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Earthquake source characterization 
by machine learning algorithms 
applied to acoustic signals
Bernabe Gomez & Usama Kadri*

Underwater seismic events generate acoustic radiation (such as acoustic-gravity waves), that 
carries information about the source and can travel long distances before dissipating. Effective 
early warning, emergency response, and information dissemination for earthquakes and tsunamis 
require a rapid characterisation of the fault properties: geometry and dynamics. In this work, we 
analysed hydrophone recordings of 201 earthquakes, located in the Pacific and the Indian Ocean, by 
employing acoustic signal processing and classification methods. The analysis allows identifying the 
type of earthquake (i.e. slip type, magnitude) and provides near real-time estimation of the effective 
properties of the fault dynamics and geometry. The results were compared against values reported by 
the Harvard Global Centroid Moment Tensor catalog (gCMT), revealing statistical significance between 
the extracted acoustic properties used to feed machine learning algorithms and the predicted slip and 
magnitude values.

Underwater seismic events can produce very long compression-type waves, known as acoustic-gravity waves 
(AGWs), that propagate in the water layer travelling long distances with almost no  attenuation1 and can be 
recorded by distant hydrophones. This property of AGWs allows them to carry information on the sound 
 source1,2. The classification and characterisation of such information are important for the assessment of poten-
tial Tsunamis. In order to characterise tectonic events, the source dimensions, dynamics and moment magnitude 
need to be estimated, which can be approached by automated underwater acoustic signal processing methods.

Gomez and  Kadri3 proposed an inverse problem model which calculates the effective fault dimensions and 
vertical uplift speed and duration induced by underwater earthquakes, using slender fault  theory1. However, this 
model can be applied only when the slip direction is vertical. Thus, there is a need to identify the slip direction 
prior to applying the model in real-time. To this end, we consider Anderson’s faulting theory (1905)4 where the 
equations of stress produced over the fault planes in an earthquake are analysed and earthquakes are divided into 
three classes depending on the faulting type: wrench (when the greatest pressure is in the horizontal plane), nor-
mal, and reversed. This 3-type classification has been widely accepted and used in the  literature5,6. Nevertheless, 
previous studies indicate that tectonic events can be further grouped in only two types, dip-slip and strike-slip, 
depending on the direction of the dominant motion  component7. Thus, allowing the discrimination of events 
with significant vertical slip, which can be performed by machine learning (ML) techniques. The application of 
ML algorithms to acoustic signals in the ocean has had increasing notability in recent years, such as the classifi-
cation of  vessels8,  earthquakes9,10, tsunamigenic  events11, underwater  explosions9,10 and marine  life12, to name a 
few. An important input parameter for the inverse problem model is earthquake magnitude. Relations between 
the maximum amplitude of T-phase waves, the earthquake’s energy that propagates through the SOFAR channel 
(minimum sound speed channel in the ocean)13,14, and earthquake  size15, or correlations between T-phase power 
level and seismic moment have been developed in previous  studies15,16. Other approaches are based on estimat-
ing tectonic event magnitudes employing ML techniques to seismic  recordings17–19. In this study, relationships 
between acoustic waves characteristics and underwater seismic event magnitudes are approached using ML 
regression algorithms. Once the earthquake moment magnitude is obtained, relations between fault rupture 
dimensions and earthquake magnitude can be used to estimate seismic  hazards20, where earthquakes are mapped 
into effective slender  geometries21, that can be verified from aftershock  distributions22.

Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) acoustic recordings have been previously 
studied for identification and detection of T-waves23,24 or classification and regression of sound signals related 
to tectonic  events9,10,25. In this work, we analyse 201 acoustic signals related to submarine tectonic events with 
magnitudes ranging from 5 to 9.1 Mw and different associated slip types. The signals were recorded by three dif-
ferent  CTBTO26,27 hydro-acoustic stations located in the Indian and the Pacific Oceans. To characterise tectonic 
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events, first, the associated pressure disturbance is identified in the hydrophone recordings and feature extrac-
tion is performed (Fig. 1). Feature vectors serve as input to ML algorithms that perform classification of the 
slip type (existence of significant vertical motion component) and assessment of the magnitude of the event. 
This information is then used to feed an inverse problem model for acoustic waves that calculates the effective 
geometry and dynamics of the  fault3.

Due to the limited size of the dataset there is room for improvement in the accuracy results. Thus, this work 
is a proof of concept that ML algorithms coupled with an inverse model for acoustic waves can provide early 
characterizations for tectonic events.

Results
ML algorithms were applied to the acoustic signal properties to estimate two main characteristics of the studied 
tectonic events: slip type (qualitative) and moment magnitude (quantitative, Mw). Thus, two types of ML algo-
rithms were considered: classification (slip type) and regression (magnitude).

Slip type classification. The primary objective of the classification is to identify the existence of significant 
vertical motion components in the studied tectonic events. In addition, as a secondary objective, we study the 
characterization of the type of vertical motion related to the studied earthquakes. Two classification approaches 
were taken to identify the slip type associated with the tectonic events that generated the acoustic signals com-
posing the dataset: binary and multi-class.

Binary classification. The dataset is divided into two classes. The first class is composed of signals related to tec-
tonic events with vertical motion components (mostly dip-slip), whereas the second is composed of events with 
relatively small or no vertical motion components (mostly strike-slip). The differentiation between vertical and 
horizontal events is essential when applying the inverse problem model developed by Gomez and  Kadri3, which 
is designed to work for vertical fault displacements. The division of the dataset was made based on source fault-
ing solutions provided by the global CMT  catalog28,29, resulting in a set distribution of 86 strike-slip earthquakes, 
which are considered to have mainly horizontal motion component (42.79%) and 115 earthquakes with relevant 
vertical motion component (57.21%). In that sense we insure that the dataset is balanced between events with 
significant vertical motion components and mainly horizontal slip events.

In order to characterize the acoustic signals, we applied four different methodologies for feature extraction 
that are described in detail in the “Signal vectorization (feature extraction)” subsection in the “Methods” sec-
tion. In addition, two classification algorithms were applied along with each feature extraction methodology 

Figure 1.  Flow chart for the methodology of tectonic event characterization from acoustic recordings analysis.
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used on the dataset: Random Forest Classifier (RFC) and Support Vector Machines (SVM). In order to test the 
ML algorithms, we used 10-fold validation technique and 5-fold hyper-parameter grid search, for more details 
see the ‘k-fold and grid search’ subsection in the “Sensitivity analysis” section in the Supplementary materials. 
Results obtained for every fold were averaged to provide final accuracy and standard deviation estimates, see 
Table 1. Moreover, confusion matrices were computed in order to provide classification accuracy for each con-
sidered slip type, see Fig. 2.

In all cases, there is a higher performance of the ML algorithms for the identification of ‘vertical earthquakes’ 
(‘1’) compared to the identification of ‘horizontal earthquakes’ (‘0’), see Fig. 2. This behaviour could be associ-
ated with the higher availability of ‘vertical earthquakes’ in the studied dataset. The overall accuracy of both 
ML algorithms applied to each feature set is over 70% for every considered scenario. Both ML algorithms show 
similar accuracy for binary classification of the dataset.

Multi‑class classification. Secondary results are presented in this subsection, where the relations between earth-
quake slip types and their associated acoustic signals are further studied. Here, the dataset was split into three 
 classes4 based on the source faulting solutions provided by the global CMT  catalog28,29. The classes are strike-slip 
(‘0’), thrust or reverse (‘1’) and normal (‘2’). Thus, the ‘vertical’ class, defined in the previous subsection, was 
further subdivided into two classes: thrust and normal. This classification led to a dataset distribution com-
posed of 86 strike-slip (42.8%), 62 reverse (30.8%) and 53 normal earthquakes (26.4%). The signal vectorization 
techniques used in binary classification have been utilised in the section. RFC and SVM were applied, where a 
‘One-versus-all’30 technique was used, generating as many binary classifiers as label types and testing every class 
against the rest. The resulting classification accuracy, standard deviations and confusion matrices are provided 
in the Supplementary materials, ‘Multi-class classification’ section.

Table 1.  Accuracy and standard deviation (%) for binary classification using SVM and RFC on four different 
sets of features.

Feature set SVM accuracy (%) RFC accuracy (%)

1 71.62 ± 11.67 71.12 ± 9.75

2 74.10 ± 10.64 75.60 ± 10.64

3 76.64 ± 8.86 78.10 ± 8.74

4 76.12 ± 10.76 73.62 ± 10.76

Figure 2.  Binary classification confusion matrices for the considered feature sets and classification algorithms. 
‘0’ stands for events classified as mainly horizontal slip motion and ‘1’ for events with relevant vertical motion 
component. (a) Normalised absolute errors for the RFC application along with 10-fold validation scheme. (b) 
Normalised absolute errors for the SVM application along with 10-fold validation scheme.
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The application of RFC to the feature set ‘3’, where only features obtained by applying the DWT are consid-
ered, led to the highest observed accuracy results, with an average accuracy for 10-fold validation technique of 
64.14% and 8.99% standard deviation, see ‘Multi-class classification’ section in the supplementary materials. The 
normalized confusion matrices suggest that the algorithms classified the majority of the strike-slip and thrust 
earthquakes accurately (> 70%), though failed to identify most of the normal earthquakes (< 30%). The low clas-
sification accuracy of normal slip type events is potentially influenced by a low presence of acoustic signals related 
to this type of earthquake in the dataset, leading to an imbalanced  dataset31. Nevertheless, the overall classification 
accuracy (> 60%) for most of the cases reveals statistical significance between the features and the slip types.

Magnitude regression. In this section, we estimate the magnitude of tectonic events by analysing acoustic 
signals and applying ML algorithms. Support Vector regressor (SVR) and Random Forest regressor (RFR) were 
applied to each of the four different feature sets extracted from the recorded signals that compose the dataset. 
Additionally, we used 10-fold validation technique and 5-fold hyper-parameter grid search. The magnitudes 
(Mw) of the events were obtained from the global CMT  catalog28,29, see Fig. 3. Note that since the frequency of 
occurrence of an Earthquake drops logarithmically with the magnitude, having a perfectly balanced dataset is 
rather challenging. The magnitude frequency for each type of earthquake is graphically analysed in the Supple-
mentary materials, ‘Multi-class classification’ section.

The sum of squared errors (SSE) associated with the results delivered by the ML regression algorithms is 
calculated by

where n is the size of the test set, yi are the actual values in the test set and f (xi) are the predictions made by the 
ML algorithms.

The calculated SSE values for each fold were averaged to provide final estimates for the performance of the 
regression algorithms, see Table 2. The SSE, in Eq. (1), was applied using the average of the training set as pre-
dictor f (xi) , resulting in 13.61, which is about twice the SSE values obtained using the ML models predictions 
presented in Table 2. This indicates that the model delivers more accurate predictions than the mean value of the 
training set. Additionally, the R-squared ( R2 ) estimator, which represents the part of the variance for a dependent 
variable that is explained by the independent variables in a regression algorithm, is computed by

(1)SSE =
n

∑

i=1

(yi − f (xi))
2,

(2)R2 = 1− Sres/Stot ,

Figure 3.  Moment magnitude distribution for the studied dataset.

Table 2.  Calculated SSE for the algorithm estimations against the actual values and R2 score for each 
considered ML algorithm and feature set.

Model

Set 1 Set 2 Set 3 Set 4

SSE model R
2 score SSE model R

2 score SSE model R
2 score SSE model R

2 score

SVR 5.94 0.51 6.07 0.49 7.19 0.42 7.72 0.40

RFR 6.30 0.48 6.54 0.45 7.18 0.42 7.19 0.41
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where Sres is the sum of squares of the residual errors and Stot is the total sum of the errors.
The lowest errors were obtained by applying SVR to the set of features ’2’, which is composed of a combination 

of temporal, statistic and cepstral features. The observed R2 scores lie around 0.5, suggesting that the regression 
algorithms in combination with the extracted features were able to explain some relations between the extracted 
signal features and the corresponding tectonic event magnitudes, see Table 2. The calculated and actual values for 
the magnitudes of the tectonic events are graphically compared in the ‘Regression accuracy distribution’ subsec-
tion in the ‘Sensitivity analysis’ section in the ‘Supplementary materials’. It was observed that the estimations 
related to magnitude extremes of the dataset ( Mw < 6 and Mw > 8 ) have higher associated errors.

Earthquake case studies. To demonstrate the applicability of the developed methodology, we have chosen 
five real case scenarios independent from the dataset used to train the ML algorithms:

• 16th February 2015 (39.78N 143.22E).
• 14th March 2012 (40.88N, 144.93E).
• 25th October 2013 (27.17N, 144.66E).
• 21st December 2010 (27.10N, 143.76E).
• 29th September 2009 (-15.13N, -171.97E).

The selected earthquakes have a wide range of magnitudes (6.7 to 8.1 Mw). Stronger earthquakes were not 
considered due to the small number of available recordings associated with them. The studied earthquakes in 
this section are located in the Pacific ocean and their estimated properties are compared against data extracted 
from the  gCMT28,29. Additionally, reports released by the National Oceanic and Atmospheric Administration 
(NOAA) show that the selected earthquakes triggered tsunamis.

The acoustic signals emitted by the earthquakes were recorded by the IMS hydrophone station ‘HA11’ situ-
ated in the middle of the Pacific ocean and deployed by CTBTO. These earthquake scenarios were chosen as they 
do not have abrupt bathymetry changes in the paths between their epicentres and the ‘HA11’ hydrophone station, 
reducing the inverse problem uncertainties. The process taken for retrieving the type of slip, magnitude and 
effective properties of a tectonic event is detailed in this section for the case of the introduced event 16/02/2015. 
Then, the results obtained for the remaining four earthquakes are provided in Tables 5 and 6.

The  gCMT28,29 reported an earthquake of magnitude 6.7 Mw and coordinates Lat=39.78, Lon=143.22 (Off-
shore, near the east coast of Honshu), that occurred on 16/02/2015 at 23:06 UTC. The epicentre location is about 
2 km deep underwater, with a hypocenter situated 22.2 km under the ground-water interface. The half duration 
of the event is 5.7 seconds that was catalogued as a thrust earthquake with slip angles: strike = 182° and 26°; dip 
= 18° and 73°; slip = 68° and 97°. Moreover, the studied event triggered a small tsunami with a wave height of 20 
cm, recorded along the coast of Iwate (https:// www. ngdc. noaa. gov/ hazel/ view/ hazar ds/ tsuna mi/ event- search).

The distance between the analysed recording hydrophone and the epicentre of the tectonic event is approxi-
mately 3200 km, resulting in a calculated travel time for the acoustic waves of 35 mins before reaching ‘H11N1’, 
see Fig. 4. The extracted hydrophone recordings, displayed in Fig. 4, begin at 23:35 UTC and end at 23:50 UTC, 
the arrival of the disturbance is identified around 23:42 UTC, see Fig. 4.

The acoustic disturbance was isolated and the four proposed sets of features extracted. The dataset composed 
of 201 acoustic signal recordings associated with tectonic events was used to train the classification and regres-
sion algorithms, which estimated the slip type of the studied event with 100% accuracy and the magnitude with 
an associated error lower than 5%, see Tables 3 and 4.

The earthquake’s type of motion and magnitude estimations delivered by the ML algorithms, reported in 
Tables 3 and 4 , are important input parameters for the inverse problem model, see ‘Inverse problem model’ sec-
tion. When the earthquake is classified vertical (binary classification) the inverse problem model can be applied. 
The potential ranges for the effective fault size and dynamics are calculated by using empirical relations that relate 

Figure 4.  Signal related to the studied tectonic event recorded by the ‘H11N1’ hydrophone. In red highlighted 
relevant acoustic disturbance.

https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/event-search
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the magnitude of the event with the effective rupture length, width, and ground surface  displacement20. These 
ranges are finally fed into the inverse problem model.

Two approaches were taken to generate an input for the inverse problem model and the results were compared, 
see Fig. 5. In the first approach, the magnitude of the event was not taken into account and the inverse prob-
lem model was fed with the total observed range of values for each effective earthquake property by Wells and 
 Coppersmith20. Thus, for each property the range spans from the minimum to the maximum observed values, 
half effective length of the fault L = [1− 400] km; half width b = [1− 90] km; maximum surface displacement 
d = [0.05− 10] m; half duration T = [0.1− 25]  s28,29.

The length of the effective displacement 2L was estimated from Fig. 9 in Wells and  Coppersmith20, the area 
from figure 1620, allowing the further calculation of the width 2b. The maximum vertical displacement was esti-
mated from Fig. 11 in Wells and  Coppersmith20. Note that the predictions for the characteristics of the earthquake 

Table 3.  Classification results for the study case using four different feature sets. For the 3-type classification 
‘0’ stands for horizontal, ‘1’ for thrust and ‘2’ for normal. For the binary classification ‘0’ represents horizontal, 
‘1’ for vertical.

Binary Multi-class

1st 2nd 3rd 4th 1st 2nd 3rd 4th

SVM 1 1 1 1 1 1 1 1

RFC 1 1 1 1 1 1 1 1

Table 4.  Regression results [Mw] for both considered algorithms applied to the four feature sets extracted 
from the study case signal.

1st 2nd 3rd 4th

SVR 6.72 6.71 6.79 6.49

RFR 6.79 6.69 6.78 6.40

Figure 5.  Probability density functions for the effective slender fault characteristics calculated by the inverse 
problem model. In blue, the results were calculated without taking into account the moment magnitude of the 
studied tectonic event; and in orange, the inverse problem model was fed with the regressions developed by 
Wells and Coppersmith (1994). Dashed vertical lines indicate the averaged values for each approach. (a) Results 
for the half width, b, (b) Results for the uplift speed, W0 , (c) results for the half length, L and (d) results for the 
half duration, T.
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are based on empirical values, which may include significant  scatter20. Wells and  Coppersmith20 regressions were 
made based on a dataset composed of more than 400 earthquakes with magnitudes ranging from 5.2 to 8.1.

The second approach is based on the regressions developed by Wells and  Coppersmith20 that relate moment 
magnitude (Mw) with effective properties of the earthquakes by:

where SRL stands for surface rupture length, RA for rupture area (Table 2A Wells and  Coppersmith20), and MD 
for maximum displacement (Table 2B Wells and  Coppersmith20).

The applied parameterizations provided a single value for each effective fault property, which was divided 
by 2 and multiplied by 2.5 to define the limits for the input ranges of the inverse model. These coefficient values 
are set after visual inspection of the information published by Wells and  Coppersmith20 in order to simulate the 
scatter found in the  data3.

In the spectrogram associated with the pressure signal, we identified maximum and minimum limits for 
the potential values of the frequency distribution of the first acoustic mode at 0.8 and 10 Hz respectively. With 
this information, the algorithm identified four potential first mode frequency distributions that lie within the 
established frequency range. Then, the relevant part of the acoustic disturbance was selected by inspection of 
the short-time energy distribution. Finally, the model was run producing a set of 40 solutions (a set of 10 solu-
tions was calculated for each potential orientation of the fault) for each property of the effective ground uplift 
associated with the tectonic event: L, b, T and uplift speed W0 , see Fig. 5.

The regressions found in Wells and  Coppersmith20 were applied to the estimated magnitude of the event (Mw) 
leading to: SRL = 25.29 km, RA = 404.6  km2, width b = 15.99 km and MD = 1.08 m. The retrieved properties 
by the inverse problem model fed with the total observed range of values in Wells and  Coppersmith20 for the 
effective properties (where the magnitude of the event was not considered as input) are L = 92.43 km, b = 12.28 
km, T = 7.28 s and d = 1.03 m ( 2TW0 ). For the case where the model is fed with property ranges based on the 
regressions found in Wells and  Coppersmith20, the retrieved values are: L = 17.59 km, b = 6.78 km, T = 8.59 s 
and d = 1.25 m, see Fig. 5. Both approaches for the input of the model led to sets of results that lie in the same 
order of magnitude. The calculated effective half length of the fault, in the case of the magnitude of the event 
not taken into account as input, is significantly larger than for the case where the magnitude is used as input. 
For the remaining four introduced earthquakes, only the ‘1st’ and ‘2nd’ sets of features are used along with RFR 
and SVR, since they led to the best regression accuracy results, and the obtained magnitude results averaged to 
provide a single final value. The ‘2nd’ and ‘3rd’ sets of features led to the highest classification accuracy. Thus, 
they are applied and the resulting classifications compared, see Tables 5 and 6. Note that only the binary clas-
sification result is used as input for the inverse problem model. The average absolute binary classification error 
and the absolute mean regression error are 0% and 2.382 %, respectively.

Synthetic signal analysis. In this section, we report on the performance of the application of classification algo-
rithms on synthetic pressure signals generated by Eq. (4) found in Mei and Kadri (2018)1. The applied ML algo-

(3)
log SRL = c1 + c2Mw, c1 = −3.22, c2 = 0.69

logRA = c3 + c4Mw, c3 = −3.49, c4 = 0.91

logMD = c5 + c6Mw, c5 = −5.46, c6 = 0.82

Table 5.  Results delivered by the ML algorithms. Distance refers to the hydrophone-epicentre separation, (V) 
stands for vertical earthquake, (H) for horizontal, (N) for normal and (T) for thrust. gCMT are the reported 
slip types. h is the average ocean depth between the epicentre and hydrophone.

Earthquake Mw Retrieved Mw gCMT Multi-class Binary h (m) Distance (km)

16/02/2015 6.700 6.727 Thrust (T) 100% (V) 100% 4000 3200

21/12/2010 7.400 7.072 Normal (N) 100% (V) 100% 4500 2500

25/10/2013 7.100 7.017 Normal (N) 100% (V) 100% 5000 2900

14/03/2012 6.900 6.740 Normal (T) 50% - (N) 50% (V) 100% 5000 3150

29/09/2009 8.100 7.810 Normal (N) 75% (V) 100% 4000 4450

Table 6.  Properties retrieved by the inverse problem model: number of runs (sets of solutions, 10 solutions 
each set) carried by the model and the average computational time taken by each of the runs.

Earthquake L (m) b (m) T (s) W0 (m/s) Time/run (s) Runs (#)

21/12/2010 26,500 9600 17.71 0.035 4.85 4

25/10/2013 26,400 9400 27.7 0.02 2.3 3

14/03/2012 14,800 7200 23.5 0.013 2.6 3

29/09/2009 93,100 11,300 12.73 0.135 2.92 5
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rithms were trained with real earthquake acoustic signals. The bottom pressure signals induced by the acoustic 
waves in the far field are described by

where ρ is the water density, A is the two dimensional  envelope1, k is the wave number and �̂ is the frequency. 
Note that only the pressure induced by the first acoustic mode is taken into account, as it carries most of the 
energy and information about the  source1. The analytical solution used to generate the synthetic signals takes 
simplifications such as constant speed of sound or rigid and flat seabed which are discussed in other  studies1,3.

The slender fault properties and relative coordinates used to calculate the pressure signals by Eq. (4) were 
randomly generated within the ranges observed by Wells and Coppersmith (1994)20: water column depth 
h = [3000− 4000] m; total distance from the centre of the fault to the virtual hydrophone r = [1000− 4000] 
km; L = [10− 200] km; b = [2− (L/8)] km; d = [0.03− 10] m; T = [2− 20] s. Here, 20 synthetic signals were 
generated and windows of 300 seconds extracted after the arrival of each pressure disturbance to the virtual 
hydrophone. Then, the four types of signal vectorization considered in this study were performed and binary clas-
sification was applied with 5-fold hyperparameter grid search. As a result, the RFC and SVM algorithms identified 
the synthetic signals as incoming from vertical motion earthquakes (‘1’) with an accuracy of 100%, as expected.

We studied the effects of adding and shuffling different numbers of synthetic signals into the dataset (com-
posed only by real earthquake recordings) used to train the classification algorithms, for more details see 
‘Machine learning application on synthetic signals analysis’ subsection in ‘Sensitivity analysis’ section in the 
‘Supplementary materials’. The overall accuracy of the classification algorithms increased due to the addition of 
synthetic signals to the training dataset. However, when the amount of added synthetic signals became ≈ 10% 
(20 synthetic signals in the studied case) of the dataset size, a trend of increased bias was noticed, leading to a 
higher incorrect classification of the horizontal slip events (‘0’). Thus, it is recommended to include a number 
of synthetic signals smaller than 10% of the total dataset size in order to optimise the classification accuracy for 
both tectonic event slip types.

Discussion
We applied a set of techniques capable of analysing acoustic pressure signals induced by underwater earthquakes 
and calculated the effective fault size and dynamics in almost real-time. To fulfill this goal, we studied a dataset 
composed of 201 earthquake signals recorded by the IMS hydro-acoustic network. Furthermore, we compared 
four different methodologies to extract relevant features from acoustic signals incoming from submarine earth-
quakes, based on statistical moments, time series analysis, power spectrum analysis, wavelet transform coef-
ficients analysis and cepstral coefficients were considered and compared. Along with the vectorization method-
ologies, we applied two classification ML algorithms (RFC and SVM), which were able to discriminate vertical 
motion events with over 70% classification accuracy. Amongst the tested methodologies, the wavelet transform 
feature extraction technique in combination with SVM led to the highest classification results accuracy for both 
binary and multi-class scenarios.

Regarding the three-type classification, included as a secondary result, there is a low classification of ‘normal’ 
events, which can be caused by an unbalanced  dataset31, where the balance between ‘horizontal’ and ‘vertical’ 
events was prioritised, leaving around half of the set to be split into the two new classes (thrust and normal). The 
inclusion of more signals induced by ‘normal’ earthquakes or the use of penalised ML algorithms could yield 
higher accuracy results. Furthermore, the application of feature selection algorithms instead of using feature sets 
based on previous studies has the potential of improving the ML algorithms accuracy.

Additionally, regression ML algorithms were applied to the vectorized signals dataset to estimate the mag-
nitudes of the associated tectonic events. The ML algorithms delivered better predictions than the mean value 
of the dataset, which was confirmed by the SSE values. It is remarkable that the precomputed vectorized dataset 
along with the ML algorithms take less than one second on a standard desktop machine to deliver the source 
magnitude and slip type estimations. Finally, the magnitude and slip type retrieved by the ML algorithms can be 
used to feed an inverse problem model to perform real-time calculations of the fault effective size and dynamics. 
In this study, the depth dependence of the classification accuracy has not been analysed (only shallow earthquakes 
have been selected to reduce uncertainties) which is intended to be done in the future in order to expand the 
studied dataset and potentially improve the accuracy of the model.

The size of the dataset is a limitation. Only earthquakes that meet specific conditions are considered, reduc-
ing significantly the cases that serve our purpose. Thus, this study is presented as a proof of concept to show the 
applicability of a combination between ML algorithms and semi-analytical solutions to infer the properties of 
submarine tectonic events from acoustic radiation. Another issue that we would like to study in the future is the 
relations between the magnitude prediction results and the type of studied earthquakes, where possible patterns 
might shed light on the process understanding.

Methods
Data and instrumentation. Instrumentation. We used data from three hydrophone stations deployed 
by CTBTO: HA01 (Cape Leeuwin), HA08 (Diego Garcia) and HA11 (Wake Island). Each station consists of two 
triplets except HA01 which has a single  triplet27.

The hydrophones are suspended at a depth corresponding to the SOFAR channel axis and anchored to the 
seabed via a riser cable, which is kept under tension by a sub-surface  buoy32. The recordings used in this study 
are extracted from the International Monitoring System (IMS) database, which are originally recorded by the 

(4)p = ρW0|A|
27/2c

√

π3x0k
sin (kb) sin

(

�̂T
)

,
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IMS ‘H11N1’, ‘H11S1’, ‘H01W1’, ‘H08S1’ and ‘H08N1’ hydrophones, see Fig. 6. The calibration files for the men-
tioned instruments, provided by CTBTO, show a steep roll-off below 0.1 Hz in the instrument response curve, 
and consequently, in this study, the analysis of frequency bands below 0.1 Hz is not considered. The data has a 
sampling frequency of 250 Hz.

Dataset. Long distances from hypocenter to epicentre can induce distortion and attenuation on seismic waves 
leading to higher uncertainties in measurements. In order to minimise these effects, we considered only acoustic 
signals associated with shallow earthquakes. Different values for the maximum hypocenter depth below the 
seabed are used to define shallow earthquakes in the literature, such as 60  km5,33 or 100  km7. We only included 
earthquakes with hypocenter located at less than 60 km deep under the sea bed in the dataset. The dataset was 
built with 201 acoustic recordings induced by ‘shallow’ tectonic events, listed in the ‘List of earthquakes’ section 
in the ‘Supplementary materials’. The data was provided by CTBTO.

To minimise diffraction effects only earthquakes with shortest transects, that do not cross through lands, 
were analysed, see Fig. 6. In addition to the previously mentioned constraints, only underwater earthquakes are 
studied, which significantly narrows down the search.

The earthquake’s source types of slip and magnitudes were labelled based on data reported by  gCMT28,29. The 
slip type labelling of the dataset depends on the slip angles of the fault planes. For slip angles 0° and 180° the 
faults were classified as pure strike-slip, whereas for 90° and − 90°, faults were classified as pure dip-reverse and 
pure dip-slip normal, respectively (± 20°).

Digital signal processing methods. Signal vectorization (feature extraction). Signal vectorization is the 
process of reducing the size of the acoustic data set by determining category variables that define the sound 
type or identity of the sound source. It is important to decrease the signal dimensionality, as the training dataset 
grows exponentially as a function of the number of variables in the feature  vector8.

Previous studies on ML approached the classification of CTBTO acoustic signals by operating on features 
automatically extracted by the  organization10,25. However, the mentioned studies had to handle missing values for 
some  features9. To overcome this difficulty, raw acoustic data were analysed and a signal processing algorithm, for 
signal vectorization was developed, ensuring that there were no missing values in the feature vectors. It has been 
reported that a single feature cannot train the classifiers  efficiently8. Thus, we considered and compared five types 
of features: temporal (obtained directly from the time series)8–10, spectral (obtained from the power spectrum)8–10, 
 cepstral8–10,12,34, statistical (statistical moments applied to the times series)9,10 and wavelet transform  type35.

Inspired by previous  studies8–10,35, four different sets of features were built and tested along with the considered 
ML algorithms. The first and second sets consist of a combination of four types of features (temporal, spectral, 
statistical and cepstral); the third set is composed only by wavelet transform extracted features; and the fourth 
set consists of cepstral features only, as shown in Table 7.

Figure 6.  Geographic distribution of the earthquake epicentres associated with the signals in the studied 
dataset. Image generated in Microsoft PowerPoint 2016.
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Signal identification. We estimated the signal travel times from source to receiver by dividing the distance 
between the earthquake epicentre and the recording instrument by the speed of sound, considered constant 
( c = 1500m/s ). The centroid times and location coordinates were obtained from the Harvard global CMT data-
base.

For each recording (x(t)), the part of the signal carrying most of the information was identified by finding the 
point with maximum absolute amplitude (|x(t)|) and extracting a window composed of N samples at each side 
of the selected point. Short-time energy analysis was performed to define the potential extracted signal lengths 
(2N), for more details see ‘K-fold and grid search’ subsection in ‘Sensitivity analysis’ section in the ‘Supplementary 
materials’. The expression for the short time energy ( Ef )36 has the form

where n = 0 and (Ne − 1) represent the limits of each frame, Ne − 1 is the length in samples. The time-frames 
were chosen to be five seconds long ( Ne = 1250 samples), which was chosen to be shorter than the shortest 
earthquake duration in the studied dataset.

We set N = 20, 000 samples (160 s) as the maximum considered half window length for feature extraction. 
This choice was made after observing that it exceeds the duration of most signals in the dataset. Several values of 
N were tested, ranging from 2500 to 20,000 samples, for more details see the ‘K-fold and grid search’ subsection 
in the ‘Sensitivity analysis’ section in the ‘Supplementary materials’. The minimum tested half window length 
was 2500 samples, since it was intended to only analyse the frequency behaviour of the signals down to 0.1 Hz.

Frequency behaviour analysis and time series features. In order to decompose the signals in different frequency 
bands and study their behaviour at different points of the frequency spectrum, we applied Butterworth band-
pass filters, which have been reported to have good performance for classification  purposes37. Then, the extracted 
features are statistical moments applied to the filtered time series such as standard deviation, kurtosis, skewness, 
maximum amplitude and zero-crossing rate. Additionally, the short-time energy distribution was computed for 
each band, with a five seconds window width, and the maximum and total short-time energy were calculated. 
Several potential divisions of the frequency spectrum (see Fig. 7) were analysed, tested and compared, for more 
details see the ‘K-fold and grid search’ subsection in the ‘Sensitivity analysis’ section in the ‘Supplementary 
materials’.

Based on the fact that earthquakes with vertical motion components excite lower frequencies due to the 
compression of the  water1, we performed more subdivisions at lower frequencies than at higher frequencies. 
Moreover, slow events show lower frequency excitation, in the range of 0.1 to 10  Hz7. Some of the tested fre-
quency subdivision approaches taken in this study were inspired by previously published  studies10,14, see Fig. 7.

We analysed the introduced subdivisions of the relevant part of the frequency spectrum and the optimal 
window size (2N) by running the classification models SVM and RFC on the 2-type class labelled dataset. In 
this analysis, only the set of features ‘1’ was used, along with every combination between the considered window 
sizes (2N) and spectrum division approaches. It can be seen that the standard deviations lie below 15% for SVM 
and 12% for RFC on the tested cases. In addition, the variations on accuracy along with the different considered 
scenarios are lower than 3%. Finally, we selected 15000 samples as the half window size (N) and the eight fre-
quency band spectrum division approach for the final set-up. This choice was made based on the results of the 
carried sensitivity analysis, for more details see the ‘K-fold and grid search’ subsection in the ‘Sensitivity analysis’ 
section in the ‘Supplementary materials’.

Spectral and cepstral features extraction. The signals were further processed to extract spectral and cepstral 
features. The cepstrum can be calculated by taking the inverse Fourier transform after applying a natural loga-
rithm to the Fourier transform of a signal. The logarithm maps convolution in the time domain to addition in 
the frequency domain.

(5)Ef =
Ne−1
∑

n=0

x2(n)

Table 7.  Studied feature sets, tested on the classification and regression algorithms.

Feature set

Feature type

Temporal Statistic Spectral Cepstral Wavelet

1 Max. amplitude, total short-time 
energy, zero- crossing rate Kurtosis, skewness Maximum, variance

2 Max. amplitude, total energy, 
zero-crossing rate

Kurtosis,
skewness, std. deviation

Power spectral density (PSD) 
mean, PSD coefficient, skewness, 
roll-off, PSD std. deviation, PSD 
skewness

Variance, min kurtosis, max. 
kurtosis, spectral coefficient, 
median

3
Std. deviation, average short-
time energy, power ratio, zero-
crossing rate

4
Variance, min. coefficient, skew-
ness, kurtosis, max. coefficient, 
median
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While for speech the optimum window length for framing is [16–32] ms, for acoustic sounds in the ocean, the 
window length may be different. Thus, the signal was sliced into frames of ten seconds duration (in order to be 
able to capture frequencies down to 0.1 Hz). We set 50%  overlap12,34 amongst the frames and Hamming window 
was  applied38. Then, Fourier transform was computed and the power spectrum for each frame was calculated by

where NFFT is the transform length in samples of the signal used by the fast Fourier transform, which in this 
case is 4096 in order to provide enough frequency resolution. Because of the nature of the FFT algorithm, NFFT 
was chosen to be multiple of two to make the algorithm more efficient.

The next step was to compute filter banks using triangular filters, which were applied on a scale inspired by 
the Mel-scale to the power spectrum in order to extract frequency bands. The Mel-scale aims at mimicking the 
nonlinear human ear perception of sound. Cepstral coefficients were used in the literature for the classification 
of sound sources in underwater environments due to their robustness to  noise8–10,34. Note that the Mel scale was 
designed for higher frequencies than the bands we are interested in, i.e. 0.1–10 Hz. Therefore, we modified the 
constants in the conversion formula to have an almost linear mapping from Hertz (f) to Mel frequency (m) in 
the range of 0.1 to 10 Hz and logarithmic mapping over 10 Hz, see Eq. (7). The conversion between Hertz and 
Mel frequency is done by

The new constants are obtained from

where f0 was chosen to be 7 Hz and f = 10 Hz, thus, below 10 Hz the relation between Mel frequency and 
frequency in Hz is almost linear.

The applied triangular filters are highly correlated due to the overlap, and thus, we used the discrete cosine 
transform (DCT) to decorrelate the filter  coefficients12. It is shown in the ‘Cepstral coefficients analysis’ subsec-
tion in the ‘Sensitivity analysis’ section in the ‘Supplementary materials’ that 12 cepstral coefficients capture most 
of the information carried by the signal. Finally, statistical moments (mean, maximum, kurtosis, skewness and 
variance) were applied to each coefficient band to reduce the number of features. The spectral features, listed in 
Fig. 7, were extracted from the one-sided power spectrum computed on the calibrated original signals.

Wavelet transform parameters analysis. The power distribution of the signals along with different frequency 
bands can be analysed by applying the discrete wavelet transform (DWT)39, of the form

(6)P = conj(X(s))X(s)

NFFT
,

(7)m = 25.95 log

(

1+ f

7

)

(8)
C = f

log

(

1+ f

f0

)

Figure 7.  Considered frequency spectrum subdivisions.
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where a is the scaling parameter, b is the translational parameter and ψ is the mother wavelet. Here, a given signal 
is projected onto a space defined by a set wavelets, which are function of frequency and  time40,

Several studies approached the extraction of features by wavelet transform algorithms for different purposes, 
such as earthquake magnitude prediction by seismic waves  analysis18,41 or source type classification of acoustic 
 signals24,35,39,42. Even though numerous wavelet bases exist, we tested and compared only two discrete wavelets, 
Daubechies and Symlet, being two of the most popular wavelets in signal processing. Furthermore, the order of 
the wavelets was also analysed, which indicates the number of vanishing moments and is related to the approxi-
mation order and smoothness of the wavelet. After applying DWT, n sets of detail coefficients and one set of 
approximation coefficients ( n+ 1 times each feature) were produced. Note that n = 6 levels, has been used in 
previous  studies35. In order to analyse the sensitivity of the ML algorithms to variations in DWT parameters, we 
tested a different number of levels [4–8] and wavelet orders [2–8], see ‘Sensitivity analysis’ in ‘Supplementary 
materials’. We found that the accuracy amongst the considered scenarios has a deviation of less than 5%. Nev-
ertheless, we decided to use Symlet wavelet of order eight with six levels of coefficients as the final setup, since 
it provides a good balance between computational efficiency and accuracy.

Finally, after applying DWT, statistical moments were calculated for each extracted coefficient band or level 
( n+ 1 ): standard deviation, average short-time energy, power ratio between the first coefficient band and every 
other band and zero-crossing  rate42, see Table. 7.

Machine learning (ML) algorithms. In essence, ML algorithms learn from data using probability theory 
and can be grouped into two main categories: supervised learning (labelled dataset) and unsupervised learning 
(unlabelled dataset). In this study, we applied supervised learning, which can be further subdivided into clas-
sification and regression algorithms based on whether the target outputs are categorical (classification for slip 
type) or quantitative (regression for magnitude)43. In particular, two ML algorithms were explored, SVM and 
 RFC8–10,12.

The first algorithm, SVM, is a classification technique that can additionally be used for regression  purposes44. 
It uses a convex cost function, always reaching the global minimum of the cost  function12. It is able to perform 
reliable classifications even with small  datasets45. SVMs differentiate classes by finding the hyper-plane that splits 
them and maximize the margin between the closest point of each class and the hyper-planes. Each signal is vec-
torized and described by a point in a n dimensional space and a cost function is fully specified by the subset of 
training examples called support vectors. The output of the SVM is a set of weights, which in combination will 
predict the value of the outcome. Because of the non-linear nature of the studied process, a non-linear kernel 
has been selected, ‘Radial Basis Function’ (RBF), being this a type of Gaussian kernel, that has been proven to 
provide good accuracy and  efficiency9. SVM are commonly found in the literature to classify acoustic signals 
in the  ocean8–11,11,12,44,46.

The second studied algorithm, RFC (introduced in 1995)47, is a technique based on decision trees that oper-
ate as an ensemble. It can perform classification and  regression48 by splitting a dataset into smaller data subsets, 
while an associated decision tree is incrementally developed. The final result is a tree with decision nodes and 
leaf nodes. Decision nodes have two or more branches and leaf nodes represent a classification or decision. Each 
individual tree in the random forest delivers a class prediction and the class with the most votes becomes the 
model’s prediction.

It is important to remark that, regularization (normalization) of the features was carried before the application 
of SVM, due to significant differences in the order of magnitude between the feature values. However, it is not 
necessary for the application of RFC. In addition, we used validation k-fold  technique12 (10-fold) in combination 
with grid search (5-fold) to identify the best model hyper-parameters and test the accuracy of each algorithm, 
for more details see ‘k-fold and grid search’ subsection in ‘Sensitivity analysis’ section in the ‘Supplementary 
materials’. Finally, the accuracy of all fold tests was averaged and precision and standard deviation results were 
calculated.

Inverse problem model. A semi-analytical inverse approach is employed assuming the fault is single (A 
similar solution can be derived for multi-fault rupture based on Williams et al.  202149), slender and uniform, and 
the seabed is flat, which allows the calculation of the effective fault characteristics in almost real-time from the 
pressure acoustic signature. The three-dimensional wave equation governs the propagation of acoustic waves in 
slightly compressible  fluids50:

where φ is the velocity potential, the velocity field is defined by u = ∇φ . c is the speed of sound in water. With 
standard boundary conditions the problem of the propagation of acoustic waves induced by the vertical motion 
of a slender fault was constructed. At the surface, the pressure is assumed to be zero and uniform,

On the seabed ( z = 0 ), a piston model simulates the vertical displacement of the fault by

(9)W(a, b) = 1√
|a|

∫ −∞

∞
x(t)ψ

(

t − b

a

)

dt,

(10)
∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 1

c2
∂2φ

∂t2
,

(11)∂φ/∂z = 0 at z = h,
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The effective earthquake is assumed to have rectangular slender shape, with a length of 2L and width 2b, 
where b/L ≪ 1 is the slenderness parameter.Due to the assumption of slender body, multiple scales theory can 
be applied and an analytical solution is reached [Eq. (6.1) in Mei and  Kadri1].

The derived  solution1 comprises a summation of a countable infinity of acoustic modes. However, for brevity, 
only the bottom pressure due to the leading acoustic mode is considered, which is the most  energetic50. The solu-
tion provides a relation for the bottom pressure induced by the vertical motion of the slender fault in the far-field.

Note that, the slender fault geometry and dynamics considered here represent an effective vertical motion 
caused by the more complex earthquake rupture dynamics. The fault is assumed to move vertically upwards with 
a constant speed W0 , for a time duration 2T1. Thus, inferring the presence of vertical motion components in the 
studied tectonic events is of major importance for the application of the model.

An array with the potential combinations for x0 and y0 (orientation of the fault) can be defined considering 
that, the detected acoustic radiation induced by the earthquake can be triangulated by the hydrophone triplet to 
infer the distance to the source. The frequency distribution of the first acoustic mode is then calculated, which 
is a function of time t (relative to the eruption time t0 ), depth h, and every potential orientation of fault ( x0 and 
y0 ). Only the obtained frequency distributions that lie within the range defined by visual inspection of the spec-
trogram are considered and define the number of sets of solutions provided by the model.

To identify the beginning and end of the disturbance in the recordings, the short-time energy distribution 
is analysed. Then, pressure points from the acoustic signal need to be chosen to retrieve the source  properties3. 
Envelope tracking algorithms are applied since working with points close to the envelope reduces the associated 
uncertainties and the obtained pressure points are associated with the calculated potential first mode frequency 
distributions.

The magnitude estimated by the ML algorithms is used to generate the ranges that will feed the inverse 
problem model and confine the potential solutions for the effective geometry and dynamics of the tectonic 
event. Finally, the steps described in Gomez and  Kadri3 section 3, are taken for each of the selected frequency 
distributions to retrieve b, L, T and W0 , see Fig. 8. Note that the calculation of ten solutions for each earthquake 

(12)
∂φ

∂z
=

{

W0τ(t) |x| < b, |y| < L
0 elsewhere

, τ(t) =
{

1 − T < t < T
0 |t| > T

.

Figure 8.  Inverse problem model process.
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property and potential frequency distribution is a choice made to balance the computational effort and accuracy 
and can be modified. The solutions are plotted in four probability density functions along with the mean values, 
see Fig. 5. The fault geometry and dynamics are estimated within a few seconds on a standard desktop machine.
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