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Optimising Power Allocation in LoRaWAN IoT
Applications

Yousef A. Al-Gumaei, Nauman Aslam, Xiaomin Chen, Mohsin Raza, Rafay Iqbal Ansari

Abstract—Long Range Wide Area Network (LoRaWAN) is one
of the most promising IoT technologies that are widely adopted
in low-power wide-area networks (LPWAN). LoRaWAN faces
scalability issues due to a large number of nodes connected to
the same gateway and sharing the same channel. Therefore, LoRa
networks seek to achieve two main objectives: successful delivery
rate and efficient energy consumption. This paper proposes a
novel game theoretic framework for LoRaWAN named Best
Equal LoRa (BE-LoRa), to jointly optimize the packet delivery
ratio and the energy efficiency (bit/Joule). The utility function
of LoRa node is defined as the ratio of the throughput to the
transmit power. LoRa nodes act as rational users (players) which
seek to maximize their utility. The aim of the BE-LoRa algorithm
is to maximize the utility of LoRa nodes while maintaining the
same signal-to-interference-and-noise-ratio (SINR) for each SF.
The power allocation algorithm is implemented at the network
server, which leads to an optimum SINR, spreading factors
(SFs) and transmission power settings of all nodes. Numerical
and simulation results show that the proposed BE-LoRa power
allocation algorithm has a significant improvement in packet
delivery ratio and energy efficiency as compared to the Adaptive
Data Rate (ADR) algorithm of legacy LoRaWAN. For instance,
in very dense networks (624 nodes), BE-LoRa can improve the
delivery ratio by 17.44% and reduce power consumed by 46%
compared with LoRaWAN ADR.

Index Terms—Internet of Things, LoRaWAN, Game Theory,
Power Allocation, SINR balancing.

I. INTRODUCTION

MANY emerging Internet-of-Things (IoT) applications
require low cost, long range and energy efficient

wireless communication frameworks to share the data. Some
examples of these applications are agriculture, smart home,
energy engagement, smart metering, healthcare, industries, and
smart cities. The proprietary technologies of Low power wide
area network (LPWAN) such as Sigfox [1], Narrow-Band NB-
IoT [2], Weightless [3], and LoRaWAN [4] have gained much
interest in last few years. LPWAN is a promising technology
which allows a large number of small end devices (nodes)
to connect to one or more wireless gateways. LPWAN is a
suitable solution for such applications as other wireless tech-
nologies (Bluetooth, WiFi, and ZigBee) are not able to provide
long range communication. On the other hand, use of cellular
networks for machine-to-machine (M2M) communication is
expensive and consumes a lot of power [5].
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The Long Range (LoRa) patented by (Semtech) uses chirp
spread spectrum (CSS) modulation techniques in which the
chirps are used to transmit the data [6]. In LoRaWAN,
thousands of end devices can connect to the internet servers
via a single gateway [7]. LoRaWAN builds on the top of
LoRa physical layer which enables it to consume low power
and communicate over distances of several kilometers [8].
The Spreading Factors (SFs) are assumed to be completely
orthogonal to each other for interference free communications.
However, a large number of nodes, simultaneous transmission
of nodes having the same SF, and interference due to other co-
located networks operating on the same unlicensed frequency
bands is still a challenge for LoRaWAN scalability. One
solution to address such challenges is to adapt the LoRa
operating parameters such as SF and transmission power. In
LoRaWAN, the Adaptive Data Rate (ADR) algorithm adapted
these parameters to improve the communication performance
of LoRa networks, but it has not investigated the impact of the
number of LoRa nodes in the network. Moreover, the ADR
algorithm used the maximum signal-to-noise-ratio (SNR) of
the last 20 records to update the SF and power settings of
nodes, but it is not the optimal and may cause higher power
consumption by the nodes.

Therefore, this paper aims to design an efficient power allo-
cation algorithm to reduce nodes’ transmit powers to the level
that ensures successful transmission, mitigates interference and
improves system’s energy efficiency. Game theory is one of the
techniques that has been used to implement power allocation
algorithms. In a power allocation algorithm, the number of
nodes in each SF depends on the processing gains and the
threshold SNR, while the update of transmission power de-
pends on the optimal value of signal-to-interference-and-noise
ratio (SINR). Our proposed solution significantly increases
both the packet delivery ratio and the energy efficiency of
communications over the ideal channel.

A. Related work and motivation

LoRaWAN has been deployed in different countries, but
the scalability of these networks is still a matter of active
research due to a number of challenges [9]. Among these
challenges, energy efficiency and interference are the most
significant as they affect packet delivery. Assuming complete
orthogonality among SFs, the co-SF interference caused by
transmissions over the same channel has the highest impact
on packet delivery when the SINR of the desired transmission
is below the required threshold. Thus, the performance of the
nodes that are located farthest from the gateway is reduced



2

greatly due to the ”capture effect” [10], which occurs when
a weaker signal is suppressed by a much stronger signal
transmitted by the nodes located closer to the gateway [11].

To the best of our knowledge, limited research has been
conducted on addressing the scalability of LoRaWAN based
on the packet collision, interference, and power allocation.
The problems of scalability and the LoRa performance have
been analyzed using simulations in [12], [13], and [14] without
considering ADR or any other SF and power allocation adap-
tation algorithms. The evaluation of the link level performance
of LoRa has been presented in [15], in which the numerical
results show that the collisions between packets with different
SFs can cause packet loss due to high interference. In [9],
the performance of a LoRa system was analyzed under the
capture effect, in which the signal-to-interference-ratio (SIR)
of a desired signal should be above the required threshold
for successful packet reception. The co-SF interference was
modeled using stochastic geometry. Authors in [16] evaluated
the scalability and throughput of LoRaWAN deployments
based on the capture effect and coverage models under the
impact of co-SF and inter-SF interference. Therefore, the
system level performance of a LoRa network based on the
interaction behavior between the self-interested LoRa nodes
in the same SF is yet to be modeled and investigated. In
[17], allocating resources amongst the available servers has
been studied using a combination of LoRaWAN and traditional
public safety networks and a self enforcing agreement was
established based on game theory. This combination and
the self enforcing agreement were not used to optimize the
transmission resources between nodes and gateway. In the
subsequent, we present the contributions and unique aspects
of this work.

B. Contributions

In this paper, it is demonstrated that by using optimal
power control, LoRaWAN nodes can maximize packets de-
livery ratio, reduce collisions and improve energy efficiency.
This paper proposes SINR balancing using optimal power
allocation such that all packets received at the gateway have
the same signal power. Nodes located at a shorter distance
from the gateway can achieve SINR balancing by using lower
transmission power resulting in the significant reduction of
their own energy as well as the overall energy of the system.
To achieve this balancing, a best equal SINR power allocation
(BE-LoRa) to improve the performance of LoRaWAN is
proposed. The problem of power allocation is formulated as
a non-cooperative power control game to define the utility
function and game model. The non-cooperative power control
model is used to derive the proposed BE-LoRa scheme by
assuming equal SINR of received packets at the gateway. The
process involves computation of optimal SINR values at the
network server which are used to allocate SFs, update the
power settings and send these new settings to LoRa nodes
as ADR commands. The computation of optimal SINR is
performed by considering key network parameters such as
the number of active LoRaWAN nodes and their processing
gains. In this work, class A LoRa nodes are able to increase

SF if the uplink transmission cannot reach the gateway. If
there is no downlink frame received by a LoRa node, the
node increases the SF for the following uplink frame. This
increases the probability of reaching a gateway and receiving
the new settings acknowledgment (ACK) of SF and trans-
mission powers from the network server via the two short
downlink windows. The network server assists the nodes by
sending the final settings of SF and transmission power via
two short downlink windows and this cooperation leads to
performance optimization at LoRa nodes. The network server
starts to assign SFs to the nodes based on the received RSSI
and the total number of nodes in the system. The number of
nodes in each SF is based on the percentage that has been
computed at the target SINR and guarantees that all nodes
can maintain this target. Next, the network server computes
the best equal SINR (optimal SINR) based on the number
of nodes in each SF and updates the nodes’ transmission
power levels based on these optimal values. Based on the
channel condition of the node, the network server is able to
update (decrease or increase) node’s transmission power to
achieve this optimal SINR until all nodes reach equilibrium. At
equilibrium, all nodes achieve the same optimal SINR, though
different power transmission levels are used. Furthermore, the
energy consumption of a particular node is the total energy
used by the node divided by the number of messages received
by the network server. Reducing the power level of nodes
with good channel conditions not only leads to decreased
interference but also improves the energy efficiency of the
system. The key contributions of this paper are summarized
as follows:

1) Design: A best equal SINR (BE-LoRa) power allocation
algorithm is designed to improve the energy efficiency
performance and the packet delivery ratio of LoRaWAN.

2) Implementation: BE-LoRa power allocation is imple-
mented using a game theoretic framework. A suitable
utility function is proposed, which satisfies the trade-off
between the probability of packet success rate and the
power consumption. For the sake of demonstration, the
BE-LoRa power allocation is implemented in a single
cell scenario, however, it is also applicable to a multi-
cell scenario.

3) Analysis and Comparison: In addition, the BE-LoRa
algorithm is formulated analytically and a simulation
model is presented. The results have been compared with
the legacy LoRaWAN ADR.

The remainder of this paper is organized as follows. Section
II provides a background on the LoRaWAN networks, archi-
tecture, and type of classes used in communications. Section
III describes the system model of LoRaWAN. Section IV
presents the non-cooperative power allocation approach that
results in Nash equilibrium solution. Section V presents the
BE-LoRa scheme. Section VI presents the numerical results
of the proposed scheme and a comparison with the legacy
LoRaWAN ADR. Finally, Section VII concludes this paper
and discusses future directions of this work.
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TABLE I
LORAWAN CONFIGURATION TABLE [19]

Configuration Bit rate [b/s] Required SNR [dB]
SF12 / 125 kHz 293 -20.0
SF11/ 125 kH 537 -17.5

SF10 / 125 kHz 976 -15.0
SF9 / 125 kHz 1757 -12.5
SF8 / 125 kHz 3125 -10.0
SF7 / 125 kHz 5469 -7.5

II. LORAWAN BACKGROUND

A. LoRaWAN overview

LoRaWAN is developed as an open standard by LoRa
Alliance [4]. LoRa itself refers to long range and is a physical
layer modulation technique derived from chirp spread spec-
trum (CSS) technology. LoRa is proprietary standard owned
by Semtech and patented in 2014 [18]. LoRa implements CSS
modulation to improve receiver sensitivity, noise immunity
and interference avoidance. The LoRaWAN architecture uses
star topology in which the end devices (nodes) transmit
and received signals at a single or multiple access points
(gateways). These gateways forward the received packets to
the network servers which are connected over the standard
Internet protocol (IP) network. In addition, network servers
are also connected to the application servers over IP.

In LoRaWAN, the theoretical bit rate at SF k, k =
7, 8, 9, ..., 12, is given by:

RSFk =
BW × SFk × CR

2SFk
(1)

where BW is the bandwidth in [Hz], CR is the code rate and
SF indicates spreading factor.

Table I summarizes the bit rate and SNR at BW=125 kHz
for the LoRaWAN configuration considered in this paper.

B. LoRaWAN communication

The nodes in LoRaWAN can be implemented in three
different classes:

1) Class A: LoRaWAN devices in this class have low-
est power consumption. Nodes in Class A use pure
ALOHA, and it opens two receive windows at specific
times after an uplink transmission. The network server
can respond by sending the acknowledgement (ACK) to
one of these windows but not both. In case of receiving
ACK in the first window, the node will not open the
second receive window and if the network server does
not respond in either of these windows, the node re-
transmits the message until ACK is received.

2) Class B: it is extendable to class A in which the nodes
are synchronized using periodic beacons sent by the
gateway to allow the scheduling of additional receive
windows for ACK messages. The time between two
scheduling receive windows is known as ping period
and the time between two beacons (including the two
received windows of class A) is known as the beacon
period [20]. The power consumption in this class de-
pends on the downlink traffic.

3) Class C: nodes using this class keep the receiving time
slot open except when they are in transmission mode.
The power consumption of this class is the highest due
to the higher channel listening times.

Typically, class A and B nodes are battery-powered, while
class C devices are powered by the electrical network due the
higher energy requirements [21].

In LoRaWAN, nodes can adapt data rate if uplink trans-
missions are not followed by a downlink response from the
network. A node begins to step up transmit power level to
the maximum before doing the same for spreading factor to
improve the robustness of the link [22]. Increasing transmit
power can establish more reliable communications but it com-
promises energy efficiency. Moreover, a node can also request
the network server to monitor and control the communication
link between itself and the gateway by setting the ADR bit
to be 1 (ADR =1) in the uplink message. When the network
server detects the ADR bit as 1, it compares the link quality
of the last e.g. 20 packets received with the margin SNR. If
the link quality is higher than the margin SNR, the network
decides to reduce SF and then the transmit power of that
particular node. This reduction will decrease the data rate and
reduce power consumption. It is found that the ADR decision
of updating SF or transmission power for a particular node
is dependent on the channel conditions, without considering
the impact of the interference resulting from the increasing
number of nodes.

III. SYSTEM MODEL

In this paper, wireless LoRaWAN network with M class A
LoRaWAN nodes is considered, which are distributed around
one base station (gateway) located at the cell centre. It is
assumed that all LoRaWAN nodes inside the cell can success-
fully communicate with the gateway using the available sets of
spreading factors and transmit powers. In this work, nodes do
not update the spreading factor when the channel conditions
change as in the ADR scheme, but the SFk are assigned to the
nodes by network server based on the received RSSI and the
percentage number of nodes in each SF. The subscript k has
a range of k = 7, 8, .., 12. As shown in Fig. 1, SF is assigned
to nodes based on RSSI and the interference occurs when the
same SF nodes are transmitting simultaneously.

The path loss model between the nodes and the gateway is
considered to be the log-distance path model with shadowing
[23]. The received power prec,i of packet send by node i is
given by

prec,i[dB] = pi − PL(d0)− 10nlog10
(
di
d0

)
+Xσ (2)

where pi is transmit power of node i, PL(d0) is the mean
path loss at the reference distance d0 in [dB], di is the
distance between node i and the gateway, n is the path loss
exponent, and Xσ is a zero-mean Gaussian distributed random
variable with standard deviation σ [dB]. The path loss model is
highly dependent on the environment. Based on the empirical
measurements in [12], given d0 = 40m, it is determined that
in the considered environment PL(d0) is 127.41dB, n is 2.08
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Fig. 1. System model of LoRaWAN

and σ is 3.57 dB. To investigate the performance of a single
LoRaWAN node under the simultaneous interfering transmis-
sions, only co-SF interference is considered. The impact of
inter-SF interference is negligible due to the orthogonality of
SFs and the lower value of the margin SIR between different
SFs.

The processing gain GSFk
p for SF k can be calculated by

[24]:

GSFk = 10·log10

(
Rc

RSFk
b

)
dB (3)

where Rc = BW is the chip rate (chips/second) and RSFk
b

is the bit rate (bits/second) as presented in Eq. (1). The
processing gain in each SF is a value in dB which is added
to the received signal to ensure that signals can be decoded
successfully. It increases by 2.5dB between two consecutive
SFs.

The signals sent by nodes with the same or different SFs
can overlap in time and frequency at the receiver. In such
cases with simultaneous reception of packets, the demodulator
output can be indistinct depending on the signal to interference
ratio threshold (i.e. SIR ≈ SINR) [16]. Any signal with SFk
can be decoded correctly only if the SIR of the received signal
compared to interference signals (interference plus noise) is
above the margin. The SIR margin for two cases, inter-SF
interference (different SF) and co-SF interference (same SF)
are presented in Table II., [25]:

Table II highlights that the highest SIR margins occur when
the desired and interfering signals have the same SF. Thus,
we can conclude that any packet can be received and decoded
successfully if the SIR is greater than the highest margin SIR
(6 dB) regardless of the spreading factor, SF. The SINR of
node i with a spreading factor SFk has the following general
form [14]:

γSFk
i =

GSFk
i prec,i

σ2 +
∑Mk

j=1,j 6=i prec,j
(4)

TABLE II
SIR MARGIN BETWEEN THE DESIRED SIGNAL AND THE INTERFERING

SIGNAL [25]

SIR [dB] 7 8 9 10 11 12
7 6 -16 -18 -19 -19 -20
8 -24 6 -20 -22 -22 -22
9 -27 -27 6 -23 -25 -25
10 -30 -30 -30 6 -26 -28
11 -33 -33 -33 -33 6 -29
12 -36 -36 -36 -36 -36 6

where GSFk
i is the processing gain of the ith LoRa node, prec,i

is the received power of node i, prec,j is the received power
of the interfering node j which uses the same SF, and σ2 is
the additive white Gaussian noise.

It is noted that SINR of node i is highly affected by interfer-
ing transmissions from the same SF (i.e. co-SF), compared to
the interference caused by signals using different SFs (inter-
SF). Thus, the summation of powers in the denominator of
Eq. (4) represents the co-SF interference. To ensure successful
decoding of a packet received from node i, the following
inequality holds:

γSFk
i ≥ Γi (5)

where Γi is the target SINR.

IV. NON-COOPERATIVE POWER ALLOCATION GAME

A. LoRa node utility function

LoRaWAN gateway uses the cyclic redundancy check
(CRC) to detect errors at the receiver such that the probability
of undetected transmission errors is negligible. When the
gateway detects an error in a packet, it will request a packet
re-transmission. With perfect error detection, we can express
the packet success rate (PSR) as Ps = (1 − Pb)L, where Pb
is the bit error rate and L is the length of packet in bits.
To achieve successful packet delivery with minimal power
consumption, we need to express the utility function as a
ratio of throughput to transmit power. In a game model, all
nodes will seek to maximize this utility by selecting their
transmit power from the power strategy set. In case of transmit
power pi = 0, for all modulation schemes, the best strategy
for the receiver is to make a guess for each bit, resulting in
Ps = 2−L , resulting in infinite utility [26]. To avoid the utility
maximization solution to be pi = 0, we approximate the PSR
using an efficiency function that closely follows the behavior
of PSR, while producing Ps = 0 when the transmit power
equals to 0. The efficiency function should closely follow the
PSR of a specific modulation. In [26], authors investigated the
PSR for various modulation schemes. In this work, the popular
approximation of PSR for the CSS modulation is used:

fi(γ
SFk
i ) = (1− 0.5e−αγ

SFk
i )L (6)

where fi(γ
SFk
i ) refers to the efficiency function, and α is a

constant which depends on the system modulation. The effi-
ciency function is a sigmoid function which has the following
properties:

1) f : [0,∞]→ [0, 1] is continuous,
2) f(0) = 0 and lim(γSFk )→∞ = 1
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Fig. 2. The packet success rates of Multiple Frequency Shift Keying
modulation (M-FSK) with different SFk and the efficiency function versus
SINR with α = 1.

3) f
′

: (0,∞) → (0, f
′

max) for some finite constant
f
′

max > 0
4) f

′
(γSFk)→∞ = O((γSFk))−2)

As CSS and M-FSK belong to the same modulation family
(orthogonal modulations), they perform exactly the same over
AWGN channel [27]. Fig. 2 demonstrates the PSR of coher-
ence FSK for different SFs used in LoRaWAN over an AWGN
channel, and the efficiency function proposed in Eq. (6).

It can be observed that the efficiency increases as a function
of SINR, which is further determined by the transmit power
pi and the path gain hi as prec,i = Pihi. Although increasing
the transmission power of a node can improve the SINR and
consequently the PSR, it comes at the cost of additional energy
consumption and undue interference with other nodes. There-
fore, a utility function is introduced to achieve a good balance
between the packet success rate and the energy consumption.
The utility function is defined as a ratio of the throughput to
the transmit power, i.e.,

uSFk
i (pi,pSFk

−i ) =
RSFk(1− 0.5e−αγ

SFk
i )L

pi

bits
Joule

, (7)

where pSFk
−i = [p1, .., pi−1, pi+1, ..., pMk

] is the set of trans-
mission powers of all nodes except node i using the same
SFk.

The transmit powers {pi; i = 1, ...,Mk} can be optimized
by following a distributed paradigm based on game theory.

B. Game Model

Each LoRa node aims to maximize it’s own utility function
uSFk
i to achieve a higher probability of packet success rate and

to reduce the power consumption. Mathematically, it can be
modeled by the expression of a basic game form in which
LoRa nodes act as decision makers. LoRa nodes select their
power level from a strategy power set. Thus, the basic power
allocation game (normal form) can be expressed as:

GSFk = {MSFk , {PSFk
i }

Mk
i=1, {u

SFk
i }

Mk
i=1(pi,pSFk

−i )} (8)

where MSFk = 1, 2, ...,Mk is the player set for each SFk,
PSFk
i is the ith player’s power set, and uSFk

i is the utility
function defined in Eq. (7). In a distributed power allocation
mechanism, each node uses only the local information to
update its transmit power. The distributed power allocation
can be implemented using a non-cooperative game theory,
where the action of any node will affect the utility of all
other nodes. The set of powers P ∗ resulting from the non-
cooperative game is called Nash equilibrium at which no node
acting alone can find a power level that increases its utility u∗i
when all nodes use P ∗. At Nash Equilibrium, all nodes attain
the same signal-to-interference and noise ratio (γSFk

i )∗, which
is obtained by differentiating the utility function Eq. (7) with
respect to the power pi and setting the derivative equal to zero,
i.e., ∂uSFk

i (pi,pSFk
−i )/∂pi = 0. The partial derivative of uSFk

i (.)
with respect to pi is given by [26], Appendix I:

∂uSFk
i (pi,pSFk

−i )

∂pi
=

1

p2i
(f ′i(γ

SFk
i )(γSFk

i )− fi(γSFk
i )) (9)

By setting the right side of Eq. (9) equal to zero, the
value of γSFk

i represents the Nash equilibrium solution, i.e.
1
p2i

(f ′(γSFk
i )(γSFk

i ) − f(γSFk
i )) = 0. Assuming that the effi-

ciency function is given by Eq. (6) with α = 1, and expressing
f ′(γSFk

i ) in terms of f(γSFk
i ), we get

L

2
(γSFk
i ) +

1

2
= e(γ

SFk
i ) (10)

It can be deduced that the right-hand side of the above equation
is convex in γSFk

i , and the left-hand side is monotonously
increasing in γSFk

i , and Eq. (10) is satisfied at γSFk
i = 0.

Therefore, there exists another positive value of γSFk
i that

satisfies Eq. (10). It can be seen from Eq. (10) that this value
is the same for all nodes for all SFs while assuming that all
nodes operate with the same efficiency function. Let this value
be γSFk

i = (γSFk)∗ ∀k = 7, 8, ..., 12 which can be computed
numerically from Eq. (10).

The Nash equilibrium resulting form Eq. (10) is inefficient
because there is another set of power P

′
< P ∗ which

can generate higher utility for one or more nodes, without
decreasing the utilities of other nodes. Some earlier works
used price function as a solution to obtain a Pareto optimal
[26], [28]. Despite the fact that price function can produce
Nash equilibrium power where all nodes have higher utility, it
leads to an inequitable equilibrium. In LoRaWAN and some
energy-efficient technologies, using price function to optimize
the transmit power is inefficient as it uses a gradient search
procedure that exhibits slower convergence property than
SINR balancing schemes [29]. Therefore, the SINR balancing
method in LoRaWAN is introduced in this paper to offer
practical and cheaper implementation. The proposed approach
is referred to Best Equal LoRa (BE-LoRa).

V. BEST EQUAL SINR POWER ALLOCATION

As discussed previously, the Nash equilibrium achieved
by maximizing the utility function of the game in Eq. (7)
is inefficient because there exits another set of power that
can achieve higher utility. Therefore, in this paper a power
allocation scheme is proposed for LoRaWANs which requires
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all the nodes operate with the same SINR. In this scheme,
all LoRa nodes adjust their transmit power levels to attain
the optimal solution (γSFk)opt, which is computed at the
network server for each SF. It depends on the number of active
LoRa nodes and the processing gain of each SF. In the ADR
algorithm, nodes update spreading factor and transmission
power based on the channel condition (link-based adaptation),
while the interference that depends on the number of nodes
is not considered. For this reason, we consider the scenario
where all LoRa nodes are assigned to SFs based on RSSI and
a percentage and all nodes converge to an equilibrium set of
power achieving the same (γSFk)T .

A. The inefficient solution of Nash Equilibrium

It is known that there exists an ε < 1 such that if all
the nodes update their transmit power by that amount (with
network cooperation), it will lead to an improvement on all
nodes’ utilities [29], [30]. The nodes’ transmit powers were set
to achieve an equal received power at the gateway. In [29], a
condition of solution is given as γεi = γεj , ∀i 6= j,∀i, j ∈Mk,
which means that all the received SINRs must be equal. This
leads to nodes aiming for the same received power, prec,i =
prec,∀i ∈ Mk. Hence, the optimal SINR is γεi = (γSFk)opt

and the critical ε∗ =
(
G

SFk
p

(γSFk )∗
−(Mk−1))

(
G

SFk
p

(γSFk )opt
−(Mk−1))

, where ε∗ is unique.

The target SINR (γSFk)T guarantees that all LoRaWAN
nodes operate with the same SINR and their signals received
at the gateway have the same power level prec.i = pihi. Thus,
at the balanced SINR where γSFk

i = (γSFk)T , Eq. (4) can be
rewritten as:

(γSFk)T =
GSFk
p pSFk

rec

σ2 + (Mk − 1)pSFk
rec

(11)

and,

pSFk
rec = pihi =

(γSFk)Tσ2

GSFk
p − (Mk − 1)(γSFk)T

(12)

Whereas, the utility function in Eq. (7) can be rewritten with
respect to (γSFk)T when the ith LoRa node achieves the target
SINR (γSFk)T :

ui =
RSFkf

(
(γSFk)T

)
hi[G

SFk
p − (Mk − 1)(γSFk)T ]

(γSFk)Tσ2

=
RSFkf

(
(γSFk)T

)
hi

σ2

[ GSFk
p

(γSFk)T
− (Mk − 1)

] (13)

It can be seen from Eq. (13) that the target (γSFk)T affects
utility for all nodes in the same way. It can also be seen
that the utility of node i is a linear function of the path
gain hi, which is further determined by the node location.
Similar to any spread spectrum technique, the feasibility of
the system depends on the number of devices that can operate
simultaneously. To ensure that the utility of node i is larger
than 0, we can derive an upper bound for Mk, i.e. the
maximum number of nodes that can simultaneously operate
with (γSFk)T exists, which is given by,

Mk ≤ 1 +
GSFk
p

(γSFk)T
(14)

From this feasibility condition, we can also interpret that in
a LoRaWAN system with Mk nodes, there exists an upper
bound on (γSFk)T that all Mk nodes can simultaneously
achieve:

(γSFk)T ≤
GSFk
p

Mk − 1
(15)

The right hand side of Eq. (15) represents the ratio of
processing gain to the number of interfering LoRa nodes in
each SF. In this study, all LoRa nodes seek to maintain SINR
value which produces optimum utility value as expressed by
Eq. (7).

B. Necessary Conditions for Maximum

The utility maximization of transmission power for node i is
equivalent to utility maximiziation of SINR. Thus, the utility
maximization problem as advocated in [31] can be expressed
as,

max
pi

ui = max
(γSFk )T

RSFkf
(
(γSFk)T

)
hi

σ2

[ GSFk
p

(γSFk)T
− (Mk − 1)

]
(16)

It is possible for the network server to find the optimum
target SINR for each SF depending on the number of active
nodes that are connected to the gateway. The network server
computes the optimal target SINR by taking the derivative
of utility function in Eq. (13) with respect to (γSFk)T and
equating it to zero. The resulting differential equation is given
by:(

1− (γSFk)T (Mk − 1)

GSFk
p

)
f
′ (

(γSFk)T
)

(γSFk)T = f
(
(γSFk)T

)
(17)

The optimal target SINR (γSFk)opt is the solution to Eq. (17).
It can be seen that the right hand side of Eq. (17) is
positive because the value of the efficiency function f(·)
given by Eq. (6) is positive. As f(·) is a monotonically
increasing function, f

′ (
(γSFk)T

)
≥ 0 ∀(γSFk)T ≥ 0. We

thus obtain
(

1− (γSFk )T (Mk−1)
G

SFk
p

)
≥ 0. This implies that

0 ≤ (γSFk)T ≤ G
SFk
p

Mk−1 when Mk > 1. It indicates that there

exists an optimal (γSFk)T = (γSFk)opt ∈
[
0,

G
SFk
p

Mk−1

]
such that

u′
(
(γSFk)opt

)
= 0. and it must be a maximum [32]. Moreover,

with a constant value of GSFk
p , it is also noter from Eq. (17)

that as Mk increases the target SINR (γSFk)T must decrease
to compensate for the increase in Mk. In case of Mk = 1,
(γSFk)opt = (γSFk)∗ because Eq. (17) reduces to Eq. (10).

C. Uniqueness of the Solution

The optimum SINRs obtained by solving Eq. (17) are
less than the respective values obtained by finding Nash
equilibrium, i.e. (γSFk)opt < (γSFk)∗, so we should only
limit our search to (γSFk)opt ∈ [0, (γSFk)∗]. Eq. (17) can be
rewritten as follows(

1− (γSFk)T (Mk − 1)

GSFk
p

)
=

f
(
(γSFk)T

)
f ′ ((γSFk)T ) (γSFk)T

(18)
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We know from [33] that the function

g
(
(γSFk)T

)
= f

(
(γSFk)T

)
− f ′

(
(γSFk)T

)
(γSFk)T (19)

represents the y-intercept of the line tangent to f(γSFk) at the
point (γSFk)T . From the properties 1) and 2) of the efficiency
function, the tangent line of f

(
(γSFk)T

)
approaches to 1 when

(γSFk)T → ∞, and hence lim(γSFk )T→∞ g
(
(γSFk)T

)
= 1.

With the property 4) of the efficiency sigmoid function, this
implies that lim(γSFk )T→∞(γSFk)T f ′

(
(γSFk)T

)
= 0.

Given that g(0) = 0 and g((γSFk)T ) < 0,∀(γSFk)T ∈
(0, (γSFk)∗], we can get

f((γSFk)T )

(γSFk)T f ′((γSFk)T )
≤ 1, ∀(γSFk)T ∈ [0, (γSFk)∗] (20)

Given aforementioned general properties of the efficiency
function f

(
(γSFk)T

)
in section IV, we find an additional

property as follows:

Property 5): h
(
(γSFk)T

)
≡ f((γSFk )T )

(γSFk )T f ′((γSFk )T )
is convex [32].

Proposition 1: Given that h
(
(γSFk)T

)
is convex for

(γSFk)T ∈ (0, (γSFk)∗), there exist values (γSFk)opt ∈
(0, (γSFk)∗) such that Eq. (17) is satisfied if and only if
h
′
(0) < −(Mk − 1)/GSFk

p . Further, (γSFk)opt are the values
which maximize Eq. (13) for each SF.
Proof : As in [32], the left hand side (LHS) of Eq. (18) is a
decreasing line with slope −(Mk − 1)/GSFk

p . The function
h
(
(γSFk)T

)
is the right hand side (RHS) of Eq. (18). If

h′(0) < −(Mk − 1)/GSFk
p , since

(
h(γSFk)T

)
is convex, the

value of h(γSFk)T must eventually start increasing. Since
h
(
(γSFk)T

)
never takes values less than zero, there must

be a non-zero point where the curves of LHS and RHS
of Eq. (18) intersect, as shown in Fig. (3). Conversely,if
h′(0) ≥ −(Mk − 1)/GSFk

p , as h(γSFk)T is convex it will
never intersect the line with a slope −(Mk − 1)/GSFk

p . Since
a solution does exist and it is greater than zero, we end
up with a contradiction. Therefore, we can conclude that
h′(0) < −(Mk − 1)/GSFk

p . As the only other solution to
Eq. (17) is 0 and we know that it does not lead to a maximum,
we conclude that (γSFk)opt is the maximum and it is the only
non-zero solution to Eq. (17).

D. Feasibility of (γSFk)opt

To find that the obtained values (γSFk)opt are indeed feasi-
ble, Eq. (4) can be rewritten as:

γSFk
i =

GSFk
p,i prec,i

σ2 +
∑Mk

j=1,j 6=i prec,j
= GSFk

p,i (CIRi) (21)

where CIRi is the carrier-to-interference and noise ratio. The
feasibility constraint obtained from [32] are

Mk∑
i=1

CIRi
CIRi + 1

< 1 if σ2 > 0 (22)

and
Mk∑
i=1

CIRi
CIRi + 1

= 1 if σ2 = 0 (23)
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Fig. 3. Left hand side and right hand side of Eq. (18) with different values
of SF.

We consider the scenario where σ2 > 0. Since all the Mk

nodes in SFk ∀k = 7, 8, ..., 12, have the same processing gain
based on Eq. (3), and all of them achieve the maximum utility
at (γSFk)T = (γSFk)opt, Eq. (22) can be rewritten as

Mk∑
i=1

(γSFk)opt

(γSFk)opt +GSFk
p

< 1 (24)

It can be further deduced that

(γSFk)opt <
GSFk
p

Mk − 1
∀k = 7, 8, ..., 12 (25)

which is identical to the feasibility constraint given in Eq. (15).

E. Pareto Optimality of BE-LoRa

In the proposed work, Pareto optimal solution as described
in [26] is modified to conform with BE-LoRa problem formu-
lation.

Theorem 1: A vector
−−−−→
(γSFk)∗(

−→
β ) that solves the social

problem given by Eq. (25) is Pareto optimal with
−→
β being

a vector of positive scalars, βi > 0, ∀βi ∈
−→
β . Further, the

solution exists, is unique and independent of βi

max−−→
γ

SFk
i

Mk∑
i

βiui

= max−−→
γ

SFk
i

Mk∑
i

βi
RSFkf

(
(γSFk)T

)
hi

σ2

[ GSFk
p

(γSFk)T
− (Mk − 1)

]

= max−−→
γ

SFk
i

(
Mk∑
i

βi
hi
σ2

)
RSFkf

(
(γSFk)T

) [ GSFk
p

(γSFk)T
− (Mk − 1)

]
(26)

Proof : The maximum of RSFkf
(
(γSFk)T

) [ G
SFk
p

(γSFk )T
− (Mk −

1)
]

is independent of βi. Since we have proved that

f
(
(γSFk)T

) [ G
SFk
p

(γSFk )T
− (Mk− 1)

]
has a unique maximum the

proof is complete. The reason that the solution is independent
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of βi’s is because the users have already agreed to operate at
equal received powers.

VI. BEST EQUAL-SINR ALGORITHM

The BE-LoRa power allocation algorithm operates to main-
tain the SINR of each LoRa node above the target SINR. The
maximum number of LoRa nodes in each SF can be computed
using Eq. (14) while considering the target SINR for all LoRa
nodes to be Γ = 6dB.

Eq. (17) is solved to find the optimal target SINR for
each SF given the number of LoRa nodes. Fig. 4 shows
the optimum target SINR versus the number of nodes for
different SFs. The crossing points of colored curves with the
dashed black line (SINR target Γi) represent the maximum
number of LoRaWAN nodes in each SF that can operate
simultaneously. Fig. 4 can assist with determining the best
target SINR set [(γSF7)opt, (γSF8)opt, ..., (γSF12)opt] when the
number of simultaneous LoRa nodes in each SF is smaller
than the maximum number at the crossing point. Accordingly,
the optimum number of simultaneous LoRa nodes in each
SF can be used by the network server for SF assignment.
The percentages are summarized in Table III for BE-LoRa
algorithm.

TABLE III
PERCENTAGE OF NODES ASSIGNED TO EACH SPREADING FACTOR IN

BE-LORA.

Spreading factor 7 8 9 10 11 12
No of nodes at Γ 4 7 12 22 39 72

Percentage of nodes % 2.56 4.49 7.69 14.1 25 46.15

The BE-LoRa algorithm is running on a network server
which is capable of changing the transmission power and
assigning end nodes to a certain SF. The database at the
network server contains the list of all nodes with the last
RSSIs, and the network server is able to sort this list of nodes
based on RSSI in descending order (from the highest RSSI to
the lowest). Then, the network server assigns the SFs to the
nodes based on the percentages provided in Table III. It also
estimates the SNR from the received frames at gateway and
gets the maximum value of the last 20 records to compare it
with the optimal SINR. In the BE-LoRa algorithm, 1dB margin
is used between the optimal SINR and the maximum SINR
to stop updating the power within this margin. The network
server decreases (or increases) the transmission power by 1
dBm when the max SINR is greater (or less) than the optimal
SINR plus 1dB. The newly calculated SF and transmit power
are transmitted to a LoRa node through a downlink frame.
The LoRa node updates its SF and transmission power settings
according to the settings received from the network server and
uses these new settings for the following transmissions.

Finding the optimal SINRs for each SF, assigning SF, and
updating transmission power of nodes are summarized in
algorithm 1.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
BE-LoRa power allocation algorithm. We will first use Matlab

Algorithm 1: Network Server BE-LoRa Algorithm
Input: List of LoRa nodes M , processing gain for each

SF, GSFkp , corresponding RSSIs, initial transmission
power=14 dBm, initial spreading factors=12.

Output: The optimal target SINR for each SF, updated trans-
mit power, updated SF assignment for all nodes.

1: Sort the LoRa nodes M in descending Order of RSSI
2: for i = 1 to M do
3: Assign node i with a SF based on the percentage in

Table III
4: end for
5: Find the optimal target SINR (γSFk)opt for each SF by

solving Eq. (17).
6: if (γSFk)opt < Γi then
7: (γSFk)opt = Γi;
8: end if
9: for i = 1 to M do

10: γSFk
i = max(SNR of last 20 frames)

11: if γSFk
i > ((γSFk)opt + 1dB) then

12: pi = pi − 1dBm
13: else if (γSFk

i < ((γSFk)opt − 1dB) then
14: pi = pi + 1dBm
15: else
16: Break;
17: end if
18: end for

to perform numerical evaluation, and then simulate the BE-
LoRa algorithm in a discrete event network simulator OM-
NET++ based on FLoRa framework. The numerical results
will be compared with the simulation results in terms of
average transmissions power. The simulation results of BE-
LoRa and LoRaWAN ADR algorithms are also compared in
terms of network delivery ratio and energy consumption.

A. Experimental setup

The LoRaWAN ADR algorithm has two parts, one running
at the network server and the other at the LoRa nodes. The
algorithm at network server part is able to change the trans-
mission power and the SF for the uplink data transmissions
of end nodes. By estimating the link budget of each node
using the SNR of received frames, the network server updates
the transmission parameters based on the knowledge of the
minimum SNR (SNRreq) required for demodulation, which
is adjusted by a device-specific margin. These updates of
transmission parameters are sent to the nodes via downlink
frame and nodes use these settings for transmissions [34]. The
network server does not increase the SF, as this is done by the
other part of the LoRaWAN ADR algorithm at LoRa node.
The initial spreading factor and transmission power for all
nodes are set to be 12 and 14 dBm respectively. The gateway
is located at the centre of the network and connected to one
network server. LoRa nodes are distributed uniformly over the
deployment area and the European regional parameters for
the LoRa physical layer detailed in Table IV are used. The
simulation time is 12 days for each individual experiment and
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the simulations included a warm-up period of 2 days. We run
10 iterations of each experiment (BE-LoRa and LoRaWAN
ADR) according to the independent replication method in
OMNET++. The plots show the average value obtained over
all replications. The other network parameters follow the
specifications given in [34].

The number of LoRa nodes considered for the analysis are
156 nodes, which are equal to the total number of nodes at the
target SINR Γi. The efficiency function and a comparison be-
tween numerical and simulation results is presented. Next, the
delivery ratio, energy consumed, transmit power and number
of ADR commands are estimated in each SF when the number
of nodes is 624. Finally, the performance in terms of delivery
ratio, energy consumed, and number of collisions is compared
for varying number of nodes, i.e., {156, 312, 468, 612}.

The LoRaWAN ADR algorithm estimates the link quality
using the maximum SNR value of the past 20 records. This is
ideal when there is no variability in the channel quality. It is
assumed that both algorithms operate in the channel condition
where the standard deviation of the path loss is assumed to be
0dB; otherwise some transmissions might not be able to reach
the destination, rendering the results inconclusive [34].

The common system parameters that are used in the evalu-
ation are summarized in Table IV.

TABLE IV
LIST OF SYSTEM PARAMETERS USED IN EVALUATION.

System Parameters
L, Information bits per frame 80

α, a constant that depends on the system modulation 1
Bandwidth (BW) 125 KHz

Additive White Gaussian noise σ2 3.2 x 10−15

Frequency (f ) 868 MHz
Target SINR (Γi) 6 dB

Network size 480m X 480m
Transmission Power 2 dBm to 14 dBm

Spreading factor 7 to 12
Code Rate 4/5

B. Efficiency function
The results presented in Fig. 4 indicate that the higher the

number of active nodes in the network, the lower the optimum
target SINR. To show the impact of network scale on the
system efficiency, the efficiency function as defined in Eq. (6)
is computed against the varying number of nodes in each SF
Mk. Fig. 5 plots the efficiency functions for different SFs. It
is shown that for each SF, the efficiency function increases
with the increasing number of nodes until the maximum point
where all the nodes of that SF achieve the optimum target
SINR Γi. The efficiency function starts to decrease when the
number of nodes in a LoRaWAN is more than the optimum
number. These results are significant from a network designer’s
perspective, where the system efficiency can be identified for
a particular SF and the number of LoRaWAN nodes.

C. Comparison between average transmission power numeri-
cal evaluation and simulation

The BE-LoRa algorithm is evaluated using both MATLAB
and OMNET++ with the same parameter settings. The results
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are compared in terms of the average transmission power in
each SF. In the evaluation, we consider a LoRaWAN with
156 nodes randomly distributed at fixed distances from the
gateway that is located at the cell center. All nodes are
assigned with a SF based on the percentages presented in
Table III. The transmission powers of nodes in the numerical
evaluation were computed by solving (16). Fig. 6 plots the
average transmission powers for all SFs obtained by both
numerical evaluation and simulation. It can be observed that
the numerical evaluation results match the simulation results
with small errors in some SFs (i.e. SF7 and SF10) due to
the round function that is applied to find the nearest average
transmission power in each SF.

D. Comparison between BE-LoRa and legacy ADR

In this section, we present the performance of the proposed
BE-LoRa power allocation algorithm by comparing it with the
legacy ADR scheme as specified in the LoRaWAN standard.
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We consider a LoRa network with 624 Class A nodes and
the two algorithms are compared in terms of delivery ratio,
energy consumption per successful transmission, average node
transmit power and convergence speed. The state-based energy
consumer module in FLoRa is used to model the energy
expenditure of LoRa nodes. It computes the energy consumed
depending on the time spent by the LoRa radio in the main
three states: transmit, receive and sleep state [34]. The energy
consumed in the transmit state depends on the values of
instantaneous current of each transmission power level [12].
The sleep state occurs after transmitting or receiving a frame
and the current drawn during the receive and sleep modes are
derived from the Semtech SX1272/73 datasheet with a supply
voltage of 3.3 V [35].

1) SF assignment: Fig. 7 shows the number of nodes in
each SF for both BE-LoRa and ADR schemes. In the legacy
LoRaWAN ADR, assignment of SFs to the nodes is based on
the link budget between the node and the gateway. One of the
disadvantages of updating SF in LoRaWAN ADR algorithm
is that if all nodes are located equidistant from the gateway,
one SF will be assigned to all nodes. On the other hand, the
SF assignment in BE-LoRa is aligned with the breakdown in
Table IV. The SFs are assigned to the nodes based on the
optimal SINRs, which guarantees that all nodes achieve these
optimal values using a minimal transmission power. It is shown
in Fig. 7 that BE-LoRa decreased the number of nodes in SF7,
SF11 and SF12 while increasing the number of nodes in the
other SFs (SF8, SF9, and SF10). Efficient assignment of SFs
in the BE-LoRa algorithm leads to less collisions (increased
packet delivery ratio) and improves the energy consumption.
Moreover, increasing the number of nodes in one SF leads
to more collisions as shown in SF12 of ADR LoRaWAN
compared with the BE-LoRa algorithm.

2) Delivery ratio: Next, we compare the two algorithms in
terms of delivery ratio. The delivery ratio is computed as the
number of successful packets received by the network server
divided by the number of packets sent by all LoRa nodes.
Fig. 8 shows the delivery ratios for the BE-LoRa algorithm
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and the LoRaWAN ADR algorithm. It can be observed that
the delivery ratio of BE-LoRa is higher than LoRaWAN ADR
for all SFs. The delivery ratio declines with the increase in SF
index number. This is because nodes assigned with a higher
SF are located farther from the gateway and hence suffer from
higher channel error rates. It can be also seen that the BE-LoRa
algorithm offers a significant improvement when SF increases.
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Fig. 8. Delivery ratio comparison between BE-LoRa and LoRaWAN ADR

3) Energy consumption: Fig. 9 plots the energy consump-
tion per successful transmission for both algorithms. The en-
ergy consumption is computed as the total energy consumed by
all LoRa nodes divided by the number of packets successfully
received by the network server. It can be observed that BE-
LoRa provides a significant decrease in the energy consump-
tion for all SFs. For example, if we observe at SF12, the
energy consumed for BE-LoRa algorithm is 500 mJ, while the
energy consumed for LoRaWAN ADR is 800 mJ. These results
highlight the performance gains achieved by the proposed
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BE-LoRa algorithm in terms of energy consumption. This is
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Fig. 9. Energy consumption comparison between BE-LoRa and LoRaWAN
ADR

because all of the nodes in the BE-LoRa algorithm achieve
the optimal target SINR which maximizes the utility function
defined in Eq. (13). Compared to the legacy LoRaWAN ADR,
BE-LoRa is more energy-efficient. The average transmit power
of nodes in each SF is compared in Fig. 10. It can be seen
that in LoRaWAN ADR all the nodes between SF8 - SF12
operate at the maximum transmit power of 14dBm. Referring
to the SF assignment results in Fig. 7, 93% of the nodes in
LoRaWAN ADR operate at 14dBm. However, in BE-LoRa
even the highest transmit power is lower than 14dBm, and the
percentage of nodes operating at this highest transmit power
(13dBm) is only 47%. These results signify the performance
gains that can be achieved by the proposed algorithm.
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Fig. 10. Comparison of average transmit power of nodes between BE-LoRa
and LoRaWAN ADR.

4) Convergence speed: Next, we compare the speed of
convergence for the two algorithms, i.e. the time it takes to

reach an equilibrium. In OMNET++ simulation, we cannot
record this convergence time. Instead we use the average
number of communication commands exchanged between the
network server and each node to evaluate the convergence
speed. The fewer the communication commands exchanged,
the faster the algorithm converges. In LoRaWAN ADR, the
system reaches the equilibrium by completing no of steps
equal to floor(SNRmargin/3), while in BE-LoRa the equi-
librium is reached when all nodes achieve the optimal SINR
plus a margin. Fig. 11 shows the average number of ADR
commands received by a node to reach the equilibrium versus
the SF. It is shown that BE-LoRa algorithm and LoRaWAN
ADR algorithm requires approximately the same number of
ADR commands to reach the equilibrium.
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Fig. 11. Comparison of average number of ADR commands received by a
node between BE-LoRa and LoRaWAN ADR in each SF.

5) Impact of network density: To further illustrate the im-
provement that the proposed BE-LoRa algorithm can offer as
compared to the LoRaWAN ADR, we studied the performance
at different network scale, i.e., 156, 312, 468, and 624 nodes
distributed in the same geographic area. The delivery ratio and
energy consumption is examined for both algorithms.

Fig. 12 shows that the delivery ratio decreases with the
increase in the number of nodes for both BE-LoRa and
LoRaWAN ADR algorithms, as the number of nodes increases
from 150 to 624. This is expected as more nodes result in
higher co-SF interference and more collisions. The packet
delivery ratio for the proposed scheme is higher than the
LoRaWAN ADR. For example, for no of nodes= 156, the
packet delivery ratio of BE-LoRA is 91.13 %, while the packet
delivery ratio of LoRaWAN ADR is 85.73 %. The difference
in packet delivery ratio increases when the number of nodes
increases, e.g., when no of nodes = 624, the packet delivery
in BE-LoRa is 68.29 % and in LoRaWAN ADR is 53.82%.

Fig. 13 shows the energy consumption per successful trans-
mission versus the number of nodes in the network. Compared
to LoRaWAN ADR, the energy consumption in BE-LoRa is
much lower. BE-LoRa saves energy in mJ by 32% with 156
nodes and 46% when the number of nodes is increased up
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Fig. 12. Delivery ratio comparison between BE-LoRa and LoRaWAN ADR
with different number of nodes.

to 624. This indicates the benefit that BE-LoRa can offer in
terms of energy efficiency, especially for larger networks.

150 200 250 300 350 400 450 500 550 600 650

No of Nodes

0

100

200

300

400

500

600

E
n
er

g
y
 c

o
n
su

m
ed

 (
m

J)

BE-LoRa Algorithm

LoRaWAN ADR

Fig. 13. Energy consumption comparison between BE-LoRa and LoRaWAN
ADR with different number of nodes.

Fig. 14 shows the number of collisions occurring in the
network for different network scales. It can be seen that the
number of collisions increases with the increase in the number
of nodes. Moreover, the number of collisions for BE-LoRa
is lower than the the number of collisions observed for Lo-
RaWAN ADR, thereby highlighting the superior performance
of the proposed algorithm. The LoRaWAN ADR algorithm can
improve the link budget by updating the spreading factor and
transmission power for each link, but this approach does not
take into consideration the interference caused by transmission
from the same SF. This interference can significantly decrease
delivery ratio in dense networks. On the other hand, the BE-
LoRa algorithm is based on the best equal SINR game model
in which the number of nodes is constrained in each SF based
on the target SINR and the processing gains. The optimal
SINRs are slightly decreased by increasing the number of
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Fig. 14. Number of collisions occur in BE-LoRa algorithm and LoRaWAN
ADR with different number of nodes, 156,312,468, 624 nodes.

nodes until reaching the target. The BE-LoRa algorithm leads
the nodes to an appropriate choice of SF and guides them
to transmit at lowest possible power to achieve these optimal
SINRs.

VIII. CONCLUSION

In this paper, the power allocation problem for uplink
communication in the long-range IoT networks has been inves-
tigated using game theory. We propose a best equal algorithm,
which is a cooperation power allocation where the LoRa nodes
behave in a fashion consistent with the information that the
network server provides. This paper demonstrates the fair
solution of equal received power that leads to maximizing
the node packet delivery ratio and energy efficiency. We have
shown that there exists an optimal solution and it is unique for
each SF. We have also shown the effectiveness of BE-LoRa,
which comes about from the assumption that the received
signal strengths from all LoRa nodes are equal. The BE-LoRa
algorithm is based on the number of nodes in each SF in which
the interference is considered, and the optimal SINR that nodes
should achieve is slightly reduced by increasing the number
of nodes. Our simulation results showed that BE-LoRa has a
higher delivery ratio and lower energy consumption compared
with LoRaWAN ADR. Admission algorithm together with BE-
LoRa at the network server to limit the number of LoRaWAN
nodes in each SF is one of the future research directions of
this work.
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