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Abstract 

 

The indeterminacy of the spherical part of the couple-stress is a well-known drawback of any 

theoretical formulation stemming from the Cosserat couple-stress theory of elasticity. The relevant 

theory of finite elastic deformations of solids reinforced by a family of fibres that resist bending [1] is 

not an exception. The present communication extends and completes that theory in a manner that 

enables it to measure the spherical part of the couple-stress tensor outside the conventional equilibrium 

considerations. To achieve this, the present study reconsiders an extra piece of information that has 

surprisingly emerged already in [1] but, so far, is left unexplained and unexploited. Namely, the fact 

that the energy stored in a fibrous composite elastic solid with fibre-bending stiffness involves a 

couple-stress generated term which does not influence the relevant couple-stress constitutive equation. 

The thus resulting new theoretical development complements the theory presented in [1] without 

dismissing any of the theoretical results detailed or the conclusions drawn there. Its validity embraces 

boundary value problems concerning both finite and infinitesimal elastic deformations of polar fibrous 

composites. In the latter case, its applicability is also tested and verified, through the successful 

determination of the spherical couple-stress of a polar transversely isotropic elastic plate subjected to 

pure bending.                                      

  

Keywords: Couple-stress theory, Elasticity, Fibre-reinforced solids, Fibres resistant in bending, 

Generalised Cosserat theory, Polar elasticity, Spherical part of the couple-stress. 

 

  

1. Introduction 

 

The theory of elastic solids reinforced by a family of fibres resistant in bending [1] is a Cosserat-

type [2] couple-stress theory and, as such, considers that the stress field is non-symmetric. The 

theory [1] is mainly concerned with large elastic deformations and is, therefore, nonlinear. 

Nevertheless, its linearised version (see section 9 of [1] as well as [3]) is directly applicable in the 

regime of infinitesimal deformations and can therefore be felt more relevant to the actual Cosserat 

formulation [2] which is also linear. By now, both the linear and non-linear versions of the theory 

presented in [1] are well established, though, still, both versions involve a couple of interesting 

features that require further consideration and study. 

 The first of those features is a well-known, essentially standard drawback of Cosserat-type 

formulations according to which the resulting constitutive equations leave the spherical part of the 

couple-stress indeterminate (e.g. [4-13]). That drawback is a consequence of the fact that all 

Cosserat-type formulations, including [1], begin by postulating that the couple-stress field is 
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energetically reciprocal to the gradient of the general rotation field of the deformation. This 

postulation may be regarded as trivially valid in cases of material isotropy. However, it can be 

misleading in cases of material anisotropy that is due to fibre presence or, more generally, to the 

presence of some preference material direction, where the rotation field of the latter may differ 

considerably from its general deformation counterpart. In such cases, there is generally no 

information available to guide the selection of the dominant rotation field, namely a rotation field 

whose gradient is indeed energetically reciprocal to the couple-stress field.  

 Still though, the theory developed in [1] leaves available a relevant, extra piece of 

information that has not been taken adequately into consideration, mainly because its source is not 

yet fully understood. This, second feature of interest, stems from the observation that the energy 

stored in a fibrous elastic solid with fibre-bending stiffness involves a couple-stress related term 

which, surprisingly, does not feed into the couple-stress constitutive equation. The emergence of 

that extra energy term, then, creates a feelings of relevance and correlation with the spherical part of 

the couple-stress (in brief spherical couple-stress), which also leaves the constitutive equations 

unaffected.  

 A connection mechanism between the implied extra energy term and the spherical couple-

stress thus has recently been proposed [14] and, subsequently, applied successfully on a simple, 

linear elasticity, boundary value problem of plate bending [15]. That mechanism proposed a 

modification of the widely used, linear Cosserat theory [2] that enables replacement of the standard, 

displacement-based rotation/spin field with some alternative rotation/spin field that may be felt 

more dominant in specific classes of boundary value problems. Its subsequent application in the 

special case of unidirectional fibrous composites [14, 15] succeeded to provide an estimate of the 

spherical couple-stress by (i) selecting the gradient of the fibre-spin vector as energetically 

reciprocal to the coupe-stress field and, hence, (ii) concluding that the energy stored in the material 

through couple-stress action is necessarily identical to the internal energy part that is due to the fibre 

bending resistance [3]. 

 The fibre-spin vector was employed in [14] as reasonable choice of a dominant spin vector 

on the grounds that polar material behaviour due to bending resistance of individual fibres can take 

place in the absence of externally applied couple-stress tractions. Nevertheless, external couple-

tractions may generally also be present in polar elasticity applications, and, in such cases, no 

information is there available to guide with precision the choice of a dominant and, therefore, 

energetically reciprocal rotation/spin field. In this regard, and despite its remarkable success [15], 

the connection mechanism proposed [14] seems capable to provide only an approximate, though 

still valuable estimation of the spherical couple-stress. 

 It the follows that the search for an exact method of spherical couple-stress determination 

should in fact require direct and proper incorporation of the implied concept of a dominant 

rotation/spin field into the foundation of the non-linear polar elasticity theory proposed in [1]. This 

aim then suffices to identify the subject of the present communication, which complements and 

essentially completes the analysis presented in [1] without dismissing any of the remaining 

theoretical results detailed or the conclusions drawn there. Instead, it achieves to furnish the theory 

with additional mathematical means and flexibility that enable it to also determine the spherical 

couple-stress.  

 Under these considerations, Section 2 initially outlines the principal postulates and 

equations that underpin the finite elasticity theory developed in [1], while it also tries to keep 

unchanged the main notation employed there. Section 3 next introduces the concept of an auxiliary, 

virtual spin/rotation field whose gradient is energetically reciprocal to the couple-stress field and 

discusses the physical implications that this innovation brings into the overall, newly proposed 

theoretical framework.  

 Section 4 then succeeds to generalise the theory presented in [1] by replacing the general 

spin field of deformation with the implied auxiliary spin field which, being a virtual such, does not 

need to be determined. In this manner, a mathematical formulation analogous to that detailed in [1] 
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(i) leads again to the sets of stress and couple-stress constitutive equations obtained there, (ii) still 

predicts the presence of the afore mentioned extra energy term, and (iii) provides a necessary extra 

equation that enables determination of the spherical couple-stress outside the conventional 

equilibrium considerations.  

 Section 4 thus further reveals and discusses the crucial role that the linearized version of the 

theory plays in the determination of the spherical couple-stress, regardless of whether attention 

focuses on infinitesimal or finite deformations. Explicit additional details are next provided in 

Section 5 which, necessarily, restricts attention on relevant, polar elasticity boundary value 

problems met within the regime of infinitesimal deformations. In this manner, Section 6 is enabled 

to revisit the simple plate bending problem considered in [15] and, for that specific application, to 

provide a substantially improved prediction of the spherical couple-stress. Finally, Section 7 

summarises the principal conclusions drawn in this communication, elaborates on the ability of the 

presented, complete form of the theory to determine the spherical couple-stress in relevant finite 

elasticity applications, and thus reveals and discusses future research directions in this subject.  

 

                           

2. Notation and preliminary theoretical foundation 

 

The principal concepts and the notation adopted in [1] will generally still apply in what follows, 

where all vector and tensor quantities are referred to a rectangular Cartesian coordinate system Oxi, 

indices take the values 1, 2 and 3, and the summation notation of repeated indices also applies. 

Accordingly, a typical particle that is initially at position X, with coordinates XR in the reference 

configuration, moves to the position x, with coordinates xi in the deformed configuration.  

The deformation is then described by equations of the form  

( )i i Rx x X= ,                                                                                                                                     (2.1) 

and the deformation gradient tensor, F, has components  

,
i

iR i R

R

x
F x

X


= =


,                                                                                                                               (2.2) 

where, in the usual manner, a comma denotes partial differentiation with respect to the implied co-

ordinate parameter(s). The corresponding right and left Cauchy-Green deformation tensors, C and B, 

have components  

, , , ,,    ,
ji i i

RS i R i S ij i R j R

R S R R

xx x x
C x x B x x

X X X X

  
= = = =
   

                                                                    (2.3) 

respectively. 

 For a material reinforced by a single family of fibres, a unit vector A(X) defines the fibre 

direction in the reference configuration. The fibres are assumed convected with the material and their 

direction in the deformed configuration is thus defined by the vector 
2,    i iR R i i i R RS Sb F A a bb A C A = = = = ,                                                                                         (2.4) 

where a(x) is a unit vector in the deformed configuration and λ denotes the stretch in the fibre 

direction.  

It is noted, for later use, that      

, ,
ji i i i

i iR R R R R jR R i j j

R R j R j

xx v v v
b F A A A A F A v b

X X x X x

   
= = = = = =

    
                                      (2.5) 

where a dot denotes differentiation with respect to time and v, with components vi, is the velocity 

vector. The corresponding rate of deformation and velocity-spin tensors are 

( ) ( ), , , ,

1 1
,   

2 2
ij i j j i ij i j j id v v v v= + = − ,                                                                                            (2.6) 

Respectively. The latter tensor connects with its own spin vector through the standard relationships 
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,

1 1
,    

2 2
ij jik k i ijk kj ijk k jv      = = = ,                                                                                           (2.7) 

where 
ijk are the components of the alternating tensor, ε.  

 It is further recalled that 

,    i i i i iv u u x X= = − ,                                                                                                                       (2.8) 

where u is the displacement vector. The relevant displacement generated spin-field thus is 

,

1 1
,    ,

2 2
i ijk kj ijk k j kj ijk iu   =  =  =                                                                                       (2.9) 

where, 

( ), ,

1

2
ij i j j iu u = −                                                                                                                           (2.10) 

is the standard rotation. Hence, 

,    ij ij i i = = .                                                                                                                        (2.11) 

The fibres are considered resistant in bending [1]. The strain energy density of the elastic 

fibre-reinforced material of interest, 

( ), ,iR iR RW W F G A= ,                                                                                                                     (2.12) 

thus depends not only on the deformation gradients and the fibre direction vector, but also on the 

gradients 

,
i

iR i R

R

b
G b

X


= =


,                                                                                                                             (2.13) 

of the deformed fibre tensor. This dependence implies that a couple-stress tensor m, with components 

mij, is present and, therefore, that the stress tensor σ, with components σij, is generally non-symmetric. 

The stress tensor can therefore be decomposed into symmetric and antisymmetric parts in the usual 

manner, namely 

( )   ( ) ( )   ( )
1 1

,  ,  
2 2

ij ij ji ij jiij ij ij ij
        = + = + = − .                                                             (2.14) 

 In the absence of body forces and body couples, the equilibrium equations for the stress and 

couple-stress are 

 , ,0,    0ji j ji j ijk jk
m  = + = ,                                                                                                         (2.15) 

respectively. These are accompanied by adequately specified sets of displacement and/or traction and 

couple-traction boundary conditions acting on the external boundary of the material.  

In parts of the boundary that external tractions, T(n), and couple-tractions, L(n), are specified, 

those boundary conditions relate to (2.15) through the standard Cauchy-type formulas, 

jji

n

ijji

n

i nmLnT == )()(     , ,                                                                                                           (2.16) 

where n denotes the outward unit normal of the boundary surface. More generally though, (2.16) also 

determine the traction and the couple-traction vectors acting on any internal or external surface of the 

material.  

Under the assumption that the components of the stress and the couple-stress tensors are 

adequately differentiable functions of the co-ordinate parameters, a combination of the pair of 

equations (2.15) leads to the single equilibrium equation 

( ) 0
2

1
,, =+ ikkjiiij m  ,                                                                                                                   (2.17) 

where 

krrkk mmm  
3

1
−=                                                                                                                     (2.18) 
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is the deviatoric part of the couple-stress tensor, and the appearing Kronecker’s delta stands for the 

components of the unit matrix.  

It is thus seen that the spherical couple-stress, mrr, does not influence the equilibrium and, 

therefore, cannot be determined through the outlined standard equilibrium considerations. The noted 

indeterminacy of mrr is a long-known weakness of the conventional Cosserat couple-stress theory 

(e.g., [4-13]) and, as such, it is also present in the finite elasticity modelling effort detailed earlier in 

[1] for composite materials reinforced by fibres resistant in bending. As is shown next though, the 

theory developed in [1] is susceptible to appropriate generalisation and, hence, completion that 

enables determination of mrr. 

 

 

3. Virtual and actual rotation and spin fields  

 

Conventional couple-stress theory [2] considers that external couple-tractions that may act on the 

boundary surface of a polar elastic solid produce work, and thus store energy in the material, through 

their interaction with the gradients of the deformation generated spin-field (2.9a). This consideration 

might be felt trivially valid in the case of material isotropy but can be misleading in the presence of 

material anisotropy that is due to fibre reinforcement. This is because the relevant fibre rotation/spin 

field, which be an alternative or additional source of couple-stress, can differ to its deformation 

counterpart (2.9a). It is noted in this regard that, in the absence of externally applied, boundary 

couple-tractions, polar material behaviour in a fibre-reinforced material can still be triggered, solely, 

through fibre deformation and spin.  

It thus becomes understood that, if present, boundary couple-tractions store energy in the 

deforming material through their interaction with some auxiliary spin/rotation field, 

1
,    

2
i ijk kj kj ijk i  =   =  ,                                                                                                        (3.1) 

which may generally represent some unknown combination of its fibre and general deformation 

counterparts. The rates     

,    ij ij i i = = ,                                                                                                                         (3.2) 

of the implied rotation tensor and spin vector are then naturally related as follows:   

1
,    

2
ij jik k i ijk kj     = = .                                                                                                             (3.3) 

For reasons that will become clear in what follows, 
i  is now required to satisfy the 

condition 

( ) ( ) ( )
, ,

,    ji i ji i i ij j
m m   =  .                                                                                                    (3.4) 

The special case in which 
i i =  is naturally regarded as an uninteresting, trivial solution of (3.4) 

that makes the present analysis identical to its counterpart detailed in [1].  

It is emphasised that, on its own, the single condition (3.4) does not suffice for unique 

determination of 
i . Indeed, (3.4) may be used for determination of one component of 

i , but only 

after the other two components of this vector are specified arbitrarily. Hence, unless a couple of 

additional conditions somehow emerge to accompany (3.4), there exists a double-infinite number of 

vectors 
i  that satisfy (3.4). In this context, the auxiliary spin vector (3.3b) represents a virtual spin 

field. 

Within the standard framework that underpins the principle of virtual work (e.g., [16, 17]), it 

is now recalled that virtual velocities and, hence, their velocity-spin fields of the type implied in 

(3.4), are replaceable by their virtual displacements and, hence, displacement-spin counterparts (3.1a) 
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and (2.9a), respectively. Within that framework, condition (3.4) thus is replaceable and, therefore, 

equivalent with the condition 

( ) ( ) ( )
, ,

,  ji i ji i i ij j
m m =    ,                                                                                                  (3.5) 

which is valid for all relevant virtual displacements, including their real displacements, and regardless 

of whether the deformation is large or small (e.g., [16]). 

 The physical meaning of (3.4) and (3.5) can become better understood by integrating the 

latter condition over an arbitrary volume, V, of the solid material of interest and making afterwards 

use of the divergence theorem. That process yields   

( ) ( )
,

0ji i i ji i i jj
V S

m dV m n dS  − =  − =   ,                                                                            (3.6) 

which, with use of (2.16b) leads to  
( ) ( )n n

i i i i

S S

L dS L dS =   ,                                                                                                                     (3.7)  

where S represents the bounding surface of V.  

Validity of (3.4) or, equivalently, (3.5) thus implies that the total work done by the set of 

boundary couple-tractions, 
( )n

iL , acting on the virtual spin vector, iΦ , equals the total work done by 

the same set of couple-tractions acting on the actual displacement-spin vector, i . In this regard, it is 

also noted that either side of (3.5) has dimensions of energy per unit volume. While the right-hand 

side of (3.5) represents energy per unit volume due to interaction of the couple-stress tensor with the 

actual, displacement generated spin vector, the left-hand side is an equal amount of energy density 

that is due to interaction of the couple-stress with a virtual displacement-spin. 

 

 

4. Refined finite elasticity of fibre-reinforced materials when fibres resist bending  

 

A straightforward generalisation/refinement of the modelling process that led to the constitutive 

equations derived in [1] can now begin by (i) confining again attention to quasi-static deformations 

only, (ii) considering that (2.12) and (2.16) still hold, but (iii) modifying the energy balance equation 

as follows:         

( )( ) ( )n n

i i i i

V S

D
WdV T v L dS

Dt
= +  ,                                                                                                 (4.1)  

where i  replaces the velocity-spin vector (2.7b) employed in [1].  

Application of Reynolds transport theorem and the divergence theorem next yields    

 ( ), ,
0

ji i j ji i j
W v m


 


= + ,                                                                                                               (4.2)   

where ρ and ρ0 denote material density in the deformed and the reference configuration, respectively, 

and the equilibrium equation (2.15a) is also accounted for. Hence, use of (2.6), (2.7), (2.14), (2.15b) 

and (3.3) leads to   

( )    

( )   ( )

( ) ( )

,

0

,

, ,

         

         .

ij ij ijk i ji i jji ji jk

ij kji k k ji i jji ji

ij ji j i i ji i jji

W d m

d m

d m m


      



     

   

= + − +

= + − +

= + − +

                                                                                   (4.3) 

 On the other hand, the form (2.12) of the strain energy density still enables one to obtain  



 

 

7 

( ) ,iR iR ij ij jR k i jk

jR jR iR

W W W
W F G d F b v

F G G


   
= + + +     

.                                                                   (4.4) 

This equation is identical to Eq. (5.15) obtained in [1], and its derivation process is not repeated here. 

However, its comparison with (4.3) now leads to the relationship       

( )

( )

0 0

, , ,,
0

                                   + 0,

iR iR ij iR iR ijji

jR jR jR jR

ji j i i ji i j jR k i jkj
iR

W W W W
F G d F G

F G F G

W
m m F b v

G

 
 

 


  



        
− + − +               


 − + − =  

                                (4.5) 

which is slightly different to its counterpart derived in [1].     

Since i  is a virtual, essentially arbitrary spin vector, condition (3.4) emerges at this point as 

a necessary requirement that enables (4.5) to hold in a meaningful mathematical sense. Nevertheless, 

when combined with (3.4), equation (4.5) becomes identical with its counterpart noted as (5.18) in 

[1], namely with the equation that the whole analysis detailed in [1] is based upon. In this context, the 

whole set of results presented in [1] becomes naturally obtainable with use of the present analysis.  

 

4.1 Principal theoretical results that follow the combination of (3.4) and (4.5) 

  

It then becomes necessary, mainly for later use, to briefly quote some of the principal results obtained 

in [1] without repeating relevant derivation details. Accordingly, the combination of (4.5) and (3.4) 

leads again to the constitutive equations [1]  

( )

( )

0

0

,

2
,    0,

3

iR iRji

jR jR

jr rki jR k kR j kk

iR

W W
F G

F G

W
m F b F b m

G











  
= +    


= + =



                                                                             (4.6) 

where W is of the form (2.12) and the appearing symmetric part of stress and deviatoric couple-stress 

are defined in (2.14b) and (2.18), respectively. It is recalled that (4.6b) leaves the spherical couple-

stress indetermined, though, in line with other relevant earlier developments (e.g., [4-13]), this result 

was not considered as surprising in [1].  

It is further recalled [1] that the required invariance of the strain energy density in rigid 

rotation of the co-ordinate system is satisfied if  

( ), ,W W= C A ,                                                                                                                            (4.7) 

where the appearing Cauchy-Green deformation tensor is defined in (2.3a) and the tensor Λ = FTG 

has components 

i i
RS iR iS

R S

x b
F G

X X

 
 = =

 
.                                                                                                                (4.8) 

With W being re-casted in the form (4.7), the constitutive equations (4.6) are also reformed and 

become 

( ) ( )

( )

0

0

,

2
,    0.

3

iR iS iR jS jR iSji

RS SR SR

ji ikm mP jR k kR j kk

PR

W W W
F F G F G F

C C

W
m F F b F b m











     
= + + +  

     


= + =



                                                  (4.9) 

Connection of these constitutive equations with the equations of equilibrium (2.17) thus 

provides all the principal information needed for determination of the deformation, as well as of the 

stress and the deviatoric part of the couple-stress. Nevertheless, the extra piece of information that 
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(3.4) made available in the present refined formulation can still be used for determination of the 

spherical couple-stress outside the standard equilibrium conventions.  

Towards this end, it is further recalled [1] that, since the strain energy density (4.7) is an 

isotropic invariant of the tensors C, Λ and the vector A, it is expressible in the form  

( )1 2 33, ,...,W W I I I= ,                                                                                                                     (4.10) 

as a function of thirty-three conventional deformation invariants, whose full list is provided in the 

Appendix of [1]. It is noted in passing that the number of elements of that list is reduced to eleven in 

the case of a restricted version of the theory (see Section 6 of [1]) but that reduction does not affect 

the principal argument that underpins the below proposed method of determination of the spherical 

couple-stress.  

That argument follows the standard transformation that (4.9) attain by virtue of (4.10), 

namely [1] 

( ) ( )

( )

33

10

33

10

,

2
,    0,

3

iR iS iR jS jR iSji

RS SR SR

ji ikm mP jR k kR j kk

PR

I I IW
F F G F G F

I C C

IW
m F F b F b m

I











=

=

      
= + + +  

      


= + =

 





                                    (4.11) 

and is underpinned by the role that the invariant  

20I = AΛA                                                                                                                                      (4.12) 

plays in the outlined formulation. It is accordingly already observed in [1] that, although 
20I  is 

associated with deformation features stemming, purely, from fibre bending resistance, this invariant 

fails to relate its strain energy contribution with the couple-stress constitutive equation (4.11b).  

 

4.2 The role of the invariant 
20I  and its strain energy contribution  

  

Indeed, by combining the following intermediate result: 

( )20 M MN N

MP NR M N P R

PR PR

A AI
A A A A 

 
= = =

 
,                                                                            (4.13) 

with the properties of the alternating tensor, someone obtains  

( ) ( )20

20 20 20

2 0ikm mP jR k kR j ikm mP P jR k kR j R ikm m k j

PR

IW W W
F F b F b F A F b F b A b b b

I I I
  

  
+ = + = =

   
.    (4.14)  

It is thus seen that (i) no part of the strain energy that may depend solely on 
20I  can 

contribute into the deviatoric coupe-stress formation and, subsequently, (ii) no part of the strain 

energy density that depends purely on 
20I  is created through action of the deviatoric couple-stress 

(4.11b). However, 
20I  still stems solely from fibre deformation resistance. It necessarily follows that 

such a part, ( )20

mW I  say, of stored energy can only be related to action of the spherical couple-stress. 

A counter argument might emerge at this point, claiming that the 
20I -contribution noted in 

the strain energy density is relevant to the symmetric part of the stress tensor only, through the 

involvement of 
20I  in the second term appearing within the curled bracket of (4.11a). However, such 

a counter argument is dismissed by initially observing that that term is of the second order in the 

strains (see also Section 9 of [1]). Its influence is, therefore, negligible within the small deformation 

regime, where only the first term appearing in the same bracket is linear and, hence, offers 

contribution. 

Within the infinitesimal deformation regime, where the strain energy function is necessarily 

quadratic in its arguments, the stress constitutive equation (4.11a) thus becomes completely 
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uncoupled from its couple-stress counterpart (4.11b) and, as a result, the contribution of 
20I  

influences only the couple-stress constitutive equation (see also [3, 15] as well as Sections 5 and 6 

below). Potential validity of the afore mentioned counter argument is thus dismissed because, within 

the infinitesimal deformation regime, the strain energy function contains a term of the form ( )20

mW I  

that is necessarily quadratic in 
20I . 

It is recalled in this context that any form of a strain energy density employed in finite 

elasticity applications is required to be consistent with its own approximate form that serves the 

purposes of the linear, infinitesimal deformation version of the theory. The noted connection of 
20I  

with the energy contribution of the spherical couple-stress is therefore anticipated generally present 

not only within the infinitesimal, but also within the large deformation regime where, as is already 

seen, its influence on the constitutive equations is of a higher-order in the strains. 

The implied quadratic form of ( )20

mW I , which otherwise emerges inexplicably in the small 

deformation regime, is accordingly regarded as a leading order approximation of the influence that 

the spherical couple-stress exerts on any form of a corresponding strain energy density employed in 

finite elasticity applications. It follows that a term of the form ( )20

mW I  is anticipated present in the 

form of any relevant, admissible strain energy density or in its equivalent polynomial expansion in 

terms of the invariants. Alternatively, the leading-order (small strain) approximation of the Wm-term, 

which must be present in any admissible strain energy density, must necessarily be quadratic in 
20I .  

 

4.3 Determination of the spherical part of the couple-stress tensor  

 

It is now recalled that each side of (3.5) represents some unknown amount of energy per unit volume 

formed through the divergence of the interaction the couple-stress tensor with the noted spin vector. 

By virtue of (3.4) and (4.5), the implied amount of energy does not influence the constitutive 

equations and, like Wm, does not influence the state of equilibrium. It follows that, necessarily, 

( ) ( ) ( )20, ,

m

ji i ji ij j
m m W I =  = .                                                                                                   (4.15) 

 It is then observed that, unless the essentially unknown, virtual spin field iΦ  is specified in 

some artificial technical manner (e.g., [15]), the left-hand side of (4.15) cannot possibly employed to 

offer any kind of a useful relevant information. However, a combination of the remaining of (4.15) 

with (2.18) yields 

( ) ( ), 20 ,
3 3m

j kk j ji i j
m W I m = −  ,                                                                                                (4.16) 

which is a first-order partial differential equation (PDE), for the unknown spherical part of the 

couple-stress, kkm . Solution of this PDE, subject to an appropriate subset of couple-traction boundary 

conditions, will thus lead to determination of kkm  and, hence, to complete determination of the 

couple-stress tensor.  

Precise determination of the virtual spin vector iΦ  thus becomes unnecessary. Nevertheless, 

some auxiliary, technical choice of iΦ  could be found advantageous in special cases or applications 

(e.g., [14, 15]) where, however, relevant theoretical predictions are now regarded as approximations 

of their counterparts based on the present development.  

In conclusion, the outlined refined formulation of the theory presented in [1] enables 

determination of the spherical couple-stress by essentially leaving indeterminate or unknown the spin 

vector that the externally applied boundary couple-tractions choose to act upon. This is though 

considered as a minor indeterminacy issue, in the sense that it does not anymore prevent complete 

determination of the deformation as well as the couple-stress and the non-symmetric stress fields. 
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5. Small deformations  

 

In the light of the observations made and the conclusions drawn in the last couple of paragraphs of 

Section 4.2, attention is now necessarily directed on the linearized version of the theory. It is 

accordingly recalled [3] that within the small deformation regime, where strains and curvature-strains 

are considered of the same, infinitesimal order of magnitude, the constitutive equations (4.9) attain 

the simplified form 

( )

2
,    ,    0

3
r rsi s kkij

ij i is

W W W
m a a m

e
 

 

   
= = + = 
   

                                                                  (5.1) 

where the appearing components of the infinitesimal strain and curvature-strain tensors, e and κ, are 

respectively  

( ) ( ), , , ,

1
,    

2
ij i j j i ij i k k j

e u u u a= + = ,                                                                                             (5.2) 

and, since the reference and the deformed configurations are considered identical, the standard 

simplified notation a ≡ A is also employed. 

Moreover, the strain energy function that approximates in the small deformation regime any 

admissible form of a strain energy density is decomposed into two independent parts as follows: 

( ) ( ) ( )aκκaeaκe ,,,,, as

e WWW += .                                                                                         (5.3) 

Here, κs and κa, with components 

( ) ( ) ( ) ( ) 

  ( ) ( ) ( ) ,
2

1

2

1

,
2

1

2

1

,,,,

,,,,

ikkjjkkijiijij

ikkjjkkijiijij

auau

auau

−=−=

+=+=





                                                                           (5.4) 

stand for the symmetric and the anti-symmetric parts of κ, respectively, while We and Wκ are both 

even in a and necessarily strictly quadratic in their arguments.  

 It follows [1, 3] that We is necessarily identical with its transversely isotropic counterpart met 

in non-polar linear elasticity and, by virtue of (5.1a), so it is the constitutive equation that provides 

the symmetric part of the stress tensor. 

On the other hand, the most general relevant form of Wκ is as follows: 

( ) ( ) ( ) ( ) ( ) ( )

        ( )   ( )( )

2

1 2 3 4

2

5 6 7 3
ˆ                        + ,

nn nn k m k nkm km mk km mn

k n k n k mkm mk km mn km mn km

W a a a a

a a a a a a

           

          

= + + +

+ + +
             (5.5) 

and, for this to be positive definite, the appearing coefficients, β1-β7 and
3̂ , must satisfy the following 

inequalities [3]:  

( )
2

1 2

1 3 5 2 3 1 2 3 4 3

1 3

/ 2ˆ ˆ0,   0,   0,   0,    
 

         
 

+
   +  + + + + 

+
.                   (5.6) 

   By virtue of (5.1a), the linear couple-stress constitutive equation then obtains the more 

specific form 

( ) ( ) ( )( )

   ( )    ( ) ( ) 

1 2 3 4

5 6 7

2 2
2 2

3 3

1
           4 2 2 2 ,

3

r r s s nn km k m ris s ni in

ris s n i s n i ns s ini is sn in

m a a a a a a

a a a a a a a a a a

         

         

= + + + −

+ − − + −

   (5.7) 



 

 

11 

which reveals that the energy term that involves 
3̂  in (5.5) is not related with the action of the 

deviatoric couple-stress. This thus is the afore mentioned extra energy term,  

( )( )
2

3
ˆm

k nkn
W a a = ,                                                                                                                     (5.8) 

that represents energy stored in the material through sole action of the spherical couple-stress. Wm 

must then be also positive definite, and this requirement adds on (5.6) the inequality 

3
ˆ 0  .                                                                                                                                            (5.9) 

For any relevant, well-posed boundary value problem, connection of the constitutive 

equations stemming form (5.1a) and (5.7) with the equations of equilibrium (2.17) will generally 

provide all the information needed for determination of the deformation, as well as the symmetric 

part of stress and the deviatoric couple-stress. That information enables subsequent determination of 

the extra energy term (5.8) and, hence, of a corresponding, specific form of the PDE (4.16). Solution 

of that PDE, subject to the relevant subset of couple-stress boundary conditions, will finally 

determine the spherical couple-stress.  

 

5.1 The restricted, splay-mode version of the linear theory 

 

A simplified version of the outlined linear theory refers to boundary value problems anticipating that 

the couple-stress part, Wκ, of the strain function is predominantly influenced by energy contributions 

due to splay-type of fibre-deformation. This version of the theory is based on the simplifying 

consideration [18] 

( ) ( ) ( ), , , , ,s a a sW W W  = =a a a     ,                                                                                        (5.10) 

and thus enables reduction of (5.5) into the following form:  

( ) ( )

( )( ) ( ) ( ) ( )( )

2 2

1 2 3

2 2

1 2 3

ˆ

ˆ      ,

nn nn k km m k km m

k m k mnn nn km km

W a a a a

a a a a

       

      

= + +

= + +
                                                             (5.11) 

which makes use of three elastic moduli only.    

 Subsequently, the corresponding couple-stress constitutive equation is also simplified and 

becomes [18] 

( ) ( ) ( )( )1 2 1 2

2 2
2 2

3 3
r r s s nn km k m r s s k mnn km

m a a a a a a         = + = + ,                               (5.12) 

thus making use of only two of those elastic moduli. Clearly, this constitutive equation considers that, 

when fibre-splay deformation dominates, the first term in the right-hand side of (5.7) provides 

enough information for accurate determination of the deviatoric couple-stress.   

 Moreover, like (5.7), (5.12) still suggests that the deviatoric couple-stress is essentially 

irrelevant to the energy term involving 
3̂  and thus leads again to (5.8). The spherical part of the 

couple-stress can then still be determined in the manner described in the previous section.    

 

5.2 The restricted, bending-mode version of the linear theory 

 

This is the earliest of the two simplified versions of the unrestricted linear theory and has already 

been employed in a series of specific boundary value problem applications [18-22]. It was initially 

obtained in [3] through direct linearisation of the relevant, restricted, non-linear theory presented in 

Section 5 of [1]. That version of the theory makes use of a plausible consideration that excludes from 

the strain energy density/function energy contributions associated with fibre-splay and fibre-twist 

deformation effects and thus promotes the physically reasonable claim that, in fibre composite solids, 

fibre bending and curvature are generally the major relevant factors.    

The implied linearisation process [3] thus led to the simplest possible form of (5.5), namely    
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( )
2

,

3
,    

8

f

j j j j i i kj k jW d K K a K K u a a = + = .                                                                          (5.13) 

This makes use of two elastic moduli only and it is positive definite only if the values of these moduli 

are both positive, namely 

0,    0fd   .                                                                                                                 (5.14) 

. However, only one of these moduli appears in the corresponding couple-stress constitutive 

equation, 
f

r rsi i sm d K a a= ,                                                                                                                       (5.15)  

thus leading to the conclusion that, in this case, it is 

( ) ( )
22

,

m

i i i kj i k jW a K u a a a = = .                                                                                                (5.16)  

 After the appearing displacement vector is determined in a particular application, and its second-

order partial derivatives are appropriately inserted into (5.16), the resulting expression of Wm can be 

inserted into (4.16). As is already mentioned, solution of the thus obtained PDE will determine the 

spherical couple-stress.   

 

 

6. Application:  Pure bending of a rectangular plate reinforced by a family of straight fibres 

 

This boundary value problem is among the simplest problems that the outlined analysis can be 

applied to, and thus is already employed for relevant pilot studies in previous relevant investigations 

[15, 23]. As is already mentioned in the Introduction, Reference [15] employed this problem in a 

successful initial attempt to obtain an estimate of the spherical-couple stress, through use of a 

technique that combines the relevant form attained by the strain energy function with a suitable 

generalisation of the conventional couple-stress theory [14]. Despite its remarkable success [15], and 

for reasons detailed already in Section 4.3 above, the afore-mentioned connection mechanism [14] 

seems now capable to provide only an approximate estimation of the spherical couple-stress. 

However, it is precisely the valuable experience gained through the successful application of 

that mechanism [14] that led to the new developments detailed in this communication. Since, as is 

already mentioned, this is based on a properly constructed generalisation of the non-linear theory 

presented in [1] (Section 3 above), the results of the spherical couple-stress determination detailed in 

the present Section are naturally more accurate to those obtained in [15]. 

Details of the history of the plate bending problem of present interest as well as of its solution 

are provided in [15]. A brief recollection of the latter may begin with a reminder of the plate 

nomenclature provided in Figure 1, as well as of the fact that the embedded straight fibres are aligned 

with the x1-direction of the depicted Cartesian co-ordinate system, so that 

( )1,0,0
T

=a .                                                                                                                                    (6.1) 

The plate is subjected to pure bending through action of a normal stress and a shear couple-

stress distribution  

11 1 2 13 3
ˆ ˆ,    x m m = = − ,                                                                                                                 (6.2) 

respectively.  As is shown in Figures 2 and 3, these boundary tractions are applied externally on the 

edges x1 = ±L1, with 1̂  and 3m̂  been regarded as known positive constants. No other stress or shear 

couple-stress distributions are applied externally on any of the six boundary planes of the plate. 

However, normal couple-stress distributions may still be applicable externally on the plate 

boundaries, but their proper consideration is not possible before the spherical couple-stress is 

determined. 

 The exact solution of this polar linear elasticity boundary value problem requires from (6.2) 

to be the only non-zero stress and deviatoric shear couple-stress components acting not only on the 
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edges x1 = ±L1, but also throughout the whole body of the plate [15]. The corresponding displacement 

field is then given as follows:  

( )2 2 2

1 1 11 1 2 2 1 12 2 3 11 1 3 1 12 3 2

1
ˆ ˆ ˆ,    ,    

2
u S x x u S x x S x u S x x   = = − − =

 
,                                                (6.3) 

where S11 and S12 represent the elastic compliances met in the corresponding non-polar elasticity 

problem. Those compliances are obtained in the usual manner, by inverting the corresponding matrix 

of elastic stiffnesses.    

It is worth mentioning that the displacement field (6.3) is seemingly independent of the 

magnitude, 3m̂ , of the externally applied shear couple-stress. Nevertheless, equations (6.10) and 

(6.16) below will make evident that 3m̂  and 1̂  are not independent constants. Knowledge of the 

plate displacement field enables determination of the corresponding strain, curvature-strain, and 

displacement-spin fields and, through use of the couple-stress constitutive equations, can finally lead 

to the determination of the spherical couple-stress.  

The relevant process requires direct use of the displacement-spin vector stemming from (2.9) 

and (2.10), namely  

( ) ( )32 13 21 1 12 3 1 11 1
ˆ ˆ,  ,  ,  0,  

T T
S x S x    = = − ,                                                                          (6.4) 

and is next demonstrated for two of the afore mentioned three linear versions of the theory. The 

remaining version of the theory, namely the version that is predominantly interested on the fibre-

splay deformation mode, does not need to be considered because, as is detailed in [15], fibre-splay 

deformations are totally absent in this pure bending application. 

 

6.1 The fibre-bending deformation mode/version of the theory 

 

In this relatively simpler version of the theory, a combination of (5.13b) with (6.1) and (6.3) yields  

1 3 2 2,11 1 11
ˆ0,    K K K u S= = = = − .                                                                                             (6.5) 

Hence, (5.13a) reveals that the curvature part of the strain energy function is   

( )
22

2 1 11

3 3
ˆ

8 8

f fW d K d S = =  ,                                                                                                  (6.6) 

while (5.16) returns   

0mW = .                                                                                                                                        (6.7) 

 On the other hand, a combination of (6.5) and (6.1) with (5.15) reveals that the only non-

zero component of the deviatoric couple-stress tensor is 

13 2 1 11
ˆf fm d K d S= = − .                                                                                                         (6.8) 

Since every normal component of the deviatoric couple-stress thus is zero ( 11 22 33 0m m m= = = ), 

(2.18) yields 

11 22 33

1

3
rrm m m m= = = .                                                                                                               (6.9) 

Moreover, a comparison of (6.8) with (6.2b) makes it understood that the positive constants, 1̂  and 

3m̂ , that regulate the implied pure plate bending are necessarily connected through the relationship  

3 1 11
ˆ ˆ fm d S= ,                                                                                                                                (6.10)   

and, hence, cannot be chosen independently in some arbitrary manner.  

 The spherical couple-stress, kkm , can now be determined by solving the PDE (4.16) which, 

with use of (6.4), (6.7), (6.8) and (6.10), obtains the specific form  
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12
3 ,1 1 ,3 3

11

15
ˆ

8
rr rr

S
x m x m m

S
− = − .                                                                                                     (6.11) 

There is remarkable similarity of this differential equation with its counterpart noted as Eq. (4.12) in 

[15] which, however, has a zero right-hand side and is, therefore, a homogeneous PDE. The observed 

dependence of the non-zero right-hand side of (6.11) from the externally applied couple-stress 

distribution thus is recognised as a product of additional sensitivity and accuracy that distinguishes 

the present mathematical model from its counterpart proposed in [14].  

As is detailed in the Appendix, the method of characteristic lines yields the general solution 

of (6.11) as follows:            

( )

( )( )
( )

( )

22
231

2

12 11

13 11 1
1 2 3 1 2

12 12 2

,

ˆ15
, , sin ,

8
kk

xx
x

S S

m S x
m x x x x c x

S S x





−

+ =

 
 = +
 
 

                                           (6.12) 

where ( )2x  and  ( )2c x  are arbitrary functions of integration. It is immediately noted that, while 

the characteristic lines (6.12a) are still elliptical curves, (6.12b) is a substantially more specific and, 

therefore, more accurate representation of the spherical couple-stress than its counterpart noted as 

(4.13) in [15].  

Connection of (6.12) with (6.9) thus implies that the considered, pure bending plate 

deformation pattern is sustainable only if some additional set of boundary conditions is specified on 

the plate outer planes. That set is evidently relevant to the boundary values that each one of the 

normal couple-stresses attains on the relevant pair of boundary planes and, as its possible 

specification is not unique, will not be pursued much further.  

It should be sufficient though to mention that if, for instance, it is assumed that 

1 111 0x Lm = = ,                                                                                                                               (6.13) 

then a combination of (6.9) and (6.12) makes it evident that the functions ( )2x  and  ( )2c x  must be 

related as follows:    

( ) ( )
1

12 12
2 2

1 3 11

8
sin

ˆ15

S S
x c x

L m S


−  
  =   

 
,                                                                                      (6.14) 

and, hence, that only one of these functions can be chosen arbitrarily. In this manner, a boundary 

condition of the type (6.13) essentially restricts the range of values that the other two normal couple-

stresses can attain on their respective boundary planes.   

 

6.2 Unrestricted theory 

 

In the case of the unrestricted theory, a combination of (6.1) with (5.2b) yields  

, 1ij i ju = .                                                                                                                                       (6.15)                                                                                                                          

Connection of this relationship with (6.3) forces (5.7) to return only a single non-zero component of 

the deviatoric couple-stress, namely 

13 32 3,1 32 1 11
ˆ ˆ ˆm d d S=  = − ,                                                                                                     (6.16) 

where consideration of the conditions (5.6) and (5.9) allow the appearing elastic modulus, 

( )32 4 7 5 6

1ˆ 2 12 6
3

d    = + − − ,                                                                                               (6.17) 

to attain either positive or negative values.  
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 On the other hand, (5.8) yields 
2 2

3 11 3 1,11
ˆ ˆ 0mW u  = = = .                                                                                                              (6.17) 

As a result, the PDE (4.16) obtains again the form (6.11), with the only difference here being that the 

single fibre bending stiffness parameter 
fd  is now replaced in (6.10) by 

32d̂ .  

It is thus seen that, in this pure bending problem, the only simplification/approximation 

introduced by the bending version of the theory (Section 6.1) confines into a kind of filtering that is 

applied on the values of the elastic modulus 
32d̂  in a manner that enables only their positive range, 

fd , to emerge as suitable for use. Again, this conclusion is considerably more specific, as well as 

simpler, than its counterpart implied in [15].  

 

 

7. Conclusions 

 

The presented, refined hyperelasticity theory of fibre-reinforced materials with fibre-bending 

stiffness resolves the long-standing indeterminacy problem of the spherical couple-stress, at least as 

far as this class of fibrous composites is concerned. It thus refines and completes the initial version 

of the theory [1] without dismissing any of the results obtained, or the conclusions made there. This 

completed version of the theory achieves its aim by postulating that the couple-stress field is 

energetically reciprocal to the gradient of some virtual spin field which, unlike the spin field of 

deformation that is instead employed in Cosserat-type formulations, does not need to be 

determined.  

 In the case of fibre-reinforced materials with fibre bending stiffness, this slight modification 

of the standard postulates of the Cosserat theory is supported by the observation that (i) the fibre-

spin vector generally differs from the spin vector of the deformation and, in addition, (ii) there is 

not enough information available to enable precise determination of a relevant dominant spin field. 

The implied postulate modification thus furnishes the equation of power balance with an additional 

energy term, which matches the extra energy term that emerges in the strain energy density/function 

of the earlier formulation [1, 3].  

 This power-energy matching then provides a required extra equation that enables 

determination the spherical couple-stress outside the conventional equilibrium considerations. As is 

also detailed in Section 5, the emergence of the implied extra energy term has been clearly 

noticeable within the small deformation regime [1, 3], where the strain energy function is 

necessarily quadratic in the strains and the curvature-strains. This fact is further discussed and 

clarified in Section 6, which demonstrates the manner that the spherical couple-stress is determined 

when a rectangular fibre-reinforced plate is subjected to pure bending within the regime of small 

deformations. 

 It is worth noting at this point that the simple application presented in Section 6 reveals that, 

regardless of whether a relevant boundary value problem deals with small or large elastic 

deformations, its final solution is essentially completed in two steps. The first of these steps requires 

determination of the deformation, as well as the symmetric part of the stress and the deviatoric 

couple-stress, in the light of the relevant formulation detailed in [1, 3]. The second step then uses 

the thus obtained initial information and determines the spherical couple-stress in the manner 

detailed in the present communication. Hence, knowledge of both the deviatoric and the spherical 

parts of the couple-stress tensor finally enables determination of the antisymmetric part of the stress 

and, hence, full determination of the non-symmetric stress field. 

 It is emphasised in this regard that the afore mentioned extra energy term emerges in a 

natural manner within the quadratic form that the strain energy function necessarily attains in the 

regime of small elastic deformations. Hence, its appearance in a corresponding strain energy density 

that may be employed in relevant finite elasticity applications is essentially a physical requirement. 
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This is because any admissible form of a strain energy density employed in finite elasticity 

applications is required to be consistent with its own approximate form that serves the purposes of 

the linear, infinitesimal deformation version of the theory. In other words, the quadratic form of the 

strain energy function employed in infinitesimal elasticity applications is necessarily a leading-

order approximation of any admissible form of a strain energy density that may be employed in 

relevant finite elasticity applications. 

 In this context, mention should be made, and credit must be given to Ronald Rivlin, who 

laid foundations for systematic use of invariant theory in the formulation of constitutive equations 

in continuum mechanics, as well as to later authors who systematically developed invariant theory 

and worked on construction bases of invariants and tensor functions (e.g., [24]). It is through use of 

those invariant theory methods that the implied extra energy term emerges in the strain energy 

function/density of the present hyperelasticity theory and underpins the extra research effort needed 

towards resolution of the indeterminacy of the spherical part of the couple-stress; a long-standing 

problem in the couple-stress theory.                      

 

 

Appendix: Solution of the partial differential equation (6.11)    

 

Solution of the PDE (6.11) on the x1x3-plane is achieved with use of the method of characteristics 

and initially requires a search for the plane curves whose tangent satisfies the equation    

3 11 1

1 12 3

dx S x

dx S x
= − .                                                                                                                               (A.1) 

Integration of this separable equation shows that the characteristic lines sought are the ellipses (6.12a) 

where the arbitrary function ( )2x  plays the role of an arbitrary integration constant on any x1x3-

plane; see also Figure 1, where |x1| ≤ L1, |x2| ≤ h/2 and |x3| ≤ L3. 

 Use of (A.1) on any of the implied x1x3-planes then transforms the PDE (6.11) into the first-

order ordinary differential equation (ODE)     

( )
11 311 3

2 2
1 12 3

12 1 12

ˆ15ˆ15

8 8 /

kk
S mdm S m

dx S x S x S
= − =

−
,                                                                               (A.3) 

where (6.12a) is also accounted for. Hence, straightforward integration of this ODE yields (6.12b), 

whose association with (6.11a) provides the general solution sought for (6.11).  
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 FIGURE 1: Schematic representation of a rectangular plate in a suitably selected Cartesian co-ordinate system, 

Oxi (-L1  ≤  x1 ≤ L1, - h/2  ≤  x2 ≤ h/2, -L3 ≤  x3 ≤ L3).                                                                  
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FIGURE 2: Schematic representation of a plate cross-section that is normal to the x3-direction, 

featuring the boundary traction distributions that create pure bending in the case of non-polar 

linearly elastic material behaviour.  
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FIGURE 3: Schematic representation of constant couple-traction distributions superposed on the 

externally applied loading depicted in Figure 2, for a corresponding polar fibre-reinforced elastic 

rectangular plate to maintain the pure bending deformation (6.3).  

 

1x

2x

2/h

1LO
1L−

2/h−

13 3
ˆm m= −

13 3
ˆm m= −


