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Abstract

Background

Annually 125 million pregnancies are at risk of malaria infection. However, the impact of

exposure to malaria in pregnancy on neurodevelopment in children is not well understood.

We hypothesized that malaria in pregnancy and associated maternal immune activation

result in neurodevelopmental delay in exposed offspring.

Methods and findings

Between April 2014 and April 2015, we followed 421 Malawian mother–baby dyads (median

[IQR] maternal age: 21 [19, 25] years) who were previously enrolled (median [IQR] gesta-

tional age at enrollment: 19.7 [17.9, 22.1] weeks) in a randomized controlled malaria preven-

tion trial with 5 or 6 scheduled assessments of antenatal malaria infection by PCR. Children

PLOS MEDICINE

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003701 September 28, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Weckman AM, Conroy AL, Madanitsa M,

Gnaneswaran B, McDonald CR, Kalilani-Phiri L, et

al. (2021) Neurocognitive outcomes in Malawian

children exposed to malaria during pregnancy: An

observational birth cohort study. PLoS Med 18(9):

e1003701. https://doi.org/10.1371/journal.

pmed.1003701

Academic Editor: Quique Bassat, Instituto de Salud

Global de Barcelona, SPAIN

Received: January 31, 2021

Accepted: June 17, 2021

Published: September 28, 2021

Copyright: © 2021 Weckman et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This work was supported by Grand

Challenges Canada, Saving Brains Initiative [AC,

KCK], the Canadian Institutes of Health Research

(CIHR) Foundation grant FDN-148439 [KCK], the

Canada Research Chair Program [KCK], CIHR

Doctoral Award GSD-157907 [AMW], CIHR

Postdoctoral Fellowship [ALC]. The parent trial was

https://orcid.org/0000-0002-2200-4008
https://orcid.org/0000-0002-5328-6511
https://orcid.org/0000-0002-4743-9382
https://orcid.org/0000-0002-6401-7878
https://orcid.org/0000-0002-2820-4991
https://orcid.org/0000-0001-9836-0554
https://orcid.org/0000-0002-2783-0990
https://orcid.org/0000-0003-3663-5617
https://orcid.org/0000-0001-6068-1272
https://orcid.org/0000-0002-2579-9301
https://doi.org/10.1371/journal.pmed.1003701
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003701&domain=pdf&date_stamp=2021-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003701&domain=pdf&date_stamp=2021-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003701&domain=pdf&date_stamp=2021-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003701&domain=pdf&date_stamp=2021-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003701&domain=pdf&date_stamp=2021-09-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pmed.1003701&domain=pdf&date_stamp=2021-09-28
https://doi.org/10.1371/journal.pmed.1003701
https://doi.org/10.1371/journal.pmed.1003701
http://creativecommons.org/licenses/by/4.0/


were evaluated at 12, 18, and/or 24 months of age with cognitive tests previously validated

in Malawi: the Malawi Developmental Assessment Tool (MDAT) and the MacArthur–Bates

Communicative Development Inventories (MCAB-CDI). We assessed the impact of antena-

tal malaria (n [%] positive: 240 [57.3]), placental malaria (n [%] positive: 112 [29.6]), and

maternal immune activation on neurocognitive development in children. Linear mixed-

effects analysis showed that children exposed to antenatal malaria between 33 and 37

weeks gestation had delayed language development across the 2-year follow-up, as mea-

sured by MCAB-CDI (adjusted beta estimate [95% CI], −7.53 [−13.04, −2.02], p = 0.008).

Maternal immune activation, characterized by increased maternal sTNFRII concentration,

between 33 and 37 weeks was associated with lower MCAB-CDI language score (adjusted

beta estimate [95% CI], −8.57 [−13.09, −4.06], p < 0.001). Main limitations of this study

include a relatively short length of follow-up and a potential for residual confounding that is

characteristic of observational studies.

Conclusions

This mother–baby cohort presents evidence of a relationship between malaria in pregnancy

and neurodevelopmental delay in offspring. Malaria in pregnancy may be a modifiable risk

factor for neurodevelopmental injury independent of birth weight or prematurity. Successful

interventions to prevent malaria during pregnancy may reduce the risk of neurocognitive

delay in children.

Author summary

Why was this study done?

• Large human cohorts have linked maternal infection during pregnancy (without con-

genital infection) to an increased risk for neurocognitive deficits and neuropsychiatric

disease in exposed children. Excessive maternal immune activation, irrespective of path-

ogen, is thought to mediate this effect.

• Millions of pregnant women are at risk for malaria infection each year. To our knowl-

edge, the impact of malaria during pregnancy on child neurodevelopment has not been

systematically studied in a clinical setting.

What did the researchers do and find?

• We conducted an observational cohort follow-up study nested within a larger random-

ized controlled trial with detailed records of malaria in pregnancy to examine the impact

of malaria in pregnancy on neurocognitive development in exposed children.

• To our knowledge, our data provide the first indication in a clinical cohort that malaria

in pregnancy may be a previously unrecognized risk factor for neurodevelopmental

delay.
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• Furthermore, the association of systemic inflammation with reduced neurocognitive

scores highlights a potential mechanistic pathway through which malaria in pregnancy

could be affecting fetal neurodevelopment.

What do these findings mean?

• There are millions of children in malaria-endemic regions who are not currently meet-

ing their developmental potential. Malaria in pregnancy may be a modifiable risk factor

for neurodevelopmental delay in children exposed in utero.

• Our findings suggest that scaling up efforts to prevent malaria infection could be an

effective strategy to protect mother–baby dyads from poor developmental outcomes.

• Larger trials powered to address potential residual confounding, with a longer follow-up

period and more diverse neurocognitive and neuropsychiatric tests, are required to con-

firm and extend these findings.

Introduction

Early developmental delays are prevalent in low- and middle-income countries (LMICs),

where an estimated 1 in 3 preschool-age children do not reach cognitive and socio-emotional

milestones [1]. This proportion approaches 1 in 2 in sub-Saharan Africa (44%) [1], and these

early developmental delays are proven predictors of worse long-term educational attainment,

economic productivity, and psychiatric disease in adulthood [1,2]. Identifying barriers to

achieving key developmental milestones for children in LMICs is critical to realizing global

equity for all children.

A growing body of evidence links maternal infection during pregnancy to neurocognitive

deficits and neuropsychiatric disease in exposed offspring [3,4]. Since congenital infection is

not required for this effect, maternal immune activation is thought to be a critical determinant

of these neurological outcomes [3,4]. Neurodevelopment is a complex, tightly regulated pro-

cess involving key components of the immune system (e.g., cytokines and the complement

system) as essential non-immune mediators of neurodevelopmental processes including neu-

rogenesis and neuronal migration [3,4]. In sub-Saharan Africa, the majority of pregnancies are

at risk for malaria infection in pregnancy [5]. Malaria in pregnancy is associated with severe

health consequences for mother and child, including maternal anemia, pregnancy loss, and

low birth weight (LBW) due to preterm birth (PTB) and/or fetal growth restriction [6]. In par-

ticular, the pathophysiology of Plasmodium falciparum malaria infection in pregnancy is

driven by the accumulation of parasitized erythrocytes binding to chondroitin sulfate A in the

placental intervillous space, where they lead to the recruitment, retention, and activation of

mononuclear cells [6]. Malaria infection induces systemic and placenta-localized inflamma-

tion [6–9], involving several inflammatory mediators (e.g., TNF, CHI3L1, and CRP) with

known roles in neurodevelopment [10–13]. Collectively, these data support the hypothesis that

in utero exposure to P. falciparum malaria in pregnancy could interfere with normal neurode-

velopment in children.
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Preclinical studies of murine malaria in pregnancy revealed an association between in utero

exposure to malaria and developmental deficits in memory and affective-like behavior in off-

spring that persisted to adulthood (without congenital infection or a LBW phenotype) [14–

16]. Furthermore, a case study of premature, dizygotic, placental-malaria-discordant twins

reported that the twin with evidence of past placental malaria exhibited worse neurocognitive

scores at 12 and 24 months of age than the twin without placental malaria [17]. To date, this

single case study is the only reported clinical investigation linking malaria infection during

pregnancy with neurodevelopmental outcomes in children. Here, we test the hypothesis that

malaria in pregnancy, independent of effects on birth weight and prematurity, dysregulates

inflammatory pathways that mediate in utero neurodevelopment, and ultimately causes neuro-

cognitive delay. We tested this hypothesis in a longitudinal neurocognitive assessment of a

cohort of 421 children born to women enrolled in a clinical trial of malaria prevention in preg-

nancy in Malawi.

Methods

Parent trial study population and procedures

This study enrolled mother–baby dyads from women enrolled in a previous 3-site, 2-arm ran-

domized superiority trial of prevention of malaria in pregnancy in Malawi [18]. HIV-negative

pregnant women were enrolled in the parent trial between July 2011 and March 2013 and ran-

domized to receive intermittent preventative treatment in pregnancy with sulfadoxine–pyri-

methamine (IPTp-SP) or intermittent screening and treatment in pregnancy with

dihydroartemisinin–piperaquine (ISTp-DP) [18]. At enrollment in the parent trial, medical

and obstetric history, as well as demographic and educational information, was collected, and

all women were provided with an insecticide-treated bed net. Socioeconomic status was calcu-

lated using a principal component analysis (PCA) that considered household assets and char-

acteristics assessed using a locally adapted questionnaire (e.g., type of building materials,

source of cooking fuel, source of water, electricity, and household appliances/furniture). Gesta-

tional age at enrollment was determined by ultrasound. Depending on gestational age at

enrollment, women attended 3 or 4 scheduled antenatal visits, every 4–6 weeks after enroll-

ment. At each visit, malaria was assessed using microscopy and real-time polymerase chain

reaction (PCR) [18]. At delivery, birth weight, gestational age, congenital anomalies, and the

presence of malaria parasites assessed by placental histopathology and by PCR and microscopy

in maternal peripheral, placental, and cord blood were recorded. P. falciparum parasites were

detected in all sample types using a real-time PCR assay targeting the P. falciparum lactate

dehydrogenase gene that detects down to a density of 2 parasites/microliter [19]. Here, we

focused on PCR-positive infections due to the more reliable detection of malaria infection by

real-time PCR compared to microscopy [20]. Congenital anomalies were further recorded at 7

days and 6 to 8 weeks postnatally. A detailed description of inclusion/exclusion criteria for the

parent trial, malaria testing, and treatment courses has previously been published [18].

At each antenatal visit, a maternal plasma sample was collected and stored at −80˚C.

Inflammatory plasma analyte data for this cohort were derived as described [7]. Briefly, Lumi-

nex and ELISA (R&D Systems, Minneapolis, MN) were used to measure inflammatory factors

in maternal plasma, including chitinase-3-like protein 1 (CHI3L1), soluble tumor necrosis fac-

tor receptor II (sTNFRII), and C-reactive protein (CRP). Plasma markers were measured at 3

gestational windows with corresponding malaria in pregnancy data (14 to 23 weeks gestation,

>28 to 33 weeks gestation, and>33 to 37 weeks gestation) [7]. Plasma markers were not mea-

sured between 23 and 28 weeks gestation [7].
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The parent trial was registered with the Pan African Clinical Trials Registry

(PACTR201103000280319) and ISRCTN Registry (ISRCTN69800930). Ethical approval for

the current study was obtained from the Malawian College of Medicine Research and Ethics

Committee (COMREC reference number: P.08/13/1477), the University Health Network

Research Ethics Board (REB number: 13-6741-AE), and the University of Liverpool (IREC

number: RETH000693). Written informed consent for participation of infants was obtained

from caregivers.

Neurodevelopmental follow-up sub-study (PAMaNeD)

Study population. Between April 2014 and April 2015, children born in both treatment

arms of the parent trial were subsequently enrolled in the PAMaNeD cohort study (The

Effect of Pregnancy Associated Malaria on Early Childhood Neurocognitive Development:

An Observational Birth Cohort Study). Enrollment in the PAMaNeD cohort study began

after women had completed their involvement in the parent trial (the final follow-up visit in

the parent trial was at 6–8 weeks post-delivery). To mitigate selection bias, every attempt was

made to trace, contact, and re-consent all eligible mother–baby pairs (n = 524; Fig 1).

Mother–baby dyads were eligible for inclusion in PAMaNeD if the infant was between 12

and 18 months in chronological age, and the caretakers were willing to complete study fol-

low-up. Children with major congenital abnormalities, as determined in the parent trial (19/

1,722, 1.1% of babies born in parent trial), were excluded. No children in this cohort had neo-

natal jaundice (405/421 [96.2%] with available data for neonatal jaundice). At enrollment, a

detailed history of childhood illness from the final infant follow-up visit in the parent trial

(i.e., 6–8 weeks post-delivery) was recorded from the child’s health passport, which is a docu-

ment provided to each child at birth and is required to seek medical attention from health

facilities.

Children were seen at 12, 18, and 24 months of age. At each clinic visit, a clinical history

and physical exam were conducted, and any illnesses since the last visit were recorded and cor-

roborated using the child’s health passport. Bed net use was recorded at each visit, and the

majority of children (12 months: 140/140 [100%]; 18 months: 366/382 [95.8%]; 24 months:

344/356 [96.6%]) were reported to have slept beneath a bed net the previous night. If the child

was ill at the time of assessment, the visit was rescheduled for when they were well. Mothers

were encouraged to bring infants with any signs or symptoms of illness to the study clinic

between scheduled visits.

Procedures. At 12, 18, and 24 months of age, the child’s home environment was assessed

using the Family Care Indicator (FCI) questionnaire. The FCI assesses the ability of the house-

hold to meet the physical, mental, and social needs of the child and has been adapted and vali-

dated for use in Malawi [21]. On the same day, a set of 4 validated tests (described below) were

directly administered, observed, and scored by trained personnel to assess child neurodevelop-

ment. Reliability of testers was checked before the start of the trial, and quarterly during the

trial, by comparing results from testers to those of a reference trainer (>10 years of experience)

(S1 Text). Methods of assessment were the same across exposure groups, and maternal malaria

status was unknown to the testers.

Malawi Developmental Assessment Tool (MDAT). At 12, 18, and 24 months, the

MDAT was used to assess age-specific neurocognitive development [22]. The MDAT is com-

prised of 138 items and measures a child’s development across 4 domains: gross motor (36

items), fine motor (36 items), language (36 items), and social skills (30 items). The MDAT is

reported as a total score (a combination of items achieved across all domains), as well as the

total number of items achieved per domain.
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MacArthur–Bates Communicative Development Inventories (MCAB-CDI). At 18 and

24 months, the MCAB-CDI was used to assess language development [23]. The MCAB-CDI is

a maternally reported checklist (administered by trained personnel) containing 100 vocabulary

items, 6 gesture items, and 5 grammatical items. The MCAB-CDI score is reported as the total

number of checklist items correct. This tool has been adapted for use in Malawi, and is a well-

validated, reliable measure and predictor of child development that provides a more compre-

hensive assessment of language than the MDAT [24,25].

A-not-B test and delayed inhibition test. At 18 and 24 months, children were assessed

using the A-not-B test [26] and delayed inhibition test [27]. These methods and data are pre-

sented in S1 Text and S1 Table, rather than the main text, due to the uninformative test results,

Fig 1. Flow chart for enrollment of mother–baby dyads from parent trial into the PAMaNeD cohort. aEligibility potential defined by the age of the child (i.e., had to

be between 12 and 18 months of age during the study enrollment period). bMalaria negative defined as peripheral PCR negative throughout pregnancy and negative for

placental malaria (by histology and placental PCR). Malaria positive defined as any peripheral PCR-positive malaria and/or positive for placental malaria (by histology

and/or placental PCR). MCAB-CDI, MacArthur–Bates Communicative Development Inventories; MDAT, Malawi Developmental Assessment Tool.

https://doi.org/10.1371/journal.pmed.1003701.g001
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consistent with other recently published studies (e.g., high rates of non-participation, data

skewed towards perfect scores, and no association with known covariates of neurodevelop-

ment including socioeconomic status and FCI) [28].

This study is reported according to STROBE guidelines (S1 STROBE Checklist).

Outcomes and statistical analyses

The primary outcomes presented here are total MCAB-CDI and total MDAT scores through

repeated measures at 12, 18, and 24 months. A subanalysis was performed on the subdomains

of the MDAT (i.e., gross motor, fine motor, language, and social skills). Malaria infection was

analyzed by 2 exposure definitions: (1) placental malaria, defined as positive placental histol-

ogy (including chronic and acute active placental malaria and past placental malaria by histol-

ogy) or positive placental PCR at delivery, and (2) antenatal malaria, defined as PCR-

confirmed malaria infection during pregnancy at any scheduled or unscheduled visit including

enrollment and delivery (peripheral). The latter was also stratified by specific gestational age

windows (14 to 23 weeks gestation, >23 to 28 weeks gestation, >28 to 33 weeks gestation, and

>33 to 37 weeks gestation). There were 91 (21.6%) women who met the definition for both

antenatal malaria and placental malaria; however, the 2 exposure groups are not directly com-

pared and do not overlap within a single analysis. A detailed breakdown of the characteristics

of malaria infections in this cohort (e.g., average number of PCR infections per woman and

proportion of active versus past placental malaria) is provided in S2 Table. Due to the dynamic

nature of neurodevelopment and inflammatory and/or neurodevelopmental mediators that

could be disrupted by antenatal malaria, we analyzed the impact of both malaria infection and

inflammatory mediators on neurodevelopment according to gestational age at the time of the

insult. Here, to link the timing of malaria infections with maternal analyte analysis, gestational

age bins were chosen to coincide with the windows previously used to measure inflammatory

mediators across pregnancy [7]. In that study (of which our study population is a subset),

malaria infection was associated with increases in these inflammatory mediators [7]; these

associations have not been presented here to prevent double-reporting. There was no associa-

tion between PCR-positive cord blood (9.8% [35/356]) and neurocognitive outcomes (S3

Table); therefore, children with PCR-positive cord blood were included in the cohort.

Statistical analysis was performed using R version 3.5.1 (R Foundation for Statistical Com-

puting, Vienna, Austria). The prespecified statistical analysis is described in the study protocol

(S1 Protocol). In addition to the prespecified analyses, we used linear mixed-effects (LME)

modeling to estimate the impact of malaria in pregnancy on longitudinal, repeated measure-

ments of a child’s neurocognitive scores across time. We compared baseline population

characteristics using the Pearson chi-squared (categorical) or Wilcoxon rank-sum test (contin-

uous). We used unadjusted ordinary least squares regression to estimate the baseline effect of

antenatal and placental malaria on neurocognitive scores in children at 12, 18, and 24 months

of age.

To examine the impact of maternal malaria infection and inflammation on longitudinal

neurodevelopment, we built LME models using the lme4 package in R [29]. LME modeling

allows for longitudinal analysis of repeated measures data (multiple observations per child

across time), while accounting for heterogeneity in baseline scores and within-individual cor-

relation between repeated measures. Longitudinal scores (repeated measures at 12, 18, and 24

months of age for MDAT, or 18 and 24 months for MCAB-CDI) were modeled as the outcome

variable for each neurocognitive assessment. Each time point for which a child had a recorded

score was included as a separate but related observation (repeated measure) in the model. Con-

founders were considered a priori based on documented associations with malaria in
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pregnancy or early developmental outcomes, and were included in the model when adequate

data were available. All mixed-effects models included maternal age, socioeconomic status

(continuous), FCI (a measure of home environment), birth weight (continuous), age of the

child at assessment (corrected for prematurity), number of recorded child malaria infections,

and sex of the child as fixed effects (confounders), as well as a by-participant random intercept.

Adjusted beta estimates (95% CIs) for our exposure variables of interest are reported in the

Results: These represent the difference in raw neurocognitive score with a 1-unit change in

our variable of interest (e.g., malaria negative versus malaria positive or a 1-unit increase in

analyte concentration), holding other fixed effects constant. There were no significant interac-

tion effects between any variables of interest (e.g., maternal malaria status and analyte data)

and child’s assessment age, indicating that effects did not significantly vary by visit. A

restricted cubic spline of age at assessment (with 3 knots) was used to further capture variation

across time, where appropriate. Maternal age and gravidity were strongly correlated; therefore,

only maternal age was included in models, to avoid multicollinearity. Age at assessment was

corrected for gestational age at delivery. There were no differences in baseline characteristics

or longitudinal neurocognitive scores between treatment arms (S4 Table); however, treatment

arm was included as a fixed effect to account for parent trial design. For each neurocognitive

assessment, we built a null model containing the fixed and random effects defined above. We

then added the exposure variable of interest (antenatal malaria, placental malaria, or inflam-

matory analyte concentration) as a main effect and compared models to assess the impact of

exposure on model fit (using the likelihood ratio test). The Akaike information criterion (AIC)

is reported as a measure of model fit. Analyte data were log-transformed. Missing data were

excluded from analyses (S5 Table).

p-Values were adjusted for multiple comparisons using the Holm–Bonferroni method (S1

Text). Uncorrected p-values are presented. p-Values considered significant after correction for

multiple comparisons using the Holm–Bonferroni method are marked with an asterisk in the

figures.

Results

Enrollment, follow-up, and baseline characteristics

During the enrollment period, 524 children born to women in the parent trial were between

12 and 18 months of age and potentially eligible for inclusion. Of those, 421 were enrolled (Fig

1): 230 (54.6%) at 12 months and 191 (45.4%) at 18 months. Overall, 57.3% (240/419) and

29.6% (112/378) of children were born to pregnancies that had evidence of antenatal malaria

and placental malaria, respectively (Table 1). Malaria infection during pregnancy was more

common in primigravidae and was associated with lower maternal age, lower socioeconomic

status, and lower maternal hemoglobin level at enrollment (Table 1). There was no difference

between groups in the total number of child infections recorded in the health passport; how-

ever, children born to mothers with malaria during pregnancy were more likely to be parasite-

mic during the study period (Table 1). As malaria infection in childhood is associated with

neurocognitive impairment [30], we included malaria infection as a fixed effect in our multi-

variable models.

Neurodevelopment in children born to mothers with placental malaria or

PCR-confirmed malaria during pregnancy

Raw unadjusted neurocognitive scores at each assessment (12, 18, and 24 months of age) strati-

fied by maternal malaria status are presented in S1 and S6 Tables. Multivariable analysis of the
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impact of the “any malaria” exposure variable (i.e., any antenatal malaria or placental malaria)

on longitudinal neurocognitive scores in children did not show differences (Figs 2 and 3).

However, when antenatal malaria was stratified by gestational age at infection, longitudinal

language development scores measured by MCAB-CDI were lower in children born to

Table 1. Baseline characteristics of PAMaNeD mother–baby dyads overall and by malaria status in pregnancy.

Characteristic Overall Malaria negativea Malaria positivea p-Valueb

n (%) 421 (100) 160 (38.0) 261 (62.0)

Baseline maternal characteristics

Maternal age (years) 21 [19, 25] 23 [20, 27] 20 [18, 23] <0.001

Gestational age at enrollment (weeks) 19.7 [17.9, 22.1] 20.4 [18.3, 22.5] 19.6 [17.7, 21.9] 0.059

Socioeconomic status (tertile) 0.012

1 125 (29.8) 36 (22.6) 89 (34.2)

2 145 (34.6) 54 (34.0) 91 (35.0)

3 149 (35.6) 69 (43.4) 80 (30.8)

Hemoglobin at enrollment (g/dL) 10.9 [9.9, 12.0] 11.3 [10.3, 12.3] 10.7 [9.7, 11.8] <0.001

Primigravid 277 (65.8) 40 (25.0) 104 (39.8) 0.003

Maternal education status (tertile) 0.911

1 125 (29.8) 46 (28.9) 79 (30.4)

2 229 (54.7) 87 (54.7) 142 (54.6)

3 65 (15.5) 26 (16.4) 39 (15.0)

Malaria statusc

Negative 160 (38.0)

Antenatal malaria 240 (57.3)

Placental malaria 112 (29.6)

Perinatal and child characteristics

Gestational age at delivery (weeks) 38.7 [37.4, 39.9] 38.7 [37.6, 39.9] 38.6 [37.3, 39.9] 0.253

Birth weight (kg) 3.0 [2.7, 3.2] 3.0 [2.8, 3.3] 3.0 [2.7, 3.2] 0.033

Sex 0.123

Male 211 (50.1) 72 (45.0) 139 (53.3)

Female 210 (49.9) 88 (55.0) 122 (46.7)

Preterm birth (<37 weeks gestation) 71 (16.9) 22 (13.8) 49 (18.8) 0.229

Low birth weight (<2.5 kg) 28 (6.8) 8 (5.2) 20 (7.8) 0.409

Small for gestational age 33 (8.1) 14 (9.1) 19 (7.5) 0.687

Child infections (all)d 0.443

No infections 65 (15.6) 25 (15.6) 40 (15.6)

�2 infections 101 (24.2) 44 (27.5) 55 (22.2)

>2 infections 251 (60.2) 91 (56.9) 160 (62.3)

Child malaria infectionse 0.008

No infections 175 (42.1) 75 (46.9) 100 (39.1)

1 infection 113 (27.2) 50 (31.3) 63 (24.6)

>1 infection 128 (30.8) 35 (21.9) 93 (36.3)

Data given as n (%) or median [interquartile range] of women with existing data for that variable. Proportion with missing data presented in S5 Table.
aMalaria negative defined as peripheral PCR negative throughout pregnancy and negative placental malaria (by histology and placental PCR). Malaria positive defined as

any peripheral PCR-positive malaria and/or positive placental malaria (by histology and/or placental PCR).
bp-Value of chi-squared or Mann–Whitney U test comparing malaria negative and malaria positive.
cn = 91 women were positive for both antenatal malaria and placental malaria, which accounts for n> 421 for this variable. Those women were only counted once in the

malaria positive column.
dNumber of infections (including malaria) reported in child’s health passport up to 24 months.
eNumber of malaria infections reported in child’s health passport up to 24 months.

https://doi.org/10.1371/journal.pmed.1003701.t001
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mothers with PCR-positive malaria between 33 and 37 weeks gestation (adjusted beta estimate

[95%CI], −7.53 [−13.04, −2.02], p = 0.008), compared to children born to mothers who were

PCR negative for malaria in this window, even after correcting for multiple comparisons (Fig

2). Stratifying maternal-malaria-associated differences by age at assessment showed that differ-

ences in MCAB-CDI score emerged at 18 months of age and persisted up to at least 24 months

(S6 Table).

Maternal immune activation is associated with altered neurodevelopmental

trajectories in exposed children

After correcting for multiple comparisons, increased maternal sTNFRII between 33 and 37

weeks gestation was also associated with lower MCAB-CDI score (adjusted beta estimate [95%

CI], −8.57 [−13.09, −4.06], p< 0.001) (Fig 4) and lower MDAT fine motor skill score (adjusted

beta estimate [95%CI], −0.52 [−0.83, −0.21], p = 0.001) (Figs 4 and 5). Higher maternal

CHI3L1 between 28 and 33 weeks was associated with reduced MDAT gross motor skill score

(adjusted beta estimate [95%CI], −0.24 [−0.39, −0.08], p = 0.003) (Fig 5).

Discussion

Here we assessed longitudinal neurodevelopment up to 24 months of age, in a cohort of 421

Malawian children born to mothers with well-characterized antenatal and placental malaria.

Fig 2. Longitudinal total MCAB-CDI and total MDAT scores in children by antenatal malaria exposure. Results of linear mixed-effects models for repeated

neurocognitive score measures over time (12, 18, and 24 months of age for MDAT; 18 and 24 months of age for MCAB-CDI) by maternal malaria status. Malaria

exposures defined as antenatal malaria (peripheral PCR-confirmed malaria at any point during pregnancy) or placental malaria. The former is stratified by gestational age

(weeks) at time of PCR-positive malaria infection. n/N (%): malaria-exposed children as percent of total mother–baby dyads (N) included in the model (i.e., with existing

data for both the respective neurocognitive score and malaria variable). Obs: number of observations (scores) included in each model. Possible range of neurocognitive

scores for MCAB-CDI (min/max scores in this cohort across all visits: 0–98) and total MDAT (min/max scores in this cohort across all visits: 42–104). AIC values

(parameter of model fit), adjusted beta estimates (difference in raw neurocognitive score between malaria-negative and malaria-positive women, holding other fixed

effects constant) with 95% CIs, and likelihood ratio test results (p-values) are presented. All models adjusted for maternal age, maternal socioeconomic status, treatment

arm, Family Care Indicator score, birth weight, corrected age of child at assessment, number of childhood malaria infections, and sex of child as fixed effects, and a by-

participant intercept as a random effect. p-Value determined by likelihood ratio test comparing model with malaria exposure variable to null model (without malaria

exposure variable). Uncorrected p-values are presented; 1 association remained statistically significant after adjustment for multiple comparisons according to the Holm–

Bonferroni method (n = 6 malaria exposure comparisons) (in bold and marked by an asterisk). AIC, Akaike information criterion; MCAB-CDI, MacArthur–Bates

Communicative Development Inventories; MDAT, Malawi Developmental Assessment Tool.

https://doi.org/10.1371/journal.pmed.1003701.g002
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Fig 3. Longitudinal MDAT subdomain scores in children by antenatal malaria exposure. Results of linear mixed-effects models for repeated neurocognitive score

measures over time (12, 18, and 24 months of age) by maternal malaria status. Malaria exposures defined as antenatal malaria (peripheral PCR-confirmed malaria at any

point during pregnancy) or placental malaria. The former is stratified by gestational age (weeks) at time of PCR-positive malaria infection. n/N (%): malaria-exposed

children as percent of total mother–baby dyads (N) included in the model (i.e., with existing data for both the respective neurocognitive score and malaria variable). Obs:

number of observations (scores) included in each model. Possible range of MDAT subdomain scores (minimum/maximum scores in this cohort across all visits): gross

motor, 12–27; fine motor, 11–29; language, 1–27; and social, 11–33. AIC values (parameter of model fit), adjusted beta estimates (difference in raw neurocognitive score

between malaria negative and malaria positive, holding other fixed effects constant) with 95% CIs, and likelihood ratio test results (p-values) are presented. All models

adjusted for maternal age, maternal socioeconomic status, treatment arm, Family Care Indicator score, birth weight, corrected age of child at assessment, number of

childhood malaria infections, and sex of child as fixed effects, and a by-participant intercept as a random effect. p-Value determined by likelihood ratio test comparing

model with malaria exposure variable to null model (without malaria exposure variable). Uncorrected p-values are presented; none of the associations remained

statistically significant after adjustment for multiple comparisons according to the Holm–Bonferroni method (n = 6 malaria exposure comparisons). AIC, Akaike

information criterion; MDAT, Malawi Developmental Assessment Tool.

https://doi.org/10.1371/journal.pmed.1003701.g003
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After controlling for confounding factors, the strongest association in our data linked PCR-

positive malaria late in pregnancy (33–37 weeks gestation) with impaired language develop-

ment up to 2 years of age. Furthermore, analysis of inflammatory mediators supports the

hypothesis that this association is driven by maternal immune activation, as increased mater-

nal plasma concentration of sTNFRII between 33 and 37 weeks gestation was associated with

Fig 4. Longitudinal total MCAB-CDI and total MDAT scores in children by maternal inflammatory mediator exposure. Results of linear mixed-effects models for

repeated neurocognitive score measures over time (12, 18, and 24 months of age for MDAT; 18 and 24 months for MCAB-CDI) by maternal immune activation.

Maternal immune activation defined by inflammatory analyte concentrations by gestational age (in weeks) at time of sample acquisition. N represents the total number of

children who had both a neurocognitive score and a corresponding maternal analyte measurement at the respective gestational age, and Obs represents the number of

observations (scores) included in each model. Possible range of neurocognitive scores for MCAB-CDI (minimum/maximum scores in this cohort across all visits) was

0–98, and for total MDAT (minimum/maximum scores in this cohort across all visits) was 42–104. AIC values (parameter of model fit), adjusted beta estimates (change

in raw neurocognitive score for a 1-unit increase in analyte, holding other fixed effects constant) with 95% CIs, and likelihood ratio test results (p-values) are presented.

All models adjusted for maternal age, maternal socioeconomic status, treatment arm, Family Care Indicator score, birth weight, corrected age of child at assessment,

number of childhood malaria infections, and sex of child as fixed effects, and a by-participant intercept as a random effect. p-Value determined by likelihood ratio test

comparing model with analyte to null model (without analyte). Analyte measurements were log-transformed. Uncorrected p-values are presented; 1 association remained

statistically significant after adjustment for multiple comparisons according to the Holm–Bonferroni method (4 analyte measurements × 3 analytes; n = 12 comparisons)

(in bold and marked by an asterisk). AIC, Akaike information criterion; CHI3L1, chitinase-3-like protein 1; CRP, C-reactive protein; MCAB-CDI, MacArthur–Bates

Communicative Development Inventories; MDAT, Malawi Developmental Assessment Tool; sTNFRII, soluble tumor necrosis factor receptor II.

https://doi.org/10.1371/journal.pmed.1003701.g004
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Fig 5. Longitudinal MDAT subdomain scores in children by maternal inflammatory mediator exposure. Results of

linear mixed-effects models for repeated neurocognitive score measures over time (12, 18, and 24 months) by maternal

immune activation. Maternal immune activation defined by inflammatory analyte concentrations by gestational age (in

weeks) at time of sample acquisition. N represents the total number of children who had both a neurocognitive score and a

corresponding maternal analyte measurement at the respective gestational age, and Obs represents the number of
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reduced language score in exposed children. These findings provide evidence that malaria in

pregnancy may be an underrecognized risk factor for developmental delay in malaria-endemic

regions.

The profile of neurodevelopmental delay associated with malaria in pregnancy and mater-

nal immune activation (e.g., motor and language deficits) in our cohort is consistent with pre-

vious findings for other maternal infections in women living in LMICs [31–34].

Mechanistically, maternal immune activation induced by infection is hypothesized to be an

important contributor to neurological sequelae in exposed children [3,4]. In the parent trial,

malaria during pregnancy was associated with elevation of inflammatory mediators including

sTNFRII, CRP, and CHI3L1 across pregnancy [7]. The data in our study suggest that this

malaria-mediated inflammation (i.e., increased sTNFRII and CHI3L1) may be associated with

delayed neurocognitive development in exposed children. CHI3L1 has been implicated in the

pathogenesis of neurological disorders including psychiatric disease and multiple sclerosis,

and as a modulator of neuroinflammation [35,36]. CHI3L1 is expressed in the developing

human brain beginning early in gestation (first trimester), with possible roles in the formation

of the blood–brain barrier, astrogliogenesis, and astrocyte migration [10,11]. During develop-

ment, TNF signaling has roles in synaptic plasticity, cortical dendrite development, and sym-

pathetic axon growth and innervation [12,37]. High circulating maternal TNF has been

associated with increased risk of schizophrenia and severity of autism spectrum disorder in

individuals exposed in utero [3]. While our data support a role for inflammation in malaria-

driven disruptions to neurodevelopment, these markers do not provide a comprehensive

representation of immune activation by malaria during pregnancy. Many cytokines and che-

mokines (e.g., IL-6 and the complement system) have been associated with the neurocognitive

sequelae of maternal infection [3,4], and future studies should expand the panel of inflamma-

tory markers that could link malaria in pregnancy with neurodevelopment.

Here, antenatal-malaria-associated and sTNFRII-associated decreases in MCAB-CDI lan-

guage development scores represented the largest, and most clinically relevant, effect size.

Maternal sTNFRII and antenatal malaria between 33 and 37 weeks gestation were both associ-

ated with significantly lower scores in language development in exposed children. There were

some differences in MDAT scores by maternal malaria status, but these did not remain signifi-

cant after correction for multiple comparisons and lacked clinical relevance given the modest

effect sizes (<1 item difference on a 138-item assessment tool). Conversely, the effect sizes for

language development using the MCAB-CDI are significant for under-2 child development

[38], and greater than previous studies in similar populations using the same tool [28,39].

From a technical perspective, the discrepancy in differences seen with the MCAB-CDI score

but not with the MDAT language subscore could be explained by the relative sensitivity of the

tests. The MCAB-CDI and MDAT language subdomain scores were correlated (Spearman

correlation, rho = 0.65, p< 0.001), in agreement with previously published comparisons [25].

observations (scores) included in each model. Possible range of MDAT subdomain scores (minimum/maximum scores in

this cohort across all visits): gross motor, 12–27; fine motor, 11–29; language, 1–27; social, 11–33. AIC values (parameter of

model fit), adjusted beta estimates (change in raw neurocognitive score for a 1-unit increase in analyte, holding other fixed

effects constant) with 95% CIs, and likelihood ratio test results (p-values) are presented. All models adjusted for maternal

age, maternal socioeconomic status, treatment arm, Family Care Indicator score, birth weight, corrected age of child at

assessment, number of childhood malaria infections, and sex of child as fixed effects, and a by-participant intercept as a

random effect. p-Value determined by likelihood ratio test comparing model with analyte to null model (without

analyte). Analyte measurements were log-transformed. Uncorrected p-values are presented; two associations remained

statistically significant after adjustment for multiple comparisons according to the Holm–Bonferroni method (4 analyte

measurements × 3 analytes; n = 12 comparisons) (in bold and marked by an asterisk). AIC, Akaike information criterion;

CHI3L1, chitinase-3-like protein 1; CRP, C-reactive protein; MDAT, Malawi Developmental Assessment Tool; sTNFRII,

soluble tumor necrosis factor receptor II.

https://doi.org/10.1371/journal.pmed.1003701.g005
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However, the MCAB-CDI assesses 111 checklist items directly related to language, whereas

language development is a 36-item subsection on the MDAT, making the MCAB-CDI more

comprehensive for language assessment and more sensitive to potential differences, as our

data show.

The impact of the timing of maternal infection on neurodevelopment remains largely

unknown. One preclinical study in a murine model of maternal immune activation revealed

distinct profiles of neurological sequelae depending on the gestational timing of insult [40].

Our data indicate that malaria infection late in pregnancy (33–37 weeks gestation; late third

trimester) may be detrimental for language development. Mechanistically, this finding is sup-

ported by timelines of neurodevelopment [13,41]. The third trimester is a critical period for

the development of functional neural circuitry, and maternal immune activation during the

third trimester impairs neural network connectivity [13,41]. Neural circuits for language pro-

cessing are complex, and these networks begin forming in utero, with established foundations

for the neurobiological basis of language by birth [41,42]. Therefore, insults like malaria-

induced maternal immune activation that interfere with third-trimester neural network build-

ing processes (e.g., neuronal migration, dendritic arborization, synaptogenesis and synaptic

pruning, and myelination) could result in language deficits in children, as we observed. As dis-

ruptions in early-life language development are associated with long-term cognitive deficits

and increased risk for psychiatric comorbidities, this finding may have long-term implications

for children exposed to malaria late in gestation. However, this does not exclude an impact of

malaria early in pregnancy on fetal neurodevelopment. Other studies have shown an associa-

tion between first-trimester infection and cognitive and psychiatric outcomes in offspring, and

it is possible that the tests used here may not be sensitive enough or appropriate (e.g., autism

spectrum disorder has been associated with first-trimester infections) [43,44] to detect the ges-

tational-timing-dependent profile of neurological sequelae associated with malaria infection

early in pregnancy.

Even in the context of this relatively healthy cohort, malaria during pregnancy was associ-

ated with neurodevelopmental deficits in language after controlling for birth weight, gesta-

tional age at delivery, and sociodemographic factors that impact child development. Malaria in

pregnancy is associated with adverse birth outcomes, including LBW due to small for gesta-

tional age (SGA) and/or PTB [6]. LBW and PTB are well-characterized risk factors for poor

long-term neurodevelopmental outcomes. Compared to the parent study, the PAMaNeD

cohort had fewer cases of malaria and fewer adverse birth outcomes (PTB, LBW, and SGA) (S7

Table). As birth outcomes were better in the PAMaNeD cohort compared to the parent trial

population, and children with congenital abnormalities or brain damage were excluded, these

data indicate that the scope of antenatal-malaria-related neurodevelopmental deficits on a

population level may be greater than the estimates in this cohort. Furthermore, seminal work

on maternal infection and neurodevelopment revealed an increased risk of psychiatric out-

comes, including schizophrenia, autism spectrum disorder, and depression [3,43–45]. Mental

illness represents a leading cause of disability-adjusted life years (DALYs) globally [46], exert-

ing a huge social and financial burden in LMICs [47], many of which are malaria-endemic.

Future studies are needed to extend the follow-up of children exposed to antenatal malaria in a

larger study population, who may also be at increased risk of neuropsychiatric disorders.

Strengths of this study include a comprehensive evaluation of the association between

malaria infection during pregnancy and neurodevelopment in children nested within the con-

text of a previously conducted, rigorous prospective randomized controlled trial. Malaria was

repeatedly assessed across pregnancy using PCR, which enabled us to evaluate how the timing

of malaria infection during pregnancy impacted developmental outcomes. Our findings were

strengthened by longitudinal assessment of inflammatory analytes across pregnancy, which
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allowed us to examine potential mechanisms linking malaria during pregnancy to neurodeve-

lopmental outcomes. Limitations of this study include the limited length of follow-up, the

potential for residual confounding, and the number of comparisons. However, p-values were

adjusted for the number of comparisons to mitigate the effect of multiple comparisons on the

type I error rate. As an observational study where the exposure variable cannot be allocated at

random (e.g., presence of antenatal or placental malaria), the study was prone to bias. This bias

was mitigated by measurement and consideration of as many potential confounders as possi-

ble (e.g., socioeconomic status, birth weight, FCI, and child malaria infections); however, some

residual confounding may remain, and larger trials powered to address residual confounding

are necessary to confirm and extend these findings. Residual confounders that are associated

with neurodevelopment in LMICs but that we were unable to measure could include other

maternal or child infections (e.g., helminth infections [48–50]), childhood anemia or iron defi-

ciency [51], and anthropometric characteristics beyond birth weight. Malaria exposure in

utero may modify a child’s risk of malaria infection, which is known to affect development

[30]. Here, we adjusted for any symptomatic malaria in childhood, but it remains possible that

unmeasured asymptomatic infections could also play a role. The implications in a population

with high rates of malaria in pregnancy remain the same, however: Better malaria protection

during pregnancy and infancy is likely to improve child development via several converging

pathways. There may also have been potential biases in re-enrollment, as it is possible that

mothers of children with moderate to severe disability did not re-enroll for a variety of reasons

(e.g., stigma, resources, or death of the child). Additional studies to evaluate the long-term

impact of malaria during pregnancy would be beneficial, as tests become more sensitive to

detect differences in specific developmental domains. It is possible that more sensitive and

objective neurobiological tests, including electroencephalogram and eye tracking, could

enhance the information gained from this study; however, these techniques are challenging

and not routinely administered in LMICs. This population enrolled women who were HIV

negative. Maternal HIV infection is associated with worse neurodevelopmental outcomes in

HIV-exposed infected children and HIV-exposed uninfected children compared to non-

exposed children [33]. Given the prevalence of malaria and HIV coinfection in LMICs, this

may limit the generalizability of our findings, and studies to evaluate whether malaria and

HIV interact to drive worse outcomes are needed.

In Malawi, an estimated 40% of children have low early childhood development scores [1],

similar to many resource-limited and malaria-endemic regions worldwide [1]. The data pre-

sented here provide clinical evidence that, in malaria-endemic regions, antenatal malaria may

be an unrecognized but modifiable risk factor for neurocognitive deficits in children. The

notion that antenatal malaria primes children for neurocognitive delay represents a paradigm

shift in our understanding of risk factors that potentially contribute to millions of children not

meeting their developmental potential. Our data suggest that scaling prevention efforts for

malaria infection during pregnancy could be a far-reaching strategy to simultaneously reduce

maternal and child morbidity and mortality and enhance the ability of children in malaria-

endemic regions to meet their developmental potential.
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