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11 Abstract: This study evaluated the performances of various autocorrelation function (ACF) 

12 models in predicting the geological interface using a well-known conditional random field method. 

13 Prediction accuracies and uncertainties were compared between a flexible Matérn model and two 

14 classical ACF models: the Gaussian model and the single exponential model. The rockhead data 

15 of Bukit Timah granite from boreholes at two sites in Singapore as well as simulated data were 

16 used for the comparisons. The results showed that the classical models produce a reasonable 

17 prediction uncertainty only when its smoothness coefficient is consistent with that of the geological 

18 data. Otherwise, the classical models may produce prediction errors much larger than that of the 

19 Matérn model. On the other hand, the prediction accuracy of the Matérn model is affected by the 

20 spacing of the boreholes. When the borehole spacing is relatively small (< 0.4 × scale of 

21 fluctuation), the Matérn model can reasonably quantify the prediction uncertainty. However, when 

22 the borehole spacing is large, the prediction by the Matérn model becomes less accurate as 

23 compared with the prediction using the classical models with the right value of smoothness 

24 coefficient due to the large estimation error of the smoothness coefficient.

25 Keywords: Spatial prediction, autocorrelation function, Matérn autocorrelation model, geological 

26 interface
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27 1. Introduction

28 The interface of geological formations or layers, such as the soil-rock interface or the so-called 

29 rockhead, is a major factor to be considered in tunnel constructions as the location of the interface 

30 will affect the selection of construction methods or supporting measures. The location of the 

31 geological interface at a construction site can vary considerably due to the complex tectonics 

32 events and environmental effects experienced by geological layers and yet can only be detected 

33 using a limited number of boreholes. It is thus a challenging task to identify the location of the 

34 geological interface in areas between the boreholes. This is particularly the case when the borehole 

35 spacing is too large. Therefore, it is necessary to establish an accurate spatial prediction method to 

36 identify the location of the geological interfaces. 

37 Various methods have been proposed to address the spatial prediction problems, such as the 

38 coupled Markov chain method (Qi et al. 2016), the Bayesian compressive method (Wang and Zhao 

39 2016, 2017; Wang et al. 2020a), multivariate adaptive regression spline and neural network 

40 methods (e.g., Zhang and Goh 2013, 2016; Wang et al. 2020b), as reviewed in Qi et al. (2020a, b). 

41 Among them, the geostatistical methods, such as the kriging and the random field method, have 

42 acquired a wider application, as shown in Dasaka and Zhang (2012), Lloret-Cabot et al. (2012), 

43 Firouzianbandpey et al. (2015), Li et al. (2016a), Li et al. (2016b), Lo and Leung (2017), Cai et al. 

44 (2019), Qi and Liu (2019a) and Qi et al. (2020a). The reason may be that the geostatistical methods 

45 can provide a predicted value as well as reasonably quantify the prediction uncertainty. Another 

46 advantage of the geostatistical method over some aforementioned methods such as the spline 

47 regression method is that the predicted curve or surface runs across the observed data points when 

48 there is no measurement error. This feature is vital to engineers who need a prediction that is 

49 consistent with observed data. One disadvantage of the geostatistical methods is that it requires 
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50 relatively large quantities of data to infer the spatial variability information. However, this problem 

51 can be alleviated by adopting a reasonable borehole layout scheme and a resampling method, as 

52 shown in Qi and Liu (2019b). 

53 The main parameters involved in the geostatistical method for characterizing the spatial 

54 variability of the underlying engineering properties include the mean, standard deviation, and scale 

55 of fluctuation. The last one is a parameter of the autocorrelation function (ACF), which depicts 

56 how the spatial autocorrelation decays with an increasing distance between two points. These three 

57 random field parameters are commonly regarded to be the dominating factors that affect the spatial 

58 prediction, and thus were the focus of parametric studies (e.g., Firouzianbandpey et al. 2015). 

59 However, rare attention was paid to the role of the ACF type in the spatial prediction of geological 

60 parameters using geostatistical methods. For geostatistical methods, a predicted value at a target 

61 point can be regarded to be the weighted average value of neighboring observations. The weights 

62 of the observed points depend primarily on the autocorrelation between the target point and 

63 observed points. Different ACFs produce different autocorrelations and will induce different 

64 weights and predicted values. Also, it is expected that the different ACFs lead to different 

65 prediction uncertainties. This aspect, however, has rarely been addressed in existing studies. The 

66 effect of the ACF model on spatial predictions should be investigated.

67 In geotechnical engineering, the commonly used ACFs are mainly the classical models, such 

68 as the single exponential model, Gaussian model, and second-order Markov model as shown in 

69 Ching et al. (2019). These classical models contain only one parameter, namely the scale of 

70 fluctuation to represent the degree of spatial autocorrelation. Besides the classical models, another 

71 group of models, the so-called non-classical ACF models, has also been used to model the 

72 autocorrelation property of spatial or temporal processes (Ching et al. 2019). One example of such 
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73 a model is the Matérn model proposed by Matérn (1960). This model has an additional parameter, 

74 the smoothness coefficient, to control the smoothness (or degree of differentiability) of random 

75 fields or processes. Like other random field parameters, the smoothness parameter can be 

76 estimated using the maximum likelihood method, as shown in Ching et al. (2019). Most of the 

77 classical ACF models can be considered as a special case of the Matérn model with a prescribed 

78 value of the smoothness coefficient. Therefore, the main advantage of the Matérn model over the 

79 classical models is that it can automatically capture the smoothness of the engineering properties. 

80 Also, the usage of the Matérn model avoids the difficulty of the ACF model selection. The Matérn 

81 model has been used in spatial predictions in the area of soil science and mathematics (e.g., Stein 

82 1999). However, it is rarely adopted in geotechnical and geological engineering, possibly because 

83 in these areas the model was published much after the popular random field theory (e.g., 

84 Vanmarcke 1977, 1983). Nevertheless, as a few exceptions, the Matérn model has been used to 

85 interpolate the geological properties (such as Liu et al. 2017), but its advantages over the classical 

86 models are not well understood. In the area of mathematics, Stein (1999) illustrated that the Matérn 

87 model produced smaller errors than the Gaussian model. But the study of Stein (1999) mainly used 

88 the mean squared error to measure the prediction accuracy and thus cannot reflect the rationality 

89 of the prediction uncertainty.

90 This paper studied the effect of the ACF model on the spatial prediction of the location of 

91 rockhead. Borehole data from two sites in Singapore were used to evaluate the effect of the ACF 

92 model on spatial predictions using the conditional random field method. These borehole data 

93 reveal the rockhead of an igneous rock formation, Bukit Timah granite. The Matérn model was 

94 compared with two widely used ACF models in geotechnical engineering, the Gaussian model and 

95 the single exponential model. The prediction accuracies and prediction uncertainties for different 
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96 types of ACFs were assessed through a cross-validation procedure. Furthermore, simulated data 

97 were also analyzed to consider the effect of data spacing and the smoothness of the geological 

98 data. 

99 2. Conditional random field method

100 This study used the conditional random field method (termed as CRF hereafter) to spatially predict 

101 the rockhead elevations at unsampled locations. This method is a well-established geostatistical 

102 method and has been widely used to predict geological or geotechnical properties (e.g., Li et al. 

103 2016b; Lo and Leung 2017; Li et al. 2018; Cai et al. 2019; Qi and Liu 2019b; Qi et al. 2020). The 

104 conditional random field method is a Bayesian method essentially. Sometimes a “Bayesian-based” 

105 modifier is added in front of the “conditional random field method” to differentiate itself from 

106 other conditional random field methods. For simplicity, the “Bayesian-based” modifier is not used 

107 in this study. The basic idea of the method is to update the distributions of the unknown parameters 

108 at unsampled locations using (i) the prior information regarding the probability distribution of the 

109 unknown rockhead elevations and (ii) spatial autocorrelation information between rockhead 

110 elevations at sampled and unsampled locations. The statistics for the prior distribution and updated 

111 distribution of the unknown parameters are called prior statistics and posterior statistics, 

112 respectively. The prior statistics and autocorrelation information of the unknown parameters are 

113 expressed by a random field model. In this study, the random field of the rockhead elevation is 

114 assumed to possess a mean trend represented by a polynomial function and a constant standard 

115 deviation across the area of interest. The autocorrelation of rockhead elevations at various 

116 locations is described by an autocorrelation function. The general steps of the CRF method are 

117 listed as follows. More details of the conditional random field method can be found in Li et al. 

118 (2016b), Lo and Leung (2017), and Qi et al. (2020b). 
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119 (1) Estimate random field parameters with borehole data using the maximum likelihood 

120 estimation method, as shown in DeGroot and Baecher (1993), Fenton (1999), and Ching et 

121 al. (2019). The random field parameters include regression coefficients of the mean trend 

122 function, the standard deviation, and the scales of fluctuation (and smoothness coefficients 

123 if the Matérn model is used). In this study, polynomial trend functions with degrees up to 3 

124 are considered as higher degrees with too many unknown parameters make the estimation 

125 uncertainty in the trend parameters increase significantly (Baecher and Christian 2003). Note 

126 that the random field parameters can also be determined based on prior knowledge if it is 

127 available. Besides, the moment method is not used to estimate the random field parameters 

128 as it is not suitable for cases with irregularly spaced data. 

129 (2) The optimal degree of the polynomial trend function is selected using a well-known model 

130 selection method, Bayesian information criterion (BIC) (e.g., Yuen et al. 2010). The BIC 

131 considers the fitting capacity and the complexity of various models. The model with a 

132 minimum BIC value is regarded to be the optimal model and the associated random field 

133 parameters are used for spatial predictions.

134 (3) Update the posterior statistics of the rockhead elevations at unexplored locations using the 

135 prior statistics, observed rockhead elevations and autocorrelation information of the 

136 rockhead elevation (e.g., Li et al. 2016b, Lo and Leung 2017). Herein the prior statistics of 

137 the rockhead elevation including prior mean and standard deviation are the mean trend and 

138 standard deviation for the optimal model determined in steps 1-2. 

139 This study considers three commonly-used two-dimensional autocorrelation models: the 

140 separable single exponential (SSE) model, the Gaussian model (also called the squared exponential 

141 model), and the Matérn model, given by 
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145 where SSE, G, and M are the autocorrelation coefficients for the SSE, Gaussian, and Matérn 

146 autocorrelation functions, respectively;  and  are the distances (also |||| jiij xxx  |||| jiij yyy 

147 called lags) between two points (xi, yi) and (xj, yj) in the x and y directions, respectively (note that 

148 x and y denote two orthogonal horizontal directions);  and  are the scales of fluctuations xSoF ySoF

149 in the directions of x and y; x and y are the smoothness coefficients; (∙) is the Gamma function; 

150 x and y are scale parameters, and K∙ is the modified Bessel function of the second kind of order 

151 . For the Matérn model, the scale of fluctuations is related to the scale parameters through 

152 (Hristopulos and Žukovič 2011). 
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155 The Matérn model is a flexible ACF model in the sense that it has an additional parameter 

156 controlling the smoothness (degree of differentiability) of the random field. Other commonly used 

157 ACF models, such as the SSE and Gaussian model are special cases of the Matérn model. The SSE 

158 and Gaussian models correspond to the smoothness coefficient  = 0.5 and + ∞, respectively. To 

159 illustrate the effect of the smoothness coefficient, Fig. 1(a) plots the Matérn ACF with different 
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160 smoothness coefficients using the same value of the scale of fluctuation (SoF). As shown, a larger 

161 smoothness coefficient exhibits a higher autocorrelation coefficient at small lags, such as the 

162 separation distance < 0.5 × SoF, which decays faster with the increased separation distance. Fig. 

163 1(b) plots typical one-dimensional realizations of the rockhead-elevation random field with 

164 different values of   using the same SoF. As shown, the rockhead curve becomes smoother as the 

165 value of the   increases. 

166 When the Matérn model is used, an upper limit value such as 50 is set for the smoothness 

167 coefficient parameter, , in the maximum likelihood optimization. The reason is that sometimes 

168 the value of  keeps increasing during the optimization, indicating the optimized value of  is + ∞ 

169 (corresponding to the Gaussian model). When the  reaches a relatively large value such as 50, the 

170 corresponding ACF is already very close to a Gaussian ACF, and a further increase of  hardly 

171 changes the shape of the ACF. Therefore,  = 50 is taken as a sign that the estimated ACF model 

172 is a Gaussian model. By setting this upper limit value of , the computational time can be 

173 significantly reduced. Matlab codes regarding the maximum likelihood estimation of random field 

174 parameters are provided in appendix A.

175 3. Borehole data

176 Borehole data from two sites in Singapore are used to perform the spatial predictions. Site 1 is 

177 around Yishun Park and Site 2 is at the Canberra Link (Sembawang). Geological cross-sections 

178 from the two sites are plotted in Fig. 2(a) and 2(b), respectively. As shown, the main geological 

179 formation present at the two sites is the igneous rock formation, Bukit Timah granite (BTG). The 

180 BTG covers around one-third of Singapore Island and is considered to be the base bedrock of 

181 Singapore Island. The BTG was formed from a large body of acid mass, which intruded from 

182 greater depths (Pitts 1984; Sharma et al. 1999). The fresh material of the BTG has good 
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183 engineering properties (Pitts 1984; Sharma et al. 1999). Thus, the BTG-occupied area provides an 

184 ideal space for underground constructions. However, due to the humid tropical climate and the 

185 past tectonic events in Singapore, the BTG has undergone an intensive weathering. As such, the 

186 location of the interface of soil and rock layers, or the so-called rockhead, in the BTG may vary 

187 significantly even within a short distance. Herein the soil and rock layer in a rock formation are 

188 distinguished mainly according to the weathering degree of the rock masses. In the engineering 

189 practice of Singapore, the weathering degrees of the BTG are classified into six grades: fresh 

190 (grade I), slightly weathered (grade II), moderately weathered (grade III), highly weathered (grade 

191 IV), completely weathered (grade V), and residual soil (grade VI) (e.g., Zhao et al. 1994). Grades 

192 I, II, and III are regarded as rock, whereas Grades IV, V, and VI as soil-like materials. Since the 

193 soil layers have weaker engineering properties than the rock layers, it is essential to identify the 

194 location of the rockhead in order to determine a suitable excavation method or supporting scheme 

195 in underground constructions. It is worth noting that the geological conditions can be quite variable 

196 and sometimes a layer having a weathering grade of I, II or III overlie a soil layer (Qi et al. 2020a, 

197 b). In this case, the rock layer may likely be boulders or rock intrusion. 

198 The borehole data for the two sites are plotted in Fig. 2(c) and 2(d), respectively. In Figs. 2(c) 

199 and 2(d), the rockhead data are plotted together with the rockhead surface linearly interpolated 

200 using a MATLAB function, fit. As shown, 188 and 135 boreholes were distributed in the two sites 

201 with an area of 1600 m × 600 m and 600 m × 400 m, respectively. The rockhead elevation for 

202 boreholes at Site 1 ranges from − 48.0 m to 3.0 m while that at Site 2 ranges from − 50.8 m to 3.6 

203 m. The elevation herein refers to the height relative to the average sea level measured from 1935 

204 to 1937 at Victoria Dock located in the south of Singapore. The standard deviation of the rockhead 

205 elevation data at Site 1 is 9.8 m while that at Site 2 is 11.6 m. Evidently, the rockhead elevation 
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206 has a large variability in these two areas. The coordinates of the boreholes and associated rockhead 

207 elevations at Site 1 are listed in Table A1 in appendix B while those for the other site can be found 

208 in Qi et al. (2020b). The rockhead elevations were obtained from site investigation reports. 

209 4. Spatial prediction of rockhead elevation using actual borehole data

210 This section presents comparations of the performances of three selected ACF models using the 

211 borehole data at the two sites mentioned above. The comparisons are carried out using a cross-

212 validation procedure composed of the following steps:

213 1) All the rockhead data are randomly divided into two groups, training group and testing 

214 group. 

215 2) The training data are used to estimate random field parameters and perform spatial 

216 prediction using the CRF method. The CRF provides a predicted value as well as a posterior 

217 standard deviation (or confidence interval) for the rockhead elevation at any testing point. 

218 3) The prediction errors are evaluated by comparing estimated rockhead elevations at the 

219 locations of testing data with the corresponding actual values. The rationality of the 

220 prediction uncertainties is also assessed.

221 4) The above three steps are repeated a few times to evaluate the prediction performance for 

222 various ACF models under various scenarios.

223 The prediction error is quantified by the two indexes, root mean squared error, RMSE, and root 

224 mean squared relative error, RMSRE, while the rationality of the prediction uncertainty is 

225 quantified by the normalized prediction variance, NPV (Cressie 1993), as shown by. 

226 (2a) 
 pN

i ii
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229 where Np is the number of data points in the testing group;  is the predicted value of the rockhead iẑ

230 elevation for the i th testing point, , which is treated as a random variable;  is the observed iZ iz

231 value of the rockhead elevation , di is the actual depth of the rockhead for the i th testing point, iZ

232 and  is the predicted standard deviation for the rockhead elevation . The former two indexes iZ iZ

233 quantify the prediction error, and the last one quantifies the rationality of the prediction uncertainty. 

234 Note that the depth rather than actual elevation is used in the denominator of Eq. 2(b) because the 

235 elevation may have a value close to 0. Elevation rather than depth is used as the geological 

236 parameter investigated in this study as the former is a relatively constant quantity that is immune 

237 to erosion and human activities, such as excavation and backfilling.

238 It is worth noting that the optimal value of the NPV is 1. The meaning of NPV can be well 

239 appreciated by considering a random variable N with a mean of  and a variance of . If one  2

240 generates many samples (such as m) of the variable N, , based on the definition, the mnnn ,,, 21 

241 variance of the random variable can be estimated from the samples, i.e., ≈ =2 𝜎2

242 , making the statistic  close to 1. However, if another estimation  


m

i in
m 1

2)(1  1
𝑚∑𝑚

𝑖 = 1(
𝑛𝑖 ― 𝜇

𝜎 )2

243 of ,  , which is estimated from very limited samples, is smaller than the actual value, the 2 𝜎′2

244 statistic  would be larger than 1. Hence, an NPV with a value much larger than 1 is 
1
𝑚∑𝑚

𝑖 = 1(
𝑛𝑖 ― 𝜇

𝜎′ )2

245 an indication that the uncertainty of a rockhead elevation is underestimated. On the contrary, an 

246 NPV with a value much smaller than 1 means that the uncertainty of the rockhead elevation is 

247 overestimated. 
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248 The spatial prediction was first performed using all the rockhead data to obtain an overall 

249 picture of the rockhead trend in the area. Then the prediction errors and prediction uncertainties 

250 for various ACF models are compared using the cross-validation procedure. The rockhead data at 

251 the two sites were analyzed in sections 4.1 and 4.2, respectively.

252 4.1 Bukit Timah granite rockhead at Site 1 

253 4.1.1 Rockhead surface predicted using all the data

254 The random field parameters of the rockhead elevation at Site 1 were estimated by the maximum 

255 likelihood estimation method using all the rockhead data. The BIC values for the selection of the 

256 suitable trend functions were summarized in Table 1 (a) while the estimated values for the most 

257 suitable model are summarized in Table 1 (b). Correspondingly, the autocorrelation functions for 

258 various models are plotted in Fig. 3(a, b). As shown in Table 1(a), 10 polynomial functions with 

259 degrees up to 3 are considered. The constant mean model has the minimum value of BIC and is 

260 the optimal form of trend function. As shown in Table 1(b), the estimated values of the smoothness 

261 coefficients of the Matérn model,  and  are close to 0.5, indicating the actual ACF model is x y

262 likely to be the SSE model. 

263 Another observation in Table 1(a) is that the scale of fluctuation ( ) for the Gaussian SoF

264 model is much smaller than those for the other two models. To explore the reason, Fig. 3(c) plots 

265 the borehole pairs with small lags in the x-direction (i.e., < 10 m) while Fig. 3(d) plots the || x

266 frequencies of y-lags for the borehole pairs shown in Fig. 3(c). In Fig. 3(d), the height of each bin 

267 denotes the number of data pairs with the y-lag,  falling within a certain range, such as [0 m, || y

268 10 m] and [10 m, 20 m]. As shown, the  interval of [20 m, 30 m] has the most (i.e., 27) data || y

269 pairs, indicating the autocorrelation coefficients for  = [20 m, 30 m] is likely to dominate the || y

270 maximum likelihood estimations. Additionally, Fig. 3(e) plots the rockhead elevation associated 
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271 with the 27 data pairs. As shown, the 27 data pairs are highly correlated and have a relatively high 

272 autocorrelation coefficient, 0.64. Fig. 3(f) plots two autocorrelation functions with an 

273 autocorrelation coefficient of 0.64 at  = 25 m. As shown, to achieve such a high || y

274 autocorrelation coefficient for  = 25 m, the SSE model has to adopt a relatively high value of || y

275 SoFy, i.e., 112 m. By contrast, the Gaussian model just needs a SoFy of 66 m to achieve the same 

276 autocorrelation coefficient for  = 25 m. Note that the 112 m and 66 m are not the same as the || y

277 corresponding values in Table 1(b) because only the data pairs with a data spacing range of 20 m 

278 ~ 30 m are considered herein to make the explanation more understandable. The horizontal scale 

279 of fluctuation can be explained in the same way. Furthermore, a similar phenomenon is observed 

280 by Qi and Liu (2019), which found if the Gaussian autocorrelation function is used to estimated 

281 random field parameters for soil properties with a single exponential autocorrelation structure, the 

282 estimated autocorrelation distance is smaller than the actual value when the data spacing is 

283 relatively small. It must be noted that the analysis here may not be a good quantitative 

284 representation because the borehole data are not sufficient and regularly spaced, making it difficult 

285 to evaluate accurately the autocorrelation coefficient for a certain lag. For example, the 

286 autocorrelation coefficient evaluated in Fig. 3(e) is just an approximate solution of the 

287 autocorrelation coefficient for x = 0 m and y = 25 m because all the data pairs in Fig. 3(e) have 

288 slightly different x coordinates (i.e., x ≠ 0) and the actual y varies from 20 m to 30 m. 

289 Figs. 4(a, b, c) plot the predicted surface of the rockhead for various models at Site 1 while 

290 Fig.4(d) and 4(e) plot the predicted curves and the 95% confidence intervals of the rockhead 

291 elevation along y = 260 m, respectively. The 95% confidence intervals (CIs) of the rockhead 

292 elevation in Fig. 4(e) are evaluated by assuming the rockhead elevation has a normal distribution. 

293 Hence, the 95% CI is bounded by the mean value ± 1.96 × posterior standard deviations. It can be 
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294 seen from Fig. 4(d) that when a point deviates away from the observed data, the corresponding 

295 predicted elevation gradually approaches the prior mean value for all the models, i.e., -18.1 m, -

296 18.5 m, and -18.4 m for the SSE, Gaussian, and Matérn model respectively, as given in Table 1(b). 

297 Besides, the known points have a relatively small influential range when the Gaussian model is 

298 used. This means that the predicted elevation quickly converges to the prior mean trend when a 

299 target point gradually deviates from a known point, as shown by the green line segment with 150 

300 m < x < 550 m in Fig. 4(d). By contrast, for the other two models, convergences of the predicted 

301 curves of rockhead are not achieved in the range, 150 m < x < 550 m. Similarly, as a target point 

302 gradually deviates from a known point, the 95% CI for the Gaussian model converges to a steady 

303 level faster than those for the other two models, as shown in Fig. 4(e). As a result, the average 

304 width of the 95% CI for the Gaussian model, 29.2 m, is also larger than those for the other two 

305 models, i.e., 26.7 m for both. The main reason for these phenomena is that the Gaussian model 

306 produced smaller values of estimated SoF (see Table 1(b)) and the autocorrelation decays much 

307 faster than the other two models, as shown in Fig. 3(b). 

308 4.1.2 Comparison of predictions using different ACF models

309 The prediction accuracies and uncertainties for various ACF models are compared using the cross-

310 validation procedure described at the beginning of section 4. 100 rounds of cross-validations were 

311 performed as the associated results are quite close to those for 200 rounds. In each round, 70% of 

312 data were randomly drawn as training data and the remainder as testing data. Each round of cross-

313 validation produces one set of indexes, i.e., RMSE, RMSRE and NPV. The means and standard 

314 deviations of the 100 sets of indexes are given in Table 2. As shown, the mean values of RMSE 

315 and RMSRE associated with the Gaussian model are 7.67 m and 0.34 which are larger than the 

316 values for the SSE model (6.66 m and 0.27) and the values for the Matérn model (6.73 m and 
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317 0.29). The higher mean RMSE value for the Gaussian model indicates a lower accuracy of this 

318 model. Moreover, the mean value of  for the Gaussian model is 1.48 which is larger than 1, NPV

319 indicating the uncertainties of the rockhead elevations at testing points are significantly 

320 underestimated. To explore the reasons, one typical cross-validation example is plotted in Fig. 5. 

321 The plan views of the training and testing boreholes and the autocorrelation coefficients for various 

322 models are plotted in Figs. 5(a, b). The predicted curves and 95% CIs of the rockhead along a 

323 cross-section are plotted in Figs. 5(c-e). The following has been observed from Figs. 5.

324 (1) The Gaussian model has larger prediction errors than the other two models. The RMSE for 

325 the former is 6.92 m which the RMSE for the SSE and Matérn models are 6.29 m and 6.35 m, 

326 respectively. In particular, when the Gaussian model is used, the prediction errors for the 

327 testing points at (x, y) = (815 m, 261 m) and (1145 m, 261 m) are -15.5 m and -9.6 m (see 

328 Fig. 5(d)), the absolute values of which are much larger than those for the SSE Model (- 5.8 

329 m and - 4.1 m as shown Fig. 5(c)) or those for the Matérn model (-7.9 m and - 5.3 m as shown 

330 Fig. 5(e)). The main reason is that the Gaussian model produces smaller estimations of the 

331  than the other two models (e.g., 51 m vs 114 m and 81 m as shown in Fig. 5(b)). Since SoF

332 the spatial prediction using the conditional random field method is mainly dominated by 

333 borehole data within an SoF of a target point, the Gaussian model uses data in a smaller 

334 neighborhood than the other two models. As a result, the predicted rockhead elevations for 

335 the Gaussian model are close to those at the several nearest boreholes (see the solid curve 

336 around x = 835 m and 1150 m in Fig. 5(d)). By contrast, the predicted rockhead elevations 

337 for the SSE and Matérn models are not so close to those for the nearest boreholes and the 

338 prediction error is consequently smaller. 
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339 (2) Another interesting finding is that the Gaussian model underestimates the prediction 

340 uncertainty although it produces a wider prediction interval than the other two models. On 

341 the contrary, the SSE and Matérn models generally can reasonably quantify the prediction 

342 uncertainty. Figs. 5(c, d, e) also provide the average widths of the 95% CIs of the rockhead 

343 elevations along the investigated cross-sections. As shown, the average width of the 95% CI 

344 for the Gaussian model is wider than those for the other two models. This phenomenon is 

345 expected because the Gaussian model produces a smaller estimation of the  and reduces SoF

346 the uncertainty of unknown parameters in a smaller neighborhood of the training data than 

347 those for the other two models. Nevertheless, the Gaussian model always covers the least 

348 testing points. As shown in Figs. 5(c, d, e), three testing points cannot be covered by the 95% 

349 CI for the Gaussian model while only one testing point cannot be covered by the 95% CI for 

350 the other two models. This phenomenon agrees with the observation that the NPV value for 

351 the Gaussian model (i.e., 1.85) is much larger than 1 while those for the other two models are 

352 close to 1 (i.e., 0.98 for the SSE model and 1.59 for the Matérn model). The main reason is 

353 that the Gaussian model excessively reduces the prediction uncertainty of the testing data 

354 close to the training data points. As shown in Fig. 5(b), for the Gaussian model, the 

355 autocorrelation coefficient corresponding to small lags is larger than those for the other 

356 models. In other words, when the actual value of  does not reach +∞, the Gaussian model 

357 is likely to overestimate the autocorrelation between an observation and a closely located 

358 unknown point, making the associated confidence interval too narrow to cover the actual 

359 value. 

360 4.2 Bukit Timah granite rockhead at Site 2

361 4.2.1 Rockhead surface predicted using all the data
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362 The BIC values for the selection of the trend function for site 2 were summarized in Table 1(c). 

363 As shown, the optimal trend function for the single exponential and the Matérn model is the 

364 constant trend while that for the Gaussian model is a linear function of the x coordinate. However, 

365 it is subsequently found that a constant trend and a linear function model produce nearly the same 

366 prediction accuracy. For an easy comparison of various autocorrelation models, the constant trend 

367 is used for all autocorrelation models. The random field parameters of the rockhead elevation 

368 estimated from all the data using the maximum likelihood estimation method were summarized in 

369 Table 1(d). With this information, the autocorrelation coefficients for various ACF models were 

370 plotted in Figs. 6(a, b), respectively. As shown, the estimated  and  for the Matérn model are x y

371 0.38 and 1.62, respectively, indicating the actual ACF in the x-direction is close to an SSE ACF 

372 while the actual ACF in the y-direction is close to a second-order Markov ACF model (e.g., Ching 

373 et al. 2019). Besides, the estimated values of the  for the Gaussian model are still significantly SoF

374 smaller than those for the other two models. The reasons are still that the dominant data spacings 

375 are relatively small, such as 40 m ~ 50 m in the y-direction and the dominant data pairs give rise 

376 to a large autocorrelation coefficient, as shown in Figs. 6(c, d, e). 

377 Figs. 7(a-c) plotted the predicted surfaces of rockhead for various models using all the data 

378 points at Site 2 while Fig. 7(d) and 7(e) plot the predicted curves and 95% CI of the rockhead 

379 elevation along y = 170 m, respectively. As shown, the differences among the predicted surfaces 

380 and curves for various ACF models are not as distinct as those for Site 1 because the borehole data 

381 at Site 2 is denser than those at Site 1. However, one can still find the effect of ACF from the 

382 average width of the 95% CI of the rockhead elevation along one cross-section with y  = 170 m, 

383 which is 21.5 m, 23.9 m and 21.3 m for the SSE, Gaussian, and Matérn model, respectively. Similar 
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384 to the result for Site 1, the Gaussian model still produces the widest 95% CI, indicating that on the 

385 whole, the Gaussian model cannot effectively reduce the prediction uncertainty. 

386 4.2.2 Comparison of the predictions for different ACF models

387 The performances of various ACF models are also compared using the cross-validation procedure. 

388 Similar to Site 1, 100 rounds of cross-validations were performed and in each round, 70% of data 

389 were randomly drawn as training data while the reminder as testing data. The means and standard 

390 deviations of the 100 sets of indexes were summarized in the last two rows of Table 2. As shown, 

391 the averaged value of RMSE and RMSRE for the Gaussian model is the largest and the averaged 

392 value of NPV for the Gaussian model is the farthest from 1. These results imply that the Gaussian 

393 model still produces the largest prediction errors and the least reasonable prediction uncertainties. 

394 To show the reason, Fig. 8 plots a typical example of the cross-validation, including the plan 

395 view of the training and testing data in Fig. 8(a), the autocorrelation coefficient for various models 

396 in Fig. 8(b), the predicted curve of rockhead along y = 33 m in Fig. 8(c), and the 95% CI of the 

397 rockhead elevation along y = 33 m in Fig. 8(d). As shown in Fig. 8(c), the Gaussian model 

398 generally produces larger errors than the SSE and Matérn models, especially for the 1st, 3rd and 4th 

399 testing data along the cross-section of y = 33 m. Besides, a large part of the predicted curve for the 

400 Gaussian model is close to the prior mean trend, - 20.6 m, indicating the known data points do not 

401 contribute too much to the updating in these areas. The main reason is that the Gaussian model 

402 produces a relatively small value of the estimated scale of fluctuations (see Fig. 8(b)). Based on 

403 this Gaussian model, the data points on the cross-section have very weak autocorrelation with the 

404 nearest training data points. As a result, the prediction error and prediction uncertainty are also 

405 large. 
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406 Moreover, similar to the example of Site 1, the Gaussian model still underestimates the 

407 uncertainty of rockhead elevation at testing points although in general, it produces the widest 95% 

408 CI. Actually, the NPV value of the Gaussian model is much larger than 1 (i.e., 1.86) while those 

409 for the other two models are close to 1 (i.e., 0.76 for the SSE model and 0.92 for the Matérn model). 

410 Correspondingly, the 95% CI of the Gaussian model covers the least testing data (see Fig. 8(d)). 

411 For instance, the testing point at (x, y) = (79 m, 48 m) cannot be covered by the 95% CI of the 

412 Gaussian model but can be covered by those for the other two models. This is caused by the large 

413 error of the predicted value, or more specifically, the prediction error larger than 1.96 × posterior 

414 standard deviation. 

415 5. Spatial prediction using simulated data

416 Section 4 just investigates two cases of borehole data and the performance of various ACFs in 

417 situations with a different data density or a different value of the smoothness coefficient are 

418 unknown. Hence, simulated data were generated and analyzed in this section to evaluate the effect 

419 of borehole spacing and the smoothness of the actual data using the following procedure:

420 1) One set of random field parameters is assumed to be the “actual” random field parameters 

421 of the rockhead elevation in an imaginary site;

422 2) 50 realizations of the rockhead-elevation random field are generated based on the assumed 

423 random field parameters using the covariance matrix decomposition method (e.g., Li et al. 

424 2019). Each artificially generated realization can be considered to be the ‘real’ rockhead 

425 elevation at the site; 

426 3) One cross-validation is performed for each realization to compute the prediction error. 

427 Similar to Section 4, the three ACF models, SSE, Gaussian, and Matérn are used for spatial 

428 predictions of the rockhead for the testing data points. For each set of the random field parameters 
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429 and each ACF model, 50 sets of RMSE  and NPV  are calculated for the 50 realizations. The mean 

430 value of the two indexes, RMSE and NPV are evaluated. Note that the realization number, 50 is 

431 chosen because the corresponding mean values of RMSE and NPV are similar to those for 100 

432 realizations. In other words, 50 realizations are adequate for an accurate evaluation of the 

433 prediction error. 

434 The data selection criterion for the training and testing data is designed as follows. Firstly, 

435 the random field realizations composed of relatively dense grid points are simulated. The spacing 

436 of any two adjacent data points in each direction is set as 10 m. This spacing is considered to be 

437 adequately small as a smaller spacing such as 5 m yields similar statistics of RMSE and NPV in 

438 cross-validations. Secondly, 15 × 15 = 225 sparse grid points are withdrawn from the dense grid 

439 points as training data. Several spacings of neighboring training data are selected to ensure the 

440 normalized spacing (defined as /SoF = the spacing of the training data / the actual value of the 

441 scale of fluctuation) has a value of  0.2, 0.3, 0.4, 0.5, 1 or 1.5. The remaining data points in the 

442 area covered by the training data are considered to be testing data. One example of the plan view 

443 of the training and testing data is plotted in Fig. 9. 

444 The Matérn ACF model is used to generate the random field realization of the rockhead 

445 elevation at the imaginary site. The ‘actual’ standard deviation and mean value of the rockhead 

446 elevation are set as 10 m and – 50 m, respectively. The ‘actual’ scale of fluctuation is set to be 

447 SoFx = SoFy = 40 m or 100 m. Finally, the value of the smoothness parameter is set to be x = y 

448 = 0.5, 1.5, and 10. These value generally covers the typical range of  because when  reaches a 

449 relatively large value such as 10, the shape of the ACF hardly change with an increasing . The 

450 statistics of the RMSE and NPV for various cross-validation schemes are listed in Table 3(a). The 

451 following discussion can be made based on the results in Table 3(a). 
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452 (1) As a special case of the Matérn model, a classical model produces a reasonable prediction 

453 uncertainty when the prescribed value of the smoothness coefficient is consistent with the 

454 actual  of the rockhead data. Otherwise, the classical model produces an unreasonable 

455 prediction uncertainty and a prediction error that is generally larger than the Matérn model. 

456 For instance, the Gaussian model usually underestimates while the SSE model overestimates 

457 the prediction uncertainty when the actual value of  is larger than 0.5 and smaller than +∞. As 

458 shown in Table 3(a), all values of  NPV for the Gaussian model are larger than 1. The reason 

459 is that the Gaussian model overestimates the autocorrelation at small lags, making the 

460 uncertainties of unknown parameters at locations close to known data to be excessively 

461 reduced. 

462 (2) The Matérn ACF model normally produces a reasonable prediction uncertainty (as evidenced 

463 by a mean value of NPV close to 1) and an error similar to the classical model with a suitable 

464 value of . However, since this model has additional smoothness parameters to estimate, it 

465 may be subjected to estimation errors of the   parameters. This side-effect can be well shown 

466 in Table 3(b), which summarizes the number of experiments producing an estimated  of + ∞ 

467 when the actual  is 0.5. As shown, the number of experiments with estimated  = + ∞ 

468 gradually increases as the normalized spacing increases. This side-effect makes the prediction 

469 accuracy of the Matérn ACF model slightly lower than the classical model with a proper value 

470 of  and also makes the former underestimate the prediction uncertainty. As shown in Table 

471 3(a), the effect of the side-effect on the performance of the Matérn model is the most prominent 

472 when the actual value of   is small and the data spacing (e.g., > 0.4 × SoF) is large. Hence, it 

473 is crucial to drill some closely spaced boreholes in site investigation to ensure an accurate 
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474 estimation of the smoothness parameter. 

475 (3) For the Gaussian model, the NPV first decreases and then increases with an increasing , as 

476 shown in the 7th row under the table header of Table 3(a). This trend is attributed to two 

477 primary factors, the data density, and the estimated SoF. On one hand, a large data spacing 

478 makes the borehole data sparse, resulting in large prediction uncertainty (denominator of the 

479 NPV). On the other hand, an increasing data spacing also induces a growing estimated SoF. 

480 This trend can be found in Table 3(c), which summarizes the mean of the estimated values of 

481 SoF as the actual   = 1.5. This increased value of SoF in turn reduces the prediction 

482 uncertainty. The former factor plays a dominant role as spacing is relatively small and is 

483 responsible for the decreasing trend of NPV while the latter factor is responsible for the 

484 increasing trend of NPV. 

485 As for the SSE mode, the NPV exhibits an increasing trend with an increasing borehole 

486 spacing. This main reason is that as the borehole spacing is large, the prediction error (i.e., the 

487 numerator of the NPV) is also relatively large. Note that a growing borehole spacing also leads 

488 to a reduced value of the estimated SoF (see the last row of Table 3(c)) and sparser data, 

489 thereby resulting in large prediction uncertainty (denominator of NPV). However, the effect 

490 of these two factors on the NPV is not as large as the prediction error. Thus the NPV for the 

491 SSE model generally increases with an increasing data spacing. 

492 In summary, the classical ACF model produces relatively small prediction error and 

493 satisfactory uncertainty only when the underlying  value is consistent with the actual  value of 

494 the geological data. Hence, it is preferable to use the classical ACF model only when reliable prior 

495 information of the  parameter is available. Besides, the Matérn ACF generally produces an 

496 accuracy and prediction uncertainty similar to the classical model with a suitable value of . 
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497 However, its performance relative to the classical model with a proper with of  deteriorates when 

498 the spacing of the borehole becomes large.  Therefore, it is vital to drill some closely spaced 

499 boreholes, which is also emphasized by Qi and Liu (2019a). 

500 6. Conclusions

501 This study investigated the effect of the autocorrelation function model on the spatial prediction 

502 of the interface of geological layers using the conditional random field method. The prediction 

503 accuracies and rationalities of the computed prediction uncertainties for the single exponential, 

504 Gaussian, and Matérn models were compared via a cross-validation procedure. Borehole data from 

505 two sites of Singapore and revealing rockhead of an igneous rock formation, Bukit Timah granite 

506 were used for the comparison. Simulated data of rockhead elevation were also analyzed to 

507 investigate the effect of the borehole spacing and smoothness of the data. The following 

508 conclusions were tentatively drawn from the analyses.

509 (1) A classical model produces a reasonable prediction uncertainty when its prescribed value 

510 of smoothness coefficient is consistent with the actual smoothness coefficient of the geological 

511 data. Otherwise, the error is normally larger than that of the Matérn model and the prediction 

512 uncertainty from the classical model is not reasonable. To be specific, the Gaussian model may 

513 underestimate, or the single exponential model overestimate the uncertainty in the predicted 

514 rockhead elevation when the actual smoothness coefficient of the geological data has a value 

515 between 0.5 and +∞. These conclusions are supported by analyses using both the actual borehole 

516 data and simulated data.  For example, the study using the actual borehole data shows that the 

517 Gaussian model on average has an error of 1 m larger than the other two models and can 

518 underestimate the standard deviation of the prediction by almost 40% (i.e., 1- = 0.39). 1/2.70
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519 (2) The prediction accuracy of the Matérn model is affected by the spacing of the boreholes.   

520 When the borehole spacing is relatively small (< 0.4 × actual scale of fluctuation), the Matérn 

521 model can reasonably quantify the prediction uncertainty and has an accuracy similar to that of the 

522 classical model with the right value of smoothness coefficient. However, when the borehole 

523 spacing is large, the prediction by the Matérn model becomes less accurate as compared with the 

524 prediction using the classical models with the right value of smoothness coefficient because of the 

525 large estimation error of smoothness coefficient. Besides, the Matérn model may underestimate 

526 the prediction uncertainty under this circumstance. The deterioration of the performance of the 

527 Matérn model is the most prominent when the smoothness parameter is small (such as 0.5). 

528 Based on these observations, the following suggestions are provided to guide the selection of 

529 the autocorrelation models in spatial predictions using the conditional random field method. (i) 

530 When the borehole spacing is relatively small (< 0.4 × actual scale of fluctuation), the Matérn 

531 model should be used in spatial predictions. (ii) When the borehole spacing is relatively large and 

532 prior information regarding the smoothness coefficient (e.g., smoothness coefficient for 

533 neighboring sites as reported in the literature) is available, the corresponding classical model could 

534 be used. For example, the single exponential model can be used if the users are confident that the 

535 value of the smoothness coefficient is close to 0.5. (iii) When the borehole spacing is relatively 

536 large and there is no prior information regarding the smoothness coefficient, additional site 

537 investigations need to be performed to acquire closely spaced data for the use of the Matérn model. 

538 The conclusions of this study can also be applied to spatial predictions of geotechnical 

539 properties, such as the N values in standard penetration tests or the tip resistance in cone 

540 penetration tests. Furthermore, it is beneficial to use the predicted geotechnical and geological 
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541 parameters in reliability analyses of geotechnical structures when there is a lack of real 

542 geotechnical data. 
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Table 1 Random field parametric values of the rockhead elevation evaluated from the maximum 

likelihood estimation method

(a) BIC values for various polynomial trends of rockhead elevation for site 1 (Yishun Park)

Model Constant Linear 
1a

Linear 
2 b

Linear 
3 c

Quadratic 
1 d

Quadratic 
2 e

Quadratic 
3 f

Cubic 
1 g

Cubic 
2 h

Cubic 
3 i

SSE 1293 1296 1298 1302 1300 1307 1304 1309 1309 1314
Gaussian 1333 1334 1338 1339 1335 1343 1337 1342 1342 1347
Matérn 1302 1305 1307 1310 1309 1316 1313 1318 1318 1324

Note: aLinear 1: Trend function = 0 + 1 × x; bLinear 2: Trend function = 0 + 1 × y; 
cLinear 3: Trend function = 0 + 1 × x + 2 × y; dQuadratic 1: Trend function = 0 + 1 × x + 2 × y + 3 × x2;
eQuadratic 2: Trend function = 0 + 1 × x + 2 × y + 3 × y2;
fQuadratic 3: Trend function = 0 + 1 × x + 2 × y + 3 × x2+ 4 × y2;
gCubic 1: Trend function = 0 + 1 × x + 2 × y + 3 × x2 + 4 × y2+ 5 × x3;
hCubic 2: Trend function = 0 + 1 × x + 2 × y + 3 × x2 + 4 × y2+ 5 × y3;
iCubic 3: Trend function = 0 + 1 × x + 2 × y + 3 × x2 + 4 × y2+ 5 × x3 + 6 × y3, where 0, …, 6 are regression coefficients.

(b) Random field parametric values for rockhead elevation at site 1 (Yishun Park)
Model SoFx (m) SoFy (m) x y  (m)  (m)

SSE 177.8 138.7 — — 9.8 -18.1
Gaussian 72.5   37.4 — — 9.5 -18.5
Matérn 166.4 112.6 0.5 0.7 9.9 -18.4

(c) BIC values for various polynomial trends of rockhead elevation at site 2 (Canberra Link)

Model Constant Linear 
1a

Linear 
2 b

Linear 
3 c

Quadratic 
1 d

Quadratic 
2 e

Quadratic 
3 f

Cubic 
1 g

Cubic 
2 h

Cubic 
3 i

SSE 956 959 960 964 968 968 972 976 977 981
Gaussian 1002 999 1006 1003 1004 1004 1005 1009 1010 1014
Matérn 962 966 967 970 975 974 978 983 983 988

Note: the expression for all the polynomial functions are provided in Table 1(a).
(d) Random field parametric values for rockhead elevation at site 2 (Canberra Link)

Model SoFx (m) SoFy (m) x y  (m)  (m)
SSE 84.3 164.7 — — 10.2 -21.2
Gaussian 26.3   57.2 — — 10.6 -20.6
Matérn 83.3 133.2 0.4 1.6 10.4 -21.3
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Table 2 Prediction accuracies for the spatial prediction of rockhead elevation

Single exponential model Gaussian model Matérn model
RMSE (m) RMSRE NPV RMSE (m) RMSRE NPV RMSE (m) RMSRE NPV

Site 1 mean 6.66 0.27 1.01 7.67 0.34 1.48 6.73 0.29 1.21
aSD 0.72 0.05 0.27 0.73 0.08 0.61 0.75 0.06 0.38

Site 2 mean 7.27 0.89 1.02 8.66 1.38 2.70 7.38 0.91 1.22
aSD 0.98 0.39 0.33 1.19 0.81 2.13 0.95 0.45 0.41

Note: aSD = standard deviation

Page 31 of 48 Canadian Geotechnical Journal (Author Accepted Manuscript)

© The Author(s) or their Institution(s)



32

Table 3 Prediction accuracies for the spatial prediction of rockhead elevation using simulated data

(a) Statistics of RMSE and NPV for cross-validations

2  0.2 0.3 0.4 0.5 1 1.5
1

 3 RMSE 4 NPV RMSE NPV RMSE NPV RMSE NPV RMSE NPV RMSE NPV

Gau 5.26 12.78 6.42 8.35 7.09 8.20 7.80 5.53 9.56 3.15 10.15 2.35
0.5 SSE 4.94 1.07 5.91 0.99 6.61 1.04 7.25 1.00 8.97 0.99 9.70 1.04

Matérn 4.94 1.07 5.95 1.14 6.80 1.34 7.41 1.43 9.32 1.49 9.87 1.49
Gau 1.57 11.09 2.66 6.47 3.77 4.16 4.97 2.97 8.40 1.75 9.69 1.49

1.5 SSE 1.80 0.24 2.98 0.34 4.06 0.43 5.23 0.54 8.56 0.85 9.70 0.98
Matérn 1.52 1.10 2.71 1.24 3.83 1.28 4.99 1.34 8.87 1.32 9.85 1.20
Gau 0.08 5.07 0.50 2.14 1.34 1.54 2.55 1.33 7.92 1.19 9.45 1.42

10 SSE 0.76 0.06 1.64 0.13 2.64 0.21 3.81 0.32 8.63 0.81 9.53 0.99
Matérn 0.07 1.07 0.50 1.06 1.34 1.05 2.60 0.94 8.95 0.97 9.64 1.17

Note: 1 = input (actual) value of the smoothness coefficient for the simulated data; 
2 = normalized borehole spacing = borehole spacing / actual scale of fluctuation, e.g., 0.2 = 20 m / 100 m;
3RMSE = mean of the root mean squared error for 50 rounds of cross-validations;
4 NPV = mean of the normalized prediction variance for 50 rounds of cross-validations.

(b) Number of cross-validations which produce an estimated  of +∞ (input  = 0.5, Matérn model used)

 0.2 0.3 0.4 0.5 1 1.5
Number 0 0 2 6 22 21
Percentage 0% 0% 4% 12% 44% 42%

(c) Normalized estimated scale of fluctuation for the Gaussian and SSE model when the actual  = 1.5


0.2
, xSoF ySoF

0.3
, xSoF ySoF

0.4
, xSoF ySoF

0.5
, xSoF ySoF

1
, xSoF ySoF

1.5
, xSoF ySoF

Gaussian 0.53, 0.53 0.69, 0.69 0.80, 0.81 0.88, 0.89 1.02, 1.07 1.07, 1.04
SSE 1.88, 1.84 1.47, 1.44 1.26, 1.28 1.13, 1.13 0.80, 0.82 0.66, 0.60

Note: normalized SoF = mean of the estimated SoF /input SoF
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Appendix A 

The Matlab codes used to estimate the random field parameter and evaluate the BIC values are 

provided as follows.

(1) The main program

%estimate the random field parameters, assume geological parameter normally distributed
clc; clear
format short g
%[X,Y]: coordinate of borehole data; GeoPara: rockhead elevation; ACFt:
%type of autocorrelation function; deltaX and deltaY are matrixes denoting
%the lags in the x and y directions, respectively
global X Y GeoPara ACFt FunNum deltaX deltaY
num = xlsread('UsedBHdata.xlsx',1);    %user input            
X = num(:,1);
Y = num(:,2);
GeoPara = num(:,3);
NumP = length(X);
%considered polynomial functions
f1=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2);
f2=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2;
f3=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,2).^2;
f4=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2;
f5=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2+p(6)*x(:,1).^3;
f6=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2+p(6)*x(:,2).^3;
f7=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2+p(6)*x(:,1).^3+p(7)*x(:,2).^3;
f8=@(p,x) p(1)+p(2)*x(:,1);
f9=@(p,x) p(1)+p(2)*x(:,2);
opt=optimset('TolFun',1e-4,'TolX',1e-5);  
%%
%estimation using the maximum likelihood method
ACFt = 'WM';  %select from 'SinExp','Gau','WM','Exp'
k = [3 4 4 5 6 6 7 2 2];
deltaX = X - X';
deltaY = Y - Y';
options=optimset('LargeScale','off','display','iter');
for iTrend = 0:0
    FunNum = iTrend;
    %generate initial value for regression coefficient
    switch iTrend
        case 0
            p0 = mean(GeoPara);
        case 1
            [p0,~,r] = regress(GeoPara,[ones(size(X)),X,Y]);
        case 2
            [p0,~,r] = regress(GeoPara,[ones(size(X)),X,Y,X.^2]);
        case 3
            [p0,~,r] = regress(GeoPara,[ones(size(X)),X,Y,Y.^2]);
        case 4
            [p0,~,r] = regress(GeoPara,[ones(size(X)),X,Y,X.^2,Y.^2]);
        case 5
            [p0,~,r] = regress(GeoPara,[ones(size(X)),X,Y,X.^2,Y.^2,X.^3]);
        case 6
            [p0,~,r] = regress(GeoPara,[ones(size(X)),X,Y,X.^2,Y.^2,Y.^3]);
        case 7
            [p0,~,r] = regress(GeoPara,[ones(size(X)),X,Y,X.^2,Y.^2,X.^3,Y.^3]);
        case 8
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            [p0,~,r] = regress(GeoPara,[ones(size(X)),X]);
        case 9
            [p0,~,r] = regress(GeoPara,[ones(size(X)),Y]);
    end
    %initial value for standard deviation
    switch iTrend
        case 0
            Nvalfit = p0;
        case 1
            Nvalfit=f1(p0,[X,Y]);
        case 2
            Nvalfit=f2(p0,[X,Y]);
        case 3
            Nvalfit=f3(p0,[X,Y]);
        case 4
            Nvalfit=f4(p0,[X,Y]);
        case 5
            Nvalfit=f5(p0,[X,Y]);
        case 6
            Nvalfit=f6(p0,[X,Y]);
        case 7
            Nvalfit=f7(p0,[X,Y]);
        case 8
            Nvalfit=f8(p0,[X,Y]);    
        case 9
            Nvalfit=f9(p0,[X,Y]);
    end
    SD0 = std(Nvalfit-GeoPara);
    if size(p0,1)>1
        p0 = p0';
    end
    %the initial value of all random field parameters
    if strcmpi(ACFt,'WM')  
        iniParas = [50,50,0.5,0.5,SD0,p0; 50,50,10,10,SD0,p0; ...
            200,100,0.5,0.5,SD0,p0;200,100,10,10,SD0,p0];
    else
        iniParas = [40,20,SD0,p0;200,50,SD0,p0;10,2,SD0,p0];
    end
    minNLL = 10000000;
    for j = 1:size(iniParas,1)
        [x,fval] = fminsearch(@NLL2dNorm,iniParas(j,:));
        if fval < minNLL
            minNLL = fval;
            MPVx = x;
        end
    end
    EstPara = MPVx;
    if strcmpi(ACFt,'WM')
        if iTrend == 0
            BIC =  log(NumP)*(1+5)+2*minNLL;
        else
            BIC =  log(NumP)*(k(iTrend)+5)+2*minNLL;
        end
    else
        if iTrend == 0
            BIC =  log(NumP)*(1+3)+2*minNLL;
        else
            BIC =  log(NumP)*(k(iTrend)+3)+2*minNLL;
        end
    end
    startRow = 1;
    xlswrite('Output.xlsx',[EstPara,minNLL,BIC],1,['A',num2str(iTrend+startRow),':',...
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        'A'+length(EstPara)+1,num2str(iTrend+startRow)]);             
end
(2) Subroutine

function nLL = NLL2dNorm(input)
%normally distributed random field and measurement noise not considered 
%nLL: -log(likelihood); input: random field parameters; lx, ly: correlation distance in two horizontal directions 
global X Y GeoPara ACFt FunNum deltaX deltaY nLLsteady
n= length(X);
if strcmpi(ACFt,'WM')
    %scale of fluctuation
    SOFx = input(1);     SOFy = input(2);
    nux = input(3);     nuy = input(4);
    sigmaSV = input(5);
    p = input(6:end);
    if SOFx<0 || nux<0 || SOFy<0 || nuy<0 || sigmaSV<0 
        nLL=10^7;
        return
    end
else
    lx=input(1);     ly=input(2);
    sigmaSV = input(3);     p = input(4:end);
    if lx<0 || ly<0 || sigmaSV<0 
        nLL=10^7;
        return
    end
end
f1=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2);
f2=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2;
f3=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,2).^2;
f4=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2;
f5=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2+p(6)*x(:,1).^3;
f6=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2+p(6)*x(:,2).^3;
f7=@(p,x) p(1)+p(2)*x(:,1)+p(3)*x(:,2)+p(4)*x(:,1).^2+p(5)*x(:,2).^2+p(6)*x(:,1).^3+p(7)*x(:,2).^3;
f8=@(p,x) p(1)+p(2)*x(:,1);
f9=@(p,x) p(1)+p(2)*x(:,2);
switch FunNum
    case 0
        Nvalfit = p;
    case 1
        Nvalfit = f1(p,[X,Y]);
    case 2
        Nvalfit = f2(p,[X,Y]);
    case 3
        Nvalfit = f3(p,[X,Y]);
    case 4
        Nvalfit = f4(p,[X,Y]);
    case 5
        Nvalfit = f5(p,[X,Y]);
    case 6
        Nvalfit = f6(p,[X,Y]);
    case 7
        Nvalfit = f7(p,[X,Y]);
    case 8
        Nvalfit = f8(p,[X,Y]);
    case 9
        Nvalfit = f9(p,[X,Y]);
end
%the autocorrelation coefficient
RhoRF=zeros(n);
if strcmpi(ACFt,'Exp')
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    equL=sqrt((deltaX./lx).^2+(deltaY./ly).^2);  
    RhoRF=exp(-equL);
elseif strcmpi(ACFt,'SinExp')
    RhoRF=exp( -abs(deltaX./lx) -abs(deltaY./ly));
elseif strcmpi(ACFt,'Gau')
    RhoRF=exp( -(deltaX./lx).^2 -(deltaY./ly).^2);
elseif strcmpi(ACFt,'WM')
    equLx= abs(deltaX./SOFx)*2*sqrt(pi)*gamma(nux+0.5)./gamma(nux);
    RhoRFx= 2^(1-nux).*(equLx.^nux).*besselk(nux,equLx)./gamma(nux);
    flag = isnan(RhoRFx);
    RhoRFx(flag) = 1;
    equLy= abs(deltaY./SOFy)*2*sqrt(pi)*gamma(nuy+0.5)./gamma(nuy);
    RhoRFy= 2^(1-nuy).*(equLy.^nuy).*besselk(nuy,equLy)./gamma(nuy);
    flag = isnan(RhoRFy);
    RhoRFy(flag) = 1;
    RhoRF = RhoRFx.*RhoRFy;
end
COVRF = corr2cov(sigmaSV*ones(size(X)),RhoRF);
detCOV = det(COVRF);
invCOV = COVRF^(-1);
vec = GeoPara - Nvalfit; 
if strcmpi(ACFt,'Gau')
    if detCOV<0 || det(invCOV)<0 || 0.5*vec'*invCOV*vec<0 %|| detCOV == Inf || det(invCOV) == Inf
        nLL=10^7;
        return
    end
else
    if detCOV<0 || det(invCOV)<0 || 0.5*vec'*invCOV*vec<0
        nLL=10^7;
        return
    end
end
%{
%method 1
nLL= n/2*log(2*pi) + 0.5*log(detCOV) + 0.5*vec'*invCOV*vec
%method 2
nLL = -log(mvnpdf(GeoPara,Nvalfit,COVRF))    %modified on 180612
%}
%method 3
if strcmpi(ACFt,'WM')                                        
    if nux > 60 || nuy > 60
        nLL = nLLsteady;
        return
    end
end
L = chol(COVRF,'lower');
LogdetRho2 = 2*sum(diag(log(L)));
nLL = n/2*log(2*pi) + 0.5*LogdetRho2 + 0.5*vec'*invCOV*vec;
if strcmpi(ACFt,'WM')                                        
    if nux > 50 || nuy > 50
        nLLsteady = nLL;
    end
end
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Appendix B 

The coordinates (x, y) and rockhead elevation (Ele) of the Bukit Timah granite at Site 1 are 

summarized in Table A1.

Table A1 Borehole data used for spatial predictions at Site 1

x (m) y (m) Ele 
(m)

x (m) y (m) Ele 
(m)

x (m) y (m) Ele 
(m)

x (m) y (m) Ele 
(m)

0.0 287.3 3.0 958.0 557.2 -22.7 1127.8 448.3 -25.3 1158.5 249.4 -12.4
103.4 330.4 -4.5 979.2 561.0 -23.7 1248.0 538.7 -27.7 1142.0 231.8 -17.4
118.9 321.5 -5.5 646.5 279.6 -7.9 1179.4 480.3 -4.2 1043.9 144.4 -8.5
169.2 342.4 -5.4 759.0 360.4 -13.4 824.4 181.8 -9.4 1132.0 207.8 -27.3
73.8 247.3 -4.5 469.9 112.3 -28.6 1157.7 454.5 -19.3 941.3 45.0 -4.4

206.0 343.1 -5.8 646.6 257.6 -10.4 1234.4 517.6 -20.4 1170.7 234.8 -10.9
179.7 301.3 -5.3 796.6 380.0 -14.3 1175.6 463.8 -9.1 1030.8 114.7 -6.4
91.8 215.0 -2.4 690.7 281.3 -13.4 863.9 203.1 -7.5 1154.2 217.2 -15.4

213.0 310.8 -7.3 645.3 235.7 -15.4 1143.9 431.8 -24.4 963.7 56.1 -9.7
543.1 565.0 -19.4 459.3 74.8 -27.0 1138.3 421.6 -21.4 986.5 62.6 1.7
335.1 349.4 -18.6 690.0 258.7 -13.1 921.3 236.8 -26.9 1083.1 140.4 -27.0
545.8 506.4 -14.9 439.0 39.6 -35.0 1198.9 462.0 -27.0 1031.6 91.2 -4.3
563.7 505.8 -10.9 745.5 290.5 -26.5 1171.2 438.6 -13.9 994.0 58.3 0.0
352.9 318.6 -21.3 644.0 204.6 -19.5 1234.0 488.0 -25.5 1056.9 91.0 0.2
606.1 529.5 -10.2 478.7 66.4 -24.4 943.1 226.0 -28.9 1292.7 285.6 -38.4
555.7 481.3 -24.1 688.8 236.8 -20.6 1246.1 474.6 -35.6 1001.2 39.3 -3.1
381.2 334.1 -20.6 642.8 184.1 -18.5 936.3 211.7 -26.4 1026.8 60.4 -4.7
426.2 370.2 -17.3 785.8 296.8 -29.4 1238.6 459.6 -41.0 1091.8 106.6 -18.4
603.1 498.1 -17.0 755.2 264.8 -26.5 941.0 205.7 -27.0 1338.6 291.9 -26.9
564.3 461.1 -23.9 687.2 204.2 -21.6 1218.0 427.3 -15.8 1247.3 215.6 -16.1
360.3 284.2 -30.4 859.6 344.1 -24.5 1186.0 400.3 -37.1 1126.3 108.5 -33.6
450.4 338.5 -15.1 641.5 162.2 -17.4 1162.0 380.1 -25.0 1075.6 57.3 -4.8
572.1 433.3 -18.1 686.8 184.4 -24.0 945.7 199.8 -27.6 1244.6 196.2 -14.5
562.6 408.1 -11.8 800.5 279.1 -27.1 959.6 209.2 -29.7 1264.4 211.4 -15.9
549.0 390.8 -10.3 771.9 244.8 -18.6 1250.0 449.5 -31.2 1270.7 214.0 -12.6
541.5 371.4 -13.0 685.7 163.9 -18.9 1140.5 348.4 -27.6 1113.9 79.8 -21.4
631.9 444.7 -26.6 1131.4 533.3 -2.8 969.7 192.8 -27.6 1272.4 197.8 -16.1
676.9 465.3 -20.7 1122.9 520.8 -8.5 998.0 208.2 -31.9 1267.5 190.5 -9.8
606.7 393.6 -9.9 721.7 184.8 -32.7 1087.3 264.7 -31.6 1373.2 276.0 -19.6
673.1 445.3 -11.9 815.3 261.5 -27.0 1101.9 275.2 -35.4 1362.1 265.9 -26.9
639.8 416.5 -20.6 1156.6 536.8 -11.7 1135.2 297.7 -35.6 1094.2 32.8 -12.4
582.9 357.8 -15.2 520.3 6.2 -23.9 942.2 136.6 -18.2 1330.7 229.3 -19.5
872.3 592.2 -17.9 1119.6 503.6 -14.1 961.6 145.2 -23.4 1319.2 218.9 -24.9
720.2 463.0 -13.7 1129.7 504.5 -3.0 1228.7 361.7 -26.5 1123.2 49.5 -20.2
680.9 420.1 -7.2 880.3 292.7 -47.0 1114.1 260.6 -24.0 1321.3 196.3 -17.5
650.4 390.2 -1.1 794.3 217.9 -20.6 1134.8 277.9 -28.9 1396.3 243.0 -23.8
347.4 137.2 -18.5 544.6 2.4 -20.9 988.7 151.5 -16.1 1256.3 48.6 -30.5
613.6 355.1 -20.6 895.8 293.6 -48.0 957.6 112.5 -5.6 1573.4 296.3 -15.6
734.8 442.1 -10.3 780.6 192.2 -27.0 1063.5 197.8 -42.3 1553.0 277.9 -3.9
655.0 366.9 -24.0 835.8 236.9 -9.1 1100.3 227.9 -21.3 1532.6 259.5 -2.5
740.2 415.7 -16.9 1221.2 546.8 -23.5 1144.7 261.3 -25.3 1512.1 241.1 -18.5
659.6 347.6 -13.5 1204.8 532.2 -29.9 1130.5 245.6 -14.4 1321.7 79.8 -9.4
694.0 374.4 -25.9 809.6 199.5 -13.2 1252.9 342.8 -25.9 1299.5 47.6 -28.0
960.2 586.9 -16.7 570.6 0.0 -27.0 1240.5 331.6 -23.9 1493.4 142.4 -14.2
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733.2 385.3 -28.4 1159.8 486.4 -1.3 1115.7 225.0 -18.7 1440.0 55.4 -16.4
702.8 348.4 -22.4 1143.7 470.6 -11.6 1005.0 128.4 -15.7 1403.3 19.8 -6.3
786.5 414.9 -12.0 849.8 220.0 -23.0 946.3 74.1 -7.0 1433.2 29.9 -18.0

Caption of figures

Fig. 1 Matérn autocorrelation function with different smoothness coefficients and typical random 

field realizations of rockhead elevation

Fig. 2 Geological profiles of two cross-sections and borehole data at the two sites

Fig. 3 Autocorrelation coefficients of the rockhead elevation at Site 1 and reason for the 

estimated smaller SoF for the Gaussian model

Fig. 4 Rockhead elevation predicted using all the data at Site 1

Fig. 5 Rockhead elevation predicted by different autocorrelation models at Site 1 

Fig. 6 Autocorrelation coefficients of the rockhead elevation at Site 2 and reason for the 

estimated smaller SoF for the Gaussian model

Fig. 7 Rockhead elevation predicted using all the data at Site 2

Fig. 8 Rockhead elevation predicted by different autocorrelation models at Site 2 

Fig. 9 Plan view of training and testing data when borehole spacing of training data = 20 m
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Caption of figures 

Fig. 1 Matérn autocorrelation function with different smoothness coefficients and typical random 

field realizations of rockhead elevation 

Fig. 2 Geological profiles of two cross-sections and borehole data at the two sites 

Fig. 3 Autocorrelation coefficients of the rockhead elevation at Site 1 and reason for the 

estimated smaller SoF for the Gaussian model 

Fig. 4 Rockhead elevation predicted using all the data at Site 1 

Fig. 5 Rockhead elevation predicted by different autocorrelation models at Site 1  

Fig. 6 Autocorrelation coefficients of the rockhead elevation at Site 2 and reason for the 

estimated smaller SoF for the Gaussian model 

Fig. 7 Rockhead elevation predicted using all the data at Site 2 

Fig. 8 Rockhead elevation predicted by different autocorrelation models at Site 2  

Fig. 9 Plan view of training and testing data when borehole spacing of training data = 20 m 
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Fig. 1 Matérn autocorrelation function with different smoothness coefficients and typical random 

field realizations of rockhead elevation: (a) Autocorrelation functions; (b) Typical realizations of 

rockhead elevation (mean = - 50 m, standard deviation = 10 m).  

 

  

(a) (b) 
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(a)                                                                                          (b) 

 

 
Fig. 2 Geological profiles of two cross-sections and borehole data at the two sites: (a) Geological 

profile for a cross-section at Site 1; (b) Geological profile for a cross-section at Site 2; (c) 

Borehole data at Site 1;  (d) Borehole data at Site 2. 
 

 

  

(c) (d) 
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Fig. 3 Autocorrelation coefficients of the rockhead elevation at Site 1 and reason for the estimated 

smaller SoF for the Gaussian model; (a) x-direction; (b) y-direction; (c) Borehole pairs with || x

< 10 m; (d) Frequency of || y  for data pairs with || x < 10 m; (e) Rockhead elevation for the data 

pairs with || x < 10 m and 20 m < || y < 30 m; (f) Two autocorrelation functions running through 

the point (25 m, 0.64). 

  

(a) (b) 

(c) (d) 

(e) (f) 
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(a)                                                                                         (b) 

  
(c)                                                                                         (d) 

 

 
Fig. 4 Rockhead elevation predicted using all the data at Site 1: (a) Posterior mean of rockhead 

(SSE);  (b) Posterior mean of rockhead (Gaussian); (c) Posterior mean of rockhead (Matérn); (d) 

Predicted rockhead elevation along y = 260 m; (e) 95% confidence interval of rockhead elevation 

along y = 260 m. 

 

 

 

(e) 
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  (Note: error = actual value – predicted value) 

 

Fig. 5 Rockhead elevation predicted by different autocorrelation models at Site 1: (a) Plan view of 

training and testing data; (b) Autocorrelation coefficient in the y-direction; (c) Prediction along y 

= 260 m (SSE); (d) Prediction along y = 260 m (Gaussian); (e) Prediction along y = 260 m (Matérn)     
 

 

 
  

(c) (d) 

(e) 

(a) (b) 
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Fig. 6 Autocorrelation coefficients of the rockhead elevation at Site 2 and reason for the estimated 

smaller SoF for the Gaussian model: (a) x-direction; (b) y-direction; (c) Borehole pairs with |𝛥𝑥|< 

10 m; (d) Frequency of |𝛥𝑦| for data pairs with |𝛥𝑥|< 10 m; (e) Rockhead elevation for the data 

pairs with |𝛥𝑥|< 10 m and 40 m < |𝛥𝑦|< 50 m. 

 

 

 

  

(a) (b) 

(c) (d) 

(e) 
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Fig. 7 Rockhead elevation predicted using all the data at Site 2: (a) Posterior mean of rockhead 

(SSE); (b) Posterior mean of rockhead (Gaussian); (c) Posterior mean of rockhead (Matérn); (d) 

Predicted rockhead elevation along y = 170 m; (e) 95% confidence interval of rockhead elevation 

along y = 170 m. 
 

 

  

(a) (b) 

(d) (c) 

(e) 
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Fig. 8 Rockhead elevation predicted by different autocorrelation models at Site 2: (a) Plan view of 

training and testing data;  (b) Autocorrelation coefficient in the y-direction; (c) Predicted rockhead 

elevation along y = 33 m;  (d) 95% CI of the rockhead elevation along y = 33 m   
 (Note: error = actual value – predicted value) 

  

(b) (a) 

(c) 
(d) 
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Fig. 9 Plan view of training and testing data when borehole spacing of training data = 20 m 
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