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Rock properties exhibit spatial variabilities due to complex geological processes such as sedimentation,
metamorphism, weathering, and tectogenesis. Although recognized as an important factor controlling
the safety of geotechnical structures in rock engineering, the spatial variability of rock properties is rarely
quantified. Hence, this study characterizes the autocorrelation structures and scales of fluctuation of two
important parameters of intact rocks, i.e. uniaxial compressive strength (UCS) and elastic modulus (EM).
UCS and EM data for sedimentary and igneous rocks are collected. The autocorrelation structures are
selected using a Bayesian model class selection approach and the scales of fluctuation for these two
parameters are estimated using a Bayesian updating method. The results show that the autocorrelation
structures for UCS and EM could be best described by a single exponential autocorrelation function. The
scales of fluctuation for UCS and EM respectively range from 0.3 m to 8.0 m and from 0.3 m to 8.4 m.
These results serve as guidelines for selecting proper autocorrelation functions and autocorrelation
distances for rock properties in reliability analyses and could also be used as prior information for

Bayesian approach

quantifying the spatial variability of rock properties in a Bayesian framework.

© 2017, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

During formation, rocks undergo complex geological processes
such as sedimentation, metamorphism, weathering, and tecto-
genesis. Therefore, they exhibit inherent variabilities, which are a
major source of uncertainties associated with rock properties
(Dasaka and Zhang, 2012; Zhu and Zhang, 2013; Aladejare and
Wang, 2017). In literature, most reliability evaluations of rock en-
gineering problems treated the rock properties as random variables
(e.g.Li and Low, 2010; Lii and Low, 2011; Lii et al., 2011, 2013; Zhang
and Goh, 2013, 2014, 2016; Goh et al., 2017; Liu and Low, 2017).
However, due to the inherent uncertainty, it is more realistic to
model the rock property as a random field than a random variable.
The inherent variability of rock properties should be considered in
designs and reliability analyses of geotechnical structures.

In designs and reliability evaluations of rock engineering prob-
lems, one of the most important input parameters is the scale of
fluctuation or autocorrelation distance, which provides an indica-
tion of the distance within which the properties show relatively
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strong autocorrelation (Phoon and Kulhawy, 1999; Li et al., 2014,
2015a,b; Liu et al., 2015, 2017a). However, most of the existing
studies conducted the reliability analysis based on assumed scales
of fluctuation of rock properties rather than values inferred from
real rock data (e.g. Gravanis et al., 2014). Clearly, there lacks a
guideline on selecting a reasonable value or a range of scales of
fluctuation for rock properties. Apart from the scale of fluctuation,
the autocorrelation structure is another significant feature that
affects the modeling of spatial variabilities of rock properties. The
autocorrelation structure describes how the autocorrelation coef-
ficient of a geotechnical property varies with the separation dis-
tance between two points (Phoon et al., 2003; Liu et al., 2017b). In
geotechnical practice, more than one autocorrelation function is
commonly used to characterize the autocorrelation structure of
geotechnical properties. Li et al. (2015b) and Liu et al. (2017c)
showed that different autocorrelation structures of geotechnical
properties may lead to different reliabilities of geotechnical struc-
tures. However, to the best of our knowledge, there rarely exist any
studies quantifying the scale of fluctuation and autocorrelation
structure of rock properties. As commented by Hsu and Nelson
(2006) and Phoon and Retief (2016), very little work had been
done on characterizing the spatial variability of rock properties.
One of the possible reasons is that the extraction of rock samples is
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difficult and costly, and testing of rock properties always requires
very complicated equipment, resulting in very sparse rock data
(Aladejare and Wang, 2017). Nevertheless, this sparsity should not
downgrade the significance of spatial variability characterization of
rock properties, even though the characterization might be a rough
one. Indeed, the results of spatial variability characterization of
geotechnical properties may also serve as a prior information in
Bayesian updating (e.g. Aladejare and Wang, 2017) and are helpful
to design effective site investigation schemes (e.g. Jaksa et al., 2005;
Gong et al., 2017).

In view of the limited studies on the spatial variability charac-
terization of rock properties, this paper evaluates the most suitable
autocorrelation structures and quantifies the scales of fluctuation
for two important parameters of intact rocks, i.e. the uniaxial
compressive strength (UCS) and elastic modulus (EM). UCS and EM
data for the igneous rock and sedimentary rock from different areas
are collected. These two parameters for the intact rock are selected
because UCS is one of the most widely used indicators of the rock
strength and is critical in determining the Hoek-Brown failure cri-
terion parameters (Hoek et al., 2002) and EM of the intact rock is
critical in estimating the EM of the rock mass (Hoek and Diederichs,
2006). A Bayesian model class selection approach is used to select
the most suitable autocorrelation function for UCS and EM because
the approach is able to select the most plausible model with a high
fitting capacity as well as a high robustness (e.g. Cao and Wang,
2013, 2014; Wang and Aladejare, 2015). The scales of fluctuation
for UCS and EM are subsequently quantified using a Bayesian
updating method. The autocorrelation coefficients for different
autocorrelation functions are compared. The results provide a
guideline for selecting reasonable autocorrelation functions and
scales of fluctuation for UCS and EM of intact rocks.

2. Random field modeling of spatial variability for UCS and
EM of rocks

The spatial variabilities of UCS and EM of rocks are modeled by
random fields. Lognormal distributions are selected to describe the
probabilistic distribution of the two parameters to avoid negative
values. Suppose a lognormally distributed random field Y(z) (z is
the depth below the ground surface) with the mean given by a
linear trend function in Eq. (1) and a constant standard deviation, ¢.

t(z) = az+b (1)

where t(z) is the mean trend; a and b are two regression co-
efficients. It can be easily deduced that the logarithm of Y(z),
In(Y(2)), is a normally distributed random field with the mean, un(z)
and standard deviation, on(z) given by Eq. (2) (Li et al., 2014).

2
un(2) = In(tz)) — 0.5 In <1 + (%) )

oN(z) = ln<l + (%z))z>

Note that un(z) and an(z) vary with depth if Y(z) has an inconstant
trend, i.e. a=0.

The autocorrelation structure of a random field is usually rep-
resented by an autocorrelation function (e.g. Liu et al., 2014). Five
autocorrelation functions commonly used in geotechnical practice
(see Eq. (3)) are considered in this study, i.e. single exponential
autocorrelation function (SEACF), Gaussian autocorrelation func-
tion (GACF), binary noise autocorrelation function (BNACF), second-
order Markov autocorrelation function (SMACF) and cosine expo-
nential autocorrelation function (CEACF) (Phoon et al., 2003). These

14 T T T T T T T 3
W Single exponential autocorrelation function (SEACF)
& = Gaussian autocorrelation function (GACF)
08l Binary noise autocorrelation function (BNACF) |
\ —e— Second-order Markov autocorrelation function (SMACF)
—&— (Cosine exponential autocorrelation function (CEACF)

Autocorrelation coefficient, p
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Normalized separation distance, |Az|/8

Figure 1. Five autocorrelation functions commonly used in geotechnical practice.

five autocorrelation functions are respectively termed M;, Mo, ...,
and Ms.

SEACF(M,) : p(Az) = exp( - @) (3a)
2
GACF(M,) : p(Az) = exp[ w(%) ] (3b)
_ 1Az for |Az| < 0
BNACF(M3) : p(Az) = { [ - (3¢)
0 otherwise
SMACF(M,) : p(Az) = (1 + 4'%') exp( - %‘d) (3d)
CEACF(Ms) : p(Az) = exp( - %Z‘) cos (%) (3e)
where p(Az) = p(z; —z) is the autocorrelation coefficient

between two standard normally distributed random variables
[In(Y (z7)) — i(z0))/on(zi) and [In(Y(z)) — u(2)]/on(z); 7 and z
are vertical coordinates of the two points associated with Y(z;) and
Y(zj); 0 is the scale of fluctuation (SoF) in the vertical direction. The
autocorrelation coefficients for the five autocorrelation functions
are plotted in Fig. 1. With Eq. (3), it is easy to evaluate the auto-
correlation matrix, R, for a random vector [£(z;),£(z3), + -+, £(zn)],
where £(z) = [In(Y(z,)) — un(2k)]/on(2). The (k, Dth entry of RM:,
R’,:’,"' represents the autocorrelation coefficient between £(z,) and
£(z;) and for the autocorrelation model M;. R%’" is equal to p(z, — z))
evaluated from the corresponding autocorrelation function in Eq.
(3). Furthermore, the covariance matrix, CV%, for the random vector
[In(Y(z1)), In(Y(z2) ), ..., In(Y(zn) )] can be obtained based on the
relation between covariance and correlation coefficient. The (k, [)th
entry of CV, C,’l/l" represents the covariance between In(Y(z;)) and
In(Y(z))), and is given by Eq. (4).

G = R on(zi)on(z) (4)

where oy (z,) and on(z;) respectively are the standard deviations of
In(Y(z,)) and In(Y(z;)), and are evaluated through Eq. (2).
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LetY = [Y(z1),Y(22), +++, Y(za)]" be a set of observations of Yat
depth [z1,2,,++,zn]". Based on the definition of multivariate
normal distribution, the likelihood of the observations conditional
on the random field parameters q, b, ¢, and 6, and autocorrelation
function M,; is given by Eq. (5).

exp] - 3(n(¥) - ea) (€)" (in(¥) - o)

In the framework of Bayesian model class selection, the plau-
sibility of a given model is measured by the probability of a class of
model conditioned on given data. Suppose there are Nacg (Nacg = 5
in this study) autocorrelation models, M1, M, -+ +, My, . Based on
the Bayesian theorem, the probability of each model conditional on

p(?|a,b,a, 6; M,-) =

where |CMi| is the determinant of C¥; and py , is the mean of the
random vector [In(Y(z;)),In(Y(z3)), +++,In(Y(zn))]", which is eval-
uated through Eq. (2).

3. Bayesian model class selection and Bayesian updating
approach

The Bayesian method has been successfully applied to the soil
properties for probabilistic characterization of geotechnical pa-
rameters and model class selections. For example, Wang et al.
(2010) characterized the uncertainty of sand friction angles using
a Bayesian framework. Yuen (2010b) summarized the recent de-
velopments of Bayesian model class selection and its applications in
civil engineering. Cao and Wang (2014) used the Bayesian model
selection method to select the optimal spatial correlation function
for soil parameters. Ching et al. (2015) compared the performances
of the frequentist and Bayesian approaches in quantifying the sta-
tistical uncertainty of soil parameters. Tian et al. (2016) character-
ized the spatial variability of the friction angle using the cone
penetration test data and Bayesian approach. However, the spatial
variability of rock properties is seldom characterized. In this study,
the Bayesian approach is used to select the optimal autocorrelation
functions for UCS and EM and estimate the autocorrelation dis-
tances for these two parameters.

3.1. Selection of the most plausible autocorrelation function using
Bayesian model class selection method

Since more than one autocorrelation function could be used to
represent the autocorrelation structure of UCS and EM, it is of in-
terest to evaluate which function is the most suitable one. The
Bayesian model class selection approach is a well-known model
selection method which is capable of finding out the optimal model
with a high fitting capacity as well as good robustness. Herein the
robustness means that the model has a low prediction error even in
the presence of model errors and measurement noises. The
approach is widely used to select models in geotechnical engi-
neering (e.g. Cao and Wang, 2013, 2014; Wang and Aladejare, 2015).
This Bayesian model selection approach is also used in this study to
select the best autocorrelation functions of UCS and EM for rocks.

1

(5)

the measured data Y is given by Eq. (6).

oA

where P(Y) is the probability of the occurrence of ¥ and it is a

normalizing constant independent of M;j; P(?|M,~) is the evidence

for the model class M; provided by the data Y, which expresses the
likelihood of the data if the model class M; is assumed; and P(M;) is
the prior plausibility of the model class M;, which reflects the user’s
judgment on the initial plausibility of the model M;. The sum of the
prior plausibility should be equal to 1 (Yuen, 2010a). In the case that
the users have no clear information of the models’ prior plausibility,
the P(M;) is commonly set to be 1/Nacg, i.e. the prior plausibility for
various candidate models being equal. For this case, the plausibil-
ities of the models are determined solely by the evidence. The
model class with the maximum evidence is viewed to be the most
suitable model.

Based on the law of total probability, the evidence for M; pro-
vided by the data Y could be expressed by Eq. (7).

P<?|M,-) _ /p(f{|a,b,a,0;Ml~)p(a,b,a,0|Mi)dadbdod0 7)
b

where 0); is the parameter space of the parameter vector [a,b,,0],
and p(a, b, o, 0)M;) is the prior probability density function (PDF)
of the parameter vector [a, b, 7,0]. p(a, b, o, 0]M;) reflects the user’s
prior knowledge of the random field parameters in the absence of
site-specific data. In this study, the four random field parameters,
a, b, g, and 6 are assumed to be independently and uniformly
distributed. In other words, the joint prior PDF of the random vector
[a,b,0,0] is given by Eq. (8).

where amin, bmin, Fmin, and @min are the minimum values of a, b, g,
and 6, respectively, and dmax, Dmax» Omax, and fmax are the
maximum values of a, b, g, and 0, respectively. The values for the
lower and upper bounds of the four random field parameters

for

p(a,b,o,0|M;) =

(amax — @min)(Pmax — brmin) (Fmax — Fmin) (fmax — Omin) (8)

ae [Amin, 3max), b€ [bimin, Pmax); € [Tmins Omax], 0€ [0 min, fmax] and O otherwise
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could be determined based on the physical meaning of the pa-
rameters and users’ experience. For example, the standard devi-
ation and scale of fluctuation can only take positive values and
their lower bounds could be set to small positive values such as
0.01. The evaluation of the evidence in Eq. (7) involves an inte-
gration of the product of the likelihood and prior PDF of random
field parameters. When only a few random variables are involved,
direct integration could be accomplished through some numerical
integration techniques. For cases with many random variables,
direct numerical integration of the evidence is computationally
prohibitive and advanced techniques such as Markov Chain Monte
Carlo simulation method can be resorted to (e.g. Wang and Cao,
2013; Tian et al., 2016). In this study, the direct numerical inte-
gration method is used because only four parameters are involved
in the integration. To be specific, the range of each parameter is
partitioned into a number of intervals and the evidence is the sum
of the product of the integrand and the interval widths for each
parameter as shown in Eq. (9).

P(?|Ml) = z p<?{aj7bk70’l7Hm)p(ajvbl<a0-170m|Ml')

j.km

AajAbkAalAf)m

(9)

where p(?|aj, by, a1,0m) and p(a;, by, 0}, 9m|M;) respectively are the
values of the likelihood function and prior PDF for [aj, bk, a1, O],
in which g;, by, ), and 6, respectively are the median values of the
jth interval of a, kth interval of b, Ith interval of ¢, and mth interval
of 0; Aa;, Aby, Ag, and Afy, respectively are the width of jth in-
terval of a, kth interval of b, Ith interval of ¢, and mth interval of 4.
Note that a sufficient number of intervals are a prerequisite for an
accurate evaluation of the integration. The number of intervals
could be determined by parametric studies, i.e. by gradually
increasing the number of intervals until a steady integration result
is obtained.

3.2. Evaluation of posterior statistics of the random field model
parameters using Bayesian updating method

The Bayesian updating method is well known to be able to
consider the prior knowledge of geotechnical parameters and
widely used in geotechnical engineering (e.g. Wang et al., 2010;
Wang and Cao, 2013; Wang and Aladejare, 2016). In this study, the
posterior knowledge (posterior mean and posterior standard de-
viation) of the random field model for UCS and EM is also deter-
mined using the Bayesian updating method. For this method, the
posterior statistics can be obtained either by approximate solutions
or by more advanced technique, such as Markov chain Monte Carlo
simulation (e.g. Tian et al., 2016). The approximation method en-
ables a fast evaluation of the posterior knowledge of random field
parameters and is used in this study. The basic idea of the method is
to approximate the posterior PDF with a Gaussian PDF with a mean
vector equal to the most probable value (MPV) of the posterior PDF,
[a*, b*, ¢*,0"] and covariance given by the inverse of a Hessian
matrix, H(a",b*,0",0"). The Hessian matrix is defined by the
second-order derivation of an object function, j(a,b,s,0):

J(a,b,0,0) = —In

p<?|a7b707 0;M0Pt)p(aab70a0|M0Pt) (10)

where Mgy is the selected optimal model. The (i, j) component of
the Hessian matrix is given by Eq. (11).
v awiawj

J(w) |w:w* (1 1 )

where 0 = [wq, w3, w3, wy] = [a, b, ¢, 0] and 0" = [a*, b*, 0", 0*} .The

most probable random field parameters could be obtained using an
optimization method, such as fminsearch subroutine in the MATLAB
platform while the Hessian matrix could be evaluated using a finite
difference method. Note that for the Bayesian updating in this study,
the prior distribution for each parameter is assumed to be a uniform
distribution with an infinite distribution range. In other words, the
parameter space for the regression coefficients is the semi-infinite
plane which ensures a positive mean trend while the distribution
ranges of standard deviation and scale of fluctuation are from 0 to
positive infinity. These prior distributions are adopted because the
prior information for the random field parameters is lacking. Details
of the evaluation could be found in Wang et al. (2010), Yuen (2010a)
and Cao and Wang (2013), and are not repeated herein.

4. Database of uniaxial compressive strength and elastic
modulus for intact rocks

In this study, some uniaxial compressive strength and elastic
modulus data for sedimentary and igneous rock are collected. The
sedimentary rock data are from Singapore while the igneous rock
data are from Sweden (download from http://www.skb.com/
publications/). The rock type for the former is mainly sandstone.
The rock samples for the latter are collected from the southeast of
the Forsmark nuclear power plant, Sweden in 2002—2007 and the
associated rock types are granite and diorite. Details of the UCS and
EM data are plotted in Figs. 2 and 3. The data in each set in Figs. 2
and 3 are from the same borehole and belong to the same rock type.
As shown in Figs. 2 and 3, 11 sets of data are available for both UCS
and EM and the number of data points in each data set ranges from
10 to 21. As discussed in the introduction section, the rock data in
practice are normally sparse because of the high cost of core drilling
and sophistication of testing equipment. However, the Bayesian
model class selection method is capable of dealing with limited
data. As shown by Cao and Wang (2014), the Bayesian model class
selection method could find out the right model even though the
data are sparsely located. In the subsequent section, it is shown that
the collected different sets of data have strikingly consistent
autocorrelation models.

5. Results for selected autocorrelation model and updated
random field parameters for UCS and EM

In this section, the selected most plausible autocorrelation
models and associated posterior statistics of the random field pa-
rameters for the UCS and EM parameters are given. For the inte-
gration via Eq. (9), the integration regions with larger likelihood
values (i.e. the region around the MPV of random field parameters)
are partitioned into denser intervals. The whole integration space is
divided into 1,000,000 parts, i.e. ng x n, x ns x ng = 1,000,000,
where ng, np, ng, and ng respectively are the numbers of intervals for
a, b, ¢ and 6. This number ensures the convergence of the
evidence. For example, the logarithms of the evidence for the
SEACF model, ln[P(?{MQ], for 1,000,000 and 7,000,000
intervals respectively are —22.61 and —22.60, the difference between
which is ignorable. In addition, for evaluating P(?|M,-), the prior
ranges for the four parameters [a, b, o, 0] of UCS are respectively

setasae [a; — 2.5 MPa/m, a; + 2.5 MPa/m], be {bf — 250 MPa, b +
250 MPa], 0e[0.01 MPa, 150 MPa], and #<[0.01 m, 50 m], where a;

and b;‘ respectively are the most probable values of a and b when the
autocorrelation model M; is assumed. These bounds are wide enough
to produce a correct solution of the most plausible model because
the evidence does not change if wider prior ranges of [a, b, g, 0] are
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Figure 2. Collected uniaxial compressive strength data. (a) set 1 (sedimentary rock); (b) set 2 (sedimentary rock); (c) set 3 (sedimentary rock); (d) set 4 (sedimentary rock); (e) set 5
(sedimentary rock); (f) set 6 (sedimentary rock); (g) set 7 (sedimentary rock); (h) set 8 (igneous rock); (i) set 9 (igneous rock); (j) set 10 (igneous rock); (k) set 11 (igneous rock).

used, eg. [a; —5MPa/m, a; +5MPa/m|, be [b,.* —500MPa, b; +

500 MPa], e [0.01 MPa, 200 MPa], and #<[0.01 m, 100 m]. In addi-

tion, these ranges normally cover the 95% credible interval defined by
the posterior statistics of the random field parameters, indicating that
the selected prior ranges are wide enough to consider all the possible
values of the random field parameters. Details of the credible
interval are illustrated in section 5.2. Likewise, the prior ranges
for the four parameters [a, b, o, 8] of EM are respectively set

as ae [a; —0.5GPa/m, d; +0.5GPa/m], be [b; —50 GPa, b; +50GPa],
¢e[0.01 GPa, 50 GPa}, and f[0.01 m, 100 m].

5.1. Most plausible autocorrelation models for UCS and elastic
modulus

The evidence for different autocorrelation models and different
sets of UCS data is summarized in Table 1. As shown in Table 1, the
single exponential autocorrelation function has the maximum
values of evidence regardless of the rock type and data set, indi-
cating the single exponential autocorrelation function is the most
plausible model to describe the autocorrelation structure of the
UCS of rocks. Table 2 summarizes the evidence for different auto-
correlation models and different sets of elastic modulus data. As
shown in Table 2, the exponential autocorrelation model also has
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Figure 3. Collected elastic modulus data. (a) set 1 (sedimentary rock); (b) set 2 (sedimentary rock); (c) set 3 (sedimentary rock); (d) set 4 (sedimentary rock); (e) set 5 (sedimentary
rock); (f) set 6 (sedimentary rock); (g) set 7 (sedimentary rock); (h) set 8 (igneous rock); (i) set 9 (igneous rock); (j) set 10 (igneous rock); (k) set 11 (igneous rock).

the maximum evidence in most cases. The astute readers may
doubt the accuracy of the results because the collected UCS data are
relatively limited (10—21 data points in each data set). However, as
shown by Cao and Wang (2014), the Bayesian model class selection
model could identify the most plausible model even when the
sampling spacing is large. In addition, since all or most (10/
11 = 91%) of the data sets have the same optimal autocorrelation
function, it is of high confidence to conclude that the single expo-
nential autocorrelation is the most suitable autocorrelation func-
tion for the UCS and elastic modulus of igneous and sedimentation
rocks.

5.2. Posterior statistics of random field parameters

The posterior mean (ug, u;;, w, and u;) and standard deviations
(ah°, ab°, o5° and ¢}°) for the random field parameters of UCS are
summarized in Table 3. When calculating the posterior standard
deviations, some abnormal values such as extremely large values or
infinity are obtained and denoted as “—"” in Table 3. These abnormal
values occur because certain diagonal component of the Hessian
matrix is equal to or close to 0, resulting in a singular or nearly
singular Hessian matrix. To further explore the reason, Fig. 4 plots
the variation of the likelihood with the scale of fluctuation for set 3
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Table 1

Logarithms of the evidence for different autocorrelation functions and different sets of UCS data.

M1: Single exponential M2: Gaussian

M3: Binary Noise M4: Second-order Markov Mb5: Cosine exponential

Sedimentary rock Set 1 -22.612 —23.59
Set 2 —14.40° -15.12
Set 3 -8.34° —9.48
Set 4 -13.09% —-13.99
Set 5 -12.83* —-13.31
Set 6 -10.70* —12.00
Set 7 -18.16% —18.36

Igneous rock Set 8 -1.572 —3.44
Set 9 -0.66* —2.52
Set 10 —1.85% —-6.73
Set 11 -7.32° -9.19

—23.36 —23.21 —23.24
—14.50 —14.72 —14.65
—8.68 -9.05 -8.61
-13.72 -13.76 -13.74
—13.28 -13.19 —13.38
-11.43 -11.70 -11.39
—18.39 —18.31 —18.53
-2.09 -3.02 -2.09
-1.26 -1.98 -1.26
—2.45 -4.83 —2.46
—-8.40 —8.82 -8.23

Note: ? denotes the maximum value of the ln[P(ﬂM,-)] for a set of UCS data.

Table 2

Logarithms of the evidence for different autocorrelation functions and different sets of EM data.

M1: Single exponential M2: Gaussian

M3: Binary Noise M4: Second-order Markov Mb5: Cosine exponential

Sedimentary rock Set 1 -11.03* -11.82
Set 2 -10.78* -11.59
Set 3 —-8.25% -9.75
Set 4 -8.76% -10.97
Set 5 —8.42° -9.27
Set 6 1.92°2 0.14
Set 7 -9.37 -10.54

Igneous rock Set 8 5.28° 3.47
Set 9 5.722 2.68
Set 10 5.16% 1.49
Set 11 17.94* 14.38

-11.78 -11.67 -11.81
—11.46 -11.43 -11.50
—-9.02 -9.44 -9.02
-9.49 —10.53 —9.46
-9.05 -9.10 —9.09
1.75 0.44 1.76
-9.32 -9.79 -9.24%
4.85 3.91 4.89
5.28 3.38 533
4.53 2.04 4.54
17.30 15.23 17.34

Note: ? denotes the maximum value of the ln[P(\A/\M,-)] for a set of EM data.

and set 7 of the UCS data. The likelihoods in Fig. 4 are calculated by
setting the values of a, b and ¢ parameters to their MPVs, i.e. a*,b”,
and ¢”, and altering the values of §. As shown in Fig. 4, the likelihood
may display different trends with the scale of fluctuation for
different sets of data. For example, there is a peak of the likelihood
around the MPV of the scale of fluctuation, ¢, for the 3rd set of the
UCS data. For this case, the second-order derivative of the objective
function, J(a,b,0,0) is positive. However, for the 7th set of UCS data in
Fig. 4b, the likelihood keeps constant around the ¢° and the
second-order derivative of the objective function is 0 or nearly 0,
resulting in infinite or very large posterior standard deviation of 4. In
this case, the posterior PDF of the random field parameters cannot
be approximated by a Gaussian distribution and the associated re-
sults are abandoned.

Excluding the abnormal data set in Table 3, it can be seen that
the scale of fluctuation of UCS ranges from 0.3 m to 8 m and there is
no apparent difference between the SoFs for sedimentary rocks and
for igneous rocks. In addition, other useful information could also
be deduced based on the posterior means and standard deviations
of the random field parameters. For example, the posterior coeffi-
cient of variation (COV) of UCS at various depths are calculated by

COV(z) = ob°/ubes = 050/(u22+ pZ), where ¢%° is the posterior

standard deviation of ¢, and uPgs, u, and u; respectively are the
posterior mean of UCS, a and b. Using this equation, it can be readily
calculated that the COVs for various sets of UCS data ranges from 9%
to 75%. The interval falls within the typical ranges provided by
Aladejare and Wang (2017), which justify the analyses in this study.
Apart from COV, the credible interval is another useful information
in Bayesian statistics. The 95% credible interval of a parameter is a
range within which the parameter falls with a probability of 95%.
For a normally distributed random variable, the 95% mean value —
centered credible interval is given by [u" — 1.960P°, u* + 1.96¢P°],
where ¢ and ¢P° respectively are the posterior mean and standard

deviation of the parameter. For a lognormally distributed
random variable, the 95% mean value—centered credible

interval is given by [u"/exp(1.960%’), u"exp(1.960%’)], where

In(1 + (gP°/u*)?) is the posterior standard deviation for

the logarithm of the parameter. Assuming the parameters a and b
are normally distributed and ¢ and # are lognormally distributed, it
can be easily shown that the 95% credible intervals of a, b, ¢ and
0 for the 1st set of UCS data respectively are [—0.45 MPa/m,
0.21 MPa/m], [71.50 MPa, 167.18 MPa], [34.9 MPa, 90.9 MPa] and
[0.44 m, 26.26 m]. These intervals respectively fall within the
prior range of a, b, ¢ and 6 for evidence evaluations, i.e.
ae [a; —2.5MPa/m, a; +2.5MPa/m| = [-2.62 MPa/m, 2.38 MPa/m],

be [b; ~250MPa, b] +250 MPa| — [~130.66 MPa, 369.34 MPal,

0€[0.01 MPa, 150 MPa], and 6 [0.01 m, 50 m]. In other words, the
prior ranges of a, b, ¢ and @ for evidence evaluations are large enough
to consider all the possible values of these parameters. The credible
intervals of random field parameters for other sets of UCS data still fall
within the corresponding prior ranges and are not repeated herein.

The posterior statistics of random field parameters for the
elastic modulus are summarized in Table 4. As shown in Table 4, the
scale of fluctuation for elastic modulus ranges from 0.3 m to 8.4 m.
Using the same method as that for the UCS, it can be easily deduced
that the COV for the elastic modulus ranges from 4% to 88%. This
range also accords with the results given by Aladejare and Wang
(2017). The credible intervals for random field parameters of EM
also fall within the corresponding prior ranges for evidence eval-
uations and are not repeated herein.

po _
O'N =

5.3. Differences of autocorrelation coefficient for different models

To illustrate the significance of autocorrelation function selec-
tion, Fig. 5 plots the autocorrelation coefficients for the optimal
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Table 3
Posterior statistics for the random field parameters of UCS.
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Rock type Set number Posterior MPV (or mean) Posterior standard deviation
tq (MPa/m) 1y (MPa) tg (MPa) ty (m) o5° (MPa/m) ab° (MPa) a§° (MPa) ap° (m)
Sedimentary rock Set 1 -0.12 119.34 56.31 3.40 0.17 2441 13.95 4.77
Set 2 0.09 75.28 39.85 8.02 0.24 30.89 11.83 9.18
Set 3 0.86 —-27.23 30.83 5.73 0.23 34.14 8.48 5.98
Set 4 0.89 3.97 31.21 0.29 0.44 3248 9.77 5.52
Set 5 1.28 26.22 67.76 1.16 1.14 84.13 23.90 9.83
Set 6 1.18 —-39.92 3242 0.13 0.48 50.59 9.45 —a
Set 7 0.30 36.75 85.44 0.22 0.13 29.27 36.58 —
Igneous rock Set 8 —0.28 264.38 25.73 2.86 0.11 35.39 5.89 2.86
Set 9 0.24 93.03 22.22 0.84 0.08 36.37 4.70 1.36
Set 10 —0.07 268.74 50.39 4.14 0.13 78.20 15.81 3.36
Set 11 0.03 214.20 54.24 0.52 0.16 113.77 12.38 0.50
Note: — @ means abnormal values are obtained in Bayesian updating, such as extremely large values or infinity.
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Figure 4. Variation of the likelihood with scale of fluctuation.
Table 4
Posterior statistics for the random field parameters of EM.
Rock type Set number Posterior MPV (or mean) Posterior standard deviation
Mg (GPajm)  wy(GPa)  uy(GPa)  wy(m)  of°(GPajm)  o}°(GPa)  o°(GPa)  a}°(m)
Sedimentary rock Set 1 0.00 55.05 15.17 0.08 —a —a —a —a
Set 2 0.05 58.62 19.91 0.08 0.11 13.70 4.43 —
Set 3 0.31 7.40 16.58 0.85 0.15 23.06 4.65 6.92
Set 4 0.64 —-15.02 10.65 0.28 0.15 11.13 298 13.44
Set 5 0.54 0.37 12.33 0.13 0.04 1.69 3.37 —
Set 6 1.40 —96.58 4.34 0.15 0.09 9.18 1.00 —a
Set 7 0.16 1.51 14.29 1.50 0.03 6.43 434 2.14
Igneous rock Set 8 -0.11 103.17 6.82 6.80 0.03 9.97 1.53 5.80
Set 9 0.02 67.05 6.80 8.35 0.02 11.26 1.68 9.54
Set 10 0.01 66.86 3.18 0.41 0.01 3.82 0.77 0.50
Set 11 0.00 71.62 2.77 0.70 0.01 7.77 0.57 0.58

Note: — @ means abnormal values are obtained in Bayesian updating, such as extremely large values or infinity.

autocorrelation model and other models with vertical separation
distance. In Fig. 5a and b the autocorrelation coefficients for
different models are plotted while in Fig. 5¢ and d the ratios of the
autocorrelation coefficient for the non-optimal model to that for
the optimal model are plotted. The autocorrelation coefficients for
each model are calculated based on the MPVs of SoF. The MPVs of
SoF for My, M, - «, M5 respectively are 1.16 m, 0.69 m, 1.89 m, 1.75 m,
and 2.28 m for the 5th set of UCS data while the MPVs are 4.139 m,
0.786 m, 2.144 m, 1.378 m and 2.215 m for the 10th set of UCS data.
As shown in Fig. 5a and b, the autocorrelation coefficients for the
single exponential model are quite different from other models. For
example, the autocorrelation coefficients at |Az| = 2 m for model My,

My, ---, M5 respectively are 0.38, 0, 0.07, 0.02, 0.25 in Fig. 5b. The
differences are more evident in Fig. 5c and d. As shown in Fig. 5¢, the
autocorrelation coefficient for the cosine exponential autocorrela-
tion function might be 12 times as large as that for the single
exponential model. All these results highlight the significance of
autocorrelation function model selection. It is worth noting that
many studies evaluated the effect of autocorrelation functions
(ACFs) on the reliabilities of geotechnical structures by assuming
the same value of SoF for different ACFs (e.g. Li et al., 2015b; Liu
et al., 2017c¢). This treatment is not reasonable because, based on
the results of this study, different values of SoFs would be obtained
for different ACFs if the same source of data is used.
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Figure 5. Differences between the autocorrelation coefficients for the optimal autocorrelation model and other models. (a) Autocorrelation coefficients for set 5 of UCS data; (b)
autocorrelation coefficients for set 10 of UCS data; (c) ratio of autocorrelation coefficients for set 5 of UCS data; (d) ratio of autocorrelation coefficients for set 10 of UCS data.

6. Conclusions

In this paper, UCS and elastic modulus data for sedimentary and
igneous rocks are collected. The autocorrelation structures are
selected using a Bayesian model class selection approach and the
posterior statistics of the scales of fluctuation for these two pa-
rameters are estimated using a Bayesian updating approach. The
results show the autocorrelation structures for both UCS and EM
could be best described by a single exponential autocorrelation
function. The scales of fluctuation for UCS and EM respectively
range from 0.3 m to 8.0 m and from 0.3 m to 8.4 m. The ranges of
the scale of fluctuation are valid for rocks in similar geological
environments and the same rock categories as studied in this paper.
For other cases, the SoF ranges obtained in this paper could be
applied as prior information and the scale of fluctuation could be
updated using site specific data.
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