, 1993; Evans, Keith Jr.,
Morrison, Magendzo, & Edwards, 1992; Gilbert & Martin, 1976;
Martin, 1979; Zhu et al., 1995). Parallel to this endeavor, thefirst endog-
enous opioid receptor ligandsMet- and Leu-enkephalin were identified
(Hughes et al., 1975), which grounded the hypothesis that opioid drugs
representation of the interaction network of the four classical opioid rece
ds and their intracellular interaction partners: G proteins and β-arrestins
n and nociceptin - brown. The more promiscuous atypical opioid receptors,
r interactions.
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relied on the modulation of an endogenous opioid machinery, with
its own physiological relevance. The synthesis of naloxone, a mor-
phinan derivative opioid antagonist, was crucial in further characteriz-
ing the opioid receptor (OR) family. Its nonselective antagonism
was later used as the inclusion criterion in the pursuit of new opioid
receptors. However, this rule was bent for themore recently discovered
naloxone-insensitive nociceptin/orphanin FQ receptor, NOP (Mollereau
et al., 1994), due to its high structural and functional homology to clas-
sical opioid receptors (Nothacker et al., 1996). It is hence classified by
the International Union of Basic and Clinical Pharmacology (IUPHAR)
as a fourth member of the classical opioid receptor family, joining the
mu, kappa and delta opioid receptors (also named μ (MOP), κ (KOP),
and δ (DOP) receptors) (Cox, Christie, Devi, Toll, & Traynor, 2015)
(Fig. 1).

The pharmacological profiles of opioid receptors were characterized
alongside the discovery of opioid peptide precursors, namely:
proenkephalin, pro-opiomelanocortin, prodynorphin andpronociceptin
(Fig. 2A). Each receptor typically shows a preference for one opioid
ptors (CORs) and six proposed atypical opioid receptors (AORs) with their respective
. Receptor colors reflect their preference for ligand families: enkephalins - blue/violet,
MrgX2 and ACKR3, are colored orange and red. The width of arrows reflects the strength
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peptide family and some cross-selectivity for another (Gomes et al.,
2020). MOP binds preferentially enkephalins and endorphins, DOP dis-
plays high affinity for Met- and Leu-enkephalin and KOP binds
prodynorphin-derived products. All three receptors show some degree
of cross-family selectivity, while NOP binds exclusively nociceptin
(also known as orphanin FQ, abbreviated OFQ/N) and nociceptin-
derived ligands (Fig. 1). Structure-activity relationship (SAR) studies
of the cleaved products of these precursors were reviewed extensively
for MOP, DOP, KOP and NOP (Henderson & McKnight, 1997; Janecka,
Fichna, & Janecki, 2004). It has been proposed that endogenous opioid
peptides have two specific recognition regions, namely the N-terminal
“message” containing residues YGGF, and the “address” made up of
the C-terminal residues (Mansour, Hoversten, Taylor, Watson, & Akil,
1995). These are key determinants of classical opioid receptor activation
and selectivity, respectively. While the YGGFL/M sequence is necessary
and sufficient for MOP and DOP activation, KOP requires the longer
YGGFL/MRR/K sequence (Mansour et al., 1995). Of note, the precursors
of endomorphin-1 and endomorphin-2, two peptides with a high affin-
ity and selectivity towards the MOP (Fichna, Janecka, Costentin, & Do
Rego, 2007; Hackler, Zadina, Ge, & Kastin, 1997) that do not share the
YGGF motif, have yet to be found in the human proteome, leading to a
degree of controversy regarding their endogenous existence (Terskiy
et al., 2007).

All four opioid receptors are class A G protein-coupled receptors
(GPCRs) involved in a variety of physiological and pathophysiological
events, including but not limited to pain modulation, immune function
and emotional response. Upon opioid peptide binding, classical ORs
Fig. 2. Opioid peptide maturation and interactome. A) Biosynthesis and processing of endo
pronociceptin precursors. B) Overview of the reported interactions of endogenous opioid a
opioid receptors. Peptides are grouped by their common precursors. The peptides with a
interaction, red indicates reported lack of interaction. Of note, the interactions reported
recruitment, Ca2+ flux assays, etc., hence, no comparison of potencies should be drawn. Inform
et al., 1995; (3) Meyrath et al., 2020; (4) Gomes et al., 2020; (5) Henderson & McKnight, 199
2017; (10) Lai et al., 2006; (11) Lee et al., 2014; (12) Chen et al., 1995; (13) L. Chen & Huang
peptides are active on classical (COR) and atypical (AOR) opioid receptors, while peptides with
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activate heterotrimericαβγ G proteins, leading to Gα-Gβγ dissociation
and Gαi/o-dependent inhibition of adenylyl cyclase and subsequent de-
crease of intracellular cAMP levels. In postsynaptic neurons, the dissoci-
ated Gβγ dimer activates G protein-coupled inwardly-rectifying
potassium channels (GIRKs), causing hyperpolarization and inhibition
of neurons, while presynaptically, it inhibits voltage-gated calcium
channels (VGCC) to prevent the release of neurotransmitters. Moreover,
classical opioid receptors are able to induce the activation of several
downstream kinases, including the extracellular signal-regulated ki-
nases 1 and 2 (ERK1 and 2) of the mitogen-activated protein kinase
(MAPK) cascade (Al-Hasani & Bruchas, 2011). Ultimately, G protein-
coupled receptor kinases (GRKs) phosphorylate activated receptors,
thereby promoting β-arrestin recruitment, which eventually leads to
receptor desensitization and internalization (Al-Hasani & Bruchas,
2011; Connor & Christie, 1999).

1.2. Classical OR modulation for pain treatment and its limitations

Opioid drugs have proven exquisitely powerful against moderate to
severe degrees of acute and chronic pain and are among the most com-
monly used analgesics in the clinic (Melnikova, 2010). They are typically
MOP agonists, with morphine standing at the forefront, along with fen-
tanyl and oxycodone (Hider-Mlynarz, Cavalie, & Maison, 2018; Monje,
Gimenez-Manzorro, Ortega-Navarro, Herranz-Alonso, & Sanjurjo-Saez,
2019).

However, while opioid drugs are instrumental in pain management,
their use in some applications is hindered by a limited benefit/risk ratio.
genous opioid peptides from proenkephalin, prodynorphin, pro-opiomelanocortin and
nd opioid-derived peptides on atypical opioid receptors and comparison with classical
truncated N-terminal YGGF motif are highlighted in grey. Green indicates reported
were identified using various techniques, including binding competition, β-arrestin
ation was extracted from the following references: (1) Janecka et al., 2004; (2) Mansour

7; (6) Ikeda et al., 2013; (7) Lembo et al., 2002; (8) Burstein et al., 2006; (9) Lansu et al.,
, 1998; (14) Tan-No et al., 2002; (15) Tang et al., 1999. C) Full-length endogenous opioid
a truncated N-terminal YGGF motif bind atypical ORs and are inactive on classical ORs.
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Studies comparing a panel of opioids in patient-controlled analgesia
have pointed to various side effects comprising nausea/vomiting, pruri-
tus, respiratory depression, decreased gastrointestinal motility and ad-
diction (Dinges et al., 2019; Lutz & Kieffer, 2013). The latter is largely
responsible for the current opioid crisis, which dates back to the 1990s
and refers to the dramatic rise in opioid use and overdose deaths until
now (CDC and N. C. f. H. S, 2021) https://www.cdc.gov/drugoverdose/
data/. Furthermore, long-term opioid treatment is associated with
rapid tolerance, i.e. the requirement to escalate doses to obtain equiva-
lent analgesia, simultaneously aggravating aforementioned adverse ef-
fects (Bailey & Connor, 2005; Buntin-Mushock, Phillip, Moriyama, &
Palmer, 2005; Dumas & Pollack, 2008; Morgan & Christie, 2011). This
implies that repeated opioid administration may quickly lead to un-
wanted side effects overstepping pain relief, which in part justifies
that current CDC guidelines only encourage sustained opioid therapy
to manage chronic cancer pain, palliative and end-of-life care, while
non-opioid therapy should prevail in the management of non-cancer
chronic pain conditions (Dowell, Haegerich, & Chou, 2016).

Such a climate warrants the search for opioid drugs with different
pharmacological profiles that exploit the analgesic potential of opioid
receptors, while limiting the onset of associated adverse events.

Indeed, a more favorable adverse effect profile was thought to be
partly addressedwith the discovery of “functional selectivity” or “biased
signaling”, which refers to the ability of a ligand to preferentially acti-
vate one pathway over another (Smith, Lefkowitz, & Rajagopal, 2018).
This concept generated remarkable enthusiasm for the discovery of
moleculeswith pharmacological profileswhich could offermore control
over GPCRmodulation, leading to a substantial body of studies aiming at
deciphering the contribution of single effector proteins towards one
phenotype. Biased signaling has been extensively investigated at the
MOP (Bohn et al., 1999; Raehal, Walker, & Bohn, 2005), the main
GPCR targeted by synthetic opioids used in the clinic, but also the KOP
(Bruchas et al., 2007; Bruchas, Macey, Lowe, & Chavkin, 2006;
Chavkin, Schattauer, & Levin, 2014) and the DOP (recently reviewed
by (Pineyro & Nagi, 2021)). All of the above studies advocate that G pro-
tein activation is responsible for opioid-induced analgesia, while β-
arrestin bias enhances receptor internalization, desensitization and po-
tentially triggers alternative signaling pathways, underlying the overall
manifestation of tolerance and dependence. In this context, two MOP
agonists were developed, PZM21 (Manglik et al., 2016) and TRV130
(oliceridine, recently approved by the FDA) (DeWire et al., 2013;
Mullard, 2020; Singla et al., 2017), which show little β-arrestin recruit-
ment or receptor internalization, both in cell lines and native neurons
(Ehrlich et al., 2019). However, the proposed G protein bias is still a
source of contention, with divergent results reported in the literature
and more work is still required to evaluate this strategy at each opioid
receptor subtype (Altarifi et al., 2017; Bachmutsky, Wei, Durand, &
Yackle, 2021; He et al., 2021; Hill et al., 2018; Kliewer et al., 2019;
Kliewer et al., 2020). Overall, these observations suggest that G
protein-biased ligandsmay also induce side effects, stressing the urgent
need to search for alternative approaches to modulate opioid receptors.

Positive allosteric modulators (PAMs) of the MOP that by binding to
a topographically distinct site improve both the potency and efficacy of
orthosteric ligands (endogenous and exogenous opioids) have been de-
scribed (Burford et al., 2013; Burford, Traynor, & Alt, 2015). Recent pre-
clinical studieswith one of these PAMs has showndecreased side effects
and an elevation in antinociception in animal models of acute noxious
heat pain and inflammatory pain (Kandasamy et al., 2021).

Importantly, the use of small molecules with a multi-targeting pro-
file has also shown some potential to increase the benefit/risk ratio. Bi-
valent ligands have been developed to simultaneously target MOP-DOP
(Parenti et al., 2012; Podolsky et al., 2013), MOP-KOP (Lazenka et al.,
2018) and MOP-NOP (Toll et al., 2009). However, although there has
been evidence of the potentiation of MOP-mediated antinociception,
theuse of bivalent ligands is often limited by their side effects associated
4

with the activation of the other opioid receptor counterpart. This is
discussed extensively elsewhere (Gunther et al., 2018).

Another approach to modulate the endogenous opioid system could
be to interfere with other receptors that do not fulfill the initial criteria
for inclusionwithin the classical opioid receptor family. Several receptors
have been reported to bind endogenous opioid peptides despite their in-
sensitivity to naloxone and little sequence or structural homology with
classical opioid receptors. The notion of atypical opioid receptor was in-
troduced in 2017 following the finding that prodynorphin-derived pep-
tides can bind to Mas-related G protein-coupled Receptor-X2
(MRGPRX2 orMrgX2), a GPCR initially known for its role inmast cell de-
granulation (Lansu et al., 2017). A secondmember of this family, MrgX1,
as well as the family of bradykinin receptors (B1 and B2) and the ligand-
gated ion channel N-methyl-D-aspartate receptors (NMDARs) have also
been shown to respond to endogenous opioids such as enkephalins or
dynorphins (Chen, Gu, & Huang, 1995; Chen & Huang, 1998; Lai et al.,
2006; Lembo et al., 2002; Massardier & Hunt, 1989). Recently, the atypi-
cal chemokine receptor ACKR3 (previously CXCR7)was suggested as an-
other atypical opioid receptor, based on its unique ability to scavenge a
varietyof endogenousopioidpeptideswithout inducing canonical down-
stream G protein-mediated signaling (Meyrath et al., 2020) (Table 1).

These receptors, which have defined functions in a variety of
responses, including inflammation, synaptic transmission, anaphy-
laxis or chemotaxis, have shown clear evidence of modulation of
the opioid system. They may therefore provide an alternate route
to opioid-mediated analgesia through their direct activation or indi-
rect modulation of classical ORs, which might also apply to chronic
pain management.

2. Atypical opioid receptors - unconventional biology

2.1. Mas-Related Receptors GPCR member X (MRGX)

The MRGX family is made up of MRGPRX1, MRGPRX2 (abbreviated
MrgX1 andMrgX2), MRGPRX3 andMRGPRX4. Currently, all four mem-
bers are classified as orphan receptors by the IUPHAR (Davenport et al.,
2013) although endogenous ligands of varying affinities have been pro-
posed for MrgX1 and MrgX2, and more recently for MrgX4 (Meixiong,
Vasavda, Snyder, & Dong, 2019; Yu et al., 2019). Their major function
is recognized to be pruriception as they typically bind itch-inducing
compounds, with relative promiscuity (Bader, Alenina, Andrade-
Navarro, & Santos, 2014).

Human and rhesus MrgX1 and MrgX2 display a high activity in pro-
liferation assays, which is partially blocked by pertussis toxin, indicative
of Gi/o coupling. Both of these receptors have been found to increase
intracellular Ca2+ levels through a Gq/11 coupling as well (Burstein
et al., 2006) (Fig. 1).

MrgX1 was initially coined sensory neuron-specific receptor 4
(SNSR4) due to its unique localization, restricted to the dorsal root gan-
glia (DRG) and trigeminal ganglia. It binds the proenkephalin A-derived
bovine adrenal medulla peptide BAM22 but also the N-terminally trun-
cated form BAM8-22, its most potent endogenous ligand found to date
(Lembo et al., 2002) (Fig. 2B). Activation of MrgX1 leads to inhibition
of high-voltage-activated Ca2+ channels, involved in noxious transmis-
sion (Li et al., 2014). Its contribution to neuropathic pain and itch has
been characterized in multiple models using BAM8-22 (He et al.,
2014; Liu et al., 2009). Furthermore, its expression restricted to the pe-
ripheral nervous system (PNS) makes it a potential target to treat
chronic pain without the adverse events accredited to the central ner-
vous system (CNS). Although MrgX1 binds the endogenous enkephalin
BAM22, this interaction does not depend on its N-terminal YGGF motif
since it is also able to bind the truncated BAM8-22, highlighting that
the receptor binding mechanism is distinct from classical ORs.

The second MrgX family member MrgX2 was described in 2003
as a cortistatin receptor, and was later found to be activated by



Table 1
Summary of referenced studies reporting an interaction between opioid and opioid-derived peptides with atypical opioid receptors and related effects

Receptor Active peptides In vitro observation In vivo observation Reference

MrgX1 BAM22 and various processed forms,
including BAM8-22

[stably expressing HEK293s cells]
Concentration-dependent release of intracellular calcium
Whole-cell binding analysis and competition binding using [3H]
BAM8–22 as tracer

Lembo et al.,
2002

BAM22, BAM8-22 [stably and transiently expressing HEK293T cells]
Concentration-dependent release of intracellular calcium
Concentration-dependent increase of GTP-γS binding
Constitutive and agonist-induced proliferative response

Burstein et al.
2006

BAM8-22 [transiently expressing HEK293T cells]
Concentration-dependent release of intracellular calcium
Induction of action potentials in whole-cell patch clamp
recordings

Intradermal injection of BAM ction of itch response in WT than
Mrgpr-clusterΔ−/− mice

Liu et al., 2009

BAM8-22 [transiently expressing HEK293T cells]
Concentration-dependent release of intracellular calcium

[MrgC - rodent homolog to jection of BAM8-22: antinociceptive
effect in rodent models of n al nerve ligation, SNL)

He et al., 2014

BAM8-22 [acutely dissociated DRG neurons from MrgprX1 mice]
Concentration-dependent inhibition of calcium channels
[substantia gelatinosa neurons in lumbar spinal cord slices]
Inhibition of spinal synaptic transmission

Intrathecal administration o of neuropathic pain-related behavior in
MrgprX1 but not Mrgpr-/- m

Li et al., 2017

MrgX2 BAM22 [transiently expressing HEK293T cells]
Concentration-dependent release of intracellular calcium
Constitutive and agonist-induced proliferative response

Buntin-Mushock
et al., 2005

dynorphin A and truncated forms,
dynorphin B, α-neoendorphin, BAM22,
BAM8-22

[MrgX2-inducible stable HEK293T cells]
Concentration-dependent release of intracellular calcium
[LAD2 mast cell line]
Induction of degranulation

Lansu et al.,
2017

ACKR3 various enkephalins, mainly BAM22 and
related peptides

[stably and transiently expressing HEK293 cells and NCI-H295R
adrenocortical cells] Recruitment of β-arrestin1 and β-arrestin2
Binding competition with [125I]-CXCL12
Increase in ACTH-induced ERK phosphorylation
Enhanced cortisol secretion

Subcutaneous injection of A tic-like behavior and increase of
circulating glucocorticoid le

Ikeda et al., 2013

various enkephalins, dynorphins,
nociceptins and truncated forms

[stably and transiently expressing HEK293, U87, CHO cells, and
small molecule neural precursor cells (smNPCs)]
Recruitment of β-arrestin1 and β-arrestin2
Binding competition with fluorescently labeled CXCL12
Uptake of fluorescently labeled opioids
Agonist-induced receptor disappearance from cell surface and
transport into endosomal compartments
Depletion of opioid peptides in extracellular space

Increased opioid peptide-m g after ACKR3 inhibition in (ex vivo) rat
locus coeruleus tissue

Meyrath et al.,
2020

dynorphin A, nociceptin 1-13, BAM22 [transiently expressing U87 cells]
Recruitment of β-arrestin1 and β-arrestin2
Agonist-induced receptor disappearance from cell surface and
transport into endosomal compartments
Binding and uptake of fluorescently labeled BAM22
Binding competition with fluorescently labeled CXCL12

Szpakowska
et al., 2021

(continued on next page)
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Table 1 (continued)

Receptor Active peptides In vitro observation In vivo observation Reference

B1 dynorphin A, dynorphin A 2-13 [B1-transiently transfected F-11 cells]
Concentration-dependent release of intracellular calcium
Binding competition with [3H]kallidin

Intrathecal injection of dynorphin A 2-13 in rats: increase in tactile hypersensitivity and
thermal hyperalgesia
Partial reversal of dynorphin A 2-13-induced thermal hyperalgesia after treatment with
B1-specific inhibitor DALBK
Partial reversal of L5-L6 spinal nerve ligation hypersensitivities after spinal administration
of B1-specific antagonist DALBK

Lai et al., 2006

dynorphin A Model of inflammatory pain with spinal upregulation of dynorphin A
Intrathecal administration of B1 antagonist DALBK: reversal in thermal and tactile
hypersensitivities, in an equivalent measure as treatment with anti-dynorphin antiserum

Luo et al., 2008

dynorphin A and mutated forms, including
dynorphin A 2-13

[rat brain membranes or transiently expressing HEK293 cells]
Binding competition using [3H]DALKD or [3H]BK

Lee et al., 2014

B2 dynorphin A, dynorphin A 2-13 [endogenously or transiently expressing F-11 cells and primary
cultures of dorsal root ganglia]
Concentration-dependent release of intracellular calcium,
inhibited with B2-specific antagonist HOE 140
[endogenously or transiently expressing F-11 or COS-7 cells, and
mouse whole-brain membranes]
Binding competition with [3H]bradykinin

Intrathecal injection of dynorphin A 2-13 in rats: increase in tactile hypersensitivity and
thermal hyperalgesia
Partial reversal of dynorphin A 2-13-induced thermal hyperalgesia after treatment with
B2-specific inhibitor HOE 140
Absence of hypersensitivity following dynorphin A 2-13 intrathecal injection in
Bdkrb2-KO mice
Partial reversal of L5-L6 spinal nerve ligation hypersensitivities after spinal administration
of B2-specific antagonist HOE 140

Lai et al., 2006

dynorphin A Model of inflammatory pain with spinal upregulation of dynorphin A
Intrathecal administration of B2 antagonist HOE 140: reverse in thermal and tactile
hypersensitivities, in an equivalent measure as treatment with anti-dynorphin antiserum

Luo et al., 2008

dynorphin A and mutated forms, including
dynorphin A 2-13

[rat brain membranes or transiently expressing HEK293 cells]
Binding competition with [3H]DALKD or [3H]BK

Pretreatment with specific B2 inhibitor blocks dynorphin A 2-13-induced paralysis,
thermal hyperalgesia and mechanical hypersensitivity

Lee et al., 2014

NMDAR dynorphin A 1-13 [membrane preparation from rat cortex]
Binding competition with L-[3H]glutamate or [3H]MK-801

Massardier &
Hunt, 1989

dynorphin A, dynorphin A 1-13, dynorphin
A 2-17, big dynorphin

[acutely dissociated trigeminal neurons in rat]
Recording of whole-cell and single-channel currents
Concentration-dependent reduction of NMDA-activated currents

Chen et al., 1995

dynorphin A, dynorphin A 1-13 and further
C-terminally truncated variants

[acutely dissociated trigeminal neurons in rat]
Recording of whole-cell and single-channel currents
Concentration-dependent reduction of NMDA-activated currents

Chen & Huang,
1998

dynorphin A 2-17 [membrane preparation from rat cortex and transiently
transfected
HEK293 cells with NR1a/NR2a subunits of NMDAR]
Binding competition and saturation with 125I- dynorphin A 2-17

Tang et al., 1999

big dynorphin big dynorphin-induced nociceptive behavior in mice
Intrathecal co-administration of NMDAR antagonists D-APV, MK-801 or Ifenprodil:
dose-dependent induction of antinociceptive behavior

Tan-No et al.,
2002

Big dynorphin Injection of big dynorphin inducing locomotor activity, memory and anxiolytic-like
behavior in mice
Intracerebroventricular co-administration with NMDAR antagonist MK-801:
dose-dependent inhibition of aforementioned behavioral effects

Kuzmin et al.,
2006
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proadrenomedullin N-terminal 20 peptide (PAMP-20) and its truncated
analog PAMP-12 (PAMP[9-20]) (Kamohara et al., 2005; Robas, Mead, &
Fidock, 2003). It is highly expressed in mast cells, the primary effectors
in anaphylaxis, and is responsible for most pseudo-allergic drug reac-
tions. A large variety of FDA-approved peptidergic drugs elicit an
injection-site reaction associated with pain and itch, which has now
been attributed to MrgX2 promiscuous activation by cationic peptides
(McNeil et al., 2015). MrgX2 activation following morphine exposure
was confirmed at clinically relevant doses (Navines-Ferrer et al., 2018).

More recently, MrgX2was shown to respond tomicromolar concen-
trations of prodynorphin-derived peptides and synthetic opioids dis-
playing an uncharacteristic preference for dextromorphinans and
dextrobenzomorphans (Lansu et al., 2017) (Figs. 1 and 2). MrgX2 is
expressed in the PNS and CNS, with highest levels in DRG, where it
may act in competition or synergy with MOP, DOP and KOP.

2.2. Bradykinin Receptors (BRs)

There are twomembers of the bradykinin receptor (BR) family, bra-
dykinin receptor 1 (B1) and 2 (B2). Their pharmacological and
expression profiles are widely different: B1 is expressed in many
immune cell types upon induction by proinflammatory cytokines and
undergoes limited desensitization, while B2 is constitutively expressed
in the PNS and extensively desensitized (Bertram et al., 2007;
Kawaguchi et al., 2015; Leeb-Lundberg, Marceau, Muller-Esterl,
Pettibone, & Zuraw, 2005; Medeiros et al., 2004). Both receptors bind
with high affinity to different cleaved fragments of kininogen precursors
to mediate inflammation, angiogenesis and vasodilatation.

B1 binds the endogenous bradykinin and Lys-[des-Arg9]-bradykinin
with nanomolar affinity. Its expression and signaling following
tissue injury induces the recruitment of neutrophils and activation of
Ca2+-mediated nitric oxide synthases, which further regulate the in-
flammatory responses and vascular tone (Dhamrait et al., 2003;
Ehrenfeld et al., 2006). B2 is activated by bradykinin and kallidin (also
Lys-bradykinin), and inducesMAPKphosphorylation via transactivation
of epidermal growth factor receptor (EGFR) (Vidal et al., 2005). B2 is
responsible for themajority of bradykinin-mediated responses. Both re-
ceptors couple to Gi/o and Gq/11 synergistically, inhibiting adenylyl
cyclase and inducing intracellular Ca2+ mobilization (Fig. 1).

Bradykinin was first linked to nociception over three decades ago,
when it was observed to lead to PKC-mediated depolarization and sub-
sequent sensitization to noxious stimuli in neonatal rat DRG neurons
(Burgess, Mullaney, McNeill, Dunn, & Rang, 1989). Consistently, brady-
kinin antagonists alleviate hyperalgesia in rat models of acute and
chronic pain (Steranka et al., 1988).

In 2006, dynorphin Awas reported to activate both bradykinin recep-
tors, promoting inflammation and hyperalgesia (Lai et al., 2006; Luo
et al., 2008). Importantly, radioligand binding studies revealed that Dyn
A (2-13), a truncated variant of dynorphin A, also competed with brady-
kinin for B2 (Lai et al., 2006; Lee et al., 2014). It should be noted that, this
variant was only shown to activate bradykinin receptors, NMDARs and
ACKR3, and despite its lack of affinity towards classical ORs, it seems to
have important implications in opioid-related phenotypes, including
learning capacity and memory (Hiramatsu & Inoue, 2000).

Although dynorphin A is structurally different from previously iden-
tified ligands of BRs, their interaction has been validated by multiple
groups (Lai et al., 2006; Lai, Luo, Chen, & Porreca, 2008; Lee et al.,
2016; Luo et al., 2008). As a family of receptors which has been impli-
cated in the perception of pain with their prototypical ligands, BRs
may also modulate nociception through their interaction with the en-
dogenous opioid peptide dynorphin A and its derived truncated forms.

2.3. Atypical chemokine receptor ACKR3/CXCR7

The atypical chemokine receptor 3 (ACKR3, formerly known as RDC-
1 and CXCR7) was deorphanized in 2005 with the identification of
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chemokines CXCL12 (SDF-1) and CXCL11 (I-TAC) as its endogenous li-
gands, which it shares with the classical chemokine receptors CXCR4
and CXCR3, respectively (Balabanian et al., 2005; Burns et al., 2006;
Szpakowska et al., 2018). ACKR3 is also a receptor for the HHV-8
encoded chemokine vCCL2/vMIP2 (Szpakowska et al., 2016;
Szpakowska & Chevigne, 2016) and for proadrenomedullin N-terminal
20 peptides (PAMPs) (Meyrath et al., 2021).

Initially a member of the classical chemokine receptor family and
named CXCR7, it was officially declassified as such in 2014 with the in-
troduction of the atypical chemokine receptor (ACKR) subfamily by the
IUPHAR (Bachelerie et al., 2014). This family encapsulates four recep-
tors, highly homologous to classical chemokine receptors, which vary
considerably in their biology but share the common characteristic of
being unable to trigger canonical G protein signaling. Instead, ACKRs
act either as buffers by temporarily capturing chemokines, or as scaven-
gers by internalizing and degrading them (Nibbs&Graham, 2013). They
shape chemokine gradients during immune responses and develop-
ment,maintaining homeostasis and participating in the resolution of in-
flammation events.

ACKR3 in particular is expressed in the majority of CNS regions, in
the adrenal glands, on a number of immune cell subsets and on endo-
thelial cells, where it scavenges CXCL12 to modulate hematopoietic
stem cell migration for instance (Koenen, Bachelerie, Balabanian,
Schlecht-Louf, & Gallego, 2019; Quinn, Mackie, & Caron, 2018; Saaber
et al., 2019). ACKR3 is also involved in cardiac development and
ACKR3-/- knock-out is a perinatal lethal phenotype,with embryos show-
ing cardiac hyperplasia and vascular defects (Sierro et al., 2007). ACKR3
also plays a key role in neuronal development by modulating the
CXCR4-CXCL12 axis, which is also often exploited and upregulated in
metastatic cancers (Puddinu et al., 2017; Sjoberg et al., 2020; Smit
et al., 2021; Zou, Kottmann, Kuroda, Taniuchi, & Littman, 1998).

In 2013, Ikeda et al. reported ACKR3 to bind with high affinity a
range of endogenous proenkephalin A-derived peptides, such as
BAM22 and peptide E but not the further processed Met-enkephalin
or Leu-enkephalin (Ikeda, Kumagai, Skach, Sato, & Yanagisawa, 2013)
(Fig. 2B). Recently, ACKR3 selectivity for opioid peptides was extended
from enkephalins to members of the dynorphin and nociceptin families
(Meyrath et al., 2020) (Figs. 1 and 2). The range of potencies of many of
these opioid peptides for ACKR3, evaluated with β-arrestin 1 and β-
arrestin 2 recruitment, is comparable with those of classical ORs to-
wards their prototypic ligands, clearly suggesting biological relevance
of these promiscuous receptor–ligand interactions.

Interestingly, ACKR3 is highly tolerant towards N-terminal tyrosine
modifications of its opioid peptide ligands. An initialmutational study re-
vealed that BAM22 and [Phe1]BAM22 equally activated the receptor
(Ikeda et al., 2013). This was further validated by a SAR analysis on
adrenorphin (YGGFMRRV-NH2), another ligand of ACKR3 as well as
MOP, DOP and KOP (Meyrath et al., 2020). Variants with a Y1F mutation
lead to a tenfold increase in potency for ACKR3, while it predictably abol-
ishes classical OR activation. This leniency for the first tyrosine residue
accounts for the activation and recognition of processed opioid frag-
ments such as dynorphin A2-13 and dynorphin A2-17. Hence, although
ACKR3 recognizes a broad range of opioid peptides, its activation relies
on determinants distinct from the classical OR recognition sites.

ACKR3 signaling is still a source of debate, within and outside the
opioid context and it cannot be excluded that in specific cell types or cel-
lular contexts, ACKR3may induce G protein-dependent or independent
signaling (Fumagalli et al., 2020; Odemis et al., 2012). β-arrestin signal-
ing was proposed for ACKR3 in some reports (Heuninck et al., 2019;
Rajagopal et al., 2010). However, little consensus has been reached re-
garding the existence of direct β-arrestin signaling by GPCRs in general,
and the evidence supporting such signaling has been challenged repeat-
edly (Alvarez-Curto et al., 2016; Grundmann et al., 2018; Kliewer et al.,
2019; Meyrath et al., 2020; O'Hayre et al., 2017; Smith et al., 2018).

Direct ACKR3 signaling in response to opioid peptide binding
also remains contentious. ACKR3 was first reported to modulate
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adrenocorticotropic hormone (ACTH)-driven intracellular responses
through the ACTH–melanocortin 2 receptor (MC2R) axis. This was
suggested to stem from BAM22-mediated activation of ACKR3, even-
tually leading to β-arrestin recruitment and an increase in ERK1/2
phosphorylation (Ikeda et al., 2013). However, recent studies could
not bring evidence for such phosphorylation or any G protein inter-
action (Meyrath et al., 2020; Szpakowska et al., 2021). This non-
signaling behavior is consistent with previous records of ACKR3
modus operandi for chemokine ligands, acting as a scavenger to de-
plete the microenvironment and classical receptors of their ligands
(Quinn et al., 2018).

ACKR3 presence in the CNS as well as in adrenal glands puts it at the
forefront of opioid peptide-mediated pathways and its activation shows
downstream anxiolytic-like effects in a preclinical study (Ikeda et al.,
2013). Gene expression analysis revealed that ACKR3 is highly
expressed in several brain regions corresponding to important opioid
activity hubs. Additionally, its expression levels are often higher than
those of classical opioid receptors, which further supports the physio-
logical relevance of its observed in vitro opioid peptide scavenging ca-
pacity. This is reinforced by the finding that blocking ACKR3
scavenging through administration of the modulator LIH383 leads to
potentiation of dynorphin A effects on the classical opioid receptors,
i.e. an increase in the inhibition of neuronal firing (Meyrath et al.,
2020). Additionally, ACKR3 was recently shown to bind the natural an-
algesic molecule conolidine, further pointing to the involvement of this
receptor in pain (Szpakowska et al., 2021).

ACKR3 is a well-established atypical chemokine scavenger and this
function seems to extend to endogenous opioid peptides. Its nanomolar
affinity for several of these families, its proposed involvement in pain
and anxiety, and its insensitivity to naloxone align to make it a substan-
tial target for non-classical opioid tone modulation.

2.4. N-Methyl-D-aspartic acid receptors (NMDARs)

The N-Methyl-D-aspartic acid receptors (NMDARs) are hetero-
tetrameric voltage-dependent glutamate-gated ion channels with high
Ca2+ permeability. The gating of these channels is quite complex and
depends on two mechanisms i.e. ligand binding and membrane depo-
larization. Extracellular Mg2+ and Zn2+ bind to the receptor and block
the passage of other cations. It requires membrane depolarization to
eliminate channel inhibition and, dependingon its subunit composition,
glutamate or glycine/D-serine binding to allow a Ca2+ influx (Planells-
Cases, Sun, Ferrer-Montiel, & Montal, 1993; Wolosker, 2006). NMDARs
are constitutively expressed in numerous brain regions and are essen-
tial mediators of synaptic plasticity and excitatory neurotransmission
(Traynelis et al., 2010).

Several reports have documented dynorphin A as a competitive li-
gand for glutamate on NMDARs (Massardier & Hunt, 1989; Tang et al.,
1999) (Figs. 1 and 2). Interestingly, big dynorphin (Big Dyn), the inter-
mediary precursor of dynorphin A and B, which is expressed in the
brain, pituitary gland and spinal cord, shows little activity in vivo to-
wards KOP, despite its high affinity for the receptor, comparable to dy-
norphin A and B (Kuzmin, Madjid, Terenius, Ogren, & Bakalkin, 2006;
Merg et al., 2006). Itmay insteadmediate physiological and pathological
processes through NMDARs. Indeed, intrathecal administration of Big
Dyn has been reported to induce naloxone-insensitive nociceptive be-
havior in mice, which was dose-dependently inhibited by NMDAR an-
tagonists (Tan-No et al., 2002). Endogenous Big Dyn was also shown
to induce OR-independent nociception through the use of dynorphin
degradation inhibitors (Tan-No et al., 2005).

In another study evaluating KOP-associated behavioral responses,
dynorphin A and B administration was associated with antinociception
in the hot-plate test, whereas Big Dyn led to memory enhancing, loco-
motor and anxiolytic-like effects (Kuzmin et al., 2006).While the effects
of dynorphin A and B were inhibited by the KOP antagonist nor-
binaltorphimine (norBNI), those induced by Big Dyn were insensitive
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to naloxone and blocked by the NMDAR antagonist MK-801. This sug-
gests that NMDARs bind specifically to Big Dyn and modulate similar
endpoints as classical ORs butwith different effectors and behavioral re-
sponses.

NMDARs have been colocalized with MOP in CNS neurons, specifi-
cally in the dendrites and somata of ventrolateral PAG neurons
(Commons, van Bockstaele, & Pfaff, 1999) and there are many reports
of a putative interaction between the two receptors. Rodriguez-Munoz
et al. suggest that the heterodimer NMDAR–MOP forms during single-
dose administration of opioids (e.g. morphine, fentanyl) and dissociates
above a certain threshold, which leads to tolerance and increased MOP
phosphorylation, PKA- or PKC-mediated (Rodriguez-Munoz, Sanchez-
Blazquez, Vicente-Sanchez, Berrocoso, & Garzon, 2012).

Hence, on the one hand, NMDAR channels have been found to be ac-
tivated by endogenous opioid peptides (Tan-No et al., 2002) and on the
other, to be inhibited by synthetic alkaloid opioids (Rodriguez-Munoz
et al., 2012). This highlights that they may contribute to nociception as
well as the onset of a tolerant profile in a ligand-dependent manner.

Importantly, a family of ion channels, the α9/α10-containing nico-
tinic acetylcholine receptors, were shown to be inhibited by opioid pep-
tides in Xenopus oocytes (Lioudyno et al., 2002). It is therefore tempting
to speculate that other ion channels are equally modulated by endoge-
nous and/or exogenous opioids, independently of classical opioid recep-
tors, however there are still few reports assessing such interaction.

2.5. Additional atypical receptors

Other proteins linkedwith opioid-like effects such as psychotomimesis
or analgesiawere initially classified as opioid receptors (Yaksh, 1984). This
was the case for the sigma receptor, an endoplasmic-reticulum-resident
transmembrane protein, which binds several synthetic opioid drugs but
no endogenous opioid peptides (Hayashi & Su, 2005). This receptor was
eventually removed from the classical OR family due to its unrelated struc-
ture and function (Cox et al., 2015).

Another putative opioid receptor was the epsilon receptor, in-
troduced as a response to unattributed effects of endogenous
opioid peptide β-endorphin in rat ileum and mouse vas deferens
(Schulz, Wuster, & Herz, 1981). While some reports suggested that
antinociception and release of Met-enkephalin were not mediated
by classical ORs (Narita & Tseng, 1998), a triple MOP/KOP/DOP KO
abolished these effects suggesting that the ε-receptor is either a
splice variant or a heteromer of two or more ORs (Contet, Matifas,
& Kieffer, 2004).

Interestingly, the opioid growth factor receptor (OGFr) or ζ-opioid
receptor, which binds exclusively OGF (Met-enkephalin), is sensitized
by naloxone (Zagon, Goodman, & McLaughlin, 1989). It is a non-GPCR
receptor localized on the outer nuclear envelope, which is directed to
the nucleus upon OGF binding, eventually preventing cell division. It is
mainly expressed in the heart and liver, and to a lesser degree in the
brain and pancreas. OGFr is not classified as a classical OR due to its un-
characteristic structure and its non-opioid related functions, mainly tis-
sue and cell proliferation (Tanaka, Kondo, Hamamura, & Togari, 2019;
Zagon et al., 1989).

3. Atypical opioid receptors - therapeutic opportunities

While research on opioid-related disorders, among them (chronic)
pain and depression, has made steady progress, little improvement
has been made in the development of new opioid receptor-targeting
drugs with higher benefit/risk ratio. The insight on biased signaling of-
fered a potential opportunity to fine-tune opioid action by dissociating
the analgesic and adverse effects of opioid treatment. Recently, this
led to the introduction of the G protein-biased FDA-approved drug
TRV130 (oliceridine) (Mullard, 2020). However, despite tremendous ef-
forts to find additional ligands with a similar pharmacological profile
and to further characterize the extent of their functional selectivity in
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relevantmodels, evidence for clinical benefit of suchmolecules remains
frail and has been challenged repeatedly (Bachmutsky et al., 2021;
Benredjem et al., 2019; Gillis et al., 2020; L. He et al., 2021; Kliewer
et al., 2020).

Overall, the development of improved ligands of the four classical
opioid receptors has shown limited success (Altarifi et al., 2017; Gillis
et al., 2020; Hill et al., 2018). Therefore, it may be a potential alternative
to target other opioid peptide-binding receptors, which may not be as-
sociated with the same impasses. In this context, the existent data on
their biology and pharmacological modulation of both their opioid-
and non-opioid-related functions represent a valuable asset, especially
since some of their specific modulators have already been evaluated in
the clinic.

3.1. Modulation of atypical opioid receptors by natural and synthetic
opioids

Several prototypical opioid drugs can also directlymodulate atypical
ORs, andwhile in some instances these interactionsmay provide a ther-
apeutic advantage, for others they may have negative effects.

For instance, a study looking at perioperative procedures and anes-
thesia pinpointed the interaction between natural (morphine) and syn-
thetic (fentanyl) opioids with MrgX2. Such activation might be the
leading cause of the characteristic IgE-independentmast cell degranula-
tion observed in a number of patients treated with these analgesics
(Navines-Ferrer et al., 2018).

NMDA receptors have also been shown to be modulated by chronic
morphine administration (Feehan & Zadina, 2019). Moreover, a group
of higher-efficacy MOP agonists seem to act as partial or weak NMDAR
antagonists (Ebert, Thorkildsen, Andersen, Christrup, & Hjeds, 1998).
This dual profile may be responsible for the decrease in adverse events
they display. A relevant example is methadone, an opioid analgesic
often used in opioid maintenance therapy, which in combination with
morphine, leads to significantly lower morphine tolerance and depen-
dence in preclinical models (He & Whistler, 2005; Sotgiu, Valente,
Storchi, Caramenti, & Biella, 2009). Although this may be explained by
the long half-life ofmethadone, itmay also stem from its intrinsic antag-
onistic activity towards NMDA receptors, which prevents their upregu-
lation and subsequent onset of tolerance and hyperalgesia.

On the other hand, ACKR3 was described to be unresponsive to a
number of prototypical opioid drugs used in the clinic, including mor-
phine, fentanyl, naloxone or methadone or the high-specificity ligands
D-Ala2,D-Leu5-Enkephalin (DADLE) or [D-Ala2, N-MePhe4, Gly-ol]-en-
kephalin (DAMGO), potent agonists for DOP and MOP respectively
(Meyrath et al., 2020). So far, there are no reports on the interaction
of bradykinin receptors or MrgX1 with natural or synthetic opioids.

3.2. Direct pharmacological modulation of atypical opioid receptor
signaling

Several studies have already assessed the effects of modulating the
aforementioned receptors with their canonical agonists and antagonists
in relation to opioid-related functions.

3.2.1. Mas-Related Receptors GPCR member X (MRGX)
Only a fewmolecules targeting MgrX1 have been described, includ-

ing three different antagonist scaffolds (Bayrakdarian, Butterworth, Hu,
Santhakumar, & Tomaszewski, 2011; Kunapuli et al., 2006; Schmidt,
Butterworth, O'Donnell, Santhakumar, & Tomaszewski, 2009) and so
far, no selective agonist is available for this receptor. Interestingly, it
was shown that the positive allosteric modulator of MrgX1, ML382, in
the presence of the endogenous ligand BAM8-22, and to a lesser extent
alone, attenuates persistent nociception without significant adverse ef-
fects in humanized mice which underwent chronic constriction injury
(Li et al., 2017). The same study also showed that BAM8-22, inactive
at the MOP, is upregulated following spinal injury, which further
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legitimates the interest in its possible interactionwithMrgX1 in chronic
non-cancer pain, a condition hardly treatable with traditional MOP ago-
nists due to the inevitable onset of tolerance.

Although themodulation of the receptorMrgX2, reported to be acti-
vated by dynorphin-related peptides, might influence opioid-related
disorders, preclinical evidence has not yet been put forward, mainly
due to the lack of potent and selective modulators. However, a highly
specific agonist, ZINC-3573 was recently designed in silico and con-
firmed in vitro (Lansu et al., 2017), opening up the possibility to deter-
mine this receptor’s role in pain modulation.

3.2.2. Bradykinin Receptors (BRs)
Bradykinin receptors also make for credible targets against pain, es-

pecially neuropathic pain. In such conditions, dynorphin A is upregu-
lated and no longer mediates antinociception (Podvin, Yaksh, & Hook,
2016). One of the suggested pathways for this paradox is through BRs.
A study a rat model of neuropathic pain together with naïve animals,
found that the cleaved fragment dynorphin A2-13, inactive on classical
receptors, facilitates nociception transmission only in neuropathic
animals, and that a B2 antagonist counteracts this effect only in these
animals (Bannister et al., 2014). This was supported by a cluster of
other studieswhich found that B2 antagonists such asHOE-140 reversed
nerve injury-induced nociception, and that this effect was only ob-
served in animals with upregulated spinal dynorphin but not bradyki-
nin (Lai et al., 2006; Luo et al., 2008). This suggests that dynorphin is
the main mediator of BR activation and subsequent hyperalgesia in
this context. Hence, chronic nociception alters the physiology of the spi-
nal environment and the main actors of noxious transmission may
change accordingly, here relieving classical opioid receptors and giving
way to alternative receptors such as BRs.

Therefore, targeting BRs may offer an opportunity to improve
chronic pain management in a non-addictive approach which does
not rely on classical ORs. In contrast to MrgX1 and 2, there are many
available peptides and small molecules which modulate BRs, including
the FDA-approved drug Icatibant, used against hereditary angioedema
in adults, and Fasitibant, currently in Phase II clinical trials, which both
inhibit B2. FOV2304, also known as Safotibant is the only B1 antagonist
to reach clinical trials but, similarly to Icantibant and Fasitibant, it has
not been evaluated in chronic pain conditions. An exhaustive list of B1
antagonists and patents in the context of pain has been reviewed
elsewhere (Bozo, Eles, & Keseru, 2012).

3.2.3. N-Methyl-D-aspartic acid receptors (NMDARs)
NMDARs have been repeatedly invoked in the discussion of pain

management as they are involved in an array of opioid-related re-
sponses, including analgesia and the onset of tolerance.

In an early study, the analgesic efficacy of the co-administration of
the NMDAR antagonist ketamine and the MOP agonist morphine was
evaluated in postoperative pain control in patients undergoing joint re-
placement. It was shown that while ketamine alone did not produce
pain relief, it lead to a stronger analgesic effect when combined with
morphine treatment (Wong, Liaw, Tung, Su, &Ho, 1996). This generated
interest in NMDAR inhibition in the context of pain management and
the same group later found that competitive (D-AP5) or non-
competitive (MK-801) NMDAR antagonists also potentiate the effect
of morphine in rats and prevent the onset of tolerance (Wong, Cherng,
Luk, Ho, & Tung, 1996). There are many commercially available
NMDAR antagonists, which display different affinities for the receptor,
correlating both with the extent of morphine-induced analgesia and
the severity of side effects. Methadone, memantine or dextromethor-
phan all show weaker affinity for NMDARs than ketamine, which has
shown the strongest morphine-sparing effect and reduced dependence
(Kollender et al., 2008; Wong, Liaw, et al., 1996). However, it is associ-
ated with substantial dose-limiting effects such as dizziness, sedation,
dissociation (Sang, 2000). An extensive review on NMDAR antagonism
is available (Lipton, 2004).
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Additionally, the interest in NMDARs as targets for pain manage-
ment shed light on the downstream effects of opioid agonists beyond
their typical OR-modulating actions. Indeed, some agonists have a dif-
ferential impact on atypical OR activation as well, which may influence
both analgesia and the onset of side effects. For instance, it was recently
shown that the endomorphin analog MEL-0614 displays higher
antinociception and less tolerance than morphine in an animal model
of neuropathic pain (Ma et al., 2020). This added value was accredited
to the lack of NMDAR activation upon sustained MEL-0614 administra-
tion,while chronicmorphine treatment typically induces anNMDAR re-
sponse. Importantly, the hyperalgesia and tolerance developed with
morphine were blocked by dynorphin A-specific antibodies but not by
naltrexone, suggesting these effects are notmediated by classical OR. In-
stead, they may stem from the interaction with NMDARs, considering
the affinity of dynorphin A for the receptor's polyamine sites that
drive excitatory signals (Caudle & Dubner, 1998).

Interestingly, a cluster of studies has shown that the hyperalgesic
phenotype associated with continuous morphine treatment is both
sex- and hormone-dependent in mice, and that male and ovariecto-
mized female hyperalgesia could be reversed by NMDAR antagonists,
while this was not the case for gonadally intact females (Juni et al.,
2010; Juni, Klein, Kowalczyk, Ragnauth, & Kest, 2008; Waxman et al.,
2010).

3.3. Indirect modulation of classical ORs by atypical OR

3.3.1. Inhibition of scavenging mediated by the atypical opioid receptor
ACKR3

The approach of regulating opioid-dependent effects by increasing
the availability of active opioid peptides has already been investigated
with the development of enkephalinase inhibitors, which restore
the ‘natural’ antinociception of endogenous enkephalins. Such inhibi-
tors have shown antinociceptive properties without the advent of
side effects (Noble, Turcaud, Fournie-Zaluski, & Roques, 1992;
Szymaszkiewicz, Storr, Fichna, & Zielinska, 2019). This supports the po-
tential of targeting ACKR3, which was recently discovered to selectively
scavenge endogenous enkephalin, dynorphin and nociceptin peptides,
as another avenue for opioid fine-tuning. Indeed, the affinity of ACKR3
for endogenousMOP agonists like proenkephalin-derived peptides sug-
gests that blocking its scavenging function may enhance the concentra-
tion of endogenous BAM22 or adrenorphin peptides, making them
more available to classical ORs. This concept has been supported by a
couple of studies already. Indeed, targeting ACKR3 with the highly spe-
cific small-molecule compound CCX771 was described to have, syner-
gistically with ACTH, an anxiolytic-like effect on behavior in mice
(Ikeda et al., 2013). Moreover, the effect of adrenorphin-derived small
peptide LIH383, which blocks ACKR3 scavenging function, was recently
addressed in an ex vivo rat locus coeruleus model where it potentiates
the effect of endogenous opioids (Meyrath et al., 2020).

Besides CCX771, other analogues have been developed with various
pharmacological profiles, including the partial agonist CCX777
(Gustavsson et al., 2017) or CCX733 (Hartmann et al., 2008). Together
with VUF11207 and VUF11403, two small-molecule agonists designed
on a similar scaffold (Wijtmans et al., 2012), these compounds are valu-
able tools for investigating ACKR3 biology andmay lead to the develop-
ment of novel opioid therapeutics. Recently, a diphenylacetamide
analogue and ACT-1004-1239 were reported as the first antagonists of
ACKR3 (Menhaji-Klotz et al., 2020; Richard-Bildstein et al., 2020). The
latter was recently tested in human for safety, tolerability, pharmacoki-
netics, and pharmacodynamics in a multipurpose study using CXCL12
plasma concentration as target engagement biomarker and reinforced
ACKR3 as a valuable drug target (Huynh et al., 2021). Interestingly,
ACKR3 has recently been demonstrated to be the main GPCR target of
conolidine (Szpakowska et al., 2021), a natural analgesic alkaloid
found in the bark of the tropical flowering shrub Tabernaemontana di-
varicate, which is used in traditional Chinese medicine to treat fever
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and pain (Tarselli et al., 2011). This provides additional correlative evi-
dence between ACKR3 and painmodulation. Systematic chemical mod-
ifications of conolidine resulted in a analogue compound, RTI-5152-12,
with 15-fold improved potency towards ACKR3. Notably, conolidine
and RTI-5152-12 function similarly to LIH383 and conolidine’s analgesic
activity was proposed to rely on the inhibition of the scavenging func-
tions of ACKR3 increasing the availability of analgesia-inducing endoge-
nous opioid peptides for the classical ORs. Considering the plausible
non-signaling function of ACKR3, both antagonists blocking the recep-
tor or agonists competing with the uptake and scavenging of the opioid
peptides could be valuable. The current state of ACKR3 pharmacological
modulation has been recently reviewed extensively (Adlere et al., 2019;
Lounsbury, 2020).

3.3.2. Modulation of classical ORs by heterodimerization with atypical OR
Classical ORswere shown to form heterodimers with several GPCRs,

including the atypical ORs. These allosteric interactions often result in
modified pharmacology (as defined by the IUPHAR nomenclature of
multimeric G protein-coupled receptors (Pin et al., 2007)) and can
lead to alternative downstream effects for instance through coupling
to different G proteins. Heterologous desensitization, or phosphoryla-
tion and G protein uncoupling of a primary receptor in the absence of
its ligand by kinases activated by the stimulation of a secondary recep-
tor has been shown for several receptors, including MOP and the
neurokinin 1 receptor (NK1R) (Bowman et al., 2015) and may occur
through heterodimerization of classical ORs with atypical ORs.

Evidence pointing to heterodimerization of DOP with MrgX1 were
first provided by BRET titration experiments in HEK293 cells (Breit,
Gagnidze, Devi, Lagace, & Bouvier, 2006). Both receptors are activated
by BAM22, which typically leads to inhibition of adenylyl cyclase or ac-
tivation of phospholipase C for DOP and MrgX1, respectively. It was
shown, however, that upon transient co-expression of the two recep-
tors in HEK293 cells, BAM22 potentiates MrgX1 signaling but no longer
promotes DOR-mediated inhibition of cAMP production (Breit et al.,
2006). Similar observations were made in cultured neurons from DRG.
While treatment with the DOP ligand Leu-Enkephalin predictably re-
duced cAMP accumulation, co-treatment with BAM8-22 inhibited this
effect, supposedly owing to MrgX1 acting as an agonist-dependent
dominant negative receptor towards DOR (Breit et al., 2006). More re-
cently, MrgC, the mouse homolog of MrgX1, was shown to oligomerize
with MOP and to promote fast recycling of the complex to the cell sur-
face, potentiating morphine antinociception in vivo. The ability of MOP
andMrgX1 to heterodimerizewas shown inHEK293 cells, however fur-
ther characterization of the potential functional cellular outcomes of
this interaction is warranted (He et al., 2018).

In vitro, B2 was shown to form heterodimers with KOP, leading to a
shift in G protein coupling specificity of the latter. Indeed, B2–KOP het-
erodimers showed enhanced interactions with Gs, compared to each
receptor alone, which was concomitant with a decrease in KOR–Gi/o
interaction and an increase in cAMP levels following dynorphin A1-13

stimulation (Ji et al., 2017). Interestingly, B2 ligand bradykinin did not
induce cAMP signaling through the B2–KOP heterodimer, as was ob-
servedwith B2 alone, suggesting a change in ligand-receptor interaction
upon receptor heterodimerization.

NMDA receptors have also been found to colocalize with opioid re-
ceptors in individual neurons of the CNS, including the PAG region
(Commons et al., 1999; Rodriguez-Munoz et al., 2012). The interaction
between NMDARs and MOP has been further elucidated, and shown
to be modulated by exogenous MOP agonists (Rodriguez-Munoz et al.,
2012). Indeed, morphine disrupts the MOR–NMDAR complex and po-
tentiates NMDAR-mediated signaling, contributing to morphine toler-
ance. NMDAR agonists equally separate the complex and diminishe
the antinociceptive potential of morphine. Overall, this dimer formation
shows a positive allosteric modulation on the MOP and a negative allo-
steric modulation on the NMDAR ion channel, providing corroborating
evidence of functional heterodimerization.
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Although it remains to be investigated, ACKR3 may be able to
heterodimerize with classical opioid receptors and modulate their sig-
naling properties or sensitization, in analogy to its regulatory function
of CXCR4 within the chemokine system (Meyrath et al., 2020).

Therefore, targeting heterodimers between classical and atypical
ORs may allow alternative means for receptor modulation or even
rerouting of their downstream effects and thus should be considered
as another strategy to modulate the opioid system.

4. Discussion and perspectives

4.1. Atypical opioid receptors - dual-activity receptors relevant in the opioid
system

As stated by the IUPHAR in 2015, the nomenclature for opioid recep-
tors has been amoving subject. To this day, the family of classical ORs is
restricted to the μ, δ, κ and nociceptin receptors, or MOP, DOR, KOP and
NOP.With the exception of the latter, they are bound by their sensitivity
to naloxone/naltrexone. However, NOP’s high sequence homology to
other classical ORs qualifies it as such. On the other hand, atypical ORs
are not inhibited by unselective antagonists such as naloxone and are
phylogenetically distinct from classical ORs. Furthermore, atypical ORs
are associated with another primary function, which does not relate di-
rectly to opioidergic behaviors—e.g. BRs with inflammation, NMDARs
with excitatory synaptic signals or ACKR3 with maintenance of chemo-
kine homeostasis. However, there is leading evidence both in vitro and
in vivo that atypical ORs bind endogenous opioid peptides selectively
and, more importantly, directly impact opioid-related phenotypes, in-
cluding antinociception and anxiety, which supports their roles as phys-
iological ORs rather than mediators of off-target effects stemming from
their ligand binding promiscuity (Table 1).

4.2. Diversity and unity of atypical ORs and similarities with classical ORs

As covered in this review, atypical ORs form a heterogeneous group
of receptors, including class A GPCRs but also ligand-gated ion channels.
The primary—non-opioid-related—functions of these receptors range
from homeostasis and chemotaxis maintenance to vasodilatation, ana-
phylactic response and excitatory neurotransmission (Fig. 1).

ACKR3 andMrgX2 are fairly promiscuous towards theopioid peptide
families. ACKR3 shows high affinity towards several peptides from the
enkephalin and dynorphin family, in line with its function as a broad-
spectrum opioid scavenger (Meyrath et al., 2020). This is also the case
for MrgX2, which binds to BAM8-22 but also several prodynorphin-
derived fragments (Lansu et al., 2017). In contrast, NMDARs, BRs and
MrgX1 only bind one or a few endogenous opioid peptides. MrgX1
binds the proenkephalin-derived peptide BAM22 (and processed
BAM8-22)while BRs andNMDARs bind dynorphin A and truncated var-
iants, as well as big dynorphin for the latter (Figs. 1 and 2).

One may draw a parallel between classical and atypical ORs regard-
ing their ligand binding spectra: MrgX1 shows an affinity for enkepha-
lins, reminiscent of MOP, BRs and NMDARs exhibit KOP-like selectivity
patterns towards dynorphins, while MrgX2 binds enkephalin and dy-
norphin derivatives equally (Fig. 1). Interestingly, an adrenorphin SAR
analysis showed that ACKR3 can morph from a MOP, KOP to NOP-like
activation profile in response to different adrenorphin mutants. Hence,
similarly to classical OR, atypical ORs have specific affinity profiles for
the different families of endogenous opioid peptides. Noteworthy, all
atypical ORs respond to endogenous full-length opioid peptides but
also to truncated enkephalin and dynorphin variants, such as BAM8-
22, dynorphin 2-13 and dynorphin 2-17, which were shown to have a
physiological effect but are inactive on classical ORs (Gac, Butterick,
Duffy, Teske, & Perez-Leighton, 2016; Walker, Moises, Coy, Baldrighi, &
Akil, 1982) (Fig. 2C).

With the exception of NMDARs, atypical ORs identified to date are
peptide-binding class A GPCRs with affinities for endogenous opioid
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peptides ranging from nanomolar to low micromolar. In contrast to
classical ORs that exclusively signal through Gi/o proteins, atypical ORs
modulate opioid-related phenotypes through several modes of action
and signaling routes: the MrgX receptors along with the BRs are signal-
ing GPCRs, inducing Gi/o but also Gq/11 responses. In contrast, the
evidence for ACKR3 signaling is still contentious and its main modus
operandi is proposed to be through scavenging of endogenous
peptides. NMDARs, as ion-channels, rely on yet an alternate pathway
following dynorphin A or big dynorphin binding, although the exact
mechanisms responsible for the induction of pain or anxiolytic-like be-
havior respectively have not been elucidated as of yet.
4.3. Open questions and challenges

While targeting atypical ORswith specificmodulatorsmay appear as
a promising new therapeutic avenue, there is only scarce knowledge
about some of these receptors’ implication in opioid-related disorders
and often limited pharmacological tools are available. Although some
atypical ORs show nanomolar affinities towards opioid peptides (e.g.
ACKR3 or MrgX2), others may have affinities that are several orders of
magnitude lower than classical ORs. However, accurate comparative
studies on the modulation of classical and atypical ORs by opioid pep-
tides are still missing. Moreover, as atypical ORs are all involved in di-
verse pathways, the potential side effects associated with their
inhibition or potentiation should be considered, based on both their pri-
mary functions and opioid-related behaviors. Additionally, the possible
activity on atypical ORs of other bioactive peptides generated during the
processing of opioid precursors (e.g. ACTH, MSH from POMC and OFQ2
from PNOC) and inactive on classical opioid receptors should be further
characterized, as was initiated for MrgX1 (Lembo et al., 2002).

Drugs targeting atypical ORs have shown efficacy in different in vitro
and in vivo models and opened up new and unanticipated avenues for
drug development, relying on molecules with completely different
modes of action and pharmacology than classical opioids. Importantly,
the development of synthetic opioidsmay also benefit from considering
the interplay of these drugswith atypical ORs. Indeed, opioid drugswith
weak activity on atypical OR, such as NMDAR antagonism, could also
yield a higher benefit/risk ratio, among which methadone and
ketobemidone are pertinent examples.

Altogether, atypical ORs appear as promising emerging pharmaco-
logical targets, but significant efforts must be undertaken to clarify
and determine the extent of their role in pain modulation, anxiety and
depression. This should include their modulation, alone or in combina-
tion with classical OR-targeting drugs, as well as the potential side-
effects, both in preclinical models and human studies.

Most atypical ORs have been evaluated in the context of pain, anxi-
ety, memory or other opioid-related phenotypes to some extent and
there is strong preclinical evidence for their relevance as an alternative
means to modulate the opioid machinery. This should be extended to
human studies, as some of the atypical OR modulators have only been
clinically evaluated in the context of their ‘primary’ function, while
their FDA-approved drugs could prove highly beneficial to opioid-
related disorders. Importantly, additional studies must be conducted
for ACKR3 and MrgX2 to validate and characterize both their role in
nociception and the potential side effects of their modulation.

It should be noted that there are probably other receptors or ion
channels binding opioid peptides, possibly among orphan receptors
(Fricker & Devi, 2018), and their discovery remains challenging given
their as yet unknown signaling mechanisms. While the opioid receptor
family is currently restricted to four receptors, the proposition of a sub-
family of atypical ORs allows an extended overview of the possible ac-
tors involved in opioid-related disorders. Exploiting the breadth of
variety within this family, such as the ligand binding patterns, expres-
sion profiles and modes of action, while considering the dynamic con-
text of such disorders may offer new therapeutic opportunities in
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direct or combined therapies to hopefully broaden and improve the
opioid-associated pharmacopoeia.
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